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CHAPTER I 

INTRODUCTION

In this chapter, motivations for selecting this research topic are presented. It is 

followed by the major thrust and scope of research. In the end, the organization of this 

dissertation is shown. 

1.1 Research motivations 

Figure 1.1 Pie chart of death causes in the world [1] 

According to the World Health Organization (WHO) reports in 2008 (see Figure 1.1), 

cardiovascular disease is the number one cause of death globally and is projected to 

remain the leading cause of death. An estimated 17.5 million people died from 

cardiovascular disease in 2005, representing 30% of all global deaths. Of these deaths, 

7.6 million were due to heart attacks and 5.7 million were due to stroke [1]. 
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There are significant socioeconomic values for the diagnosis and prognosis of 

cardiovascular diseases. It is estimated that if appropriate action is taken by 2015, twenty 

million people will be saved from cardiovascular diseases every year [1]. The 

cardiovascular diseases will affect the quality of life of many people, increase the 

healthcare costs, take away people’s earning and savings, and pose a heavy burden for the 

country’s economies. Therefore, it is imperative to prevent and control the cardiovascular 

diseases.

The major tool used in clinical diagnostics of cardiovascular disorders is 

electrocardiogram (ECG), which is developed by Dr. William Einthoven in 1901. The 

ECG is a time-varying signal that captures the ionic current flow responsible for the 

contraction and subsequent relaxation of the cardiac fibers. The surface ECG is obtained 

by recording the potential difference between two electrodes placed on the surface of the 

skin. 

Currently, with the advancement of information technology and sensor technology, 

the acquisition of ECG signals is not constrained by computation resources any more. 

The conventional 12-lead ECG and Frank XYZ VCG system enable the inspection of the 

heart from different perspectives and the ECG data can be digitalized at a high sampling 

rate and stored for many years. The availability of vast amounts of heart monitoring data 

offers an unprecedented opportunity to develop accurate real-time diagnostics and 

prognostics of cardiovascular system state and performance from a nonlinear dynamic 

perspective.
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1.2 Research objectives 

The study is to develop real-time monitoring and prognostic schemes for various 

cardiovascular diseases by analyzing the nonlinear stochastic dynamics underlying the 

complex heart system. 

Multianalysis strategies are used to diagnose the patient’s cardiovascular online status 

and make a further prognosis to assess the risk of heart disease. The employment of a 

nonlinear stochastic analysis combined with wavelet representations can extract effective 

cardiovascular features for this purpose. Those features will be more sensitive to the 

pathological dynamics instead of the extraneous noises. The conventional approaches 

(statistical and linear system) tend to have limitations for capturing signal variations 

resulting from changes in the cardiovascular system state. 

The study includes signal representation, feature extraction, state classification and 

state prognosis from nonlinear dynamic principles. In cope with the main research 

objectives, the research tasks are divided into the following: 

� Develop an effective compact representation method for the cardiovascular 

signals which will yield sensitive features to relevant ECG states and insensitive 

to variations in extraneous noise. 

� Characterize the nonlinear spatiotemporal dynamics of cardiac vector loops and 

quantifying the recurring patterns in the vectorcardiogram (VCG) for the 

Myocardial Infarction (MI) classification. 
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� Develop the classification and regression tree (CART) model to integrate the 

medical doctor’s knowledge towards the classification of three Atrial Fibrillation 

(AF) states 

� Develop the real time prediction model for the heart risk assessment under 

dynamic conditions.

� Design the data-driven simulation model of cardiac electrical activities in various 

cardiovascular conditions.

1.3 Major contributions 

This proposed research will provide versatile cardiovascular monitoring and 

prognosis schemes which combine the nonlinear dynamics, predictive modeling, artificial 

intelligence, and signal processing. Specific research contributions are as follows: 

� New representation scheme for the ECG signals by an optimal wavelet function 

design which yields one order of magnitude compactness reduction compared to 

the conventional wavelets in terms of entropy. 

� New spatiotemporal representation scheme for the VCG signals, which 

significantly assists the interpretation of vectorcardiogram and facilitates the 

exploration of related important spatiotemporal cardiovascular dynamics. 

� Developed a classification and regression tree (CART) model to integrate the 

cardiologists’ knowledge towards accurate classification of Atrial Fibrillation 

(AF) states from sparse datasets. 
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� Developed a Myocardial Infarction (MI) classification model using recurrence 

quantification analysis and spatial octant features of VCG attractor dynamics, 

which detects MI up to about 96% accuracy in both sensitivity and specificity. 

� Designed a local recurrence prediction model for real time medical prognosis and 

risk assessment of cardiovascular problems, which is particularly suitable for the 

implementation in the nonlinear and nonstationary environment. 

1.4 Organization of the dissertation 

This chapter presents the motivation of research in this area, as well as research 

objectives and research contributions. Rest of the dissertation is organized as follows: 

Chapter II: Background and literature review: This chapter describes the general 

fundamentals of cardiovascular electrical activities and relevant monitoring systems. 

Next, the databases used in the subsequent chapters for experimental and simulation 

studies are introduced. In addition, a review of pertinent literature with the wavelet, 

nonlinear dynamic study of ECG signals is presented.

Chapter III: Research methodology: This chapter presents the research 

methodology used in the dissertation study. The overall research methodology is grouped 

into three parts: signal representation, feature extraction and classification, and simulation 

and prognostic modeling. 

PART I: Signal representation 

Chapter IV: Customized wavelet representation of ECG signals: An optimal 

wavelet function design approach is established for the specific ECG signal 

representation. Implementation details, validations, results and conclusions are described. 
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Chapter V: Dynamic VCG representation: The time resolution drawbacks of 

conventional static VCG representation are resolved by real-time displaying the rotated 

VCG attractor on a computer monitor. It explores the VCG spatiotemporal information 

on the heart dynamics. The color coding methods of VCG attractor using cardiac vector 

curvature, velocity, and phase angle information are also introduced.  

PART II: Feature extraction and classification 

Chapter VI: Atrial fibrillation state classification: The approach, development, 

training, validation of atrial fibrillation classification and wavelet feature extraction are 

presented. The classification and regression tree (CART) model is detailed.   

Chapter VII: Myocardial infarction identification using recurrence 

quantification analysis (RQA) of VCG signals: The recurrence behaviors and 

properties of VCG attractor are characterized and quantified. Recurrence quantifiers are 

used for the identification of myocardial infarction cases from the healthy control objects.

Chapter VIII: Vectorcardiographic octant features for the diagnostics of 

heterogeneous myocardial infarction: The spatial distributions of VCG trajectories are 

designed and studied in this chapter. The critical VCG octant features are extracted for 

the diagnostics of heterogeneous MIs. The training, validating, testing of CART 

classification models are detailed.

PART III: Simulation and prognostic modeling 

Chapter IX: Local recurrence prediction in nonstationary chaotic systems: A

local recurrence modeling approach is presented for the state and performance 

predictions in complex nonlinear and nonstationary systems. Extensive studies using 
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simulated and some real world datasets are shown to achieve significant prediction 

accuracy improvements over other alternative methods.

Chapter X: Radial basis function simulation modeling of VCG signals: The

parameterized RBF network model is studied for the generation of simulated VCG 

signals and they are also transformed to get the standard 12-lead EKG signals by the 

generalized Dower transformation matrix or the estimated matrix from experiment data 

for the specific patient.

Chapter XI: Conclusions and future work: This chapter presents research 

contributions, general conclusions and future work.

1.5 References 

[1] "http://www.who.int/cardiovascular_diseases/en/,"  World Health Organization, 

2008.
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

This chapter will begin with the literature review about cardiac conduction system, 

12-lead ECG and frank XYZ VCG system. It will be followed by the relevant research on 

the nonlinear dynamic and wavelet analysis of ECG signals.  

2.1 Cardiac conduction system 

 
Figure 2.1 Electrophysiology of the heart and different waveforms for each of the 

specialized cells in the heart [1] 

The heart consists of four compartments: the right and left atria and ventricles. It 

works as an autonomous control pump for circulating the blood in our bodies and 

constantly produces a sequence of electrical activities within every heart beat. The heart  
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electrical activities are generated by the biopotential variations because of the movement 

of three types of ions, namely, Calcium (Ca++), Potassium (K+) and Sodium (Na+). As 

shown in Figure 2.1, the heart's electrical activity begins in the sinoatrial (SA) node to 

excite the atrial muscle contraction. Then AV node will propagate the stimulus through 

bundle of His and Purkinje fibers toward the ventricles. The SA node is the heart's 

pacemaker. The ordered stimulation starting from SA node leads to the efficient 

contraction of the heart, thereby pumping the blood throughout the body [2]. 

2.2 12-Lead electrocardiogram (ECG) and vectorcardiogram (VCG) signals 

 
Figure 2.2 Electrical and mechanical events diagram during one heart beat [3] 

Cardiac monitoring system is designed to measure the electrical biopotential 

changes in the heart. The electrocardiogram (ECG) system, designed by Augustus Waller 

in 1889 and further improved by Williem Einthoven in 1901, has been used for more than 

100 years for the clinical diagnosis of cardiovascular disorders. Around 1904 Einthoven 

derived the famous “Einthoven triangle” to measure three ECG signals and calculate the 

approximate direction of cardiac vector. In 1956, Ernest Frank designed the Frank lead 
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system to measure the vectorcariogram (VCG) in three corrected orthogonal coordinates, 

which provides a clear picture of the cardiac vector. 

The surface ECG is obtained by recording the potential difference between two 

electrodes placed on the surface of the skin. A single normal cycle of the ECG represents 

the successive atrial and ventricular depolarization-repolarization events which occur 

with every heart beat and includes P, Q, R, S, T, and U waves (see Figure 2.2) 

� P wave: the sequential activation of the right and left atria 

� QRS complexes: right and left ventricular depolarization 

� T wave: ventricular repolarization 

� U wave: origin though not clear, is probably “post-depolarization” in the 

ventricles  

 
Figure 2.3 The electrodes placement in VCG measurement system [1] 
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The vectorcardiogram (VCG) observes the heart potentials as a cardiac vector in 

three orthogonal components instead of the scalar amplitude (ECG curve). In the 

rectangular coordinate system of the torso, VCGs are the mutually orthogonal bipolar 

measurements by placing parallel electrodes on the opposite sides of the torso (see Figure 

2.3).  

With the rapid development of information technology, the representation and 

analysis of 3D VCG loops are not constrained by computational resources and this 

resulted in renewed interests of VCG since 1990’s. As demonstrated by Dower and his 

group [4-6], VCG signals and 12-lead ECG can be linearly transformed to each other 

without loss of useful information content pertaining to the heart dynamics. Dower 

matrix (Eq 2-1) is one of those generalized transformation matrices, and can be used to 

derive the 12-lead ECG signals from the 3-lead VCG.  

Dower transformation matrix       

0.515 0.157 0.917
0.044 0.164 1.387
0.882 0.098 1.277
1.213 0.127 0.601
1.125 0.127 0.086
0.831 0.076 0.230
0.632 0.235 0.059
0.235 1.066 0.132

D

� �� �
� ��� �
� ��
� ��� �	 � ��
� �
� �
� ��
� �

�� �
 �

 (Eq 2-1) 

If we have the VCG data in matrix form V (3×N), the eight leads (I, II, v1-v6) S (8×N) 

can be derived by S=DV except the derived augment leads.  

The transformation study statistically shows the equivalence between 12-lead ECG 

and 3-lead VCG. However, it is difficult for the human beings to visually project a spatial 

VCG vector into any specified cardiac measurement angle determined by 12-lead 
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measurement systems, which is the conventional way to interpret heart electrical 

activities. In addition, the loss of temporal information in the static VCG representation 

posed extra barriers for medical doctors to closely relate the 12-lead ECG characteristics 

to VCG. But when it comes to the computer automated analysis of heart monitoring 

signals, the 12-lead ECG signals will introduce the “curse of dimensionality” problem, 

which is the fact that the convergence of any estimator to the true value of a smooth 

function defined on a space of high dimension is very slow because the exponential 

increase in volume associated with extra dimensions. Thus, VCG is a better option for the 

computer processing and analysis because it overcomes not only the loss of information 

by only analyzing one or two ECG signals, but also the dimensionality problems induced 

by 12-lead ECG. The usage of VCG for the diagnostics of cardiovascular diseases has 

been studied by many researchers [7-18], although very few investigations explored both 

spatial and temporal relationships. 

2.3 A primer on nonlinear dynamic analysis 

Much of the complexity in complex systems emerges from the underlying nonlinear 

stochastic dynamics. Effective models of the following form (Eq 2-2) can capture this 

complexity: 

 ( ) ( ) �	 d F dt dx x x   (Eq 2-2) 

where x(t) is a m-dimensional state vector, F(•) is usually a nonlinear vector field, t is the 

time and the dynamic noise term (x)d� accounts for the influence of extraneous 

phenomena [19-23]. Nonlinear dynamic cardiovascular signal analysis is based on the 

premise that the ECG signals emanate from a finite dimensional nonlinear dynamic 
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system. This is reasonable and more generic than conventional linear and stationary 

assumptions on the nature of cardiovascular system and it can lead to effective models 

that can compactly capture the salient behaviors of many complex systems. Dynamics 

underlying the ECG signals gathered under these conditions manifest in the vicinity of an 

invariant set called an attractor A, defined in the state space [24]. An example of such an 

attractor of a nonlinear system (Rossler system) is shown in Figure 2.4. The state space of 

Rossler and such nonlinear systems shows deterministic chaos where the state evolution 

switches between a horn (emerging through the neighborhood U) and cycle area 

(emerging through V).  

 
Figure 2.4 Rossler attractor and local evolution 

However, in many real life cases, only a few signals (e.g., one lead ECG signal) are 

available in lieu of the complete measurements of the state vector x(t). However, many 

individual signal y(t) contain adequate information to reconstruct most of the system 

dynamics. This is because of the high dynamic coupling existing among cardiovascular 

system. An equivalent state space (attractor) can be reconstructed from the delayed 

coordinates of the measurements y(t) as  

 x(ti) =[y(ti), y(ti+�),  y(ti+2�), y(ti+(m-1)�)] (Eq 2-3) 

where m is the embedded dimension and � is the time delay [25, 26]. The minimal 
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sufficient embedding dimension m to unfold the attractor is determined by false nearest 

neighbor method [27]. The optimal time delay � is selected to minimize mutual 

information function M(�), defined as  

 ( , )( ) ( , ) log
( ) ( )

�� �
�


	 

�
t

p t tM p t t dt
p t p t

 (Eq 2-4) 

where p(t,�) is the joint density function, and p(t) and p(t+�) are marginal density 

functions of y(t) and y(t+�), respectively. 

Recurrence plots provide a convenient means to capture the topological 

relationships existing in the m-dimensional state space by calculating the distance from 

each state to all the others ( , ) : ( ) ( )	 �D i j v i v j , where ||·|| is a norm (e.g., the Euclidean 

norm) and mapping the distance to a color scale. It shows the times at which a state of the 

dynamical system recurs, i.e., the time-pairs at which the trajectories of a system 

evolution come within a specified neighborhood. Recurrence plot is formed by 

calculating the Euclidean distance from each state vector to others and mapping the 

distance to a color scale. A representative recurrence plot constructed for the Rossler 

attractor is shown in Figure 2.5. The structures of a recurrence plot have distinct topology 

and texture patterns. The ridges locate the transition states at which the system evolves 

from one behavior (cycle area V) to the other (horn area U) (see Figure 2.4).  The 

separations between dark diagonal lines (along 45o degree) indicate the near-periodicity 

of system behaviors over a given time segments. Recurrence-based methods have of late 

shown potential for representation and de-noising of measurements from complex 

systems [28-34].  
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Figure 2.5 Rossler attractor recurrence plot 

Recurrence plots are intriguing graphical displays of signal patterns, but 

representative nonlinear dynamical quantitative features need to be extracted to analyze 

the underlying processes and detect hidden rhythms. Statistical features, such as 

recurrence rate (%RR), determinism (%DET), laminarity (%LAM), linemax (LMAX), 

entropy (ENT), and trapping time (TT), are used as such typical recurrence quantifiers for 

the complexity characterization of VCG attractor . 

The definitions of various recurrence quantifiers and their relationships with heart 

dynamics are summarized in the following [28-34]:  

1) Recurrence rate (�) is the percentage of dark points on the TRP (the pairs of 

points whose distance is less than the corridor) [28-34]. It is calculated as: 

 
2

, 1

1 ( , )
N

i j
T i j

N 	

� 	 �  (Eq 2-5) 

where N is window size and T(i,j) is the TRP with a value 1 or 0. Recurrence rate 

characterizes the global near-periodicity of cardiovascular activities and it is 

closely related to the heart rate dynamics. The higher the �, the larger the 

proportion of points located close to each other, and fewer the points are farther 

apart.  
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2) Determinism (DET) represents the proportion of recurrent points forming 

diagonal line structures. It measures the repeating or deterministic patterns in the 

heart dynamics, and tells how well the circulatory heart system functions [28-34]. 

 

min

, 1

( )

( , )

N

l l
N

i j

lp l
DET

T i j

	

	

	
�

�
 (Eq 2-6) 

where l represents the length of lines parallel to the central diagonal line, lmin 

represents the minimal length of counted diagonal lines and p(l) is the frequency 

distribution of diagonal line segments of length l. Periodic signal has long 

diagonal lines (big DET�100%), while chaotic signal has short diagonal lines 

(medium DET<50%) and a random white noise signal shows no diagonal lines 

(DET � 0).  

3) Linemax (LMAX) is the length of the longest diagonal line segment in the TRP, 

which is related to the inverse of the largest positive lyapunov exponent [28-34]. 

The shorter the LMAX is, the more chaotic (less stable) is the signal. Thus, 

LMAX indicates stability of heart dynamics, and small LMAX implies that two 

close cardiac vectors in a VCG are diverging quickly from each other.

4) Entropy (ENT) is the Shannon information entropy of frequency distribution of 

diagonal line segments [28-34]. The predictability of heart activity decreases with 

increasing entropy given by  

 min

( ) ln ( )
	

	 ��
N

l l
ENT p l p l  (Eq 2-7) 

where p(l) is the frequency distribution of diagonal line segments of length l.
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5) Laminarity (LAM) is analogous to DET except that it measures the vertical line 

structures and is given by  

 

min

1

( )

( )

	

	

	
�

�

N

v v
N

v

vp v
LAM

vp v
 (Eq 2-8) 

where v represents the length of vertical lines, vmin represents the minimal length 

of counted vertical lines and p(v) is the frequency distribution of vertical line 

segments of length v. Large LAM indicates heart takes a significant time to move 

from one activity to another, and it provides important non-stationary information 

for the heart system [28-34].   

6) Trapping time (TT) provides a measure of how long the system remains in a 

specific state. 

 

min

min

( )

( )

	

	

	
�

�

N

v v
N

v v

vp v
TT

p v
 (Eq 2-9) 

These recurring pattern features are used to quantify the nonlinear dynamic 

complexity of VCG vector loops under MI and HC conditions [28-34]. 

2.4 Wavelet analysis of ECG signals 

ECG signals are gathered and stored in analytical instruments (e.g., ECG machines) 

in the form of time-series. They can be transformed from the time domain into frequency, 

time-frequency, or other domains depending on the nature of the information required. 

These signals exhibit recurrent patterns spread over multiple scales, and significant 



18 

nonstationarity. Wavelet methods are most effective in capturing spatio-temporal content 

of such signals over multiple scales of resolution.  
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Figure 2.6 Time-frequency resolution of wavelet transforms 

The wavelet representation can be useful for interrogating the spectral component 

prevailing at a given time instant. The high frequency bursts, which usually occur over 

short time intervals, can be analyzed with a sharper time resolution, while the low-

frequency components, which usually occur over long-duration of a signal, can be 

analyzed with a better frequency resolution. Figure 2.6 shows various time and frequency 

bands captured by different wavelets, i.e., each wavelet capture the time and frequency 

range that from the boundaries of a particular box. Also, as illustrated in Figure 2.6, 

despite the change of widths and heights of the boxes, the area of the boxes is constant. 

At low frequencies, the height of the boxes are shorter which corresponds to better 

frequency resolutions, but their widths are longer which correspond to poor time 

resolution. At higher frequencies, the width of the boxes decreases, i.e., the time 

resolution gets better and the heights of the boxes increase, i.e., the frequency resolution 

gets poorer. 
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The admissible conditions for a real or complex-value continuous-time function 

�(t) to be a “Wavelet” are as following: 

(1) Reconstruction condition 

 
2( )

       0C d C
�

�
�

�

��

�
	 � � ��  (Eq 2-10) 

( )��  stands for the Fourier transform of �(t). This condition is sufficient, but not 

a necessary condition to obtain the inverse. It can gurantee to reconstruct a signal without 

loss of information. The admissibility condition implies that the Fourier transform of �(t) 

vanishes at the zero frequency [35-37]. 

 2

0
( ) 0

�
�

	
� 	  (Eq 2-11) 

It indicates that wavelets must have a band-pass like spectrum.  

(2) Wave condition 

A zero at the zero frequency in condition (1) also means that the average value of 

the wavelet in the time domain must be zero, which means �(t) must be an oscillatory 

wave [35-37]. 

( ) 0t dt�
�

��

	�  (Eq 2-12)

(3) Finite energy 

The signal to analyze must have finite energy. When the signal has infinite energy 

it will be impossible to cover its frequency spectrum and its time duration with wavelets. 

Usually this constraint is formally stated as  
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� ��       2 2( ) { :    |    | ( ) | }L R f R C f t dt
�

��

	 � ���  (Eq 2-13) 

and it is equivalent to saying that the L2-norm of our signal f(t) should be finite [35-37].  

(4) Regularity condition 

This condition is to make the wavelet transform decrease quickly with decreasing 

scale s, and it states that the wavelet function should have some smoothness and 

concentration in both time and frequency domains. Regularity is closely related to the 

number of vanishing moments and it will determine how smooth a wavelet is. The order 

of regularity of a wavelet is the number of its continuous derivatives. The j s moment of 

the function  �(t) is defined as ( )jt t dt�
�

��� . When the wavelet s first k moments are zero 

( ) 0 for 0,...,jt t dt j k�
�

��
	 	� , the number of Vanishing Moment of the wavelet is 

k+1. If a wavelet has k vanishing moments, suppression of signals that are polynomials 

of a degree lower or equal to k is ensured [35-37]. 

Summarizing, the admissibility conditions (1) (2) (3) gave us the wave, condition 

(4) regularity and vanishing moments gave us the fast decay or the let, and a function 

meeting the requirement of the above four conditions reaches the wavelet [38]. 

The Continuous Wavelet Transform (CWT) accomplishes the multi-resolution 

analysis by time-scaling and time-shifting the wavelet function �(t) [35-37]. 

  ,
1 t( )

jjj k
k� � �

	   (Eq 2-14) 

Where scaling factor j is for expanding or compressing and translation factor k is for the 
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time domain shifting. Continuous wavelet transform of the signal x(t) using the 

analysis wavelet �(t) is defined as: 

 
� �,

1
j k

t

t kb x t dt
jj

�
� ��

	 � �
� �

�
 (Eq 2-15) 

Inverse continuous wavelet transform to reconstruct signal x(t) is: 
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  (Eq 2-15) 

Actually, the continuous wavelet transform can be taken as ,( , ) ( ), ( )j kCWT j k x t t�	�   

which is the cross correlation of the signal x(t) with the mother wavelet at scale j and lag 

k. If x(t) is similar to the mother wavelet at this scale j and lag k, then the coefficients will 

be large which indicates that customized wavelet function adapted to the ECG pattern 

may achieve the best performance [35-37]. 

Wavelet functions �(t) are building blocks that can be used to simultaneously 

decompose signal characteristics in both time and frequency domains. Wavelet 

representations are particularly useful for the analysis of transients, aperiodicity, and 

other nonstationary signal features. Subtle changes in signal morphology can be 

highlighted over the scales of interest through the interrogation of the transform [35]. 

Consequently, the QRS complex can be distinguished from high P and T waves, noise, 

baseline drift, and other artifacts in different scales. The relation between the 

characteristic points of ECG signals and those of modulus maximum pairs of its wavelet 

transforms are almost straightforward to establish [39].   
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Over the past few years, wavelets have been used in the analysis of physiological 

signals, such as ECG, Electroencephalography (EEG), Electromyography (EMG), blood 

pressure, and respiration signals [35]. Researchers have been exploring the applicability 

of wavelets for capturing complex nonlinear dynamics of ECG [40-42].  However, not 

much attention was given for the detection of certain complex patterns inside the ECG 

signals. Conceivably, much of the information necessary for early diagnosis of various 

ailments are buried in these complex patterns. In this dissertation research, an optimal 

matched wavelet will be designed for ECG signals to find occurrences of certain complex 

recurring patterns.  

2.5 Databases

The research undertaken will use cardiovascular datasets from the PhysioNet for 

the implementation and experiment studies. PhysioNet is a public service research 

resource for complex physiologic signals [43].  

The VCG data analyzed in myocardial infarction (MI) study (368 myocardial 

infarction and 80 healthy control recordings) is from PTB database available from the 

PhysioNet. The recordings were collected at the Department of Cardiology of University 

Clinic Benjamin Franklin in Berlin, Germany. Each of these recordings contains 15 

simultaneously recorded signals: the conventional 12-lead ECGs and the 3 Frank (XYZ) 

VCG signals. Each of these is digitized at 1000HZ, with 16 bit resolution over a range of 

±16.384 mV. The 80 healthy control recordings are from 54 healthy volunteers, and 368 

MI recordings are from 148 patients. The recordings are typically about two minutes in 

length, with a small number of shorter records (none less than 30 seconds). 



23 

The ECG data used in the atrial fibrillation (AF) study is from the 2004 PhysioNet 

challenge “Spontaneous Termination of Atrial Fibrillation.” In this challenge, 

classification needs to be made among the following three categories of AF patients test 

signals:  

1) Group N: Non-terminating AF (defined as AF that was not observed to have 

terminated for the duration of the long-term recording, at least an hour following 

the segment).  

2) Group S:  Soon to be terminating (AF that terminates one minute after the end of 

the record).  

3) Group T: Terminating immediately (AF terminating within one second after the 

end of the record).  

In all, 80 recordings of AF from 60 different subjects were made available in the 

database [43]. Each record is a one-minute segment of AF, containing two ECG signals, 

each at 128 samples/sec. The data is divided into a learning set and two test sets. The 

learning set contains 30 records in all, with 10 records in each of the three groups.  The 

learning set records were obtained from 20 different subjects (10 from group N and 10 

from group S/T). Test set A contains 30 records from 30 subjects. About half of these 

records belong to group N and the rest to group T. The goal is which records in test set A 

belong to group T. Test set B contained 20 records, 2 from each of 10 subjects (none 

represented in the learning set or in test set A). One record of each pair belongs to group 

S and the other to group T.  The goal of the second challenge event is to identify which 

records belong to group T.  
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CHAPTER III 

RESEARCH METHODOLOGY 

This chapter outlines the research methodology used in subsequent chapters. A 

schematic of the methodology for developing cardiovascular monitoring and prognostic 

schemes from the study of nonlinear stochastic dynamics underlying the ECG signals is 

shown in Figure 3.1. Its five modules can be divided as follows: 

� Signal representation 

� Feature extraction and state classification 

� Simulation and prognostic modeling 

Figure 3.1 Schematic of research methodology
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3.1 Signal representation 

In the first part of research methodology, cardiovascular signals are presented in 

alternative domains, such as time, frequency, time-frequency domains, or state space, so 

that mathematical description of the salient patterns contained in the signal as well as the 

procedures for feature extraction will be much simpler and efficient in the transformed 

space. 

3.1.1 Nonlinear adaptive wavelet representation of ECG signals 

Wavelet representation can provide an effective time-frequency analysis for 

nonstationary signals, such as the electrocardiogram (ECG) signals, which contain both 

steady and transient parts. In recent years, wavelet representation has been emerging as a 

powerful time-frequency tool for the analysis and measurement of ECG signals. The 

ECG signals contain recurring, near-periodic patterns of P, QRS, T, and U waveforms, 

each of which can have multiple manifestations. Identification and extraction of a 

compact set of features from these patterns is critical for effective detection and diagnosis 

of various ailments. This section will present an approach to extract a fiducial pattern of 

ECG based on the consideration of the underlying nonlinear dynamics. The pattern, in a 

nutshell, is a combination of eigenfunctions of the ensembles created from a Poincare 

section of ECG dynamics. The adaptation of wavelet functions to the fiducial pattern thus 

extracted yields two orders of magnitude (some 95%) more compact representation 

(measured in terms of Shannon signal entropy). Such a compact representation can 

facilitate in the extraction of features that are less sensitive to extraneous noise and other 

variations. The adaptive wavelet can also lead to more efficient algorithms for beat 
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detection and QRS cancellation as well as for the extraction of multiple classical ECG 

signal events, such as widths of QRS complexes and QT intervals. 

3.1.2 Dynamic VCG representation 

Vectorcardiogram (VCG) signals monitor the spatiotemporal cardiac electrical 

activity along three pseudo-orthogonal planes, namely, frontal, transverse, and sagittal 

planes of the body. However, the absence of temporal resolution in the conventional 

static representation of VCG signals is a major impediment to a medical doctor in the 

interpretation and clinical usage of VCG. This is especially so since cardiologists depend 

heavily on the intervals and segment durations in the ECG signals, i.e. temporal 

resolution. On a paper, only three orthogonal X,Y,Z lead vectors can be shown, and the 

fourth dimension, namely, the temporal scale can not be shown as it constitutes the fourth 

dimension. Alternately, a combination of any three vectors can be shown on a paper. In 

this investigation, we present an approach that captures the critical spatiotemporal heart 

dynamics by displaying VCG signals on a computer screen, instead of on a paper, the real 

time motion of a cardiac vector in a 3-D space. Such a dynamic display of 3-D heart 

activity can be realized even with one lead ECG signal (e.g., ambulatory ECG) through 

an alternative lag reconstructed spatiotemporal EKG attractor representation from 

nonlinear dynamics principles. The VCG representation can also be color coded for 

spatiotemporal representation with additional heart dynamical properties of cardiac 

vector movements, such as the curvature, velocity, and phase angle. The dynamic VCG 

representation is shown to significantly enhance the interpretability of vectorcardiogram 

and facilitate the identification of related spatiotemporal cardiovascular dynamics. 
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3.2 Feature extraction and classification 

The second part of research methodology involves the extraction of invariant 

dynamical quantifiers that describe the specific patterns in the signal and are sensitive to 

the state variables to be estimated. Moreover, in the classification stage, the extracted 

features are associated with an appropriate representation of unknown state variables. In 

this part, atrial fibrillation and myocardial infarction will be studied. 

3.2.1 Atrial fibrillation state classification 

Atrial fibrillation (AF), in general, can sustain indefinitely since the ventricles 

continue to perform the essential function of blood circulation, albeit inefficiently.  

Nevertheless, the risks of sustained AF can be serious, and may include strokes and 

myocardial infarction (MI) caused by the formation of blood clots within stagnant 

volumes in the atria. AF may be subdivided into three different forms, namely, 

paroxysmal AF (self terminating), persistent AF, and permanent AF. This section 

presents the results of signal analysis and a classification technique, namely, 

Classification and Regression Tree (CART), for detecting spontaneous termination or 

sustenance of AF. 

3.2.2 Myocardial infarction identification using recurrence quantification analysis of 

VCG signals

Myocardial infarction (MI), also known as heart attack, is one of the leading causes 

of death in the world. It is resulted from the occlusion of the coronary artery and 

insufficient blood supply to myocardium. Locations of myocardial infarction can be in 

inferior, septal, anteroseptal, anterior, apical, and other portions of the heart. The necrosis 
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or death of myocardial cells in a certain location of the heart will lead to changes in the 

underlying cardiovascular dynamics.  

Heart monitoring signals, such as the conventional 12-lead electrocardiogram (ECG) 

and 3-lead (Frank XYZ) vectorcardiogram (VCG) provide valuable information on the 

underlying dynamic activities from different perspectives of the heart. Dower 

demonstrated that a 12-lead ECG signals can be linearly transformed to 3-lead 

vectorcardiogram, which is commonly known as Dower transformation. It is, therefore, 

imperative to analyze the VCG signals and explore its relationships with cardiovascular 

disorders just in the same way as 12-lead ECG is used in the clinical practice. Techniques 

from nonlinear dynamical system analysis, such as recurrence quantification analysis 

(RQA) provide effective means to establish these relationships. This section presents the 

application of RQA for detecting myocardial infarction (MI) from VCG signals. 

Significant differences were observed in the laminarity, determinism, and local 

divergence of VCG trajectories between Healthy Control (HC) subjects and MI patients. 

MI classification accuracies based on the extracted nonlinear dynamical invariants from 

the VCG recurrence plots were found to be as high as 97% for neural network and linear 

regression classification model. 

3.2.3 Vectorcardiographic octant features for the diagnostics of heterogeneous 

myocardial infarction 

Vectorcardiogram (VCG), three orthogonal cardiac components, was reported to be a 

promising candidate for the diagnostics of MI. But few, if any, of previous VCG 

diagnostic approaches could achieve > 90% accuracy in both specificity and sensitivity. 
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This investigation assesses new vectorcardiographic octant features towards the effective 

detection of heterogeneous myocardial infarction.  

VCG octant features and conventional electrocardiogram (ECG) interval features 

were extracted from 448 VCG recordings in Physionet PTB database, which includes 368 

MIs and 80 HCs. Statistical feature analysis shows that cardiac vector length distributions 

in octant 0 (x-negative, y-negative, z-negative) and octant 2 (x-negative, y-positive, z-

negative), T vector length and octant position are the most prominent features to 

distinguish MIs from HCs. It is significant at 69% level (p-value=9.63E-29) for the 

Oct0MaxN (the maximum vector length in octant 0) distribution differences between MI 

(0.38±0.16) and HC (0.54±0.04). The majority (74/80) of HCs’ T vector positions 

(T_pos) is also found to cluster in octant 6 (x-positive, y-positive, z-negative), while MIs 

spread over all the eight octants. Additionally, Oct2AvgN (the average vector length in 

octant 2) and Oct0VarN (the variations of all vector lengthes in octant 0) show >60% 

statistical distribution differences. With only four octant features (Oct0MaxN, T_pos, 

Oct2AvgN and Oct0VarN), a simple Classification and Regression Tree (CART) model 

can yield classification accuracy with 96.74% sensitivity and 96.25% specificity. The 

stochastic experiments with different percentage of training data size also reveal high 

sensitivity (mean: 96%) and specificity (mean: 82%) for heterogeneous MI and HC 

classification.  

Octant 0, octant 2, and T vector information in vectorcardiogram are found to be very 

important for the diagnostics of heterogeneous MIs. Random classification experiments 

demonstrate the generality and effectiveness of CART model and vectorcardiographic 
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octant features. This study is definitely indicative of potential clinical applications of MI 

diagnostic model from the VCG octant features. 

3.3 Simulation and prognostic modeling 

The third section will focus on the cardiovascular disorder simulation and prognostic 

modeling. The mathematical prediction model can be used for prognosis of the patient’s 

health status with the online monitoring ECG signals, and it updates the prediction results 

in real time and provides the instantaneous alarm for the dangers. Such prognostic results 

help determine whether it makes more sense to attempt certain treatments or to withhold 

them, and thus play an important role in medical decision support. In this section, a local 

recurrence prediction model will be developed to accommodate the nonlinear and 

nonstationary environments in the complex physiological process. Next, Radial Basis 

Function (RBF) simulation model for the VCG signals is shown to simulate the patient’s 

cardiovascular electrical activities from a data-driven’s perspective. 

3.3.1 Local recurrence prediction in nonstationary chaotic systems 

A local recurrence modeling approach that considers the underlying nonlinear 

stochastic dynamics and nonstationarities is designed for predicting the state of complex 

physical systems. This approach uses heretofore unexplored premise of treating 

nonstationarity as to cause finite time detours of system dynamics from an attractor’s 

vicinity. The local recurrence property, exhibited over a certain sets of time and state 

space segments, is used to partition system trajectory into multiple near-stationary 

segments. Consequently, local eigen representations of each segment can capture both 

dynamics and nonstationarities. Extensive studies using simulated and real world datasets 
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reveal significant prediction accuracy improvements over other conventional alternative 

methods. 

3.3.2 Radial basis function simulation modeling of VCG signals 

The vectorcardiogram (VCG) represents human’s heart potential variations and 

regulations in the vector form, and it has been shown to be very important for some 

disease assessments. This section presents a general data-driven method for the modeling 

and simulation of human VCG and standard 12-lead electrocardiogram (EKG) signals.  

The heartbeat variations and VCG X, Y, Z ensemble components are extracted by the 

Poincare sectioning of the VCG trajectory. The Heart Rate Variability (HRV) is modeled 

as a Weibull distribution, and Radial Basis Function (RBF) network model is trained with 

experiment data to simulate the VCG trajectory and thus duplicate the heart electric 

activity.  The parameterized RBF network model is used for the generation of simulated 

VCG signals and they are transformed to get the standard 12-lead EKG signals by the 

generalized Dower transformation matrix or the estimated matrix from experiment data 

for a specific patient. This investigated RBF network model is shown to closely capture 

the same heart activities as the actual data in time domain, frequency domain. Such a 

well-trained data-driven model can facilitate the study of VCG, feature extraction from 

VCG and 12-lead EKG signals, and further prognosis of diseases. 



 

PART I 

SIGNAL REPRESENTATION 
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CHAPTER IV 

CUSTOMIZED WAVELET REPRESENTATION OF ECG SIGNALS 

Patterns from the surface electrocardiogram (ECG) signals are widely used in the 

diagnosis of various cardiac disorders [1-3]. Similar to the pattern recognition techniques 

used successfully in speech, fingerprinting etc. [4, 5], ECG signal pattern matching may 

also provide the opportunity to recognize the same person (biometric identification) and 

diagnose heart diseases by means of the similarity comparison with the evaluated patterns 

of a typical patients’ ECG in the collected databases. This chapter presents a new 

technique for customizing the wavelet functions adapted to the ECG signal pattern 

through the use of nonlinear dynamic principles. In specific, we show that using tools 

such as Poincare section, one can achieve extremely compact signal representation (two 

orders of magnitude reduction in signal entropy) that can be more sensitive to different 

ECG signal patterns.  The remainder of chapter 4 is organized as follows: Section 4.2 

gives a brief background of the applications of wavelet transform in surface ECG 

analysis; Section 4.3 is the phase space fiducial pattern extraction; Section 4.4 is the least 

squares matching wavelet design; Section 4.5 presents the implementation of designing a 

customized ECG wavelet function and its comparison with standard wavelet library, and 

Section 4.6 presents the conclusions from the reported research and perspectives on 

future investigations.  
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4.1 Background

There are several existing families of standard wavelets, such as Haar, Daubechies, 

Coiflet and so on [6]. The choice of wavelet basis functions plays a significant role in 

determining the compactness of the resulting wavelet representation. There is no 

consistent answer to the question: Which is the best wavelet? Some wavelets are better 

suited for detecting some particular problems, such as discontinuities and breakdown 

(e.g., Haar wavelet to detect discontinuities), while others are superior for long term 

evolution or compression (for e.g., a sufficiently regular wavelet with at least k (k>3) 

vanishing moments will be better to compactly represent a smooth signal). 
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chapter presents a customized wavelet function design using least square fitting for the 

fiducial signal pattern extracted from the nonlinear system dynamic characterization of 

signal state space. In the first step, system phase space trajectory will be reconstructed 

from the observed time series. False nearest neighbor test and mutual information test 

provide the necessary parameters, namely, embedding dimension dE and time delay 

[7]. After the reconstruction of phase space, those ensembles can be extracted from 

Poincare sectioning of the trajectory [8]. The Karhunen-Loeve (KL) transformation of 

those extracted signal ensembles provides the fiducial signal pattern for the least square 

customized wavelet design stage. We use polynomial wavelet structures and a 

constrained least square fit procedure to fit the structure to match as closely as possible, 

subject to admissibility and regularity constraints. The details of the two major steps of 

fiducial pattern extraction and wavelet fitting are presented in the following two 

subsections. Finally, representation entropy is calculated to compare the performance of 

various wavelets. Signal entropy, h is a measure of parsimony of representation [9, 10]. 

Here, the normalized entropy with ECG signal energy is used as follows: 

 
,
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( , )x s� �� is a continuous wavelet transform coefficient at scale s, and translation �,  and 

is signal energy. The smaller the value of signal entropy, the greater is the 

parsimony of the representation [11, 12]. Intuitively, “high entropy” means the 
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representation coefficients  is from a uniform (boring) distribution, i.e., the 

histogram of distribution of values of coefficients would be flat, and “low entropy” 

means that coefficients  is from varied distribution (consisting of multiple 

distinct peaks and large valleys) The varied distribution of representation provides the 

accurate detection of signal pattern. 

4.2 Phase space fiducial pattern extraction 

Natural systems generally show nonstationary and complex behaviors. The 

Karhunen-Loeve (KL) transform provides an optimal representation for second order 

stochastic processes. The KL representation of a stochastic process x(t) is given by  

 ( )  ( )j j
j

x t b t!	� . (Eq 4-3) 

Here, jb ’s are KL representation coefficients, and the basis function ( )j t! are the linearly 

independent solutions of 

 ( , ) ( )   ( )j j jK t d t� ! � � " !	�R , (Eq 4-4) 

where K(t,�) is the autocovariance function calculated from a set of signal ensembles. It is 

evident that are eigenvalues, and  are eigenfunctions of K(t,�), and are therefore 

orthogonal. The order of eigenvalues, highest to lowest, indicates the components in 

order of significance.  The KL basis can be approximated using a set of ensembles of the 

process x(t) such that the mean square error (MSE) between a given set of ensembles and 

their projection to the subspaces spanned by each basis function of the KL representation 

is minimized.  

( , )x s� ��

( , )x s� ��

j" ( )j t!
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However, in the absence of multiple realizations of x(t), underlying nonlinear 

dynamics should be taken into account in order to extract ensembles needed to develop 

optimal representations (i.e., basis set) of signals from these systems.  The nonlinear and 

stochastic dynamic characterization of a system is usually helpful in providing 

information on the dimensionality and the functional form of models that can capture the 

observed behaviors [7]. 

 

Figure 4.2 An illustration of trajectories of an attractor intersecting a (planar) Poincare 
section 

The time evolution of the phase space trajectories emanated from the system 

explains the underlying nonlinear dynamics. Usually, the measured observations of a 

process can not include all possible state variables. Couplings among the system’s 

components imply that each single component contains necessary information about the 

dynamics of the larger system. The embedding theorem of Takens [13] guarantees that 

the reconstructed trajectory portrays the dynamics in the higher dimensional state space. 

It states that a diffeomorphism exists between the reconstructed phase space with the 

state vector given by  

 2 ( 1)( ) [ ( ), ( ), ( ),..., ( )]
En n n d n d n d dx t x t x t x t x t� � �   �	  (Eq 4-5) 

Poincare section �

Trajectory



42 

and original phase space, if , where dE is the embedding dimension,  is the 

time delay, and D is the dimension of the compact manifold containing the attractor. This 

implies that the dimension and entropy spectra of the reconstructed attractor are the same 

as those of the original one. 

Poincare section is a dE-1 dimensional hyperplane intersecting with the phase space 

trajectories (see Figure 4.2). The recurrence property of a chaotic attractor A shows that 

for every and almost every A such that , in effect, the 

trajectories with an attractor remain bounded. Those points , i =1, 2, … at which the 

trajectory intersects the Poincare section follow a return map. For strictly periodic 

trajectory, the points , i =1, 2, …will overlap (i.e., #�0) such that the duration between 

to along the trajectory constitutes the period. For chaotic systems no two Pi’s 

overlap. For near-periodic signals, such as ECG, each strand emanating from a Poincare 

section intersection point Pi and lasting approximately till the next intersection Pi+1 along 

the trajectory may be treated as a realization of a stochastic process from an invariant 

probability space [12]. Due to heart rate variability, some ensembles move faster, i.e., the 

two successive intersections occur over shorter intervals, compared to the others [14, 15]. 

In this investigation the length (time duration) of the ensembles is taken as the time 

interval between the intersections of the fastest ensemble. Moreover, those collected 

near-periodic ensembles provide an effective way for the Karhunen-Loeve (KL) 

representation of this signal. In this ECG investigation, the largest eigenvalue is 

4.3026 which implies that 98.34% of the total variation occurs along the leading (the first 

one out of 41) eigenfunctions. Intuitively, each eigenfunction � ��!  captures the shape of 
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a specific mode of variation (roughly, a degree of freedom) of x(�). The fiducial pattern 

( )t'  of a signal emerging from a process with d-degrees of freedom (or topological 

dimension D, where d = �D�) is obtained as the optimal projection of the ensembles onto 

the space spanned by � � � � � ���� d!!! �,, 21 . For computational convenience (during 

matching wavelet design), the support of ( )t'  is rescaled so that [0,1]t% . 

4.3 Least square matching wavelet design 

The continuous wavelet transform of the signal x(t) using the analysis wavelet 

 is: 

  
(Eq 4-6) 

where is the dual of  [16]. If x(t) is similar to the wavelet basis functions, then the 

coefficients will likely be large only for a few basis functions. Thus, the customized 

wavelet function adapted to the ECG pattern may achieve the best performance. We 

design the wavelet function using a least squares approach [6, 17, 18]. A wavelet basis 

function is approximated as a polynomial regression of degree M: 

 

 (Eq 4-7) 

Let us assume that N-sample time-series of fiducial ECG pattern  be available 

such that: 
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Similarly, we can reduce operator U(t) to a Vandermonde matrix A, whose elements are 

powers of t, will be as following: 

 

  (Eq 4-9) 

It is important that the function which can not only best fit the fiducial signal pattern 

 but also satisfy the wavelet admissibility and regularity conditions (Percival and 

Walden11). The admissibility requirements for any valid real or complex-value 

continuous-time function to be a wavelet basis function can be summarized as: 

reconstruction, zero mean, finite energy and regularity constraints. The first three defines 

the wave, and the last condition determines the rate of decay or the let. A function 

satisfied with all the four conditions can be a valid wavelet for CWT [18]. 

Since the fiducial pattern is a finite length signal, the finite energy requirement 

is automatically met.  The zero mean condition  implies that the Fourier 

transform of  vanishes at the zero frequency , where stands for 

the Fourier transform of . So, it will also make sure that is finite 

for the success of inverse continuous wavelet transform:  

 
  (Eq 4-10) 
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Summarizing, the least square Mth degree polynomial fitting with regularity K for the 

wavelet design will add zero mean and regularity conditions, and the deduction of revised 

matrix  and is as following. 

(1) Zero mean 

  (Eq 4-11)

(2) Regularity  

The moment of the function is defined as . If the function s first 

i moments are zero , the number of vanishing moment of 

the function is k+1. 

 
  (Eq 4-12) 

New Vandermonde matrix  will contain powers elements of t and the wavelet 

constraints. 
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The N-sample estimate of the coefficients vector  of the matching polynomial wavelet 

function can be determined to minimize the objective function  

 
  (Eq 4-15) 

 
  (Eq 4-16) 

and the estimate can be obtained using the pseudoinverse: 

  (Eq 4-17) 

4.4 Implementation and results 

As discussed in the research methodology section, the coefficients of a compact 

wavelet representation need to be more sensitive to variation in the underlying processes 

(physiological) and less sensitive to noise variation. Thus, feature sets extracted from a 

compact representation tend to be lighter (i.e. fewer and more sensitive) and more 

effective in estimating various anomalies (here, different AF states). For implementation 

and validation of the present approach, we utilized the ECG data from the 2004 

PhysioNet challenge named Spontaneous Termination of Atrial Fibrillation (AF), posted 

on the PhysioNet website [19, 20]. Atrial Fibrillation (AF) is one of the serious cardiac 

disorders that affect millions of human beings, and its early detection can have a 

significant bearing on the quality of healthcare. In this contest, classification needs to be 

made among the following three categories of AF patients test signals:  

1) Group N: Non-terminating AF (defined as AF that was not observed to have 

terminated for the duration of the long-term recording, at least an hour following 

the segment). 
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2) Group S:  Soon to be terminating (AF that terminates one minute after the end of 

the record).  

3) Group T: Terminating immediately (AF terminating within one second after the 

end of the record).  

In all, 80 recordings of AF from 60 different subjects were made available in the 

database. Each record is a one-minute segment of AF, containing two channel ECG 

signals (Lead I and II), each at 128 samples/sec. Figure 4.3 contains ECG signal trace 

taken from a subject with AF for the duration of approximately 10 heartbeats. The trace 

shows a QRS complex with a significant R-peak followed by a T-wave. The signal is 

superposed with higher frequency (>6Hz) atrial fibrillation F-waves in lieu of P-waves. 

 

Figure 4.3 Time domain plot of a representative ECG signal trace (a01)

After the false nearest neighbor and mutual information test [7, 21], the optimal 

embedding dimension and time delay were determined for reconstruction of the state 

space from the ECG traces using time delay coordinates in dE embedding dimensions as 

 (see Figure 4.4). The reconstructed state 
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space shows a large loop of QRS complex extending top-down and left to right, with the 

R-peaks occurring at the top and right extrema. A T-loop as well as an irregular ball 

formed by the F-waves are observed near the origin (bottom left corner).  The Poincare 

sections �1 and �2 of the state portrait, as shown in Figure 4.4 can be used to gather 

alternative sets of pattern ensembles.  

 

Figure 4.4 State space portrait reconstructed from time delay coordinates

The choice of the Poincare section � affects the shape of the pattern as well as the 

performances (entropy) of the representation. For e.g., one needs to choose the Poincare 

section such that the flow lines are directed about one or two flat planes, in which case � 

takes the form of a simple planar object. Also, it is desirable that the local Lyapunov 

exponent max* of the state is close to or below zero about �. This will help in making sure 

the resulting wavelet easily satisfies the constraints imposed by Eqs. (4-11) and (4-12). In 
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performances than that through Poincare section �2 as shown in Figure 4.4. Figure 4.5 

shows the ensembles gathered from Poincare section �1. The fiducial ECG signal pattern 

used for the wavelet design stage can be extracted from dominant eigenfunctions 

estimated using the KL representation. Figure 4.6 shows the least square matching 

wavelet design result. The resulting wavelet �(t) holds significant similarities to the 

fiducial pattern '(t) and capture a majority of the variations among the ensembles. 

 

Figure 4.5 ECG pattern ensembles extracted from Poincare section 

 

Figure 4.6 Matching wavelet extracted from fiducial signal pattern
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Figure 4.7 shows the variation of entropy (Eq. (4-1)) with the polynomial degree of 

the wavelet function �(t) that matches the fiducial pattern. The minimal entropy for 

matching wavelet (shown in Figure 4.7) is found to have a polynomial degree of 13. 

 
Figure 4.7 Matching wavelet representation entropy variation with various polynomial 

degrees 

As summarized in Figure 4.8, the customized wavelets an ECG from a non-

terminating AF case, obtained through Poincare sections �1 and �2  of  the reconstructed 
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right side, are about 95% (approximately two orders of magnitude) more compact than all 

standard available wavelet bases investigated (shown on the left side), namely, db2 

(Daubechies-2), sym2 (Symlet-2), haar (Haar), mexh (Mexican hat), meyr (Meyer), 
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representations for a signal from a non-terminating AF case (i.e., a01 signal in the 

PhysioNet [20].   

 
Figure 4.8 Entropy comparison between standard wavelets and matching wavelets 

The two orders of magnitude increase in the compactness of ECG signal 

representation with customized wavelet (measured in terms of entropy reduction) is 

further evidenced from the examination of the distribution of entropies for eleven signals 

(a01, a02, a03, b01, b02, n01, n02, s01, s02, t01, t02) in the PhysioNet database for the 

AF challenge with the eleven alternative wavelet bases including the standard and the 

customized wavelets (see Figure 4.9). Interestingly, the wavelets customized for an ECG 

signal from a normal case yield about five times lower entropy compared to that from a 

non-terminating AF case. Also, it may be noted that, although both customization yield 

ignorantly low entropy compared to standard wavelet basis, the entropy of wavelet 

adapted from Poincare section �2 is twice as large as that from Poincare section �1. It is 
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evidently due to the fact that the customized wavelet from �1 naturally closes to 

satisfying the wavelet constraint Eqs. (4-11) and (4-12). 

Figure 4.9 Entropy distribution for different wavelet representations, taken over all ECG 
signals in the database considered 

Reasons for the compactness of the representations are further evident from an 

examination of the histograms of wavelet coefficients of the representations (see Figure 

4.10). The figure shows the distribution of wavelet coefficients within various bins of the 

histogram. The coefficients from the customized wavelet representation (see Figure 4.10 

(a)) are concentrated around zero with few large coefficients. Such a low entropy 

distribution, with few large coefficients and several near-zero coefficients can lead to 

clearer demonstration and identification of various salient events in ECG signals. In 

contrast, coefficients of a representation from a standard library wavelet (see Figure 4.10 

(b)) are spread uniformly, providing no clear distinction between significant and non-
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significant coefficients. Therefore, we have used the customized wavelets for QRST 

cancellation and feature extraction. 

 

Figure 4.10 Histogram of matching wavelet transform coefficients: (a) customized 
wavelet, (b) Morlet wavelet

4.5 Summary 

The choice of various basis functions is known to determine the compactness of a 

wavelet representation. In general, the closer the basis function captures the signal 

characteristics, the more compact is the representation, and more likely are the features 

sensitive to relevant ECG states and insensitive to variations in extraneous noise. In this 

chapter, we have customized the basis functions of a continuous wavelet representation 

by choosing polynomial wavelet basis functions that match the characteristics of a 

fiducial 1-beat long ECG signal pattern extracted from the Poincare sectioning of ECG 

state space. The customized representations were found to be roughly two orders of 

magnitude more compact (measured in term of signal entropy) than the wavelet basis 

functions available in the standard wavelet library. The unraveling of scale-time 

distribution of signal content in wavelet representation can facilitate the identification of 
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various ECG events including the onsets, peaks, and offsets of various ECG waveforms 

for different beats. Further, it provides a means for QRST subtraction to suppress ECG 

signal components that emerge from ventricular sources.  
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CHAPTER V 

DYNAMIC VCG REPRESENTATION 

The conventional 12-lead electrocardiogram (ECG) and the 3-lead Frank X,Y,Z 

vectorcardiogram (VCG) signals are recorded at the body surface to monitor the 

underlying heart’s electrical activities and used to provide valuable information for the 

medical diagnosis of the cardiovascular condition of a patient. The heart activities are 

monitored from various perspectives by these signals. The 12-lead ECG is more 

commonly used than the 3-lead VCG because medical doctors have been accustomed to 

using them in clinical diagnosis for more than one hundred years. It has thus proven its 

value, time tested, and considered as the Gold Standard. However, much of that 

information is redundant and even in that, only a small fraction of the data is used in the 

analysis by the physicians based on experience and expertise and oftentimes on the 

memorization of ECG signals for different cardiological disorders. This is a difficult task 

and the cardiologists are constantly looking for alternatives.  

VCG monitors the cardiac electrical activity in three pseudo-orthogonal X,Y, Z 

planes of the body, namely, frontal, transverse, and sagittal (see Figure 2.3) [1]. It is 

traditionally projected to different planes (X-Y plane, X-Z plane and Y-Z plane) which 

captures the time correlations, or plot as a static attractor in a 3D space that provides the 

topological relationships. The absence of combined spatiotemporal information in the  
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VCG representations reported earlier, expects the interpreters to have not only the spatial 

but also the temporal imaginations. 

This chapter presents a dynamic VCG representation approach to capture the 

spatiotemporal dynamics underlying the cardiac electrical activities. Instead of reading 

signals from a paper which at most gives three dimensions, the monitor of the computer 

is used to view all four dimensions, namely, the three X, Y, and Z components and one 

time scale. The example VCGs used in this investigation are gathered from the PTB 

database, which is available from the PhysioNet – a public service of the research source 

for the complex physiological signals [2]. Each of the recordings in the database contains 

15 simultaneously recorded signals, namely, the conventional 12-lead ECGs and the three 

orthogonal Frank XYZ leads VCG signals digitized at 1 kHz, with a 16 bit resolution 

over a range of ±16.384 mV.   

The remainder of this chapter is organized as follows: Section 5.1 presents a brief 

background on the linear transformation between 3-lead VCG and the 12-lead ECG; 

Section 5.2 provides the research methodology used; Section 5.3 presents a discussion of 

the pathological patterns in VCG signals, and Section 5.4 covers the conclusions based 

on the research reported here.  

5.1 Background

The electrocardiogram, designed by Augustus Waller in 1889 and further improved 

by Williem Einthoven in 1901, has been used for more than 100 years for the clinical 

diagnosis of cardiovascular disorders. Einthoven denoted the P, QRS, and T waves in the 

EKG signal to the sequences of atrial and ventricular depolarization and repolarization 

activities. Around 1904 Einthoven et al. [3] derived the famous “Einthoven triangle” to 



59 

measure three EKG signals and calculate the approximate direction of the cardiac vector. 

In 1956, Ernest Frank designed the Frank lead system to measure the VCG in three 

corrected orthogonal coordinates, which provides a clear picture of the cardiac vector. 

With the rapid development of information technology (IT) and the availability of 

computing hardware at reasonable cost, the representation and analysis of 3D VCG loops 

are not constrained by computational resources and this has resulted in renewed interest 

in VCG since 1990’s. Dower and his colleagues [4-6] conducted pioneering research 

based on Frank’s tank torso model studies and introduced a linear transformation matrix 

to convert 3-lead VCG signals into 12-lead ECG signals without a significant loss of 

clinically useful information regarding heart dynamics. The inverse Dower 

transformation matrix is used to derive the 3-lead VCG from the 12-lead ECG. Some 

even consider Dower transformation matrix as generalized or universal transformation 

matrix [4-7] although this has not been established to date and one finds different 

transformation matrices for healthy subjects and patients with cardiological disorders [8].  

The transformation studies show the statistical equivalence between the 12-lead 

ECG and the 3-lead VCG. However, it is difficult for the human beings to visually 

project a spatial VCG vector into any specified cardiac measurement angle determined by 

the 12-lead measurement systems, which is the conventional way for the ECG 

interpretation. In addition, the absence of temporal information in the static VCG 

representation poses extra barriers for medical doctors to closely relate the 12-lead ECG 

characteristics to the 3-lead Frank X, Y, Z VCG signals. But when it comes to the 

computer automated analysis of heart monitoring system, the 12-lead ECG signals will 

introduce the “curse of dimensionality” problem, which is the convergence of any 
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estimator to the true value of a smooth function defined on a space of high dimension is 

very slow because of the exponential increase in volume associated with extra 

dimensions. Thus, VCG is a better option for computer processing and analysis because it 

overcomes not only the loss of information from the analysis of only one or two ECG 

signals but also the dimensionality problems induced by the 12-lead ECG. The usage of 

VCG for the medical diagnosis has been studied by many researchers [9-20] although 

investigations exploring both spatial and temporal relationships of the VCG signals are 

rarely, if any, found. It is hoped that present approach of spatiotemporal VCG 

representation would greatly improve the exploration of spatiotemporal cardiovascular 

dynamics and lead to automated computer analysis. This approach will be introduced in 

the following sections. 

5.2 Research methodology 

The three VCG vector loops, namely, P, QRS, and T waves contain three 

dimensional recurring, near-periodic patterns of heart dynamics. The dynamic VCG 

representation can provide doctors with an easier way to understand, interpret, and use 

vectorcardiograms. This approach includes presenting VCG signals as a real time motion 

of cardiac vector in 3D space, and color coding of the magnitude of the cardiac vector 

movement with the curvature, velocity, and phase angle etc. In addition, an alternative 

lag reconstructed heart attractor representation from nonlinear dynamics principles is 

provided, if there is only one dimensional heart monitoring signal available. The 

proposed dynamic representation of the vector loops can be rotated freely on the monitor 

to analyze the loop’s form in real time.  
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5.2.1 Spatiotemporal VCG attractor representation 

In the Frank XYZ lead system, a vectorcardiogram is represented as three 

orthogonal scalar measurements with respect to time as shown in Eq 5-1. The dynamic 

VCG representation embeds the cardiac vector, composed of three scalar measurements 

as x, y, z components, in real time. As shown in Figure 5.1, the representation is divided 

into two parts. The top half plots the three scalar x, y, z components in real time and the 

bottom half presents the movement of cardiac vector in 3D space simultaneously.   
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Therefore, this explicitly real time dynamic VCG representation makes it easier for 

doctors to utilize it with prior interpretation expertise and experiences of time-based 

ECG. As shown in Figure 5.1 (c), this representation consists of three components: head 

(green), body (red), and tail (blue). Head gives the current position of the cardiac vector. 

Body records a short history of the cardiac movement which clearly indicates where the 

current vector is from. It avoids the confusion regarding which heart activity loop the 

current cardiac vector belongs to because those loops usually have some intersections in 

the isoelectric point. Tail provides the full history from the start of the recording time that 

captures the full topological shapes of the VCG attractor. Figure 5.1 (a) bottom VCG 

trajectory shows the beginning of P wave which is the start of atrial depolarization after 

the SA node excitation. This cardiac activity is also indicated from the projections of 

cardiac vector on the X, Y, Z Cartesian axes as shown in the Figure 5.1 (a) top plot. In 

Figure 5.1 (b), we can see the complete P wave loop and Q wave onset (interventricular 

septum depolarization). When it comes to Figure 5.1 (c), the QRS loop is presented to 

manifest the ventricular depolarization activities. It is followed by ventricular 

repolarization shown as T wave loop in Figure 5.1 (d) (e). Figure 5.1 exhibits the next 

heart activity cycle. Figure 5.1 clearly shows that the P, QRS, and T waves can be easily 

located in the VCG attractor with respect to time. 

5.2.2 Lag reconstructed spatiotemporal ECG attractor 

In many real life cases, only a few measurements (e.g., lead I ECG signal) are 

available in lieu of the complete measurements of three cardiac vector components 

recorded for a given time period. Takens embedding theorem [18] states that many 

individual measurements contain adequate information to reconstruct most of the system 
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attractor dynamics because of the high dynamic coupling existing among the real world 

system. Therefore, an equivalent cardiac vector space (attractor) can be reconstructed 

from the delayed coordinates of the only measurement y(t) as  

 v(ti) =[y(ti), y(ti+�),  y(ti+2�)] (Eq 5-2) 

where � is the time delay. The optimal time delay � is selected to minimize mutual 

information function M(�), defined as  

 ( , )( ) ( , ) log
( ) ( )

�� �
�


	 

�
t

p t tM p t t dt
p t p t

 (Eq 5-3) 

where p(t,�) is the joint density function, and p(t) and p(t+�) are marginal density 

functions of y(t) and y(t+�), respectively [21]. 

As shown in Figure 5.2, animation of the lag reconstructed EKG attractor can also 

provide the similar spatiotemporal information as the VCG attractor described in Section 

5.2.1. 
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5.2.3 Color coding of spatiotemporal VCG representation 

Color coding scheme can be used to incorporate additional dynamical attributes of 

the VCG attractor, such as curvature, “speed" (dv = /v//t, and /v=||v(t)-v(t+1)||) and 

phase angle. The estimate of the curvature can be made by taking the cross product 

between the two vectors from the current point to the points a certain distance on either 

side. The phase angles of the cardiac vector are calculated using Eq 5-4. 

 
2 2 2
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v v v
�  (Eq 5-4) 

The magnitude of the color indicators, such as curvature, speed, phase angles are 

mapped into a color scale. Thus, the color coding scheme can be plotted in real time and 

provide the fifth dimension of VCG besides X, Y, Z, and time scale. As shown in Figure 

5.3, the color coded animated VCG representation incorporates the extra cardiac vector 

movement information and facilitates doctor’s interpretation of valuable spatiotemporal 

patterns associated with certain cardiological diseases. Figure 5.3 bottom plot shows the 

cardiac vector potential variation speed plot, and the middle VCG plot displays every 

vector’s speed in one specific color corresponding to the color bar listed in the right of 

the middle VCG plot. The same color bar range is applied to all the color coded dynamic 

VCG representation so as to see the differences among those colorful plots. As illustrated 

by the color VCG attractor in Figure 5.3, the cardiac vector in QRS loop moves fastest, T 

wave is the second, P wave is the third, and the isoelectric points are the slowest. 
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Patient266/s0502_re: Healthy control 
RR: 696.03±4.67ms, QT: 435.62±5.17ms 

 
Figure 5.3 Color coded dynamic VCG representation plot of a healthy control subject
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5.3 Results and discussion 

Many researchers have studied the pathological patterns in the VCG signals and 

demonstrated the advantages of VCG in diagnosing certain diseases [9-20]. Statistical 

transformation studies showed the equivalence of 12-lead EKG and 3-lead VCG. 

Therefore, an effective VCG representation can provide same heart characteristics as 

acquired from the conventional ECG signals. The useful heart characteristics to be 

determined include heart rate, rhythm, electrical axis, and other pathology patterns. As 

shown in Figure 5.3, the healthy control VCG plot presents the normal heart rhythm as P, 

QRS, and T loops. The peak of T wave loop is found to be in the octant (XYZ: ++-) for 

most of the healthy control cases. Statistical analysis shows that only 6 out of 80 healthy 

recordings in PTB database flee from the octant (XYZ: ++-). But for the peak of T wave 

loop in PTB myocardial infarction cases, only 31.79% (117/368) are found to stay in the 

octant (XYZ: ++-) and the rest 68.21% of myocardial infarction cases get into the other 

octants. The speed color coding scheme manifest the real time movement velocity of the 

cardiac vector, which is rarely able to be observed on a paper. The color of QRS loop is 

continuous in the healthy control case. For instance, Figure 5.3 shows a consistent light 

green color, which is usually not the case for some disease subjects. It may also be noted 

that the more red color shown in QRS loop, the higher R peak is. In addition, Q wave and 

S wave are inside the QRS loop in the vectorcardiogram and close to the P loop and T 

loop. Since this dynamic VCG representation is printed on a paper statically, it is not 

straightforward to indentify which side of QRS loop is Q wave. It is well known that Q 

wave is ahead of R wave and S wave. Therefore Q wave can be easily located on the 

monitor from real time motion of dynamic VCG representation. Here, the Q wave is 
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marked in Figure 5.3 and the normal subject is found to not have a significant Q wave 

because the amplitude of Q wave does not noticeably incline to the negative direction of 

X, Y, or Z directions.

But P wave loop is found missing and abnormal in the case of atrial fibrillation 

VCG plot and fibrillation waves take the place of P wave (see Figure 5.4). It is also found 

that the attractor of atrial fibrillation patient is approximately parallel to the X-Y plane, 

which indicates a shift in the heart electrical axis. Figure 5.4 shows the color coded 

dynamic VCG representation for a dysrhythmia and atrial fibrillation patient. P wave is 

ahead of QRS loop. Before the VCG trajectory goes to the QRS wave, it is found to be 

trapped in the anarchy P area. The speed of cardiac vector movement is displayed as the 

darkest blue color (minimal potential variation rate), which demonstrated clearly 

abnormal excitations from SA node to Atrial. The presence of chaotic fibrillation wave 

before QRS loop discloses that the atrial fibrillation case has limited capability to harness 

Atrial and SA node. The time elapsed for the completion of one VCG cycle (PQRST) 

provides the RR intervals, and it can be calculated for the study of heart rate variability 

using Poincare sectioning of VCG trajectory. In Figure 5.4, the RR interval is found to be 

longer than the normal case. It may also be noted that the color change in QRS loop is not 

as consistent as the normal case in Figure 5.3, which indicates abnormalities in 

ventricular depolarization. 
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Patient157\s0338lre: Dysrhythmia and atrial fibrillation 
RR: 1571.20±108.34ms, QT: 476.50±3.64ms 

 

 
Figure 5.4 Color coded dynamic VCG representation plot of a patient with dysrhythmia 

and atrial fibrillation
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Further, the pathology patterns, such as significant Q wave, inverted T wave for 

myocardial infarction patients can also be indentified from the VCG plot. A large Q wave 

towards the negative direction along the Y-axis can be seen in Figure 5.5 because the Y-

axis magnitude of starting moment of the QRS loop is significantly larger than the Y-axis 

magnitude of R peak. The T wave octant is also found to be shifted to X-positive, Y-

negative and Z-positive, which indicates the inverted T wave. A significant Q wave can 

also be located from Figure 5.5 Vy direction. It may be noted that the minimal negative 

direction of Vy is less than – 0.2, but the maximal positive direction is only 0.2. Q wave 

is the starting of QRS loop, which can be easily reserved from dynamic VCG 

representation. Therefore Q wave is found to be beyond -0.2 and Q/R ratio is greater than 

1 in the Vy direction. Such a significant Q wave is definitely a typical sign of myocardial 

infarction. The discontinuous color variations in QRS loop also indicate the ‘W’ patterns 

in ventricular depolarization, which are pathological patterns for some diseases. 
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Patient001/s0010_re: Myocardial infarction, infero-latera 
RR: 732.16±8.75ms, QT: 430.16±3.12ms 

 

 
Figure 5.5 Color coded dynamic VCG representation plot of a patient with myocardial 

infarction, infero-latera
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Figure 5.6 clearly shows a significant Q wave along X and Y axes. It may also be 

noted that Q and S wave are significantly larger than R wave. Thus, this tiny R wave 

results in a deep valley in the Figure 5.6 bottom cardiac vector potential variation speed 

plot. It is also revealed more obviously in the Figure 5.6 middle VCG plot. This 

myocardial infarction case exhibits an even worse significant Q wave situation than 

Figure 5.5. A significant Q wave can be located from both Vx and Vy directions. We can 

find that the minimal negative direction of Vy is less than – 0.6, but the maximal positive 

direction is less than 0.2. The minimal negative direction of Vx is less than – 0.2, but the 

maximal positive direction is only 0.05. Q wave is located in the dynamic VCG 

representation (see Figure 5.6) and Q/R ratio is found to be greater than 1 in both Vx and 

Vy directions. The discontinuous color variations in QRS loop are shown as light blue – 

dark blue – light blue. It indicates the ‘W’ patterns in the QRS wave of this patient, which 

is resulted from the tiny R wave compared to Q and S waves. It may also be noted that 

cardiac vector speed is showing to be dark blue in both P and T wave areas. Slow 

movement in these two locations also represents the SA excitation and ventricular 

repolarization abnormalities. 
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Patient063/s0214lre: Myocardial infarction, antero-lateral 
RR: 822.96±101.62ms, QT: 401.30±31.38ms 

Figure 5.6 Color coded dynamic VCG representation plot of a patient with myocardial 
infarction, antero-lateral
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As shown in Figure 5.7, two R peaks can be found in the plot which are 

designated as “M waves” and are one of the typical pathological patterns for the bundle 

branch block patient. The discontinuous color variations in QRS loop are shown as 

yellow - light blue – dark red. It indicates the ‘M’ patterns in the R wave of this patient, 

which is resulted from the disease of bundle branch block. The ‘M’ wave pattern shows 

that both ventricles are not depolarized simultaneously. The delay in the blocked bundle 

branch allows the unblocked ventricle to begin depolarizing before the blocked ventricle. 

This kind of slightly later effect in one ventricle produces pathological ‘M’ wave and 

widen QRS loop. It may also be noted that the dark red color appears in this VCG 

trajectory. Since the same color scale is employed, and Figure 5.3, Figure 5.4, Figure 5.5, 

Figure 5.6 do not have red color in the VCG attractor, it is also concluded that R peak 

amplitude is the largest in the bundle branch block subject.  
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Patient208/s0429_re: Bundle branch block 
RR: 745.48±7.77ms, QT: 465.15±14.74ms 

 

 
Figure 5.7 Color coded dynamic VCG representation plot of a patient with bundle branch 

block 
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From the VCG attractor comparisons among healthy control (HC), myocardial infarction 

(MI), atrial fibrillation (AF), and bundle branch block, it can be shown that a rotatable real time 

dynamic VCG representation can capture these important heart characteristics as reported from 

the 12-lead ECG plot. It is convenient to find the pathological patterns of various cardiovascular 

disorders from the dynamic VCG representation. One perspective of view or static representation 

on a paper will pose additional difficulties to the interpretations of VCG trajectory. The 

incorporation of time and color in dynamic VCG representation will greatly facilitate and assist 

the inspection of VCG attractor.  

Moreover, 3-lead VCG signals are better options for computer automated analysis and 

process than the 12-lead ECG because of the dimension reduction. From the rotated dynamic 

VCG representation, it is also found that the spatial distributions of VCG trajectory are 

remarkably different between myocardial infarction and healthy control. In our chapter VIII, 

VCG features, namely, max Q vector magnitude, max Q vector octant, max R vector magnitude, 

max R vector octant, max T axis magnitude, max T vector octant, heart rate, and ST segment 

integration area etc., are extracted to identify the myocardial infarction from healthy control. T 

wave morphology related information was statistically found to be the most important features, 

and the classification accuracy was as high as 97.28% for myocardial infarction and 93.75% for 

healthy control cases in the PTB database. 

5.4 Concluding remarks 

In this present investigation, we have made an attempt to represent the VCG signals in 3D 

space in real time by viewing the signals on a computer monitor instead of as a static picture 

which can at best record 3 dimensions. This approach overcomes the drawbacks of conventional 

static VCG representation and provides the spatiotemporal information on the heart dynamics. 
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The alternative lag reconstructed heart attractor animation from nonlinear dynamics principles 

can address the sometime difficult situations for the study of cardiac vector when there is only 

one heart monitoring signal available. The VCG representation can also be color coded for 

spatiotemporal representation with the curvature, velocity, and phase angle etc. of the vector loops 

for valuable information about the heart’s dynamic activities. It is believed that the proposed five 

dimension dynamic VCG representation, namely, X, Y, Z, time, and color, can significantly 

enhance the interpretability of the vectorcardiogram and assist in the identification of the 

underlying spatiotemporal heart dynamics.
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CHAPTER VI 

ATRIAL FIBRILLATION STATE CLASSIFICATION 

6.1 Introduction 

Atrial fibrillation (AF) is the most common form of arrhythmia, affecting some 2.2 

million Americans annually. AF can sustain indefinitely, since the ventricles continues to 

perform the essential function of blood circulation. During AF, the heart's two small 

upper chambers (the atria) (see Figure 2.2) quiver instead of beating effectively. The risks 

of sustained atrial fibrillation are nevertheless serious, and include strokes and 

myocardial infarctions caused by the formation of blood clots with stagnant volumes in 

the atria [1]. About 15% of strokes occur in patients are traced to AF. The likelihood of 

developing AF increases with age with about 3-5% of patients over 65 have atrial 

fibrillation and is more for men than for women. 

In surface electrocardiogram (ECG) from patients with AF, regular electrical 

impulses of the sinoatrial node (P wave) as shown in Figure 2.2 are replaced by 

disorganized, rapid electrical impulses (Fibrillation or F wave) which result in irregular 

heart beats [2-5]. The atrial electrical activity is very rapid (approximately 400 to 700 

beats/min), but each electrical impulse results in the depolarization of only a small islet of 

atrial myocardium rather than the entire atrium. A typical ECG in AF shows a rapid 

irregular tachycardia in which recognizable P waves are absent. QRS complexes are 

generally normal, and the ventricular rate in patients with untreated AF generally ranges
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between 150 and 220 beats/min. However, in elderly patients, ventricular rates in 

untreated AF are typically slower [1]. 

Evidence shows that spontaneously terminating (paroxysmal) AF is a precursor to the 

development of sustained AF [6]. Subtle changes in rhythm during the final minutes or 

seconds of such episodes may lead to (or predict) termination of AF. Improved 

understanding of the mechanisms of spontaneous termination of AF may lead to 

improvements in the treatment of sustained AF. The remainder of chapter 6 is organized 

as follows: Section 6.2 gives a brief background of the 2004 PhysioNet challenge for 

classification of AF states; Section 6.3 contains the study of feature extraction through 

statistical analysis and QRST subtraction; AF state classification using classification and 

regression tree (CART) model is discussed in Section 6.4; and Sections 6.5 discuss the 

results and future improvements. 

6.2 Background

In this chapter, the ECG data posted on the world-wide web (www) from the 2004 

PhysioNet challenge “Spontaneous Termination of Atrial Fibrillation” is utilized. In this 

contest, classification needs to be made among the following three categories of AF 

patients test signals:  

1) Group N: Non-terminating AF (defined as AF that was not observed to have 

terminated for the duration of the long-term recording, at least an hour following 

the segment).  

2) Group S:  Soon to be terminating (AF that terminates one minute after the end of 

the record).  



85 

3) Group T: Terminating immediately (AF terminating within one second after the 

end of the record).  

In all, 80 recordings of AF from 60 different subjects were made available in the 

database [7]. Each record is a one-minute long segment of ECG signals sampled from 

two channels at 128 Hz sampling rate. The data is divided into a learning set and two test 

sets. The learning set contains 30 records in all, with 10 records in each of the three 

groups.  The learning set records were obtained from 20 different subjects (10 from group 

N and 10 from group S/T). Test set A contains 30 records from 30 subjects. About half of 

these records belong to group N and the rest to group T. The first goal of the challenge, 

referred to as Event A, is to determine which records in test set A belong to group T and 

which records to group N. Test set B contained 20 records, 2 from each of 10 subjects 

(none represented in the learning set or in test set A). One record of each pair belongs to 

group S and the other to group T.  The second goal, referred to as Event B, is to identify 

which records belong to group T and which records belong to S. It may be noted that the 

data provided was sparse (as shown in Table 6.1) making it all the more difficult and 

challenging. Some 20 groups participated in the challenge and submitted their results to 

an autoscorer. Each team was allowed up to five attempts in each event, and only the best 

score received in each event was used to determine the final rankings. Final results for the 

2004 PhysioNet Challenge are summarized in Table 6.2.  

Table 6.1 Distribution of 80 recordings among learning sets and test sets 

 Group N Group S Group T 
Learning set n01, n02, ... n10 s01, s02, ... s10 t01, t02, ... t10 

Test set A 15 records - 15 records 
Test set B - 10 records 10 records 
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Most successful approaches followed the procedure of filtering the noise and artifacts 

[8, 10, 11, 14], QRST subtraction [15-20], frequency spectrum analysis of the resulting 

filtrate (which predominantly captures atrial activity) [8, 21-26], classification [11, 24, 

27] and so on. Six groups developed methods that yielded 90% or more accurate results 

for event A (N vs. T classification). Studies show that atrial activity slows down and 

regularizes prior to self-termination of AF, mechanisms of atrial activity are reflected 

through surface ECG [1-3, 5, 26, 28, 29]. However, event B (S vs. T classification) 

seemed to be more difficult, since the accuracies ranged from 60-90% for most cases. It 

is commendable that the team from Northwestern University [8] was able to arrive at the 

highest classification accuracy of 97% for the N vs.T and 100% for S vs. T. One major 

finding of this challenge contest is that spontaneously terminating AF can be 

discriminated accurately from sustained AF by analysis of surface ECG signal segments 

sampled over a period of one minute or less [6]. 

6.3 Feature extraction 

6.3.1 Statistical Descriptors and Principal Component Analysis (PCA) 
Various signal processing algorithms have been developed to detect the QRS 

complex and the characteristic points of ECG spectra [14, 30-41]. This stage is crucial in 

basic ECG monitoring systems and important for cardiac events classification. Figure 6.1 

shows an intermediate result of an automated feature extraction algorithm developed here 

depicting the successful identification of peaks and endpoints of various waves of a 

representative ECG signal. All signals were first passed through a bandpass filter to 

capture a clean signal whose frequency range is between 0.5 and 60 Hz before subjecting 

them to wavelet transform as discussed in the foregoing. Pre-filtering minimizes the 
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influence of artifacts, respiration, baseline shift and other spurious signal components, so 

that the features extracted are more likely to accurately track variations in the AF states.  

 

Figure 6.1 Automated identification of peaks and endpoints of various waveforms in an 
ECG signal using an automated feature extraction routine 

Wavelets are attractive for ECG feature extraction because the spatio-temporal 

features of an ECG signal are presented over multiple scales through the use of a wavelet 

transform. Consequently, the QRS complex can be distinguished from high P and T 

waves, noise, baseline drift, and other artifacts. The relation between the characteristic 

points of ECG signals and those of modulus maximum pairs of its wavelet transforms are 

almost straightforward to establish. For example, Figure 6.2 shows a representative 

scalogram (time-scale representation) obtained from a continuous wavelet transform 

(CWT) of an ECG signal segment shown in Figure 6.2. The brighter (white) portions 

refer to the time-scale segments in the scalogram that contain large magnitudes of 

wavelet coefficients and the dark portions identify the segments having small wavelet 

coefficients. Scale 2 of the scalogram clearly demarcates the time locations of R peaks. 
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The information on R-peak locations gets diffused as one moves up on the scales, as 

evidenced by progressive smearing of the white bands. However, around scale 7, 

delineations between R, T, and P waves become somewhat apparent. However, for scales 

>7, these bands diffuse out in time to a point where the delineations are no longer clear. 

Scale 2 of a scalogram has been used to locate the peaks of the R waves, and thus 

determine, for each beat, the heart rate (HR) and heart rate variability (HRV). Scale 7 

coefficients were used to determine the peaks of the P and T waves as well as the onset 

and offset points of each wave. 

Figure 6.2 Time-scale representation (scalogram) of a representative ECG signal 
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The feature sets extracted from large arrays of signals has been further tightened, 

and made more sensitive to the relevant variations in underlying dynamics through the 

use of decomposition methods, such as principal component analysis (PCA) and 

independent component analysis (ICA). PCA techniques [42] are widely used to reduce 

the dimension of the input (feature) vectors in situations where the dimension of the input 

vector is large, but the components of the vectors are highly correlated (redundant). PCA 

orthogonalizes the components of the input vectors (so that they are uncorrelated with 

each other), and orders the resulting orthogonal components (principal components) so 

that those with the largest variation are considered first, and eliminates those components 

that contribute the least to the variation in the data set. 

6.3.2 QRST subtraction 
During atrial fibrillation, the P waves are absent and are replaced by rapid (usually of 

smaller amplitude) fibrillation waves (or F-waves) of varying durations and 

morphologies. The QRST complex (which represents ventricular activity) dominates the 

spectral content of ECG waves during AF, limiting the ability to detect various AF 

events. Therefore, the ECG signal components capturing the ventricular activity (i.e., 

QRST complex) should be subtracted from the surface ECG for more effective diagnosis 

of AF events [15-20, 43]. In this chapter, a wavelet representation is used to identify time 

segments and scales where much of the ECG signal content emerges from various 

ventricular activities, and apply and threshold such that the filtrate contains mostly 

ventricular components and the residue contains atrial components. The rationale for this 

approach lies in the fact that the wavelet transform coefficients for ventricular activity are 

much larger than those for atrial activity, particularly during active AF. Results from this 
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cancellation approach are summarized in Figure 6.3 and Figure 6.4. It is evident that 

much of the QRST information in the ECG has been culled out through the application of 

the thresholding filter. The frequency domain plot of the QRST cancelled ECG (Figure 

6.4, bottom) clearly delineates the spectral content of the waves of atrial origin, which 

were not evident from the examination of the frequency spectrum of the original ECG 

(Figure 6.4, top). The frequency and amplitudes of these atrial ECG components serve as 

additional features for AF state classification. 

Figure 6.3 Summary of QRST subtraction results for a representative ECG signal  (from 
a T-case) showing the original signal (top), filtrate from thresholding containing 

predominantly ventricular components (middle) and residue from thresholding containing 
predominantly atrial and AF waves (bottom)
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Figure 6.4 Frequency spectra of a representative ECG signal before and after QRST 

subtraction

6.4 AF state classification using CART model 

The CART analysis uses decision rules learned from the pattern (clustering) of 

features in a training data set to classify different groups of objects. This approach can be 

quite effective for creating clinical decision rules that combine physiological 

knowledgebase with signal analysis [27]. 

The application of CART analysis to detect AF events (N, S, and T) consists of 

selecting the features to serve as discriminatory variables and build a decision tree 

recursively. The CART tree is built using recursive splitting of the feature space defined 

by 3 extracted input features based on one target variable that takes one of the following 

3 values: N, S, or T. 
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 (a) 

(b) 

Figure 6.5 (a) Peak frequencies of various N and T cases, (b) Peak frequencies of the 

first two (First 2) and last two (Last 2) beats of N and T ECG signals

For N vs T classification, subtle changes in the rhythm during the final seconds of the 

ECG traces of such episodes may indicate termination of AF [25]. Therefore, ECG 

features that capture the initial (first 2 seconds) and final moments (last 2 seconds) of AF 

signal may serve as discriminatory variables for identifying AF termination. Specifically, 

the following 3 features were extracted from the ECG signals after QRST subtraction: 
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1) Overall peak frequency (OPF) 

2) Peak frequency of the first 2-second interval of the ECG trace (PFF) 

3) Peak frequency of the last 2-second interval of the ECG trace (PFL) 

For N vs T classification, we found the maximum value of the OPF for all T signals 

in the learning data set to be 6.91 Hz (which is lower than some N cases), whereas the 

minimum value of OPF for all N signals in the learning data set was 5.13 Hz (which is 

higher than some T cases) (Figure 6.5 a). Therefore, we set 6.91 Hz as the upper limit of 

OPF for T cases and 5.13 Hz as the lower limit of OPF for N cases. Among the learning 

set, any signal with an OPF N 6.91 Hz was classified as an N signal; and any signal with 

OPF b 5.13 Hz was classified as a T signal. For those cases with an OPF between 5.13 

and 6.91 Hz, we found that the PFF is greater than the PFL in most T cases. Therefore, 

any signal with an OPF between 5.13 and 6.91 Hz was classified as T signal if PFF N 

PFL, and N signal otherwise (Figure 6.5 b). Based on these observations, a CART model 

with the following decision rules was developed for classifying the N and T cases: 

1. If the OPF > 6.91 HZ, then the object is N. 

2. If the OPF < 5.13 HZ, then the object is T. 

3. For OPF within the interval from 5.13 to 6.91 HZ, the object is classified as T if 

the PFF > PFL, and N case otherwise. 

This model correctly classified 28 of 30 N and T cases during testing, leading to an 

accuracy of 93%.  

For the S vs T classification, it may be noted that for every S recording, a 

corresponding T recording was taken from the same patient. Therefore, the first step in S 

vs T classification involved applying an optimal pairing method to identify the pairs of S 
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and T recordings from the same patient based on the ECG signal morphology information 

(Figure 6.6). This information included ECG features such as the arithmetic mean of P-

wave width, height of P wave, QRS width, height of QRS, QT length, T-wave width, and 

RR interval from the time domain signal plots. 

 
Figure 6.6 (a) and (b) Learning and testing dataset RR interval and average features 

scatter plot, respectively. (Average feature is the average value of mean of QRS, mean of 

peak, mean of height of T wave, mean of QT interval, mean of ST segment, and mean of 

T duration)
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Table 6.3 S vs T learning data set RR interval and skewness of RR feature table
 Group S Group T 

Person Case RR Interval Skewness RR Case RR Interval Skewness RR 
a s01 48.28a 1.45 t01 49.62 a 1.37 

 
g s07 96.87 0.50b t07 73.15 1.37 b 
h s06 110.57 0.42 b t06 110.13 0.85 b 
i s05 114.80 0.34 b t05 113.77 1.05 b 
j s03 123.15 0.62 b t03 134.39 1.74 b 

 
b s04 62.97c 1.57 t04 60.65 c 1.02 
c s10 66.31 c 0.67 t10 61.08 c 0.84 
d s02 71.70 c 0.66 t02 69.33 c 0.72 
e s08 74.27 c 0.94 t08 71.58 c 0.89 

 
f s09 92.91 -0.40d t09 88.16 -0.25 d 

a Rule 2; b Rule 3; c Rule 4; d Rule 5 
 

Table 6.4 S vs T testing data set RR interval and skewness of RR feature table 
 Group S Group T 

Person Case RR Interval Skewness RR Case RR Interval Skewness RR 
1 b14 47.47a 1.04 b16 47.58 a 1.64 

 
3 b09 62.96 0.92b b08 71.03 2.51 b 

 
2 b20 53.87c 1.01 b12 51.89 c 1.69 
4 b01 64.48 c 0.91 b03 61.93 c 1.26 
5 b02 72.72 c 0.84 b07 70.21 c 0.43 

 
6 b04 74.31 0.39d b13 79.92 0.42 d 
7 b05 90.01 0.51 d b19 92.74 0.60 d 
8 b18 99.53 0.94 d b11 94.50 1.00 d 
9 b10 112.67 -0.39 d b15 104.94 -0.38 d 

10 b06 119.30 -0.50 d b17 121.35 0.35 d 
a Rule 2; b Rule 3; c Rule 4; d Rule 5 

After grouping ECG traces from the same person, the S and T classification was 

performed based on 2 features: average RR interval and skewness of RR interval, which 

capture the heart rate and heart rate variability, respectively. Heart rate activities are 
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closely related to the state transitions from soon-to-be-terminating AF to terminating AF. 

As shown in Table 6.3 and Table 6.4, the average RR interval was found to decrease 

from S to T, whereas the skewness of the RR interval increases from S to T for the same 

person, in most cases, from the learning data set. In addition, no S cases were found to 

have both higher skewness of RR and smaller average RR interval than T cases for the 

same person, except in one case. This finding implies that the RR interval trend in the S 

case has either a longer average RR interval or a smaller skewness of the RR interval than 

the T case for the same person. 

Based on the learning data set, we found that the data can be divided into 2 groups 

based on the average RR interval: those whose average RR intervals are greater than or 

less than 75 milliseconds. The skewness of the RR interval increases from S to T for 

those patients whose RR intervals are greater than 75 milliseconds, and the average RR 

interval decreases from S to T for those RR intervals less than 75 milliseconds. However, 

if the patient has a very high heart rate, for example, the average RR interval is 50 

milliseconds, then it may serve as a major feature instead of the skewness of RR interval 

because the higher heartbeat rate will not cause significant RR interval variations unless 

there is a sudden disruption in the heart activity. With these findings, both learning data 

set (sets S and T) and testing data set (set B) are correctly classified. The CART 

classification rules, created based on the learning data for events I and II, are given as 

following: 

1) Find pairs of recordings (obeject A and object B) from the same patient. 

2) If (RR interval < 50) in one pair, then the object with bigger RR interval is T.  

(this condition refers to extremely high heart rate (HR=1/RR) case) 
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3) If Skewness RR (object A) 2
Skewness RR (object B)

  or Skewness RR (object A) 0.5
Skewness RR (object B)

� , then object 

with greater Skewness for RR is T. 

4) If the bigger RR interval for object A and object B <= 75, object A is S if RR 

interval decreases from object A to object B. 

5) If the bigger RR interval for object A and object B > 75, object A is S, if 

Skewness of RR increases from object A to object B. 

It may be noted that heart rate analysis based on average RR interval and its variation, 

and QRST subtraction techniques using wavelet threshold filter are different from those 

reported in the literature.9 In N vs T classification, we used 3 features as inputs for 

CART classification, which is one less than the number of features used in Petrutiu et al9, 

without significantly compromising on the accuracy (93% for the N vs T testing data set 

and 100% for the S vs T testing data set). Furthermore, the CART decision tree has the 

potential to integrate medical expertise to generate a number of clinical decision rules for 

improving the diagnostic accuracy for different AF states. 

6.5 Summary 

The CART model patterned after a previous such attempt yielded the best results for 

N vs T and S vs T classifications. Interestingly, the CART classifier for N vs. T uses one 

less feature than in the previous work [8], and it was found to yield over 95% accuracies 

for classifying between N vs. T. Also, application of three decision rules is sufficient to 

classify between N vs. T. 

CART classification of S vs. T is found to depend on pairing the ECGs of every 

individual subject (one taken when the subject is at S condition and the other at T). The 
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optimal pairing algorithm was found to achieve a fairly accurate pairing using the 

aggregate ECG features. Based on the pairing information, five decision rules were 

generated to derive the CART classifier for S vs. T. From a practical standpoint the 

decision rules obtained through CART can be easily coded in the form of a rule-based 

diagnostic system, and can be useful for automatic classification between S and T events. 

The CART models constructed using temporal relationships among features yielded 

high accuracy for both N vs T and S vs T classifications. These results matched the best 

results reported in the 2004 Challenge Competition [6] for N vs T classification. 

To improve the accuracy of identification of various AF episodes further, it is 

necessary (a) to get access to a significantly larger database of both normal and AF cases 

and (b) to seek expertise of the cardiologists in providing relevant features and 

diagnostics for various cardiologic disorders. 
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CHAPTER VII 
 
 

MYOCARDIAL INFARCTION IDENTIFICATION USING RECURRENCE 

QUANTIFICATION ANALYSIS (RQA) OF VCG SIGNALS 

7.1 Introduction 

According to the U.N. World Health Organization (WHO), myocardial infarction 

(MI), also known as coronary heart attack, is a leading cause of fatality in the world. It 

results from the occlusion of the coronary artery and insufficient blood supply to 

myocardium [1]. It can take place in the inferior, septal, anteroseptal, anterior, apical, or 

lateral parts of a heart, and it often leads to necrosis or death of myocardial cells in the 

nearby heart locations. Onset of MI can also alter the underlying electrical potential fields 

and cardiovascular dynamics. Signals from conventional 12-lead electrocardiograms 

(ECG) and/or 3-lead vectorcardiogram (VCG) signals, recorded at the surface of the 

body, are widely used in the current methods to detect MI. These signals are generated 

due to the sequence of electrical activities taking place in the human heart.  

Several methods have been used previously for detecting MI using 12-lead ECG [2, 

3]. Also, most of the previous approaches used conventional ECG features, such as 

variations in ST wave segments, depth of Q-wave, ST elevation, inversion of T-wave, 

and other event intervals [4-6]. Consideration of nonlinear stochastic dynamics 

underlying the measured signals, especially with the use of more intuitive VCG has not 

been reported in the literature. In this chapter we study the variations in heart dynamics 
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underlying the measured VCG loops obtained from healthy control (HC) vs. Myocardial 

Infarction (MI) subjects through the application of recurrence quantification analysis 

(RQA) [7], a technique borrowed from nonlinear dynamics systems theory, and MI 

detection using neural network (NN) classification of recurrence quantifiers. Recurrence 

quantifiers were found to be useful means to detect cardiological disorders, such as atrial 

fibrillation (AF) [8]. The present work follows our previous investigations based on using 

wavelets to compactly capture information from ECG signals [9] and to use advanced 

classification techniques to identify Atrial Fibrillation (AF) episodes [10].  

The VCG data [368 MI and 80 HC recordings] available in the PhysioNet Database 

[11] was analyzed in this investigation. Each of these recordings contains 15 

simultaneously recorded signals, namely, the conventional 12-lead ECG and the 3-lead 

Frank (XYZ) VCG. The signals were digitized at 1 kHz sampling rate with a 16-bit 

resolution over a range of ±16.384 mV. The 80 HC recordings are acquired from 54 

healthy volunteers, and 368 MI recordings are acquired from 148 patients. The recordings 

are typically ~ 2 min in duration, and all the signals were recorded for at least 30 sec 

long. 

The results of recurrence quantification analysis of VCG signals show that 

laminarity, determinism, and other properties of VCG trajectories (defined in Appendix 

A [12, 13]) fromHC segments are significantly different from those of MI patients. A 

radial basis neural network (NN) that uses these recurrence quantities as input features 

was able to provide an effective classification (>90% accuracy) between HC and MI. The 

remainder of this chapter is organized as follows: Section 7.2 presents the methods used 

in the analysis, Section 7.3 contains the overall implementation approach as well as 



 

107 

results from feature extraction and MI classification for the PhysioNet PTB database, and 

Section 7.4 presents discussion and conclusions arising out of this investigation.  

7.2 Research methodology 

A human heart is essentially an autonomous electro-mechanical pump. The 

vectorcardiogram (VCG) signals capture the heart potentials as a dynamic cardiac vector 

in three orthogonal components [14]. VCGs are mutually orthogonal bipolar 

measurements obtained from electrodes placed at appropriate locations of the torso as 

shown in Figure 2.3. 

 

Figure 7.1 Coordinate system used for obtaining VCG signals 

VCG are not as commonly used in the medical practice as the 12-lead ECG 

because, among other reasons, the interpretations of 3D VCG loops are not commonly 
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taught and require specialized knowledge of spatial decomposition of the heart vector. 

Since X, Y, and Z constitute the three axes, and the time, the fourth axis, they cannot be 

displayed on a paper. For this, dynamic vectorcardiography is needed, which can be 

displayed only on a computer screen. Some ECG monitoring equipment uses the VCG 

for calculation and storage purposes, but present the derived 12-lead ECG for the 

interpretation by medical doctors. However, for automated computer analysis and 

diagnosis both 12-lead ECG and 3-lead VCG are equally applicable. 

 
Figure 7.2 A representative VCG plot showing the vector loops for P, QRS, and T wave 

activities 

Dower and his group [15-17] have conducted pioneering studies on VCG signal 

analysis and demonstrated that the 3-lead VCG and 12-lead ECG can be linearly 

transformed from one to the other without significant loss of clinical information 

regarding heart dynamics.  Also, since VCG requires fewer leads to be placed on the 
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subject, it offers additional advantages for remote and continuous patient monitoring. 

Therefore, it is imperative to analyze the VCG signals and explore the relationships with 

cardiovascular conditions. 

The VCG vector loops contain 3D recurring, near-periodic patterns of heart 

dynamics. Each heart beat consists of three loops corresponding to P, QRS, and T wave 

activities. The 3D loops can be visualized in the X-, Y- and Z- space domain with time 

entering implicitly (see Figure 7.2). Identification and extraction of a compact set of 

features from these patterns is critical for effective detection and diagnosis of various 

ailments. Complex nonlinear stochastic dynamics (of human cardiovascular system) 

underlying these VCG vector loops pose significant challenges to the extraction of 

features that can track cardiovascular anomalies. Some previous studies have 

characterized this nonlinear stochastic dynamics of human heart to exhibit low 

dimensional chaos [18-20].  

Features extracted based on conventional statistical approaches and linear system 

perspectives alone tend to have limitations for capturing signal variations resulting from 

changes in the cardiovascular system dynamics resulting from different myocardial 

damage levels. The use of a rigorous nonlinear analysis based on combining multifractal 

embedding principles [21] with recurrence analysis [22, 23] can lead to extraction of 

effective features. The strength of these methods emerges from their effective use of the 

recurring patterns of loops exhibited by VCG and many other physiological signals. 

Through effective use of recurrence properties, it is possible to specify an appropriate 

tight set of features that track the relevant cardiovascular state variations and are 

insensitive to other extraneous variations.  
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Figure 7.3 A graphical illustration of relationship among a VCG, the X,Y,Z time series 

and the unthresholded recurrence plot 

The recurring patterns in the nonlinear system state space can be captured using 

recurrence plots. It provides a convenient means to capture the topological relationships 

existing in the 3D VCG vector space in the form of 2D images. As shown in Figure 7.3, 

the unthreshold recurrence plot (UTRP) delineates the distances of every point x(i), 

realized at time index i in a VCG, to all the others, i.e., ( , ) : ( ( ) ( ) )	 �D i j x i x j0 , where 

||·|| is a distance measurement (e.g., the Euclidean norm) and �(·) is the color code that 

maps the distance to a color scale. As shown in Figure 7.3, the color code of the distance 

between the ith and jth embedded vectors is located in coordinate (i,j) of the recurrence 

plot. If the color code at the point is blue, then the points are located close to each other 
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in the VCG, and if the color code is red, the points are located farther apart in a VCG. 

While the thresholded recurrence plot (TRP) methods (see Figure 7.4) only draw points 

when the distance ( ) ( )x i x j� between two vectors is below a cutoff distance r: 

( , ) : ( ( ) ( ) )T i j r x i x j	 1 � � , where � is the Heaviside function [22, 23].  

 

Figure 7.4 A representative thresholded recurrence plot of VCG 

Thus, a recurrence plot shows the times at which a state of the dynamical system 

exhibits recurrence, i.e., the time-pairs at which the trajectories of a system evolution 

come within a specified neighborhood. The structures of a recurrence plot have distinct 

topology and texture patterns (see Figure 7.3 and Figure 7.4). The recurring dark (blue) 

diagonal (45o) lines indicate the near-periodicity of the system behaviors over given time 

segments with a period, heart rate, equal to the separations between successive diagonal 

lines. Recurrence-based methods have recently shown potential for representation, de-

noising and prediction of measurements from complex systems. This present work 
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involves extracting representative nonlinear dynamical features from the recurrence plots 

of VCG vector loops for classifying between MI and HC. The classification techniques 

used are based on neural networks (NN) and linear discriminant analysis methods which 

can lead to effective mapping of the features that capture the symptoms of MI conditions. 

7.3 Implementation and results 

 

Figure 7.5 Flow diagram showing research methodology used 

The overall approach implemented for analyzing the nonlinear dynamics underlying 

VCG signals and classifying between HC and MI are summarized in Figure 7.5 and 

detailed in the following subsections, consists of the following three steps:  

VCG Analyzer 

Feature Extraction 

Recurrence Quantification 
Analysis (RQA) 

Classification 

Linear Discriminant Analysis 

Neural Network 

VCG Signal 

Recurring pattern features 

Feature Analysis 

PCA Transformation

Histogram Comparison 

Transformed features 
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(1) Recurrence quantification analysis (RQA): Presentation of the 3D VCG signals in 

the form of a 2D unthresholded recurrence plot so that mathematical description 

of the salient patterns contained in the signal as well as the procedures for feature 

extraction can be much compactly captured, and nonlinear dynamic quantifiers 

that describe the specific recurring patterns in the VCG are efficiently extracted. 

(2) Feature analysis and conditioning: Orthogonalizing the recurrence quantifiers so 

that the significant correlations that exist between some of the recurrence 

quantifiers are eliminated, leading to the removal (projecting out) of the redundant 

information in the feature set. The extracted features should be sensitive to the 

state variables to be estimated. 

(3) MI classification: Associating, through both linear and nonlinear maps, the 

extracted features with an appropriate representation of unknown state variables. 

7.3.1 Recurrence quantification and feature extraction 

Recurrence plots are graphical displays of signal patterns, but quantitative features 

need to be extracted to analyze the underlying processes and detect hidden rhythms in the 

graphics. Statistical quantifiers of complexity, such as recurrence rate (�), determinism 

(DET), linemax (LMAX), entropy (ENT), laminarity (LAM), and trapping time (TT) 

serve as such typical recurrence quantifiers that can be estimated from an appropriately 

constructed Threshold Recurrence Plots (TRP) [12]. The definitions of the above six 

recurrence quantifiers and their relationships with heart dynamics are summarized in 

Appendix A [12, 13]. These quantitative features are extracted based upon the patterns 

across the diagonal or vertical lines in the thresholded recurrence plot. 
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Figure 7.6 Histogram comparisons between HC (filled green) and MI(not shaded) for the six RQA quantifiers, 
namely, recurrence rate (�), determinism (DET), linemax (LMAX), entropy (ENT), laminarity (LAM), and 

trapping time (TT) (Histogram x-axis is feature value, and y-axis is the normalized frequency) 
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Figure 7.6 shows the histogram comparisons between HC and MI for the six RQA 

quantifiers �, DET, LMAX, ENT, LAM, and TT extracted from VCG signals. It may be 

noted that quantifier ranges of the six recurrences for HC are higher than those for MI, 

implying that dynamic properties of HC are more volatile than MI. The more complex 

variability of heart dynamics shown in the HC cases are also pointed out in Goldberger’s 

study on fractal dynamics in physiology [20]. The distinct distributions across the MI and 

HC groups provide effective raw features for the following principal component analysis 

(PCA) and neural network (NN) classification. 

7.3.2 Feature Analysis 

The six recurrence features were further tightened by projecting out redundant 

information, and made more sensitive to the relevant variations in underlying dynamics. 

Principal component analysis (PCA) techniques are commonly used to reduce the 

dimension of the input (feature) vectors in situations where the dimension of the input 

vector is large but the components of the vectors are highly correlated (redundant). PCA 

orthogonalizes the components of the input vectors (so that they are uncorrelated with 

each other), and orders the resulting orthogonal components (principal components) so 

that those with the largest variation are considered first, and projects those components 

that contribute the least to the variation in the data set [9].  

PCA transforms the original six nonlinear dynamical features into six orthogonal 

principal components, named F1, F2, …, F6. The first principal component captures the 

largest variations in the nonlinear dynamical feature datasets, and the principal 

components are uncorrelated thus facilitating linear classification. We have found from 



 

116 

our earlier investigations that linear classifier is more accurate for uncorrelated principal 

components than the correlated original nonlinear dynamical features [10].  

Figure 7.7 shows the histogram distribution of PCA transformed feature values for 

MI (bars not shaded) and HC (shaded green). Histograms of F1 show a statistically 

significant difference between the distributions for MI vs. HC, as gathered from a two-

sample Kolmogorov-Smirnov test. Thus, the first principal feature F1 captures most of 

the differences between MI and HC. Histogram distributions for the other features, 

especially F3, F4, and F5 also show some differences, but not as statistically significant 

as F1, between MI and HC. These features can provide additional degrees of freedom, 

especially for classification with nonlinear discriminant boundaries. 

Table 7.1 Linear model misclassification results using F1 and other principal features (F2 
F6) 

Features Misclassification results
MI (368) HC(80) 

F1 and F2 12 34
F1 and F3 17 30
F1 and F4 19 32
F1 and F5 14 33
F1 and F6 20 31

This is further evident from feature distribution plots shown in Figure 7.8 (a) to (e). 

They show the plots of the principal feature F1 against the other 5 principal features (F2 

through F6). A genetic algorithm is used to determine the optimal linear boundary in the 

feature space separate the feature values of MI (red +) from the HC (blue �) feature 

values. This boundary line maximizes the discrimination, and hence the classification 

accuracies using every pair of features formed by F1 and other five principal features 

(F2-F6). The clear separation of HC and MI across F1 axis, marked by < 45º deviation 

from the vertical of the linear boundary indicates that F1 is the most significant 

discriminating feature. 
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Figure 7.7 Histogram distributions of PCA feature values F1 to F6 for MI (not shaded) and HC (shaded green) 
(Histogram x-axis is feature value and y-axis is the normalized frequency) 
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Figure 7.8 (a) to (e) Distribution of values of features F2 through F6 vs. F1 for MI (red �) and HC (blue +) 
subjects with linear separator obtained using a genetic algorithm
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Table 7.1 shows the linear model misclassification results using F1 and other 

principal features (F2 through F6). As will be demonstrated in Section III.C, the linear 

classification with all six features can distinguish ~ 97% of MI patients. The features 

extracted from recurrence analysis are, therefore, adequately discriminatory to capture the 

dynamic variations between HC and MI, and ensure a high classification accuracy for the 

MI patients. It may be noted that a non-linear model can further increase the 

classification accuracies.  

 

Figure 7.9 Relative importance of RQA quantifiers in the first principal feature (F1) 

Since F1 is clearly the most discriminating feature, we next examine the relative 

contributions of the six RQA features for F1. As shown in the Figure 7.9, LAM, DET and 

LMAX are the most important features capturing the corresponding pathological 

variations of myocardial infarction in the first principal feature F1. PCA results show that 

MI conditions are related to stability, mixing rates of VCG trajectories, and periodicity in 

the cardiovascular system. 
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7.3.3 Classification 

Linear discriminant analysis was used first to facilitate training of a simple 

classifier to capture the complex relationships connecting the PCA transformed features 

and MI. A classifier essentially is a model that maps the features to the patient’s health 

conditions, namely, healthy control (HC, coded -1) or myocardial infarction (MI, coded 

+1). The states are coded such that a mathematical mapping between the feature values 

and the patient’s conditions is possible. During the model building or the training phase 

of the classifier, the model parameters are adjusted so that, when features extracted from 

VCG signals of HC cases are presented, model outputs a value closer to -1, and so on. 

Linear discriminant analysis assumes that a linear hyperplane serves as a boundary 

separating HC and MI points in the feature space, and it uses a least square fit to 

determine the coefficients which give the best fit. The hyperplane that captures the 

relationships between the input features and the output response is of the form  

0 1 1 2 2 ... n ny a a x a x a x #	       

where ai are the coefficients and xi represents the input features. The residual error � of 

the difference between the actual value and the model output determines whether the 

presented VCG is taken from HC or MI subject.  As shown in Table 7.2, the magnitude 

of ia* 2 coefficients as well as the corresponding p-values1 are calculated to test the 

statistically significant levels of the features used. Larger the ia* 2  value, the more 

important is the corresponding feature. Contrarily, smaller the p-value, the more 

significant is the feature. Table 7.2 shows that the contributions of the principal features 

                                                 
1 The p-value is that probability that any variation in the input feature will result in a statistically significant 
change in the output response, and p-value should be < 0.05 for the input feature to be significantly 
discriminating. 
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F1 followed by F3, F4, and F5 which are the most discriminating features for MI vs. HC. 

These results are consistent with the initial observation on the discriminatory power of 

the principal features. 

Table 7.2 Relative importance of principal features F1 to F6 using linear regression 
Feature F1 F2 F3 F4 F5 F6

PCA eigenvalue 	 2237.1857 205.1453 15.0914 2.0983 0.5264 0.0503
*  47.2989 14.3229 3.8848 1.4486 0.7255 0.2243 

Linear regression coeff. ai -0.0098 0.0017 -0.0314 -0.0469 0.1382 0.2908
| ia* 2 | 0.4561 0.0582 0.1505 0.0841 0.1341 0.0241 
p-value 0 0.076 0 0.0129 0 0.448

Table 7.3 Results of linear regression classification for MI and HC 

S. No. 
Training data points % Testing accuracy* 

MI (368) HC (80) MI HC 
Mean Std Mean Std 

1 332(90%) 72(90%) 97.75 2.46 53.50 14.27 
2 295(80%) 64(80%) 97.42 1.87 54.44 10.82 
3 276(75%) 60(75%) 96.77 1.99 56.15 10.10 
4 246(67%) 54(67%) 96.98 1.61 54.85 7.63 
5 184(50%) 40(50%) 97.22 1.37 53.40 6.85 
6 123(33%) 27(33%) 96.43 1.53 53.21 7.15 
7 74(20%) 16(20%) 96.19 1.90 52.22 9.35 
8 37(10%) 8(10%) 94.60 3.48 49.99 13.08 

* accuracy is only calculated for testing dataset 

As shown in Table 7.3, the linear classifier can identify MI very accurately (~ 97% 

accuracy) with high consistency (small standard deviations). Such high classification 

accuracies indicate that the features extracted from the recurrence analysis are significant 

discriminating features even for the linear classifiers. However, it can be seen that the 

accuracy of the linear classifier for HC is rather low. This is likely because, as will be 

shown later, the current HC samples are significantly sparse to capture the diverse 

variations in cardiac dynamics of HC subjects. The HC subjects show more variations in 

the heart dynamics and poses difficulties for the linear classifiers.  
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Next, a radial basis function (RBF) neural network (NN) was used to classify HC 

and MI cases [24]. An advantage of using NN is that it can provide a nonlinear boundary 

separating MI and HC cases. In particular, the RBF network uses radial basis function, 

which can take advantage of the clustering and separation of the feature values in the 

feature space to reduce the amount of training as well as the need for extensive input 

patterns. The functional form relating the features to the heart condition can be different 

at different locations of the feature space. This is particularly useful because the 

distribution of features in 2-D plots in Figure 7.7 show a considerable grouping of the 

feature values of HC and MI groups.  

 

Figure 7.10 Radial basis function (RBF) neural network (NN)[24] 

Figure 7.10 is a schematic of the radial basis function (RBF) neural network (NN) 

used in this investigation. The network consists of 2 layers – a radial basis layer and a 

linear layer. In the first layer, distances (difference) of the input feature vector p1 from 

rows of the weight matrix W1 are computed. It is then multiplied by the bias b1 to form 

net input n1 going into the neuron. Each row of the weight matrix W1 acts as a center for 

a transfer function. The transfer function should be local, i.e., the response of the transfer 

function should be maximum near the center and should vanish to zero as the inputs 

disperse away from the center. The activation a1 of layer 1 is obtained by transforming n1 
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using a symmetric transfer function. Most common choice for the transfer function is 

Gaussian function. The Gaussian function responds only to a small region of the input 

space where the Gaussian is centered. The second layer of the network is a linear layer. 

Training RBF network involves adjusting center and spread of the Gaussian function. 

The results of RBF classification are summarized in Table 7.4. It shows that the 

RBF neural network improved the classification accuracy of both MI and HC (see Table 

7.3 and Table 7.4) compared to linear classifier by using the nonlinear classification 

boundary and local analysis. It may also be noted that HC subject conditions are more 

diverse than the MI subject. Notably the RBF classifiers improved the accuracy of HC by 

20% to 75%. 

Table 7.4 Results of neural network (NN) classification for MI and HC 

Training data points Number 
of 

neurons 

% Accuracy for MI 
classification

% Accuracy for HC 
classification

Training Testing Training Testing 
MI (368) HC (80) Mean Std Mean Std Mean Std Mean Std 

332 (90%) 72 (90%) 350 99.60 1.24 98.70 1.98 78.60 5.63 75.00 6.14 
295 (80%) 64 (80%) 250 99.10 1.63 98.40 2.12 71.60 6.18 71.50 7.13 
220 (60%) 72 (90%) 200 98.82 2.59 96.62 2.86 73.20 5.81 75.00 6.23 
220 (60%) 64 (80%) 200 96.84 2.61 96.40 2.94 69.10 6.28 68.20 6.89 
148 (40 %) 48 (60%) 150 95.74 5.96 94.81 6.89 65.80 10.86 65.62 12.21 
148 (40%) 32 (40%) 150 95.48 6.14 92.27 6.58 58.93 12.28 56.25 14.45 

Total Number ECG data sets: MI 368 and HC 80 data sets 

We also investigated the influence of the number of training and testing patterns on 

the accuracy of the classifier. Figure 7.11 shows the variation of the percentage accuracy 

with the number of points used in RBF training. We chose the same number of data 

points for MI as HC subjects. It can be seen that the accuracy of MI cases has come down 

and show a similar trend for both HC and MI when the number of training data points is 

sparse (<100), implying that availability of more HC data can improve the accuracy 
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further. Also, since the accuracy of MI subjects improves very slowly at higher 

accuracies (>90%), significant data need to be available if we were to increase the 

accuracy to two 9’s (99%), or three 9’s (99.9%). Also, from examining the variation of 

classification accuracies for MI and HC with the sizes of training and testing patterns as 

shown in Figure 7.11, it is evident that the accuracies would improve for HC with 

increase in the number of training data points. 

 

Figure 7.11 Variation of % accuracy of the neural network (NN) (both training and 
testing) with the number of data points for MI and HC 

7.4 Summary 

In this chapter, an attempt was made to analyze the VCG signals using nonlinear 

dynamics approaches by applying the recurrence quantification analysis (RQA) for 

feature extraction to distinguish MI patients from the HC subjects. A linear classifier was 

found to correctly identify MI about 94% of the times. However the linear classifier was 

able to correctly classify HC cases about 45% of the times. A neural network classifier 

was used to improve MI classification accuracies to about 97%, and HC to about 75%. It 

was also shown that the classification accuracies for HC cases are likely to improve with 
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the availability of additional VCG data. These results indicate that the VCG features 

extracted using RQA are good indicators of the cardiovascular conditions, and the NN 

classifiers capture the nonlinear relationships connecting the recurrence features with 

patients’ conditions. Based on these findings, the following conclusions may be arrived. 

1. The recurrence plot representation of VCG signals captures the complex patterns 

buried in the VCG vector loops and the underlying nonlinear dynamics. The study of the 

patterns quantified using the RQA were found to provide useful information for detecting 

MI. 

2. It was found that many of the VCG features extracted using RQA contained highly 

redundant information. Principal component analysis (PCA) is used to reorient the 

features to align in such a way as to remove significant correlation between features. The 

principal feature F1 was found to be the most discriminatory feature and the VCG 

features LMAX, LAM, and DET extracted using RQA are the three leading contributors 

for F1. 

3. Results of linear discriminant analysis showed strong relationships between the 

extracted recurring patterns related features and the patients’ cardiovascular conditions. 

Over 90% of the MI signals were correctly classified using the principal features. 

However, the linear classifier was not adequate to identify HC subjects (~50%). This was 

somewhat surprising as one would expect this to be the case for MI patients (due to 

various types of MI) than HC subjects. This is likely a limitation of the linear classifier in 

capturing the diverse patterns of HC subjects. 

4. Neural network model identifies the nonlinear mapping from the extracted features 

to the patients’ conditions and provides high accuracies for MI classification (>95%), 
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which make the real-time and practical implementation plausible.  It also improves the 

accuracy for identifying HC to above 75%. It was also shown that the training and testing 

accuracies can improve with the availability of more VCG recordings, especially of the 

HC subjects, for training and testing. 

5. Investigation of the effects of the number of training and testing patterns on the 

percent accuracy of the classifier has found similar trends for both HC and MI, implying 

that availability of more data would improve the accuracy further in the case of HC. Also, 

from examining the variation of classification accuracies for MI and HC with the sizes of 

training and testing patterns, it is evident that the accuracies will be improved with an 

increase in the size of training data points.  

6. It appears that improve the accuracy of identification of HC subjects as well as 

various myocardial infarction (MI) patients to double nines (99%) or triple nines (99.9%), 

the following are needed: (1) access to larger data collections of myocardial infarction 

and health control cases, and (2) expertise of the cardiologists in providing relevant input 

parameters and analysis of the data.  
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CHAPTER VIII 

VECTORCARDIOGRAPHIC OCTANT FEATURES FOR THE DIAGNOSTICS 

OF HETEROGENEOUS MYOCARDIAL INFARCTION 

8.1 Introduction 

Coronary heart disease is the leading cause of death in the United States (America 

Heart Association - AHA). Myocardial infarction, also known as heart attack, is resulted 

from the occlusion of the coronary artery and insufficient blood supply to myocardium. It 

can take place in the anterior, inferior, posterior, infero-lateral, anterior-septal, posterior-

lateral etc. parts of a heart. The myocardial infarction triad is ischemia, injury, and 

necrosis, and any of the three may occur alone. Ischemia is normally from the reduced 

blood supply, injury indicates acuteness of infarct, and infarction is the symptom of 

myocardium necrosis [1].

The 12-lead electrocardiograms (ECG), recorded at the surface of the body, are 

widely used in clinical diagnostic applications of myocardial infarction. The ECG 

diagnosable myocardial infarctions can be divided as following: 

� Q wave infarction, which is diagnosed by the presence of pathological Q waves. 

A pathological Q wave is defined as at least 40 ms duration or 1/3 downward 

deflection of the entire QRS magnitude, and found in most 12-lead ECG except 

lead III and lead aVR. 
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� Non-Q wave infarction, which is diagnosed in the presence of ST elevation or 

depression, and T wave abnormalities. 

It is conceptually known that 12-lead ECG examines the same heart activity from 

12 different perspectives of view, and vectorcardiogram (VCG) is only 3-lead orthogonal 

heart electrical activity measurements. The VCG vector loops contain 3D recurring, near-

periodic P, QRS, and T wave activity patterns in eight octants. Dower et al.[2-4] reveals 

that 12-lead ECGs can be linearly transformed to 3-lead VCGs without a significant loss 

of clinically useful information regarding heart dynamics. But VCG trajectory is not as 

commonly utilized as 12-lead ECG traces because of spatial imagination requirements 

(for e.g., rotation and projection of VCG trajectory), the loss of temporal information, and 

medical doctors’ accustomed trainings of 12-lead ECG interpretation for one hundred 

years. However, VCG will be a better option for computer processing and analysis 

because it overcomes not only the information loss from only one or two ECG signals but 

also the dimensionality problems induced by the 12-lead ECG. 

The VCG recordings (368 MIs and 80 HCs) available in the PhysioNet PTB 

Database[5, 6] were considered in this study. Each of these recordings contains 15 

simultaneously recorded signals, namely, the conventional 12-lead ECG and the 3-lead 

Frank (XYZ) VCG. The signals were digitized at 1 kHz sampling rate with a 16-bit 

resolution over a range of ±16.384 mV. The 80 HC recordings are acquired from 54 

healthy volunteers, and 368 MI recordings are acquired from 148 patients. Within the MI 

recordings, there are 89 inferior, 56 infero-lateral, 19 infero-postero-lateral, 1 infero-

posterior, 47 anterior, 43 antero-lateral, 77 antero-septal, 2 antero-septo-lateral, 3 lateral, 
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4 posterior, 5 postero-lateral and 22 unknown site cases. Those VCG recordings are 

typically ~ 2 min in duration, and all the signals were recorded for at least 30 sec long.

8.2 Feature extraction 

To characterize and quantify heterogeneous myocardial infarction, three groups of 

features are collected as following: 

(1) Conventional ECG features: mean and standard deviation of RR interval, QT 

interval, ST elevation or depression; 

(2) VCG vector features: magnitude of Q wave, R wave, T wave vector, angle 

between R and T vector, azimuth R vector angle, and azimuth T vector angle; 

(3) VCG octant features: octant location of Q, R, T vectors, percentage of vector 

points in an octant, and maximum, average, variance of vector magnitude 

distributions in each octant. 

Figure 8.1 Frank XYZ VCG ensembles, (a) X-direction; (b) Y-direction, (c) Z-direction

Traditional ECG intervals, for e.g., RR and QT intervals, are highly variable 

measurements. The heart rate variability, respiration, artifacts, power-line interference are 

known to generate ECG near-periodicities and influence the interval calculation. As 

shown in Figure 8.1, we calculate the mean and standard deviation of those intervals 

(a) (b) (c)
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through the extracted heart beat ensembles over time. Figure 8.1 (a) (b) (c) illustrate the 

Frank X, Y, Z ensembles. It may be noted that same direction ensembles are sharing 

similar morphologies, but there are still beat-to-beat variations due to heart rate 

variability. The group of conventional interval features is extracted as RR average (RR 

avg), RR standard deviation (RR std), QT average (QT avg), QT standard deviation (QT 

std). The ST segment integration area (ST_itg) is determined by computing the areas 

from J point (location where QRS complex joins the ST segment) to J+80 ms if heart rate 

(HR) is less than 100 beat/min (or J+72 ms if 100<HR<110, or J+64 ms if 110<HR<120, 

or J+60 ms if HR>120) [7]. Since myocardial infarction often causes the ST elevation or 

depression in 12-lead ECG signals, the drifts from isoelectric line, therefore, will also 

result in the increase of VCG ST segment area.  

Figure 8.2 VCG attractor and its 2D projection plots with Q, R, T vectors
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The group of VCG vector features are designed to capture the myocardial infarction 

pathological patterns, for e.g., Q vector length (Q_mag) will help identify the Q wave 

infarction. Increasing of T wave amplitude is related to the T vector magnitude (T_mag). 

R vector magnitude (R_mag) indicates the size of the ventricular chambers and proximity 

of chest electrodes to ventricular chamber etc. As shown in Figure 8.2, the 

aforementioned Q, R, T vectors are from the isoelectric point in VCG to the remotest 

points in the respective Q, R, T loops. In addition, the angle between R and T vector are 

computed to provide more information about the myocardial ischemia, injury, necrosis 

and their locations in myocardium. Previous study shows that QRS loop and T loop are 

close to each other in normal cases, while far from each other in some cardiovascular 

diseases [8].

(a)  (b) 

Figure 8.3 (a) VCG electrodes placement in human body; (b) the corresponding 

octant definitions 

As shown in Figure 8.3, a new octant numbering system is designed to be used with 

the VCG measurement system. Binary code 0 is employed to represent the negative 
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direction in X, Y, or Z axis, and 1 is for the positive direction. For instance, if the octant 

lays in all negative XYZ directions, binary coding will be 000 and the resulted octant 

number is also 0. The details of eight octant binary coding are shown in Table 8.1. Based 

upon the VCG electrode placements in the human torso, the coordinate system in Figure 

8.3 (b) is rotated to illustrate the exact position of every octant in the human body. All the 

octants with even numbering are found to be in the anterior locations, and odd in the 

posterior. Both octant 0 and octant 2 are found to be located in the right anterior side. 

This binary octant definition system does not need to be memorized but deduced, and is 

easier for users to find the octant spatial location.

Table 8.1 VCG octant definition and color mapping 

Octant X Y Z Binary code Location (X, Y, Z) Color code 
0 �3 �3 �3 (000) Right -superior-anterior Black      
1 �3 �3 3 (001) Right -superior-posterior Blue        
2 �3 3 �3 (010) Right -inferior-anterior Gray         
3 �3 3 3 (011) Right -inferior-posterior Cyan        
4 3 �3 �3 (100) left-anterior-superior Magenta
5 3 �3 3 (101) left -superior-posterior Green
6 3 3 �3 (110) left -inferior-anterior Yellow
7 3 3 3 (111) left -inferior-posterior Red

It may be noted that former VCG studies about the diagnostics of cardiovascular 

diseases (CVD) investigated T loop morphology[8-10], angles of QRS, T loops, QRS 

loop area[11-15], VCG attractor fractal dynamics[16], QRS and T vector length [17-19] 

etc., but few approaches investigated the relationships of CVDs to cardiac vector length 

distributions in each octant and T vector octant locations. Our dynamic VCG 

representation study in chapter V gave some clues about the intrinsic relationships 

between cardiovascular diseases and VCG octant information. As illustrated in Figure 

8.4, the healthy control has significant differences in the VCG octant distributions from 
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myocardial infarction. Eight specific colors are used to paint the vector points in each 

octant (see Table 8.1). For instance, it may be noted in Figure 8.4 that red line segments 

(octant 7) have different magnitudes and percentages to the whole trajectory for HC and 

MI. Therefore, the group of VCG octant features is investigated for a high separation 

probability of myocardial infarction from healthy control. T vector position will locate 

those T wave inversion and abnormal cases. R vector octant provides information about 

the heart electrical axis. Vector point magnitude and proportion in all eight octants 

indicates the cardiac vector changing directions and strengths in different local areas etc.

Figure 8.4 VCG trajectories with different octant colors in the 3D coordinate system, (a) 
HC; (b) MI 
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8.3 Feature analysis 

The Kolmogorov–Smirnov goodness-of-fit hypothesis test (KS test) is performed to 

examine the differences in both location and shape of empirical cumulative distribution 

functions of the forty six features between HC and MI samples. The feature sample 

empirical distribution function En for n iid observations Xi is defined as 

1
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� . If the 

probability value p < 0.05, the distribution differences are considered statistically 

significant and the hypothesis that the distributions are distinct will be TRUE. Table 8.2 

shows the KS test statistics, and the mean and standard deviation of 46 features of the MI 

and HC recordings from PTB database.  

Figure 8.5 Kolmogorov-Smirnov statistic variations of 46 features 
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Table 8.2 Statistical analysis (Kolmogorov-Smirnov test) of three groups of features
Group No. Feature Hypothesis p-value KSSTAT(D) MI(mean) MI(std) HC(mean) HC(std) 

I

1 RR avg TRUE 7.27E-07 33.0% 811.47 168.84 911.92 152.12 
2 RR std TRUE 3.00E-10 40.8% 59.74 262.20 49.33 28.40 
3 QT avg FALSE 1.80E-01 13.3% 387.69 46.91 385.32 32.06 
4 QT std TRUE 1.28E-02 19.3% 14.37 34.93 12.23 20.50 
5 ST_Itg FALSE 3.23E-01 11.6% 1.54 1.00 1.61 0.74 

II 

6 Q_mag TRUE 5.69E-07 33.3% 0.33 0.19 0.45 0.16 
7 T_mag TRUE 2.70E-20 58.0% 0.25 0.14 0.40 0.14 
8 R_mag TRUE 2.09E-11 43.2% 1.17 0.39 1.57 0.50 
9 Tang TRUE 7.54E-03 20.3% 116.90 31.50 119.35 15.44 

10 Rang FALSE 9.63E-02 14.9% 65.66 25.86 68.90 23.60 
11 RTang TRUE 3.95E-13 46.4% 101.52 44.88 56.64 28.39 

III 

12 R_pos TRUE 3.38E-02 17.3% 6.01 1.41 6.46 1.02 
13 T_pos TRUE 8.71E-23 61.6% 3.46 2.26 5.88 0.72 
14 Q_pos FALSE 3.12E-01 11.7% 0.27 0.92 0.00 0.00 
15 Oct0AvgN TRUE 1.48E-27 67.8% 0.09 0.04 0.12 0.01 
16 Oct0MaxN TRUE 9.63E-29 69.3% 0.38 0.16 0.54 0.04 
17 Oct0Ratio FALSE 6.16E-01 9.2% 0.22 0.16 0.21 0.15 
18 Oct0VarN TRUE 4.30E-25 64.7% 0.01 0.01 0.01 0.00 
19 Oct1AvgN TRUE 1.24E-09 39.5% 0.10 0.07 0.12 0.02 
20 Oct1MaxN TRUE 1.59E-05 29.4% 0.61 0.22 0.74 0.25 
21 Oct1Ratio TRUE 9.56E-13 45.7% 0.21 0.16 0.39 0.17 
22 Oct1VarN TRUE 1.60E-04 26.4% 0.01 0.01 0.01 0.01 
23 Oct2AvgN TRUE 7.26E-23 61.7% 0.11 0.05 0.15 0.02 
24 Oct2MaxN TRUE 9.99E-19 55.7% 0.44 0.26 0.62 0.30 
25 Oct2Ratio TRUE 4.41E-08 36.0% 0.14 0.11 0.06 0.05 
26 Oct2VarN TRUE 1.83E-21 59.7% 0.01 0.01 0.02 0.01 
27 Oct3AvgN FALSE 4.57E-01 10.4% 0.09 0.03 0.09 0.02 
28 Oct3MaxN TRUE 4.88E-14 48.0% 0.61 0.30 0.82 0.36 
29 Oct3Ratio TRUE 2.28E-03 22.3% 0.11 0.10 0.06 0.05 
30 Oct3VarN TRUE 5.50E-06 30.7% 0.01 0.01 0.01 0.01 
31 Oct4AvgN TRUE 5.50E-06 30.7% 0.10 0.03 0.09 0.01 
32 Oct4MaxN TRUE 3.69E-11 42.7% 0.72 0.23 0.64 0.32 
33 Oct4Ratio TRUE 1.17E-05 29.8% 0.09 0.08 0.04 0.04 
34 Oct4VarN FALSE 2.71E-01 12.1% 0.01 0.01 0.01 0.01 
35 Oct5AvgN TRUE 1.12E-05 29.8% 0.17 0.10 0.15 0.09 
36 Oct5MaxN TRUE 1.58E-08 37.1% 0.98 0.38 1.22 0.53 
37 Oct5Ratio TRUE 1.48E-09 39.3% 0.04 0.05 0.03 0.09 
38 Oct5VarN TRUE 3.21E-02 17.4% 0.05 0.07 0.05 0.06 
39 Oct6AvgN TRUE 1.84E-11 43.3% 0.13 0.03 0.16 0.03 
40 Oct6MaxN TRUE 1.46E-05 29.5% 1.02 0.42 1.30 0.45 
41 Oct6Ratio TRUE 1.31E-13 47.3% 0.13 0.10 0.18 0.05 
42 Oct6VarN TRUE 5.74E-08 35.8% 0.03 0.02 0.03 0.03 
43 Oct7AvgN TRUE 2.58E-08 36.6% 0.25 0.10 0.32 0.09 
44 Oct7MaxN TRUE 1.44E-17 53.9% 1.48 0.41 2.05 0.48 
45 Oct7Ratio TRUE 1.14E-08 37.4% 0.06 0.04 0.04 0.03 
46 Oct7VarN TRUE 7.81E-13 45.9% 0.13 0.09 0.26 0.12 
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For each VCG signal recording, forty six features are calculated, but such a high-

dimensional feature space is not suitable for the classification in term of the 

computational efficiency. Two sample KS tests between HC and MI help identify 

important features that track the relevant cardiovascular state variations and are 

insensitive to other extraneous variations, and determine an appropriate tight subset of 

features which are most essential for the classification.

Table 8.2 shows that the Kolmogorov-Smirnov statistic variations of 46 features in 

three groups. It may be noted that T_mag is the most significant feature in group I and II, 

and its maximum difference level is 58%. We can find out eight features whose KSSTAT 

(D) values are greater than 55%, and they are Oct0MaxN (69.3%), Oct0AvgN (67.8%), 

Oct0VarN (64.7%), Oct2AvgN (61.7%), T_pos (61.6%), Oct2VarN (59.7%), T_mag 

(58%) and Oct2MaxN (55.7%). VCG octant features in group III contribute seven out of 

eight such important features. The statistical feature analysis implies that the eight feature 

subsets incorporate most of the discriminating information of the total forty six features. 

It is also intriguing to discover that octant 0, octant 2, and T vector related information 

are the most prominent eight features to distinguish MIs from HCs, and they are used to 

build the classification and regression tree (CART) model towards the detection of MI 

and HC recordings in the Physionet PTB database. 

8.4 Classification 

The CART classification model uses decision rules learned from the pattern 

(clustering) of features in a training data set to classify different groups of objects. Tree-

structured models are first proposed by Morgan and Songuist in 1963 for the analysis of 
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survey data [20]. This approach can be quite effective for creating clinical decision rules 

that combine medical knowledgebase with data analysis. 

Table 8.3 Experiment results of CART classification model using stochastic training 
datasets

Run No.
Training data points

% Testing Accuracy
MI HC Total

percentage MI (368) HC (80) Mean Std Mean Std Mean Std
1 10.0% 37 8 92.34 4.50 77.47 15.96 89.70 4.49
2 20.0% 74 16 95.48 2.56 78.09 9.06 92.39 2.33
3 33.3% 123 27 95.97 2.25 80.68 9.73 93.26 1.76
4 50.0% 184 40 96.84 1.65 81.50 7.66 94.11 1.44
5 66.7% 246 54 96.40 1.98 83.54 7.67 94.16 1.82
6 75.0% 276 60 97.03 1.77 82.75 9.00 94.49 1.79
7 80.0% 295 64 96.89 2.29 82.38 8.63 94.30 2.21
8 90.0% 332 72 97.08 2.88 82.50 15.39 94.43 3.00

* Each run randomly selects the training data points in the specified percentage and does the 
classification for 100 times. The classification accuracy statistics are only calculated from 
testing dataset.

Table 8.3 presents the CART classification model experiment results for PTB 

database with randomly selected percentage of training datasets. The training dataset size 

is varied from 10% to 90% of the whole data. It may be noted that the average MI testing 

accuracy is higher than 92.34% for all eight training sizes, but the standard deviation of 

MI testing accuracy is a little bigger when the training data size is as small as 10% or as 

large as 90%. This is resulted from the random selection of training datasets, and the 

feature space may not be fully explored for a small portion of data. This small portion of 

data, either in the testing or training group, may not be captured by the training samples’ 

patterns. The mean testing accuracy for HC is higher than 77.47%, and standard deviation 

of HC testing accuracy follows the same trend as MI. While most HC testing standard 

deviations are bigger than MI, this is because the HC population size (80) is less than MI 
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(368). This random training and testing experiment shows the generality and 

effectiveness of CART classification model with vectorcardiographic octant features. 

Figure 8.6 CART model cross validation curves and Tree size selection

To prevent the well-known “overfitting” problems in the machine learning model, 

cross-validation techniques are utilized to find a generalized, optimal and simpler tree 

structure for the MI and HC classification. In our case we remove a subset of 10% of the 

data, build a tree using the other 90%, and use the tree to classify the removed 10%. This 

process is repeated by removing each of ten subsets one at a time. As shown in Figure 

8.6, the resubstitution error is kept decreasing as the tree size grows, but the cross-

validation results show that the error rate increases with the tree size beyond a certain 

point. The best choice of pruned tree has the small cross-validation error and is roughly 

as good as a more complex tree.  
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The optimal tree structure for PTB database MI and HC classification is as shown 

in Figure 8.7. It may be noted that 96.74% MI and 96.25% HC in the PTB database can 

be correctly detected with two simple if-then rules and four VCG octant features as 

following:

(1) If Oct0MaxN < 0.52 or T_pos < 5.5, then the recording is MI;

(2) For the rest recordings after step 1, If Oct2AvgN < 0.123 or Oct0VarN > 0.015, 

then the recording is MI; 

Figure 8.7 Optimal CART tree structure for the classification of MI in PTB database

The detailed classifications of each step are as shown in Figure 8.8. The MI 

recording is represented as red / in the feature space and HC as blue . In step 1, 24 MIs 

and 4 HCs are incorrectly classified. For the overlapping area with 24 MIs and 76 HCs in 

step 1, applying step 2 rules will correctly classify 14 MIs and 75 HCs. Therefore, the 

detail accuracies can be calculated as following: 

Pruned branches 

Rule 2 

Rule 1 
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Step 1: %MI = 100×(1-28/368) = 92.39%; %HC = 100×(1-2/80) = 97.50% 

Step 2: %MI = 100×(1-12/368) = 96.74%; %HC = 100×(1-3/80) = 96.25% 

 (a) 

 (b) 
Figure 8.8 Detailed classification of PTB database MI and HC in (a) step 1 and (b) step 2

 Figure 8.9 shows the healthy control (368) and myocardial infarction (80) 

recordings in the PTB database characterized by three features. The first feature is 

Oct0MaxN, which is the maximal vector magnitude in the first octant. The second feature 

T position is the T wave peak’s octant location. The third feature Oct2AvgN is the 

average vector magnitude in the octant 2. These three octant features discriminate the 
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healthy from myocardial infarction subjects. The healthy controls are shown to be cluster 

in the green circle area, while myocardial infarction patients spread outside that green 

area.  

Figure 8.9 Healthy control (368) and myocardial infarction (80) distribution in 3D 
feature space (Oct0MaxN, T octant position and Oct2AvgN) 

8.5 Discussions

It is generally agreed that Q wave, ST segment, and T wave are very substantial for 

the identification of myocardial infarction. But conventional ECG intervals and 

previously proposed VCG features are not adequate to capture the essential 

characteristics of MI. The newly proposed VCG octant features can amazingly achieve 

high MI and HC classification accuracies using two simple rules and four VCG octant 

features. It may also be noted that step 1 can detect 92.39% of MI and 97.5% of HC with 

just two features Oct0MaxN and T octant position.

Healthy
Cluster
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(a)

(b)

(c)
Figure 8.10 Oct0MaxN (a), T octant position (b) and Oct2AvgN (c) histogram plots

Figure 8.10 shows the distribution plots of feature Oct0MaxN, T octant position 

and Oct2AvgN. It is may be noted that Oct0MaxN has significant distribution differences 
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between MI (0.38±0.16) and HC (0.54±0.04). In addition, the majority (76/80) of HCs’ T 

vector positions is also found to cluster in octant 6 (x-positive, y-positive, z-negative), 

while MIs spread over all the eight octants. Q wave is frequently traveling around octant 

0 in the VCG trajectory because Q wave is mostly negative in x, y, and z directions. 

Oct2AvgN also shows dissimilarity in the distribution between healthy and myocardial 

infarction patients. Both octant 0 and octant 2 are found to be located in the right anterior 

side. Therefore, myocardial infarction subjects are statistically shown to have abnormal 

electrical activities in the right anterior positions of the body. The VCG octant features 

are shown to yield more statistical differences than conventional interval features in 

Figure 8.5 and Table 8.2. The extra useful information can be found in 3D VCG spatial 

dynamics than 12-lead ECG signals. It will also be much convenient to extract VCG 

octant features with computer analysis than inspecting the 12-lead ECG traces and 

memorizing ECG interval rules. 

8.6 Summary 

In this investigation, octant 0, octant 2, and T vector information in 

vectorcardiogram are found to be very important for the diagnostics of heterogeneous 

MIs. Statistical feature analysis shows that cardiac vector length distributions in octant 0 

and octant 2, T vector length and octant position are the most prominent features to 

distinguish MIs from HCs. It is significant at 69% level (p-value=9.63E-29) for the 

Oct0MaxN (the maximum vector length in octant 0) distribution differences between MI 

(0.38±0.16) and HC (0.54±0.04). The majority (76/80) of HCs’ T vector positions is also 

found to cluster in octant 6 (x-positive, y-positive, z-negative), while MIs spread over all 

the eight octants. Additionally, Oct2AvgN and Oct0VarN show >60% statistical 
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distribution differences. With only four octant features (Oct0MaxN, T_pos, Oct2AvgN 

and Oct0VarN), a simple Classification and Regression Tree (CART) model can yield 

classification accuracy with 96.74% sensitivity and 96.25% specificity. The stochastic 

experiments with different percentage of training data size also reveal high sensitivity 

(mean: 96%) and specificity (mean: 82%) for heterogeneous MI and HC classification, 

which demonstrate the generality and effectiveness of CART model and 

vectorcardiographic octant features. This study is definitely indicative of potential 

clinical applications of MI diagnostic model from the proposed VCG octant features.
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CHAPTER IX 
 
 

LOCAL RECURRENCE PREDICTION IN NONSTATIONARY CHAOTIC 

SYSTEMS 

This chapter reports a local recurrence modeling approach for state and 

performance predictions in complex nonlinear and nonstationary systems. 

Nonstationarity is treated as the switching force between different stationary systems, 

which is shown as a series of finite time detours of system dynamics from the vicinity of 

an attractor of a nonlinear process. Recurrence characteristics of the attractor are used to 

partition the system trajectory into multiple near-stationary segments. Consequently, 

piece-wise eigen analysis of ensembles in each near-stationary segment can capture both 

nonlinear stochastic dynamics and nonstationarities. Extensive studies using simulated 

and real world datasets reveal significant prediction accuracy improvements over other 

alternative methods. 

9.1 Introduction 

Complex dynamics of many real-world systems can be effectively captured using 

nonlinear stochastic dynamic models of the form: 

 
( ) ( )dx F x dt x d�	 

 (Eq 9-1)
 

where x is a m-dimensional state vector, F(•) is usually a nonlinear vector field, and the 

stochastic term (x)d� accounts for the influence of extraneous phenomena. Nonetheless, 
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in many real life situations, only a few process output measurements y, or coupled high 

dimensional measurements are available in lieu of the complete state vector x. 

In such scenarios, traditional system identification and time series prediction 

approaches are widely used to model the process outputs y as a linear or nonlinear 

function of p past values of y and q previous realizations of independent noise (shock) 

events #t. ARMA (autoregressive moving average) models assume both stationarity and 

linearity, while ARIMA models incorporate a simple case of nonstationarity, namely low 

frequency components [1]. These classical time series models cannot capture the 

complexities presented in nonlinear chaotic processes. Prediction based on Kalman filters 

tend to heavily depend on the model structure [2]. Polynomial models with global or 

arbitrary local support tend to be unstable and not adequate for extrapolation [3]. Neural 

network and sequential Bayesian models are known to need prohibitively large datasets 

for prediction under highly nonstationary conditions and they consume significant model 

training times [4]. Delay differential equations 1( ) ( ( ), ( ), , ( )n n n n kx t f x t x t x t� �	 � �� �  

work well under deterministic conditions, but they pose acute stability issues due to 

possible trajectory crossing under noisy conditions. Remarkably, none of the previous 

approaches are generally suitable for prediction under nonlinear and highly nonstationary 

conditions. Most of these conventional linear and nonlinear prediction approaches 

assume stationarity and model system dynamics by deterministic parts plus random 

measurement noise. The predictable deterministic parts often get distorted to some extent 

by time domain differencing, smoothing or frequency domain filtering. In particular, 

complex systems generate high-dimensional, nonlinear, nonstationary, noisy datasets 

with dozens to hundreds (to even thousands) of state variables. The presence of data 
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complexity and high level nonstationarities significantly deteriorate the traditional 

methods’ near-term prediction accuracies. 

Meanwhile, modern industries are investing in a variety of sensors and plant floor 

information systems to carefully monitor and manage the engineering systems including 

automotive assembly lines, power plants, microelectronic manufacturing system, and 

financial markets, etc. Large amounts of datasets and cheaper computational resources 

offer an unprecedented opportunity to predict manufacturing system state and 

performance from a nonlinear dynamic systems theoretic standpoint. Nonlinear dynamic 

approaches can provide a better understanding of underlying physical mechanisms, and 

give an advantage for the prediction of system behaviors.  

The present approach exploits the inherent nonlinear stochastic dynamics of 

complex manufacturing systems to improve predictive capability under noisy and 

nonstationary conditions. Here, nonstationarity includes not just simple drifts in various 

statistical moments over time, but also intermittent low and high dimensional chaotic 

behaviors resulting from the random fluctuations of the model parameters. Central to our 

approach is the segmentation of global performance signature (time-series) into multiple 

stationary segments using recurrence analysis [5]. Stationary segmentation will lead to 

reduced order models that can capture the local evolution patterns (including the 

complexity and nonstationarities) better than any global model.  

The remainder of this chapter is organized as follows: Section 9.2 reviews the 

relevant work of state space prediction and recurrence analysis; Research methodology is 

presented in Section 9.3; Section 9.4 demonstrates the simulation and real world 
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experiments of local recurrence prediction model; Section 9.5 concludes the reported 

research. 

9.2 Background 

Nonlinear dynamic prediction approaches rely on reconstructing the state space of a 

nonlinear process from the measured signals y(t). Takens’ embedding theorem [6] stated 

as follows is the theoretic base for the complex system state space reconstruction. 

Takens’ delay embedding theorem (1981): Let M be a compact manifold of topological 

dimension d. For pairs ( 4 , h), where 4 : M 
 M is a smooth (at least C2) 

diffeomorphism and h: M 
 R a smooth function, it is a generic property that the (2d+1) 

- fold observation map Hk [4 , h]: M 
 R2d+1 defined by x |
 (h(x), h(4 (x)), . . . , h(4
2d(x))) is an immersion (i.e. Hk is one-to-one between M and its image with both Hk and 

Hk
�1 differentiable). 

 

Figure 9.1 Graphical illustration of the relationship among Lorenz time series, attractor 
and recurrence plot 
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Takens’ delay embedding theorem shows the system dynamics can be adequately 

reconstructed by using the time-delay coordinates of the individual measurements 

because of the high dynamic coupling existing in physical system. For discrete time 

series y (see Figure 9.1 (a)), state vector x (Figure 9.1 (b)) is reconstructed using a delay 

sequence of points in {y(tn)} as, 

 x(tn) = [y(tn), y(tn+�),  y(tn+2�), ..., y(tn+(m-1)�)]
  (Eq 9-2)

 

where m is the embedding dimension (m�2d+1) and � is the time delay. The optimal 

sufficient embedding dimension m to unfold the attractor is determined by false nearest 

neighbor method [7]. The mutual information function [8] is used to minimize both 

nonlinear dynamic and linear correlations for the choice of optimal time delay �. 

System dynamics often manifest in the vicinity of an attractor A (e.g., Lorenz 

attractor [9] shown in Figure 9.1 (b)), which is an invariant set defined in an m-

dimensional state space. Lorenz attractors show unique topological patterns where 

trajectory evolution switches between two cycle areas (area U and area V). State space 

prediction approaches look for the relationships of the present system state x (a sequence 

of points in the measured time series) to the nearby states in the embedding space and 

their evolutions. It has been shown that global nonlinear dynamics can be synthesized by 

multiple linear components, each of which shares the same local evolutions in an 

attractor’s vicinity [10]. The digressions of local evolution patterns, specifically, finite 

time detours from an attractor’s vicinity, are treated as nonstationarities. The 

aforementioned nonstationarity may result from chaos, linear model switching or 
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parameter fluctuations (dynamic noise) and/or many forms of transient and intermittent 

behaviors.  

Despite high levels of nonlinearity, stochasticity and nonstationarity in the complex 

system behaviors, local evolution of system state space often exhibits recurrence 

characteristics as stated in the following theorem.  

Poincare recurrence theorem (1890) [11]: Let T be a measure-preserving 

transformation of a probability space (A, �), and let 5A be a measurable set. Then for 

any J% � , �({x%|{Tj(x)}j�J5A\})=0. 

Poincare recurrence theorem implies that if one has a measure preserving 

transformation, the trajectories eventually reappear at neighborhood 6 of former points 

with probability one. A recurrence plot (see Figure 9.1 (c)) is used to identify the 

aforementioned nonlinear and nonstationary structures in the state space. It delineates the 

distances of every point x(ti), the state vector realized at time ti, to all the others in the 

reconstructed state space, i.e., ( , ) : ( ( ) ( ) )i j i jD t t x t x t	 1 � , where ||·|| is a distance 

measurement (e.g., the Euclidean norm) and 1 (·) is the color code that maps the distance 

to a color scale [12]. As shown in Figure 9.1, the distances between the 500th and 800th 

points in the state space is shown as a color code at the coordinates (500,800) and (800, 

500) of the recurrence plot. If the color code at the recurrence plot is blue, then the points 

are located close to each other in the state space, and if the color code is red, the points 

are located farther apart. Thus, a recurrence plot represents the topological relationships 

existing in the m-dimensional state space in the form of 2D images. The ridges locate the 

nonstationarities and the switchings between local behaviors [13], for e.g., the system 
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evolves from one behavior (area U) to the other (area V) (see Figure 9.1).  The 

separations between dark diagonal lines (along 45o degree) indicate the time periods 

between the recurring system behaviors over certain time segments. Recurrence-based 

methods have of late shown potential for representation and de-noising of measurements 

from complex systems [14, 15]. This present work is one of the first investigations into 

the use of recurrence analysis for state space prediction in highly nonstationary 

conditions. 

9.3 Local attractor topology analysis 

The present local recurrence modeling approach is built on a premise, heretofore 

unexplored, that despite high levels of nonstationarity, system dynamics are structurally 

stable and nonstationarities are treated to cause finite time detours from the attractor’s 

vicinity. Therefore, local recurrence characteristics, exhibited over certain time segments, 

are leveraged to delineate the various local evolution patterns and nonstationary regimes 

(finite-time detours) from attractor A and develop compact local models. 

As summarized in Figure 9.2, central to our approach is the partitioning of a 

measured time series into multiple near-stationary segments. Every strand of the system 

trajectory within each segment bears a similar evolution pattern. Therefore stationary 

assumptions hold therein within each segment. Pattern analysis and segmentation are 

performed on a recurrence plot D(ti, tj) to identify these time segments. This segmentation 

leads to reduced order models that can effectively capture the local evolutions of dynamic 

system’s state space (including complexity and nonstationarity) better than with any 

stationary model. For illustration purposes, let us consider a Lorenz attractor shown in 

Figure 9.1 (b). All trajectories emerging from a region (e.g., U) have a similar local 
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evolution pattern. However, these local evolution patterns can be vastly dissimilar for the 

trajectories emerging from two arbitrary regions, say, U and V. Local dynamics within 

each of these regions can be simplified as unstable periodic orbits (UPOs) defined about 

certain fixed points, and the global dynamics can be derived from concatenating the 

trajectories from each of these regions as stated in the following. 

 
Figure 9.2 Overall framework of local recurrence prediction model 

Proposition 1: Dynamics about an attractor of complex nonlinear system can be 

approximated by linear affine systems linked by switching laws, i.e., 

 
� �( ) ( )ii i i

i
x F x f s x A x x7	 8 � �� �
 ���

 (Eq 9-3)
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where Ai defines the local linear dynamics of affine subsystems, s(•) defines the switching 

surface, fi[•] is a Boolean switching function that transits the dynamics among multiple 

linear or affine systems, each defined over fixed points xi, and �i determine the locations 

of the switching surface [10]. 

It has recently been shown that the system trajectories within a region i locally 

evolve as unstable periodic orbits defined about certain saddle or foci type fixed points xi 

[10]. Such local dynamics for region i can be captured at a specified parameter setting 

using a linear system of the form ( ) .( )i
iix A x x	 �� . 

The system trajectories in an attractor can be derived from solving this piecewise 

affine model. The global trajectories switch between the multiple local patterns as they 

evolve about saddle type fixed points, i.e.,
 

(1) (2) ( )Zx x x x	 9 9 9� . For instance, a 

Lorenz attractor may be approximated using piecewise affine model consisting of two 

linear components. The Jacobians of the respective linear/affine part are evaluated about 

the corresponding saddles or foci type fixed points [10]. The saddle type fixed points help 

determine the boundaries of the orbits defined about the foci.  

Switching from one piecewise affine system to another takes place whenever the 

system trajectories shift from exhibiting an unstable periodic behavior about a fixed point 

to the other. The Boolean functions fi[•] is defined as following: 

 

1, ( ) 0
[ ( ) ]

0, ( ) 0
i

i i
i

s x
f s x

s x
7

7
7

� $+
� 	 - � �.  (Eq 9-4)

 

This function is designed to make sure that only one of them equals unity at a given 

location �i. A very minor perturbation in the states can switch the evolution path from one 

region to the other. The points forming the transition states are rare or far from the local 

regions U and V, i.e., 1{ ( )}B
i ix b 	 : ; ;U V� . Within regions U and V, the trajectory flow 
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lines are laminar, and the divergence rate between closeby trajectories is close to zero. 

The transition points are marked by significant changes in the divergence rates.  

Recurrence patterns can be used to systematically identify the transitions. A 

recurrence plot is symmetric about the diagonal, and patterns are equally distributed 

along horizontal and vertical directions. If the distribution of states x(t) in the embedding 

space is homogeneous, then the recurrence plot is also homogeneous. The presence of 

such homogenous recurrence patterns implies a typically stationary process which has 

short relaxation times in comparison with time spanned by recurrence plot. Interruptions 

in the homogenous patterns indicate that some states over these times {x(bi)}B
i=1  are not 

interior points of local sets U or V. Those states correspond to transition points between 

various local homogeneous sets [13]. Hence, the disruptions in the recurrence plot can be 

used to detect finite time detours from local vicinity of attractors, namely 

nonstationarities. 

The transition points between various local homogeneous sets, resulting from the 

underlying chaotic dynamics and/or nonstationarities, can be detected by applying the 

Sobel operator Iu and Iv on recurrence plot D(ti, tj). Where Iu and Iv are defined in terms of 

a 3×3 matrix pair 

 

1 0 1
2 0 2
1 0 1

 �� �
� �	  �� �
� � �
 �

uI      

1 2 1
0 0 0
1 2 1

  � �
� �	 � �
� �� � �
 �

vI
 (Eq 9-5)

 

The intensity gradient magnitude Gu,v at a point (ti, tj) in the recurrence plot is given by 

2 2
, 	 u v u vG G G , and Gu and Gv are the horizontal and vertical gradient estimations 

defined as following: 

 *	u uG I D and *	v vG I D
 (Eq 9-6)
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where * is the convolution or vector product operation.  

Since T
u vI I	  and recurrence plot is symmetrical, any of the three gradient 

measurements |Gu|, |Gv| or Gu,v can be equally used to extract the transition boundaries. 

From equation (3), we can see that Sobel operators are equivalent to 2-D high pass filters. 

It can compactly capture the high frequency nonhomogeneous patterns better than the 

original recurrence plots. 

 
Figure 9.3 Edge detection in a Lorenz recurrence plot 

Thus, by applying the Sobel operator to recurrence plots, we reduce the amount of 

data to be processed, filter out information that may be regarded as less relevant, and 
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preserve the important nonhomogeneous structural properties. Boundaries of linear and 

stationary segments are shown as horizontal and vertical edges in the Gu(ti, tj) image. 

Histogram similarities of adjacent sliding windows are compared to locate these 

boundaries. Such edge detection methods give prominence to high frequency components 

in the image, for e.g., the boundaries of objects, the boundaries of surface markings or 

curves that correspond to discontinuities in surface orientation. The length of each 

segment depends on the local divergence rate of trajectories emanating from a given 

neighborhood. As shown in Figure 9.3, the transition states or saddle points {x(bi)}B
i=1 are 

identified in the Lorenz recurrence plot (also refer to Figure 9.1). The enlarged portion in 

Figure 9.3 shows the homogeneity of point distributions in each segment. 

1
ix i

Kx

Nx

( )ix b

2Nx 
1Nx 

3Nx 4Nx 
5Nx 

 
Figure 9.4 Local eigen prediction model from ensembles within a stationary segment 

In our approach, ensembles are generated within a near-stationary segment to 

provide a more homogeneous set for eigen analysis. Therefore eigen representation can 

capture the essential dynamics without being influenced by nonstationarities in the state 

space. The local eigen representation of segment i uses the K ensembles extracted from 

the nearest neighbors {xi
k}K

k=1 of a segment’s starting point x(bi) (see Figure 9.4). The 

ensembles of length Li are collected from the historical data such that K+Li < N, the 
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length of time series. All the ensembles are generated from the realized states, and 

consequently, the model is causal. Intuitively, each eigenfunction estimated from those 

ensembles �( ) captures the shape of a specific mode of variation (roughly, a degree of 

freedom) within the segment [16]. The leading variation modes of a system with d active 

degrees of freedom can be obtained as the projection of the ensembles onto the space 

spanned by �1( ), �2( ), …, �d( ). Thus, the local eigen representation captures major 

variations of the ensembles as well as nuances of the ensembles in each stationary 

segment, and it is extrapolated along the leading eigen directions to predict the future 

states (see Figure 9.4). Whenever the system evolves (due to chaos) or drifts (due to 

nonstationarity) into a different regime, a new local eigen representation is established to 

capture the new patterns. The advantage of local representation is evident from the 

following result. 

Proposition 2: Local eigen (L2-optimal) representations obtained from segmenting a 

chaotic attractor are more parsimonious than a global ensemble representation. 

More often than not, the operators Ai defined in equation (1) either do not have a 

full rank, or have a highly ill-conditioned eigen system where one or more eigen values 

are significantly lower than the rest. For example, in affine approximation of Lorenz-like 

systems [10], the local eigenvectors of Ai’s tend to be significantly smaller along the 

directions normal to the planes of the “butterfly wings,” and generally speaking, along 

the so-called nullclinic directions [10], of a Lorenz attractor compared to the other 

orthogonal directions. The eigen directions that lie along the nullclinic directions, and 

hence the signal components projected along these directions, can be ignored. Therefore 

much of the salient evolutions about a certain fixed point on the attractor can be captured 
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by considering very few eigen basis functions. Consequently, the local representations, 

defined between two successive “switching points,” will be more compact than a 

representation based on global ensembles. From a noise reduction standpoint, 

consideration of fewer basis functions implies that signal energy is concentrated along 

limited number of directions.  

9.4 Simulation experiment results 

In this section, we report our evaluation of the performance of local recurrence 

model using both simulated and real world datasets. The prediction results are compared 

to traditional time series models (e.g. ARMA) and some of the well known nonlinear 

models (e.g. polynomial, neural network, radial basis function (RBF)). It may be noted 

that few if any of the previous approaches is suitable for prediction under highly 

nonstationary and noisy conditions. Polynomial models and delay differential equation 

models are not included for comparison because the experimental results are observed to 

easily diverge from or fail to predict the actual system behaviors. Only radial basis 

function models provided some promising predictability. However the local recurrence 

model is able to separate the similar evolution patterns of chaotic systems under highly 

nonstationary conditions. 

The following two scenarios are simulated towards evaluating the local recurrence 

modeling approach: (1) nonlinear and stationary signals generated by contaminating the 

first component of Lorenz attractor [9] with three different noise levels (signal noise 

ratios (SNR) between 7.37dB-21.35dB); (2) nonlinear and nonstationary signals obtained 

by dividing the contaminated Lorenz time series into several segments and randomly 

rearranging the sequence of these segments (SNR varied between 7.37dB-21.35dB).  
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(a) 

(b) 

Figure 9.5 (a) top - original Lorenz time series, middle – random Gaussian noise, bottom 
– random permutated Lorenz time series contaminated by noise; (b) reconstructed noise-

free Lorenz attractor vs. random permutated Lorenz attractor contaminated by noise 

Figure 9.5 (a) depicts the comparisons between original Lorenz time series and the 

randomly permutated noisy Lorenz time series. As illustrated in the Figure 9.5 (a) bottom 

plot, the structures of noise-free Lorenz time series are demolished by random noise and 

artificial generated nonstationarity. Figure 9.5 (b) evidently shows that it is difficult to 
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identify the clean patterns in the random permutated and noise contaminated Lorenz 

attractor. The nonstationarity and noise in the simulated data pose additional issues for 

the state space prediction. Local recurrence model delineates the near-stationary 

segments and suppresses noise components to track the relevant variations underlying the 

process and not the extraneous phenomena. The prediction results are compared at 

multiple locations to those from RBF and two classical time series models: ARMA(1,0) - 

a prediction model currently used in the practice, and ARMA(3,3) - the “optimal” model 

form emerged from a classical system identification standpoint.  

Figure 9.6 shows the comparisons of prediction error statistics for noisy Lorenz 

time series (signal range: -25.25~27.25) in scenario (1). It may be noted that ARMA(1,0) 

step one prediction errors vary from 2.48~7.38 under three noise levels, ARMA(3,3) 

from 1.75~7.06, and local recurrence model from 1.93~6.25. Here, the aforementioned 

prediction error statistics are calculated in terms of root mean square errors between 

actual ix and predicted value ix�  at N prediction locations. In noise level 1, step one 

prediction errors are relevant low with reference to the signal range, and comparable for 

ARMA and local recurrence models. However, with the increase of noise levels, ARMA 

prediction models become inferior to the local recurrence model. For instance, the local 

recurrence model’s one step prediction RMS errors are lower by 12% (around 0.81~1.13) 

than both ARMA models in noise level 3 (see Figure 9.6). In addition, ARMA models 

become increasingly worse (around 0.75~5.06 higher RMS errors) than local recurrence 

model for multiple step-ahead (�2) predictions under all three noise levels. This is 

because linear models cannot capture the chaotic dynamics underlying the Lorenz time 

series. 
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Figure 9.6 Five step prediction RMS error comparisons for Lorenz time series under 
different noise levels with various prediction models (ARMA(1,0), ARMA(3,3), RBF 

model and local recurrence model) 

Both RBF and the local recurrence model can capture the system nonlinearity, but 

RBF model does not consider nonstationarity and is very sensitive to stochastic 

conditions. The prediction errors from the RBF models progressively deteriorate with an 
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increase of noise levels, for e.g., step one prediction errors are elevated from 1.33 (noise 

level 1) to 7.44 (noise level 3). The deterioration rate of RBF model is found to be higher 

than local recurrence model which is from 1.93 (noise level 1) to 6.25(noise level 3). In 

noise level 3, local recurrence model five step prediction RMS errors vary from 4.17 to 

6.25, on the other hand, RBF is from 7.23 to 8.74 (see Figure 9.6). The local recurrence 

model is shown to perform better under highly noisy conditions. It may also be noted that 

the prediction errors of the local recurrence model do not increase with prediction steps, 

for example, ARMA(1,0) prediction errors are increased from 4.20 to 8.45 with 

prediction steps in noise level 2, while variations of the local recurrence model (between 

3.60 and 4.81) do not follow with prediction steps (see Figure 9.6). This is because eigen 

analysis of ensembles in a near-stationary segment guarantees that predictions always lie 

within the bounds of the reconstructed attractor. In contrast, RBF models depend on the 

size of training datasets. Multiple step-ahead predictions can sustain excessive divergence 

and instability because of the stochastic conditions and/or accumulated iterated prediction 

errors. As shown in noise level 2 in Figure 9.6, the RBF model is unstable and prediction 

results diverge with the steps. In a nutshell, Figure 9.6 shows that the local recurrence 

model can capture the nonlinearity as well as stochasticity in this case. 
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Figure 9.7 Five step prediction RMS error comparisons for randomly permutated Lorenz 
time series under different noise levels with various prediction models (ARMA(1,0), 

ARMA(3,3), RBF model and local recurrence model) 

Figure 9.7 shows the prediction error statistics in scenario (2) – randomly 

permutated noisy Lorenz time series. The random permutation in arbitrarily lengths will 
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generate finite time detours from the vicinity of an attractor. This type of nonstationarity 

is quite different from the commonly considered seasonal trends. In this experiment, the 

local recurrence model is shown to significantly outperform all the other three models 

under all three noise levels. For five step prediction RMS errors under three noise levels, 

ARMA(1,0) ranges from 4.21 to 10.62, ARMA(3,3) from 3.85 to 10.64, RBF from 4.96 

to 52.07, and the local recurrence model from 3.81 to 7.12. Moreover, noise level 1 plot 

(see Figure 9.7) reveals that nonstationarity increases the probability to drive RBF model 

unstable and divergent for more than one step predictions.  

9.5 Summary 

The present work is one of the first attempts to use recurrence analysis for 

prediction in the presence of generic forms of nonstationarities. It combines the principles 

of statistical estimation with dynamic systems theory. Most of current applications 

threshold recurrence plots for the exploration of nearest neighbors

( , ) : ( ( ) ( ) )i j i jD t t x t x t r	 1 � �� . In contrast, the proposed approach exploits the 

topological irregularity information contained in recurrence plots, and uses edge 

detection and pattern matching methods for stationary segmentation. The transition states 

that occur when the system behaviors are switched have found to be effectively captured. 

Experimentations using simulated datasets reveal the superiority of local recurrence 

model over other alternative models for nonlinear stochastic systems under transient 

conditions. It is conceivable that such a method can be applied to improve predictability 

of similar complex physical systems under nonstationary conditions.  
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CHAPTER X 
 
 

RADIAL BASIS FUNCTION SIMULATION MODELING OF VCG SIGNALS 

This chapter will introduce an approach to construct a reasonable data-driven model 

for the analysis of heart system using heart monitoring signals (VCG and ECG). Such a 

heart model can help us gain a deeper understanding of underlying heart dynamics and 

explore the relationship among those signals. Moreover this data-driven model can be 

used to simulate the heart electric activities under a specific disease, and it will greatly 

facilitate the further research of cardiac diseases.  

 
Figure 10.1 Overall framework of RBF simulation model of VCG signals 

As shown in Figure 10.1, this chapter presents an approach to model and simulate the 

vectorcardiogram (VCG) and standard 12-lead electrocardiogram (ECG) using radial 

basis functions uniformly distributed along the VCG trajectory. In the first step, the 
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ensembles will be extracted by Poincare sectioning the VCG trajectory, and they will be 

aligned to the interval [0 2�] for the pattern analysis. Then we use the least square fit 

procedure to fit a Radial Basis Function (RBF) network structure to the extracted 

ensembles. The well trained RBF network model will provide the closely approximate of 

the real VCG data and share the similar 3D VCG trajectories. The standard 12 lead ECG 

signals are derived from VCG by transformation, and the transformation matrix can 

either use the famous Dower matrix [1] or be estimated from the experiment data [2-4]. 

Finally, the simulation model is evaluated and compared to the real experiment data in 

the time domain, frequency domain, and the recurrence quantification plots.  

10.1 Poincare sectioning of vectorcardiogram 

 

Figure 10.2 (a) An illustration of trajectories of an attractor intersecting a (planar) 
Poincare section; (b) Poincare sectioning of VCG trajectory

Poincare section is a dE-1 dimensional hyperplane intersecting with the phase space 

trajectories (see Figure 10.2 (a)). The recurrence property of a chaotic attractor A shows 

that for every and almost every A such that , in 

effect, the trajectories with an attractor remain bounded. Those points , i =1, 2, … at 

which the trajectory intersects the Poincare section follow a return map. For strictly 

0# � (0)x % , 0t&  (0) ( )x x t #� �

iP

(a) (b) 
Poincare section �

Trajectory



174 

periodic trajectory, the points , i =1, 2, …will overlap (i.e., ��0) such that the duration 

between to along the trajectory constitutes the period.  

Figure 10.3 X, Y and Z ensemble components extracted from the Poincare sectioning of 
VCG trajectory

For near-periodic signals, such as VCG, each strand emanating from a Poincare 

section intersection point Pi and lasting approximately till the next intersection Pi+1 along 

the trajectory may be treated as a realization of a stochastic process from an invariant 

probability space [5] (see Figure 10.2 (b)). Due to heart rate variability, some ensembles 

move faster, i.e., the two successive intersections occur over shorter intervals, compared 

to the others [6]. In this chapter, all the extracted ensembles will be aligned in the time 

interval [0 2�] (see  

Figure 10.3), and the heartbeat variations will be simulated as a Weibull 

distribution as shown in the following section 10.2.

10.2 Heart rate variability 

The variations of RR interval in the ECG/VCG time series produce the well-known 

heart rate variability. It has long been understood that a metronomic heart rate is 

iP

iP 1iP
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pathological, and that the healthy heart is influenced by multiple neural and hormonal 

inputs that result in variations in interbeat (RR) intervals, at time scales ranging from less 

than a second to 24 hours [7]. There is evidence that the underlying heart beat dynamics 

may have a multi-fractal temporal structure [8]. Heart rate variability analysis has been 

shown to provide an effective evaluation of cardiac disease such as different stages in the 

atrial fibrillation [9].  

 
Figure 10.4 Weibull distribution fitting of RR interval time series

The complex interdependencies of heart beat variations at different scales make it 

difficult to model the RR interval time series, and each recording in the PTB database has 

less than120 heart beats. Therefore, this chapter will only simulate the heartbeat 

variations as a Weibull distribution.  

The Weibull distribution can mimic the behavior of other statistical distributions 

such as the normal and the exponential [10]. The Probability Density Function PDF 

associated with the Weibull distribution is: 
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And the associated Cumulative Distribution Function (CDF) is a stretched exponential: 
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Where b is the Weibull slope, also referred to as the “shape parameter”, and ( is the 

characteristic value, also referred to as the “scale parameter”. The Weibull distribution is 

fitted into the heartbeat time series extracted from the Poincare sectioning of 

vectorcardiogram trajectories (see Figure 10.4), and it was found to yield better 

distribution evaluation than normal and uniform distribution. The estimated parameters b 

and ( will be used for the simulation of RR interval in the later section. 

10.3 Research methodology 

 
Figure 10.5 Uniform distributed radial basis function centers along VCG trajectory 

The modeling of vectorcardiogram is that given N time vectors in ?1: t1, ..., tN, and 

their corresponding target values in ?3: y1, ..., yN, we are seeking a projection h:?1@ ?3, 

so that A1)i)N, h(ti) = yi using the radial basis function network. The basis functions are 

using Gaussian functions, and the number of basis functions may be selected as N for the 

exact interpolation [11, 12]. However, this might lead to poor and complex results for 

new vectors by overfitting the data. For a compact solution with good generalization, the 

number of basis functions used in the VCG model is reduced from N to M (M << N) (see 
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Figure 10.5). The training vectorcardiogram (VCG) data is from the ensembles extracted 

from the Poincare sectioning. 

The output of the VCG RBF network model is given by 

 
( )j j

j
y w t0	 �  (Eq 10-3) 

 
2( ) exp( 2 )j jt t c0 B	 � �  (Eq 10-4) 

where c is the centre of the radial basis function j, t is the input data, and ||t –cj|| is the 

measure of the distance of the point from the radial centre, also called the Euclidean 

distance. From Eq 10-4, we can make the basis matrix G for all the centres (j = 1, 2, …, 

M), weight matrix W and target matrix VN as following: 
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The N-sample estimate of the weight matrix NW� of the RBF network VCG model can be 

determined to minimize the objective function ( , )N NF W V  

 
� �
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N 	

	 ��  (Eq 10-8) 

 
F Garg min ( , )N N Nw

W F W V	�  (Eq 10-9) 

and the estimate can be obtained using the pseudoinverse: 
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(Eq 10-10) 

10.4 Transformation from VCG to standard 12 lead ECG signals 

Numerous attempts have been made previously to estimate the transformation 

matrix between 12-lead ECG and VCG signals [2, 13-17]. Dower matrix (see Eq 10-11) 

is the most famous and generalized one, and it can be used to derive the 12-lead ECG 

signals from the VCG. Therefore the whole measurements including 12-lead ECG and 

VCG can be simulated by this investigated RBF model.  

Dower transformation matrix       

0.515 0.157 0.917
0.044 0.164 1.387
0.882 0.098 1.277
1.213 0.127 0.601
1.125 0.127 0.086
0.831 0.076 0.230
0.632 0.235 0.059
0.235 1.066 0.132

D

� �� �
� ��� �
� ��
� ��� �	 � ��
� �
� �
� ��
� �

�� �
 �

          (Eq 10-11) 

If we have the VCG data in matrix V (3×N), the eight leads (I, II, v1-v6) S (8×N)can be 

derived by S=DV except the mathematical calculated augment leads.  

This generalized Dower matrix can be used to derive 12-lead ECGs when we only 

have VCG signals. If the 12-lead ECG signals are recorded simultaneously with VCG, 

the transformation matrix S can also be estimated for the specified person using either the 

linear or nonlinear regression (see Eq 10-12).  

 � � 1T TD S V V V
�

	�  (Eq 10-12) 

10.5 Implementation results 

Figure 10.6, Figure 10.7, Figure 10.8, Figure 10.9, and Figure 10.10 show the 

implementations results of radial basis simulation models for healthy control subjects, 
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and patients with myocardial infarction, valvular heart disease, or bundle branch block. 

The simulated heart electrical activities in Frank XYZ orthogonal directions are 

compared in time domain, frequency domain, and state space domain. It is found that the 

investigated RBF simulation model can effective track the pathological morphology 

patterns.  



18
0 

0
5

10
15

20
25

30
35

40
0

10
0

20
0

Vx

A
ct

ua
l V

CG
 v

s.
 S

im
ul

at
ed

 V
CG

 in
 F

re
qu

en
cy

 D
om

ai
n

0
5

10
15

20
25

30
35

40
0

20
0

Vy

0
5

10
15

20
25

30
35

40
0

10
0

20
0

Vz

Fr
eq

ue
nc

y 
(H

Z)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

-0
.20

0.
2

Vx

Ac
tu

al
 V

ec
to

rc
ar

di
og

ra
m

 S
ig

na
l

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00

-0
.20

0.
2

Vy

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
-0

.20
0.

2
0.

4

Vz

10
00

20
00

30
00

40
00

50
00

60
00

70
00

-0
.20

0.
2

Vx

Si
m

ul
at

ed
 V

ec
to

rc
ar

di
og

ra
m

 S
ig

na
l

10
00

20
00

30
00

40
00

50
00

60
00

70
00

-0
.20

0.
2

Vy

10
00

20
00

30
00

40
00

50
00

60
00

70
00

-0
.20

0.
2

0.
4

Vz

C
as

e 
1:

 P
at

ie
nt

00
1/

s0
01

0_
re

, M
yo

ca
rd

ia
l i

nf
ar

ct
io

n,
 in

fe
ro

-la
te

ra
 

Fi
gu

re
 1

0.
6 

Pa
tie

nt
00

1/
s0

01
0_

re
 (a

)S
im

ul
at

ed
 V

C
G

 tr
aj

ec
to

ry
 v

s. 
ac

tu
al

 
V

C
G

 tr
aj

ec
to

ry
; (

b)
 F

re
qu

en
cy

 d
om

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 
an

d 
si

m
ul

at
ed

 V
C

G
; (

c)
 T

im
e 

do
m

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 a
nd

 
si

m
ul

at
ed

 V
C

G
 



18
1 

C
as

e 
2:

 P
at

ie
nt

25
5/

s0
49

1_
re

, h
ea

lth
y 

co
nt

ro
l 

Fi
gu

re
 1

0.
7 

Pa
tie

nt
25

5/
s0

49
1_

re
 (a

)S
im

ul
at

ed
 V

C
G

 tr
aj

ec
to

ry
 v

s. 
ac

tu
al

 V
C

G
 tr

aj
ec

to
ry

; (
b)

 F
re

qu
en

cy
 d

om
ai

n 
co

m
pa

ris
on

 b
et

w
ee

n 
ac

tu
al

 V
C

G
 a

nd
 si

m
ul

at
ed

 V
C

G
; (

c)
 T

im
e 

do
m

ai
n 

co
m

pa
ris

on
 

be
tw

ee
n 

ac
tu

al
 V

C
G

 a
nd

 si
m

ul
at

ed
 V

C
G

 



18
2 

C
as

e 
3:

 P
at

ie
nt

00
5/

s0
10

1l
re

, M
yo

ca
rd

ia
l I

nf
ar

ct
io

n,
 A

nt
er

io
r 

Fi
gu

re
 1

0.
8 

Pa
tie

nt
00

5/
s0

10
1l

re
 (a

)S
im

ul
at

ed
 V

C
G

 tr
aj

ec
to

ry
 v

s. 
ac

tu
al

 
V

C
G

 tr
aj

ec
to

ry
; (

b)
 F

re
qu

en
cy

 d
om

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 
an

d 
si

m
ul

at
ed

 V
C

G
; (

c)
 T

im
e 

do
m

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 
an

d 
si

m
ul

at
ed

 V
C

G
 



18
3 

C
as

e 
4:

 P
at

ie
nt

10
6/

s0
03

0_
re

, V
al

vu
la

r 
he

ar
t d

is
ea

se
, p

ro
st

he
tic

 v
al

ve
 

Fi
gu

re
 1

0.
9 

Pa
tie

nt
10

6/
s0

03
0_

re
 (a

)S
im

ul
at

ed
 V

C
G

 tr
aj

ec
to

ry
 v

s. 
ac

tu
al

 
V

C
G

 tr
aj

ec
to

ry
; (

b)
 F

re
qu

en
cy

 d
om

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 
an

d 
si

m
ul

at
ed

 V
C

G
; (

c)
 T

im
e 

do
m

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 V

C
G

 
an

d 
si

m
ul

at
ed

 V
C

G



18
4 

C
as

e 
5:

 P
at

ie
nt

17
5/

s0
00

9_
re

, b
un

dl
e 

br
an

ch
 b

lo
ck

 

Fi
gu

re
 1

0.
10

 P
at

ie
nt

17
5/

s0
00

9_
re

 (a
)S

im
ul

at
ed

 V
C

G
 tr

aj
ec

to
ry

 v
s. 

ac
tu

al
 V

C
G

 tr
aj

ec
to

ry
; (

b)
 F

re
qu

en
cy

 d
om

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 

V
C

G
 a

nd
 si

m
ul

at
ed

 V
C

G
; (

c)
 T

im
e 

do
m

ai
n 

co
m

pa
ris

on
 b

et
w

ee
n 

ac
tu

al
 

V
C

G
 a

nd
 si

m
ul

at
ed

 V
C

G
 

 



185 

10.6 Summary 

In this chapter, we have shown that the data-driven RBF network VCG model can 

effectively capture the topology of actual VCG trajectory, and yield similar spectrum in 

the frequency domain. The accurate modeling of VCG can facilitate the understanding of 

the heart dynamics. The possible applications of this data-driven model are listed as 

following: 

(1) Feature extraction 

The model parameters such as RBF weights, HRV distribution parameters can be 

used as features for the further diagnosis. Therefore, numerous VCG and ECG 

data is reduced to limited amount of features while preserve the same information.   

(2) VCG and ECG data compression 

We knew that hundreds of gigabytes VCG and ECG data will be stored for the 

real-time high sampling ECG recorder. Since the RBF model replicates the actual 

VCG topology, those parameters can be saved and used for simulating a long 

duration VCG data in the future. Therefore, the VCG and ECG data are 

compressed to save the disk storage space.  

(3) Algorithm evaluation 

This data-driven model can be fitted to different group of diseases and patients. 

The well trained model for different pathologies will be able to generate several 

various simulating VCG and ECG data which can be used to test the QRST 

characteristic point detection algorithms, QRST cancellation algorithms, adaptive 

filtering algorithms, and classification algorithms etc. 
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(4) Disease prognosis 

The well trained model captures all the characteristics from the actual data, and 

the actual real-time heart monitoring signals can be compared the simulation 

model trained in the healthy conditions. The similarity differences can serve as 

the performance measure for the prognostic purpose. 

The investigated RBF VCG model compressed information about the actual VCG 

trajectory dynamics, and the VCG signals can also be projected to standard 12-lead ECG 

signals with the transformation matrix. The future research will focus on exploring the 

above applications of the RBF network VCG model. 
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CHAPTER XI 

CONCLUSIONS AND FUTURE WORK 

One hundred years ago, researchers were striving on the design of meticulous 

cardiovascular sensor monitoring system. Nowadays, a variety of sensor networks and 

dedicated super computers are taken advantage to collect high precision heart monitoring 

signals in real time. The huge amount of observation data offers an unprecedented 

opportunity to understand the hidden heart nature buried in the sea of data. This 

dissertation focused on data driven nonlinear stochastic modeling and analysis of 

complex cardiovascular systems towards the diagnostic and prognostic applications. The 

major conclusions and future work recommendations are as follows: 

11.1 Conclusions

A novel customized wavelet function approach is developed to resolve the big data 

issue in the cardiovascular monitoring field. This method uses near periodic patterns of 

electrocardiogram (ECG) signals to optimally design a wavelet for the specific 

cardiovascular applications. This customized wavelet successfully reduces the 

compactness of ECG signal representation by around two orders of magnitude, which 

directly increase data compression ratio and benefit the telemedicine.  

Sophisticated visualization tools are also developed to explore unexpected patterns 

and interpret hidden evidences. Traditional representation habits, like time domain 
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representation, can prevent us from extracting new understandings. Frequency domain, 

time-frequency domain, animations, heart and torso finite element models, and state 

space domain will give new promising insights of system dynamics from different 

perspectives.

Advanced rigorous wavelet analysis and fractal dynamic study are also conducted 

to quantitatively extract more sensitive features to cardiovascular pathological variations 

instead of the extraneous noises. The medical diagnostic models are designed to 

mathematically associate the effective nonlinear features with two studied cardiovascular 

diseases - Myocardial Infarction (MI) and Atrial Fibrillation (AF). The classification 

accuracies are found to be as high as 96% in sensitivity for MI and >90% for different 

stages of AF. 

In order to address the increasing complexity of datasets, a local recurrence model 

is developed to make effective forecasting in the nonstationary chaotic environments. 

This model investigates the system local recurrence behaviors by dividing the delay 

reconstructed system state space into multiple stationary segments. Simulation study 

shows significant prediction accuracy improvements over commonly used stationary 

methods. This model is also successfully implemented to predict shift-wise throughputs 

in multistage manufacturing assembly lines, and yields >74% accuracy improvement in 

the real world.
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11.2 Future work 

Aiming at healthcare excellence, future work will keep on sensor based modeling 

and analysis of complex heart system. The continued improvements and prospected 

studies will be as follows: 

First, risk prognostic frameworks for the complex cardiovascular system will be 

further advanced and studied for the ischemia conditions and sleep apnea subjects. It is 

conceptually known that human heart is a complex organ system with a built-in capacity 

for self-regulation and adaptation. Myocardial infarction patients always have self-

organizing transitions between ischemic and non-ischemic conditions, and sleep apnea 

patients have discontinuous pauses in respirations during sleep. There are high risks of 

sudden cardiac death from these cardiovascular transitions. The research objective is to 

on-line estimate the potential risk and real-time predict the future cardiovascular statuses. 

The accurate predictions will not only have great academic and economic impacts, but 

also give the cardiovascular patients a better chance for a healthy life. 

In this dissertation, 12-lead ECG and 3-lead VCG signals are studied. The 

investigation can be extended to multi-sensor-fusion and monitoring schemes of 

cardiovascular systems. Monitoring sensor signals may include heart sound, respiration, 

blood pressure, electrooculogram (EOG), electromyography (EMG), 

electroencephalogram (EEG), magnetic resonance imaging (MRI), or nuclear magnetic 

resonance imaging (NMRI) etc. Multi-sensor-fusion may also be combined with 

nonlinear dynamics, fractal analysis, higher-order statistical processing and knowledge-

based approaches towards effective interpretations of physiological activities. Given the 
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complexity of underlying process, this research direction has high potentials to give rise 

to the novel advanced signal processing approaches. 

Thirdly, mathematical modeling of biomechanics in the physiological system will 

facilitate not only the understanding of exhibited physiological signals, but also 

autonomic organism functioning. The intriguing example is ancient Chinese medicine - 

acupuncture and moxibustion. The stimulation of certain spots in human body will help 

relieve pain and reach the body homeostasis. This acupuncture medicine is developed 

through practice for thousands of years and shows effective applications in various kinds 

of diseases like trigeminal neuralgia, palsy, tracheitis, arthritis and so on, but the 

underlying mechanics have not been fully understood yet. Sensor based modeling 

approach will assist the explanation of underlying biomechanics from a data-driven 

perspective of view. The effective mathematical biomechanical modeling will help 

further improve the current medicine treatments, and thus lead to the healthcare 

excellence. 
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