
TEMPORAL LOCALIZATION OF ERROR RECOVERY -
IN OPERATING SYSTEMS BY RESTRICTING

. INFORMATION FLOW

By

JONATHAN M. ASURU
\1

Bachelor of Science

University of Lagos

Lagos, Nigeria

1979

Submitted to the Faculty of the
· Graduate College of the
Oklahoma State University
in partial fullfillment of

the requirements for-
the Degree of

MASTER OF SCIENCE
December, 1985

Th 1S

UNiVERSITY

TEMPORAL

IN OPERATING SYSTEMS BY RESTRICTING

INFORMATION FLOW

Thesis Approved:

Thesis Adviser

c£l c:~) _.ef!:1~~a~c~~--··

~a"!r1Y th!JG~ollege

ii
123{~316

PREFACE

This study focuses on how to confine error recovery to

the immediate environment of a failed computation (process)

by restricting information flow through the system. A

module called a manager that restricts the access of

operations (procedures) to shared data representation is

proposed. The use of descriptors to represent address

variables (pointers) and procedure parameters is also

proposed to restrict the amount of information available to

a procedure. A linguistic mechanism to define recoverable

data and inverse procedures (procedures that reverse the

actions of another procedure) to undo completed actions is

presented. A system data structure that defines a recovery

environment to support system implemented recovery is

presented.

I wish to thank my committee members Dr. S. A. Thoreson

and Dr. K. Davis for their contributions and advice. My

special thanks goes to Dr. G. E. Hedrick, my major adviser,

for his patience, encouragement, and for his assistance

throughout my stay at Oklahoma State University. May the

Almighty God bless them all.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

Problem Statement .

II. LITERATURE REVIEW •••.

Page

1

3

7

III. INFORMATION FLOW CONTROL SCHEMES . 16

System Structuring. • • • • . • . . • • 16
Modified Object Manager Structure. 17
Implementation Technique . . . • . 21
Analysis of Object Relationship. • 23

Environment Control • • . . • . • • • 27
Protection • • . . • . • • • • • 28
Capability Based Implementation. • 39
Privilege Number Implementation

of Protection Domains. • • • • • 31
Use of Descriptors . • • • • 33

Resource Management Issues. . . • • . • 36
Process Management. • • • • • • . . • • 41

Concurrency Control. • • . • . • . 41
Semaphore Based Process Control. . 46
Monitor ~ased Process Control. 47
Proposed Manager Scheme. . . 49

Summary • • • • • • • • • • • . 50

IV. ERROR DETECTION AND RECOVERY 51

Error Detection • . . • . . • . • • • • . . 52
Control Error Detection in Nonfunctional

Processes • • . . • . • • . 54
Error Recovery. • • • . • . • . • • • • • • 59

Recovery Block Interface.. . • 60
Software Support for Recovery • • . • • 63
Architecture Assistance for Recovery. • 65

V. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Summary
Conclusions and Recommendations •

SELECTED BIBLIOGRAPHY

iv

70

70
72

74

Figure

1.

2.

3.

4.

5.

6.

7.

LIST OF FIGURES

Structure of Abstract Data Type Module •.

Manager Structure • • . . .
State Transition of a Memory Frame ••

Possibile Error Detection Points
in a Module • • . • • . . • •
Finite State Control of Readers and Writers
Synchronization Problem • • • • • • ••

Backup Data Type Representation •

. .

Recovery Context Data Structure •

v

Page

19

21

39

52

57

65

66

CHAPTER I

INTRODUCTION

With the increasing use of computers in very critical

environments such as aircraft control, electronic fund

transfer systems, and electronic switching systems a new and

important attribute is being required of the software for

these systems. This attribute is reli~bility. A reliable

software is one that can detect and recover from most common

errors. The current approach to software fault tolerance in

those critical systems is by massive redundancy in code,

data, and hardware components. General purpose systems

cannot afford this level of redundancy because of

prohibitive cost. In order to be able to develop reliable

software, the operating system itself must be designed to be

robust and also provide facilities for the development of

fault tolerant software systems.

A possible iterative approach for building fault
.

tolerant software is:

1. design an algorithm that meets the specification of

the software assuming an error-free execution environment;

2. derive constraints for the correctness of the

algorithms;

3. add algorithms to check for the violation of the

1

constraints;

4. specify action to be taken when a constraint

violation is detected; and

5. repeat steps 1-4 as necessary.

2

The algorithm developed in step one may contain some design

flaws. Some of the flaws can be detected and corrected by

applying a correctness proof on the algorithm or during

system testing. It is also possible that after testing and

application of correctness proof some design !laws still

remain which show up in the production environment. Even

when all errors and design flaws have been eliminated, a

hardware failure can cause a failure of the software. The

algorithm to implement step three constitute the error

detection code. It may take the form of assertions, or the

form of audits and processes that monitor the execution of

other processes depending on the type of error being

detected [22]. The algorithm for step four is the error

recovery code. A recovery action makes the system oblivious

of the error by either correcting the error, or repairing

the cause of the error or by restoring the system to a

previously known error-free state (checkpoint). A recovery

action takes the system to a point where normal operation

can continue. A software system that is developed by

following steps 1-4 is called fault tolerant or reliable

software. The code and data that are used to implement

steps three and four constitute the redundancy in the

software. The inclusion of redundancy increases the ·cost of

developing and using the software. Development cost is

increased from writing more code than is necessary. The

usage cost is incurred by executing more code than is

necessary in error-free ca~es.

3

Error recovery is pivotal for the reliable operation of

a fault tolerant software. Error recovery involves changing

the state of the data item(s) affected by an error to a

state where reliable operation can proceed. To reduce the

cost of error recovery the system state (system data)

affected by an error should be made as small as possible.

This can be achieved through robust system design. The

design dimension include system decomposition technique and

information exchange mechanisim between modules. The two

dimensions taken together can create unforseen

interrelationships between modules which can make successful

error recovery increasingly difficult. A system

decomposition method which reduces the objects accessible to

a module and which employs explicit mechanism for

intermodule interaction can reduce error recovery cost.

Problem Statement

An operating system is an important piece of software

in a computer system. It is the administrator of the run­

time environment of a computer system. · The complexity of an

operating system is such that it is very difficult to

eliminate all errors during system testing. Errors

undetected during system testing may manifest themselves in

4

production environment due to rare combination of

circumstances, such as unanticipated resource usage pattern.

Some errors due to timing are difficult to detect during

testing because of the difficulty in making up the test data

that can cause such errors. This implies that one cannot be

absolutely confident that a complex software such as an

operating system is error free. To provide reliable

operation, extra code and information for error detection

and recovery must be included in the design.

Both error detection and recovery algorithms are

redundant actions because they are not necessary in a

fault-free system. During error recovery all interactions

the faulty process participated in must be identified and

undone to restore the system to a state where normal

processing can continue. In a concurrent system the success

of any eiror recovery effort hinges on the correct

determination of the faulty environment. A faulty

environment is the set of processes directly or indirectly

affected by an error. The structural relationship of the

processes, the form of interaction (information exchange),

and the size of the faulty environment affects the cost of

recovery. This study is focused on how to reduce the cost

of recovery by restricting the information flow among

processes.

The temporal localization of error recovery in

operating systems is focused on the restriction of

information flow. It is concerned with the confinement of

error recovery to the immediate environment of a failed

process. An effective means to determine the immediate

environment is required. The restriction of information

flow can help define a damaged environment. It does not

5

involve a determination of the cause of an error in order to

repair or correct the error. The restriction of information

flow serves a dual purpose. The first is that it ensures

that errors do not have wide coverage. The coverage of an

error is the number of execution environments (processes)

affected by an error. The second is that it can reduce the

cost of error recovery.

There are two aspects of information flow control

addressed in the study. The first concerns a method for

restricting the amount of information a procedure can

access. The objective here is to contain the actions of a

process within its immediate environment.

The second aspect is concerned with how to detect and

to recover from control errors for processes that retain

their execution histories to ensure that future actions are

consistent with their recent past. A control error is an

incorrect scheduling decision. Processes that belong to

this class include resource schedulers. A recovery action

involves a repair or a restoration of the system to a

previous consistent state to prevent further damage. Error

repair involves identification of the cause of an error,

determining its location, and then fixing it. The

restoration of the system to a consistent state involves

saving enough state information to reconstruct the system

state. The study is concerned with the state restoration

aspect of error recovery.

The main contribution of this study are:

1. a part of an operating system called a manager to

allow the sharing of abstract objects, and

2. the definition of a recovery context.

The manager separates the protection domain of the shared

object and the object operations (procedures) and also

partitions the data space into shared data and control data

with each data subspace being manipulated by specific

program units within the manager. This helps to localize

error recovery by restricting the source of an error to one

subspace. The recovery context contains necessary

information for the operating system to initiate error

recovery on behalf of a failed process. The recovery

context also serves the purpose of defining an immediate

recovery environment.

6

The main thrust of this study has been defined. In the

next chapter related work in operating system and software

reliability is reviewed. The third chapter focuses on

information control mechanisms. Chapter IV focuses on error

detection with emphasis on control error and recovery

mechanisms. A summary of the study and concluding remarks

are presented in Chapter v.

CHAPTER II

LITERATURE REVIEW

The correct operation of a computer system depends on

the proper functioning of the hardware components and the

program modules comprising the operating system. Hardware

components have employed correcting codes such as parity

codes, Hamming code, and self-checking circuits to detect

and correct errors in transmitted information [43]. Time­

outs are also employed to detect malfunctioning hardware

devices.

Residual design faults have been attributed to many

errors in software systems [38]. Design faults are defects

in the specification of a program and its implementation

algorithms. They are present from the beginning and

manifest their presence when executed with some input data

values and some rare combination of dircumstances. Design

faults in a hardware algorithm can also cause a software

program to malfunction~ Endres [16] analysis of errors in

IBM DOS/VS operating system revealed that interaction among

processes and implementation of the design decisions are

significant causes of errors. Some of these errors are due

to incorrect process switching, incorrect resource

allocation, necessary interrupts not responded to, etc.

7

8

Some implementation errors were attributed to failure to

initialize/reset variables on entry/exit from procedures. A

similar investigation of errors in real-time systems by

Glass [20] showed that timing errors, omitted logic, and

implementation errors were prevalent.

The advent of multiprograming systems increased the

protection problem. Processes must be protected from

activities of each other to prevent interference. Some

operating systems employ two modes of operation called the

user state and the supervisor state. This simple protection

model protected the operating system from errors in the user

programs. The operating system cannot protect itself

against its own errors. Example systems include IBM/360 and

IBM/370 series of machines. Protection mechanisms such as

file password, and memory protection keys have been used to

guard unauthorized access to objects and crossing of address

space boundaries. These separate protection mechanisms for

different system resources increases the complexity of the

operating system. This makes verification difficult [37].

The use of capabilities have been advocated as an

alternative approach to protection, resource and process

control [13, 37, 44]. A capability is an indirect pointer

to an object with the permissible access rights on the

object explicitly specified. In this scheme the right to

access a resource is by possessing a capability for it.

Capabilities are used to define execution domain of a

proccess. Linden [35] proposed small protection domains as

9

a means to realize reliable and secure operating systems.

In a small protection domain model, a process executes in

different execution domains as it runs. Examples of

operating systems based on capabilities are Hydra [45], CAP

[44], and Intel's iMAX [27]. Capabilities are useful for

interdomain addressing. Interdomain protection is one way

of restricting information flow. However, there is the

problem of intradomain addressing such as overwriting data

areas through address variables, redefining parameters in a

procedure thereby gaining access to more area of the calling

environment. These are some subtle ways of incorrect

information flow.

The use of redundant code and data have been employed

to detect errors in software. Redundant code is in the form

of audit programs and process monitors. Data redundancy is

the use of additional data fields for the purpose of error

detection and correction. The common form of data

redundancy are counts, identifier fields and extra pointers

[8]. Data redundancy is widely used to provide software

fault tolerance. An audit program is a software module that

is responsible for ensuring that a system's data structure

is in a consistent state. An audit program is invoked

periodically to check the state of a storage structure to

detect any erroneous state. An audit program has two

functions. One function is to detect an erroneous state in

a storage structure while the second is to correct the

erroneous state by making use of redundant information in

10

the storage structure. A process monitor observes the

execution of another process to detect incorrect behavior

such as excessive use of resources(memory, disk, and CPU

time) [22]. The DMERT operating system for Bell system

3B20D duplex processor is one that makes extensive use of

audit programs and redundant fields in system data

structures to enhance error detection [22]. Audits in DMERT

do not verify functions. They are limited to checking the

integrity of critical data structures and resources. The

operating system provides a facility for system processes to

request for initialization after an error has been detected

throuh a trap mechanism. The environment of DMERT is a

duplicated one. The 3B20D system is a duplex system with

loose interconnection between the processors. Other

hardware components are also duplicated to ensure

availabilty. Memory and disk updates are made to both

active and redundant systems. The duplicated system state

is one major factor for the high degree of reliability and

availability in 3B20D/DMERT. The operating system supports

a mechanism for software units to be updated through an

update facility. However, it does not implement the

recovery block concept.

Process pairs have been implemented in some distributed

systems. In these systems there are two copies of every

process on different processors. These systems are mainly

designed to provide recovery from hardware failures [5].

Randell [38] proposed the recovery block construct to

11

provide fault tolerance in software programs. A recovery

block consists of a primary block with alternate blocks and

a validation test which must be passed. A recovery block is

free from errors if one of the blocks (primary/alternate)

passes the validation test. To be useful the primary block

and each alternate must be of independent design. This

construct provides a mechanism for the temporal

reconfiguration of a software system. Thus the scheme

improves system availability while providing fault

tolerance. The recovery block provides fault tolerance

against unanticipated errors (design faults) but its use is

limited to functional program units. Since many operating

systems programs retain their internal state between

activations the recovery block construct must be supporte~

with mechanism to reverse the effects of internal state

changes when state restoration is required.

A system structuring technique called data abstraction

has been employed in the design of some operating systems

[45, 27]. Programs modules based on this concept are called

abstract data types. Data abstraction hides the internal

representation of a data object from external modules but

provides entry points to access the data object through the

defined procedures. The procedures of the abstract data

type module have full access to the data representation.

When data abstraction is implemented with capability-based

addressing, the resulting system is a set of protected

subsystems [19, 35]. A monitor is a language construct that

12

enforces the correct sequencing of operations and data

access protocol on a shared data object. It is employed in

operating systems as synchronization device. A monitor and

a semaphore are functionally equivalent but a monitor based

process synchronization is robust. In a semaphore based

scheme, adherence to resource access rules depends on the

voluntary cooperation of the users of the resource. In a

monitor based scheme, resource access rules and constraints

are handled by the monitor on behalf of the users. A

monitor provides the means for the safe sharing of abstract

data types in an operating system. A monitor is a special

implementation of an abstract type by including

synchronization code. A monitor enforces mutual exclusive

execution of the operations. The sh?rtcoming of abstract

data type implementation is in the area of information

access restriction. The procedures of these abstract

modules have full access to the encapsulated data. If the

procedures are only allowed to access the subcomponents of

the data objects they require to complete their execution

then, sources of errors can be reduced and error recovery

can be made less expensive. A modified data abstraction

technique that places the shared data object and the

operation procedures in different protection domains but

still maintains the integrity of the operations is presented

in Chapter III.

Error recovery is pivotal to any system that is to

provide reliable operation. It is an important aspect of

13

localizing errors in a system. The recovery block scheme

provides a systematic error recovery which is to restore the

program to the state that existed before the current

activation of the block. ·This type of recovery is called

backward error recovery. The state restoration involves

only the nonlocal variables (parameters and global

variables) that the failed block modified. State

restoration involving a set of interacting parallel

processes can lead to a situation called "domino effect". A

domino effect occurs when a roll-back of a failed process

causes a roll-back of another process which causes further

roll-back and so on. It has been shown that a system of

interacting parallel processes is free from domino effect if

the system is deadlock free [40]. To avoid a domino effect

Randell [38] proposes a data transfer mechanism called a

conversation. A conversation is a recovery block covering

two or more processes [38]. Processes involved in a

conversation are required to synchronize their exit. That

is a process cannot leave the conversation until all the

participating process have passed their acceptance tests.

The conversation construct has the potential to deadlock if

the process structure exhibit interdependencies which

results in complex interactions. Other constructs that have

been proposed to coordinate the recovery of a set of

cooperating parallel processes are named-link recovery and

multiprocess recovery [40].

14

A named-link recovery block spans one or more recovery

blocks while a multiprocess recovery block is a single

recovery block spanning one or more processes. In a named­

link recovery block, the coupling between processes is loose

and this makes avoidance of a domino effect or coversation

deadlock difficult. With multi~rocess recovery block the

linkage between processes is tight. This eliminates both

deadlock and domino effect. The disadvantage of the

multiprocess recovery construction is that the code for a

process is fragmented and scattered. Also, semantics of

some constructions are not clear.

An experimental recovery cache to hold recovery data

has been implemented on the PDP-11 [32]. The recovery cache
.

provides recovery for only main memory objects and the

addresses used are real addresses. Thus the program must

not be overlayed during the execution of a recovery block.

A software implemented recovery ~ache with architectural

support to speed-up the operation is required to support

flexible error recovery.

The majority of failures of computer systems is

attributed to transient faults [31] in the hardware and

design faults in software. To reduce the overhead

processing associated with error recovery, it is necessary

that the time for recovery from frequent failure modes be

made small. The error recovery time depends on the extent

of damage which depends on the constraint on information

15

flow through the system. The constraint on information

flow in turn depends on how the system is structured [3].

To reduce the recovery time the system must avoid implicit

interaction and information exchange between processes must

be limited to the minimum required for a receiving process

to complete its action. Also the actions of a process

should not produce unidentifiable side effects. The

elimination of unwanted side effects can reduce failures due

to some remote causes to a very small proportion. This is

to ensure that for most of the time the recovery action

performed within the affected process is sufficient to

remove the error symptom. How this can be done through

information flow restriction is the main thrust of this

study.

CHAPTER III

INFORMATION FLOW CONTROL SCHEMES

Information flow pattern among interacting programs can

have a significant effect on error recoverability of an

operating system. In an uncontrolled information flow

environment errors can have wide coverage. This can make

error recovery costly and consequently degrade system

performance. This chapter is concerned with techniques to

restrict the flow of information. The chapter is focused on

system structuring and environment control.

System Structuring

An operating system structure has an impact on

modifiability, verifiability, and information flow. A well

structured operating system should make other modules

immuned from changes made to one of its modules.

Verifiability is concerned with application of formal

techniques to prove the correctness of the system.

Information flow concerns the interaction of processes.

Modifiability, verifiability, and information flow all

affect operating system reliability. To structure an

operating system to restrict information flow, relationship

between modules comprising the operating system must be well

16

17

defined.

The layered approach has been employed in the

development of operating systems [15]. In the layered

approach the operating system is partitioned into a number

of self contained layers. The lowest layer being the

kernel. Each higher level layer makes use of the functions

provided by the immediate lower level layer. The layered

approach leads to the development of modular systems. Also,

since each layer is self contained they can be verified and

developed independently. The problem with the layered

approach is partitioning the system to maintain the strict

hierarchical relationship between layers. A structuring

technique is proposed in the next section which retains the

features of a modular system but in addition improves the

least privilege principle. The least privilege states that

a procedure should be given the smallest capability it needs

to complete its action [19].

Modified Object Manager Structure

The principle of system closure has been cited as the

bases for secure and error-tolerant execution environments

[13]. The closed system principle states that no process_or

procedure has any capability which has not been explicitly

granted. The implication of this principle is that the

effects of all operations on a closed system shall be

confined within that system. The ideal situation is a

completely isolated and disjointed environments. While this

is not possible because of process interaction the other

best alternative is to restrict the interaction.

18

A structuring method that leads to the development of

isolated environments is data abstraction. Data abstraction

is a modularization technique that encapsulates a set of

data objects and procedures that perform operations on the

objects. Access to encapsulated data objects is through the

invocation of operation procedures. The operations have

full access to the data representation. Constructions

similar to data abstraction are monitors, resources in

synchronizing resources [1], and packages in Ada*

programming language. Architectures and languages that

support the use of data abstraction are said to be object

based. Some .operating systems that have incorporated object

orientation in their design are Hydra [45], iMAX [27], and

CAP [44]. These operating systems provide a finer degree of

protection. The encapsulated data objects and procedures

are usually called type managers or object managers. The

usual structure of an abstract type module is shown in

Figure 1.

The alternative structure divides the abstract type

module into two modules. One module contains the shared

data object and is called the manager. The second module

contains the operations on the abstract type. The two

modules exists in separate protection domains. The

functions of the manager module are:

1. maintains operations view of the object;

2. makes available the necessary components of an

object representation to an operation; and

3. synchronize the operations on the object.

type name
variable declarations;
statement list;

procedure op1(parameters)
body of op1

end op1

procedure opn (parameters)
body of opn

end opn

end name

Figure 1. Structure of Abstract
Data Type Module

19

To maintain operations view of object representation

the manager only needs to identify the components and

subcomponents of the data structure used by an operation.

To present an operation with the necessary components of an

object representation, the manager needs to use the

operations view of an object and perform a projection

operation similar to a relational database projection

operation to construct a sub-object which is then made

20

available to the operation. Since this sub-object exists

in a different memory location, any error that occurs during

a type operation affects only the sub-object. Error

recovery can be accomplished by discarding the sub-object.

The manager provides synchronization by scheduling

operations when the state of the object permits it.

Requests for operations that cannot be performed immediately

based on the current state of the object are delayed until

an enabling state change occurs. The fact that only the

manager has access to the object representation further

improves the security and integrity of operations. There is

no timing error because two operations cannot access the

same component of the object representation.

The proposed type manager structure is depicted in

Figure 2. The resource variable in the manager module

represents the shared abstract object and should be stored

in a separate segment from the local variables of the

manager. The statement list between begin end pair is an

initialization code. The operation module consists of a set

of disjoint processes which are invoked by the manager with

actual parameters. The operations do not access the shared

variables directly. Each process accesses only the

information presented to it by the manager plus its local

variables.

manager: manager-name

resource {
object data structure definition;

}

local variable declarations;
export {list of operation} in op-module;
manager body;
begin statement list; end

end manager-name

(A)' Manager Module of Proposed Structure

operation: op-module of manager-name

orocess: opl (parameter list)
· body of opl;
end opl

process: opn (parameter list)
body of opn;

end opn

end op-module

(B) Operation Module of Proposed Structure

Figure 2. Manager Structure

Implementation Technique

The implementation proposal is message based. The

users of an abstraction send messages to the manager

possibly with arguments requesting a type operation. The

21

manager combines the arguments with the necessary components

of the object representation before sending it to the

operation process. On completion of an operation the

manager updates the state of the shared object and sends a

response message to the operation requestor. The form of

message communication between a manager and the operation

processes should be by reference for efficiency reasons.

22

The form of communication between a manager and the external

environment should depend on the architecture. In order not

to restrict possible concurrency the operating system should

support both blocking and nonblocking communication. A

communication is blocking if the sender must wait until the

message operation completes. The form of communication

between a manager and the operation processes should be

nonblocking. The communication between the manager and the

external environment should be blocking. A blocking

communication has the usual semantics of a procedure call.

There should be a request communication channel for

each operation, a communication channel for each response

message, and a communication channel for each operation

process. A communication channel should have capacity for

one message. The channels for operation requests and

response messages interact with the external environment

while those for operation processes are internal to the

object manager. -The external channels should include a

field which indicates the state of the channel (empty/full).

The operating system message manager sets the operation

request channel state to full after depositing a request

message while the object manager resets it to empty after

consumming the message. The object manager sets response

message channel to full while the operating system message

manager resets it to empty after delivering the message.

23

The operation process channels should contain a field to

indicate the return status for type operations. The manager

sets it to a null value while the operation process sets it

to a non null value after performing an operation. The

value must differentiate between normal and abnormal

terminations.

To schedule an operation, the object manager simply

scans the request channels until it finds one with status

field set to full. If the operation can be performed at the

current state of the object it is scheduled and the status

field is reset· and the scanning continues. To respond to an

operation it scans the status field of the operation process

channels until it finds one with a nonnull value. It sends

the response message and then resets the return status field

to null value. The manager is blocked only when it sends a

message to the external environment. To reduce storage

overhead, the operation process channels can also be used as

response channels. This reduces the degree of possible

concurrency since in this case the channel is used in a

mutual exclusive way.

Analysis of Object Relationship

After the operating system has been structured into a

set of object managers, a formal evaluation of the design is

24

required to determine if the objects preserve a

hierarchical relationship. The analysis technique is to

define a dependency relation between pairs of abstract

objects. As an illustration the relation --> is used to

denote an input-output relation among objects. If A and B

are any two abstract objects and A --> B holds, then object

A is used as input to produce object B. The analysis is to

verify that the following properties are satisfied:

1. reflexive: A --> A holds for every object;

2. antisymmetric: If A --> B, then B --> A must not

hold.

3. transitive: If A --> B, and B --> C then A --> C

holds.

The reflexive property is trivially true. An object can

be both an input and output to itself. The antisymmetric

property avoids the possibility of infinite recursion.

Symmetric relationship makes error recovery difficult

because of the difficulty in knowing how the· objects have

changed each others state. It is also difficult to

determine a consistent previous state.

The transitive property defines a flow path between objects.

This path is.a recovery path to be traversed when an error

is detected in an object. The preservation of these

properties ensures that the input-output relation do not

form a cycle. Cycle formation can increase cost of error

recovery because it makes the determination of a consistent

previous state very difficult.

25

To remove a symmetric relationship between any two

objects, the objects can be merged into ~ single object with

a new manager. The formal approach is only part of the

design process and should be used whenever new objects are

defined.

The specification of a manager must include:

1. legal sequences of operation invocations; this

includes precedence, exclusive, and parallel constraints on

operation invocations;

2. blocking and nonblocking communications; and

3. type of operations on each message channel {i.e

send, receive, and send-receive).

A manager must be subjected to formal proof to verify its

logical correctness. The verification of a manager need not

take the usual form of sequential proof (i.e., loop

termination) because a resource manager or scheduler can be

implemented with a nonterminating loop. What is required is

to show that the control decisions conform to the

specification. The verification should consist of proving:

1. that precedence and exclusive constraints on

operation invocations are satisfied;

2. that the right mode of communication is employed at

interaction points; and

3. that the correct message operation is applied on

each message channel.

There are two types of precedence constraints to

consider. The first is total precedence constraint. If A

and B are two operations and A precedes B always, then the

precedence constraint is total. To prove total precedence

constraint between two operations A and B it must be shown

that the following four conditions hold:

(a) precondition(A) /\ precondition(B) = false;

(b) precondition(A) /\ postcondition(A) = false;

(c) postcondition(A) /\ precondition(B) = true;

(d) precondition(B) /\ postcondition(B) = false.

26

The first condition prevents the simultaneous invocation of

both operations. Conditions (b) and (d) ensure that neither

operation succeeds itself. The third condition ensures that

B is invocable after A.

The second type of precedence constraint is a partial

precedence constraint. An object that exhibits a partial

precedence contraint is a stack with the operations push and

pop. The invocation constraints are:

exclusive: push, pop;

precedence: push; (push I pop)*

The precedence constraint specifies that a pop operation

cannot be invoked without a previously completed push

operation. To prove conformity to partial precedence

constraint it is only required to show that condition (c)

holds. Also both total and partial precedence proofs must

show that precondition(A) becomes true before

27

precondition(B) does.

Let S be the set of operations on an object and let x

be an exclusive operation. Let R = S - {x}. To verify that

the execution of the operation x is exclusive, it must be

shown that if precondition(x) is true, then for all y in R

precondition(y) is false. The verification of correct

communication mode and correct application of message

operations on message channels do not require formal proof.

They can be accomplished by visual inspection by comparing

the specification with the implementation code. This can

also be complemented with compile-time and run-time

checking.

Environment Control

Environment control is concerned with establishing a

reliable execution environment for programs. An operating

system must provide isolated process environments in order

to reduce the scope of an error. To achieve this an

operating system should prevent interference among

processes. Processes can interfere through improper

resource control, process control, and protection mechanism.

Also, environment isolation requires that the privilege to

access an environment should not be implied from the

trustworthiness of a process as is usually the case in

systems based on hierarchy of privileges. Protection

mechanism based_ on privilege level implies an inclusion

property. A process of higher privilege can access the

environment of a process with lower privilege without

28

restrictions. The implication of this is that an error in

a high privilege environment can affect lower privilege

environment also. The error coverage cannot be easily

determined because the information flow pattern is not well

defined.

The key to a reliable environment control is avoidance

of implicit interaction between environments and within an

environment. The issues discussed in this section are

protection, resource control and process control.

Protection

A protection mechanism can be envisioned as an

environment in which a procedure or process executes within

a protection wall having some exit gates. Each gate leads

to a different environment. The gates are the means through

which the procedure or process can interact with other

environments. The gates represent calls to other procedures

or access to global data objects or actual parameters from

some calling environment.

gate

gate Procedure· gate

gate

29

The way the gates are defined determines the degree of

protection provided by the wall. The gates are information

flow outlets. Errors also propagate to neighbouring

environments through the gates. The wall is strong when the

gates are explicitly defined and also few in number. The

number of gates depends to some extent on the system

decomposition method and also on the size of a program unit.

A system decomposed into a hierarchy of self contained

subsystems presents a well defined interdependency among

subsystems. A robust protection mechanism should prevent

errors in one subsystem from extending to other subsystems.

A protection model that supports environment isolation

is the concept of protection domains. A protection domain

is an environment that defines all the access rights and

operations on objects available to a procedure within the

domain [35]. The implementation of protection domains

requires a means to express the access rights and operations

on objects available to a procedure and also a means to

check at run-time that a procedure's actions are consistent

with its access constraints.

Capability Based Implementation

An elegant scheme for the implementation of protection

domains is the capability based scheme. A capability is an

absolute address for a virtual object [18]. Capability

based addressing is an addressing scheme in which every

30

system object is addressed through a capability [14]. A

capability includes the set of rights permissible on an

object. A right that is not granted cannot be exercised by

the holder of a capability. Example operating systems whose

protection is based on capabilities are Hydra [45], iMAX

[27], and CAP [44].

The environment of a procedure is defined by a list of

capabilities for the objects it can access. The only means

to access an object is by possessing a capability for the

object. Thus a process cannot come into the execution

environment of another process except by explicit

arrangement (passing capabilities). Also, any detected

error during a process execution is confined within the

interacting environments.

A capability based scheme has an efficiency problem.

Perhaps this could be the reason for the paucity of

capability machines. The efficiency problem involves both

time and space. It takes several words to represent a

capability. Thus many memory accesses are required for

capability operations. A software implementation of

capabilities can slow down the system. A consequence of

addressing all objects by capabilities is that once the

capability of an object is destroyed, the object is no

longer addressable. This is called the "lost key" problem

[37]. An alternative implementation of protection domains

based on privilege numbers is presented in the next section.

Privilege Number Implementation

of Protection Domains

The capability based scheme though flexible cannot be

easily implemented in conventional architectures. The

reason being that capability based addressing favors

machines with object orientation. ·An alternative

implementation of protection domains that is implementable

in conventional architectures is proposed in this section.

The proposal is based on the use of privilege numbers.

31

The structuring of an operating system based on the

notion of data abstraction creates a set of subsystems which

interact through well defined interfaces. Each subsystem is

a protection domain and is assigned a unique privilege

number. Every data object and procedure in a protection

domain is identified with the same privilege number. The

difference between this scheme and other privilege

mechanisms such as supervisor/user modes and ~ecurity

classes in security sensitive environments is that the

privilege number does not imply a nested or an inclusion

property. The basis for accessing any object is similar to

capability based scheme. A process must possess the

privilege number of the object(domain) and a secondary

privilege which specifies the subset of the operations the

process can perform on, the object. The object m~nager

interpretes the secondary privilege since it is object

dependent.

32

The system (operating system/architecture) embeds the

privilege number in the data object and procedure descriptor

data structures and this can be checked on first access.

Since the assignment of privilege numbers is based on the

static structure of the operating system, the set of

privilege numbers is fixed and few in number. The operating

system kernel can maintain a table which indicates the

correspondence between privilege numbers and subsystems. A

two-byte privilege number is sufficient for both user and

operating system needs. The privilege numbers assigned to

users can be reused when a user exits the system. This

necessitates a second table to store available privilege

numbers.

To control the transfer of privileges, access control

bits for read, write, copy, and delete are added to the

privilege number. Also, to provide a finer degree of access

control four additional mask bits are added to mask those

rights that cannot be exported by the holder of the

privilege. The masking sc~eme is proposed by Corsini and

Frosini [11] for capabilities. Altogether three bytes are

sufficient to represent access privilege to an object with

the required restrictions.

The advantage of this scheme over a capability based

scheme are simplicity, time, and space efficiency.

Simplicity comes from the static assignment. Every object

(process/data) belongs to exactly one domain identified by a

33

fixed privilege number. It is time and space efficient

because privilege number operations do not require hashing

and few memory references are required for access checking.

Use of Descriptors

In some programming languages the addressing

environment of a procedure is determined by lexical nesting

level, its placement in a source file, and by performing

address arithmetic on pointer variables and procedure

parameters. Each of these schemes can increase the address

space of a procedure. A procedure can modify unrelated

locations through the use of pointer variables. This leads

to an incorrect information flow. In C programming language

where pointer manipulation is similar to array indexing,

passing a scalar variable by reference to a procedure

exposes adjoining locations of the calling environment to

the called environment. The use of descriptors to describe

pointers can prevent such exposure.

A descriptor is a control word that describes areas of

data and program storage [7]. The important attribute of a

descriptor is that it defines the storage area occupied by

an object. It can be used to provide finer degree of

protection because any access outside the defined area can

be detected by the system. Descriptors have been employed

to describe arrays and segments in Burroughs B6700 [7]. The

use of descriptors to pass procedure parameters can restrict

interenvironment interaction. This is because descriptors

can be used to define scalars, array slices and

substrings.

34 .

A disadvantage of descriptors is that it requires space

to store the descriptor information. However, with

efficient coding and support for variable length descriptors

the space overhead can be made small. In a reliability

conscious environment this small extra storage is worth it.

A proposed descriptor layout for a pointer variable is

.

Field

type: (scalar, array, string)
unit-size: (1, 2, 4, 8)
length-code: (0, 1, 2, 3)
number-of-units
base-address
free bits

total

Bits

2
2
2
8 1 16 1 24
24
2

40 1 48 1 s6

The unit-size field specifies one of the primitive machine

data types: character (1), two-byte integer (2), four-byte

integer/real (4), and double word (8). The length code

specifies how many bytes used to represent the length of a

nonscalar type. If the length code is one, then size of the

array/string is the value stored in the next byte of the

descriptor. The number-of-units field gives the length of

the array/string. The base-address is the location of the

first byte of the storage area. One of the extra bits can

be used for access control to permit either read or write.

When the type field is scalar the number-of-units field is

redundant in which case the descriptor size is reduced to 32

bits. Thus for scalars the use of descriptors do not

introduce any storage overhead.

35

The support for descriptors in an architecture requires

two special instructions. The first instruction is for the

construction of descriptors and the second is a descriptor

decode instruction.

In languages where dynamic memory allocation and

deallocation is supported, more than one pointer variable

can simultaneously locate the same area. When the area is

freed without setting all the associated pointer variables

to a null value, subsequent use of the variables can lead to

chaos. The area could have been reallocated to a different

procedure or could contain garbage. In the first case the

procedure is implicitly exposed to an external environment,

while in the second situation an incorrect data value is

used by the procedure. In either case there is an incorrect

information flow. The correction of this type of error is

very difficult because of the difficulty in locating the

error. The damage to the system state can be extensive.

This type of error can be detected through the use of

descriptors and privilege numbers. One of the extra bits in

a descriptor can be used to indicate the type of area

(dynamic or static) referenced by the pointer. For

dynamically allocated storage areas the privilege number of

that procedure is prepended to the area. When an area is

freed, the contents is cleared and any subsequent reference

to that area by the same procedure results in a nonmatching

privilege number.

36

Resource Management Issues

The control of system resources is an important

function of an operating system. Resource usage is a major

source of interaction between processes in the system. The

following are aspects of resource control:

1. maintenance of resource state:

2. keeping track of resource allocation:

3. applying appropriate locks on resources.

The possible states of a resource must be identified. In

general terms the states free and allocated must be

distinguished. A resource is free if it is not currently

assigned to any process and is usable. In a free state, a

resource must not contain any information from previous use

that can affect another process in an undesired way. This

ensures that a process does not inherit any part of another

process environment except by explicit arrangement. A

resource unit is allocated if it is assigned to a process.

The state transitions of resource units must be enforced.

In each state the possible state transitions must be defined

with their enabling events. For instance, a memory frame

changes from free to allocated if these conditions are

satisfied:

1. there is a request for memory space:

2. the contents of the frame is cleared:

3. the frame is free.

A state must not be altered before an operation completes.

For example, a disk page must not be marked free until it is

37

deleted from a file map and subsequently cleared.

Keeping track of resource allocation involves

maintenance of assignment information. This depends on

whether there are identical units of the resource or not.

For identical units the allocator must partition the units

into equivalence classes based on the units states. One

equivalence class must be those units currently allocated to

some computations. Another class are those units that are

free. Other equivalence classes are possible depending on

type of resource. These partitions must be identified and

the rules for transition from one partition to another must

be enforced by the resource manager. These classes form the

possible states of the resource. The sum over the

cardinality of each partition must be equal to the number of

resource units. This invariant must be true always.

Another aspect of keeping assignment information is

associating a resource unit with a process. This requires

using some redundant information in the resource descriptor.

The approach is to use lock and key scheme. When a resource

unit is assigned to a process a lock is generated and

included in the resource descriptor. The same lock is given

to the process to which the resource is assigned. To a lock

holder the lock acts as a key to unlock the resource. The

use of the resource is permitted on presentation of the

correct key. This ensures that only certified processes

gain access to a resource.

38

As an illustration consider a pool of memory frames

controlled by the memory manager. Initially all frames are

free and cleared. To allocate a frame the memory manager

must take the following steps:

1. select a free frame;

2. generate a lock for the selected frame;

3. place the frame in allocated list;

4. update the resource allocation information; and

5. return frame-id, lock) to requestor.

To deallocate a frame the following steps must be taken:

1. match key and lock;

2. clear the frame;

3. place the cleared frame in free list; and

4. update the resource allocation information.

In both allocation and deallocation the first step is

crucial. If the first step fails in the case of allocation

the request cannot be satisfied immediately. If the first

step fails in the case of deallocation it represents an

error situation and the operation must be rejected. There

are three possible states of a frame - free, allocated, and

deallocated. The permissible state transitions is shown in

Figure 3.

A process should exercise control on a shared data

object for the duration of an operation. In the UNIX

system, simultaneous editing of a file by two different

processes is allowed. An operating system must ensure

39

integrity of operations while providing concurrency. By

viewing file editing as a transaction with many updates

that must not be interleaved, the operating system needs to

support two different write locks to model the lifetimes of

file operations. In edit mode a file should not be shared

until it is released at the end of the edit session.

I free ~==~:~::_::~~=---->! allocated

-------~-----

cleared release frame

----------------------------------~----
' deallocated I

Figure 3. State Transition of a Memory Frame

An example

An important object maintained by an operating system

is user files. Let the acces~ (rights) defined on a file

object be execute, read, write, edit, and delete. Some

systems do not make these distinctions but instead base file

operations on read, write, and execute protection used for

memory objects. The following file types are distinguished:

directory, executable file, stream file, and record file~

The permitted user access for each file type is as

follows:

directory: read, delete;

executable file: execute, delete;

stream file: delete, edit, read, write; and

record file: delete, read, write.

40

The right to delete a file must be controlled only by the

file creator. With this approach, possession of write

access by a process does not grant the process the right to

delete the file.

To control the use of a file properly by user

processes, three types of locks will be admnistered on a

file. The locks depend on the semantics of the operations

on a file. The operations which do not change contents. of a

file will be given a read lock. The operations which make a

single update at a time will be given a short write lock

(swl), while those operations that make many updates at a

time will be assigned an exclusive write lock (ewl). The

difference in swl and ewl is in the lifetimes of the file

usage. A file with an ewl is released after a close request

is issued by the current user. The locks for each file

operation is:

read: read lock;

execute: read lock;

delete: swl;

write: swl;

edit: ewl.

41

With this information, the manager is be able to prevent

an attempt to perform an unauthorized access to a file. It

also improves file sharing among users since write access

and delete access are separate.

Process Management

The process is the active and schedulable entity in the

operating system. It uses various system resources as it

performs its action. Processes interact by sharing physical

and logical resources. The interaction influences the

execution of a process and if not properly controlled

processes can interfere with each other in undesired ways.

The support for concurrency improves resource utilization

and computa·tion speed and also increases the chance of

undesired interference. The process control functions are:

1. specification of a process domain; and

2. concurrency control.

The domain of a process is part of the system

environment it can sense or alter. This comprises physical

resources and virtual objects such as data, code, message

channels. A robust means to specify a domain is by use of

capabilities or by the proposed privilege number scheme.

Concurrency Control. A concurrency control mechanism

must ensure that processes do not interfere with each other

in undesired ways. The desirable attributes of a

concurrency control mechanism are:

1. noninterference from concurrent execution;

2. proper ordering of operations on shared objects;

3. unsuccessful and incomplete operations should not

alter an object's state; and

4. freedom from deadlock.

42

The noninterference requirement is necessary to prevent the

invalidation of an action by one process due to a concurrent

action by another process. This is possible if an object is

subject to concurrent access. To guarantee noninterference

it is imperative that the operating system locks an object

for the duration of an operation. Alternatively the

operating system must ensure that two processes do not have

access to the same parts of a shared object where concurrent

access is permitted. This is the approach taken in the

proposed manager structure.

The ordering of operations on shared objects is

necessary to ensure that operations conform to a legal

sequence. Operation ordering is concerned with enforcing

dependency constraints between operations and also delaying

an operation until a certain enabling event occurs. The

proper ordering of operations can avoid extensive backup in

the event of an error. The ordering of operations should

depend on both the current state of the object and on the

type of operation requested. As an example, a FIFO queue

object with the operations insert and remove should delay a

request for remove operation if the queue is empty. It

could allow parallel execution of remove and insert provided

there are previously completed insert operations.

43

The third requirement ensures that an object is not

observed in an intermediate state by other concurrent

operations. It also ensures that operations that terminate

unsuccessfully do not damage the object state. This

guarantees that an object moves from one consistent state to

another consistent state. The enforcement of this

requirement can reduce the scope of an error. This property

is refered to as recoverability property in transaction

based systems [41].

The fourth desirable property of any synchronization

technique is to ensure the entire system is deadlock free.

In a fault tolerant operating system a deadlock can be very

costly. A deadlock recovery involves rolling back one of

the processes involved in a deadlock to a safe state. The

determination of a safe state is not simple because

interactions must be undone. If a rolled back process has

interacted with other processes then the affected processes

must also be rolled back. Thus a single rollback can lead

to a chain of rollbacks. Taking into consideration the

difficulty of deadlock recovery it is safer to adopt a

deadlock avoidance policy in the design of a fault tolerant

operating system.

Structuring an operating system based on the manager

construct reduces this possibility because protocols and

constraints on resource use are enforced in the manager.

The fact that managers are processes not subject to

44

exclusive access also reduces the possibility of circular

wait which is a necessary condition for deadlock. However,

to avoid deadlock there is need to impose a call hierarchy

on intermanager communication. A formal technique is­

necessary to reduce the amount of run-time checks. The

following steps are suggested:

1. determine the dependency relations of managers;

2. verify the dependency relations;

3. derive a synchronization graph from the

dependencies; and

4. implement a graph manager to enforce the

dependencies.

To determine dependency relations of managers it is

only necessary to know the communication partners of each

manager. Two managers are communication partners if there

is a direct information transfer between them via sending of

messages. If a manager M can send a message to another

manager N, then M > N (read M calls N). It means N obtains

input from M. The send operation should not be symmetric.

That is if M calls N, then N must not call M. To avoid this

the system kernel must support send and receive message

primitives.

The verification of dependency is limited to

interaction across interfaces. The steps to be taken are:

1. verify the existence of matching communication

between partners;

2. derive preconditions and postconditions for

communication;

3. consider all possible states of the managers taken

together.

45

A matching communication occurs when a send statement in one

process/manager has a corresponding receive statement in a

second process at the point of communication. As an

example, consider the processes M, and N:

Process M

• • •
receive from N {argument list) . . .

end M

Process N

• • •
receive from M {argument list) .

end N

In this example M and N do not form a matching communication

because each is waiting to receive data from the other. In

fact both processes are permanently blocked {deadlocked).

When a matching pair is established, the next step is to

verify that precondition{send) /\ precondition(receive) and

postcondition{send) /\ postcondition{receive) are true.

This guarantees that the managers will make progress in the

absence of deadlock. The final step is to take all managers

together by combining all the preconditions{send) and

postconditions(receive). The verification in this step is

to show that some states are impossible to reach and those

reachable are valid. A proof technique for sequential

processes is presented in Levin and Gries [34].

46

The synchronization graph is simply a call graph based

on the established dependencies between managers. It

confirms or disproves the formal proof of the previous step.

The system is deadlock free if the ,graph is cycle free and

the formal proof result shows a deadlock free system. If

there is a disagreement between the graph and result of the

formal proof the system design should be reviewed and the

formal analysis repeated until a deadlock free system

emerges. The advantage of the formal analysis is that it is

done during the design stage.

The implementation of a graph manager is to provide

run-time checks for interprocess communications. The graph

manager allows a manager to send a message to another

manager if the nodes corresponding to the two managers are

adjacent (path length between nodes is 1) and the

interaction is a valid transition along the path. The graph

manager is able to detect illegal interactions with this

approach.

Semaphore Based Process Control. The use of semaphores

for controlling access to shared data was proposed by

Dijkstra [15]. A semaphore is an integer variable on which

two indivisible operations P(S) and V(S) are defined. Given

a semaphore S, P(S) is defined as :

If S > 0 then S := S-1 else wait; while V(S) is defined as:

S := S+l. A process that wants to access a shared variable

x, executes P(S) and if unsuccessful is blocked until S > 0.

47

On the other hand, if P(S) is successful, then Pl proceeds

and after accessing the variable x executes V(S) which frees

x. In using a semaphore the synchronization code becomes

part of a process algorithm. There is thus no separation

between the algorithm defining a process action and the

constraints on its execution. This is a drawback of

semaphore based process control mechanism. A second

drawback is that its use is error prone. If either of P(S)

or V(S) step is omitted, there could be concurrent access to

a variable or a deadlock. Lastly semaphore programs are not

well structured. The use of global variables by concurrent

processes expose the processes to erroneous actions of each

other. The semaphore based synchronization scheme does not

provide a good information flow model.

Monitor Based Process Control. The monitor concept was

developed to enforce mutual exclusive access to shared

resources. A monitor is a program module with a set of

shared variables and a set of procedures that define

operations on the shared variables. A monitor is a passive

entity. A process that wants to use the resource maintained

by the monitor invokes the appropriate monitor procedure

that performs the action.- The execution of the monitor

procedures are mutually exclusive. Hoare [23] proposed the

use of condition variable to provide condition

synchronization. The operations defined on a condition

variable are signal and wait. The condition variable

provides the means to order operations.

48

The enforcement of mutual exclusion in monitor use can

have undesirable side effects depending on the

implementation scheme. There are two common implementation

schemes - disabling of interrupts and use of semaphores

[36]. The disabling of interrupts can have a drastic effect

on the system if critical device signals are not responded

to on time. Interrupt inhibition has the effect of global

exclusion on all monitors whereas intergrity of monitor

operations only requires exclusion on individual-monitors.

There are two pontential problems with this approach. The

first is the possibility of missing some necessary

interrupts and the second is the unnecessary restriction of

possible concurrency.

The use of semaphores to control entrance to monitors

introduces another level of synchronization. The semaphore

approach provides mutual exclusion on individual monitors.

The semaphore scheme is prone to deadlock in the presence of

nested monitor calls.

To meet the third requirement of synchronization the

monitor must take extra steps because it is not structured

to meet error recoverability requirement. The steps to be

taken by a monitor are:

1. save the current state of the shared data at the

commencement of an operation; or

2. provide an inverse procedure to undo the effects of

a normal procedure to be called when an error is detected.

49

If an operation is not invertible then the only option is

step 1. Without augumenting a monitor with the extra steps

suggested above, processes are not immuned from the effects

of an unsuccessful operation by another process. Monitors

have the same expressive power with semaphores. The

advantage of a monitor over semaphore is that monitors

enhace program modularity.

Proposed Manager Scheme. The proposed type manager

structure is both a synchronization and a fault tolerant

device. The manager only encapsulates a shared data object.

The operations on the shared data are implemented as

processes independent of each order and the manager. The

problem of contention among operations is eliminated because

an operation can only be invoked by a manager.

The manager is able to order operations properly

because all requests for object operations are channeled to

the manager which then calls the appropriate operation. An

operation request that cannot be serviced immediately is

left in the request message buffer until such a time that

the shared object state permits it. Thus operation ordering

is effected without scheduling queues associated with

monitors and semaphores.

The proposed manager has a recoverability property.

Incomplete operations cannot modify the state of an object.

The manager is able to distinguish between successful and

unsuccessful operations through the return code field in the

operation process message. The fact that an operation does

50

not have an exlusive control of a manager reduces the

chance of deadlock. By designing the system of managers to

have a hierachical structure deadlock can be avoided.

Of the three synchronization techniques the proposed manager

scheme is the most elegant.

Summary

Information flow issues that can improve error recovery

have been discussed. A modified structure for sharing

abstract data objects called a manager is presented. The

structure hides the full representation of a shared object

from the operations, but presents partial representations to

operations. A formal technique for analyzing relationships

between subsystems (managers) based on input-output relation

is also discussed. The analysis checks if the object

relations form a partial order. Proof technique for

verifying individual manager scheduling algorithm is also

presented. The use of privilege numbers to implement

protection domains is proposed as an alternative to

expensive capability based implementation. Also presented

is a descriptor based scheme for representing pointer

variables which can be used to pass parameters in procedure

calls.

CHAPTER IV

ERROR DETECTION AND RECOVERY

The reliability of a system is increased by built-in

redundancies to detect errors and to recover from the

errors. These redundancies take the form of additional

components and actions which are not necessary for correct

system behavior in a fault free system. The redundancies

are unavoidable overheads in a fault tolerant system. The

usual forms of redundancy are functional, information, and

time redundancies.

Functional redundancy is the use of standby components

(program or hardware) to take over when a primary module

fails as a result of a fault. The recovery block is type of

functional redundancy for software modules. Information or

data redundancy is the use of additional data in data

structures to detect and correct an erroneous data state.

Common forms of information redundancy are counts,

identifier fields, and extra pointers. Information

redundancy is perhaps the most applied form of redundancy in

software systems. Time redundancy is the use of more time

to perform an action. This include instruction, and

function retries. All forms of redundancy are necessary to

produce software of high reliability.

51

52

Error Detection

The detection of error in a system is a crucial step in

any reliable system. The process. involves distinguishing

between an acceptable and unacceptable data states in the

various stages of a computation. Run-time checks are then

applied to check conformance of a program to its

specification. Any deviation is then signalled as an error

which is then followed by a corrective or recovery action.

Since these run-time checks increase execution time of a

program these checks should be minimized. The checks can be

reduced by restricting them to interaction points such as

procedure calls, and interprocess communications. A program

module must check the validity of information received from

other modules and information transmitted to other program

units. Thus every program has at least two points to detect

errors. The first is a test of the program's input data and

the second is a test of the program's output (See Figure 4).

---------------- module
-->1 input check execution output check 1--->

error error

------>--1. failure 1---<-----

Figure 4. Possible Error Detection Points
in a Module

53

There are three basic methods employed for error

detection. These are structural, algorith~ic, and temporal

methods [31]. The structural method uses a redundant sys~em

structure to detect errors. An example is a duplex system

operating in parallel. A computation is correct if output

from both systems are identical and satisfy an acceptance

criteria. The algorithmic method is a dynamic verification

scheme. It employs run-time assertions to detect errors.

The temporal method consists of monitoring the execution

time of processes. A common mechanism is the use of time­

outs.

The choice of a method depends on the size and type of

a module. A module is classified as either functional or

nonfunctional. A functional module does not retain its

internal state between activations. The output of a

functional module is always dependent on the current input.

A nonfunctional module on the otherhand, retains its

internal state between activations. Examples of

nonfunctional modules are process schedulers, monitors, and

resource controllers. The output of a nonfunctional module

depends on the current input and the internal state.

An error in a program unit is due to error in the input

data, or error in the internal state for a nonfunctional

module, or a fault in the algorithm defining a program. The

algoritmic fault is due to a design fault in the algorithm

(software or hardware), or a hardware failure. The

detection of input error can be accomplished by the use of

assertions· (validity tests) while audits and other

detection methods are required to detect errors in the

54

internal state of a nonfunctional program unit. The use of .
audits for error detection and correction is described in

[8, 22].

The error detection algorithm should be well designed

and subjected to formal verification techniques. The

verification must show that the code always terminates and

does not modify the internal state of the processing

program. It must also show that valid states of programs

are not rejected and that only erroneous states are

rejected. All functional modules should be formally

verified. The proof must show that a functional module

terminates for both valid and invalid input data. Time-outs

can be employed to detect incorrect behavior of any

functional program unit induced by a fault in a hardware

component.

Control Error Detection

in Nonfunctional Processes

A mechanism to detect control errors within a

nonfunctional module such as the manager construct proposed

in chapter three is presented. A nonfunctional process that

schedules the use of a shared object must include exclusive,

precedence, and parallel constraints on operations

invocations. The method is based on separating the control

algorithm from the processing algorithm and then adding

55

assertion statements affecting only control data to detect

any violation of scheduling constraints. The control

algorithm is called a "decision-maker". The manager must

call the decision-maker to make the next decision based on

the current control data state and the requested operation.

The manager confirms or rejects the decision by executing an

assertion that must be true for the decision made.

The decision-maker implementation consists of defining

a finite state control device that models the operations

invocation constraints. The state transitions are augmented

with preconditions and events relating the control state

data. On invocation, the decision-maker either allows the

requested operation to proceed immediately, or delays the

request, or signal an error if the control state data is in

error.

An example is a process that controls the access to

stored data. There are two groups of processes that access

the stored data called readers and writers [23]. The

readers read the current data values and the writers update

the state of the shared data. Readers are allowed to

proceed in parallel but only one writer is permitted to gain

access to the stored data when there are no readers. Also,

waiting readers have higher priority than waiting writers at

the end of a write and no new readers should be permitted if

there are waiting writers.

To model this control problem, the decision-maker

defines a finite state control that satisfies the

56

constraints, a set of decision variables, the actions

associated with each state transition, and the preconditions

for each state transition. The states of the finite state

control and their meanings are:

nrnw: no readers and no writers (initial state);

rnww: reading without waiting writers;

rww : reading with waiting writers;

wnwr: writing without waiting readers; and

wwr : writing with waiting readers. The decision

variables are:

nw number of writers (0 or 1) ;

nr number of readers (0 or > 0) ;

nwr: number of waiting readers (0 or > 0) ;

nww: number of waiting writers (0 or> 0). The

following action codes are defined:

ok . operation can proceed; .
gw enqueue write request in waiting list of writers;

qr enqueue read request in waiting list of readers;

dqr: allow a waiting reader to proceed;

dqw: allow a waiting writer to proceed. The finite

state control is shown in Figure 5. The arcs are labelled

with triples (a, b, c), where

a: is a transition number;

b: is a requested operation (r =read, w =write); and

c: is an action (ok, or qw, or qr, or dqr, or dqw).

The

(1 r

(9

(6, -, dqw)
(12, w, qw)

(3, r, ok)

(7, r, qr)
(14, w, qw)

57

(13 , r, qr)

(4' w'

(4, w, qw)

Figure 5. Finite State Control of Readers and Writers
Synchronization Problem

preconditions for each state transition are:

state transition precondition

nrnw 1 nw = nr = nwr = nww = 0 & b = r
2 nw = nr = nwr = nww = 0 & b = w

rnww 3 nr > 0 & (nww = nw = nwr = 0) & b = r
4 nr > 0 & (nw = nwr = nww = 0) -& b = w
9 nr = nw = nwr = nww = 0

wnwr 7 (nr = nwr = 0) & nw = l & b = r
12 (nr = nwr = 0) & nw = 1 & b = w
6 (nr = nw = nwr = 0) & nww > 0

rww 6 already defined
5 (nr = nw = 0) & nwr > 0 & nww > 0
13 nr > 0 & nww > 0 & nw = 0 & b = r
4 already defined

wwr 8
11
7
14

(nr = nw = 0) & (nwr > 0 & nww > 0)
(nw = nr = nww = 0) & nwr > 0
already defined
nw = 1 & nwr > 0 & nr = 0 & b = w

In order to be able to recover from control errors,

58

redundant data fields should be added to the headers for the

waiting lists. One redundant field that is necessary is the

number of elements in the list. Another necessary redundant

information is the previous state of the finite state

control.

One advantage of this approach is that the internal

state of a nonfunctional module is partitioned into control

data state and shared data state. With the manager

construct the type of error can be determined from the

program unit that det~cts it. The manager and the

decision-maker manipulate the control data while the

operation procedures manipulate the shared data. This helps

to restrict the sources of internal state error and also

helps to categorize an error. Errors detected by a manager

or a decision-maker are classified as control error, while

errors detected by operations and users of the shared data

are classified as data error. Another advantage of this

scheme is that it facilitates error correction because the

program units to check for type of error are known. This

has a beneficial effect on error recovery. The error

recovery action is restricted to the part of the internal

state affected by an error.

59

Error Recovery

After an error is detected a recovery action must be

taken to undo the effects of the error and possibly repair

the error. Error recovery is essentially re~toring the

system to a state where processing can resume. To restore

the system to a globally consistent state a knowledge of the

recovery space is required. In concurrent systems such as

an operating system the interactions of processes can

complicate error recovery. An error in one process in a set

of parallel processes can lead to extensive state

restoration.

There are two types of error recovery mechanisms called

backward and forward error recovery. Backward error

recovery consists of restoring the system to the state that

existed at the beginning of a recovery point. A recovery

point is a point in a program where the current state of a

program is saved. Backward error recovery provides recovery

for unanticipated errors. An unanticipated error is a

design error present in a software or hardware from the

outset that remained undetected during testing but manifests

itself due to rare combination of circumstances. The system

programmer does not specify any action for the handling of

the error because of lack of knowledge for its existence.

These errors are attributed to design faults in hardware and

software. Forward error recovery is applied to anticipated

errors. The recovery involves a corrective action to remove

the error symptom. Forward error recovery can be handled

through exception handling facility of a programming

language. These recovery methods are complementary.

60

The recovery from errors affecting system data

structures is handled effectively by audits. Audits can be

used to recover from control state error. Since every state

of a finite state control has a unique assertion, the

control state audit can determine which control variable

causes the failure of an assertion. It then uses the

redundant fields in the waiting request list and previous

state values to correct the error. Suppose the finite state

control of Figure 5 is in state nrnw (initial state) and the

value of nwr is not zero. The assertion statement for the

state nrnw requires the variable nwr to be zero. The

variable nwr makes the assertion fail. The audit makes use

of the fact that the queue length for waiting readers must

be equal to nwr. If the value of this redundant field in

the queue header is zero and the header pointer is null,

then the error is corrected by setting nwr to zero.

Recovery Block Interface

The recovery block was proposed to provide software

fault tolerance against residual design faults in both

software and hardware algorithms. The syntax of a recovery
•

block is

ensure <acceptance test>

by <primary alternate>

else by <second alternate>

else by <nth alternate>

else error

61

The semantics of the recovery block is as follows: on block

entry, the primary alternate is tried. This is then

followed by the execution of the acceptance test algorithm.

If the test yields true, then the results are accepted and a

block exit is taken. However, if t~e acceptance test fails,_

backward error recovery is initiated which consists of

restoring the program state to what it was before entering

the block. The backward error recovery is then followed

with an automatic transfer to another alternate and the

sequence repeated. If no alternate passes the acceptance

test, then the block has failed and an error condition is

raised.

One good advantage of the recovery block is that it

provides a convenient checkpoint. When recovery blocks are

nested, the application of backward error recovery on a

failed enclosing block is costly. Consider N nested blocks

with Ni.alternates per block. The maximum number of trials

for theN blocks is Nl * N2 * ... * Nn. The recovery

block interface is pr9posed to reduce the number of trials

in certain situations.

62

When a block Pl calls another block P2 there are two

failure possibilities. The first is the failure of the

caller (Pl) and success of the callee (P2). The success of

P2 implies that the input data passed to P2 by Pl and the

results computed by P2 are valid since P2 must pass its

acceptance test before sending any output to Pl. The

semantics of a recovery block requires the reexecution of P2

when the next alternate of Pl is tried. If the result of

P2's execution can be saved the repeated execution of P2 can

be avoided thereby reducing the cost of error recovery. The

second possibility is the failure of the callee (P2). The

f~ilure of P2 implies the failure of Pl also. A recovery

action must be taken to restore the state of the program on

entering Pl.

The recovery block interface is only useful for the

first failure type (i.e., failure of an outer block). The

recovery block interface is a program unit that contains

·algorithms and communication variables common to alternates

of a recovery block. Tpe algorithms are assertions on input

and output variables. The communication variables are those

variables which are passed as parameters to other recovery

blocks. It also includes values returned from calls to

other recovery blocks. The recovery block interface also

takes over the responsibility of invoking the next

alternate. The programs that use a recovery block call

the interface which then calls an alternate.

63

When Pl (outer block) fails, its input (nonlocal

variables) is restored to their initial state. The states

of the communication variables are preserved for the next

alternate of Pl to use where result of P2's execution is

needed. To determine if the previous (failed) alternate

executed the call statements to other blocks a progress

variable is included as one of the communication variables.

The progress variable should be updated by P2 after passing

its acceptance test. By using the recovery block interface

the number of trials where P2 succeeds is Nl + N2 instead of

Nl * N2. Thus the recovery block interface can reduce the

time for executing nested recovery blocks when the inner

block succeeds and an enclosing alternate fails.

Software Support for Recovery

The recovery block scheme and its implementation with a

recovery cache [32] provides fault tolerance against

functional program units. In operating systems where

nonfunctional modules are common, restoring the state of

nonlocal objects alone may not result in a consistent system

state. The internal state of a nonfunctional module must be

restored when an operation fails due to a failure of an

operation or a revocation of a successful· operation due to a

failure of a higher level module in a nested call. Language

exception handling mechanism cannot provide this type of

recovery because the errors are not anticipated.

To provide error recovery in nonfunctional modules,

operations which change the internal state must provide a

corresponding undo procedure to reverse the change. The

undo procedure should be part of the specification of the

normal operation. A possible syntax for such a language

construct is

64

Procedure <namel> (<parameters>) undo <name2>, where

namel is the normal operation procedure and name2 is the

undo procedure. The implementation should ensure the

automatic invocation of name2 when namel fails or when its

action is being revoked. Another useful language mechanism

is a facility to declare recovery data and statements to

save and restore such data. A proposed mechanism is the

inclusion of a backup data type in a language. A

declarative syntax for such a type is

backup <var> { <id-list> }, where var is a variable of

type backup and id-list is a nonempty list of variables to

be saved. The operations to be permitted on a backup data

type are save and restore. The syntax for save and restore

statements are

save <var> I save <var>.id

restore <var> I restore <var>.id

where var is a backup data type and id is an element of id­

list. When the save or restore statement does not specify

any id-list element the entire backup variable is implied.

65

A possible implementation of the backup data type is to

represent a backup variable as a structure (see Figure 6).

The size field is the number of bytes required to store all

variables in id-list. The length field gives the number of

variables in id-list. The base field is the address of the

area to save the variables in id-list. The triples field is

an array whose dimension is the length of id-list. A triple

is represented as (loc, disp, nbyte), where loc is the

storage address of a variable in id-list, disp is the

displacement of the variable from base (save area), and

nbyte is the number of bytes occupied by the variable.

I size I length I base I triples I

Figure 6. Backup Data Type
Representation

The a9vantage of a language mechanism over the recovery

cache [32] is that it can be used in a virtual memory

envir~nment. The save address in the recovery cache scheme

is real address while it is a virtual address in the

software approach. The combination of undo procedures and

backup variables can be used to restore the internal state

66

of a nonfunctional module.

Architecture Assistance

for Error Recovery

Architecture assistance for software error recovery is

required to speed up and to automate the recovery process so

that it is transparent to users. The architecture should

provide two types of assistance for effective recoyery. The

first is for error recovery within a single process or

procedure and the second is recovery for interacting

processes.

To provide error recovery within a single process or

procedure, the processor should include instructions to

perform save and restore operations and an instruction to

discard a recovery data when the executing context

terminates in its instruction set. A system data structure

called a recovery context to facilitate automatic error

recovery is shown in Figure 7. A recovery context should be

created for each procedure.

PBVD I CE I TF I AUPD I . NIT PTRC

Figure 7. Recovery Context Data Structure

67

The recovery context data structure contains information

to enable the architecture perform a recovery action ~hen an

error is detected or to reclaim the storage used to store

recovery information when it is no longer needed. The PBVD

field is an address of a backup variable descriptor for any

backup data defined in the procedure. The CE field is a flag

to indicate if a process terminated with (without) error.

The TF field is a flag that indicates if the procedure or

process is the root of a recovery chain. If the flag is not

set, then the procedure or process is called by some other

program unit. The AUPD field is the address of an undo

procedure descriptor if one is specified. The NIT field

gives the number of different procedures called by a

procedure. Lastly the PTRC field is an array of addresses

to other recovery contexts. The size of the array is equal

to NIT. For nested procedure calls the recovery contexts

constitutes a chain of recovery contexts. These contexts

indicate the environments to be affected by an error in one

of the procedures/processes.

The operating system should implement a recovery

process to traverse the recovery contexts and perform the

neces_sary error recovery actions. The recovery context

chain defines a recovery space. This space is bounded if

there are no implicit interactions with other environments.

A bounded recovery space ensures that the system is restored

to the state that existed before an erroneos state was

entered. To come close to .a bounded environment ideal the

operating system design and implementation must meet the

following requirements:

1. processes do not interact by means of global

memory;

' 2. called procedures do not access memory areas

outside the passed parameters locations; and

68

3. system decomposition is hierachical. The first

requirement prevents uncontrolled interaction which can

result in a domino effect (unbounded recovery space). The

use of abstract objects implemented as software managers can

enforce this requirement. The second requirement ensures

that a called procedure modifies a well defined part of a

calling procedure's address space. This requirement

guarantees that when a restore operation is executed the

calling procedure's envi~onment is completely reestablished.

The second requirement can be met by using address

descriptors to pass parameters. The third requirement

defines an_ interaction path that can be represented by a

recovery context chain. A system that is deadlock free is

also known to be free from the domino effect [40]. The

satisfaction of requirements one and three help to reduce

the probability of deadlock considerably. If a system is

domino fre~, then the recovery context chain is a bounded

recovery space·.

69

Summary

A general error detection and recovery approach has

been presented in this chapter with emphasis on backward

error recovery. A mechanism to detect control errors in a

nonfunctional module based on decomposing the module into

three types of submodules called manager, decision-maker,

and operations is presented. The main advantage of this

scheme is that the internal state of a nonfunctional module

is partitioned into control state and data state which helps

to localize error recovery. The use of a recovery block

interface is proposed to reduce the cost of backward error

recovery in nested procedure calls. Also, a linguistic

mechanism for a programmer defined recovery is discussed. A

recovery context which defines a recovery space for an

exec~ting program is proposed as a means to automate system

error recovery.

CHAPTER V

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Summary

The study has pr~sented methods to restrict the flow of

information in a computer system and its impact on error

recovery in an operating system. There are two dimensions

of information flow control. The first concerns how to make

the access environment of a program as small as possible

while the second focuses on the control of interaction among

competing and cooperating processes.

On the restriction of access environment a p~ogram

structure called a manager is proposed. This structure

provides two levels of restriction. The first is hiding the

representation of an abstract object from the users of the

object which is the only form of restriction provided by

monitors. The second level is the presentation of a partial

view of an object representation to operations. This level

limits the damage an operation can cause to the state of a

shared data. The manager structure partitions the internal

state data of an encapsulated object into control and shared

data s~ates manipulated by specific program units. The

benefit of a partitioned data state is that error

categorization and recovery can be localized.

70

71

Further restriction of the access environment of a

process can be achieved through the use of a descriptor to

represent address variables. The. use of descriptors to

represent address variables ensures that unrelated memory

cells are not mutilated through addressing error. Its use

in passing parameters confines a called procedure's actions

to a well defined subset of a caller's address space.

The orderly interaction of processes can be achieved

through robust resource and process control strategies. The

proposed manager structure is both a resource management and

a synchronization module. Its structure separates the

control algorithm from operations. Its implementation

results in a self-checking software because a decision is

verified with an assertion before it is carried out. The

separation of control algorithm from operations reduces the

sources of internal state error of resource and process

controllers. A good resource control strategy should avoid

implicit interaction by ensuring that resource units make

the right transitions from one state to another under proper

circumstances.

The recovery from an error depends on knowing what is

to be restored, the scope of an error, and the type of

failure. The use of a language mechanism to specify

recovery data and procedures can solve the problem of

knowing what to restore. The recovery context chain is

sufficient to determine error scope in a well structured

72

system without implicit interaction. The recovery block

is the most general technique for software fault tolerance.

It is adequate for providing fault tolerance in functional

modules. Error recovery in functional modules can be

achieved by saving the values of nonlocal variables on block

entry and then restoring these saved values on failure of

the module. The recovery block provides automatic

reconfiguration of the modules since an equivalent program

unit (alternate) is tried when a module fails. The

specification of undo procedures to reverse actions of

operations provides the means to apply backward error

recovery technique in a nonfunctional module. The recovery

block interface proposal can reduce the amount of backward

error recovery in nested block calls when an outer block

fails and the inner block succeeds.

Architectural support is necessary to implement a

general and automatic fault recovery in an operating system.

The minimum assistance required is the inclusion of

instructions to create recovery context and backup data

descriptors, save and restore recoverable data. The

operating system should provide an error recovery process to

be invoked when an error condition is raised.

Conclusions and Recommendations for Further Work

Error recovery in operating systems can be confined to

the immediate environment of a failed process by employing

design and implementation techniques that restrict

73

information flow through the system. The manager

construct combined with a descriptor-based parameter passing

mechanism can control the flow of information and can avoid

implicit interactions. However, for pervasive errors

(errors whose damage extends beyond the failed environment),

the operating system should employ some elaborate techniques

such as system reinitialization and us~ of audits to examine

the system data structures. With good system structure and

explicit information sharing mechanism, the frequency of

pervasive errors can be drastically reduced. The proposals

made in this study involve some space and time overhead but

their impact on performance is not known. An area for

further study is an implementation of these proposals to

ascertain their effectiveness •.

BIBLIOGRAPHY

1. Andrews, G. R. "Synchronizing resources", ACM Trans. on
Prog. Lang. and Syst., 3-4 (Oct., 198IT7 405-430--.

2. Ancilotti, P. et al. "Language features for access
control", IEEE TranS.£!l Software Eng., SE-9, 1
(Jan., 198~16-24.

3. Anderson, T., Knight, J.
fault tolerance in
Trans.on Software
355-364:"

C. " A framework for software
Real-time systems", IEEE
Eng., SE-9, 3 (May, 1983),

4. Ayache, J. M., et al. "Observer: A concept for on-line
detection of control errors in concurrent
systems", Fault Tolerant Computing System
Symposium- 9, (June, 1979), 76-86.

5. Bartlet, J. F. "A nonstop kernel", ACM Proceeding of the
8th Symposium on Operating Systems Principles,
(Dec., 1981), 22-29.

6. Basili, R. v., Perricone, T. B. "Software errors and
complexity: an empirical investigation",
Communications ACM, 27-1 (Jan., 1984), 42-52.

7. Bishop, J. M., Barron, D. w. "Principles of
descriptors", The Computer Journal, 24-3 (1981),
210-220.

8. Black, J. P., et al. "A case study in fault tolerant
software", Software-Practice and Experience, 11
(1981), 145-157.

9. Bryant, R. E., Dennis, J. B. "Concurrent programming",
Lecture notes in computer science~ 143, Springer
Verlag, (Oct., 1980), 426-451.

10. Charlton, C. C., Leng, P. H. "Aids for pragmatic error
detection", Software- Practice and Experience,
13-1 (Jan.·, 1983), 59-66. -

11. Corsini, P., Frosini, G. "The implementation of
abstract objects in a capability based addressing
architecture", The Computer Journal, 27-2 (1984),
127-134.

74

12. Deitel, H. M. An Introduction to Operating Systems,
Addison Wesley, (1983).

13. Denning, P. J. "Fault tolerant operating system",
Computing Surveys, 8-4 (Dec., 1976), 359-389.

75

14. Dennis, J. B., Van Horn, E. c. "Programming semantics
for multiprogrammed computations", Communications
ACM, 9-3 (March, 1966), 143-155.

15. Dijkstra, E. w. "The structure of the THE
multiprogramming system", Communications ACM, 11-5
(May, 1968), 341-346.

16. Endres, A. "An analysis of er~ors and their causes in
system programs", IEEE Trans.2£ Software Eng.
SE-1, 2 (Feb., 197sr;-140-149.

17. Fabry, R. S. "Dynamic verification of operating system
decisions", Communications ACM, 16-11 (Nov.,
1973), 659-668. ---

18. Fabry, R. s. "Capability-based addressing",
Communications ACM, 17-7 (July, 1974), 403-412.

19. Gligor D. v. "Architectural implications of abstract
type implementation", The 6th Annual Symposium on
Computer Architecture Proceedings (April, 1979),
20-30.

20. Glass, R. L. "Persistent software errors", IEEE
Trans.gn Software Eng. SE-7, 2 (March:;-1981),
162-168.

21. Goodenough, J. B. "Exception handling: issues and
propose~ notation", Communications ACM, 18-12
(Dec., 1975), 683-696.

22. Hansen, R. C., et al. "The 3B20D processor & DMERT
operating systems: fault detection and recovery",
The Bell System Technical Journal, 62-1 (Jan.,
1983},348-365.

23. Hoare, C. A. R. "Monitors: an operating system
structuring concept", Communications ACM, 17-10
(Oct., 1974), 549-557.

24. Hoare, C. A. R. "Communicating sequential processes"
Communication ACM, 21-8 (Aug., 1978), 666-677.

25. Jammel, A. J., Stiegler, H. G. "Managers versus
monitors", Information Processing, (1977), 827-

830.

26. Jones, A. K. "The narrowing gap between language
systems and operating systems", Proc.Information
Processing (1977), 869-873.

76

27. Kahn, K. C., et al. "iMAX: a multiprocessor operating
system for an oject-based computer", ACM Proc.of
the 8th Symposium on Operating Systems Principles
(Dec., 1981), 127-147.

28. Kieburtz, R. B., Silberschatz, A. "Access-right
expressions", ~Trans.~ Prog. Languages and
Syst. 5-l (Jan., 1983), 78-95.

29. Kim, K. H. "An implementation of a programmer­
transparent scheme for coordinating concurrent
processes in recovery", Proceeding COMSAC (1980},
615-621.

30. Kohler, W. H. "A survey of techniques for
synchronization and recovery in decentralized
computer systems", Computing Surveys, 13-2 (June,
1981), 149-183.

31. Kopetz, H. "Software design for fault tolerance",
Proceeding COMSAC (1980), 591-595.

32. Lee, P. A., et al. "A recovery cache for the PDP-11",
IEEE Trans.~ Computers, C-29, 6 (June, 1980),
546-549.

33. Lee, P. A. "A reconsideration of the recovery block
scheme", The Computer Journal, 21-4 (1978), 306-
310.

34. Levin, G. M., Gries, D. "A proof technique for
communicating sequential processes", Acta
Informatica, 15, (1981), 281-302. ----

35. Linden, T. A. "Operating system structures to support
security and reliable software", Computing Surveys
8-4 (Dec., 1976}, 409-445. .

36. Lister, A.M., Sayer, P. J. "Hierarchical Monitors",
Software-Practice and Experience, 7 (1977), 613-
623.

37. Myers, G. J., Buckingham, R. S. "A hardware
implementation of capability-based addressing",
ACM Operating System Review, 14-4 (Oct., 1980},
13-25.

38. Randell, B. "System structure for software fault

77

tolerance", IEEE Trans.on Software Eng., SE-1, 2
(June, 1975), 220-232. --

39. Russel, D. L. "State restoration in systems of
communicating processes", IEEE Trans.on Software
Eng. SE-6, 2 (March, 1980r;-l83-194.--

40. Russel, D. L. "Multiprocess recovery using
conversation", The 9th.Annual Intl. Symposium on
Fault-Tolerant Computing (June, 1979), 106-109.

41. Schwarz, P.M., Spector, A. Z. "Synchronizing shared
abstract types", ACM Trans.on Computer Syst. 2-3
(Aug., 1984), 223-250.

42. Seifert, M. "Reconfiguration and recovery of
multiprocess systems in fault tolerant distributed
systems", Proceeding COMSAC (1980), 596-602.

43. Siewiorek, D., et al. "C.mmp: The architecture and
implementation of a fault tolerant
multiprocessor", The 7th Intl.Symposium on Fault­
Tolerant Computing (June, 1977), 37-43.

44. Wilkes, M. v. "Hardware support for memory protection:
capability implementations", Proc.ACM Symposium on
Architectural support for programming languages
and operating system (March, 1982), 108-116.

45. Wulf, W. A., et al. "Hydra: the kernel of a
multiprocessor system", Communication ACM. 17-6
(June, 1974), 337-345.

46. Wulf, w. A. "Reliable hardware/software architecture",
IEEE Trans . .2.!!. Software Eng. SE-1, 2 (June, 1975),
233-240.

VITA ~

Jonathan Asuru

Candidate for the Degree of

Master of Science

Thesis: TEMPORAL LOCALIZATION OF ERROR RECOVERY
IN OPERATING SYSTEMS BY RESTRICTING
INFORMATION FLOW

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Ogbakiri, Rivers-Nigeria,
September 25, 1954, son of Walson and Lavender
Asuru.

Education: Graduated from County Grammar School,
Ikwerre-Etche, Rivers-Nigeria, in December, 1973;
received Bachelor of Science degree in Computer
Science from University of Lagos, Nigeria, in
June, 1979; completed requirements for the Master
of Science degree at Oklahoma State University in
December, 1985.

Professional Experience: Teaching Assistant,
University of Port Harcourt, Nigeria, November,
1980 to August, 1982; Teaching Assistant, Oklahoma
State University, August, 1984 to Present.

