

TRAINING OF CC4 NEURAL NETWORK USING

UNARY AND SPREAD UNARY INPUTS

By

PUSHPA SREE POTLURI

 Bachelor of Technology in

Electronics and Communication Engineering

Jawaharlal Nehru Technological University

Kakinada, India

2014

Submitted to the Faculty of the

Graduate College of the

Oklahoma State University

in partial fulfillment of

the requirements for

the Degree of

MASTER OF SCIENCE

December, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215306514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

TRAINING OF CC4 NEURAL NETWORK USING

UNARY AND SPREAD UNARY INPUTS

Thesis Approved:

 Dr. Subhash C. Kak

Thesis Advisor

 Dr. Ramachandra Gupta Ramakumar

Dr. Daniel R. Grischkowsky

iii

ACKNOWLEDGMENTS

I take this opportunity to express my gratitude to everyone who is involved in the

successful completion of my thesis.

It has been an honor to have Dr. Subhash Kak as my advisor and research supervisor. I

am grateful to him for his advice, support and guidance, not just in the course of my

research but also for my graduate career at OSU.

I would also like to thank Dr. Daniel R. Grischkowsky and Dr. Ramachandra Gupta

Ramakumar for being my thesis committee members and for providing valuable inputs to

my research.

Finally, I am grateful eternally to my family: my mother, father and my brother for their

affection, care and support, at all times throughout my life.

Acknowledgements reflect the views of the author and are not endorsed by committee

members or Oklahoma State University.

iv

Name: PUSHPA SREE POTLURI

Date of Degree: DECEMBER, 2015

Title of Study: TRAINING OF CC4 NEURAL NETWORK USING UNARY

AND SPREAD UNARY INPUTS

Major Field: ELECTRICAL ENGINEERING

Abstract: This thesis presents results on training the corner classification (CC4) feed forward

neural networks with the recently proposed spread unary inputs. We show the performance of

this network is quite like that of the original CC4 network. The spread unary CC4 network is

tested on pattern classification data. It is also used in time series prediction which is illustrated

using the Mackey-Glass time series, sunspot predictions and the prediction of d-sequences.

v

LIST OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

Human Brain and Computer ..1

The Biological Neuron...2

The Artificial Neuron...3

II. CC4 APPROACH FOR NEURAL NETWORK ...4

Introduction..4

Corner Classification Approach...6

 Functioning of CC4 ..6

III. TRAINING OF THE NEURAL NETWORKS USING UNARY

CODING..11

 Introduction ..11

 Neural Network learning …………………..12

Results... ...14

IV. TRAINING OF THE NEURAL NETWORKS USING SPREAD UNARY

CODING

 Introduction18

 Neural Network learning …………………..19

Results..23

 V. TIME SERIES PREDICTION……………….……………………………………26

 VI. SUNSPOT NUMBERS……………………………………………….………….37

 VII. D- SEQUENCES…………………………………………………….………….41

vi

VII. CONCLUSION...46

REFERENCES ...47

vii

LIST OF FIGURES

Figure Page

1. Biological Neuron ..2

2. General Network architecture of CC4 ...6

3. Network architecture for XOR ...9

4. Space Representation of numbers…………………………………………………12

5. Spiral Pattern Classification using unary coding………………………......……..14

6. Plane Pattern Classification using unary coding………….…………….....……..16

7. Cross Pattern Classification using unary coding………….…………….....……..17

8. Spiral Pattern Classification using spread unary coding………………......……..21

9. Plane Pattern Classification using spread unary coding………………....…..…..23

10. Plane Pattern Classification using spread unary coding………………....…..…..24

11. Misclassified points in Unary vs Spread…………………………………….…..25

..

12. Mackey-Glass time series prediction……………………………………………28

13. Sunspot number predictions……………………………………………………..40

14. Prediction of d- sequence for prime 487 ………………………………………..43

15. Prediction of d- sequence for prime 709 ………………………………………..44

16. Prediction of d- sequence for prime 987 ………………………………………..45

viii

LIST OF TABLES

Table Page

1. XOR function truth table ..8

2. Operation of the network for XOR function...10

3. An Example of the Unary Code………………………………………………..11

4. Misclassified/Classified points in the Spiral pattern……………………………14

5. Misclassified/Classified points in the Plane pattern……………………………16

6. Misclassified/Classified points in the Cross pattern……………………………17

7. Spread Unary Code Example…………………………………………………..18

8. Misclassified/Classified points in the Spiral pattern……………………………21

9. Misclassified/Classified points in the Plane pattern……………………………23

10. Misclassified/Classified points in the Cross pattern……………………………24

1

CHAPTER I

 INTRODUCTION

In spite of great advances in computer technology, human beings remain more intelligent than

machines at certain tasks [1,2]. The superfast computer can perform complex calculations, but at

the same it cannot manage an operation which needs intuitive thinking. For example, to solve a

puzzle a lot of intuition and prediction is needed. Humans find solutions by good clues and they

can figure out certain things from seemingly unrelated facts that are stored in their memories.

Though computers perform some tasks with high accuracy and efficiency, they cannot generalize

in situations with much uncertainty as humans do.

In a computer, the chips and few other components are interconnected and structurally organized.

The biological neuron is the basic structural unit of the brain. It has 3 parts: soma, dendrites, and

the axon. The central unit of the neuron is named as soma or cell body. The cell nucleus is

located in soma and it ranges from 3-18 µm in diameter. Dendrites are extensions emanating

from the cell body. The output from the nucleus is carried by a thin cable-like projection called

the axon which carries electrical impulses from the neuron. The end of the axon splits into fine

strands and each strand terminates into a synapse. The synapse connects the axon and dendrites.

The dendrite absorbs the chemical which is released by axon. This converts that chemical signal

to an electrical signal. This signal finally reaches the central unit of the nucleus [2].

2

 Figure 1: Biological Neuron (Courtesy: Cedar Crest College)

Artificial Neuron

An artificial neuron is an abstract mathematical model of a biological neuron. The first of

its kind was the Threshold Logic Unit which was proposed by Warren McCulloch and

Walter Pitts in 1943. In this model, each neuron receives one or more inputs from other

neurons (simulating dendrites) and generates an output (axon in biological neuron). The

effect of each input line on the neuron is controlled by a synaptic weight (analogous to

synaptic strengths in biological neurons). Synaptic weights adapt so that the whole network

learns to perform useful computations such as recognizing objects, understanding

languages and controlling the body. The weighted sum of these inputs is used as input to

the threshold function, also generally known as activation function or transfer function,

to generate the output.

3

Neural networks model the human brain. They perform well various generalization tasks

such as pattern recognition, pattern classification, optimization and time series prediction.

Artificial neural networks possess a large number of processing elements or nodes/neurons

which operate in parallel. Neurons are connected with others by connection link. Each link

is associated with weights which contain information about the input signal. Each neuron

has an internal state of its own which is a function of the inputs that neuron receives.

4

CHAPTER II

CC4 APPROACH FOR NEURAL NETWORKS

Artificial Neural Networks (popularly known as ANNs) are a network of unidirectional

connections comprising of very simple processing units each of which in turn might have a small

amount of memory. Owing to their efficiency and better performance over conventional

methods, these are being extensively used in wide areas such as virtual reality, data compression,

adaptive control, detection and tracking of moving targets and the like.

The current work is based on the corner classification approach to artificial neural network

training of CC4 network, as proposed by Subhash Kak in 1992/1993 and published soon

thereafter [3,4]; this work was granted a U.S. patent. While there are other techniques for training

a neural network including the back propagation algorithm, these have the limitation of a larger

time-consumption and the requirement of substantial training. [5,6,7]

CC4 Approach

This approach is characterized by the classification of training sample outputs to the corners of

a multidimensional cube based on the input vectors, as suggested by the name Corner

Classification [3]. Of the four algorithms that exist in the class, CC4 is the most advanced [8].

The corner classification approach provides instantaneous training and in the basic algorithm the

training samples are presented only once as that is sufficient to determine the interconnection

5

weights. These advantages are of significant value in many applications [9,10,11].

Implementation and applications of CC4 are available in the literature [12,13,14,15,16].

Network Architecture

The CC4 network architecture is built on a three-layered feed forward network of basic binary

neurons that use a thresholding function as the activation function. These three layers are: i) Input

layer ii) Hidden layer iii) Output layer.

Input layer

For representing the inputs in the input vector, the required number of input neurons equals the

sum of input ranges in the input vector. There is one extra neuron, called the bias neuron, as the

number of input neurons is one more than the number of input elements in a training sample.

This extra neuron receives a constant input of 1.

Hidden layer

Each hidden neuron corresponds to a training sample in the training set implying that the hidden

neurons and training samples are equal in number. Further, each hidden neuron is connected to

all of the input neurons.

Output layer

Neurons equal in number to that of the minimum number of bits required to present an output

constitute the outer layer. The output layer is fully connected; each hidden neuron is connected

to each and every output neuron so as to affirm membership effectively.

6

 Figure 2: General network architecture for CC4

Functioning of CC4

Two novel ideas which enable a network to learn and generalize form the basis of CC4

algorithm functioning. Learning is the process of assigning weights to connections between the

three layers of neurons. This network follows Prescriptive Learning, a process where the input

and output vectors of the training samples in the training set are inspected and weights assigned

to the links between corresponding neurons.

Secondly, the concept of radius of generalization helps in the classification of input

vectors based on the class of stored vectors. This is checked with respect to the hamming distance

between a new input vector and any of the stored vectors. Any value less than or equal to the

user-specified radius causes the outputs of all such stored vectors to be considered for generating

7

output of that input vector. Consequently, the number of 1s and 0s in every bit location of the

output vector of all these stored vectors is calculated and cumulated. Finally, the output neuron

outputs a 1 for a positive result while a 0 for a negative result.

By inspecting the training samples, both input and output weights to the hidden neurons

are prescribed. The weight of the link between an input neuron and the corresponding hidden

neuron is assigned a 1 or a -1 based on the input neuron receiving 1 or 0 respectively. In a similar

manner, outputs in the output vector determine the weight of the link between an output neuron

and the corresponding hidden neuron to be set to either a 1 or a -1. However, this is different in

the case of the extra neuron, the bias neuron. The number of 1’s in the input vector of the training

sample is represented by s and the weight between the bias neuron and the hidden neuron

corresponding to this input vector is set to r-s+1, where r is the user-specified radius of

generalization. The following equation summarizes the weights for the links between input layer

and the hidden neurons

Weights to the links between the hidden layer neurons and the output neurons is built the

same way except for the absence of the extra bias neuron as opposed to that of the input layer.

The working of CC4 algorithm can now be understood better by considering r to be 0. Now for

every training sample presented, the vector combines with the input interconnection weights as

the sum of the products of each input element with its corresponding interconnection weight

element. The hidden neuron corresponding to the training sample presented receives a +1 input

from all the input neurons presented with a binary “1”. There are s such input neurons, which

receive a +1 input from the training sample since 7 there are s ones in the sample. Since r is zero,

8

the input to the hidden neuron from the bias neuron is -s + 1 and the net input received by the

hidden neuron is s – s + 1 = 1. The other hidden neurons will receive a negative or 0 input because

the positions of the +1 and -1 weights don’t match the positions of all the binary “1” inputs and

the binary “0” inputs respectively. This ensures that only the corresponding hidden neuron fires

and produces a binary “1” output since the threshold of the activation function is set as zero.

Thus the similar combination of the hidden neuron outputs and the output layer weights produces

the desired final outputs. The working of the algorithm can be illustrated by the following

examples. The first is the simple XOR example.

Example 1

The following example shows a trained network performing an XOR function. The truth table is

shown in Table 1. There are two input elements in each input vector. Thus three input neurons

are required including the bias neuron. No generalization is desired here. Hence the radius of

generalization r is set as zero. Here all four input vectors are required to train the network. Thus

four hidden neurons are used. These hidden neurons are connected to a single output neuron. [6]

Table 1: Inputs and outputs for Example 1; XOR truth table

The weights at the input layer and output layer are assigned according to the algorithm. The input

vectors are then presented one at a time and the combination of each with the weights causes

only one hidden neuron to fire. For the vector (0 1 1), the number of binary ones, s, is 1, without

9

the bias bit 1. Hence we get the weight vector to the hidden neuron corresponding to the sample

as (-1 1 0). Thus the total input to the hidden neuron is (0 * -1) + (1 * 1) + (1 * 0) = 1. The input

to the other hidden neurons is either 0 or negative. Similarly the network is trained by presenting

the other vectors one after the other and then tested successfully. The network diagram is shown

in Figure 3, and Table 2 contains the network parameters obtained during the training.

 Figure 3: The Network Architecture for Example 1

Table 2: Network Parameters in the input/output mapping of Example 1

10

The standard CC4 network uses unary coding for the input. In this thesis we employ a

generalization of unary coding called extended unary coding, which was proposed very recently

[17]. The advantage of extended unary coding is that it uses fewer high values of the signal than

standard unary coding, and it, therefore, can reduce the power consumption in the hardware

designed to do this processing. The main contribution of the thesis is to show that extended unary

coding works as well as standard unary coding, although its performance is not identical.

11

CHAPTER III

 TRAINING OF THE NEURAL NETWORKS USING UNARY CODING

Introduction

The simplest way to represent natural numbers is by the base-1 system, called the Unary Number

System. Representation of any number n in unary coding is done in two ways: n ones followed

by a zero or n zero bits followed by a 1. Other representations use n-1 ones followed by a zero

or with the corresponding number of zeroes followed by a one. Here we use the mapping of the

left column of Table 3.

 Table 3. An Example of the Unary Code

The unary number system may also be interpreted as a space coding of numerical information

where the location determines the value of the number. In order to denote a specific value,

corresponding slot should be marked. This is shown in Figure 4.

12

 Figure 4. Space representation of numbers

Neural network learning

Fixed length unary coding was used in instantaneously trained neural networks. This enabled

learning all points adjacent by Hamming distance to a specific point by learning about that point.

It was the uniform property of distance that made instantaneous learning possible since

representing the learnt point was straightforward. Once a data point has been recognized, one

can achieve generalization by wrapping a region of Hamming radius r units around it.

CC4 algorithm used unary coding because it has the advantage of providing an ordered

and linear measure of distance, related to the number of ones in the coded sequence. The unary

encoding converts numbers 1 through 16 into strings, each of length 16 bits. As an example

number 1 is represented by a string that has fifteen 0’s followed by a single 1. Similarly, number

2 is represented by fourteen 0’s followed by two 1’s and so on. Thus the set of numbers from 1

through 16 is represented by strings belonging to the range 0000 0000 0000 0001 to 1111 1111

1111 1111. To represent a point in this pattern, the 16 - bit strings of the row and column

coordinates are concatenated together.

To this, another bit that represents the bias is added and the resulting 33-element vector

is given as input to the network.

The training samples are randomly selected points from the two regions of the pattern.

The samples used here are shown in Figure 5 (b). Points marked “#” are the points from the black

region and points marked “o” are points from the white region. A total of 75 points are used for

13

training. Thus the network used for this pattern classification experiment has 33 neurons in the

input layer and 75 neurons in the hidden layer. The output layer requires only one neuron to

display a binary “0” or “1”.

 After training is done the network is tested for all 256 points in the 16 by 16 area of the

pattern as the value of r is varied from 1 to 4. The results of different levels of generalization

achieved are presented in Figure 5 (c), (d), (e) and (f). It can be seen that as the value of r is

increased the network tends to generalize more points as belonging to the black region. This over

generalization is due to the difference in the density of samples presented from black and white

regions during training, the former being greater.

14

(a). Original Spiral Pattern (b). Training Sample (c). r = 1

 (d). r = 2 (e). r = 3 (f). r = 4

Figure 5: Results of Spiral Pattern Classification using Unary Coding

Table 4: No. of points classified/misclassified in the spiral pattern using Unary Coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 237 234 227 207

 Misclassified 19 22 29 49

15

The original plane pattern to show training and performance is shown in Figure 6 (a). The pattern

consists of two regions; dividing 11x16 area into a black spiral shaped region, in which a point

is represented as 1 and a point in the white region as 0. Any point in this region is represented by

row and column coordinates. These coordinates are encoded using 16–bit unary encoding and

fed as inputs to the network. The corresponding outputs are 1 or 0, representing the region that

the point belongs to. [9]

 The training samples are randomly selected points from these two regions of the pattern.

Figure 6(b) is an example of a plane pattern used for testing the CC4 network. The points marked

“#” represents a positive learnt location while “o” represents a negative learnt location and all

blank spaces represent not learnt locations. This matrix is used to train the neural network using

the CC4 algorithm.

After the training is done, the network is tested for all 176 points in the 11×16 area of the

pattern as the value of r is varied from 1 to 4. The results for different values of r are shown in

the Figures 6(c), (d), (e), and (f). As the value of r increases, the network tends to generalize

more points belonging to the black region.

16

(a). Original Plane Pattern (b). Training Sample (c). r = 1

 (d). r = 2 (e). r = 3 (f). r = 4

 Figure 6: Results of Plane Pattern classification using Unary coding

Table 5: No. of points classified/misclassified in the Plane Pattern using unary coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 145 154 140 130

 Misclassified 31 22 36 46

17

(a). Original Cross Pattern (b). Training Sample (c). r = 1

(d). r = 2 (e). r = 3 (f). r = 4

Figure 7: Results of Cross Pattern classification using Unary coding

Table 6: No. of points classified/misclassified in the Cross Pattern using unary coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 142 147 138 125

 Misclassified 34 29 38 51

18

 CHAPTER IV

 TRAINING OF THE NEURAL NETWORKS USING SPREAD UNARY CODING

Introduction

Unary coding is useful but it is redundant in its standard form. Unary coding can also be seen as

spatial coding where the value of the number is determined by its place in an array. Motivated

by biological finding that several neurons in the vicinity represent the same number, a variant

form of unary numeration in its spatial form called spread unary coding is used, in which a single

number is represented by several 1s. In this spread unary coding, the number of 1s used is the

spread of the code. Spread unary coding is associated with saturation of the Hamming distance

between code words [17].

 In spread unary coding, for a given spread k, the number n can be represented by n-1 0s

followed by k 1s.

 n: 11… (k times)00… (n-1 times)

 Table 7: Spread Unary code for k = 3 for numbers 0 to 10

19

For any two given numbers, n1 and n2, and for spread k, let the distance between them be ‘d’.

The value of d depends on the difference between the two numbers. Specifically, as long as the

two numbers differ by a value less than the spread k, the distance between them is simply twice

the difference between them i.e. 2*(n2-n1). The distance is independent of the value of k.

However, once the numbers differ by a value greater than or equal to k, distance between them,

now becomes constant at 2k [17].

Training of Patterns

The original pattern to show training and performance is shown in Figure 8 (a). The pattern

consists of two regions; dividing a 16x16 area into a black spiral shaped region, in which a point

is represented as 1 and a point in the white region is represented as 0. Any point in the region is

represented by row and column coordinates. These coordinates are encoded using the spread

unary coding and fed as inputs to the network. The corresponding outputs are 1 or 0, to denote

the region the point belongs to.

The spread unary code converts numbers 1 to 16 into strings, each of length 18 bits. As

an example the number 1 is represented by a string that has fifteen 0s followed by k number of

1s in the first place. To represent a point in the pattern, the 18–bit strings of the row and column

coordinates are concatenated together. To this, another bit that represents the bias is added and

the resulting 37-element vector is given as the input to the network. [9]

The training samples are randomly selected points from the two regions of the pattern.

Figure 8(b) is an example of a spiral image pattern used for testing the CC4 network. The points

marked “#” represents the location is learnt positive, “o” represents the location is learnt negative

and all blank spaces represent the locations are not learnt. This matrix is used to train the neural

network using the CC4 algorithm.

20

After the training is done, the network is tested for all 256 points in the 16×16 area of the

pattern as the value of r is varied from 1 to 4. The results for different values of r are shown in

the Figures 8(c), (d), (e), and (f). As the value of r increases, the network tends to generalize

more points belonging to the black region.

21

(a). Original Spiral Pattern (b). Training Sample (c). r = 1

 (d). r = 2 (e). r = 3 (f). r = 4

 Figure 8: Results of Spiral Pattern classification using Spread Unary coding

Table 8: No. of points classified/misclassified in the Spiral Pattern using spread unary coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 179 236 235 237

 Misclassified 77 20 21 19

22

The original pattern to show training and performance is shown in Figure 9 (a). The pattern

consists of two regions; dividing a 11x16 area into a black plane shaped region, in which a point

is represented as 1 and a point in the white region is represented as 0. Any point in the region is

represented by row and column coordinates. These coordinates are encoded using the spread

unary coding and fed as inputs to the network. The corresponding outputs are 1 or 0, to denote

the region the point belongs to.

The spread unary code converts numbers 1 to 16 into strings, each of length 18 bits. As

an example the number 1 is represented by a string that has fifteen 0s followed by k number of

1s in the first place. To represent a point in the pattern, the 18–bit strings of the row and column

coordinates are concatenated together. To this, another bit that represents the bias is added and

the resulting 37-element vector is given as the input to the network.

The training samples are randomly selected points from the two regions of the pattern.

Figure 9(b) is an example of a plane image pattern used for testing the CC4 network. The points

marked “#” represents the location is learnt positive, “o” represents the location is learnt negative

and all blank spaces represent the locations are not learnt. This matrix is used to train the neural

network using the CC4 algorithm.

After the training is done, the network is tested for all 176 points in the 11×16 area of the

pattern as the value of r is varied from 1 to 4. The results for different values of r are shown in

the Figures 9(c), (d), (e), and (f). As the value of r increases, the network tends to generalize

more points belonging to the black region.

23

(a). Original Plane Pattern (b). Training Sample (c). r = 1

 (d). r = 2 (e). r = 3 (f). r = 4

Figure 9: Results of Plane Pattern classification using Spread Unary coding

 Table 9: No. of points classified/misclassified in the Plane Pattern using unary coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 117 146 146 132

 Misclassified 59 30 30 24

24

(a). Original Cross Pattern (b). Training Sample (c). r = 1

 (d). r = 2 (e). r = 3 (f). r = 4

Figure 10: Results of Cross Pattern classification using Spread Unary coding

Table 10: No. of points classified/misclassified in the Cross Pattern using unary coding

 No. of Points

 r = 1 r = 2 r = 3 r = 4

 Classified 193 179 152 133

 Misclassified 63 77 104 123

25

Figure 11: No. of misclassified points for plane patterns using unary vs spread unary

As shown in Figure 11, the number of misclassified points remains stable after the initial drop.

This would make spread unary advantageous to use in many situations. Of course, we do not

know if some version of CC4 is at the basis of biological learning. If it is, then this might be

another reason why Nature has chosen it over other forms of neural network learning.

26

 CHAPTER V

 TIME SERIES PREDICTION

The Mackey-Glass time series, originally developed to model white blood cell production as

presented by Azoff [18] is commonly used to test the performance of neural networks. The series

is a chaotic time series making it an ideal representation of the nonlinear oscillations of many

physiological processes. The discrete time representation [8] of the series was used to test the

performance of the CC4 algorithm. The discrete time representation of the Mackey-Glass

equation is given below: -

 x (k + 1) – x (k) = αx (k – τ) / {1 + x γ (k – τ)} – βx (k)

The values of the different parameters in the equation are assigned as follows: -

 α = 3, β = 1.0005, γ = 6, τ = 4

Here four samples are required to predict a new point, so τ = 4. Thus the series is started with

four arbitrary samples:

x (1) = 1.5, x (2) = 0.65, x (3) = -0.5, x (4) = -0.7

A series of 200 points within a range -2 to +2 is generated using these samples. Of these

200 points, 180 points are fed to the networks for training known as training set. Then the

network is tested using the remaining 20 points known as testing set. In the training and the

testing, four consecutive points in the series are given as input and the next point is used as the

output. Thus a sliding window of size four is used at each and every step. The total number of

sliding windows available in the network is 175, as the number of points used for the training is

180. The first window consists of points 1 to 4 with the 5th as the output whereas the last window

consists of points 175 to 178 with the 179th point as the output.

27

Since four points are required in training or testing, the 16 characters standard unary code

words for each of the four inputs are concatenated together. Thus each input vector has 65

elements, where the last element in the vector represents the bias. Unlike the inputs, output points

are binary encoded using four bits. This is done to avoid the possibility of generating invalid

output vectors that would not belong to the class of expected vectors of the quaternary encoding

scheme. Hence 21 neurons are required in the input layer, 175 in the hidden layer (one for each

sliding window), and 4 in the output layer.

After the training, the two networks are tested using the same 175 windows to check their

learning ability. Then the rest of the windows are presented to the networks to predict future

values. The inputs are always points from the original series calculated by the Mackey-Glass

equation to avoid an error buildup. The outputs of the network are compared against the expected

values in the series. The performance of the CC4 algorithm with unary coding for r varying as 4,

5, 6 and 7 is shown in Figures 12.1, 12.2, 12.3 and 12.4 respectively. Similarly the performance

with the spread unary coding for different values of r is presented in the Figures 12.5, 12.6, 12.7

and 12.8. The values of ‘r’ are again varied as 4, 5, 6 and 7 respectively.

28

 Figure 12.1: Mackey-Glass time series prediction using Unary coding, r = 4

29

 Figure 12.2: Mackey-Glass time series prediction using Unary coding, r = 5

30

 Figure 12.3: Mackey-Glass time series prediction using Unary coding, r = 6

31

 Figure 12.4: Mackey-Glass time series prediction using Unary coding, r = 7

32

In each of these figures only points 160 to 200 are shown for readability. The solid line

represents the original series and the lighter line represents the outputs of the networks designed

by the two algorithms. The lighter line from point 160 to 179 shows how well both the networks

have learnt the samples for different values of r. The points that are predicted by the networks

are represented by “x” on the lighter line. The actual points generated by the Mackey-Glass

equation are represented by “o” on the solid line. The first point that is predicted is the point

number 180 using the original series points 176, 177, 178 and 179.

The next point that is predicted is 181 using the points 177, 178, 179 and 180. The point

number 180, which is used as input here is the original point in the series generated by the

Mackey-Glass equation and not the point predicted by the network. Similarly, the last point to

be predicted is the point number 200 using the actual points 196 to 199 from the series. The

networks always predict one point ahead of time and both the networks predict the turning points

in the series efficiently. This ability is of great importance in financial applications, where

predicting the turning point of the price movement is more important than predicting the day to

day values.

33

 Figure 12.5: Mackey-Glass time series prediction using Spread Unary coding, r = 4

34

 Figure 12.6: Mackey-Glass time series prediction using Spread Unary coding, r = 5

35

 Figure 12.7: Mackey-Glass time series prediction using Spread Unary coding, r = 6

36

 Figure 12.8: Mackey-Glass time series prediction using Spread Unary coding, r = 7

37

 CHAPTER VI

 SUNSPOT NUMBERS

Introduction

The mysterious cycles in sunspot numbers has intrigued many investigators, including

geologists, astronomers, climatologists, economists, historians, and statisticians [19, 20].

Sunspots are high-intensity electromagnetic flares of solar radiation of largely unknown and

unpredictable causes. They have major effects on various terrestrial phenomena; an example is

the long-range weather prediction. Sun-weather relationships in the stratosphere are well

understood and sunspot numbers have to be taken into account in telecommunications and

interplanetary flight. Moreover, sunspot variations are proving important in quaternary

chronology and paleoclimatology.

In the past half-century many statisticians have tried to provide a functional relationship

between the sunspot numbers. As addressed by Izenman (1985), "... The sunspot numbers have

been shown to contain idiosyncrasies that suggest, quite strongly, that the underlying statistical

mechanism by which they are generated is non-linear, non-stationary, and non-Gaussian, and as

such they are used primarily as a yardstick to compare and judge new statistical modeling and

forecasting methods." [18]

Even though sunspot number prediction via statistical methods has provided promising

results, new and traditional techniques are being explored with the hope of further improving the

results.

38

In a neural network, which is a directed graph with weighted edges, each node in the

network is capable of simple nonlinear processing that typically involves calculating a weighted

sum of its inputs and then passing it through a nonlinear function. A series of experiments were

performed in which a neural network was trained to follow the curves depicting variations in

sunspot numbers. The trained network was used to predict the sunspot data for "future" periods

on which the network had not been trained.

Network Training

In each training step an input value, i.e., a normalized sunspot number of some year

(average taken from daily sunspot activity), is presented to the network. The network is asked to

predict the next value in the sunspot number sequence. The weights between any two nodes are

modified in the same way as that in the CC4 algorithm.

 The sunspot data taken from Sunspot Index and Long term Solar Observations (SILSO)

[19] is used for this experiment. In this experiment only the annual average sunspot numbers are

processed, although half yearly data are also available and have been studied in statistical

literature. Suppose that the training set consists of a data recorded over several years, let’s say

36 years and assume that I am predicting one value in advance:

1. Partitioning my data into training and validation sets.

2. Taking the first 24 points as training set and remaining as validation set.

3. Create a neural network layout using 3 values as inputs and predicting the fourth value.

4. So a neural network with an input layer consisting of 3 nodes and an output layer

containing one node is designed.

5. And for the hidden layer couple of nodes are required.

39

6. Create the training patterns: Each training pattern will be four values, with the first

three corresponding to the input nodes and the last one defining what the correct value

is for the output node. For example, if your training data are values

x1,x2…,x24

then

pattern1: x1,x2…,x4

pattern2: x2,x3…,x5

…

pattern21: x21,x22,x23,x24

7. Train the neural network on these patterns

8. Test the network on the validation set (months 25-36): Here you will pass in the three

values the neural network needs for the input layer and see what the output node gets set

to. So, to see how well the trained neural network can predict month 32's value you'll pass

in values for months 29, 30, and 31

40

 Figure 13. Sunspot Number Predictions in time period 1700-2015

41

CHAPTER VII

 D- SEQUENCES

Introduction

Decimal sequences are obtained when a number is represented in a decimal form in a base r and

they may terminate, repeat or be aperiodic. For a certain class of decimal sequences of 1 / q, q

prime, the digits spaced half a period apart add up to r −1, where r is the base in which the

sequence is expressed. These sequences are periodic and their randomness properties are checked

only in one period. Decimal sequences are known to have good cross correlation properties and

they can be used in applications involving pseudorandom sequences. [21,22]

 These sequences are categorized into two types based on their definition:

1).The expansion of {1/ q} in base r (non-binary) in this case is given by:

 ai = [ri mod q]mod r

Where q is the prime number and r is the base.

Example 1: Consider the sequence of {1/37} in base 10,

So, the sequence ai = [10i mod 37] mod 10

 = [10 26 1] mod 10

 = [0 6 1]

Since the base is 10, the digits in the expansion of the sequence are 0, 1 up to 9. The period of

this sequence is 3 after which the digits repeat.

42

2).This is a case in which the expansion of {1/ q} in base r is given by:

 ai = [ri mod q]mod s

Where r is the non-binary base and s = 3.

Example 1: Consider the sequence of {1/13} base 7.

 According to the above definition, this sequence can be expanded as:

ai = [7i mod 13] mod 3

 = [7 10 5 9 11 12 6 3 8 4 2 1] mod 3

 = [1 1 2 0 2 0 0 0 2 1 2 1]

Time-Series Prediction

Here we consider the prediction of the next d-sequences using the neural networks. As in

the earlier material, we first partition the data series into three disjoint sets: the training set,

the validation set, and the test set. The network is trained (e.g., with the corner classification

algorithm) directly on the training set, its generalization ability is monitored on the validation

set, and its ability to predict is measured on the test set. A network’s generalization ability

indirectly measures how well the network can deal with unforeseen inputs, in other words, inputs

on which it was not trained.

 When using real-world data that is observed (instead of artificially generated), it may be

difficult or impossible to partition the data series into three disjoint sets. The reason for this is

the data series may be limited in length and/or may exhibit nonstationary behavior for data too

far in the past (i.e., data previous to a certain point are not representative of the current trend).

 The time series prediction of d-sequences is performed by dividing the data obtained by

calculating the d-sequence of a prime number q with base r. The data obtained is divided into

three sets: training data set, validation data set and test set.

43

 Figure 14. Prediction for the prime number 487

44

 Figure 15. Prediction for the prime number 709

45

 Figure 16. Prediction for the prime number 987

46

CHAPTER VII

 CONCLUSION

In this thesis we employ a generalization of unary coding called extended unary coding, which

was proposed very recently. The advantage of extended unary coding is that it uses fewer high

values of the signal than standard unary coding, and it, therefore, can reduce the power

consumption in the hardware designed to do this processing. The main contribution of the thesis

is to show that extended unary coding works as well as standard unary coding, although its

performance is not identical.

47

REFERENCES

1. S. Kak, “Artificial and biological intelligence”, ACM Ubiquity, vol. 6, No. 42, pp. 1-20,

2005.

2. S. Kak, The Architecture of Knowledge. New Delhi, Motilal Banarsidass, 2004.

3. S. Kak, “On training feedforward neural networks”, Pramana J. Physics, vol. 40, pp. 35-

42, 1993.

4. S. Kak, “New algorithms for training feedforward neural networks”, Pattern

Recognition Letters, vol. 15, pp. 295-298, 1994.

5. P. Raina, “Comparison of learning and generalization capabilities of the Kak and the

back propagation algorithms”, Information Sciences, vol. 81, pp. 261-274, 1994.

6. S. Kak, “On generalization by neural networks”, Information Sciences, vol. 111, pp.

293-302, 1998.

7. S. Kak, The three languages of the brain: quantum, reorganizational, and associative. In

Learning as Self-Organization, K. Pribram and J. King (editors). Lawrence Erlbaum

Associates, Mahwah, NJ, 1996, pp. 185-219.

8. K.-W. Tang and S. Kak, “A new corner classification approach to neural network

training”, Circuits Systems Signal Processing, Vol.17, No.4, 1998, Pp. 459-469.

9. S. Kak, “A c las s o f i ns t an t aneo us l y trained n eu r a l networks”, Information

Sciences, vol. 148, pp. 97-102, 2002.

10. S. Kak, “Faster web search and prediction using instantaneously trained neural

networks,” IEEE Intelligent Systems, vol. 14, pp. 79-82, November/December 1999.

11. A. Ponnath, Instantaneously Trained Neural Networks. Computer Research Repository,

arXiv:abs/cs/0601129, 2006.

48

12. Z. Zhang et al., TextCC: New feed forward neural network for classifying documents

instantly. Lecture Notes in Computer Science, Volume 3497, Jan 2005, Pages 232 – 237.

13. S. Kak, Y. Chen, L. Wang, Data mining using surface and deep agents based on neural

networks. 16th Americas Conference on Information Systems. Lima, Peru, August 2010.

14. J. Zhu and G. Milne, Implementing Kak neural networks on a reconfigurable computing

platform. In FPL 2000, LNCS 1896, R.W. Hartenstein and H. Gruenbacher (eds.),

SpringerVerlag, 2000, p. 260-269.

15. A. Shortt, J. G. Keating, L. Moulinier, C. N. Pannell , Optical implementation of the Kak

neural network. Information Sciences vol. 171, pp. 273-287, 2005.

16. Z. Jihan, P. Sutton, An FPGA implementation of Kak’s instantaneously-trained,

fastclassification neural networks. Proceedings of the 2003 IEEE International

Conference on Field-Programmable Technology (FPT), December 2003.

17. S. Kak, Generalized unary coding. Circuits, Systems and Signal Processing, 2015.

18. E. M. Azoff, Neural network time series forecasting of financial markets, John Wiley and

Sons, New York 1994.

19. http://www.sidc.be/silso/ data for sunspot prediction.

20. M. Li, K. Mehrotra, C.K. Mohan, and S. Rank, "Forecasting Sunspot Numbers Using

Neural Networks". Electrical Engineering and Computer Science Technical Reports.

Paper 67, 1990.

21. S. Kak and A. Chatterjee, On decimal sequences. IEEE Transactions on Information

Theory, IT-27: 647 – 652, 1981.

http://www.sidc.be/silso/

49

VITA

PUSHPA SREE POTLURI

 Candidate for the Degree of

Master of Science

Thesis: TRAINING OF CC4 NEURAL NETWORK USING UNARY AND

SPREAD UNARY INPUTS

Major Field: Electrical Engineering

Biographical:

Education:

Completed the requirements for the Master of Science in Electrical Engineering

at Oklahoma State University, Stillwater, Oklahoma in December, 2015.

Received Bachelor of Technology degree in Electronics and Communication

Engineering from Jawaharlal Nehru Technological University, Kakinada,

India in May, 2014.

Experience:

Research Assistant to Dr. Subhash Kak, OSU Stillwater, OK.

Nov 2014 – May 2015

