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ABSTRACT  

The borehole thermal resistance is both an important design parameter and a key performance characteristic of a borehole heat exchanger. Another quantity 

that is particularly important for deep borehole heat exchangers is the internal thermal resistance between the upward-flowing and downward-flowing fluid 

channels in the borehole. The multipole method is a well-known and robust method to compute both these thermal resistances. However, it has a fairly 

intricate mathematical algorithm and is thus not trivial to implement. Consequently, there is considerable interest in developing explicit multipole formulas. 

So far zeroth-order and first-order multipole formulas have been derived for cases where the two legs of the borehole are placed symmetrically in a borehole. 

This paper presents new explicit second-order multipole formulas, which provide significant accuracy improvements over the previous formulas.    

INTRODUCTION, SCOPE AND RATIONALE  

Compared to ambient air, ground, in general, is a far superior source or sink of thermal energy because of its relatively 

stable temperature levels over the year. Since the turn of this century, the use of heating and cooling systems utilizing 

the ground as a heat source or a heat sink has grown at a remarkable rate (Lund and Boyd, 2016), stimulated by energy 

prices, technology advances and environmental concerns. A typical ground source heating or cooling system consists 

of a heat pump, a ground heat exchanger, and auxiliary systems for storage and distribution of thermal energy. The 

ground heat exchanger can be of open or closed type. In an open system groundwater is directly used as the heat carrier 

fluid, whereas in a closed system the heat carrier fluid is circulated in a closed loop, which can be horizontal or vertical. 

Various heat exchanger configurations can be used in closed-loop vertical systems, including single or double U-tubes, 

and simple or complex coaxial pipes. Among all types, a borehole heat exchanger with a single U-tube is by far the most 

commonly used ground heat exchanger in practice because of its low cost, small space requirements, and ease of 

installation. The scope of this paper is also limited to the application of single U-tubes in borehole heat exchangers. 

 

Ground thermal conductivity (λ) and borehole thermal resistance (Rb) are the two principal parameters that govern the 

heat transfer mechanism of a borehole heat exchanger. The heat transfer outside the borehole boundary is dictated by 

the thermal conductivity of the ground, whereas the heat transfer inside the borehole is characterized by the borehole 

thermal resistance between the heat carrier fluid and the borehole wall. A high ground thermal conductivity is beneficial 

for the ground heat transfer. However, being an intrinsic property of ground, the ground thermal conductivity cannot 

be controlled in practice. On the other hand, a low borehole thermal resistance is desirable for better heat transfer inside 

the borehole. The borehole thermal resistance depends upon the physical arrangement and the thermal properties of 

borehole components including grouting, ground heat exchanger, and the heat carrier fluid. Its value can be engineered 

to a certain extent by optimizing the geometry and layout of the ground heat exchanger and by choosing appropriate 

materials for the borehole components.  
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In physical terms, the thermal resistance of a borehole can be thought of as a ratio of the temperature difference between 

the heat carrier fluid and the borehole wall to the heat transfer rate per unit length of the borehole. This implies that 

reducing the borehole thermal resistance for a given heat transfer rate corresponds to minimizing the temperature 

difference between the heat carrier fluid and the borehole wall. There are basically two fundamental and well-established 

approaches for determining the thermal resistance of borehole heat exchangers: theoretical and experimental. In the 

theoretical approaches (Javed and Spitler, 2016), analytical or empirical formulas based on one- or two-dimensional 

steady-state conductive heat transfer are used to calculate the borehole thermal resistance. The borehole thermal 

resistance calculated by the theoretical approach is defined locally at a specific depth in the borehole. For a single U-

tube heat exchanger, the heat carrier fluid temperature is the local average temperature of the fluid in the two legs of 

the U-tube at a specific depth in the borehole. The same is represented as Equation 1, where Tf,l is the local mean fluid 

temperature, Tb is the mean borehole wall temperature and qb is the heat transfer rate per unit length of the borehole.  

𝑅b =
𝑇f,l − 𝑇b

𝑞b

 (1) 

The thermal resistance of the borehole heat exchanger, together with the ground thermal conductivity, can be 

determined experimentally (Javed et al., 2012) through an in-situ thermal response test. Most thermal response test 

evaluation methods use the mean of the temperatures taken at the inlet and outlet of a borehole. The temperature 

measurements taken at the top of the borehole account for the effects of thermal short-circuiting between the upward 

and downward flow channels of the ground heat exchanger. The thermal short-circuiting between the counter flow 

channels negatively impacts the heat carrier fluid temperature, which consequently results in a higher borehole thermal 

resistance than calculated with Equation 1. This leads to the concept of effective borehole thermal resistance 𝑅b
∗ , which 

can be defined as the effective resistance between the heat carrier fluid Tf, characterized by the simple mean of the inlet 

and outlet temperatures, and the mean borehole wall temperature Tb. The effective borehole thermal resistance is 

mathematically expressed as Equation 2.  

𝑅b
∗ =

𝑇f − 𝑇b

𝑞b

 (2) 

Unfortunately, the concepts of borehole thermal resistance and effective borehole thermal resistance have often been 

misunderstood both in research and practice (Javed and Spitler, 2016). This has led to indiscriminate and interchangeable 

use of these terms in research literature, causing confusion and discrepancies in calculating and analysing the borehole 

thermal resistance. The fundamental difference between the borehole thermal resistance defined by Equation 1 and the 

effective borehole thermal resistance defined by Equation 2 is that the former is defined locally at a specific borehole 

depth whereas the latter applies to the entire borehole. Depending on the depth of the borehole and the thermal 

capacitance of the heat carrier fluid, the effective borehole thermal resistance is higher than the local borehole thermal 

resistance by a few to several hundred percent (Javed and Spitler, 2016; Spitler et al., 2016a). For the most common 

borehole heat exchanger configurations, the effective borehole thermal resistance can be determined from the local 

borehole thermal resistance using the analytical expressions of Hellström (1991), Zeng et al. (2003) or Ma et al. (2015).  

 

Hellström (1991) has derived Equations 3 and 4 for calculating the effective borehole thermal resistance of a single U-

tube borehole heat exchanger. The two equations are respectively based on uniform borehole wall temperature and 

uniform heat flux boundary conditions along the borehole. These are both limiting boundary conditions and the real 

situation falls somewhere in between. Hence, the effective borehole thermal resistance is sometimes expressed as the 

mean value between the two equations. Calculation of effective borehole thermal resistance with Equations 3 and 4 

requires knowledge of total internal thermal resistance Ra and direct coupling resistance R1−2 between the two U-tube 

legs, respectively, in addition to the borehole thermal resistance Rb. All these resistances can be calculated to a high 

degree of accuracy by means of the well-known Multipole method (Claesson and Hellström, 2011).  



𝑅b
∗ = 𝑅b +

1

3 𝑅a

 (
𝐻

𝜌f 𝑐f 𝑉f

)
2

 (3) 

𝑅b
∗ = 𝑅b 𝜂 coth 𝜂,               𝜂 =

𝐻

𝜌f 𝑐f 𝑉f

 
1

2 𝑅b

√1 +
4 𝑅b

𝑅1−2

 (4) 

The multipole method is an analytical method based on two-dimensional steady-state conductive heat transfer in a 

borehole. It uses a combination of line heat sources and so-called multipoles to determine thermal resistances for any 

number of arbitrarily placed pipes in a composite region. The accuracy of the results increases with the number of 

multipoles used for the calculation. When implemented in a computer program, the order of the multipoles to be used 

for a calculation is typically prescribed to 10, which was the maximum possible order in the original (Bennet et al., 1987) 

implementation of the multipole method. Popular ground heat exchanger programs EED (Blocon, 2015) and 

GLHEPRO (Spitler, 2000) also use tenth-order multipoles when calculating the borehole thermal resistance. The tenth-

order multipole calculations have an accuracy of over eight decimal digits (Claesson, 2012). However, on the adverse 

side, the multipole method has a quite rigorous mathematical formulation and a fairly complex algorithm. Its 

implementation in computer programs requires a considerable amount of coding – the original implementation in 

FORTRAN by Bennet et al. (1987) was nearly 600 lines in length. As a result, there has been considerable interest in 

simplifying the multipole method for typical borehole configurations. So far, closed-form multipole formulas for zeroth-

order and first-order have been developed for the case of a single U-tube with symmetrical pipes.  

 

This paper presents newly derived closed-form multipole formulas of second-order. The presented formulas include 

expressions for borehole thermal resistance Rb, total internal thermal resistance Ra and direct coupling resistance R1−2. 

The formulas also allow the calculation of effective borehole thermal resistance from Equations 3 and 4. The accuracy 

of the presented formulas is established by comparing them to the original multipole method (i.e. the tenth order 

multipole calculation). The superiority of the explicit second-order multipole formulas over the existing zeroth-order 

and first-order formulas is also demonstrated.   

THERMAL Δ NETWORK FOR SINGLE U-TUBE 

The concept of thermal resistances in a borehole is best discussed with the help of a thermal resistance network. Several 

representations of the thermal resistance network are possible (Hellström, 1991; Liao et al., 2012; Spitler et al., 2016b), 

but any such representation is an approximation to reality under network-specific assumptions and restrictions. The 

simplest approach is to consider a Δ thermal network as shown in Figure 1. 

 

  

 

Figure 1 Notations and definitions (left), and Δ resistance network (right) for a borehole with a single U-tube.   
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The above network is based on heat flows q1 and q2, fluid temperatures Tf1 and Tf2, and thermal resistances R1−b, R2−b 

and R1−2 as defined by Equation 5. The resistance R1−b is between pipe 1 and borehole wall, resistance R2−b is between 

pipe 2 and borehole wall, and resistance R1−2 is between pipe 1 and pipe 2. The thermal resistance network and Equation 

5 both use average borehole wall temperature Tb,avg instead of a uniform temperature. This is because the temperature 

distribution on the borehole wall is non-uniform. This is further discussed in Claesson and Hellström (2011).   

𝑞1 =
𝑇f1 − 𝑇b,avg

𝑅1−b

+
𝑇f1 − 𝑇f2

𝑅1−2

, 𝑞2 =
𝑇f2 − 𝑇b,avg

𝑅2−b

+
𝑇f2 − 𝑇f1

𝑅1−2

 (5) 

In an actual installation, pipes 1 and 2 may be located anywhere in the borehole as long as they do not overlap each 

other. In reality, the position of pipes also varies along the depth of the borehole. In the absence of any a priori 

knowledge of the pipes position, it is customary to assume that two pipes are symmetrically placed about the center of the 

borehole. For two equal diameter pipes, this assumption leads to the conclusion that R1−b = R2−b. The problem can be 

further simplified by prescribing the heat fluxes q1 and q2 as even (i.e. q1 = q2) and odd (i.e. q1 = −q2). 

Even Case 𝑞1 =  𝑞2       ⇒     𝑇f1
+ − 𝑇b,avg =  𝑅𝐽

+ ∙ 𝑞1 (6) 

Odd Case 𝑞1 =  −𝑞2    ⇒     𝑇f1
− − 𝑇b,avg =  𝑅𝐽

− ∙ 𝑞1 (7) 

Here 𝑇f1
+ and 𝑇f1

− are fluid temperaturtes, and 𝑅𝐽
+ and 𝑅𝐽

− are thermal resistances for even and odd cases as defined by 

Equations 6 and 7, respectively.  The corresponding thermal networks for even and odd cases are shown in Figure 2. 

The subscript J in Equations 6 and 7 refers to the number of multipoles considered at each pipe for the calculation. For 

J = 0, only line sources at the pipes are used. The accuracy increases with the number of multipoles used. Closed-form 

zeroth-order (i.e. J=0) and first-order (i.e. J=1) multipole formulas for calculating the borehole thermal resistance and 

the total internal thermal resistance are already available for the case of two symmetrical pipes (Hellström, 1991). In this 

paper newly-derived explicit second-order multipole formulas for calculating the borehole thermal resistance and the 

total internal thermal resistance resistances are presented.  
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Figure 2 Δ resistance networks for (a) even and (b) odd cases.   

The general expressions for borehole thermal resistance and total internal thermal resistance can be derived from the 

thermal networks of even and the odd cases, respectively. As can be inferred from Figure 2a, the borehole thermal 

resistance Rb between the fluid in the pipes and the borehole wall consists of two equal resistances (each of value R1−b) 

in parallel. On the other hand, as can be deduced from Figure 2b, the total internal thermal resistance Ra between the 

two pipes consists of a pair of equal series resistances (each of value 0.5R1−2) connected in parallel to another pair of 

equal series resistances (each of value R1−b). 
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𝑅b =
𝑅1−b

2
, 𝑅a =

2 𝑅1−b 𝑅1−2

2 𝑅1−b + 𝑅1−2

  (8) 

The relationship between network resistances R1−b and R1−2, and even and odd thermal resistances 𝑅𝐽
+ and 𝑅𝐽

− can be 

obtained from Figure 2 and Equations. 6 and 7. 

𝑅𝐽
+ = 𝑅1−b,

1

𝑅𝐽
− =

1

𝑅1−b

+
2

𝑅1−2

  (9) 

For second-order multipole (i.e. J=2), Equations 8 and 9 can be rearranged to give: 

𝑅1−b = 𝑅2
+, 𝑅1−2 =

2 𝑅2
+ 𝑅2

−

𝑅2
+ − 𝑅2

− (10) 

The borehole thermal resistance Rb and the total internal thermal resistance Ra from Equation 8 can now be expressed 

in terms of thermal resistances 𝑅2
+ and 𝑅2

− using Equation 10.   

𝑅b =
𝑅2

+

2
, 𝑅a = 2 𝑅2

−  (11) 

The explicit formulas for 𝑅2
+ and 𝑅2

− are given by Equations 12 and 13. The derivation of these expressions will not be 

presented here due to space limitations. The full derivation and mathematical details appear in a technical report by 

Claesson (2016).   

𝑅2
+ =

1

2 𝜋 𝜆b

[𝛽 + ln (
𝑟b

2

2 𝑟p 𝑥p

) + 𝜎 ∙ ln (
𝑟b

4

𝑟b
4 − 𝑥p

4
)] − 𝐵2

+ (12) 

𝑅2
− =

1

2 𝜋 𝜆b

[𝛽 + ln (
2 𝑥p

𝑟p

) + 𝜎 ∙ ln (
𝑟b

2 + 𝑥p
2

𝑟b
2 − 𝑥p

2
)] − 𝐵2

− (13) 

𝛽 = 2 𝜋 𝜆b 𝑅p, 𝜎 =
𝜆b − 𝜆

𝜆b + 𝜆
 (14) 

The 𝐵2
± values are obtained from the following set of equations. In all following equations, the upper index ‘+’ 

corresponds to the even case and s = +1, and the upper index ‘−’ corresponds to the odd case and s = −1. 

𝐵2
± =

1

2 𝜋 𝜆b

∙
𝑏1 (𝑉1

±)
2

(2 + 𝑏2 𝐴2,2
± ) − 2 𝑏1 𝑏2 𝑉1

± 𝑉2
±𝐴1,2

±  + 𝑏2 (𝑉2
±)

2
(1 + 𝑏1 𝐴1,1

± )

(1 + 𝑏1 𝐴1,1
± )(2 + 𝑏2 𝐴2,2

± ) − 𝑏1 𝑏2(𝐴1,2
± )

2
 

 (15) 

𝑉1
± = −𝑠 ∙ 𝑝0 + 𝜎 𝑝1 − 𝑠 ∙ 𝜎 𝑝2, 𝑉2

± = 𝑠 ∙ 𝑝0
2 + 𝜎 𝑝1

2 + 𝑠 ∙ 𝜎 𝑝2
2, 𝑠 = ±1 (16) 

𝑏1 =
1 − 𝛽

1 + 𝛽
, 𝑏2 =

1 − 2 𝛽

1 + 2 𝛽
, 𝑝0 =

𝑟p

2 𝑥p

, 𝑝1 =
𝑟p 𝑥p

𝑟b
2 − 𝑥p

2
, 𝑝2 =

𝑟p 𝑥p

𝑟b
2 + 𝑥p

2
 (17) 

𝐴1,1
± = 𝑝0

2 ∙ 𝑠 + 𝜎 [𝑝1(𝑝1 + 2 𝑝0) + 𝑝2(𝑝2 − 2 𝑝0) ∙ 𝑠], 𝑠 = ±1 (18) 

𝐴1,2
± = −2 𝑝0

3 ∙ 𝑠 + 2 𝜎 [𝑝1
2(𝑝1 + 2 𝑝0) − 𝑝2

2(𝑝2 − 2 𝑝0) ∙ 𝑠] (19) 

𝐴2,2
± = 6 𝑝0

4 ∙ 𝑠 + 2 𝜎 [𝑝1
2(3 𝑝1

2 + 8 𝑝0 𝑝1 + 4 𝑝0
2) + 𝑝2

2(3 𝑝2
2 − 8 𝑝0 𝑝2 + 4 𝑝0

2) ∙ 𝑠] (20) 



 

 

COMPARISON WITH EXISTING MULTIPOLE SOLUTIONS 

In this section the second-order multipole formulas for borehole thermal resistance and total internal thermal resistance 

are compared with previously published results. The comparison is made using a reference dataset provided by Javed 

and Spitler (2017). The authors have compared and benchmarked the borehole thermal resistance estimations from 10 

different analytical methods against the tenth-order multipole method for 216 different cases. The authors have showed 

that compared to other methods, the results of zeroth-order and first-order multipole formulas provide greater 

accuracies. In this paper, we will also benchmark the new second-order multipole formulas against the tenth-order 

multipole method. The second-order multipole formulas will also be compared to the zeroth-order and first-order 

multipole formulas to demonstrate improvements in the accuracy of the calculated results.   

 

Table 1 provides the detailed summary of the 216 comparison cases provided by the reference dataset and used in this 

paper for the comparison of the second-order multipole formulas. The cases cover three different borehole diameters 

of 96 mm, 192 mm, and 288 mm. The U-tube outer pipe diameter value is held fixed at 32 mm for all cases. The total 

pipe resistance Rp also remains constant at 0.05 m-K/W. For each borehole diameter, three shank spacing 

configurations, i.e. close, moderate and wide – corresponding, respectively, to Paul’s (1996) Configuration A, 

Configuration B and Configuration C – are considered. Four levels of ground thermal conductivity ranging from 1−4 

W/m-K, and six levels of grout thermal conductivity ranging from 0.6−3.6 W/m-K are used. Given the existing and 

reasonably foreseeable values of design parameters, the 216 cases used for the comparison bracket almost all real-world 

single U-tube borehole heat exchangers.  

 

    Table 1.   Summary of Comparison Cases Provided by Javed and Spitler (2017). 

Parameter Levels No. of levels 

Ratio of the borehole radius to outer pipe diameter (2rb/2rp).  
Since pipe outer diameter (2rp) is always fixed at 32 mm, 
borehole diameters (2rb) are 96 mm, 192 mm, and 288 mm. 

3, 6, 9 3 

Shank spacing configuration; corresponds to Paul’s (1996) 
A, B, C configurations 

Close, Moderate, Wide 
For rb/rp = 3, 2xp = 32 mm, 43 mm, 64 mm 
For rb/rp = 6, 2xp = 32 mm, 75 mm, 160 mm 

For rb/rp = 9, 2xp = 32 mm, 107 mm, 256 mm 

3 

 – the ground thermal conductivity (W/m-K) 1, 2, 3, 4 4 

g – the grout thermal conductivity (W/m-K) 0.6, 1.2, 1.8, 2.4, 3.0, 3.6 6 

 

Figures 3−5 present a selection of the comparison results to demonstrate the efficacy of the second-order multipole 

formulas presented in this paper. The results shown in these figures are for a single ground thermal conductivity of 4.0 

W/m-K. The left-side figures show the grout thermal resistance values, and the right-side ones show the total internal 

thermal resistance values, plotted against the grout thermal conductivity. Each figure presents three curves 

corresponding to close, moderate and wide shank spacing. The exact value of the shank spacing for each case is provided 

in Table 1. It must be pointed out that multipole formulas presented in the previous section, calculate the borehole 

thermal resistance and not the grout thermal resistance. However, in order to be consistent with the dataset provided 

by Javed and Spitler (2017), the values of grout thermal resistance have been calculated and presented in Figures 3−5. 

The grout thermal resistance values have been determined by subtracting the fixed pipe resistance of 0.05 m-K/W from 

the corresponding borehole thermal resistance values obtained from the multipole formulas. Computing the grout 

thermal resistance directly by disregarding the pipe resistance (i.e. setting β = 0) in Equations 12 and 13 gives erroneous 

results for all but zeroth-order multipole calculations.  



  

 

Figure 3 Grout thermal resistance (Rg) and total internal resistance (Ra) for close (2xp = 32 mm), moderate (2xp = 43 mm) 
and wide (2xp = 64 mm) configurations with 2rb = 96 mm and λ = 4 W/m-K.   

  

 
Figure 4 Grout thermal resistance (Rg) and total internal resistance (Ra) for close (2xp = 32 mm), moderate (2xp = 75 mm) 

and wide (2xp = 160 mm) configurations with 2rb = 192 mm and λ = 4 W/m-K.     

  

 
Figure 5 Grout thermal resistance (Rg) and total internal resistance (Ra) for close (2xp = 32 mm), moderate (2xp =              

107 mm) and wide (2xp = 256 mm) configurations with 2rb = 288 mm and λ = 4 W/m-K.    

0.00

0.10

0.20

0.30

0.40

0.50

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
g
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole

1st-order Multipole

2nd-order Multipole

10th-order Multipole

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
a
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole
1st-order Multipole
2nd-order Multipole
10th-order Multipole

0.00

0.10

0.20

0.30

0.40

0.50

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
g
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole

1st-order Multipole

2nd-order Multipole

10th-order Multipole

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
a
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole
1st-order Multipole
2nd-order Multipole
10th-order Multipole

0.00

0.10

0.20

0.30

0.40

0.50

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
g
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole

1st-order Multipole

2nd-order Multipole

10th-order Multipole

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0.0 0.6 1.2 1.8 2.4 3.0 3.6 4.2

R
a
[m

-K
/W

]

λg [W/m-K]

0th-order Multipole
1st-order Multipole
2nd-order Multipole
10th-order Multipole



 

 

 Table 2.   Mean and Maximum Absolute Percentage Errors in Calculation of the 

Grout Thermal Resistance for All 216 Cases. 

Method 
Shank Spacing 
Configuration 

Grout Conductivity 

Low 
(0.6 – 1.2 W/m-K) 

Moderate 
(1.2 – 2.4 W/m-K) 

High  
(2.4 – 3.6 W/m-K) 

Mean Max Mean Max Mean Max 

Zeroth-order Multipole 

Close 6.1 12.4 2.9 8.0 1.0 2.5 

Moderate 3.3 10.8 1.5 6.5 0.4 1.6 

Wide 8.9 30.4 1.9 11.2 0.3 1.8 

First-order Multipole 

Close 0.2 0.4 0.2 0.6 0.7 1.5 

Moderate 0.0 0.2 0.0 0.2 0.1 0.5 

Wide 0.5 2.2 0.0 0.2 0.1 0.6 

Second-order Multipole 

Close 0.0 0.0 0.1 0.2 0.2 0.5 

Moderate 0.0 0.0 0.0 0.1 0.0 0.1 

Wide 0.1 0.3 0.0 0.0 0.0 0.1 

 

Results of the second-order multipole formulas for calculating the borehole thermal resistance and the total internal 

thermal resistance are summarized in Tables 2 and 3, respectively. It should be noted that although Figures 3−5 only 

showed results for ground thermal conductivity value of 4 W/m-K due to space limitations, the results presented in 

Tables 2 and 3 have been obtained considering all ground thermal conductivity values from 1−4 W/m-K. Each entry in 

these two tables represents the mean or maximum error in percentage for a sample containing two-three values of grout 

thermal conductivity, three values of borehole diameter, and four values of ground thermal conductivity. The errors 

have been determined by comparing the results of second-order multipole formulas to the tenth-order multipole 

method. For the ease of comparison, errors from zeroth-order and first-order multipole formulas, as reported by Javed 

and Spitler (2017), are included as well.   

 

Table 2 shows that the grout thermal resistance values obtained from the second-order multipole formula are within 

0.5 % of the tenth-order multipole method for all 216 cases. Also, the mean absolute percentage error of the results 

obtained from the second-order multipole formula is smaller than 0.2 %. In comparison, the mean and maximum 

absolute percentage errors for the zeroth-order multipole formula are as high as 9 % and 30 %, respectively. The first-

order multipole formula has smaller errors than the zeroth-order formula. Nevertheless, compared to the second-order 

multipole formula, the errors from the first-order multipole formula are higher by several orders of magnitude. 

 

Table 3.   Mean and Maximum Absolute Percentage Errors in Calculation of the Total 

Internal Thermal Resistance for All 216 Cases. 

Method 
Shank Spacing 
Configuration 

Grout Conductivity 

Low 
(0.6 – 1.2 W/m-K) 

Moderate 
(1.2 – 2.4 W/m-K) 

High  
(2.4 – 3.6 W/m-K) 

Mean Max Mean Max Mean Max 

Zeroth-order Multipole 

Close 23.3 37.6 6.9 15.0 1.2 2.7 

Moderate 1.8 7.8 1.1 6.0 0.3 1.8 

Wide 1.9 8.5 0.4 2.3 0.2 1.3 

First-order Multipole 

Close 3.2 5.9 0.6 0.7 0.7 0.7 

Moderate 0.2 0.8 0.0 0.2 0.1 0.2 

Wide 0.3 1.2 0.0 0.1 0.0 0.1 

Second-order Multipole 

Close 0.4 1.0 0.2 0.2 0.1 0.2 

Moderate 0.0 0.0 0.0 0.0 0.0 0.0 

Wide 0.0 0.2 0.0 0.0 0.0 0.0 



Table 3 shows that the total internal thermal resistance values calculated from the second order multipole formulas are 

within 1 % of the tenth-order multipole method for all 216 cases. The mean absolute percentage error of the results 

obtained from the second-order multipole formula never exceed 0.4 %. In comparison, the zeroth-order and the first-

order multipole formulas give maximum absolute percentage errors of approximately 38 % and 6 %, respectively. The 

mean absolute percentage errors of the zeroth-order and the first-order multipole expressions are as high as 23 % and 

3 %, respectively. 

 

Even though the second-order multipole formulas presented in this paper are more complicated than many other 

analytical expressions including the zeroth-order and first-order formulas, it is still simple enough to apply for 

computation purposes. The implementation of the second-order multipole formulas requires approximately 10 lines of 

coding of rather compact and simple algebraic expressions. This is a significant improvement over the original 

implementation of the Multipole method, which required about 600 lines of FORTRAN coding. Hence, due to their 

excellent accuracy and relative ease of implementation, the second-order multipole formulas are recommended for 

calculation of borehole thermal resistance and total internal thermal resistance for all cases where the two legs of the U-

tube are placed symmetrically in the borehole. 

CONCLUSION 

Closed-form second-order multipole formulas for the calculation of borehole thermal resistance and total internal 

thermal resistance have been presented in this paper. The presented formulas can be used for all single U-tube 

applications where the two legs of the U-tube are symmetrically placed in the borehole. The newly-derived formulas 

have been compared with the original multipole method, as well as the previously-derived zeroth-order and first-order 

explicit multipole formulas. The second-order multipole formulas provide significant accuracy improvements over the 

zeroth-order and the first-order multipole formulations. The thermal resistance values calculated from the second-order 

multipole formulas are always within 1 % of the original tenth-order multipole method.  The presented formulas may 

also be used to estimate the effective borehole thermal resistance from the expressions defined by Equations 3 and 4. 

NOMENCLATURE 

cf  =  Specific heat of the circulating fluid in the U-tube, J/kg-K 

H  =  Depth of the borehole, m 

J  =  Number of multipoles 

p0  =  dimensionless parameter, dimensionless 

p1  =  dimensionless parameter, dimensionless 

p2  =  dimensionless parameter, dimensionless 

qb  =  Heat rejection rate per unit length of borehole, W/m 

q1  =  Heat rejection rate per unit length of pipe 1, W/m 

q2  =  Heat rejection rate per unit length of pipe 2, W/m 

rb  =  Radius of the borehole, m 

rp  =  Outer radius of the pipe making up the U-tube, m 

Ra  =  Total internal borehole thermal resistance, m-K/W 

Rb  =  Local or average borehole thermal resistance between fluid in U-tube(s) to borehole wall, m-K/W 

𝑅b
∗   =  Effective borehole thermal resistance, m-K/W 

Rg  =  Grout thermal resistance; resistance between outer pipe wall of U-tube to borehole wall, m-K/W 

𝑅𝐽
±  =  Thermal resistance for even and odd cases for J multipoles, m-K/W 

𝑅2
±  =  Thermal resistance for even and odd case for second-order multipoles, m-K/W 



 

 

R1−2  =  Thermal resistance between U-tube legs 1 and 2, m-K/W 

R1−b  =  Thermal resistance between U-tube leg 1 and borehole wall, m-K/W 

R2−b  =  Thermal resistance between U-tube leg 2 and borehole wall, m-K/W 

Rp  =  Total fluid-to-pipe resistance for a single pipe – one leg of the U-tube, m-K/W  

Tb  =  Borehole wall temperature, °C 

Tb,avg =  Average temperature at the borehole wall, °C 

Tf  =  Mean fluid temperature inside the U-tube, °C 

Tf,l  =  Local mean fluid temperature, °C 

Tf1  =  Fluid temperature in U-tube leg 1, °C 

Tf2  =  Fluid temperature in U-tube leg 2, °C 

𝑇f1
±  =  Fluid temperature in U-tube leg 1 for even and odd cases, °C 

Vf  =  Volume flow rate of the circulating fluid in the U-tube, m3/s 

xp       =  Half shank spacing i.e. half of center-to-center distance between two legs of the U-tube, m. 

β  =  Dimensionless thermal resistance of one U-tube leg, dimensionless 

λ  =  Thermal conductivity of the ground, W/m-K 

λb  =  Thermal conductivity of the grout, W/m-K 

𝜌f  =  Density of the circulating fluid in the U-tube, kg/m3 

σ  =  Thermal conductivity ratio, dimensionless 
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