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We show that it is possible to generate entanglement between two distant Bose-Einstein condensates by
detection of Hanbury–Brown-Twiss-type correlations in photons Bragg scattered by the condensates. Upon
coincident detection of two photons by two detectors, the projected joint state of two condensates is shown to
be non-Gaussian. We verify the existence of entanglement by showing that the partially transposed state is
negative. Further, we use the inequality in terms of higher-order moments to confirm entanglement. Our
proposed scheme can be generalized for multiple condensates and also for spinor condensates with Bragg
scattering of polarized light, with the latter capable of producing hyperentanglement.
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I. INTRODUCTION

Quantum entanglement means inseparability of the joint
wave functions of two or more distant objects into a product
of wave functions of individual objects—even in the absence
of any mutual interaction or communication between them.
This epitomizes the underlying nonlocal character of the
quantum world. One of the consequences of this nonlocal
realism is that a single local measurement cannot reveal the
complete state of an entangled system, since the process of
measurement itself forces the wave function to “collapse”
into one its measured �eigenstate� state in a probabilistic
sense. Thus, the measurement process can post-selectively
play a role in creation and manipulation of entanglement,
and this is the essence of what is called “projective measure-
ment.”

Efficient generation of entanglement in many-particle sys-
tems and its robust transmission and transfer to other systems
is important for quantum-information processes. Based on
atom-photon interactions and the exchange of photons be-
tween the qubits, entanglement in distant atomic states �1–3�
and also between photons �4,5� has been experimentally
demonstrated. There is another way of entangling two re-
mote systems without requiring any direct interaction be-
tween them: This is based on projective measurement. This
indirect method of creating entanglement between distant
systems can also be applied for many quantum communica-
tion tasks. In a recent experiment, Moehring et al. �6� have
created entanglement between two distant trapped ions by
coincident detection of two photons spontaneously emitted
by the two ions. An earlier experiment has shown interfer-
ence of light emitted by two atoms �7–9�, making use of
projective measurements. Thiel et al. �10� have proposed a
scheme of entangling several remote atomic qubits and
thereby creating a Dicke state �11� of many atoms by projec-
tive measurement of photons using multiple photodetectors.
Dicke states are particularly important for their robustness
against particle loss �12,13� and nonlocal properties of en-
tangled multipartite states �5,14–16�. There are several other
proposals for projecting distant noninteracting particles into

entangled states via photodetection �17–22�. Continuous
variables like the quadratures of a field mode �which are
analogous to position and momentum� have also been em-
ployed �23� in entanglement studies.

The Bose-Einstein condensate �BEC� is a macroscopic
quantum object where entanglement arises quite naturally
due to two-body interactions. Bogoliubov theory �24� of
Bose condensation reveals that in the ground state of con-
densates, two particles with opposite momentum are maxi-
mally entangled �25� in momentum variables as in an
Einstein-Podolsky-Rosen �EPR� state �26�. This unique fea-
ture makes Bose condensates a good source of entanglement
in motional degrees of freedom. Furthermore, in a two-
component BEC, one can generate entanglement in hyperfine
spin degrees of freedom �27–33�. In order to extract the in-
trinsic entanglement of a BEC for the useful purpose of
quantum-information processes, it is required to excite qua-
siparticles in momentum modes by stimulated Raman scat-
tering or Bragg scattering �34,35�. Then a scattered atom
becomes entangled with Bragg-scattered photon �36�. In fact,
Bragg spectroscopy can be used as a tool for generating en-
tanglement of different kinds in a variety of physical situa-
tions. For instance, tripartite entanglement among two mo-
mentum modes of BEC and one electromagnetic field mode
can be produced �25�. Furthermore, it has been shown that
when a common laser beam passes through two spatially
separated condensates, the photon scattered by the first con-
densate carries and transfers quantum information to the sec-
ond one and thereby two condensates become entangled
�37�. A similar experimental scheme has been used to pro-
duce and subsequently measure the phase difference between
two spatially separated condensates �38�.

Here we propose a scheme for generation of entanglement
between two remote condensates by projective measurement
on Bragg-scattered photons. Our scheme relies on coincident
detection of two Bragg-scattered photons coming from two
remote condensates in a Hanbury–Brown-Twiss-type experi-
mental arrangement as schematically illustrated in Fig. 1. A
and B are two remote single-component condensates. Bragg
scattering of pump photons occurs independently at the two
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condensates, and the scattering is stimulated by probe beams.
This gives rise to the generation of quasiparticles in both
condensates in particular momentum modes determined by
the relative angle between pump and probe light beams. The
probe beams are assumed to have the same mode—that is,
same frequency and polarization property. The scattered pho-
tons in the two probe modes are made to coalesce using a
common beam splitter. Then the two photons coming out of
the output ports of the beam splitter are detected by two
photodetectors D1 and D2 in a coincident way. The joint
projective state of the two spatially separate condensates is
explicitly non-Gaussian. The entanglement of such non-
Gaussian states cannot be ascertained from the correlation in
fluctuations of quadrature phase variables or number vari-
ables �39�. To prove the existence of entanglement in such a
non-Gaussian state, we use the inequality criterion recently
proposed by Agarwal and Biswas �39� based on the phase

fluctuation of paring operators �of the form âb̂, where â and

b̂ are annihilation operators of the two subsystems� and the
concept of partial transpose of Peres �40� and Horodecki et
al. �41�. Shchukin and Vogel �42� and also Hillery and
Zubairy �43� have recently introduced a class of similar in-
equalities, the violation of which is sufficient to show the
presence of entanglement in two bosonic fields.

The paper is organized in the following way. Since Bragg
scattering holds the key for generating quasiparticles and
atom-photon entanglement, we first give a brief introduction
to Bragg scattering in Sec. II in order to reveal the essential
physical processes involved in Bragg scattering. We then for-
mulate our theoretical model of projective measurement and
discuss its effect in generating entanglement in Sec. III. In
Sec. IV, we characterize entanglement and discuss our re-
sults. The paper is concluded in Sec. V.

II. BRAGG SCATTERING

In a Bose condensate of weakly interacting atomic gases,
the zero-momentum �k=0� state is macroscopically occu-

pied. Therefore, an atom-atom collision occurs primarily be-
tween zero- and nonzero-momentum atoms. In stimulated
Raman or Bragg scattering, two far-off resonant laser beams
with a small frequency difference are impinged on a trapped
BEC. There are basically two physical processes in Bragg
scattering. In the first process, a photon from the laser beam
with higher frequency is scattered into a photon of the other
laser mode. This causes a transformation of a zero-
momentum atom into an atom of momentum q, where q is
the difference in photon momentum of the two beams. In the
second process, an atom moving with a momentum −q is
scattered into a zero-momentum state. Because of bosonic
stimulation, the scattering of atoms from the zero- to
q-momentum state will be the dominant process. There also
occur processes which are opposite to the above two pro-
cesses, but these are subdued due to phase mismatch. Thus
Bragg scattering generates quasiparticles �34�, predomi-
nantly in two momentum side modes q and −q. Bragg spec-
troscopy �35� with coherent or classical light produces coher-
ent states of quasiparticles in a BEC. When these
quasiparticles are projected into the particle domain, they
form two-mode squeezed and entangled states �25� in par-
ticle number variables.

Two remote condensates A and B are subjected to Bragg
scattering with pairs of Bragg pulses. The frequencies and
the directions of propagation of the laser beams are chosen
such that Bragg resonance �phase matching� conditions of
scattering in both the condensates are fulfilled. We assume
that the pulse with higher frequency has a higher intensity
and hence can act as a pump. The other laser beam which
acts as a stimulant for scattering is of much lower intensity
and so can be considered as a probe beam. We treat pump
beams classically. Since scatterings at the two condensates
occur independently, the Hamiltonian is simply the sum of
the Hamiltonian HA and HB corresponding to condensates A

and B, respectively. Let âq and b̂q represent the annihilation
operators for particles with momentum q in condensates A
and B, respectively. Let the corresponding Bogoliubov qua-

siparticles be denoted by �̂q and �̂q, respectively. In terms of
these quasiparticle operators, the effective Hamiltonian as
derived in the Appendix can be written as

Hef f
J = ��q

B��̂q
†�̂q + �̂−q

† �̂−q� − �� jĉ j
†ĉj

+ ���ĉj
†��̂q

† + �̂−q� + H.c.� , �1�

where the superscript J stands for condensate A or B and ĉj
�with j=a ,b� is the photon annihilation operator for the
probe beam applied to condensate J. The particle operators

	̂q ��âq , b̂q� are related to the quasiparticle operators

�̂q���̂q , �̂q� by the Bogoliubov’s transformation

	̂q = uq�̂q − vq�̂−q
† , �2�

with

vq
2 = �uq

2 − 1� =
1

2
���q + 


��q
B − 1� �3�

and

pump pumpprobe probe

BS

D1

A B

D2

FIG. 1. A scheme for entangling two separate BECs by Bragg
scattering and photodetection. A and B are two BECs which scatter
photons from pump beams into probe ones. D1 and D2 are two
photodetectors, and BS stands for beam splitter.
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��q
B = ����q + 
�2 − 
2�1/2 �4�

is the energy of Bogoliubov’s quasiparticle. Here ��q

=�2q2 / �2m� is the kinetic energy of a single atom, 
= �2�−2

2m is
the chemical potential with �= �8	n0as�−1/2 being the healing
or coherence length, � j is the detuning between the pump and
probe frequencies, and �=�Nfq�, where fq=uq−vq and � is
the two-photon Rabi frequency. We assume the Bragg reso-
nance condition ��	�q�. The Hamiltonian can be solved
exactly in the Heisenberg picture. The Heisenberg equations
of motion for a triad of operators X= ��̂q�̂−q

† ĉj
†�T can be writ-

ten in a matrix form Ẋ= i�q
BMX, where M is a 3
3 matrix:

M = 
− 1 0 − �̃

0 1 �̃

�̃* �̃* − �̃
� , �5�

where x̃= x̃ /�q
B. Let D be the diagonalizing matrix of M. The

solutions can be explicitly written as

X�t� = DE�t�D−1X�0� , �6�

where E is a diagonal matrix: E=diag(exp�i�1�� ,
exp�i�2�� , exp�i�3��), with �=�q

Bt and �i being the eigenval-
ues of the M matrix.

III. ENTANGLEMENT PRODUCED BY
PHOTODETECTION

Our proposed scheme is shown in Fig. 1. Quasiparticles
are generated in the condensates A and B due to stimulated
light scattering in a pump-probe-type Bragg-spectroscopic
method. Let ĉa and ĉb denote annihilation operators for the
two probe light beams scattered by condensates A and B,
respectively. Using Eq. �6�, the scattered light at the output
of the two condensates can be represented by

ĉa�t� = aq�t��̂q
† + a−q�t��̂−q + ac�t�ĉa�0� , �7�

ĉb�t� = bq�t��̂q
† + b−q�t��̂−q + bc�t�ĉb�0� , �8�

where a�q, b�q, ac, and bc are time-dependent coefficients
determined by Eq. �6�. The scattered light output coming
from the two condensates are passed through a beam splitter
and finally collected at the two detectors at D1 and D2 as
shown in Fig. 1. Let the reflectivity and transmissivity at left
side of the beam splitter be r and t, respectively, while those
at right side r� and t�. Then the photon annihilation operators
at D1 and D2 can be expressed as

ĈD1
= t�ĉb + rĉa, �9�

ĈD2
= tĉa + r�ĉb. �10�

Let the initial state of the total system—i.e., two condensates
plus the two probe fields—be represented by

��0
 = �0,0
AB��,�
fields, �11�

where �0,0
AB indicates a product state with both conden-
sates in the ground states of the quasiparticles, where first

“0” corresponds to condensate A and the second “0” to con-
densate B. We assume that both probe fields are in coherent
states �� ,�
 fields where the field amplitudes � and � corre-
spond to the probes incident at A and B, respectively. Mea-
surement of two-photon correlation via coincident detection
of scattered probe lights at the two detectors will project the
two-condensate density operator into

�AB = NTrfieldsĈD2
ĈD1

�0ĈD1

† ĈD2

† , �12�

where Trfields implies tracing over the field states, �0
= ��0
��0�, and N denotes a normalization factor. Now, sub-
stituting Eqs. �9� and �10� into Eq. �12� and using relations
�7� and �8�, we obtain �AB= ��
���, where

��
 = �N��,��ĈD2
ĈD1

��0


= �N�r�t��0A,SB�1q,2q�
 + rt�SA�1q,2q�,0B
�

+ �N�r�r + t�t���A�1q�,�B�1q�
 . �13�

The states �Sj�1q ,2q�
 denote a superposition state of ground
and one- and two-q-phonon excited states of condensate j
��A ,B�. Similarly, �� j�0,1q� , 
 is another superposition state
of ground and one-phonon excited states of condensate j.
Explicitly, these superposition states can be expressed as

�SA
 = �2aq
2�2q
A + 2aqac��1q
A + ac

2�2�0
A, �14�

��A
 = aq�1q
A + ac��0
A. �15�

Now, we have the reciprocity relations

r*t� + r�t* = 0, r*t + r�t�* = 0,

�r�� = �r�, �t�� = �t�, �r�2 + �t�2 = 1.

Let t= �t�exp�i�� and t�= �t��exp�i���. Since phase changes
by 	 /2 on reflection, we have r= i�r�exp�i�� and r�
= i�r��exp�i���. Using the reciprocity relations and consider-
ing the field amplitudes � and � as real quantities, we obtain

��
 = �N�r��t��exp�2i����0A,SB
 + exp�2i���SA,0B
�

+ �N exp�i�� + ������r�2 − �t�2���A,�B
 . �16�

For a 50:50 beam splitter, we then have

��̃
 = �N1

2
��0A,SB
 + exp�2i����SA,0B
� , �17�

where ��=�−�� and ��̃
=exp�−2i�����
. Equation �17� is
manifestly an entangled state of the two condensates A and
B. This state obtained via two-photon detection is different
from the Gaussian state of each independent Bose conden-
sate. Furthermore, the basis states involved in this entangle-
ment describe collective modes or phonon modes of the con-
densates; �0A ,SB
 refers to a joint condensate state in which
condensate A is in a zero-phonon state and condensate B is in
a superposition of zero-, one-, and two-phonon states. This
state results from quantum interference of two probable pro-
cesses which are that �a� two scattered photons come from
condensate B and no photon is scattered by condensate A;
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these two photons are then split by the beam splitter and
detected at the two detectors projecting the joint condensate
state into the form �0A ,SB
. �b� The second process consists
of scattering of two photons by condensate A and no photon
by condensate B; this results in the joint condensate state
�SA ,0B
. Since these two processes are probabilistic, the
quantum interference of these two processes eventually gives
rise to the resultant state of the form �17� for a 50:50 beam
splitter. When one scattered photon comes from A and an-
other from B, there is the probability amplitude of rr� that
both the detectors will detect the only reflected part of the
two photons and also the probability amplitude of tt� that
only transmitted part of both the photons will be detected.
Both these processes project the joint condensate state into
the form ��A�1q� ,�B�1q�
. The net probability amplitude be-
ing the sum of these two quantities, for a 50:50 beam splitter
they cancel each other. This explains why there is no com-
ponent of ��A�1q� ,�B�1q�
 in Eq. �17�.

As discussed earlier, photons scattered by a condensate
share entanglement with phonons or condensate momentum
modes. These scattered photons can act as the carriers of
quantum information of phonons. In a BEC of weakly inter-
acting atomic gases, phonons are long lived. By coincident
detection of two independent photons, but separately en-
tangled with their respective scatterer condensates, we can
establish a quantum communication channel between two
condensates. Thus our proposed method of generating en-
tanglement between two remote condensates may also find
application in quantum cryptography �44� and teleportation
�45�. Furthermore, this two-photon detection scheme may
enable a partial Bell-state analysis �20,46,47�. Most of the
earlier proposals for creating entanglement between two dis-
tant ions or atomic ensembles via photodetection are based
on the electronic excitation and subsequent emission of pho-
tons that are detected. In such situations, spontaneous decay
to unwanted electronic states and decoherence cannot be
avoided. In our proposed scheme, since we use far-off
resonant-stimulated Raman-type light scattering, spontane-
ous emission is negligible. Since the system is a Bose con-
densate of weakly interacting ultracold atoms with long co-
herence time, decoherence is also at a minimum level.
Moreover, we use coherent light for stimulating photon scat-
tering and so our scheme does not require any cavity.

IV. CHARACTERIZING ENTANGLEMENT IN STATE (17)

A. Negativity of the partial transpose of the density
matrix

The necessary and sufficient condition for entanglement
in any bipartite system is the negativity of at least one of the
eigenvalues of the partial transpose �40� of the density matrix
of the system. Let �A,B denote the density matrix of a bipar-
tite system composed of subsystems A and B. Under partial
transpose of Peres and Horodecki over the subsystem B �or
A�, let the density matrix be represented by �A,BT

�or �AT,B�
which can be derived by making transpose only on the op-
erators of B �or A�. If the wave function of the composite
system is inseparable, then there will be at least one eigen-
value of the transposed matrix which is negative.

Now, the state in Eq. �17� can be expressed as

��̃
 = C0�0,0
 + �
m=1

2

��Cm,0�m,0
 + �C0m�0,m
� , �18�

where �m ,n
 represents a joint quasiparticle number basis
with m number of quasiparticles in condensate A and n num-
ber of quasiparticles in condensate B. From Eqs. �14� and
�17�, we find

C0 = ac
2�2 + exp�2i���bc

2�2. �19�

Similarly, all other coefficients Cm,n can be deduced from

Eqs. �14� and �17�. The density operator is �AB= ��̃
��̃�. Tak-
ing the partial transpose on �AB with respect to B implies
changing the base operators �ij
�mn�→ �in
�mj� and the re-
sulting matrix is �ABT

. We numerically find that in all param-
eter regimes there is one eigenvalue of �ABT

which is always
negative and hence the state �17� is an entangled state. Figure
2 shows that the negativity of the eigenvalue is more promi-
nent when the probe photon number ���2= ���2=np is lower.

B. Violation of the entanglement inequalities for
observables

Based on the idea of partial transpose, Simon and also
Duan et al. �48� have independently given an entanglement
criterion. Using variances in quadrature variables, an en-
tanglement parameter �48� can be defined as

�XP =
1

2
����X̂A + X̂B�2
 + ���P̂A − P̂B�2
� , �20�

where X̂S�A,B= �1 /�2��Ŝ+ Ŝ†� and P̂S= �1 /�2i��Ŝ− Ŝ†�, with Ŝ
being any bosonic operator of the subsystem S. According to
the criterion of �48�, the condition for the occurrence of en-
tanglement is �XP�1. This condition is necessary and suffi-
cient for Gaussian quadrature variables only. For non-
Gaussian states, this is only sufficient. There are certain non-
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FIG. 2. �Color online� One eigenvalue of the partial-transposed
density matrix �A,BT

calculated in the quasiparticle picture is plotted
as a function of dimensionless interaction time �q
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values of average probe photon numbers np=10 �solid line� and
np=20 �dash-dotted line�. The phase difference is ��=0 and the
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effective atom-field coupling constants are �B=�A=7.7�q
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Gaussian bipartite states which are conspicuously
inseparable, but do not fulfill the condition �XP�1. In the
present context, the state �17� is manifestly a non-Gaussian
state. This prompts us to look for other criteria �39,42,43�
based on higher-order moments of observables.

Let us now test whether the higher-order entanglement
criterion introduced in Ref. �39� can reveal the entanglement
in state �17�. To this end, let us first discuss what this crite-

rion is. Using quasiparticle operators �̂ and �̂ �same as �̂q

and �̂q defined in Eq. �2�, the subscript q being omitted for
simplicity�, we construct the operators

Kx =
1

2
��̂†�̂† + �̂�̂� , �21�

Ky =
1

2i
��̂†�̂† − �̂�̂� , �22�

Kz =
1

2
��̂†�̂ + �̂†�̂ + 1� , �23�

which satisfy SU�1,1� algebra. These SU�1,1� operators are
previously employed for studying higher-order squeezing.
The Heisenberg uncertainty relation of these operators im-
plies the inequality

���̂†�̂† + �̂�̂��� �̂†�̂† − �̂�̂

i
� � ��̂†�̂ + �̂�̂†
 . �24�

Let us now make partial transpose �̂↔ �̂†. Under this partial
transpose, the above inequality becomes

���̂†�̂ + �̂�̂†��� �̂†�̂ − �̂�̂†

i
� � ��̂†�̂ + �̂�̂†
 . �25�

After some simple algebra, we have

���̂†�̂ + �̂�̂†�2 = N2 + N + M , �26�

�� �̂†�̂ − �̂�̂†

i
�2

= N2 + N − M − 4���̂†�̂
�2, �27�

where N2=2��̂†�̂�̂†�̂
, N= ��̂†�̂+ �̂�̂†
 and

M = ��̂†2�̂2
 + ��̂2�̂†2
 − ��̂†�̂ + �̂�̂†
2. �28�

Collecting all these terms, inequality �25� can be expressed
in the form

�N2 + N + M��N2 + N − M − 4���̂†�̂
�2� � �N�2. �29�

Violation of this inequality means the occurrence of en-
tanglement. It is worth mentioning here that all these criteria
are sufficient for showing entanglement in a bipartite system.

We now concentrate on the form of the state given in Eq.
�18�. In all joint base states �m ,n
, the quasiparticle vacuum
state ��0
S� of either condensate S �A ,B� appears explicitly.
This means that the correlation function N2 of the quasipar-
ticle number operators is zero for any parameter regime. This
reduces inequality �29� to the form

− M2 − 4��N + M����̂†�̂
�2� � 0. �30�

Since N2=0, the variance � ��̂†�̂+ �̂�̂†�2 equals �N+M�. Be-
cause this variance is non-negative, the quantity �N+M�
must be non-negative. This implies that inequality �30� is
violated. Thus we have proved that state �17� is entangled.

C. Stronger entanglement by selection of probe phase

Here we show that the entanglement can be made stronger
by choosing appropriate phase of the two probe beams. In
state �18�, there is a purely Gaussian component correspond-
ing to the basis �0,0
 which implies that both condensates are
in their respective quasiparticle vacuum. Since the criterion
�29� is devised for verifying entanglement in a non-Gaussian
bipartite state, we expect that, on elimination of this purely
Gaussian component from �18�, violation of the inequality
�29� should be much stronger. This component can be elimi-
nated if the coefficient C0 given in Eq. �19� is made to van-
ish. For simplicity, let us assume that both condensates are
identical and their atom-field coupling constants are the
same. This means ac=bc. Furthermore, we assume that ��
=0. In such a situation, to make C0 vanish implies �2=−�2

where � and � are the amplitude of the two input probe
fields which are assumed to be in the coherent states. In other
words, this means �= i�; that is, the two input probes should
have a phase difference ��� equal to 	 /2. Now, a phase
difference of 	 /2 between two beams can easily be made if
they are derived from a single laser through a 50:50 beam
splitter with transmitted and reflected beams being used as
the two input beams. We plot left-hand side �LHS� minus
right-hand side �RHS� of Eq. �29� as a function of interaction
time in Figs. 3 and 4 for various parameters. Obviously,
negativity of LHS-RHS implies violation of inequality �30�
and hence entanglement. For all our numerical illustrations,
we consider two identically prepared BECs with the same
atom-field coupling strength. However, it is worth pointing
out that this assumption is not necessary for exploration of
entanglement between the condensates; this is assumed only
for the sake of simplicity. Figure 3 shows the effect of probe
photon number �or intensity� on the degree of violation of
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FIG. 3. �Color online� Left-hand side �LHS� minus right-hand
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the inequality. The weaker the probe intensity is, the stronger
is the violation. Figure 4 illustrates that when the purely
Gaussian component is eliminated ����=	 /2� from the state
�17�, the negativity of LHS-RHS becomes much stronger,
implying that the criterion �29� works better for highly non-
Gaussian entangled states. For identical coupling constants
and detuning between the pump and the probe for the two
condensates, we find that the degree of violation of the in-
equality saturates at the long interaction time limit. However,
for any mismatch in coupling constants or detunings, we
have found that LHS-RHS tends to zero in the long interac-
tion time regime �not shown�. The effect of atom-field cou-
pling strength on the negativity of LHS-RHS is illustrated in
Fig. 5. We notice that in the strong-coupling regime the
negativity is stronger. Furthermore, in the limit of very
strong coupling the violation of the inequality becomes al-

most insensitive to the initial phase difference ��� of the two
probe beams. This indicates that strong coupling is important
for entanglement between remote condensates. This in turn
brings in the important role of condensates in quantum-
information science: Since the effective atom-field coupling
strength is proportional to the square root of number of at-
oms, the strong-coupling regime can easily be attained with a
BEC rather than a thermal gas. Since thermal and phase fluc-
tuations in a BEC are at the minimum level, collective atom-
field coupling can easily be accomplished with a BEC in a
cavity with a moderate Q factor. For experimental verifica-
tion of entanglement, one needs to measure the various vari-
ances �appearing in the inequality� in the phonon or collec-
tive excitation modes of BEC.

V. CONCLUSION

In conclusion, we have shown that two remote indepen-
dent condensates can be made entangled in collective exci-
tations of BECs such as quasiparticle or phonon variables by
projective measurement on two photons Bragg scattered by
the two condensates. The generated entangled state is explic-
itly non-Gaussian and the existing criterion for entanglement
in Gaussian variables is insufficient in revealing entangle-
ment in this state. This has prompted us to test another cri-
terion �39� introduced specially for testing entanglement in
non-Gaussian states. We have shown that with this criterion
the projective state of the two condensates is entangled and
the entanglement can be made stronger by choosing the
probe phase in such a way so that the non-Gaussian nature of
the entangled state becomes more prominent. The entangle-
ment is shown to be stronger when the probe beams are
weaker and the atom-field coupling is higher. Since atoms
behave collectively in BEC-field interactions and also be-
cause of �N �N is the atom number� scaling of the coupling
strength, BECs can play an important role in the generation
and manipulation of entanglement. Since the entanglement in
the present context arises in the higher-order fluctuations of
the pairing operators, experimental detection of this en-
tanglement requires new techniques that will enable one to
measure the pairing fluctuations of phonons or quasiparti-
cles. Using Bragg spectroscopy phonons in a BEC have been
detected by Ketterle’s group. But how to detect phonon-
phonon correlation which is crucially required for explora-
tion of higher-order entanglement is presently unknown. Per-
haps by knocking out pairs of atoms from the two trapped
condensates and measuring their fluctuations, one can detect
this entanglement. Our proposed scheme can be easily gen-
eralized for multiple condensates. Furthermore, it may be
interesting to generate entanglement in both spin and mo-
tional degrees of freedom using spinor condensates and po-
larized light in our scheme with the possibility of an inter-
esting interplay of entanglement in spin and center-of-mass
degrees of freedom.
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APPENDIX

Here we derive the effective Hamiltonian for Bragg scat-
tering in a condensate. The total Hamiltonian of a condensate
interacting with two single-mode light fields is H=HA+HF
+HAF, where HF=��1ĉk1

† ĉk1
+��2ĉk2

† ĉk2
corresponds to the

two fields described by the operators ĉk1
and ĉk2

with photon
momenta k1 and k2 and frequencies �1 and �2, respectively.
We assume �1��2. The free part of the atomic Hamiltonian

HA = �
k

��k	̂k
†	̂k +

4	�2as

2mV


 �
k3,k4,k5,k6

	̂k3

† 	̂k4

† 	̂k5
	̂k6

�k3+k4,k5+k6
�A1�

governs the dynamics of a weakly interacting atomic con-
densate and

HAF = ��ĉk2

† ĉk1�
k

�	̂q+k
† 	̂k + 	̂−q+k	̂k

†� + H.c. �A2�

describes the atom-field interaction. Here 	̂k �	̂k
†� is

the annihilation �creation� operator of an atom with
momentum k and frequency �k= �k2

2m ; q=k1−k2, �

= �E� 1 ·d�13��E� 2 ·d�32� / ��2�� is the two-photon Rabi frequency,

where E1�2� are the field amplitudes, the d� ij is the electronic
transition dipole moment between the states �i
 and �j
 of an
atom, and � is the detuning of the first laser field �with
frequency �1� from the transition frequency between the
electronic ground ��1
� and excited ��3
� levels of the atom.
For a single-component condensate the electronic ground
states �1
 and �2
 are the same. Here as is the s-wave scatter-
ing length of the atoms and V is the volume of the conden-
sate.

Using Bogoliubov’s prescription 	̂0 , 	̂0
†→�N0 and keep-

ing the number density n0=N0 /V fixed in the thermodynamic
limit, one can transform the Hamiltonian HA into a quadratic
form. Further, applying Bogoliubov’s transformation it is
possible to diagonalize HA and rewrite the entire Hamil-
tonian in terms of Bogoliubov’s quasiparticle operators �̂k.
Considering the condensate ground-state energy as the zero
of the energy scale and treating the laser light with higher
frequency ��1� classically, the effective Hamiltonian can be
written as

Hef f = ��q
B��̂q

†�̂q + �̂−q
† �̂−q� − ��ĉk2

† ĉk2

+ ���ĉk2

† ��̂q
† + �̂−q� + H.c.� , �A3�

where �=�1−�2 and �=�Nfq�; where fq=uq−vq. In writ-
ing the above equation, we have retained only two dominant
momentum side modes of the condensate under the assump-
tion of Bragg resonance ��	�q�.
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