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PREFACE 

This study focuses on how to confine error recovery to 

the immediate environment of a failed computation (process) 

by restricting information flow through the system. A 

module called a manager that restricts the access of 

operations (procedures) to shared data representation is 

proposed. The use of descriptors to represent address 

variables (pointers) and procedure parameters is also 

proposed to restrict the amount of information available to 

a procedure. A linguistic mechanism to define recoverable 

data and inverse procedures (procedures that reverse the 

actions of another procedure) to undo completed actions is 

presented. A system data structure that defines a recovery 

environment to support system implemented recovery is 

presented. 
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CHAPTER I 

INTRODUCTION 

With the increasing use of computers in very critical 

environments such as aircraft control, electronic fund 

transfer systems, and electronic switching systems a new and 

important attribute is being required of the software for 

these systems. This attribute is reli~bility. A reliable 

software is one that can detect and recover from most common 

errors. The current approach to software fault tolerance in 

those critical systems is by massive redundancy in code, 

data, and hardware components. General purpose systems 

cannot afford this level of redundancy because of 

prohibitive cost. In order to be able to develop reliable 

software, the operating system itself must be designed to be 

robust and also provide facilities for the development of 

fault tolerant software systems. 

A possible iterative approach for building fault 
. 

tolerant software is: 

1. design an algorithm that meets the specification of 

the software assuming an error-free execution environment; 

2. derive constraints for the correctness of the 

algorithms; 

3. add algorithms to check for the violation of the 

1 



constraints; 

4. specify action to be taken when a constraint 

violation is detected; and 

5. repeat steps 1-4 as necessary. 

2 

The algorithm developed in step one may contain some design 

flaws. Some of the flaws can be detected and corrected by 

applying a correctness proof on the algorithm or during 

system testing. It is also possible that after testing and 

application of correctness proof some design !laws still 

remain which show up in the production environment. Even 

when all errors and design flaws have been eliminated, a 

hardware failure can cause a failure of the software. The 

algorithm to implement step three constitute the error 

detection code. It may take the form of assertions, or the 

form of audits and processes that monitor the execution of 

other processes depending on the type of error being 

detected [22]. The algorithm for step four is the error 

recovery code. A recovery action makes the system oblivious 

of the error by either correcting the error, or repairing 

the cause of the error or by restoring the system to a 

previously known error-free state (checkpoint). A recovery 

action takes the system to a point where normal operation 

can continue. A software system that is developed by 

following steps 1-4 is called fault tolerant or reliable 

software. The code and data that are used to implement 

steps three and four constitute the redundancy in the 

software. The inclusion of redundancy increases the ·cost of 



developing and using the software. Development cost is 

increased from writing more code than is necessary. The 

usage cost is incurred by executing more code than is 

necessary in error-free ca~es. 
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Error recovery is pivotal for the reliable operation of 

a fault tolerant software. Error recovery involves changing 

the state of the data item(s) affected by an error to a 

state where reliable operation can proceed. To reduce the 

cost of error recovery the system state (system data) 

affected by an error should be made as small as possible. 

This can be achieved through robust system design. The 

design dimension include system decomposition technique and 

information exchange mechanisim between modules. The two 

dimensions taken together can create unforseen 

interrelationships between modules which can make successful 

error recovery increasingly difficult. A system 

decomposition method which reduces the objects accessible to 

a module and which employs explicit mechanism for 

intermodule interaction can reduce error recovery cost. 

Problem Statement 

An operating system is an important piece of software 

in a computer system. It is the administrator of the run­

time environment of a computer system. · The complexity of an 

operating system is such that it is very difficult to 

eliminate all errors during system testing. Errors 

undetected during system testing may manifest themselves in 
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production environment due to rare combination of 

circumstances, such as unanticipated resource usage pattern. 

Some errors due to timing are difficult to detect during 

testing because of the difficulty in making up the test data 

that can cause such errors. This implies that one cannot be 

absolutely confident that a complex software such as an 

operating system is error free. To provide reliable 

operation, extra code and information for error detection 

and recovery must be included in the design. 

Both error detection and recovery algorithms are 

redundant actions because they are not necessary in a 

fault-free system. During error recovery all interactions 

the faulty process participated in must be identified and 

undone to restore the system to a state where normal 

processing can continue. In a concurrent system the success 

of any eiror recovery effort hinges on the correct 

determination of the faulty environment. A faulty 

environment is the set of processes directly or indirectly 

affected by an error. The structural relationship of the 

processes, the form of interaction (information exchange), 

and the size of the faulty environment affects the cost of 

recovery. This study is focused on how to reduce the cost 

of recovery by restricting the information flow among 

processes. 

The temporal localization of error recovery in 

operating systems is focused on the restriction of 

information flow. It is concerned with the confinement of 



error recovery to the immediate environment of a failed 

process. An effective means to determine the immediate 

environment is required. The restriction of information 

flow can help define a damaged environment. It does not 
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involve a determination of the cause of an error in order to 

repair or correct the error. The restriction of information 

flow serves a dual purpose. The first is that it ensures 

that errors do not have wide coverage. The coverage of an 

error is the number of execution environments (processes) 

affected by an error. The second is that it can reduce the 

cost of error recovery. 

There are two aspects of information flow control 

addressed in the study. The first concerns a method for 

restricting the amount of information a procedure can 

access. The objective here is to contain the actions of a 

process within its immediate environment. 

The second aspect is concerned with how to detect and 

to recover from control errors for processes that retain 

their execution histories to ensure that future actions are 

consistent with their recent past. A control error is an 

incorrect scheduling decision. Processes that belong to 

this class include resource schedulers. A recovery action 

involves a repair or a restoration of the system to a 

previous consistent state to prevent further damage. Error 

repair involves identification of the cause of an error, 

determining its location, and then fixing it. The 

restoration of the system to a consistent state involves 



saving enough state information to reconstruct the system 

state. The study is concerned with the state restoration 

aspect of error recovery. 

The main contribution of this study are: 

1. a part of an operating system called a manager to 

allow the sharing of abstract objects, and 

2. the definition of a recovery context. 

The manager separates the protection domain of the shared 

object and the object operations (procedures) and also 

partitions the data space into shared data and control data 

with each data subspace being manipulated by specific 

program units within the manager. This helps to localize 

error recovery by restricting the source of an error to one 

subspace. The recovery context contains necessary 

information for the operating system to initiate error 

recovery on behalf of a failed process. The recovery 

context also serves the purpose of defining an immediate 

recovery environment. 

6 

The main thrust of this study has been defined. In the 

next chapter related work in operating system and software 

reliability is reviewed. The third chapter focuses on 

information control mechanisms. Chapter IV focuses on error 

detection with emphasis on control error and recovery 

mechanisms. A summary of the study and concluding remarks 

are presented in Chapter v. 



CHAPTER II 

LITERATURE REVIEW 

The correct operation of a computer system depends on 

the proper functioning of the hardware components and the 

program modules comprising the operating system. Hardware 

components have employed correcting codes such as parity 

codes, Hamming code, and self-checking circuits to detect 

and correct errors in transmitted information [43]. Time­

outs are also employed to detect malfunctioning hardware 

devices. 

Residual design faults have been attributed to many 

errors in software systems [38]. Design faults are defects 

in the specification of a program and its implementation 

algorithms. They are present from the beginning and 

manifest their presence when executed with some input data 

values and some rare combination of dircumstances. Design 

faults in a hardware algorithm can also cause a software 

program to malfunction~ Endres [16] analysis of errors in 

IBM DOS/VS operating system revealed that interaction among 

processes and implementation of the design decisions are 

significant causes of errors. Some of these errors are due 

to incorrect process switching, incorrect resource 

allocation, necessary interrupts not responded to, etc. 

7 
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Some implementation errors were attributed to failure to 

initialize/reset variables on entry/exit from procedures. A 

similar investigation of errors in real-time systems by 

Glass [20] showed that timing errors, omitted logic, and 

implementation errors were prevalent. 

The advent of multiprograming systems increased the 

protection problem. Processes must be protected from 

activities of each other to prevent interference. Some 

operating systems employ two modes of operation called the 

user state and the supervisor state. This simple protection 

model protected the operating system from errors in the user 

programs. The operating system cannot protect itself 

against its own errors. Example systems include IBM/360 and 

IBM/370 series of machines. Protection mechanisms such as 

file password, and memory protection keys have been used to 

guard unauthorized access to objects and crossing of address 

space boundaries. These separate protection mechanisms for 

different system resources increases the complexity of the 

operating system. This makes verification difficult [37]. 

The use of capabilities have been advocated as an 

alternative approach to protection, resource and process 

control [13, 37, 44]. A capability is an indirect pointer 

to an object with the permissible access rights on the 

object explicitly specified. In this scheme the right to 

access a resource is by possessing a capability for it. 

Capabilities are used to define execution domain of a 

proccess. Linden [35] proposed small protection domains as 
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a means to realize reliable and secure operating systems. 

In a small protection domain model, a process executes in 

different execution domains as it runs. Examples of 

operating systems based on capabilities are Hydra [45], CAP 

[44], and Intel's iMAX [27]. Capabilities are useful for 

interdomain addressing. Interdomain protection is one way 

of restricting information flow. However, there is the 

problem of intradomain addressing such as overwriting data 

areas through address variables, redefining parameters in a 

procedure thereby gaining access to more area of the calling 

environment. These are some subtle ways of incorrect 

information flow. 

The use of redundant code and data have been employed 

to detect errors in software. Redundant code is in the form 

of audit programs and process monitors. Data redundancy is 

the use of additional data fields for the purpose of error 

detection and correction. The common form of data 

redundancy are counts, identifier fields and extra pointers 

[8]. Data redundancy is widely used to provide software 

fault tolerance. An audit program is a software module that 

is responsible for ensuring that a system's data structure 

is in a consistent state. An audit program is invoked 

periodically to check the state of a storage structure to 

detect any erroneous state. An audit program has two 

functions. One function is to detect an erroneous state in 

a storage structure while the second is to correct the 

erroneous state by making use of redundant information in 
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the storage structure. A process monitor observes the 

execution of another process to detect incorrect behavior 

such as excessive use of resources(memory, disk, and CPU 

time) [22]. The DMERT operating system for Bell system 

3B20D duplex processor is one that makes extensive use of 

audit programs and redundant fields in system data 

structures to enhance error detection [22]. Audits in DMERT 

do not verify functions. They are limited to checking the 

integrity of critical data structures and resources. The 

operating system provides a facility for system processes to 

request for initialization after an error has been detected 

throuh a trap mechanism. The environment of DMERT is a 

duplicated one. The 3B20D system is a duplex system with 

loose interconnection between the processors. Other 

hardware components are also duplicated to ensure 

availabilty. Memory and disk updates are made to both 

active and redundant systems. The duplicated system state 

is one major factor for the high degree of reliability and 

availability in 3B20D/DMERT. The operating system supports 

a mechanism for software units to be updated through an 

update facility. However, it does not implement the 

recovery block concept. 

Process pairs have been implemented in some distributed 

systems. In these systems there are two copies of every 

process on different processors. These systems are mainly 

designed to provide recovery from hardware failures [5]. 

Randell [38] proposed the recovery block construct to 
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provide fault tolerance in software programs. A recovery 

block consists of a primary block with alternate blocks and 

a validation test which must be passed. A recovery block is 

free from errors if one of the blocks (primary/alternate) 

passes the validation test. To be useful the primary block 

and each alternate must be of independent design. This 

construct provides a mechanism for the temporal 

reconfiguration of a software system. Thus the scheme 

improves system availability while providing fault 

tolerance. The recovery block provides fault tolerance 

against unanticipated errors (design faults) but its use is 

limited to functional program units. Since many operating 

systems programs retain their internal state between 

activations the recovery block construct must be supporte~ 

with mechanism to reverse the effects of internal state 

changes when state restoration is required. 

A system structuring technique called data abstraction 

has been employed in the design of some operating systems 

[45, 27]. Programs modules based on this concept are called 

abstract data types. Data abstraction hides the internal 

representation of a data object from external modules but 

provides entry points to access the data object through the 

defined procedures. The procedures of the abstract data 

type module have full access to the data representation. 

When data abstraction is implemented with capability-based 

addressing, the resulting system is a set of protected 

subsystems [19, 35]. A monitor is a language construct that 
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enforces the correct sequencing of operations and data 

access protocol on a shared data object. It is employed in 

operating systems as synchronization device. A monitor and 

a semaphore are functionally equivalent but a monitor based 

process synchronization is robust. In a semaphore based 

scheme, adherence to resource access rules depends on the 

voluntary cooperation of the users of the resource. In a 

monitor based scheme, resource access rules and constraints 

are handled by the monitor on behalf of the users. A 

monitor provides the means for the safe sharing of abstract 

data types in an operating system. A monitor is a special 

implementation of an abstract type by including 

synchronization code. A monitor enforces mutual exclusive 

execution of the operations. The sh?rtcoming of abstract 

data type implementation is in the area of information 

access restriction. The procedures of these abstract 

modules have full access to the encapsulated data. If the 

procedures are only allowed to access the subcomponents of 

the data objects they require to complete their execution 

then, sources of errors can be reduced and error recovery 

can be made less expensive. A modified data abstraction 

technique that places the shared data object and the 

operation procedures in different protection domains but 

still maintains the integrity of the operations is presented 

in Chapter III. 

Error recovery is pivotal to any system that is to 

provide reliable operation. It is an important aspect of 
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localizing errors in a system. The recovery block scheme 

provides a systematic error recovery which is to restore the 

program to the state that existed before the current 

activation of the block. ·This type of recovery is called 

backward error recovery. The state restoration involves 

only the nonlocal variables (parameters and global 

variables) that the failed block modified. State 

restoration involving a set of interacting parallel 

processes can lead to a situation called "domino effect". A 

domino effect occurs when a roll-back of a failed process 

causes a roll-back of another process which causes further 

roll-back and so on. It has been shown that a system of 

interacting parallel processes is free from domino effect if 

the system is deadlock free [40]. To avoid a domino effect 

Randell [38] proposes a data transfer mechanism called a 

conversation. A conversation is a recovery block covering 

two or more processes [38]. Processes involved in a 

conversation are required to synchronize their exit. That 

is a process cannot leave the conversation until all the 

participating process have passed their acceptance tests. 

The conversation construct has the potential to deadlock if 

the process structure exhibit interdependencies which 

results in complex interactions. Other constructs that have 

been proposed to coordinate the recovery of a set of 

cooperating parallel processes are named-link recovery and 

multiprocess recovery [40]. 
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A named-link recovery block spans one or more recovery 

blocks while a multiprocess recovery block is a single 

recovery block spanning one or more processes. In a named­

link recovery block, the coupling between processes is loose 

and this makes avoidance of a domino effect or coversation 

deadlock difficult. With multi~rocess recovery block the 

linkage between processes is tight. This eliminates both 

deadlock and domino effect. The disadvantage of the 

multiprocess recovery construction is that the code for a 

process is fragmented and scattered. Also, semantics of 

some constructions are not clear. 

An experimental recovery cache to hold recovery data 

has been implemented on the PDP-11 [32]. The recovery cache 
. 

provides recovery for only main memory objects and the 

addresses used are real addresses. Thus the program must 

not be overlayed during the execution of a recovery block. 

A software implemented recovery ~ache with architectural 

support to speed-up the operation is required to support 

flexible error recovery. 

The majority of failures of computer systems is 

attributed to transient faults [31] in the hardware and 

design faults in software. To reduce the overhead 

processing associated with error recovery, it is necessary 

that the time for recovery from frequent failure modes be 

made small. The error recovery time depends on the extent 

of damage which depends on the constraint on information 
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flow through the system. The constraint on information 

flow in turn depends on how the system is structured [3]. 

To reduce the recovery time the system must avoid implicit 

interaction and information exchange between processes must 

be limited to the minimum required for a receiving process 

to complete its action. Also the actions of a process 

should not produce unidentifiable side effects. The 

elimination of unwanted side effects can reduce failures due 

to some remote causes to a very small proportion. This is 

to ensure that for most of the time the recovery action 

performed within the affected process is sufficient to 

remove the error symptom. How this can be done through 

information flow restriction is the main thrust of this 

study. 



CHAPTER III 

INFORMATION FLOW CONTROL SCHEMES 

Information flow pattern among interacting programs can 

have a significant effect on error recoverability of an 

operating system. In an uncontrolled information flow 

environment errors can have wide coverage. This can make 

error recovery costly and consequently degrade system 

performance. This chapter is concerned with techniques to 

restrict the flow of information. The chapter is focused on 

system structuring and environment control. 

System Structuring 

An operating system structure has an impact on 

modifiability, verifiability, and information flow. A well 

structured operating system should make other modules 

immuned from changes made to one of its modules. 

Verifiability is concerned with application of formal 

techniques to prove the correctness of the system. 

Information flow concerns the interaction of processes. 

Modifiability, verifiability, and information flow all 

affect operating system reliability. To structure an 

operating system to restrict information flow, relationship 

between modules comprising the operating system must be well 

16 
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defined. 

The layered approach has been employed in the 

development of operating systems [15]. In the layered 

approach the operating system is partitioned into a number 

of self contained layers. The lowest layer being the 

kernel. Each higher level layer makes use of the functions 

provided by the immediate lower level layer. The layered 

approach leads to the development of modular systems. Also, 

since each layer is self contained they can be verified and 

developed independently. The problem with the layered 

approach is partitioning the system to maintain the strict 

hierarchical relationship between layers. A structuring 

technique is proposed in the next section which retains the 

features of a modular system but in addition improves the 

least privilege principle. The least privilege states that 

a procedure should be given the smallest capability it needs 

to complete its action [19]. 

Modified Object Manager Structure 

The principle of system closure has been cited as the 

bases for secure and error-tolerant execution environments 

[13]. The closed system principle states that no process_or 

procedure has any capability which has not been explicitly 

granted. The implication of this principle is that the 

effects of all operations on a closed system shall be 

confined within that system. The ideal situation is a 

completely isolated and disjointed environments. While this 



is not possible because of process interaction the other 

best alternative is to restrict the interaction. 
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A structuring method that leads to the development of 

isolated environments is data abstraction. Data abstraction 

is a modularization technique that encapsulates a set of 

data objects and procedures that perform operations on the 

objects. Access to encapsulated data objects is through the 

invocation of operation procedures. The operations have 

full access to the data representation. Constructions 

similar to data abstraction are monitors, resources in 

synchronizing resources [1], and packages in Ada* 

programming language. Architectures and languages that 

support the use of data abstraction are said to be object 

based. Some .operating systems that have incorporated object 

orientation in their design are Hydra [45], iMAX [27], and 

CAP [44]. These operating systems provide a finer degree of 

protection. The encapsulated data objects and procedures 

are usually called type managers or object managers. The 

usual structure of an abstract type module is shown in 

Figure 1. 

The alternative structure divides the abstract type 

module into two modules. One module contains the shared 

data object and is called the manager. The second module 

contains the operations on the abstract type. The two 

modules exists in separate protection domains. The 

functions of the manager module are: 

1. maintains operations view of the object; 



2. makes available the necessary components of an 

object representation to an operation; and 

3. synchronize the operations on the object. 

type name 
variable declarations; 
statement list; 

procedure op1(parameters) 
body of op1 

end op1 

procedure opn (parameters) 
body of opn 

end opn 

end name 

Figure 1. Structure of Abstract 
Data Type Module 

19 

To maintain operations view of object representation 

the manager only needs to identify the components and 

subcomponents of the data structure used by an operation. 

To present an operation with the necessary components of an 

object representation, the manager needs to use the 

operations view of an object and perform a projection 

operation similar to a relational database projection 

operation to construct a sub-object which is then made 
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available to the operation. Since this sub-object exists 

in a different memory location, any error that occurs during 

a type operation affects only the sub-object. Error 

recovery can be accomplished by discarding the sub-object. 

The manager provides synchronization by scheduling 

operations when the state of the object permits it. 

Requests for operations that cannot be performed immediately 

based on the current state of the object are delayed until 

an enabling state change occurs. The fact that only the 

manager has access to the object representation further 

improves the security and integrity of operations. There is 

no timing error because two operations cannot access the 

same component of the object representation. 

The proposed type manager structure is depicted in 

Figure 2. The resource variable in the manager module 

represents the shared abstract object and should be stored 

in a separate segment from the local variables of the 

manager. The statement list between begin end pair is an 

initialization code. The operation module consists of a set 

of disjoint processes which are invoked by the manager with 

actual parameters. The operations do not access the shared 

variables directly. Each process accesses only the 

information presented to it by the manager plus its local 

variables. 



manager: manager-name 

resource { 
object data structure definition; 

} 

local variable declarations; 
export {list of operation} in op-module; 
manager body; 
begin statement list; end 

end manager-name 

(A)' Manager Module of Proposed Structure 

operation: op-module of manager-name 

orocess: opl (parameter list) 
· body of opl; 
end opl 

process: opn (parameter list) 
body of opn; 

end opn 

end op-module 

(B) Operation Module of Proposed Structure 

Figure 2. Manager Structure 

Implementation Technique 

The implementation proposal is message based. The 

users of an abstraction send messages to the manager 

possibly with arguments requesting a type operation. The 

21 

manager combines the arguments with the necessary components 

of the object representation before sending it to the 



operation process. On completion of an operation the 

manager updates the state of the shared object and sends a 

response message to the operation requestor. The form of 

message communication between a manager and the operation 

processes should be by reference for efficiency reasons. 
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The form of communication between a manager and the external 

environment should depend on the architecture. In order not 

to restrict possible concurrency the operating system should 

support both blocking and nonblocking communication. A 

communication is blocking if the sender must wait until the 

message operation completes. The form of communication 

between a manager and the operation processes should be 

nonblocking. The communication between the manager and the 

external environment should be blocking. A blocking 

communication has the usual semantics of a procedure call. 

There should be a request communication channel for 

each operation, a communication channel for each response 

message, and a communication channel for each operation 

process. A communication channel should have capacity for 

one message. The channels for operation requests and 

response messages interact with the external environment 

while those for operation processes are internal to the 

object manager. -The external channels should include a 

field which indicates the state of the channel (empty/full). 

The operating system message manager sets the operation 

request channel state to full after depositing a request 

message while the object manager resets it to empty after 



consumming the message. The object manager sets response 

message channel to full while the operating system message 

manager resets it to empty after delivering the message. 

23 

The operation process channels should contain a field to 

indicate the return status for type operations. The manager 

sets it to a null value while the operation process sets it 

to a non null value after performing an operation. The 

value must differentiate between normal and abnormal 

terminations. 

To schedule an operation, the object manager simply 

scans the request channels until it finds one with status 

field set to full. If the operation can be performed at the 

current state of the object it is scheduled and the status 

field is reset· and the scanning continues. To respond to an 

operation it scans the status field of the operation process 

channels until it finds one with a nonnull value. It sends 

the response message and then resets the return status field 

to null value. The manager is blocked only when it sends a 

message to the external environment. To reduce storage 

overhead, the operation process channels can also be used as 

response channels. This reduces the degree of possible 

concurrency since in this case the channel is used in a 

mutual exclusive way. 

Analysis of Object Relationship 

After the operating system has been structured into a 

set of object managers, a formal evaluation of the design is 
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required to determine if the objects preserve a 

hierarchical relationship. The analysis technique is to 

define a dependency relation between pairs of abstract 

objects. As an illustration the relation --> is used to 

denote an input-output relation among objects. If A and B 

are any two abstract objects and A --> B holds, then object 

A is used as input to produce object B. The analysis is to 

verify that the following properties are satisfied: 

1. reflexive: A --> A holds for every object; 

2. antisymmetric: If A --> B, then B --> A must not 

hold. 

3. transitive: If A --> B, and B --> C then A --> C 

holds. 

The reflexive property is trivially true. An object can 

be both an input and output to itself. The antisymmetric 

property avoids the possibility of infinite recursion. 

Symmetric relationship makes error recovery difficult 

because of the difficulty in knowing how the· objects have 

changed each others state. It is also difficult to 

determine a consistent previous state. 

The transitive property defines a flow path between objects. 

This path is.a recovery path to be traversed when an error 

is detected in an object. The preservation of these 

properties ensures that the input-output relation do not 

form a cycle. Cycle formation can increase cost of error 

recovery because it makes the determination of a consistent 

previous state very difficult. 
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To remove a symmetric relationship between any two 

objects, the objects can be merged into ~ single object with 

a new manager. The formal approach is only part of the 

design process and should be used whenever new objects are 

defined. 

The specification of a manager must include: 

1. legal sequences of operation invocations; this 

includes precedence, exclusive, and parallel constraints on 

operation invocations; 

2. blocking and nonblocking communications; and 

3. type of operations on each message channel {i.e 

send, receive, and send-receive). 

A manager must be subjected to formal proof to verify its 

logical correctness. The verification of a manager need not 

take the usual form of sequential proof (i.e., loop 

termination) because a resource manager or scheduler can be 

implemented with a nonterminating loop. What is required is 

to show that the control decisions conform to the 

specification. The verification should consist of proving: 

1. that precedence and exclusive constraints on 

operation invocations are satisfied; 

2. that the right mode of communication is employed at 

interaction points; and 

3. that the correct message operation is applied on 

each message channel. 



There are two types of precedence constraints to 

consider. The first is total precedence constraint. If A 

and B are two operations and A precedes B always, then the 

precedence constraint is total. To prove total precedence 

constraint between two operations A and B it must be shown 

that the following four conditions hold: 

(a) precondition(A) /\ precondition(B) = false; 

(b) precondition(A) /\ postcondition(A) = false; 

(c) postcondition(A) /\ precondition(B) = true; 

(d) precondition(B) /\ postcondition(B) = false. 
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The first condition prevents the simultaneous invocation of 

both operations. Conditions (b) and (d) ensure that neither 

operation succeeds itself. The third condition ensures that 

B is invocable after A. 

The second type of precedence constraint is a partial 

precedence constraint. An object that exhibits a partial 

precedence contraint is a stack with the operations push and 

pop. The invocation constraints are: 

exclusive: push, pop; 

precedence: push; (push I pop)* 

The precedence constraint specifies that a pop operation 

cannot be invoked without a previously completed push 

operation. To prove conformity to partial precedence 

constraint it is only required to show that condition (c) 

holds. Also both total and partial precedence proofs must 

show that precondition(A) becomes true before 
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precondition(B) does. 

Let S be the set of operations on an object and let x 

be an exclusive operation. Let R = S - {x}. To verify that 

the execution of the operation x is exclusive, it must be 

shown that if precondition(x) is true, then for all y in R 

precondition(y) is false. The verification of correct 

communication mode and correct application of message 

operations on message channels do not require formal proof. 

They can be accomplished by visual inspection by comparing 

the specification with the implementation code. This can 

also be complemented with compile-time and run-time 

checking. 

Environment Control 

Environment control is concerned with establishing a 

reliable execution environment for programs. An operating 

system must provide isolated process environments in order 

to reduce the scope of an error. To achieve this an 

operating system should prevent interference among 

processes. Processes can interfere through improper 

resource control, process control, and protection mechanism. 

Also, environment isolation requires that the privilege to 

access an environment should not be implied from the 

trustworthiness of a process as is usually the case in 

systems based on hierarchy of privileges. Protection 

mechanism based_ on privilege level implies an inclusion 

property. A process of higher privilege can access the 

environment of a process with lower privilege without 
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restrictions. The implication of this is that an error in 

a high privilege environment can affect lower privilege 

environment also. The error coverage cannot be easily 

determined because the information flow pattern is not well 

defined. 

The key to a reliable environment control is avoidance 

of implicit interaction between environments and within an 

environment. The issues discussed in this section are 

protection, resource control and process control. 

Protection 

A protection mechanism can be envisioned as an 

environment in which a procedure or process executes within 

a protection wall having some exit gates. Each gate leads 

to a different environment. The gates are the means through 

which the procedure or process can interact with other 

environments. The gates represent calls to other procedures 

or access to global data objects or actual parameters from 

some calling environment. 

gate 

gate Procedure· gate 

gate 
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The way the gates are defined determines the degree of 

protection provided by the wall. The gates are information 

flow outlets. Errors also propagate to neighbouring 

environments through the gates. The wall is strong when the 

gates are explicitly defined and also few in number. The 

number of gates depends to some extent on the system 

decomposition method and also on the size of a program unit. 

A system decomposed into a hierarchy of self contained 

subsystems presents a well defined interdependency among 

subsystems. A robust protection mechanism should prevent 

errors in one subsystem from extending to other subsystems. 

A protection model that supports environment isolation 

is the concept of protection domains. A protection domain 

is an environment that defines all the access rights and 

operations on objects available to a procedure within the 

domain [35]. The implementation of protection domains 

requires a means to express the access rights and operations 

on objects available to a procedure and also a means to 

check at run-time that a procedure's actions are consistent 

with its access constraints. 

Capability Based Implementation 

An elegant scheme for the implementation of protection 

domains is the capability based scheme. A capability is an 

absolute address for a virtual object [18]. Capability 

based addressing is an addressing scheme in which every 
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system object is addressed through a capability [14]. A 

capability includes the set of rights permissible on an 

object. A right that is not granted cannot be exercised by 

the holder of a capability. Example operating systems whose 

protection is based on capabilities are Hydra [45], iMAX 

[27], and CAP [44]. 

The environment of a procedure is defined by a list of 

capabilities for the objects it can access. The only means 

to access an object is by possessing a capability for the 

object. Thus a process cannot come into the execution 

environment of another process except by explicit 

arrangement (passing capabilities). Also, any detected 

error during a process execution is confined within the 

interacting environments. 

A capability based scheme has an efficiency problem. 

Perhaps this could be the reason for the paucity of 

capability machines. The efficiency problem involves both 

time and space. It takes several words to represent a 

capability. Thus many memory accesses are required for 

capability operations. A software implementation of 

capabilities can slow down the system. A consequence of 

addressing all objects by capabilities is that once the 

capability of an object is destroyed, the object is no 

longer addressable. This is called the "lost key" problem 

[37]. An alternative implementation of protection domains 

based on privilege numbers is presented in the next section. 



Privilege Number Implementation 

of Protection Domains 

The capability based scheme though flexible cannot be 

easily implemented in conventional architectures. The 

reason being that capability based addressing favors 

machines with object orientation. ·An alternative 

implementation of protection domains that is implementable 

in conventional architectures is proposed in this section. 

The proposal is based on the use of privilege numbers. 
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The structuring of an operating system based on the 

notion of data abstraction creates a set of subsystems which 

interact through well defined interfaces. Each subsystem is 

a protection domain and is assigned a unique privilege 

number. Every data object and procedure in a protection 

domain is identified with the same privilege number. The 

difference between this scheme and other privilege 

mechanisms such as supervisor/user modes and ~ecurity 

classes in security sensitive environments is that the 

privilege number does not imply a nested or an inclusion 

property. The basis for accessing any object is similar to 

capability based scheme. A process must possess the 

privilege number of the object(domain) and a secondary 

privilege which specifies the subset of the operations the 

process can perform on, the object. The object m~nager 

interpretes the secondary privilege since it is object 

dependent. 
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The system (operating system/architecture) embeds the 

privilege number in the data object and procedure descriptor 

data structures and this can be checked on first access. 

Since the assignment of privilege numbers is based on the 

static structure of the operating system, the set of 

privilege numbers is fixed and few in number. The operating 

system kernel can maintain a table which indicates the 

correspondence between privilege numbers and subsystems. A 

two-byte privilege number is sufficient for both user and 

operating system needs. The privilege numbers assigned to 

users can be reused when a user exits the system. This 

necessitates a second table to store available privilege 

numbers. 

To control the transfer of privileges, access control 

bits for read, write, copy, and delete are added to the 

privilege number. Also, to provide a finer degree of access 

control four additional mask bits are added to mask those 

rights that cannot be exported by the holder of the 

privilege. The masking sc~eme is proposed by Corsini and 

Frosini [11] for capabilities. Altogether three bytes are 

sufficient to represent access privilege to an object with 

the required restrictions. 

The advantage of this scheme over a capability based 

scheme are simplicity, time, and space efficiency. 

Simplicity comes from the static assignment. Every object 

(process/data) belongs to exactly one domain identified by a 



33 

fixed privilege number. It is time and space efficient 

because privilege number operations do not require hashing 

and few memory references are required for access checking. 

Use of Descriptors 

In some programming languages the addressing 

environment of a procedure is determined by lexical nesting 

level, its placement in a source file, and by performing 

address arithmetic on pointer variables and procedure 

parameters. Each of these schemes can increase the address 

space of a procedure. A procedure can modify unrelated 

locations through the use of pointer variables. This leads 

to an incorrect information flow. In C programming language 

where pointer manipulation is similar to array indexing, 

passing a scalar variable by reference to a procedure 

exposes adjoining locations of the calling environment to 

the called environment. The use of descriptors to describe 

pointers can prevent such exposure. 

A descriptor is a control word that describes areas of 

data and program storage [7]. The important attribute of a 

descriptor is that it defines the storage area occupied by 

an object. It can be used to provide finer degree of 

protection because any access outside the defined area can 

be detected by the system. Descriptors have been employed 

to describe arrays and segments in Burroughs B6700 [7]. The 

use of descriptors to pass procedure parameters can restrict 

interenvironment interaction. This is because descriptors 



can be used to define scalars, array slices and 

substrings. 
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A disadvantage of descriptors is that it requires space 

to store the descriptor information. However, with 

efficient coding and support for variable length descriptors 

the space overhead can be made small. In a reliability 

conscious environment this small extra storage is worth it. 

A proposed descriptor layout for a pointer variable is 

. 

Field 

type: (scalar, array, string) 
unit-size: (1, 2, 4, 8) 
length-code: (0, 1, 2, 3) 
number-of-units 
base-address 
free bits 

total 

Bits 

2 
2 
2 
8 1 16 1 24 
24 
2 

40 1 48 1 s6 

The unit-size field specifies one of the primitive machine 

data types: character (1), two-byte integer (2), four-byte 

integer/real (4), and double word (8). The length code 

specifies how many bytes used to represent the length of a 

nonscalar type. If the length code is one, then size of the 

array/string is the value stored in the next byte of the 

descriptor. The number-of-units field gives the length of 

the array/string. The base-address is the location of the 

first byte of the storage area. One of the extra bits can 

be used for access control to permit either read or write. 

When the type field is scalar the number-of-units field is 

redundant in which case the descriptor size is reduced to 32 

bits. Thus for scalars the use of descriptors do not 

introduce any storage overhead. 
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The support for descriptors in an architecture requires 

two special instructions. The first instruction is for the 

construction of descriptors and the second is a descriptor 

decode instruction. 

In languages where dynamic memory allocation and 

deallocation is supported, more than one pointer variable 

can simultaneously locate the same area. When the area is 

freed without setting all the associated pointer variables 

to a null value, subsequent use of the variables can lead to 

chaos. The area could have been reallocated to a different 

procedure or could contain garbage. In the first case the 

procedure is implicitly exposed to an external environment, 

while in the second situation an incorrect data value is 

used by the procedure. In either case there is an incorrect 

information flow. The correction of this type of error is 

very difficult because of the difficulty in locating the 

error. The damage to the system state can be extensive. 

This type of error can be detected through the use of 

descriptors and privilege numbers. One of the extra bits in 

a descriptor can be used to indicate the type of area 

(dynamic or static) referenced by the pointer. For 

dynamically allocated storage areas the privilege number of 

that procedure is prepended to the area. When an area is 

freed, the contents is cleared and any subsequent reference 

to that area by the same procedure results in a nonmatching 

privilege number. 
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Resource Management Issues 

The control of system resources is an important 

function of an operating system. Resource usage is a major 

source of interaction between processes in the system. The 

following are aspects of resource control: 

1. maintenance of resource state: 

2. keeping track of resource allocation: 

3. applying appropriate locks on resources. 

The possible states of a resource must be identified. In 

general terms the states free and allocated must be 

distinguished. A resource is free if it is not currently 

assigned to any process and is usable. In a free state, a 

resource must not contain any information from previous use 

that can affect another process in an undesired way. This 

ensures that a process does not inherit any part of another 

process environment except by explicit arrangement. A 

resource unit is allocated if it is assigned to a process. 

The state transitions of resource units must be enforced. 

In each state the possible state transitions must be defined 

with their enabling events. For instance, a memory frame 

changes from free to allocated if these conditions are 

satisfied: 

1. there is a request for memory space: 

2. the contents of the frame is cleared: 

3. the frame is free. 

A state must not be altered before an operation completes. 

For example, a disk page must not be marked free until it is 
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deleted from a file map and subsequently cleared. 

Keeping track of resource allocation involves 

maintenance of assignment information. This depends on 

whether there are identical units of the resource or not. 

For identical units the allocator must partition the units 

into equivalence classes based on the units states. One 

equivalence class must be those units currently allocated to 

some computations. Another class are those units that are 

free. Other equivalence classes are possible depending on 

type of resource. These partitions must be identified and 

the rules for transition from one partition to another must 

be enforced by the resource manager. These classes form the 

possible states of the resource. The sum over the 

cardinality of each partition must be equal to the number of 

resource units. This invariant must be true always. 

Another aspect of keeping assignment information is 

associating a resource unit with a process. This requires 

using some redundant information in the resource descriptor. 

The approach is to use lock and key scheme. When a resource 

unit is assigned to a process a lock is generated and 

included in the resource descriptor. The same lock is given 

to the process to which the resource is assigned. To a lock 

holder the lock acts as a key to unlock the resource. The 

use of the resource is permitted on presentation of the 

correct key. This ensures that only certified processes 

gain access to a resource. 
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As an illustration consider a pool of memory frames 

controlled by the memory manager. Initially all frames are 

free and cleared. To allocate a frame the memory manager 

must take the following steps: 

1. select a free frame; 

2. generate a lock for the selected frame; 

3. place the frame in allocated list; 

4. update the resource allocation information; and 

5. return frame-id, lock ) to requestor. 

To deallocate a frame the following steps must be taken: 

1. match key and lock; 

2. clear the frame; 

3. place the cleared frame in free list; and 

4. update the resource allocation information. 

In both allocation and deallocation the first step is 

crucial. If the first step fails in the case of allocation 

the request cannot be satisfied immediately. If the first 

step fails in the case of deallocation it represents an 

error situation and the operation must be rejected. There 

are three possible states of a frame - free, allocated, and 

deallocated. The permissible state transitions is shown in 

Figure 3. 

A process should exercise control on a shared data 

object for the duration of an operation. In the UNIX 

system, simultaneous editing of a file by two different 

processes is allowed. An operating system must ensure 
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integrity of operations while providing concurrency. By 

viewing file editing as a transaction with many updates 

that must not be interleaved, the operating system needs to 

support two different write locks to model the lifetimes of 

file operations. In edit mode a file should not be shared 

until it is released at the end of the edit session. 

I free ~==~:~::_::~~=---->! allocated 

-------~-----

cleared release frame 

----------------------------------~----
' deallocated I 

Figure 3. State Transition of a Memory Frame 

An example 

An important object maintained by an operating system 

is user files. Let the acces~ (rights) defined on a file 

object be execute, read, write, edit, and delete. Some 

systems do not make these distinctions but instead base file 

operations on read, write, and execute protection used for 

memory objects. The following file types are distinguished: 

directory, executable file, stream file, and record file~ 



The permitted user access for each file type is as 

follows: 

directory: read, delete; 

executable file: execute, delete; 

stream file: delete, edit, read, write; and 

record file: delete, read, write. 
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The right to delete a file must be controlled only by the 

file creator. With this approach, possession of write 

access by a process does not grant the process the right to 

delete the file. 

To control the use of a file properly by user 

processes, three types of locks will be admnistered on a 

file. The locks depend on the semantics of the operations 

on a file. The operations which do not change contents. of a 

file will be given a read lock. The operations which make a 

single update at a time will be given a short write lock 

(swl), while those operations that make many updates at a 

time will be assigned an exclusive write lock (ewl). The 

difference in swl and ewl is in the lifetimes of the file 

usage. A file with an ewl is released after a close request 

is issued by the current user. The locks for each file 

operation is: 

read: read lock; 

execute: read lock; 

delete: swl; 

write: swl; 

edit: ewl. 
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With this information, the manager is be able to prevent 

an attempt to perform an unauthorized access to a file. It 

also improves file sharing among users since write access 

and delete access are separate. 

Process Management 

The process is the active and schedulable entity in the 

operating system. It uses various system resources as it 

performs its action. Processes interact by sharing physical 

and logical resources. The interaction influences the 

execution of a process and if not properly controlled 

processes can interfere with each other in undesired ways. 

The support for concurrency improves resource utilization 

and computa·tion speed and also increases the chance of 

undesired interference. The process control functions are: 

1. specification of a process domain; and 

2. concurrency control. 

The domain of a process is part of the system 

environment it can sense or alter. This comprises physical 

resources and virtual objects such as data, code, message 

channels. A robust means to specify a domain is by use of 

capabilities or by the proposed privilege number scheme. 

Concurrency Control. A concurrency control mechanism 

must ensure that processes do not interfere with each other 

in undesired ways. The desirable attributes of a 

concurrency control mechanism are: 

1. noninterference from concurrent execution; 



2. proper ordering of operations on shared objects; 

3. unsuccessful and incomplete operations should not 

alter an object's state; and 

4. freedom from deadlock. 
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The noninterference requirement is necessary to prevent the 

invalidation of an action by one process due to a concurrent 

action by another process. This is possible if an object is 

subject to concurrent access. To guarantee noninterference 

it is imperative that the operating system locks an object 

for the duration of an operation. Alternatively the 

operating system must ensure that two processes do not have 

access to the same parts of a shared object where concurrent 

access is permitted. This is the approach taken in the 

proposed manager structure. 

The ordering of operations on shared objects is 

necessary to ensure that operations conform to a legal 

sequence. Operation ordering is concerned with enforcing 

dependency constraints between operations and also delaying 

an operation until a certain enabling event occurs. The 

proper ordering of operations can avoid extensive backup in 

the event of an error. The ordering of operations should 

depend on both the current state of the object and on the 

type of operation requested. As an example, a FIFO queue 

object with the operations insert and remove should delay a 

request for remove operation if the queue is empty. It 

could allow parallel execution of remove and insert provided 

there are previously completed insert operations. 
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The third requirement ensures that an object is not 

observed in an intermediate state by other concurrent 

operations. It also ensures that operations that terminate 

unsuccessfully do not damage the object state. This 

guarantees that an object moves from one consistent state to 

another consistent state. The enforcement of this 

requirement can reduce the scope of an error. This property 

is refered to as recoverability property in transaction 

based systems [41]. 

The fourth desirable property of any synchronization 

technique is to ensure the entire system is deadlock free. 

In a fault tolerant operating system a deadlock can be very 

costly. A deadlock recovery involves rolling back one of 

the processes involved in a deadlock to a safe state. The 

determination of a safe state is not simple because 

interactions must be undone. If a rolled back process has 

interacted with other processes then the affected processes 

must also be rolled back. Thus a single rollback can lead 

to a chain of rollbacks. Taking into consideration the 

difficulty of deadlock recovery it is safer to adopt a 

deadlock avoidance policy in the design of a fault tolerant 

operating system. 

Structuring an operating system based on the manager 

construct reduces this possibility because protocols and 

constraints on resource use are enforced in the manager. 

The fact that managers are processes not subject to 
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exclusive access also reduces the possibility of circular 

wait which is a necessary condition for deadlock. However, 

to avoid deadlock there is need to impose a call hierarchy 

on intermanager communication. A formal technique is­

necessary to reduce the amount of run-time checks. The 

following steps are suggested: 

1. determine the dependency relations of managers; 

2. verify the dependency relations; 

3. derive a synchronization graph from the 

dependencies; and 

4. implement a graph manager to enforce the 

dependencies. 

To determine dependency relations of managers it is 

only necessary to know the communication partners of each 

manager. Two managers are communication partners if there 

is a direct information transfer between them via sending of 

messages. If a manager M can send a message to another 

manager N, then M > N (read M calls N). It means N obtains 

input from M. The send operation should not be symmetric. 

That is if M calls N, then N must not call M. To avoid this 

the system kernel must support send and receive message 

primitives. 

The verification of dependency is limited to 

interaction across interfaces. The steps to be taken are: 

1. verify the existence of matching communication 

between partners; 

2. derive preconditions and postconditions for 



communication; 

3. consider all possible states of the managers taken 

together. 
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A matching communication occurs when a send statement in one 

process/manager has a corresponding receive statement in a 

second process at the point of communication. As an 

example, consider the processes M, and N: 

Process M 

• • • 
receive from N {argument list) . . . 

end M 

Process N 

• • • 
receive from M {argument list) . 

end N 

In this example M and N do not form a matching communication 

because each is waiting to receive data from the other. In 

fact both processes are permanently blocked {deadlocked). 

When a matching pair is established, the next step is to 

verify that precondition{send) /\ precondition(receive) and 

postcondition{send) /\ postcondition{receive) are true. 

This guarantees that the managers will make progress in the 

absence of deadlock. The final step is to take all managers 

together by combining all the preconditions{send) and 

postconditions(receive). The verification in this step is 

to show that some states are impossible to reach and those 

reachable are valid. A proof technique for sequential 

processes is presented in Levin and Gries [34]. 
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The synchronization graph is simply a call graph based 

on the established dependencies between managers. It 

confirms or disproves the formal proof of the previous step. 

The system is deadlock free if the ,graph is cycle free and 

the formal proof result shows a deadlock free system. If 

there is a disagreement between the graph and result of the 

formal proof the system design should be reviewed and the 

formal analysis repeated until a deadlock free system 

emerges. The advantage of the formal analysis is that it is 

done during the design stage. 

The implementation of a graph manager is to provide 

run-time checks for interprocess communications. The graph 

manager allows a manager to send a message to another 

manager if the nodes corresponding to the two managers are 

adjacent (path length between nodes is 1) and the 

interaction is a valid transition along the path. The graph 

manager is able to detect illegal interactions with this 

approach. 

Semaphore Based Process Control. The use of semaphores 

for controlling access to shared data was proposed by 

Dijkstra [15]. A semaphore is an integer variable on which 

two indivisible operations P(S) and V(S) are defined. Given 

a semaphore S, P(S) is defined as : 

If S > 0 then S := S-1 else wait; while V(S) is defined as: 

S := S+l. A process that wants to access a shared variable 

x, executes P(S) and if unsuccessful is blocked until S > 0. 
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On the other hand, if P(S) is successful, then Pl proceeds 

and after accessing the variable x executes V(S) which frees 

x. In using a semaphore the synchronization code becomes 

part of a process algorithm. There is thus no separation 

between the algorithm defining a process action and the 

constraints on its execution. This is a drawback of 

semaphore based process control mechanism. A second 

drawback is that its use is error prone. If either of P(S) 

or V(S) step is omitted, there could be concurrent access to 

a variable or a deadlock. Lastly semaphore programs are not 

well structured. The use of global variables by concurrent 

processes expose the processes to erroneous actions of each 

other. The semaphore based synchronization scheme does not 

provide a good information flow model. 

Monitor Based Process Control. The monitor concept was 

developed to enforce mutual exclusive access to shared 

resources. A monitor is a program module with a set of 

shared variables and a set of procedures that define 

operations on the shared variables. A monitor is a passive 

entity. A process that wants to use the resource maintained 

by the monitor invokes the appropriate monitor procedure 

that performs the action.- The execution of the monitor 

procedures are mutually exclusive. Hoare [23] proposed the 

use of condition variable to provide condition 

synchronization. The operations defined on a condition 

variable are signal and wait. The condition variable 

provides the means to order operations. 
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The enforcement of mutual exclusion in monitor use can 

have undesirable side effects depending on the 

implementation scheme. There are two common implementation 

schemes - disabling of interrupts and use of semaphores 

[36]. The disabling of interrupts can have a drastic effect 

on the system if critical device signals are not responded 

to on time. Interrupt inhibition has the effect of global 

exclusion on all monitors whereas intergrity of monitor 

operations only requires exclusion on individual-monitors. 

There are two pontential problems with this approach. The 

first is the possibility of missing some necessary 

interrupts and the second is the unnecessary restriction of 

possible concurrency. 

The use of semaphores to control entrance to monitors 

introduces another level of synchronization. The semaphore 

approach provides mutual exclusion on individual monitors. 

The semaphore scheme is prone to deadlock in the presence of 

nested monitor calls. 

To meet the third requirement of synchronization the 

monitor must take extra steps because it is not structured 

to meet error recoverability requirement. The steps to be 

taken by a monitor are: 

1. save the current state of the shared data at the 

commencement of an operation; or 

2. provide an inverse procedure to undo the effects of 

a normal procedure to be called when an error is detected. 



49 

If an operation is not invertible then the only option is 

step 1. Without augumenting a monitor with the extra steps 

suggested above, processes are not immuned from the effects 

of an unsuccessful operation by another process. Monitors 

have the same expressive power with semaphores. The 

advantage of a monitor over semaphore is that monitors 

enhace program modularity. 

Proposed Manager Scheme. The proposed type manager 

structure is both a synchronization and a fault tolerant 

device. The manager only encapsulates a shared data object. 

The operations on the shared data are implemented as 

processes independent of each order and the manager. The 

problem of contention among operations is eliminated because 

an operation can only be invoked by a manager. 

The manager is able to order operations properly 

because all requests for object operations are channeled to 

the manager which then calls the appropriate operation. An 

operation request that cannot be serviced immediately is 

left in the request message buffer until such a time that 

the shared object state permits it. Thus operation ordering 

is effected without scheduling queues associated with 

monitors and semaphores. 

The proposed manager has a recoverability property. 

Incomplete operations cannot modify the state of an object. 

The manager is able to distinguish between successful and 

unsuccessful operations through the return code field in the 

operation process message. The fact that an operation does 
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not have an exlusive control of a manager reduces the 

chance of deadlock. By designing the system of managers to 

have a hierachical structure deadlock can be avoided. 

Of the three synchronization techniques the proposed manager 

scheme is the most elegant. 

Summary 

Information flow issues that can improve error recovery 

have been discussed. A modified structure for sharing 

abstract data objects called a manager is presented. The 

structure hides the full representation of a shared object 

from the operations, but presents partial representations to 

operations. A formal technique for analyzing relationships 

between subsystems (managers) based on input-output relation 

is also discussed. The analysis checks if the object 

relations form a partial order. Proof technique for 

verifying individual manager scheduling algorithm is also 

presented. The use of privilege numbers to implement 

protection domains is proposed as an alternative to 

expensive capability based implementation. Also presented 

is a descriptor based scheme for representing pointer 

variables which can be used to pass parameters in procedure 

calls. 



CHAPTER IV 

ERROR DETECTION AND RECOVERY 

The reliability of a system is increased by built-in 

redundancies to detect errors and to recover from the 

errors. These redundancies take the form of additional 

components and actions which are not necessary for correct 

system behavior in a fault free system. The redundancies 

are unavoidable overheads in a fault tolerant system. The 

usual forms of redundancy are functional, information, and 

time redundancies. 

Functional redundancy is the use of standby components 

(program or hardware) to take over when a primary module 

fails as a result of a fault. The recovery block is type of 

functional redundancy for software modules. Information or 

data redundancy is the use of additional data in data 

structures to detect and correct an erroneous data state. 

Common forms of information redundancy are counts, 

identifier fields, and extra pointers. Information 

redundancy is perhaps the most applied form of redundancy in 

software systems. Time redundancy is the use of more time 

to perform an action. This include instruction, and 

function retries. All forms of redundancy are necessary to 

produce software of high reliability. 
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Error Detection 

The detection of error in a system is a crucial step in 

any reliable system. The process. involves distinguishing 

between an acceptable and unacceptable data states in the 

various stages of a computation. Run-time checks are then 

applied to check conformance of a program to its 

specification. Any deviation is then signalled as an error 

which is then followed by a corrective or recovery action. 

Since these run-time checks increase execution time of a 

program these checks should be minimized. The checks can be 

reduced by restricting them to interaction points such as 

procedure calls, and interprocess communications. A program 

module must check the validity of information received from 

other modules and information transmitted to other program 

units. Thus every program has at least two points to detect 

errors. The first is a test of the program's input data and 

the second is a test of the program's output (See Figure 4). 

---------------- module 
-->1 input check execution output check 1---> 

error error 

------>--1. failure 1---<-----

Figure 4. Possible Error Detection Points 
in a Module 
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There are three basic methods employed for error 

detection. These are structural, algorith~ic, and temporal 

methods [31]. The structural method uses a redundant sys~em 

structure to detect errors. An example is a duplex system 

operating in parallel. A computation is correct if output 

from both systems are identical and satisfy an acceptance 

criteria. The algorithmic method is a dynamic verification 

scheme. It employs run-time assertions to detect errors. 

The temporal method consists of monitoring the execution 

time of processes. A common mechanism is the use of time­

outs. 

The choice of a method depends on the size and type of 

a module. A module is classified as either functional or 

nonfunctional. A functional module does not retain its 

internal state between activations. The output of a 

functional module is always dependent on the current input. 

A nonfunctional module on the otherhand, retains its 

internal state between activations. Examples of 

nonfunctional modules are process schedulers, monitors, and 

resource controllers. The output of a nonfunctional module 

depends on the current input and the internal state. 

An error in a program unit is due to error in the input 

data, or error in the internal state for a nonfunctional 

module, or a fault in the algorithm defining a program. The 

algoritmic fault is due to a design fault in the algorithm 

(software or hardware), or a hardware failure. The 

detection of input error can be accomplished by the use of 



assertions· (validity tests) while audits and other 

detection methods are required to detect errors in the 
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internal state of a nonfunctional program unit. The use of . 
audits for error detection and correction is described in 

[8, 22]. 

The error detection algorithm should be well designed 

and subjected to formal verification techniques. The 

verification must show that the code always terminates and 

does not modify the internal state of the processing 

program. It must also show that valid states of programs 

are not rejected and that only erroneous states are 

rejected. All functional modules should be formally 

verified. The proof must show that a functional module 

terminates for both valid and invalid input data. Time-outs 

can be employed to detect incorrect behavior of any 

functional program unit induced by a fault in a hardware 

component. 

Control Error Detection 

in Nonfunctional Processes 

A mechanism to detect control errors within a 

nonfunctional module such as the manager construct proposed 

in chapter three is presented. A nonfunctional process that 

schedules the use of a shared object must include exclusive, 

precedence, and parallel constraints on operations 

invocations. The method is based on separating the control 

algorithm from the processing algorithm and then adding 
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assertion statements affecting only control data to detect 

any violation of scheduling constraints. The control 

algorithm is called a "decision-maker". The manager must 

call the decision-maker to make the next decision based on 

the current control data state and the requested operation. 

The manager confirms or rejects the decision by executing an 

assertion that must be true for the decision made. 

The decision-maker implementation consists of defining 

a finite state control device that models the operations 

invocation constraints. The state transitions are augmented 

with preconditions and events relating the control state 

data. On invocation, the decision-maker either allows the 

requested operation to proceed immediately, or delays the 

request, or signal an error if the control state data is in 

error. 

An example is a process that controls the access to 

stored data. There are two groups of processes that access 

the stored data called readers and writers [23]. The 

readers read the current data values and the writers update 

the state of the shared data. Readers are allowed to 

proceed in parallel but only one writer is permitted to gain 

access to the stored data when there are no readers. Also, 

waiting readers have higher priority than waiting writers at 

the end of a write and no new readers should be permitted if 

there are waiting writers. 

To model this control problem, the decision-maker 

defines a finite state control that satisfies the 
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constraints, a set of decision variables, the actions 

associated with each state transition, and the preconditions 

for each state transition. The states of the finite state 

control and their meanings are: 

nrnw: no readers and no writers (initial state); 

rnww: reading without waiting writers; 

rww : reading with waiting writers; 

wnwr: writing without waiting readers; and 

wwr : writing with waiting readers. The decision 

variables are: 

nw number of writers ( 0 or 1) ; 

nr number of readers ( 0 or > 0) ; 

nwr: number of waiting readers (0 or > 0) ; 

nww: number of waiting writers ( 0 or> 0). The 

following action codes are defined: 

ok . operation can proceed; . 
gw enqueue write request in waiting list of writers; 

qr enqueue read request in waiting list of readers; 

dqr: allow a waiting reader to proceed; 

dqw: allow a waiting writer to proceed. The finite 

state control is shown in Figure 5. The arcs are labelled 

with triples (a, b, c), where 

a: is a transition number; 

b: is a requested operation ( r =read, w =write); and 

c: is an action ( ok, or qw, or qr, or dqr, or dqw). 
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( 12, w, qw) 
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( 7, r, qr) 
( 14, w, qw) 
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( 13 , r, qr) 

( 4' w' 

( 4, w, qw) 

Figure 5. Finite State Control of Readers and Writers 
Synchronization Problem 

preconditions for each state transition are: 

state transition precondition 

nrnw 1 nw = nr = nwr = nww = 0 & b = r 
2 nw = nr = nwr = nww = 0 & b = w 

rnww 3 nr > 0 & (nww = nw = nwr = 0) & b = r 
4 nr > 0 & (nw = nwr = nww = 0) -& b = w 
9 nr = nw = nwr = nww = 0 

wnwr 7 (nr = nwr = 0) & nw = l & b = r 
12 (nr = nwr = 0) & nw = 1 & b = w 
6 (nr = nw = nwr = 0) & nww > 0 

rww 6 already defined 
5 (nr = nw = 0) & nwr > 0 & nww > 0 
13 nr > 0 & nww > 0 & nw = 0 & b = r 
4 already defined 



wwr 8 
11 
7 
14 

(nr = nw = 0) & (nwr > 0 & nww > 0) 
(nw = nr = nww = 0) & nwr > 0 
already defined 
nw = 1 & nwr > 0 & nr = 0 & b = w 

In order to be able to recover from control errors, 
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redundant data fields should be added to the headers for the 

waiting lists. One redundant field that is necessary is the 

number of elements in the list. Another necessary redundant 

information is the previous state of the finite state 

control. 

One advantage of this approach is that the internal 

state of a nonfunctional module is partitioned into control 

data state and shared data state. With the manager 

construct the type of error can be determined from the 

program unit that det~cts it. The manager and the 

decision-maker manipulate the control data while the 

operation procedures manipulate the shared data. This helps 

to restrict the sources of internal state error and also 

helps to categorize an error. Errors detected by a manager 

or a decision-maker are classified as control error, while 

errors detected by operations and users of the shared data 

are classified as data error. Another advantage of this 

scheme is that it facilitates error correction because the 

program units to check for type of error are known. This 

has a beneficial effect on error recovery. The error 

recovery action is restricted to the part of the internal 

state affected by an error. 
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Error Recovery 

After an error is detected a recovery action must be 

taken to undo the effects of the error and possibly repair 

the error. Error recovery is essentially re~toring the 

system to a state where processing can resume. To restore 

the system to a globally consistent state a knowledge of the 

recovery space is required. In concurrent systems such as 

an operating system the interactions of processes can 

complicate error recovery. An error in one process in a set 

of parallel processes can lead to extensive state 

restoration. 

There are two types of error recovery mechanisms called 

backward and forward error recovery. Backward error 

recovery consists of restoring the system to the state that 

existed at the beginning of a recovery point. A recovery 

point is a point in a program where the current state of a 

program is saved. Backward error recovery provides recovery 

for unanticipated errors. An unanticipated error is a 

design error present in a software or hardware from the 

outset that remained undetected during testing but manifests 

itself due to rare combination of circumstances. The system 

programmer does not specify any action for the handling of 

the error because of lack of knowledge for its existence. 

These errors are attributed to design faults in hardware and 

software. Forward error recovery is applied to anticipated 

errors. The recovery involves a corrective action to remove 



the error symptom. Forward error recovery can be handled 

through exception handling facility of a programming 

language. These recovery methods are complementary. 
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The recovery from errors affecting system data 

structures is handled effectively by audits. Audits can be 

used to recover from control state error. Since every state 

of a finite state control has a unique assertion, the 

control state audit can determine which control variable 

causes the failure of an assertion. It then uses the 

redundant fields in the waiting request list and previous 

state values to correct the error. Suppose the finite state 

control of Figure 5 is in state nrnw (initial state) and the 

value of nwr is not zero. The assertion statement for the 

state nrnw requires the variable nwr to be zero. The 

variable nwr makes the assertion fail. The audit makes use 

of the fact that the queue length for waiting readers must 

be equal to nwr. If the value of this redundant field in 

the queue header is zero and the header pointer is null, 

then the error is corrected by setting nwr to zero. 

Recovery Block Interface 

The recovery block was proposed to provide software 

fault tolerance against residual design faults in both 

software and hardware algorithms. The syntax of a recovery 
• 



block is 

ensure <acceptance test> 

by <primary alternate> 

else by <second alternate> 

else by <nth alternate> 

else error 
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The semantics of the recovery block is as follows: on block 

entry, the primary alternate is tried. This is then 

followed by the execution of the acceptance test algorithm. 

If the test yields true, then the results are accepted and a 

block exit is taken. However, if t~e acceptance test fails,_ 

backward error recovery is initiated which consists of 

restoring the program state to what it was before entering 

the block. The backward error recovery is then followed 

with an automatic transfer to another alternate and the 

sequence repeated. If no alternate passes the acceptance 

test, then the block has failed and an error condition is 

raised. 

One good advantage of the recovery block is that it 

provides a convenient checkpoint. When recovery blocks are 

nested, the application of backward error recovery on a 

failed enclosing block is costly. Consider N nested blocks 

with Ni.alternates per block. The maximum number of trials 



for theN blocks is Nl * N2 * ... * Nn. The recovery 

block interface is pr9posed to reduce the number of trials 

in certain situations. 
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When a block Pl calls another block P2 there are two 

failure possibilities. The first is the failure of the 

caller (Pl) and success of the callee (P2). The success of 

P2 implies that the input data passed to P2 by Pl and the 

results computed by P2 are valid since P2 must pass its 

acceptance test before sending any output to Pl. The 

semantics of a recovery block requires the reexecution of P2 

when the next alternate of Pl is tried. If the result of 

P2's execution can be saved the repeated execution of P2 can 

be avoided thereby reducing the cost of error recovery. The 

second possibility is the failure of the callee (P2). The 

f~ilure of P2 implies the failure of Pl also. A recovery 

action must be taken to restore the state of the program on 

entering Pl. 

The recovery block interface is only useful for the 

first failure type (i.e., failure of an outer block). The 

recovery block interface is a program unit that contains 

·algorithms and communication variables common to alternates 

of a recovery block. Tpe algorithms are assertions on input 

and output variables. The communication variables are those 

variables which are passed as parameters to other recovery 

blocks. It also includes values returned from calls to 

other recovery blocks. The recovery block interface also 

takes over the responsibility of invoking the next 



alternate. The programs that use a recovery block call 

the interface which then calls an alternate. 
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When Pl (outer block) fails, its input (nonlocal 

variables) is restored to their initial state. The states 

of the communication variables are preserved for the next 

alternate of Pl to use where result of P2's execution is 

needed. To determine if the previous (failed) alternate 

executed the call statements to other blocks a progress 

variable is included as one of the communication variables. 

The progress variable should be updated by P2 after passing 

its acceptance test. By using the recovery block interface 

the number of trials where P2 succeeds is Nl + N2 instead of 

Nl * N2. Thus the recovery block interface can reduce the 

time for executing nested recovery blocks when the inner 

block succeeds and an enclosing alternate fails. 

Software Support for Recovery 

The recovery block scheme and its implementation with a 

recovery cache [32] provides fault tolerance against 

functional program units. In operating systems where 

nonfunctional modules are common, restoring the state of 

nonlocal objects alone may not result in a consistent system 

state. The internal state of a nonfunctional module must be 

restored when an operation fails due to a failure of an 

operation or a revocation of a successful· operation due to a 

failure of a higher level module in a nested call. Language 

exception handling mechanism cannot provide this type of 



recovery because the errors are not anticipated. 

To provide error recovery in nonfunctional modules, 

operations which change the internal state must provide a 

corresponding undo procedure to reverse the change. The 

undo procedure should be part of the specification of the 

normal operation. A possible syntax for such a language 

construct is 
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Procedure <namel> ( <parameters>) undo <name2>, where 

namel is the normal operation procedure and name2 is the 

undo procedure. The implementation should ensure the 

automatic invocation of name2 when namel fails or when its 

action is being revoked. Another useful language mechanism 

is a facility to declare recovery data and statements to 

save and restore such data. A proposed mechanism is the 

inclusion of a backup data type in a language. A 

declarative syntax for such a type is 

backup <var> { <id-list> }, where var is a variable of 

type backup and id-list is a nonempty list of variables to 

be saved. The operations to be permitted on a backup data 

type are save and restore. The syntax for save and restore 

statements are 

save <var> I save <var>.id 

restore <var> I restore <var>.id 

where var is a backup data type and id is an element of id­

list. When the save or restore statement does not specify 

any id-list element the entire backup variable is implied. 
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A possible implementation of the backup data type is to 

represent a backup variable as a structure (see Figure 6). 

The size field is the number of bytes required to store all 

variables in id-list. The length field gives the number of 

variables in id-list. The base field is the address of the 

area to save the variables in id-list. The triples field is 

an array whose dimension is the length of id-list. A triple 

is represented as (loc, disp, nbyte), where loc is the 

storage address of a variable in id-list, disp is the 

displacement of the variable from base (save area), and 

nbyte is the number of bytes occupied by the variable. 

I size I length I base I triples I 

Figure 6. Backup Data Type 
Representation 

The a9vantage of a language mechanism over the recovery 

cache [32] is that it can be used in a virtual memory 

envir~nment. The save address in the recovery cache scheme 

is real address while it is a virtual address in the 

software approach. The combination of undo procedures and 

backup variables can be used to restore the internal state 
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of a nonfunctional module. 

Architecture Assistance 

for Error Recovery 

Architecture assistance for software error recovery is 

required to speed up and to automate the recovery process so 

that it is transparent to users. The architecture should 

provide two types of assistance for effective recoyery. The 

first is for error recovery within a single process or 

procedure and the second is recovery for interacting 

processes. 

To provide error recovery within a single process or 

procedure, the processor should include instructions to 

perform save and restore operations and an instruction to 

discard a recovery data when the executing context 

terminates in its instruction set. A system data structure 

called a recovery context to facilitate automatic error 

recovery is shown in Figure 7. A recovery context should be 

created for each procedure. 

PBVD I CE I TF I AUPD I . NIT PTRC 

Figure 7. Recovery Context Data Structure 
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The recovery context data structure contains information 

to enable the architecture perform a recovery action ~hen an 

error is detected or to reclaim the storage used to store 

recovery information when it is no longer needed. The PBVD 

field is an address of a backup variable descriptor for any 

backup data defined in the procedure. The CE field is a flag 

to indicate if a process terminated with (without) error. 

The TF field is a flag that indicates if the procedure or 

process is the root of a recovery chain. If the flag is not 

set, then the procedure or process is called by some other 

program unit. The AUPD field is the address of an undo 

procedure descriptor if one is specified. The NIT field 

gives the number of different procedures called by a 

procedure. Lastly the PTRC field is an array of addresses 

to other recovery contexts. The size of the array is equal 

to NIT. For nested procedure calls the recovery contexts 

constitutes a chain of recovery contexts. These contexts 

indicate the environments to be affected by an error in one 

of the procedures/processes. 

The operating system should implement a recovery 

process to traverse the recovery contexts and perform the 

neces_sary error recovery actions. The recovery context 

chain defines a recovery space. This space is bounded if 

there are no implicit interactions with other environments. 

A bounded recovery space ensures that the system is restored 

to the state that existed before an erroneos state was 

entered. To come close to .a bounded environment ideal the 



operating system design and implementation must meet the 

following requirements: 

1. processes do not interact by means of global 

memory; 

' 2. called procedures do not access memory areas 

outside the passed parameters locations; and 

68 

3. system decomposition is hierachical. The first 

requirement prevents uncontrolled interaction which can 

result in a domino effect (unbounded recovery space). The 

use of abstract objects implemented as software managers can 

enforce this requirement. The second requirement ensures 

that a called procedure modifies a well defined part of a 

calling procedure's address space. This requirement 

guarantees that when a restore operation is executed the 

calling procedure's envi~onment is completely reestablished. 

The second requirement can be met by using address 

descriptors to pass parameters. The third requirement 

defines an_ interaction path that can be represented by a 

recovery context chain. A system that is deadlock free is 

also known to be free from the domino effect [40]. The 

satisfaction of requirements one and three help to reduce 

the probability of deadlock considerably. If a system is 

domino fre~, then the recovery context chain is a bounded 

recovery space·. 
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Summary 

A general error detection and recovery approach has 

been presented in this chapter with emphasis on backward 

error recovery. A mechanism to detect control errors in a 

nonfunctional module based on decomposing the module into 

three types of submodules called manager, decision-maker, 

and operations is presented. The main advantage of this 

scheme is that the internal state of a nonfunctional module 

is partitioned into control state and data state which helps 

to localize error recovery. The use of a recovery block 

interface is proposed to reduce the cost of backward error 

recovery in nested procedure calls. Also, a linguistic 

mechanism for a programmer defined recovery is discussed. A 

recovery context which defines a recovery space for an 

exec~ting program is proposed as a means to automate system 

error recovery. 



CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

Summary 

The study has pr~sented methods to restrict the flow of 

information in a computer system and its impact on error 

recovery in an operating system. There are two dimensions 

of information flow control. The first concerns how to make 

the access environment of a program as small as possible 

while the second focuses on the control of interaction among 

competing and cooperating processes. 

On the restriction of access environment a p~ogram 

structure called a manager is proposed. This structure 

provides two levels of restriction. The first is hiding the 

representation of an abstract object from the users of the 

object which is the only form of restriction provided by 

monitors. The second level is the presentation of a partial 

view of an object representation to operations. This level 

limits the damage an operation can cause to the state of a 

shared data. The manager structure partitions the internal 

state data of an encapsulated object into control and shared 

data s~ates manipulated by specific program units. The 

benefit of a partitioned data state is that error 

categorization and recovery can be localized. 
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Further restriction of the access environment of a 

process can be achieved through the use of a descriptor to 

represent address variables. The. use of descriptors to 

represent address variables ensures that unrelated memory 

cells are not mutilated through addressing error. Its use 

in passing parameters confines a called procedure's actions 

to a well defined subset of a caller's address space. 

The orderly interaction of processes can be achieved 

through robust resource and process control strategies. The 

proposed manager structure is both a resource management and 

a synchronization module. Its structure separates the 

control algorithm from operations. Its implementation 

results in a self-checking software because a decision is 

verified with an assertion before it is carried out. The 

separation of control algorithm from operations reduces the 

sources of internal state error of resource and process 

controllers. A good resource control strategy should avoid 

implicit interaction by ensuring that resource units make 

the right transitions from one state to another under proper 

circumstances. 

The recovery from an error depends on knowing what is 

to be restored, the scope of an error, and the type of 

failure. The use of a language mechanism to specify 

recovery data and procedures can solve the problem of 

knowing what to restore. The recovery context chain is 

sufficient to determine error scope in a well structured 
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system without implicit interaction. The recovery block 

is the most general technique for software fault tolerance. 

It is adequate for providing fault tolerance in functional 

modules. Error recovery in functional modules can be 

achieved by saving the values of nonlocal variables on block 

entry and then restoring these saved values on failure of 

the module. The recovery block provides automatic 

reconfiguration of the modules since an equivalent program 

unit (alternate) is tried when a module fails. The 

specification of undo procedures to reverse actions of 

operations provides the means to apply backward error 

recovery technique in a nonfunctional module. The recovery 

block interface proposal can reduce the amount of backward 

error recovery in nested block calls when an outer block 

fails and the inner block succeeds. 

Architectural support is necessary to implement a 

general and automatic fault recovery in an operating system. 

The minimum assistance required is the inclusion of 

instructions to create recovery context and backup data 

descriptors, save and restore recoverable data. The 

operating system should provide an error recovery process to 

be invoked when an error condition is raised. 

Conclusions and Recommendations for Further Work 

Error recovery in operating systems can be confined to 

the immediate environment of a failed process by employing 

design and implementation techniques that restrict 
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information flow through the system. The manager 

construct combined with a descriptor-based parameter passing 

mechanism can control the flow of information and can avoid 

implicit interactions. However, for pervasive errors 

(errors whose damage extends beyond the failed environment), 

the operating system should employ some elaborate techniques 

such as system reinitialization and us~ of audits to examine 

the system data structures. With good system structure and 

explicit information sharing mechanism, the frequency of 

pervasive errors can be drastically reduced. The proposals 

made in this study involve some space and time overhead but 

their impact on performance is not known. An area for 

further study is an implementation of these proposals to 

ascertain their effectiveness •. 
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