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CHAPTER I 
 

INTRODUCTION 
 

1.1 INTRUSION DETECTION 
 

Intrusion Detection is now a significant component of any security system. The 

purpose of an intrusion detection system (or IDS) is to detect unauthorized access or 

misuse against a computer system. Intrusion detection systems serve as burglar alarms for 

computer systems and networks. They sound alarms and sometimes even take corrective 

action when an intruder or abuser is detected. If a Masquerader or Hacker can gain access 

and use your internet access, then they can use your machine to launch other attacks on 

other computers while keeping themselves well hidden. For example, there are certain 

applications that take days to months to run a series of processes on even the fastest 

computer. If a Masquerader can gain access to 1000 computers and utilize their combined 

processing power, a process that would take a month on a single computer could 

complete the operation in less than an hour. 

 These Intruders or Masqueraders could be anyone, they could be kids who use their 

parent’s company account in spite of the company policy or people just playing jokes on 

other users or they could be malicious intruders intentionally trying to hide their identity 

by impersonating other users, such types of masqueraders are considered to be Insiders. 
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There are some intruders from the outside who immediately try to gain access through a 

valid user and they can be very dangerous. According to a survey, most of the financial 

damages were caused by the Insider and not by the Outsider [8]. Moreover, it was 

estimated that about one thirds of the total damages were caused by the Insider. 

 

1.2 MASQUERADE DETECTION 

 A Masquerader or an Intruder behaves way different from the Proper User. Most of 

the well known methods in Computer Intrusion Detection fall under two broad categories 

and they are 1) Pattern Recognition or Misuse and 2) Anomaly Intrusion Detection. The 

art of recognizing intrusion patterns from the previously observed intrusions is known as 

pattern recognition. Most of the researchers consider it to be the first line of defense. 

Apparently it is the most powerful technique when the intrusion method is known. Illegal 

User behavior is generally difficult to comprehend because they can be a lot of ways in 

which an Illegal User could intrude. Moreover, Hackers or Masqueraders come up with 

novel strategies of attack and hence pattern recognition would not be very effective in 

stopping the intrusion.   

 A proper User behavior can always be recorded and any behavior that deviates from 

the proper behavior is considered to be Intrusive. Hence this type of Detection is named 

as Anomaly Detection System. Anomaly detection techniques can be very useful with 

novel attacks and in fact, these techniques need some amount of statistical information to 
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support themselves. In Anomaly detection techniques, a profile of the valid user is built 

and any behavior that does deviate from the profile is considered to be intrusive. Hence 

Anomaly Detection is the most appropriate method of detection. Some of the categories 

of intrusion attacks are eavesdropping and packet sniffing (passive interception of 

network traffic), snooping and downloading, tampering or data diddling (unauthorized 

changes to data or records), spoofing (impersonating other users, e.g. by forging the 

originating email address, or by gaining password access), jamming or flooding 

(overwhelming a system’s resources, e.g. by an email flood), injecting malicious code 

(via floppy disks, email attachments, etc.), exploiting design or implementation flaws 

(often buffer overflows; overflows overwrite other data and can be used to get control 

over a system) and, cracking passwords and keys.   

 Previous approaches have used the dataset studied and presented by Schonlau [2]. 

This dataset had only on parametric field in it namely the “command”. In this thesis, we 

propose a novel approach to masquerader detection based on command and CPU Time. 

Following this introduction, is Section II that explains the Users dataset used in our thesis 

and the UNIX commands used to generate the dataset. Section III gives a brief overview 

of different methods used by previous researchers for Masquerader Detection System. 

Section IV discusses the Online and the Offline Naïve Bayes Classifier and our 

methodology to increase the accuracy of the system. Section V summarizes the main 

conclusions of this research as well as potential for future work. 
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CHAPTER II 

LITERATUR REVIEW 
 

2.1 DEFINITIONS 

2.1.1 Hit rate 

 The Naïve Bayes Algorithm is a learning technique which detects Masqueraders 

having an Illegal entry to the system. Hit rate is the rate at which the Algorithm correctly 

identifies proper users and Masqueraders.    

 

2.1.2 False Alarm Rate 

 False Alarm Rate, in other words, would be how incorrectly the algorithm has 

detected. There might be a lot of alarms even with proper or valid user.  

 

2.1.3 Missing Alarm rate 

 Sometimes the Naïve Bayes Algorithm would not produce a good accuracy rate and 

hence it might not produce an alarm for a masquerader. This detection rate is called the 

Missing-Alarm-Rate.
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2.2 OVERVIEW OF INTRUSION DETECTION SYSTEM 

 Simulating real-time IDS (Intrusion Detection System) is a huge task and we require 

a detailed study of different components involved. Many researchers have been trying to 

study these components and have succeeded in reducing the High False Alarm Rate. 

Schonlau [2] and his colleagues presented the dataset in full detail and reviewed six 

techniques to analyze User command log files. They reported a high of 70% hit rate and 

6.7% false alarm rate. Maxion and Townsend [1] later achieved better results by using 

Naïve Bayes classifier which recorded a hit rate of 61% and a false alarm rate of 1.3%. 

Also Yung [7], proposed a Self-consistent Naïve Bayes classifier which resulted in a low 

missing alarm rate of 40% and a false alarm rate of 1.3%. 

 

2.3 PREVIOUS RESEARCH 
 

Schonlau [2] used keyboard command data from 50 users and these fifty user 

datasets were injected with data from outside the community of 50. Hence the data from 

outside is considered to be the intrusive data. Each user data file consisted of 15,000 

commands, within which the first 5000 were considered to be the Truth or considered as 

legal commands while the rest of the commands have been formed with the injection of 

commands from users outside the community of 50. Their objective was to find if each 

block of 100 commands (which is called a session) was typed by a Proper User or a 

Masquerader. 
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2.3.1 DATA CONFIGURATION 

 The data were configured in two ways [1]: (1) randomly injected with data from 

users outside the community of 50 (which approximate an incursion by a masquerader) 

and (2) each user crossed with every other user to compare the effects of every user 

acting as a “masquerader” against all other users. The first configuration is that employed 

by Schnonlau, hereafter referred to as the SEA configuration. Some of the contrasts 

between the first and the second configuration are (1) the first configuration provides a 

consistent set of intrusions against all users, which allows meaningful error analysis. (2) 

The second configuration samples a greater range of intrusive behavior.  

 

2.3.2 COMPARISON RESULTS FOR SEVERAL DETECTION SCHEMES 

 Six masquerade detection schemes were used on the dataset packed with 

“Masqueraders” and their results were compared in the review paper by Schonlau [2]. 

The investigators targeted a false-alarm rate of 1%. Most of the methods hit low hit rates 

(ranging from 39.4% to 69.3%) and high false alarm rates (ranging from 1.4% to 6.7%). 

The results were compared using cluster analysis and ROC curves. Their results are 

shown graphically in Figure 1. 

• Bayes 1-Step Markov. 

A single step transition from one command to the next [3] is the logic behind 

this detector. The observed transition probabilities should be consistent with 

the historical probabilities and this determined by the detector. The technique 

worked really well in terms of correct detections but failed badly with 

respect to the desired false alarm rate. 
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• Hybrid Multi-Step Markov. 

This technique is based on Markov chains and is due to Ju and Vardi [4]. The 

implementation of this model is toggled between a Markov model and a 

simple independence model, depending on the proportion of test data that 

was not observed in the training data. This method peaked highest in terms 

of performance among the methods tested. 

• IPAM. 

This detector like the Bayes 1-step Markov method is based on single-step 

command transition probabilities which are estimated from the training data. 

The Incremental Probabilistic Action Modeling (IPAM) was developed by 

Davison and Hrish [1.] for their work in predicting sequences of user actions. 

The result of this method is depicted in Figure 1 where it is compared with 

other methods. IPAM’s performances have not been satisfactory. 

 

• Uniqueness. 

 This method was developed by Schonlau and Theus [13]. Commands that are 

 not seen in the training set may indicate a masquerade attempt. In fact, the               

 less frequent a command is used by the Users, the more it is intrusive.  

 Uniqueness was relatively poor in performance when compared to other  

 methods but it was the only method that approached the target false alarm  

 rate of 1% [2]. 

 



8

• Sequence-Match 

The method was developed by Lane and Brodley [5] and the results have 

been portrayed in figure 1. This method computes a similarity match 

between the most recently used commands and the user profile. With 

Schnlau’s dataset it was poor performer.  

• Compression 

This method was built under the belief that new data would compress at the 

same ratio as the old data from the same user, and that data from a 

masquerading use will compress at a different ratio, and hence we could 

distinguish between the proper and the masquerader. This idea was 

developed by Schnalau and karr [2] and the comparison results are shown 

below  
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Comparison of results of different Detection Schemes 

Figure 1. Compression was the worst performer of all these methods [2]. 

We now discuss the comparison results of different intrusion detection techniques as 

shown in the above figure. The curve or the arc formed by the X-axis and the Y-axis is 

called the ROC curve (Relative Operating Characteristic curve). The X-axis represents 

the percentage for the number of Hits and the Y-axis represents the percentage for the 

number of false alarms.   
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2.4 SPLICING OF SESSIONS 
 

Figure 2 [1] Splicing of sessions. 
 

The above figure shows how splicing is done with the datasets. Each user has a dataset of 

15,000 commands and in turn we split the commands into sessions of 100 each. Hence 

we have 1 – 50 sessions in the training set and 51 – 150 sessions in the Testing Data. 

Furthermore we have a couple more users which are classified as masqueraders and they 

do not belong to the community of the 50 users (51 - 70). They choose a couple of test 

sessions from these Masqueraders and intersperse within the test data with a certain 

probability. This entire process is called splicing of sessions. There are certain rules that 

we need to follow while we do the splicing of sessions. 

 



11

The EM algorithm is used to assign probabilities to the newly unidentified sessions 

from the test session data [7]. There is a good reason for using the EM algorithm. We do 

not want the classifier to classify each session in a greedy way rather we would like to 

classify it after enough sessions for a good classification has been recorded. Basically, we 

apply the log-likelihood function to the existing probabilistic model. Conclusively our 

aim would be to maximize the log-likelihood function in the presence of incomplete data. 

The theory behind our approach and a brief summary of the Bag-of-words model is 

discussed below. 

 

2.5 BAYESIAN APPROACH 

2.5.1 CLASSIFICATION THEORY 

 

Examples of normal behavior of users are available in plenty in different datasets 

but the intrusive behavior is hard to collect. This is because these kinds of datasets are 

very confidential or hard to capture. Similarly, in relation to masquerading sessions, 

many examples of proper sessions are available. Masquerading sessions in the training 

data are not known and moreover, masquerading sessions in the test data are expected to 

be rare. 

 Traditionally, all the proper sessions in the training data are collected to form the 

proper User model. The proper sessions of all other users from the training data are taken 

to form the Masquerader model for the current user. This approach would be quiet 
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effective with our dataset since all the masquerading sessions have been formed from the 

proper sessions of other users. Further, all new test sessions are compared against the 

profiles for the proper user model and the masquerader model. The anomaly detection 

problem has been transformed into a classification problem over the Proper user class and 

the artificially created Masquerader class. This transformation has allowed many 

powerful techniques from the Classification theory to be applied on the anomaly 

detection problem.  

 Even in a more general context of anomaly detection, the profile of the proper 

sessions is defined not only by the proper sessions, but also by the sessions of other users 

[3]. The extent of the proper profile in feature space is most naturally defined through 

both the proper cases and the intruder cases [3]. From the above, we see how beneficial 

this transformation for the anomaly detection problems is. 

 

2.5.2 BAG-OF-WORDS MODEL 

 The Bag of words model is one of the most widely used model in Information 

Retrieval (IR). The actual Text document is broken down into bag of words and we just 

keep track of the occurrences of each word rather preserving the sequence of the words. 

In other words we completely ignore the sequence information of the Text document. For 

classification of text documents, this simple model often performs better than more 

complicated models involving sequence information. Let C = {1, 2… n} be set of all 

possible commands and ‘n’ is the last command in the set. In reality, all the commands 

that form the text document are broken into small groups of equal length called sessions. 
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Hence a session number‘s’ is a finite sequence Cs = (Cs1, Cs2, Cs3, ….., Cszs) of

commands. In other words Cs is a sequence of commands with length ‘zs’. 

 As demonstrated in [1], the bag of words model outperforms many more complicated 

models attempting to take advantage of the sequence information. In particular, the 

techniques reviewed in [2] and earlier techniques based on a Markov model of command 

sequences achieved worse results. 

 

2.5.3 GENERAL THEORY 

 We have examined the log files of different user accounts at the Solaris Computer 

Lab of Oklahoma State University. These log files were collected from different user 

accounts logged on to the a.cs.okstate.edu server. Each Log file consists of different 

records based on the attributes that are fed as input to the system. In fact, every User has 

his own unique style of expressing or talking to the system. Different attributes of the log 

file can be considered as different levels of monitoring a system. Previous researchers 

have considered only “COMMAND” level. In our work we would develop a combination 

of the online and offline classifier with a trust node and consider the CPU time as another 

parameter which increases the level of surveillance. Some of the parameters available are 

Command, CPU time, User ID, Date & time of login. Later in this paper we define each 

of these fields. Moreover, each record or entry in the Log file represents or contributes to 

a part of the complete behavior for that User. 

 Each parameter or field in our dataset can be looked up on as different levels of 

monitoring. The first level of monitoring is the Command level and this can be extended 
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to different levels of monitoring by considering the rest of the attributes. Each User has a 

unique role or behavior to play in an organization. Therefore he would have access to 

only a certain type of commands. This belief helps us to visualize a unique pattern for 

every proper user in the Organization. The interloper or the “improper user commands” 

may comprise read or write access to private data, acquisition of System privileges, 

installation of malicious software etc. Hence the pattern produced by the improper user is 

way different from that of a proper user. To detect these intruders, behaviors of proper 

user are recorded and any deviant behaviors are considered as intrusions. An anomaly-

based intrusion detection technique is followed in this approach. Some of the common 

types of UNIX commands used in our data set are, 

• File Management.  

• Comparison and searching commands. 

• Text processing. 

• Shell and other programming. 

• Communications. 

• Storage commands. 

• System status. 

• Miscellaneous commands. 
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CHAPTER III 
 

DATASET 
 

3.1 DESCRIPTION 
 

The dataset was prepared from the log files of different users that logged in to the 

Computer Science Administrative Server (a.cs.okstate.edu). Most of the UNIX 

commands and some additional fields were captured into a dataset. We used the 

“lastcomm” command to generate the data and later ran a script file. The syntax used to 

generate the list of a particular commands typed by the user is <lastcomm> <userid>. 

This gives the commands in the reverse order and the file is updated at 2AM every day. 

Well, the server running on the UNIX environment generates an accounting file or the 

log file for different users logged each day. In reality, the “lastcomm” command access 

these log files of different users to generate the data for different users. The command 

gives us information on previously executed commands. And with no arguments the 

“lastcomm” displays information about all the commands recorded during the current 

accounting file’s life time. If called with arguments, “lastcomm” displays accounting 

entries with a matching command-name, user-name, or terminal name.
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3.2 FEATURES OF ”lastcomm” COMMAND 

 

For each process entry, “lastcomm” displays the following items of information. 

• The command name under which the process was created. 

• One or more flags indicating special information about the process. The flags 

have the following meanings: 

F - The process performed a fork but not an exec. 

S - The process ran as a set-user-id program. 

• The name of the User who ran the process. 

• The terminal which the User was logged in at the time (if applicable). 

• The amount of CPU time used by the process (in seconds). 

• The date and time the process exited. 



17

CHAPTER IV 

METHODOLOGY 
 

4.1 BAYESIAN CLASSIFICATION 
 Bayesian Classifiers are developed to predict class membership probabilities, such 

as the probability that a given sample belongs to a particular class. Previous studies have 

found a simple Bayesian classifier known as the naïve Bayesian classifier to be 

comparable in performance with decision tree and neural network classifiers [11]. 

Bayesian classifiers have also exhibited high accuracy and speed when applied to large 

databases. Naïve Bayesian classifiers assume that the effect of an attribute value on a 

given class is independent of the values of the other attributes. This assumption is called 

class conditional independence. Surprisingly, good performance is exhibited in many 

domains that contain clear attribute dependences [8]. 

 

4.1.1 BAYES THEOREM 

 Let X be a data sample whose class label is unknown. Let H be some hypothesis, 

such as the sample X belongs to some type of class C. Here we have to determine P 

(H|X), the probability that the hypothesis H holds true for the data sample X. In other 

words P (H|X) can be defined as the posterior probability, of H conditioned on X. P(H) is 



18

called the Prior probability of H. The posterior probability, P (H|X), depends on 

additional knowledge but the prior probability P (H) is independent of data sample X. 

Similarly we could define P (X|H) as X conditioned on H. 

 We use the Bayes theorem to calculate these probabilities. 

 P (H|X) = P (X|H) P (H)  / P(X) 

 

4.1.2 NAÏVE BAYESIAN CLASSIFICATION 

 

The Naïve Bayesian classifier or the Simple Bayesian classifier works as follows 

 1)  The data sample X is represented by a n-dimensional vector X = (x1, x2… xn)

and this has been contributed by n different attributes such as A1, A2… An.

2)  Let us consider that there are m classes, C1, C2… Cm. We also have a given  

 Sample, X, for which the Naïve Bayes classifier would assign the unknown       

 Sample X to the class Ci if and only if 

 P (Ci | X) > P (Cj | X)  for 1  ≤ j ≤ m,  j ≠ i. 

 This is known as maximum posterior hypothesis. Hence by Bayes  

 Theorem, 

 
P (Ci | X) = P (X | Ci) P (Ci) / P (X) 

 3)  Apparently P(X) is a constant value for all classes and hence we need to maximize     

P (X | Ci) P (Ci). Now if the prior probabilities of the classes are not known we 

assume that prior probabilities are equally likely, such as P (C1) = P (C2) …. = P 

(Cm) and hence we need to maximize P (X | Ci). Otherwise we maximize P (X | 
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Ci) P (Ci). We estimate P(Ci) = Ti / T, where Ti is the total number of training 

samples of class Ci and T is the total number of training samples. 

4) It would be extremely computationally expensive to compute P(X | Ci) when we   

have datasets with many attributes. In order to reduce this complexity, we make 

the assumption of class conditional independence. We mean that the values of the 

attribute are conditionally independent of one another, given the class label. 

Hence, 

 
n

P (X  | Ci) =Π P (xk | C i)
k=1 

 
The probabilities P (x1 | Ci), P (x2 | Ci)… P (xn | Ci) can be estimated from the 

training samples. 

 P (xk | Ci) = Tik / Ti, where Tik is the number of training samples of class 

Ci having the value xk for Ak and Ti is the number of training samples belonging 

to Ci.

5) In order to classify an unknown sample X, P (X | Ci) P (Ci) is evaluated for each  

Class Ci. Sample X is then assigned to the class Ci if and only if 

 P (X | Ci) P (Ci) > P (X | Cj) P (Cj) for 1  ≤ j ≤ m,  j ≠ i. 

The objective of the Thesis is: 

(1) To simulate an Online and an Offline Bayesian classifier which toggles around    

 an optimal Trust Value. 

(2) Increasing the accuracy of the Probabilistic Model (Online and Offline Classifier)   
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by the addition of a parameter (“CPU time”) and hence increasing the level of 

monitoring. 

 

Previous Research  

(1) In the past, they have used only one type of classifier and here we have a 

combination of two classifiers which work simultaneously on the dataset. 

(2) Previous Researchers have used a different dataset with only one field (i.e.) 

“Command” and arrived at an Accuracy Rate. But in My research, I have 

prepared dataset with different fields such as “Commands”, “CPU Time”, “Date 

and Time of Login”, “UserID” but the level of monitoring would be through the 

commands and the CPU Time. 

 

4.2 PROPOSED APPROACH 

This section would be followed by a brief description of the dataset and our proposed 

algorithm in detail. The simple Naïve-Bayes classifier is perhaps the most widely studied 

classifier and is the Bayes-rule classifier for the bag-of-words model. By Bayes inversion 

formula, the posterior probability P(u|cs) of user ‘u’ given the sequence cs is, 

 P(T) = P(u|cs) * P(u|cput) 

Here P(T) is the Total probability which includes both the command and the CPU Time. 

‘cput’ is the CPU Time and also, 

 P(u|cs) = P(cs |u) P(u) / P(cs) which is directly proportion P(cs |u) P(u). 

 zs C
P(cs |u) =   Π P(csk |u)  = Π pnsc 
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k=1 k=1     uc

where nsc is the total count of command c in session s. 

Table 1: Dataset for User 1. 
 

COMMAND CPU time (secs) 
1 Procmail  

0.02 

…
…

.

4999 biffmsg  
0.08 

5000            spamprob 0.06 
 

…
…

.…
..

10000 Lynx 0.04 

…
.

15000 scan 0.02 

Brief Overview of the Dataset: 

 Data sets for 10 users were created and each User had 15,000 records in it. A sample 

framework of the Dataset for user 1 is shown in Figure 1. Every User Dataset has the 

1st 5000 
Commands 
and time from 

the training set

Next 10000 
commands 
from the Test 
set. 
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same structure as above. Let us now consider the dataset for USER 1. We now build 2 

Models from the Training Set, one is the proper User model and the other the improper 

User or the Masquerader. The Proper User Model is build from the training set of USER 

1 which consists of 5000 Records. The Masquerader Model is built by taking 550 

commands each from the training dataset of USER2 – USER10. Hence (9 * 550 = 

(approx) 5000). 

 So now we have the proper User model and the Masquerader Model for USER1. 

Also, we need to test this Model by inputting the Test Dataset for USER1.  

 COMMAND CPU Time 
5001 procmail 0.02 

…
.

5100 biffmsg 0.08 

10001 formail 0.01 

…
.

10100 ksh 0.02 

…
.

14901 comp 0.01 

…
.

15000 more 0.01 
Table 2:  Test Session for User 1. 
 
As seen from the Figure 2, the test session of USER1 which starts from 5001 – 15,000 is 

divided into 100 test sessions (sub sessions, to be precise). Each test session has 100 

records in it. 

1st session which 
consists of 100 
records

100th session 
which consists of 
100 records 

50th session 
consisting 
of 100 
records 

…
…

…
…

…
…
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4.2.1 NAÏVE BAYESIAN NETWORK 

 

Masquer
ader 
Model 

P’cput P’cn
………...P’c2

…….......Pc2 Pcn Pcput

P’c1

Proper 
User 
Model 

Pc1 



24

2.2 ONLINE & OFFLINE NAÏVE-BAYES DETECTOR 
 
Figure 4. Online & offline naïve-bayes detector 

Let us now see how the Bayesian Detector works. The detector consists of an 

Online and an Offline classifier. Moreover, there is a trust node (it stores the trust value) 

in it. An over view of this detector can been seen in Figure 4.  
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Now we have the first Test Session (Test Session 1- which consists of 100 

records) coming to the Bayesian Network Detector. The Online and the Offline Classifier 

would start to work on the Test Session 1 simultaneously. 

 

4.2.3 TRUST MODEL 

 

The Total probability is the product of the probabilities of both the commands and 

the CPU time. Also, the probability of the time parameter can be considered as a 

weighted probability with the commands to give the total probability. The Online 

Classifier builds a Model and immediately classifies Test Session 1 as a Proper or a 

Masquerader Session. Meanwhile, the Trust Node calculates the trust value.  

Note: 

 The word trust value is different from Threshold Trust Value (TTV). 

Since we already classified the session on the Online Classifier and hence we get to know 

the Correct and the Incorrect Classifications.  

 

Trust Value = Correct Classifications / Total number of sessions classified. 

 

Initially the Trust Value for the Test Session 1 would be set to 1 but after the Test Session 

arrives at the Online Classifier and had been classified, the New Trust Value is ready to 

be calculated from the Correct and the incorrect classifications. Also we have a value 

called the Threshold Test Value (TTV) which is found out to be 0.7 by Trial and Error 

methods. 
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Why would we need a Threshold value?. The answer to this would be discussed 

shortly. Meanwhile, when Test session 1 has been classified by Online Classifier, the 

Offline classifier do not classify it immediately into Proper and Improper sessions as the 

Online, Instead it does calculate a probabilistic score for each test session. Remember, 

Every time each Test Session arrives at the Online Classifier, a new Trust Value is 

calculated for each session at the Trust Node. 

 Assume that a Test Session‘t’ arrives at the Online Classifier. The Online Classifier 

classifies it as a Masquerader or a Proper User. The Trust Node calculates the Trust 

Value for this Test Session t and supposedly the trust value equals 0.7 which is our TTV. 

Immediately the control is transferred to the Offline Classifier which generates a 

Probabilistic score for the Test Session t. In addition to this, it classifies each test session 

for example Test Session 1 - Test Session t with respect to the Probabilistic Scores for 

each session. Hence at the tth session the trust value equals the TTV and the Offline 

Classifier starts classifying each test session as a Proper or a Masquerader. The Model 

built using an Offline Classifier is more accurate and this Model replaces the Model build 

by the Online Classifier. 

 

4.2 PROPOSED ALGORITHM 
 

1) The training set for User ‘u’ is formed in a text file and this would be our data for 
forming the proper user model. Furthermore, the training dataset of other Users 
are prepared which finally contributes to the masquerader model. The complete 
training set is represented as R.

2) Another input for this algorithm would be the streamed sequence S of newly 
unidentified 100 test sessions. 
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3) An initial classifier model is built for the User ‘u’ with the training dataset R θ^0 

= (ε^0, p^0, p^’0). 
4) The Online and the Offline naïve-bayes algorithm work simultaneously as the test 

sessions streams in. 
5) The online classifier calls a function to generate the unique commands in the 

current test session and its occurrence rate.  
6) The probabilities of the unique commands are taken from training function and 

are used classify the session as proper or masquerader. 
7) Depending on the type of classification we calculate the new probabilities for the 

commands and update the corresponding vector. 
8) Meanwhile, the toggling factor is calculated to allow optimal toggling between 

the Online and the Offline classifier.  
9) If the toggling factor reaches a threshold value, the Offline starts classifying each 

session from the 1 to the current session when the control was switched to 
Offline. Let us see how the offline works. Also‘t’ is the session when the control 
was switched. 

10) Now we Iterate through all the 100 test sessions as t = 1, 2… 100 or S in the 
sequence. 

 
a) Initially we start the model as θ^t = θ^t-1 .
b) Here we try to simulate the working of the offline classifier. As each of 

the test sessions t = 1, 2, …., 100 comes in, we calculate the trust value 
and say for one particular ‘t’, the trust value calculated was not good and 
hence we repeat these tests for each test sessions until ‘t’, (i, e) 1,2…t.
Otherwise we continue with step c. 

� Here we use the Expectation-Maximization Algorithm to 
generate a probabilistic score for these unidentified test session s 
= 1, 2... t. Well, it has two steps, the E-step and the M-step. In 
the E-step, the Bayes inversion formula is used to calculate the 
new scores, 

 P (ls = 1| cs; θ^t), for s = 1, 2... t. 
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� M-step: The model θ^t is updated with the new scores. Hence, at 
this point the model has information of all sessions s = 1, 2... t 
and hence is considered more accurate than the Online classifier. 

c) E-M step is repeated for different iteration until the conditional variable 
reaches a threshold vale which should be less than 2.2 * 10-11 .

11)  The model at the Online Classifier is updated with this model θ^t. . 
12)  The algorithm is repeated for different test sessions from step 5.   

 
Finally, we have the model θ^S for the User ‘u’ built on the training set R and updated by 

the sequence S of sessions.

4.4 EFFECTIVENESS OF BAYESIAN CLASSIFIER 

 

Theoretically, Bayesian classifiers have the minimum error rate in comparison to all 

other classifiers. Various empirical studies of this classifier in comparison to decision tree 

and neural network classifiers have found it to be comparable in some domains. Bayesian 

classifiers are also useful in that they provide a theoretical justification for other 

classifiers that do not explicitly use Bayes theorem. 
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4.5 SIMULATION OF NAÏVE-BAYES ALGORITHM 
 

4.5.1 MACHINE ARCHITECTURE 
 

The Algorithm was developed on Pentium IV processor with 640 MB RAM, 80 

GB Hard Disk capacity. The Naïve-Bayes Detection algorithm was simulated using 

Visual C++ in a .NET environment. Most of the charts were developed using Microsoft 

Excel.  

 

4.5.2 BRIEF EXPLANATION OF THE ONLINE & OFFLINE DETECTION 
ALGORITHM 

 
TRAINING PHASE 

 
First thing the algorithm does is to build the training knowledge. It calls the 

corresponding function to train the proper user dataset and the masquerader dataset. Each 

of these function collect the unique commands from the 2 datasets and calculates the 

probability of each command.  

 Probability of a command ‘c1’ in the proper dataset, P (c1 | u) = nuc1 / u 

Where ‘nuc1’ is the total number of command ‘c1’ in the proper user dataset u and 

‘u’ is the total number of commands in the proper user dataset. 

 Probability of a command ‘c1’ in the masquerader dataset, P’ (c1 | u) = nuc1 / u 

Where ‘nuc1’ is the total number of command ‘c1’ in the masquerader dataset u 

and ‘u’ is the total number of commands in the masquerader dataset. 

 Final Probability with command and CPU Time in the proper dataset, 

 P (F | u) = P (c1 | u)  *  P (T | u) 

 Final Probability with command and CPU Time in the masquerader dataset, 
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P’ (F | u) = P ‘(c1 | u) * P’ (T | u) 

 

4.5.3 TEST PHASE (ONLINE CLASSIFICATION) 

 Now that we have built the training probabilities of all unique commands from the 

proper and masquerader dataset, we need to classify the test sessions with these 

probabilities. The algorithm consists of an input function which reads each of the 100 test 

sessions. The algorithm uses the Online classifier along with the Offline to classify each 

test session. The online classifier identifies the unique commands in the current test 

session and calculates a value called ‘temporary’ by using the probability (prior 

probability) of each command obtained from the training knowledge. The temporary 

value decides if a command is typed by a proper user or masquerader. Let us say a 

command c1 appears thrice in the current session ‘s1’. 

 Temporary value for command c1 in the proper user dataset,  

 T (c1 | s1)  =  P (F | u)  * P (F | u) * P (F | u)…….(1) 

 P (F | u) = P (c1 | u)  *  P (T | u) 

 Where ‘P (c1 | u)’ is the probability of that command from the training of proper user 

data, ‘P (T | u)’ is the probability of the CPU Time from the training of proper user data. 

We calculate the maximum obtained CPU time and the probabilities are obtained by 

scaling other CPU time with reference to the maximum. ‘P (F | u)’ is the Final probability 

with both command and CPU time in the proper user data. 

Temporary value for command c1 in the masquerader dataset,  

 T ‘(c1 | s1)  =  P’ (F | u)  * P ‘(F | u) * P ‘(F | u)……(2). 

 P’ (F | u) = P ‘(c1 | u) * P’ (T | u) 
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Where ‘P’ (c1 | u)’ is the probability of that command from the training of 

masquerader data, ‘P’ (T | u)’ is the probability of the CPU Time from the training 

of masquerader data and ‘P’ (F | u)’ is the Final probability with both command 

and CPU time in the Masquerader data. 

If the temporary value for a command c1 in the proper user dataset is greater than the 

temporary value in the masquerader dataset we classify that command to be a proper user 

command otherwise it is classified as a masquerader. Hence these comparisons are 

repeated with all unique commands in the current test session. If the majority of the 

commands are proper we declare the test session as proper and masquerader otherwise. 

The temporary value for a command is not the new probability of the command in the 

current session. 

 New probability of the command c1 for the current session s1 in proper user 

dataset,  

P (c1 | u)  = (nuc1 + ns1c1)  / (Tu + Ts1)

Where ‘nuc1‘ is the number of occurrence of command c1 in the proper user dataset, 

‘ns1c1‘ is the number of occurrence of command c1 in the current session s1, ‘Tu ‘ is the 

total number of commands in the Proper user dataset and ‘Ts1’ is the total number of 

commands in the current session s1. This new probability is multiplied with new 

probability of CPU time to get the Final probability for the proper user data. 

 

New probability of the command c1 for the current session s1 in masquerader 

dataset,  

P’ (c1 | u) = (nuc1 + ns1c1)  / (Tu + Ts1)
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Where ‘nuc1‘ is the number of occurrence of command c1 in the masquerader 

dataset, ‘ns1c1‘ is the number of occurrence of command c1 in the current session s1, ‘Tu ‘

is the total number of commands in the masquerader dataset and ‘Ts1’ is the total number 

of commands in the current session s1. This new probability is multiplied with new 

probability of CPU time to get the Final probability for the masquerader data. The 

probability P (c1 | u) & P’ (c1 | u) are substituted in the above equation 1 & 2 to get the 

Total probability. 

 At this time, update the new probabilities of each command with the training 

probabilities in the corresponding vector. In our simulation program, we had two 

dynamic vectors which stored the training probabilities of each commands in the proper 

and masquerader dataset. Hence if the current session is a proper one, we update the 

Proper vector otherwise we update the masquerader vector.   

 The Toggling Factor is a value which decides to switch on the control to the 

Offline classifier.  

 

4.5.3.1 Toggling Factor 
 

This Factor plays a very significant role in the accuracy of the whole 

system. In our detection system we have the Online and the Offline 

working simultaneously. Moreover, we have a toggling factor which is 

calculated every time a new session is read. Why do we say the toggling 

factor is important?  The Online classifier classifies each command with 

the probabilities determined from the Training function. The training 

function calculates the probability of each command appearing in the 
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training dataset. If the Online does not find a probability for a command 

from the training function it assumes a small value ‘α’ that is initialized 

to 0.01.  Hence the knowledge or the classification results of the Online 

classifier may or may not be accurate. Now, let us see what the Offline 

classifier does. The Offline classifier comes into action only when the 

toggling factor is true and let us say that it was true at the ‘tth’ test 

session. In fact this classifier generates the probabilistic score for each 

session by considering all the cumulative probabilities for a command 

appearing in each session from 1 to t.  The Expectation-Maximization 

algorithm (EM) is used to calculate the probabilistic score for each 

session. The offline classifier when compared with the online is thus 

more accurate and trustworthy. Apparently, the probability of each 

command calculated by the Offline is also accurate. However, the 

Offline classifier cannot be used completely to classify all the test 

sessions since it can be too pricy with respect to the time consumed by 

the classifier. Hence it has to be used in combination with the Online. 

Furthermore, we could make the probabilities calculated by the offline 

available for the Online to classify the rest of the test sessions and thus 

we would save some time consumed by the whole algorithm. It is 

therefore clear   that the Offline cannot be used for every session which 

comes in to the detection system. However, if we do not use the offline 

at the right time we would not be able to improve the accuracy on the 

Online classifier. This right time is decided by the Toggling Factor. This 
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factor is calculated by repeated experimentation of the algorithm. From 

our dataset, we have decided that the Toggling Factor is the session 

number which is a multiple of 3. Hence for every session which is a 

multiple of 3 the offline function is called and the probabilities of 

different commands calculated by the offline are updated into the 

Online. From here the online classifies each session based on the 

updated probability.  

 

The toggling factor was chosen based on the accuracy result of 

the detection system. When the toggling factor was the session number 

with the multiple of 4, we had a hit rate of 80%. The hit rate decreased 

to 77% when the factor was set as a multiple of 5.  Similarly, hit rates 

were calculated for several toggling factors. The factor which gave the 

best results were chosen as the Toggling factor for the detection system 

and in our case toggling factor which was the multiple of 3 gave the 

optimal results and hence chosen. 

 

4.5.3.2 Scaling Factor or Threshold Value 
 

The Threshold Value or the Scaling Factor plays an important role in 

the Offline part of the Detection System. Probabilistic score for each test 

session is being assigned by the E-M Algorithm. The E-M algorithm has 

two steps involved in it. The first step is the Expectation mechanism 

where we calculate a value named as ’ls’. The variable ’ls’ is known as the 
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Indicator variable. The indicator variable stores a probabilistic value for a 

command which is the sum of the prior probabilistic value of that 

command in the proper user dataset and the masquerader user dataset. The 

variable is updated with a new value after the Maximization step for each 

iteration. After calculation of the indicator variable in the Expectation step 

we now use the Maximization step to calculate the final Probabilistic score 

for the command. Here we use all the information for that command by 

considering all the test sessions from 1 to t. This new value becomes the 

value that needs to be updated to the Indicator variable. Thus for a 

command we use the expectation step and the maximization step to 

calculate the final score and thus forming the first iteration. The iteration 

for that command is continued until we have reached an optimal score for 

that command. The final score of that command in the first iteration is 

used to calculate the indicator variable ’ls’ (Expectation step) of the 

command in the second iteration. Using this indicator variable we 

calculate the probabilistic score of the command in the Maximization step. 

This iteration is repeated until we reach our desired scores for that 

command. This desired score is achieved only when the loop exits by 

meeting the scaling factor. In other words, the iteration is continued until 

the condition variable reaches a particular value. With our dataset, the 

particular value which is otherwise known as the Scaling factor is 

calculated as 2.2 * 10 -11. We now describe how we calculate the condition 

variable. The absolute value of the command in the proper dataset is 
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calculated by finding the difference between the Initial and the final 

indicator variable value for that iteration. The absolute value of the same 

command in the masquerader dataset is calculated by finding the 

difference between the Initial and final Indicator variable for the same 

iteration. The condition variable is nothing but the sum of the squares of 

the absolute values for that command in the proper and masquerader 

dataset. We did run a number of iterations for different users to calculate 

this value and based on the accuracy results of these experiments we gave 

the scaling factor a value of 2.2 * 10 -11. Moreover, using this factor value 

we had the best accuracy results in terms of Hit rate, Missing alarms and 

False Alarms. 

 
4.5.4 TEST PHASE (OFFLINE CLASSIFICATION) 

 The working of the offline classification is explained briefly in the following 

subsection. As each test session comes in at the input function the offline classifier 

calculates a cumulative probability score using the E-M Algorithm (Expectation 

Maximization). The Expectation is nothing but the probability of the command 

determined by the Bayes inversion formula. 

 (7) 

 Also  is the cumulative prior probability of the command in the proper 

user dataset and  is the cumulative prior probability of the command in 
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the masquerader dataset. For the first iteration the training probabilities are used to 

initialize the cumulative prior probability vector. The new cumulative probability 

is stored in a variable. Next, we start with the Maximization step, 

The final probabilistic score for a command in the proper user dataset is, 

 

(7) 

 

where  is a small value assumed to be1.01, 

 is nothing but ,

denotes the total count of command c among proper sessions in the training                   
 set,  
 denotes the total count of all commands (1 to v) among proper sessions in the     
 training set, 
 

where, 
 is the indicator variable which stores the          
 cumulative probability value, 
 is the count of command c in the current  
 session 
 is nothing but value calculated for commands 1 to v. 

 

The above probability is updated with the command’s prior probability in a dynamic 

vector which is named as the cumulative probability vector for proper user dataset.  

The final probabilistic score for a command in the masquerader dataset is, 
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(7) 

 

where  is a small value assumed to be 1.01, 
 is nothing but ,

denotes the total count of command c among masquerader sessions in the  
 training set, 
 denotes the total count of all commands (1 to v) among masquerader sessions  
 in the training set, 

 

where, 
 is the indicator variable which stores the          
 cumulative probability value, 
 is the count of command c in the current  
 session 

 is nothing but value calculated for commands 1 to v. 

 

The above probability is updated with the command’s prior probability in a dynamic 

vector which is named as the cumulative probability vector for masquerader dataset.  

 The above E-M algorithm is repeated for different iteration until the scaling factor 

condition for that command is reached. The Final probability (P (F | u), P’ (F | u)) is 

obtained from the product of the probabilities of CPU Time and the command in a 

session. Finally, the probabilities are updated in the cumulative probability vector. 

 P (c1 | u) =

P (F | u) = P (c1 | u) * P (T | u) 

 P’ (c1 | u) =
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P’ (F | u) = P’ (c1 | u) * P’ (T | u) 

 

Now we have all the new probabilities calculated by the Offline classifier and we begin 

to classify each session. 

 

The Offline classification is done with a group of test sessions say from session 1 to 

session t (when the toggling factor condition is true). The temporary value is calculated in 

the Offline classifier just like we did in the online classifier. Each test session from 1 to t 

is classified against these new probabilities. Finally we update the new probabilities in 

the main Vector for the Online classifier to classify the rest of the sessions. This improves 

the accuracy of the whole system. 

 

4.6 EXPERIMENTAL RESULTS 

 The dataset was trained and tested using the above proposed algorithm. A brief 

discussion on their accuracy and timing performance is given below. 
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4.6.1 ACCURACY 
 

4.6.1.1 Original Classification 
 

ORIGINAL CLASSIFICATION
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Figure 5 original classification for USER 1 
 

This classification is the truth which we already know in our case since we have 

the test data. The test sessions from 1 to 100 are taken on the X-AXIS and the probability 

from 0 to 1 are taken on the Y-AXIS. All the test sessions hitting the probability 1 are 

masquerade test sessions. Hence these analyses are based on the original truth and not 

results from the algorithm. 

 

4.6.1.2 Results from classifiers for different users 

The average of results of the Online & Offline Naïve-Bayes Classifier from User dataset 

1, 3, 5 and 9 are shown below. 
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Online Classifier with Commands only 
 

Figure 6 Online Classifier with Commands only  
 
Here we again have the test sessions in the X-axis and the probability on the Y-axis. The 

analysis is based on the User dataset 1. The Online classifier had a Hit rate of 70%. But it 

had a high false alarm rate of 24% and a 6% missing alarm rate.  

Online Classifier with Commands and CPU Time 
 

Figure 7 Online Classifier with Commands and CPU Time 
 

Online Classifier with Commands

0
0.2
0.4
0.6
0.8

1
1.2

1 14 27 40 53 66 79 92
Session Number

Pr
ob

ab
ilit

y
Series1

Online Classifier with Commands 
and CPU Time 

0
0.2
0.4
0.6
0.8

1
1.2

1 14 27 40 53 66 79 92
Session Number

Pr
ob

ab
ilit

y Series1



42

The above figure shows us the chart of the simulation results for the Naïve-Bayes Online 

classifier with Commands and CPU time. The chart shows us the classification of proper 

and masquerade sessions. Hit rate with this classifier was 72 %, the false alarm rate 

reduced by 2 %. Hence the performance of the classifier improved in terms of false alarm 

rate and hit rate.  

 
Online & Offline Classifier with Commands only 

 

Figure 8 Online & Offline Classifier with Commands only 
 
Now we allow the test sessions to be classified with the Naïve-Bayes Online and Offline 

classifier. The results have been expressed in the form of a chart as shown in figure. 

Again we have the test sessions on the X-axis and the Probability on the Y-axis. When 

compared with the Online classifier, we had better results with a hit rate of 85% and the 

False alarm rate reduced by 12%. Moreover, the recorded missing alarm rate was 3%. 

The overall performance was good with this classifier.  
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Online & Offline Classifier with Commands and CPU Time 
 

Figure 9 Online & Offline Classifier with Commands and CPU Time 
 

During the implementation of this classifier, we considered both the commands and the 

CPU time. The results have been depicted in the form a graph as shown in the figure. 

Session numbers are on the X-axis and the corresponding probabilities were taken on the 

Y-axis. The hit rate raised to 88% while the false alarm decreased by 3% and the missing 

alarm rate recorded a low of 3%. Comparatively, the performance of the Online & 

Offline Naïve-Bayes classifier performed better when we considered both commands and 

the CPU time. 
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USER 1 
Online & Offline Classifier with 

Commands and CPU Time for USER 
1
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Figure 10 Online & Offline classifier with command and CPU time for USER 1 

The results for USER 1 have been shown in the above figure. The online & offline 

Naïve-Bayes classifier with commands and time was used to generate the results. A hit 

rate of 88% was recorded with a false alarm rate of 9% and a missing alarm rate of 3%. 

USER 3 
Online & Offline classifier with command and CPU 
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Figure 11 Online & Offline classifier with command and CPU time for USER 3 
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The results for USER 3 have been shown in the above figure. The online & offline 

Naïve-Bayes classifier with commands and time was used to generate the results. A hit 

rate of 87% was recorded with a false alarm rate of 11% and a missing alarm rate of 2%.  

 

USER 5 
 
The results for USER 5 have been shown in the above figure. The online & offline 

Naïve-Bayes classifier with commands and time was used to generate the results. A hit 

rate of 90% was recorded with a false alarm rate of 5% and a missing alarm rate of 5%. 

Online & Offline Classifier with commands and 
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Figure 12 Online & Offline classifier with command and CPU time for USER 5 
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USER9 
 

Online & Offline classifier with commands and 
CPU time for USER 9
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Figure 13 Online & Offline classifier with command and CPU time for USER 9 
 
The results for USER 9 have been shown in the above figure. The online & offline 

Naïve-Bayes classifier with commands and time was used to generate the results. A hit 

rate of 87% was recorded with a false alarm rate of 10% and a missing alarm rate of 3%. 

 

4.6.1.3 ROC Curves 
 

Each user was trained and tested with the Online & Offline with commands only 

classifier and Online & Offline with commands & time classifier respectively. To 

evaluate the method’s success over the entire dataset, a ROC curve could be very useful. 

Here we have the false alarm rate on the X-axis and the Hit rate on the Y-axis.   
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Figure 14 ROC Curve 
 
From the above chart we infer that the online & offline with command and time classifier 

clearly out performs the online & offline with command only classifier. 

 

4.6.2 TIMING PERFORMANCE 
 

4.6.2.1 Online Classifier with Commands and CPU Time 
 

The online classifier classifies a test session immediately. If the session is proper 

the corresponding vector is updated and if it is masquerader the corresponding vector is 

updated. Experiments were conducted to find the time complexities between different 

classifiers. Each session going through the online classifier with commands and CPU 
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time took the least amount of time when compared to the sessions classified through 

other classifiers.  

 

Time taken to classify one session in the Online Classifier = 0.05 secs 

 Time taken to classify 100 test sessions in the Online classifier = 5 secs  

 

4.6.2.2 Offline Classifier with Commands and CPU Time 
 

The offline classifier classifies each session in a cumulative basis and there is no 

Toggling factor involved with this classification. After the 100 th session has arrived the 

classifier would have given the most accurate result. Each session going through the 

Offline Classifier with commands and CPU Time took the most amount of time when 

compared to the sessions classified through other classifiers. The time complexities are 

shown below. 

 

Time taken to classify one session in the Offline classifier = 2.3 secs 

 Time taken to classify 100 test sessions in the Offline classifier = 230 secs 

 
4.6.2.3 Online & Offline Classifier with Commands and CPU Time 

 
In the Online & Offline Classifier with Commands and CPU Time, the Online 

classifier uses the model or probabilities updated by the offline classifier to classify the 

rest of the sessions. The control to the Offline classifier is given by the Toggling Factor. 

This classifier was most effective when compared to the time and detection rate.   

 
Time taken to classify one session in the Online & Offline classifier = 1.3 secs 
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Time taken to classify 100 test session in the Online & Offline classifier = 130 secs 
 

Accuracy results & timing performance for different classifiers 
 

Classifiers Hit Rate (HR) 
 %

False Alarm 
rate (FAR) 
 %

Missing Alarm 
rate (MAR) 
 %

Timing 
Performance 
per session 
(sec) 

Online 72 22 6 0.05 

Online & 
Offline 

88 9 3 1.3 

Offline 94 5 1 2.3 

Table 3 
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CHAPTER V 

CONCLUSION 

 The Online and the Offline Bayesian classifier is more accurate than the Simple 

Naïve Bayes Classifier. A comparison result of the accuracy rate of the Online and 

Offline Bayesian classifier with that of the Simple Bayes Classifier shows that Online & 

Offline classifier had better accuracy results in terms of Hit rate, Missing Alarm rate and 

False alarm rate.  Moreover, the addition of another parameter namely the “CPU Time” 

increased the overall accuracy of the Model. We compared the Online & Offline 

classifier with “Command” as the only parameter against the classifier with both the 

“Command” and the “CPU Time” and found that the later had an accuracy rate of 88%. 

Most of the accuracy results have been shown in Table 3. Finally, in assessing the results 

of a Masquerader Detection System we would be really concerned with the trade-off 

between correct detections (hits or true positives) and false detections (false alarms, or 

false positives) of the different classifiers. Therefore it is often depicted on a receiver 

operating characteristic curve (called the ROC curve) where the percentages of hits and 

the false alarms are shown on the Y-axis and the X-axis, respectively.  From the ROC 

curve we infer that the Online & Offline classifier with commands and CPU Time 

outperformed the classifier with commands by a significant margin. 
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5.1 FUTURE WORK 

 Integration of a different algorithm other than the Naïve Bayes classifier with the 

Online and the Offline techniques can be one of the potential future researches. Also the 

Expectation – Maximization algorithm which uses the log likelihood to generate a 

probabilistic score can be replaced by other models. Addition of different parameters in 

the dataset could increase the accuracy of the model and thereby increasing the levels of 

surveillance. Finally, one may want to build a statistical learning model to calculate the 

optimum trust value used to toggle around the Online and the Offline classifier.   
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