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I.  INTRODUCTION

In  digital  arithmetic  there  are  two  classes  of  multipliers;  parallel  and  sequential. 

Parallel  architectures are faster, but require a larger die area, which in turn, relates to 

higher  fabrication  cost.  Sequential  multipliers  have  a  smaller  die  area  and are,  thus, 

cheaper; however, sequential multipliers are slower and require a clock signal. For these 

reasons, parallel architectures of multipliers are usually chosen, if speed is important. 

Multiplication is an important part of computer arithmetic, in particularly because it is 

important in business and scientific computations [1].   Multipliers found within general-

purpose and applications-specific architectures are usually composed of digital  signals 

that represent both  0 and  1 [2].   Although many multipliers use binary to represented 

decimal numbers, the use of signed digit or redundant notation can be used to increase the 

speed of  multiplication  significantly.    Unfortunately,  using a  representation  that  can 

allow multiple representations of the same number can have negative effects on the size 

of most multipliers.  Consequently using complicated representations of numbers should 

be tempered with the advantages that are produced with speed. 

Regular carry save array multipliers have three main parts: the first is partial product 

generation,  the  second  is  partial  product  reduction,  and  the  third  is  the  final  carry 

propagate addition. Unfortunately the carry propagate adder causes a large delay as the 

multiplier  increases its  operand size.  For example a ripple carry adder (RCA) can be 

analyzed  using  a  linear  time  analysis.  Therefore,  assume  1 gate  takes  1Δ delay  and 

occupy 1 unit of area, a n-bit ripple-carry adder takes
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Delay  (1.1)

Area  (1.2)

For a four bit multiplier, the delay is only 12 Δ, however, when the multiplier is scaled up 

to 64 or 128 bits the delay becomes 132 or 260 Δ, respectively. Alternate adder designs 

could  be  used,  but  the  speed  gains  compared  to  the  area  are  usually  equal  or  even 

disproportionate. In [4], a  16 bit carry-lookahead adder is considered having a delay of 

14 Δ and an area of 214 gates, as opposed to an RCA, with delay of 36 Δ and area of 144 

gates, which nearly double the area to half the delay.

  This research discusses an implementation of a multiplier that uses a redundant notation, 

yet uses a small amount of additional hardware to reduce the overall worst-case delay [3]. 

By modifying the representation of the numbers within a multiplier, additional hardware 

can  compensate  for  the  removal  of  the final  carry-propagate  addition  and,  hopefully, 

significantly  improve  the  design.   Although similar  approaches  have  been  previously 

introduced,  this  research differs  from previous  work in  that  it  focuses  mostly  on the 

implementation of previous designs [3].  Moreover, a signed-digit adder is added to the 

circuit to allow the time to complete a computation within a multiplier to be significantly 

reduced.

PREVIOUS WORK ON CARRY FREE MULTIPLICATION

As mentioned in [1], one of the methods to increase the overall speed of a multiplier is 

to  use  signed digit  notation  within  the  multiplier.    Although previous  designs  have 

2



incorporated signed digit notation within the multiplier  [5]-[7],  the design presented in 

[3] uses the redundant notation of the input operands to remove the final carry-propagate 

adder . It should also be noted that although [8] and [9] use a similar redundant notation 

as [3], however, they fail to obtain carry-free multiplication. 

Carry Propagate Free Multiplier

The multiplier design described in [3] is unique in several different areas: first, the 

design utilizes signed digit notation and using a radix 4 notation reducing the number of 

addition operations in the multiplier by half. Secondly, the multiplier design does not use 

a carry propagate  adder,  thus, reducing the delay after  the partial  product recurrence. 

Additionally, the design is slightly abstract and lacks detail especially on the recoding of 

one  of  the  multiplicands,  but  fails  in  particular  at  describing  how to  implement  the 

algorithms in hardware creating a unique challenge. 

This thesis will explain in detail the architecture of a  4 bit implementation for 

three reasons. First the architecture we will be presenting is based on two bit blocks, 

increasing the number of bits simply increases the number of blocks.  Secondly,  4-bit 

multiplier arithmetic can be easily checked and understood for all solutions are between 

0 and  255.   Finally,  a  smaller  design  allows  synthesis  engines  to  actively  explore 

symmetry for the final design. Because of the large amount of time required to develop 

hardware implementations from an algorithm there may be significant work remaining to 

acquire  sufficient  data  and  it  may  be  necessary  to  extrapolate  data  to  come  to  a 

conclusion.  This  thesis  will  be  considering  area,  power,  and  delay  for  each  of  the 

multipliers that are synthesized. 
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Paper Organization

The rest of this thesis is organized as follows Chapter II will focus on background 

information relating to multipliers and specific techniques used in our design such as SD 

adders and on the fly conversion. Chapter III will describe the details of the multiplier 

particularly how the algorithms work in hardware and where the design strengths and 

weaknesses may be. Chapter IV will discuss the design and synthesis process as well as 

the results from the synthesis and Chapter V will summarize the major findings of this 

paper and any future work that should be completed
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II. BACKGROUND

It is important to understand that in computer arithmetic there is no intuitive operations 

and that everything must be done in a logical operation. When a computer multiplies X 

by Y it cannot intuitively know the answer no matter how simple the problem. Rather, it 

must add X by Y times to obtain the solution simply put every multiplication is a series 

of additions. This process is most easily observed in a carry save array multiplier,  as 

shown in Figure 1. The array multiplier forms a partial product via an AND gate for the 

X multiplicand bit and Y multiplicand bit.   In general, n-bit carry-save array multipliers 

have  n2 AND gates,  (n-1)  half  adders,  (n-1)(n-1)  full  adders,  and  a  (n-1)  final  carry 

propagate  adder.  The  critical  or  worst-case  path  of  the  data  is  the  variable  that  will 

determine the speed of the design.  In Figure 1, the critical path begins at the top left of 

where a3 and b0 are ANDed together and then descends diagonally to the bottom right, 

and  finally  moves  horizontally  to  the bottom left  hand side  where z[7]  or  the  most-

significant bit (MSB) is computed.
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Figure 1 Simplified Multiplier Design

It is of importance to note that there are a large amount of steps required for any carry-

save array multiplier and that the area and delay grow nearly by a power of two for each 

doubling of the bit size.  

Redundant Notation

One way in  which  to  increase  performance  is  to  reduce  the  number  of  steps 

involved in the multiplication operation.  This can be accomplished by using redundant 

notation  or  signed  digit  notation  for  both  input  operands.  Numbers  are  considered 
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redundant if each digit can be represented by more than one value. For this work, it is 

presumed two wires are used for the number system, such that it represents {-1, 0, 1}, as 

opposed to regular binary notation {0,1}.  This method of representing or encoding the 

bits is often used in redundant designs and is commonly referred to as one hot encoding 

[10].    More  importantly,  using  one-hot  encoding  allows  negative  numbers  to  be 

represented easier.    For example,  the redundant notation or  391 can be computed as 

follows: 

391101101104114 012 =×+×−+×=  (2.1)

Redundant or signed digit (SD) notation allows multiplication units to use shifting 

instead of addition, which is typically faster in hardware. This technique is also utilized in 

similar designs that employ Booth encoding [11].  Number system are commonly defined 

according to the number of bits that they operate with or the radix. As in [3], the radix for 

this  work  is  set  to  4 and  is  in  redundant  notation  so  the  number  system is  {-3,-2,-

1,0,1,2,3}.   By using a larger radix, tasks can be completed using a smaller number of 

steps and, subsequently, reduce the overall latency of the operation. Radix 4 can also be 

achieved easily by using two bit slices which works out well considering that this design 

uses  two  bit  slices.  Radix  4 redundant  notation  and  radix  2 redundant  notation  are 

equivalent in hardware, as shown for the following example: 010011101032 = . 

There are several disadvantages associated with redundant notation. The first is 

that at the end of an operation the result must be converted back to standard notation for 

use in other parts of the digital system.  Normally, in order to accomplish this conversion, 

a carry-propagate adder must be used, which is typically slow and cumbersome for large 

input operands.  Another disadvantage is that the hardware design becomes increasingly 
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complex  and  can  drastically  increase  the  area  of  the  individual  blocks.  Finally,  the 

complexity of wiring blocks can also increase exponentially leading to unequal delay 

paths, which cause many problems within digital systems.

Signed Digit Adder

FA FA FAFA ... ...

Figure 2 Ripple Carry Adder

When using redundant notation it is not possible to use regular adders, since there 

are  two  wires  instead  of  one  for  each  bit.  This  introduces  an  opportunity  for  using 

different forms of adders. Regular adders have a carry that propagates through each bit, 

as seen in Figure 2. This results in a large delay due to the carry chain which would be 

beneficial to eliminate or reduce [12].   Due to these two issues, it is advisable to use 

what is called a signed digit adder. A SD adder uses two wires and adds both the negative 

and positive parts together.   In [13]-[18] different SD adder designs are discussed using a 

two step addition process and avoiding any carry propagate addition, as shown in Figure

3.   The weakness of SD adders is that the input operands must be recoded into redundant 

notation, so that no carries are present in the addition operation. This normally requires a 

special recoding step to be added to the process as well as a decoding step that must be 

added to convert the solution into a non-redundant solution. 
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Figure 3 Signed Digit Adder

The advantage of the SD adder is in the speed in which a sum can be calculated. 

An 8-bit Ripple Carry Adder (RCA) can be built from seven Full Adders (FA) and a Half 

Adder (HA).   Using a linear area/delay analysis, each FA has an area of 9 gates and a 

carry-in to carry-out (worst case) delay of  2 delta where one delta represents the time 

required for a digital signal to propagate through one gate. Each HA has an area of  5 

gates and a delay of 1 delta. This gives our eight bit adder an area of sixty-eight gates and 

a  worst  case delay of  fifteen  delta.  For  each bit  that  is  added to  the adder,  the area 

increases by  9 gates and the delay is increased by  2 delta. An SD adder design has an 

add1 and add2 block for each bit slice each bit slice has a total area of  17 gates and a 

delay of 4 delta an 8-bit SD adder would have an area of one hundred thirty-six gates and 

a delay of 4 delta. Adding bits to an SD adder increases the area of the adder, but not the 

delay. The major drawback of SD adders is that there must be a recoding stage prior to 

the adder that reconfigures one or both of the addends into redundant notation in such a 

way that a carry result does not occur.
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Recoding Scheme

A recoding scheme converts a standard binary number into a redundant number that is 

designed  to  prevent  carries  throughout  the  SD  adder  blocks.  The  problem  with  the 

recoding scheme is that there is no standard algorithm to create the recoding hardware 

which results in a hit or miss design that must be verified through testing. Our process 

will involve designing a recoding scheme, testing it for functionality, determining where 

the recoding fails, and redesigning the scheme to avoid the error sequence. An example 

of standard addition with carries and a recoded addition without carries is seen in Table 1. 

Only one operator needs to be recoded and the only limitation on the recoding scheme is 

that the recoded number must equal the original number. 

Table 1 Standard Carry Addition Compared to Recoded Addition

1 1 1 1 1 0 0 0
1
̅

1 1 1 1 1 1 1 1
1 1 1 1 0 1 1 1 1 0

Standard Addition Recoded Addition

On The Fly Conversion

One of the drawbacks of using redundant notation is that it must converted back 

to  non-redundant  or  standard  notation  at  the  end of  the  operation.  Unfortunately,  all 

redundant notation must use a carry propagate adder to recode it back to its original form. 

However, this causes a large delay and should be avoided. One solution to this process 

can be the use of online algorithms. An online algorithm is an algorithm in which parts of 

the most significant digit are computed before the least significant bits. As in [17] and 
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[19], a simplified conversion formula can be derived. To illustrate the process of on-the-

fly-conversion,  a number should define a digit vector with k significant digits as Q[k] 

such that

  (2.3)

Therefore, during each iteration of Q, an equation can be formed based on the iteration 

and radix, r:

 (2.4)

Since  qi  from Equation  2.3  can  be  negative,  it  is  important  to  use  a  second  set  of 

equations to solve for Q.  Since each iteration of the conversion allows the the digits to be 

converted back to normal representation, its easy to allow this conversion to be extended 

to numbers that are either greater than or less than Q.  For example, Q can be derived, 

such that, it produces a value QM that is one unit in the last place less than Q.  And, since 

the digits are produced from the most-significant bit towards the least-significant bit, two 

equations  that  allow  the  conversion  to  update  the  converted  result  is  given  by  the 

following two equations:

(2.5)

QM[k+1] =  (2.6)

By using both these equations there is no carry/borrow additions and only concatenations 

resulting  in  a  quick  conversion  from  redundant  notation  to  a  standard  binary 

representation.   For example, a radix 2 example of on-the-fly-conversion is shown in 

Figure 4 for 101010011101 .
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Figure 4 On The Fly Conversion - General Theory

From the  example  there  are  two observations  that  should  be  noted  first  that  Q[k]  is 

always  greater  than  QM[k]  by  one.  Secondly  that  this  implementation  requires  two 

registers on to store Q[k] and the other to store QM[k] a block diagram of the hardware 

implementation, as shown in Figure 5.

Figure 5 Block Diagram of OTF Conversion -  General Theory
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III. METHODOLOGY

Given that a standard carry save array multiplier  has a large number of steps, 

which  in  turn  results  in  large  area,  and  that  delay  increases  when  the  multiplier  is 

increases, traditional carry-save array multipliers can incur a significant amount of delay 

for large input operands. Our design intends to create a multiplier that scales at a much 

better  rate,  but  utilizes  a  number  of  techniques  already  given  in  [3]  yet  refined  for 

hardware.  The  most  significant  part  of  the  design  is  the  use  of  signed digit  radix  4 

notation, which causes the design presented in this thesis to contain significantly smaller 

number  of  steps  to  complete.   However,  each  step  is  more  complicated  as  each 

multiplicand has four inputs instead of one. The more complicated design requires us to 

use SD adders which results in a larger area but the SD adder arrays do not utilize carry 

propagate adders resulting in a smaller delay time.   The proposed design is also bit sliced 

in two bit slices which aides in the on the fly conversion returning the SD number into 

standard  binary notation  that  can then  be used by designs  that  use  large amounts  of 

hierarchy.  

The  propagate-free  multiplier  design  differs  from  a  traditional  carry  save 

multiplier in several areas. First, as mentioned before a regular carry save multiplier has 

two main parts the first is partial product recurrence and the second is the carry propagate 

adder our multiplier has three main parts; a Recoding block a Signed Addition block and 

an on-the-fly conversion block, as shown in Figure 6. 
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Figure 6 Block Diagram of Multiplier Design

In  the  carry-propagate  free  design,  each  multiplicand  is  divided  into  two  bit 

numbers.  During the signed digit addition, each two bit number is usually between -3 

and 3, however, in some circumstances the result from the signed digit addition can be 

between -5 and 5 requiring a third or carry bit, as shown in Table 2. 
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Table 2 Negative Limit Example

15x5 = 75    A = 5 = 0x11 converts to 0x1    B = 15 = 0x33
W Zj Tj-1 Sj Pj-1 A[j-1] D[j-1]

1 3 3
2

2 0 2 0 2 0 0 U
3

0 2 02 nu
021 ndu

0 0213 nddu
0 0 02133 ndddu

01023 = 75

In [3] the algorithm does not convert the lower half of the answer into non-redundant 

form, however,  in this implementation all bits are convert into non-redundant form to 

allow for more accurate rounding after the multiplication process.  It should also be noted 

that adding these bits to the on the fly conversion does not significantly increase the size 

or delay of the multiplier. The design also needs to optimize these blocks, so that they can 

be  eliminated  in  some  cases  without  loss  of  accuracy,  depending  upon the  rounding 

scheme used after the multiplier. The speed increase would be equal to the delay of block 

D multiplied by N/2 where N is the number of bits in the multiplier.
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RECODING BLOCK

 The recoding block has two parts; signed recoding and XY Combination. The signed 

recoding block converts one multiplicand into a sign notation for the purposes of this 

paper the multiplicand denoted as “A” will always be the multiplicand that is recoded. In 

[3] the importance of the signed recoding is  highlighted  properly.  A simple  recoding 

scheme such as X = 16 -15 + A. (3.1) where X is the recoded number will break down in 

certain circumstances such as when multiplying 0x22 by 0xFF. Instead, a signed recoding 

algorithm must be chosen that focuses on the two bit sections of the multiplicand thus 

reducing the chances of a carry during the signed addition block it is important to note 

that a carry here is ok and is expected in a couple of situations. 

The recoding scheme that has been chosen uses a four layer design as shown in Figure

7. the first three layers have a delay of four gates total that increases in size N but the 

delay remains constant the fourth layer is dependent upon the delay of a N bit signed digit 

adder where N is the number of bits of the multiplier. This is significant because as N 

increases then the delay of the recoding block will increase based upon the delay of the n 

bit signed digit adder and could result in a speed problem requiring an optimized signed 

digit adder or a different recoding scheme.
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Figure 7 Internal Block of The Recoder

At higher bit implementations the radix digit system can be increased to handle 

numbers  between -7 and 7 by adding only a  few gates  to  the  design allowing for  a 

simpler recoding scheme. The XY Combination block takes each two bit number from X 

and multiplies it by B an example can be seen in Table 3. Each XY block is essentially an 

optimized combinational multipliers capable of multiply by -3 to 3 this process allows us 

to use radix 4 from this point and thus reduces the number of SD adders.

Table 3 Truth Table for XY Block
X is a two bit number,  B is four bits  all numbers in decimal
Example # X B xY Output

1 0 10 0
2 1 10 10
3 2 10 20
4 3 10 30
5 -1 10 -10
6 -2 10 -20
7 -3 10 -30

17



It should be noted that the XY block of the algorithm is a possible weakness in the 

design  particularly  in  small  designs  as  each  multiplier  has  essentially  many  two  bit 

regular multipliers that make up a part of the design if speed is desired then this block 

should be redesigned as there are a couple carries contained in this block that should be 

eliminated if possible.

SIGNED DIGIT ADDITION BLOCK

 
The Signed Digit Addition block is straight forward, each w[n] and w[n+1] is added 

together. The two most significant bits are carried out to the on the fly conversion block 

while the lower four bits are carried into the next adder to be added to w[n+2]. After the 

last adder in our implementation the lower four bits are also carried into the on the fly 

conversion block. In [3] they are left in redundant form .  There are several approaches to 

developing  a  signed digit  adder  while  the adders  proposed in  [13] and [14] work as 

intended they are overly complicated for the task at hand each design used what was 

essentially three levels causing larger delays and area usage then we intended to use. The 

adder  proposed  in  [15]  was  developed  in  our  hardware  implementation  but  we were 

unable to complete a fully function hardware implementation as each revision contain 

anomalous  errors  in  it  and  was  ultimately  abandoned  for  a  more  simple  design  as 

described in [16] and [17] 
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Each SD Adder has a simplification block that is implemented at the end of the 

process in which every two bit slice is simplified into a non-convoluted form. This is so 

that each two bit slice follows the algorithm cleanly, the functionality of the block can be 

seen in Table 4.

Table 4 Simplification Block Outputs
Two bit Input Two bit Output

0  0 0  0
1  0 1  0
0  1 0  1
1  1 1  1

0 0
0  0 
1  0   1

1 0  

19



ON THE FLY CONVERSION BLOCK

Figure 8 On The Fly Conversion Block

 
The third and final block converts our signed digit notation (-5 to 5) into standard 

binary (0, 1) we will be using the On the Fly Conversion as described in [3], [17], [20], 

and [21] there are four parts to OTF Conversion a Ts block that separates the two bit 

input, the A block that converts and sums sj-1 and tj the D block array which keeps track 

of whether to decrement the two bits and the DEC block that decrements the two bits if 

needed an example of how this is implemented can be seen in Figure 8. 

The Ts block takes the two bit output from the SD adder and converts it into a number 

represented by tj and sj the conversion chart is shown in Figure 9.
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Figure 9 Ts Block Recoding Scheme

Table 5 D Block Truth Table
Inherited Value New Value Output
U U U
U D D
D X D
N X N

Block A adds tj and sj-1 and outputs aj and a sin bit, written as;

Aj = tj + sj-1 (3.2)

Sin = 1 if Aj < 0 else Sin = 0 (3.3)

the D block maintains a record of whether or not to decrement the two bit number Table 

5.  shows  a  truth  table  for  the  D  block  where  U,D,N,  and  X  stands  for  undecided, 

decrement, no change and don’t care.

The DEC block decrements aj if the output from the D block line is a one (D) 

where the two bit number is decremented, as shown in Table 6. The data is in binary all 

other outputs from the D block are considered don’t cares and can be ignored. The output 

from the DEC block is the final multiplication result.

Table 6 Truth Table For DEC Block
Inpu

t

D Block Output Output
11 00 11
11 01 01
11 10 11
11 11 11
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Multiplication Example

Now that we have discussed the basics of how our carry-propagate adder will 

work,  Table  7.  shows  an  example  our  multiplication  procedure  note  that  during  the 

recoding stage the numbers are converted to signed digit notation from -3 to 3 and that 

during signed addition the numbers range from -5 to 5. It is worth noting that only a small 

amount of logic is located before and after the signed digit adders and that most of the 

logic  is  executed  in  parallel  with the signed addition  which should result  in  a lower 

overall delay. The columns from Zj to D[i-1] are steps of the on the fly conversion.

Table 7 Example Arithmetic

7x9=63 A=7=0x12 converts to 0x12      B = 9 = 0x21
W Zj Tj-

1

Sj Pj-

1

A[j-1] D[j-1]

1 2 1
2 0

1 1 1 0 1 0 0 u
3

1 1 0 1 1 01 nu
0 0 010 nuu

0 0 0100 nuuu
0 0 0100

3
ndddu

0033
3
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IV. RESULTS

Due to  the  nature  of  the  project  our  primary  effort  was  to  design  hardware  for  the 

multiplier algorithms described in [3]. Each algorithm was divided into functional blocks 

then each block was designed at the gate level. Next each block was developed using 

structural Verilog Hardware Descriptive Language (HDL) then each block was tested in 

the Xilinx ISE. Each block was tested exhaustively, when an error was found the block 

was checked and redesigned on paper and then rewritten in Verilog HDL. After each of 

the individual blocks were designed all  the blocks were integrated to build a four bit 

multiplier design. The design was then tested and the recoding block was modified to 

create  a better  recoding scheme.  After the four bit  multiplier  design was successfully 

tested an eight bit design was built, the SD adders and recoding blocks were modified to 

handle eight bits.  All  other blocks were built  as two bit slices and multiples  of these 

blocks were added to handle eight bits.  All carry save multiplier designs are built using a 

predefined script. 

Synthesis for our purposes uses actual logic blocks for the layout of the design 

which gives a good estimate of area and power consumption it is useful as it is the first 

step in preparing a design for fabrication. All multipliers are synthesized using cadence at 

the AMI C5N 0.5 micron feature size. The power and size are taken from a synthesized 

simulation using a standard cell library. Standard cells are layout designs that have been 
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previously created and stored in a library for use in future projects. Standard cells tend 

not to be optimized for power, area, or delay. 

Encounter places the synthesized cells and routes wires to each of the cells this is 

the one of the last design steps before sending a design off for fabrication the delay was 

recorded after Encounter had routed wires to the cells so that wire delay is included in the 

delay time. In Table 8. you can see the results from the standard multiplier design.

Table 8 Regular Carry Save Multiplier Results
4 bit Multiplier 8 bit multiplier 16 bit multiplier

Dynamic Power [mW] 0.69 5.38 34.24
Leakage Power [mW] 0.01 0.03 0.02
Number of Cells 78.00 377.00 1,638.00
Total Cell Size [um2] 19,278.00 97,029.00 421,479.00
Delay [ns] 4.13 9.46 19.28

Below in Table 9. you can see the results from the propagate free multiplier design

Table 9 Carry Propagate-Free Multiplier Results
4 bit multiplier 8 bit multiplier

Dynamic Power [mW] 4.24 13.67
Leakage Power [mW] 0.03 0.08
Number of Cells 430.00 1,217.00
Total Cell Size [um2] 97,713.00 273,528.00
Delay [ns] 11.01 17.86

By observation it can be seen that the standard multiplier is smaller and faster at four and 

eight bit implementations however if we plot the data on a logarithmic scale we should be 

able to determine how well our design will scale. The delay increase of the two adders is 

plotted in the Figure 10. revealing that by extrapolating the two measured data points the 

propagate-free adder does scale better. We can justify extrapolating with just two points 
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because as noted multiple times the propagate-free design uses two bit block slices and 

thus should increase in area, power, and delay at the same rate per new bit.

Figure 10 Multiplier Delay in ns with Respect to Bit Size (Extrapolated)

We can see  that  that  the  propagate-free  adder  starts  out  slower  but  the  delay 

increases at a slower rate giving it a speed advantage at 64 bits and above. However, this 

observation must be scrutinized and further researched since it is based on a two point 

extrapolation. Because the regular multiplier is easily created with the use of scripts we 

can synthesize the regular multiplier up to 128 bits to help confirm our extrapolation. The 

results are shown in Table 10. the synthesis results are better than our extrapolated data 

and the delay is plotted in Figure 11. along with both of our extrapolated data lines.
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Table 10 Regular Carry Save Results For Large Bit Implementations
32 bit multiplier 64 bit multiplier 128 bit multiplier

Dynamic Power [mW] 232.09 1,339.70 3,300.80
Leakage Power [mW] 0.76 3.61 14.11
Number of Cells 8,456.00 39,701.00 123,560.00
Total Cell Size [um2] 2,423,538.00 11,636,496.00 43,826,913.00
Delay [ns] 26.49 50.82 139.70

Figure 11 Multiplier Delay in ns with Respect to Bit Size (Actual VS Extrapolated)

After examining  Figure 11 it is observed that the actual regular multiplier,  out 

performs  not  only  its  own  extrapolated  results  but  also  those  of  the  propagate-free 

multiplier.  However  an unexpected variable  was present in the cadence software that 

modified  the  results  resulting  in  a  non-uniform data  line  for  the  synthesized  regular 

multiplier as the complexity of the design increases cadence compensates and increases 

its  optimization  aggressiveness  this  can  be  seen  clearly  by  the  much  smaller  than 

expected delay between the 16 and 32 bit multipliers which is then followed by a much 
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more expected jump between the 32 and 64 bit multipliers. This increase in optimization 

effort can also be seen in the synthesis time of different multipliers for example the 16 bit 

requires less than fifteen seconds to synthesize but the 128 bit multiplier requires nearly 

eight hours to synthesize. (Time does not include place and route time). This increase in 

the aggressiveness of the optimizations should also yield better results for the synthesized 

propagate-free multiplier giving it an added advantage in larger multiplier designs. The 

same principle applies to power consumption that the extrapolated data for the propagate-

free  multiplier  consumes  less  power  at  the  32 bit  implementation  and  gains  a 

considerable advantage as the multiplier size increases as shown in Figure 12.

Figure 12 Multiplier Power Consumption in mW with Respect to Bit Size
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When  comparing  number  of  cells  the  propagate-free  multiplier  advantage  is 

diminished as the extrapolated data fails to gain an advantage over the standard multiplier 

until the bit size exceeds 64 bits as shown below in Figure 13.

Figure 13 Multiplier Number of Cells with Respect to Bit Size
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V. CONCLUSION

In this thesis we confirmed that the algorithms in [3] are in fact capable of being 

implemented in hardware and that the algorithm is correct. We also confirmed that the 

recode block is perhaps the most important part of the multiplier  and requires careful 

planning regarding its implementation. 

The  implemented  results  were  somewhat  disappointing  revealing  that  the 

Propagate free design is larger and slower than a regular carry save multiplier at any size 

smaller than 32 bits. The extrapolated propagate-free results outperform the results of the 

regular  multiplier  at  128  bits  therefore  it  is  likely  that  a  propagate-free  design  is 

competitive  or  superior  at  64  bits.  The  design  presented  in  this  thesis  focused  on  a 

functional design and not an optimized design and it is possible the decrease the size and 

delay  of  several  blocks  that  would  increase  multiplier  speed  specifically  the  XY 

combination  block.  The  signed  digit  adders  are  used  throughout  the  design  and 

eliminating a single gate delay from it would increase performance greatly. Within the 

XY combination block there are several full adders with a small carry chain that could be 

replaced with a more complex combinational logic. This would add a modified carry-free 

adder decreasing delay considerably.  
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Summary 

Our multiplier design was successfully implemented in a synthesized hardware 

environment  and was tested to be fully functional as a multiplier.  Our propagate free 

design  is  not  superior  to  a  regular  carry  save  multiplier  at  four  or  eight  bit 

implementations.  However,  the  scaled  difference  between  the  two  implementations 

project  that  our  propagate  free  design  should  become  smaller  and  faster  in  larger 

implementations. . Shows which design has the superior characteristics in area, delay, and 

power consumption the standard Carry Save Array Multiplier is represented as CSAM 

whereas our Carry-Propagate Free design is represented by CPFM. It can be seen that the 

standard design maintains an advantage at 16 bits or less our design begins to gains a 

power advantage at 32 bits and an area advantage at 64 bits and at 128 bits finally having 

a lower delay.

Table 11 Performance Comparison
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The main  weakness  in  our  design  is  the  recoding  scheme used  to  recode  the 

multiplicands for the signed digit adders this recoding scheme does not follow a standard 

algorithm and must be arbitrarily determined resulting in a mandatory exhaustive test of 

the multiplier do determine full functionality of the multiplier.

Future Work

Additional work on this project includes synthesizing 16, 32, 63, and 128 bit 

versions of the propagate-free design and comparing the multiplier design against more 

optimized designs, including booth multipliers. Much work should go into developing an 

algorithm to guide the recoding scheme since right now recoding is a hit or miss design 

that must be verified at each new implementation.
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