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· CHAPTER I 

INTRODUCTION 

1-:-1. Statement of the Problem. 

The purpose of this thesis is ·the extension of the string polygon 

method .. to· the calculation of deformation of coplanar trusses. The 

analytical-expressions for the angle changes of truss panels are de,.. 

rived in general form and represented by force vectors acting normal 

to the plane of the structure. The axial deformation of each member 

is shown as a moment v.,,ector acting on the corresponding member, 

Each cell of the truss is considered as a closed polygon and later on 

two or more cells are combined into a new conjugate structure .. The 

investigation is' limited to a coplanar Statically determinate system. 

1-2. Historical Backgrounq . 

. 
The idea of representing the deformation of trusses by means of 

fictitious loads designated as elastic weights was introduced by Otto 

Mohr (L 2). In using elastic weights, Mohr classified these fictitious · 

loads a-s top and bottom bar elastic weights and diagonal bar elastic 

· weights and assigned to the angle changes a special va:J-ue due to each 

of these deformations., Then he applied these elastic weights on a con-

jugate beam and used this beam in computation of deformation similar 

to the manner he had done for beams. The calculation of elastic weights 

1 
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due to the top and bottom member deformation is relatively easy, but 

the calculation of elastic weight due to the deformation of diagonal merp-

bers is more involved. 
s 

Later on H. Muler-Breslau developed an alternate method of 

elastic loads which became well known as the bar-chain method._(3). 

The disadvantage being that displacements of only a few joints may be 

obtained for any given bar-chain calculation. 

In the American literature the application of elastic weights to 

the calculation of deformation of trusses has been discussed in connec-

tion with new ideas by Scordelis and Smith (4) and Lee and Patel (5). 

Scordelis and Smith used elasto-static equations to obtain angu­

lar and elastic weights and introduced a conjugate structure of the bar­

chain type. Lee and Patel extended the bar-chain method suggested 

by Muler-Breslau to the analysis of indeterminate truss structures. 

Algebraic formulas for the elastic weights of coplanar tr-qsses 

have been developed by Tuma (6). The disadvantage here is their alge-

braic complexity and the difficulty arising in locating the point of appli-

cation. 

The development of the string polygon method opened new possL-

bilities for the analysis of trusses and led to the investigation presented 

in this thesis. The historical background was recorded by Tuma and 

Oden (7) and reference is given to their work. 

In formulation of the stereo-static and elasto-static matrices, 

experience was drawn from the papers published by Martin (8) and 

Chen (9). 
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l-3. · Assumptions. 

In this study the usual assumptions of the analysis of trusses are 

observed. These assumptions are as follows: 

1. Members are made of materials which are homogeneous, 

isotropic, and continuous. 

2. Materials are elastic and follow Hooke's Law. 

3. Modulus of Elasticity is the same in tension as in compres­

sion. 

4. Geometry is not greatly changed by application of loads. 

5. Joints are frictionless hinges where forces and moments 

can be neglected. 

6 .. All loads are applied at the joints or are carried over to 

joints. 

7. The supports are resting on unyielding foundations. 

1-4. Sign Convention. 

The following sign convention is used: 

(a) All coordinates are positive if measured in the positive direc­

tion of the coordinate axes. 

(b) All direction angles are positive if measured counterclock­

wise from the positive direction of the coordinate axes · X 

(c) All force and moment vectors are positive if acting in the 

positive direction of the coordinate axes . 

. (d) All deformations represented as force or moment vectors 

are positive if acting in the positive direction of the coord­

inate axes. 



. CHAPTER II 

STEREO-'-STATICS 

2-1. Geometry. 

In this study, each bar of the truss will be considered to be lying 

in the X - Y plane. The general subscripts i, j, k, · · will denote 

the bar between joint.s i and j , j and k or k and i · The 

bar ij is shown in Figure 2- la. 

y 

... 
XO. 

J 

Fig. 2.,,1a 

Geometry of Bar ij - e .. = 0° -90° 
lJ 

4 

/' 
j 
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. A set of axes coincident and perpendicular to the neutral axis ot the bar 

are called X' and Y' , respectively. Tb.e angle between X' and X 

measured in a counterclockwise direction is 8 . . lJ 
and - le show different orientations of bar ij 

y 

j 

Yoi 

Figures 2-la, -lb 

_._____._o...__--'--__________________ x 

~ -
.. 

Fig. 2-lb 

Geometry of Bar ij - 8 .. = 90° -"180° lJ 
y 

XO. 
] 

Fig. 2-lc 

Geometry of Bar ij 8 .. ::: 180° ..... 36 0° 
lJ 
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The-·1yositive directi'on of bar ij is the ij ~direction with the ori-

gin i at the end i . The coordinates x' , y' and·the axes :X' , Y' 

are _denoted as coordinates and axes of the bar. On the other hand, the 

coordinates x , y ·and the axes ,x, Y are designated as coordinates 

and axes of the· whole structural system. 

The length of the bar 

measured .from j is d .. 
Jl 

direction parameters 

a .. = cos f)ij lJ 

{3 . . = ·sine .. 
lJ lJ 

· are 

x .. = d .. a .. 
lJ lJ lJ 

yij 
::; d .. {3 . . 

lJ lJ 

ij is d. . and the length of the same bar 
lJ 

The components of d. . in terms of the 
lJ 

a .. ;: cos e .. 
Jl Jl 

(2-1) 
/3 .. = sine .. 
Jl Jl 

x .. = d .. a .. 
Jl Jl Jl 

(2-2) 
y ... = 

H 
d .. {3 .• 

Jl Jl 

The same components in terms of the coordinates x and y are 

x .. :,; 
xOj - XOi x .. = xiO - xjO lJ Jl 

(2-3) 

Yij = Yoj - YOi y .. ::; yiO - Yjo Jl 

The relationships between the par~meters aiJ" , a.. and f3 . . , Jl .. •. lJ 

{3 .. are from the trigonometry (Fig. 2-2). 
Jl 

a.. = - a .. 
lJ Jl 

/3.. = - /3.. . 
lJ Jl 



y 
-j~ 

e .. 
Jl 

i 

Fig. 2-2 

Direction Relatidnship 

2-2. · Stereo--Static Equilibrium. 

The only force existing in a bar ij is the axial force N .. lJ 

(Fig. 2-3). 

y 

N .. 
i~ lJ 

Fig. 2-3 

Free Body of Bar ij 

7 
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From Eq. (2-2)components of this force (Fig. 2-4) are 

N .. = N .. a .. 
. lJX lJ lJ 

N.. = N .. {3 .. 
lJY lJ lJ 

(2-5) 

y 

N .. 

~

1Jy . Nij 

e .. 
11 · 

- .=a -N .. 
lJX 

Fig. 2-4 

Axial Force N; . and Its Components 
lJ . 

Joint i of a general truss is considered and isolated as a free 

body shown in Fig. 2-5, two types of forces wiU occur: 

(a) Loads 

(b) Axial forces. 

m 
0-

N. 
1m 

y 

Fig. 2,...5 

Free Body of Joint i 
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The components of these forces in terms of parameters a's and f3's 

give two conditions of joint equilibrium. 

EF = 0 
. X 

(2-6a) 

and 

I 

Nij aij + Nik aik + Nil ail + Nim aim + pi aip = O 

EF = 0 
i y 

N .. {3 .. + N.k. {3.k + N. 1 {3. 1 + N. {3. + P. {3. = 0 IJ IJ I I I I Im Im I Ip 

(2-6b) 

where a. and {3. are cos B. and sin B. respectively, and P. 
IP Ip Ip Ip I 

is the resultant of all external forces applied at joint i . 

2. 3. Stereo-Static Equilibrium Matrix. 

Eq's. (2-6a, b) may be written for each joint of the truss and there 

will be twice as many equilibrium equations as joints. The system of 

joint equilibrium equations is called hereafter the stereo-static equili-

brium matrix. This matrix in full form is: 

r:F. 
IX 

0 

EF. 
JX 

0 

0 

= (2-7) 

EF. 
IY 

0 

r:F. 
JY 

0 

r:Fky 0 
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and in symbolic form is: 

= 

The stereo-static equilibrium matrix written for a particular 

truss shown in Fig. 2-6 is recorded in full form in Table 2-1. 

Fig. 2-6 

General Simple Truss 

From Table 2-1 it becomes evident that the stereo-static 

equilibrium matrix (Eq. 2-7) consists of two matrix products 

(2-8) 

Inspection of this set of equations shows that there are thirteen un-

known internal forces and three unknown reactions . Also, there are 

two equations for each of the eight joints. With sixteen unknowns and 

sixteen equations, this system may be solved and the unknowns evalu-

ated. 

The truss selected (Fig. 2- 6) is consistent with the equation 
~ 

m + 3 = 2j (2-9) 



"12 "1a "1y 

"21 "23 "2a 

"32 "34 "37 

"43 "45 

"54 "56 

0,65 "67 

"76 "78 "73 

"a7 "a1 0'82 

!312 /318 /3ly 

/321 /323 f32a 

/332· /334 /337 

/343 !345 

/354 !355 

/355 /357 

/375 /378 /373 

f3a1 f3a1 f3a2 

t'N] 

N12 "1 

N23 "2 

"38 N34 "3 

"46 "47 N45 "4 

"5y o,5x N55 "5 

"64 "74 N57 "s 

"83 N7a "7 

NBl + 
0,8 

Rly /31 

N28 

i33a N37 

/345 /347 N46 

/35y /35x R5y 

/354 /374 Na3 

/383 N74 

R5x 

[N] ["'P] 

TABLE 2-1 

STEREO-STATIC EQUILIBRIUM MATRIX - GENERAL SIMPLE TRUSS 

/32 

/33 

/34 

/35 

/35 

/37 

f3a 

pl 

P2 

P3 

P4 

P5 

p6 

P7 

Pa 

pl 

p2 

P3 

P4 

P5 

P5 

P7 

Pa 

[P] 

I = 0 

..... ..... 
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···;·h·.·· .. ··· ·· ... · were:·. 

m = number of members in the system 

j = number of joints in the system . 

Using matrix algebra and general matrix notations, Eq. (2-8) 

yields 

.(2-10) 

where 

[NJ = Column matrix (2j X 1) giving the 13 internal 

forces and 3 reactions. 

[ wNJ = Square direction matrix (2j X 2j) for internal 

forces and reactions. 

[ p J = Column matrix (2j X 1) giving all external forces. 

[ wp] = Diagonal direction matrix (2j X 2j) for external 

forces. 

j = Number of joints in the truss system (8 in this case). 

The matrix product 

is a column matrix composed of the values of each internal force and 

reaction. 

The application of the stereo-static equilibrium matrix is not 

restricted by the size of the truss system, but rather by the computers 

capacity to invert the direction matrix. 



2. 4. Special Cases. 

The direction matrix portion of the application of the stereo­

static equilibrium matrix to special truss sections is given in Table 

2-2. Table 2-3, and Table 2-4. 

13 



' ' d ' ' 
cl = a 1~ 9 . -8 7 . 6 10 joints 

· · D F H 11 members 

C2 = ~ ~ ~ ~ ·. r:;: I heactions 

Rly R5y 

GE.NERAL DIRECTION MATRIX SIMPLIFIED DIRECTION MATRIX 

"1 2 0 1 10 al y 1 0 0 

"21 <>23 <>2 9 ·a2 10 -1 1 0 .-c1 

°'3 2 "3 4 a3 8 a3 g -1 l 0 -c1· 

a4 3 a4 5 a4 7. a4 8 .-1 1 0 -c1 

"5 4 a5 6 0 5 4 a5 7 a5 x -1 0 ·o -c1 ,1 

"& 5 a6 7 
0 -1 

"7 6 "7' 8 "1 4 "1 5 1 -1 0 +cl 

as 7 "s 9. "s·.s as 4 1 -1 0 +cl 

ag S "9 10 ag 2 . ag 3 1 -1 0 +cl 

"10 g alO I "10 2 1 0 +cl 

lid ll110 ll1 y 0 1 -·1 

:I /l2 I ll2 3 ll2 9 ll2 10 0 0 1 +c2 

ll3 2 ll3 4 /l38 ll3 9 0 0 1 +c2 

ll4 S ll4 5 ll4 7 ll4 8 0 0 1 +c2 

ll5~'6 
-:~ ll5 4 /l5 7 /l5 X 0 1 -1 +c2 0 

Iles lls 7 
-1 0 -c2 

ll7 6 ll7 8 ll7 4 ll7 5 0 0 -1 -C2 

Ila 1 Ila g Ila s Ila 4 0 0 -1 -c2 

Ilg 8 Ilg 10 Ilg 2 Ilg s 0 0 -1 -c2 

ll10 9 ll10 1 ll10 ·2 0 -1 

TABLE 2-2 

DIRECTION MATRIX 

I-" 
i,ll. 



.J~-•a · a a a a t 
s Rly. . . . • R5y 

Cl • a a C2 
' h 
C3 = ii =. C4 

12 .23 · 34 .45 ·56 '18 81 ly 28 3'1 .46 5y 38 36 5x - --
l 1 +C2 0 

2 -1 1 0 

3 -1 '.l 0 --c1 +e2 

-4 -1 i () 

5 -1 
-;f1 

0 1 

6 -c1 . -1_ 0 -c2. 

7 l ~l 0 

8 1 -Cz 0 +cl 

·+c4 -+C4 -1 

2 0 0- 1 

3 0 0 1 +C3 +C4 

4 ·o 0 1 

5 0 +c .JI 
-1 0 

6 -C3 0 -1 

1 0 0 -1 :-C4 

8 0 -C4 -1 -C3 

TABLE 2-3 

12 2.3 34 

1 1 

z -1 1 

3 -1 1 

4 -1 

5 

6 

'l 

8 

',9 

1 0 

2 0 0 

3 .Q 0 

4- 0 

5 

6 

'l 

8 

9 

SIMPLIFIED DIRECTION MA TRIX 

1~-. 2 .3. · 4 R5x 
f a I a I · a I a f- · · 

. . Rly . . R5y ,-

Cl = a " Cz C3 • l • C4 

45 56' 67 78 89 91 ly Sy 29 28 38 ·37 47 48 

.+ez 0 

-c1 +ez. 

:-Cl +Cz 

1 -c1 +cz 

-1 +Cl o· 

-c1 -1 -Cz 

1 -1 -c;z +c1 

1 -1 -Cz +cl 

l -Cz +cl 

+c4 -1 

+c3 -+C4 

-+C3 -+C4 

0 +c3 +C4 

0 +c3 -1 

-C3 0 -C4 

0 0 -C4 -C3, 

0 0 -c •. -cs 

0 -C4 -cs 

TABLE 2-4 

5x 

0 

1--' 
C1I 



CHAPTER III 

ELASTO-STATICS 

3-1. Geometry. 

The simple truss shown in Fig. 2-6 is considered, and the 

axial forces and reactions are assumed to be known as a result of 

Eq. (2-10). Each cell is separated as shown in Fig. 3-1. One of 

these cells is shown in Fig. 3-2, and its geometry is discussed in 

the following paragraph. For the sake of generality, the joints of the 

cell are designated by i , j , k and the cell is denoted by the symbol 

H. 

From Eq 's. (2-3) the components of the bars ij , jk , and ki 

are: 

x . . = XOj - XOi y .. = Yoj - Yoi lJ lJ 

xjk = XOk xOj Yjk = Yok - Yoj (3-1) 

xki - XOi - XOk yki = YOi - Yok 

3-2. Elasto-Static Equilibrium. 

Due to the deformation of truss members, changes will occur 

in the angle of intersection of the members making up each cell. 

These "angle changes" may be represented by joint elastic weigpts. 

Once more the objective of this study is to find expressions for these 

elastic weights. 

16 
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8 

2 

7 

C 

3 

6 

Fig. 3-I 

Isolated Cells 
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3 

4 

F 
5 
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or 

+Y 

e .. Jl 

XO. 
J • 

Fig. 3-2 

Cell H of Any Truss 

Stating Hooke's Law in the form: 

NL 
A= AE 

18 

(3-2) 

. A ;:: NX (3-3) 

where A is the cross-sectional area of the bar; E is the modulus 

of elasticity; A is the total change in length of the member; N is 

the normal force in the member (Eq. 2-10); and X is the axial flexi .. 

bility of the member. Applying this equation to the truss in Fig. 2-6 

and stating it in matrix form, Eq. (3-3) become.s 

[A] = [ x][N] (3-4) 

where 



[ A J = Column matrix (2j X 1) giving the change in length 

of each member in the truss. · 

[NJ = Column matrix (2j X 1) giving the normal force in 

each member. 

TX J =' Diagonal flexibility matrix (2j X 2j) giving the 

axial flexibility of each member. 

Representing the conjugate structure as a closed string polygon 

a~d knowing the axial elongation of each member. the conjugate cell 

may be loaded as shown in Fig. 3-3. The moment vectors (double 

·headed vectors) on the conjugate cell are the axial elongation of the 

the members of the real cell, and the force vectors are the joint 

elastic weights due to deformation of the members of cell "H" . 

+Y 

+Z 

+ 
H 

i 
~ 

~ki 

Fig. 3-3 

Conjugate Cell H 



Denoting the hollow circle "O" as a vector perpendicular to the 

X-Y plane in the direction of the positive Z-axis, this conjugate cell 

may be shown in the X-Y plane (Fig. 3-4). 

y 

... 
X 

Oj • 

.. 
Fig. 3-4 

Conjugate Cell H 

Elasto-static equilibrium of this conjugate cell will give the 

unknown joint elastic weights. Since this is a space problem of 

second order, i.e., a structure lying in a plane and loaded out of 

plane, the elasto-static equilibrium equations are: 

20 

EM = O 
X 

(3-5a) 

aij Aij + ajk Ajk + aki Aki + p iH y Oi + p jH y Oj 

+ pkH Yok= O 



where 

EM = 0 
y 

{3ij Aij + {3jk Ajk + {3ki Aki ,.. p iH xOi - pjH xOj 

pkH xok= O 

EF = 0 z 

piH = Joint elastic weight (angle change) for joint 

pjH = Joint elastic weight (angle change) for joint 

pkH = Joint elastic weight (angle change) for joint 

and the other terms were defined earlier. 

3-3. Elasto-Static Equilibrium Matrix 

In matrix for:µi, Eq's. (3-5):hecome: 

a .. Q'jk Q'ki A .. Yoi Yoj Yok piH lJ lJ 

{3 .. {3jk {3ki Ajk + XOi XOj XOk l>jH lJ 

0 0 0 Ak. 1 1 1 pkH . 1 

21 

(3-5b) 

( 3-5c) 

i of cell H 

j of cell H 

k of cell H 

= 0 

(3-6) 

or in matrix shorthand and denoting the matrices in the same order 

+ = 0 (3-7) 

Again using the standard matrix notations: 

[JOH] = - f oHr [["'H] [~HJ} (3-B) 
This matrix equation gives the joint elastic weights for cell H shown 
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in Figs. 3-3 and 3-4. Inspection of these figures and the arm matrix 

ro~ which is shown again here 

+ Yoi +yOj + Yok 

~oaj = - XOi - xOj - XOk 

1 1 1 

shows that this arm matrix may be simplified if the origin is selected 

to coincide with one of the joints. say joint i . The simplification is, 

of course. a result of the fact that xii = O and Yu = O (Fig. 3-5 ). 

Elasto-1;1tatic equilibrium of this conjugate cell gives: 

[EJ = [o] 

where 

EMX 0 

[ E J = EM = 0 y 

r:F.x 0 

and 

[pa] = ~iHrl u wHJ [ AH]} 
(3-9a) 

where now 

0 + y .. + yik lJ 

-~ilIJ 
= 0 - x .. - xik lJ 

(3-9b) 

1 1 1 



Y·· lJ 

0;:Z 

and 

+Y 

[rrnJ 1 ::; 

x .. 
lJ 

Fig. 3-5 

Cell H With Origin at Joint i 

..: (x .. - x.k) 
lJ 1 - (Yij - Yik) 

- xik - yik 

+ x .. 
lJ 

+ Y··· 
lJ 

D.H 1. 

23 

+X 

DiH 

0 

0 

x .. Y·k - x.k y .. 
lJ 1 . 1 lJ 

(3- 9c) 

= Determinate of arm matrix for cell H (called 

hereafter DH) . 

Substituting from Eq. ( 3-1) 
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x.k 
J Yjk DH 

xki yki 0 (3-10) 

br1 
x .. y .. 0 

::,: lJ lJ 

DH 

3-4. Total Joint Elastic Weights. 

Writing out in matrix longhand and using Eq. (3-10), Eq. (3-9) 

gives the analytical expressions for the joint elastic weights of cell H . 

These joint elastic weights are expressed in terms of the coordinates 

of their location and ~he axial elongation of the members of the cell, 

PiH x.k yjk DH a .. ajk aki A .. 
J lJ lJ 

P.H 
1 0 {3 .. {3jk {3ki Ajk (3.-11) :;: 

- DH xki yki J . lJ 

PkH x .. y .. 0 0 0 0 Aki lJ lJ 

Performing the matrix multiplication and writing the joint elastic 

weights for the cell, the joint elastic weight for say joint i becomes: 

P.H l 

(3-12) 

Rearranging the terms 
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(3-13) 

It should be noted that the expressions in the brackets represent the 

horizontal and vertical deformations of the respective bars. 

A.. + AJ.kx + Ak. lJX lX 

= Summation of A's in the x-direction of cell H 

= A. . + A .k + Ak. lJY J y 1y 

= Summation of A's in they-direction of cell H 

with this notation 

Denoting 

D' = Hx 

D' = Hy 

Y·k 
~EA 
DH · Hy 

the joint elastic weight for joint i of cell H becomes 

Similar operations with the balance of Eq. (3-11) and 

x .. D'Hx + y .. DH' lJ lJ y 

(3-14) 

(3-15a) 

(3-15b) 

(3-15c ) 

(3-16b) 

(3-16c) 

The expressions for the joint elastic weights of cell H given by 

Eq's. (3-16a, b, c) are perfectly general and can be used for ·the cal -

culation of joint elastic weights for any cell of the simple truss shown ,. 
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· in Fig. 2-6. Because each joint elastic weight represents the angle 

change of the cell at a particular point, the sum of joint elastic weights 

of two or more adjacent panels may be denoted as the tptal joint elas.-
1 

tic weight and interpreted as the total angle change at that particular 

joint. This statement may be interpreted graphically and analytically. 

If three adjacent cells shown in Fig. 3-6 are considered, the joint 

m 

i 

n 

k 

Fig. 3-6 

Three Adjacent Cells H , J , K 

elastic weight of each cell at joint k in terms of Eq 's. (3-16) is 

pkH = x .. DHx + y .. DH lJ lJ y 

pkJ = x. DJ + D' ( 3-1 7) 
Jm X Yjm Jy 

pkK = X D' + D' mn Kx Ymn Ky 

They all represent the angle change at k and the total angle change at 

k is 

pk = r: pk (3-18) 

= pkH + pkJ + :pkK 
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Because each joint elastic weight is a normal vector to the plane X-Y 

at k the total joint elastic weight at k is the sum of these vectors. 

3-5. Truss String Polygon. 

The deformation of each cell has been represented by a triangu­

lar conjugate structure acted on by conjugate moments (axial deforma­

tions) and conjugate forces (angular deformations). The relationship 

between deformation and geometry of the structure has been explained 

by a conjugate analogy in which the conjugate forces have been denoted 

as elastic weights and the conjugate moments as elastic moments. It 

has been shown that the conjugate forces and moments are forming a 

system of elasto-static equilibrium (Eq 's. 3-5a, b, c ). Because each 

conjugate cell is in a state of elasto-static equilibrium, the whole 

structure or any part of it must be in a state of elasto-static equilib­

rium. Consequently, we can now combine two or any number of cells 

(by joining them together) into a conjugate system which takes the 

shape of a conjugate polygon. Two particular features of this conju­

gate polygon become apparent. The conjugate moments on adjacent 

lines will cancel each other and the conjugate moments on the circum­

ference will remain in action. Second, the joint elastic weights at 

adjacent points of application will sum and form the total joint elastic 

weight. 

These statements may now be illustrated by a few typical exam­

ples. If the deformation of the truss shown in Fig. 2-6 is represented 

by conjugate cells A , B , C , D , E , F (Fig. 3-7), six isolated 

conjugate systems in a state of elasto- sta tic equilibrium are available . 

From these six conjugate cells by successive addition a large number 
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of composite structures can be produced. For example, if cells A 

and B are combined as shown in Fig. 3-8a the conjugate system 1832 

is derived with conjugate moments on line 2-8 eliminated. If A , B , 

and C are combined, the elimination of conjugate moments will be 

done on lines 2-8 and 3-8 . This process may be repeated for the com­

bination of cells A , B , C , D and A , B , C , D , E and A , B , 

C , D , E , F . This last formation is the total conjugate system 

(Fig. 3-8e ). The initial form of this system i s a string polygon which 

can be denoted as a geometric string polygon . After the deformation 

takes place, the geometric string polygon becomes the deformation 

polygon (all joints will take new positions, all sides will elongate or 

contract). Because the sides of the deformation polygon remain 

straight, the term "String Polygon" can be introduced again as ·in pre­

vious investigations (Tuma, 7; Oden, 10; Wu, 11) . 

It was said before that this new system represented as a string 

polygon with elastic weights at joints and elastic moments on the cir­

cumference is in a state of elasto-static equilibrium and consequently 

is itself in equilibrium (no reaction requi red) . From the experience 

with the string polygon discussed by Tuma (7), Oden (10), and Wu (11), 

it becomes apparent that the slope of the real stru~ture becomes the 

shear of the conjugate structure, and the deformation of the real struc­

ture becomes the moment on the conjugate structure. These theorems 

can be utilized for calculation of displacements of the real structure 

or redundants in indeterminant trusses. 

To illustrate the application of these principles, two cases will 

be considered. The conjugate structure of Fig. 3..: 8e is resolved into 

two free body sketches as shown in F ig. 3-9 . The bent line 18765 i s 
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Combination of Conjugate Cells 
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one free body and the bent line 12 345 is the other. 

+Y 
P's 

--.:::::::::::: 3 

Fig. 3-9 

Free Body of Conjugate Structure 

The conjugate loads of both free body sketches are well defined 

by equations in preceding discussions . The cross-sectional elements 

on each branch are unknown quantities which, however, must satisfy 

elasto- static ·equilibrium on each branch and can be easily calculated 

from equations of elasto-static .equilibrium and from either free body 

sketch. Because line 1-5 is a line connecting the points of supports, 

the cross-sectional elements are also giving the defor:rpation of the 

real structure related to this base line . 

The second case which is of even more importance is the resolu­

tion of the conjugate structure along a line which does not pass through 

points of support (Fig. 3-10). The bent lines 21876 and 2 3456 are the 



z y 

5 

Fig. 3-10 

Free Body of Conjugate Structure 

I 

two free body sketches. Aga~n the crofils-sectional elements are un-

known quantities and satisfy elasto-static equilibrium on either branch. 

Because line 2-6 is a line connecting points that are not supported, i.e., 

the points may deflect, the cross-sectional elements are giving the 

relative deformation of the real structure with respect to this base 

line. 

The application of stereo-static equilibrium, elasto-static 

equilibrium, and truss string polygon is shown in the last chapter of 

this thesis. 



CHAPTER IV 

APPLICATION AND CONCLUSION 

4-1. Procedure of Analysis. 

The general analysis for the calculation of elastic weights is 

divided into three parts; geometry, stereo-statics, and elasto­

statics. The procedure is set forth in the following steps: 

Part 1. Geometry. 

(a) All joints are designated by Arabic numbers and each cell is 

denoted by a capital letter. 

(b) The length, slope, and the component of the length of each 

member is calculated. 

(c) Loads at each joint are resolved into one horizontal and one 

vertical component. 

Part 2. Stereo-Statics. 

(a) The axial forces in all members and the reactive forces at 

all points of support are designated by symbols "N" and 

"R" respectively:andare introduced as unknowns. 

(b) The stereo-static equilibrium conditions must be satisfied 

at each joint and written in terms of the stereo-static equil­

ibrium matrix (Eq. 2-8 or Tables 2-1, 2, 3, 4) : 

(c) The s_tereo-static equilibrium matrix is solved by matrix 

inversion and for the unknown values of N and R (Eq. 2-10). 

33 
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Part 3. Elasto-Statics. 

(a) The axial deformation of all members is calculated by means 

of the Hooke law (Eq. 3-4). 

(b) The determinant D of each cell is calculated with the origin 

of coordinates of joints of the cell at any one of the joints 

(Eq. 3-9c). 

(c) The components of deformation of all members are calculated 

and summed for each cell (Eq. 3- 14). 

(d) The numerical constants D' and D' are computed for each 
X y 

cell (Eq. 3-15b, c) and substituted into Eq. (3-16a, b, c), 

from which the elastic weights are calculated. It should be 

noted that the expressions xij , yij ; xjk , yjk ; and xki , 

yki are geometric values with their corresponding signs. 

(e) Once the joint elastic weights are known for all cells of the 

structure, the conjugate structure of the form of a string 

polygon is selected. This can be done in many different ways, 

but in any case it is desirable that the conjugate structure 

start at a point of zero linear displacement and finish at an 

arbitrary point with known or unknown deformation conditions . 

( f) Once the conjugate structure is selected, the total joint elas-

tic weights are calculated by means of Eq. (3-18) and these 

loads must be applied as force vectors normal to the plane of 

the structure at the respective joints. The axial deforma-

tions in a form of moment vectors must be applied along the 

sides of the polygon in the positive direction (Fig. 3-5 ). 

(g) The conjugate reactions of the conjugate structure are calcu-

lated bymeans of elasto-static equilibrium and the cross-



sectional elements of the conjugate structur~ are obtained : 

from the same equation. 

(h) The real deformations are equal to their conjugate equiva­

lents. 

4-2. Example No. 1. 

35 

The procedure above is illustrated in the following probl~m. The 
' 

Warren truss, loaded as shown in Fig, 4-1. is given. It it required to 

evaluate the vertical deflection of the lower chord. The cross- · 

sectional area of the members is either known or assumed and is 

recorded on each member (Fig. 4-1). The truss is statically deter-

minate (Eq. 2-9). 

81 10.0 7 10.0 6 

C D 

20 1 

B E 

5;0 

21 4 j 
40 k 60 k 80 k 

·1 ~ 15' · I. 15' ·I· 15' -1~ 15 1 

Fig. 4-1 

Given Structure 
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The analysis is as follows: 

Part 1. Geometry. 

Joint and cell designation is shown in Fig. 4-1, and the proper-

ties of the members are shown in Table 4-1. 

TABLE 4-1 

PROPERTIES OF MEMBERS 
" ... 

- Components (ft) 
Members Length (ft) X y 

1 2 15 15 0 

2 3 15 15 0 

3 4 15 15 0 
,, 

4 5 15 15 0 

5 6 25 15 20 

6 '7 15 15 0 

7 ·a 15 15 0 

8 1 25 15 20 

2 8 20 0 20 

3 8 25 15 20 

3 7 20 0 20 

3 6 25 15 20 

4 6 20 0 20 

Part 2. Stereo-Statics. 

The stereo-sta,Vc equilibrium matrix (Table 2-3 ) becomes: 



,. 

+1. o I 0 0 0 0 0 0 - . I +O, 8 0 I 0 0 0 0 0 0 01 rNl 2 l f 
0 

-1.0 +LOI 0 .0 0 0 0 0 0 I 0 I 0 0 0 0 0 0 N2 g 0 

0 I -1.0 +1. o I 0 0 0 0 0 0 0 I 0 I 0 0 1-o. a +0.8 I 0 
Ng 41 I 

0 

0 0 I -1. o +l. o I 0 0 0 0 0 0 0 I 0 I 0 0 0 0 N4 5 0 

0 0 0 I -1. o -0. 8 l 0 0 0 0 0 0 0 I 0 I 0 EF N5 6 I I. ·o 

0 0 0 0 I +o. a -1. o I 0 0 0 0 0 I 0 I 0 0 
N6 71 I 

0 0 

0 0 0 0 0 I +1.0 · -1.0 I 0 0 0 I 0 I 0 0 0 0 0 N7 8 0 

0 0 0 0 0 0 I +1. o -o. a I 0 I 0 I . o 0 0 B 0 0 Na 1 0 
+ I = o 

+o. 6 I 0 0 0 0 0 0 I -o. 6 -1. o I 0 0 0 0 .. , O·· 0 0 Rl y 0 

0 0 I 0 o. 0 0 0 0 0 I +1. o I 0 0 0 0 0 0 N2 8 -40 

0 I 0 0 I 0 0 0 0 0 0 0 I +1. o I 0 0 I +o. 6 +0.6 I 0 
Ng 71 1-60 

0 0 I 0 0 I 0 0 0 0 0 0 0 I +1. o I 0 0 0 0 N4 6 -80 

I 0 +o. 6 I 0 0 0 0 0 Q. 0 I -1. o I 0 cif=• R 5 y I I 0 0 0 0 

0 0 0 0 I -o. 6 0 I 0 0 0 0 0 I -1. o I 0 0 
Ng 81 I 

0 
. 

0 0 0 0 0 I 0 0 I 0 0 0 I -1. o I 0 0 0 0 0 Ng 6 0 

0 0 0 0 0 0 I 0 -o. 6 I 0 I -1. o I 0 0 0 Fl 0 0 R5 XI I 0 

~ 
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Normal Forces and R~actions 

Nl 2 
;:: + 60 kips 

N2 = + 60 3 

N3 = + 75 4 

N4 5 = + 75 

N· ;:: -125 
5 6 

N6 7 = - 90 

N7 = - 90 8 

Na = -100 1 

~1 = + 80 y 

N2 = + 40 8 

N3 7 = 0 

N4 = + 80 6 

R5 = +100 y 

N3 ;:: + 50 
8 

N3 = + 25 6 

R5 = 0 
X 

· Part 3. Elasto-Statics 

Axial Deformations 

E = 30 X 106 psi. 
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Al 2 
::; + 72 X 10- 5 in 

A2 = + 72 3 

A3 = + 90 4 

A4 = + 90 5 

A5 6 
;: - 100 

A5 7 = - 54 

A 7 8 = 54 

A8 1 = - 80 

A2 = + 40 
8 

A3 7 = 0 

A4 = + 80 6 

A3 8 = + 80 

A3 6 = + 40 

Determinant D 

DA - 43200 in 2 = 

DB = - 43200 

De = - 43200 

DD = - 43200 

D· 
E = - 43200 

DF = - 43200 

The sum of components of deformation and the numerical constants D' 

are given in Taole 4-2. The joint elastic weights are shown in Table 4-3. 
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TABLE 4-2 .. . 
CELL DEFORMATION CONSTANTS 

H E AHx (in.) . E AHy (in.} DHx (in. - l) DHy (in. - l) 

A 
-3 

- 120 X 10 . - 104 X 10- 3 + -2. 80 X 10- 6 +2.40Xl0- 6 

B - 24 - 24 + 0. 55 + 0. 55 

C - 102 + 64 + 2. 36 - 1. 48 

D - 78 - 32 + 1. 81 + 0. 74 

E -- 66 1 - 48 + 1. 53 + 1. 11 
\._,,. 

F - 15 0, - ,-< + 160 + 3. 47 - 3. 70 

TABLE 4-3 

JOINT ELASTIC WEIGHTS 

i A B C D E F 

1 - 48. 2 

2 + 89 . 8 - 2.8 

3 + 11. 1 + 35. 4 + 35. 4 - 22. 2 

4 + 45. 2 + 126. 2 

5 - 74.2 

6 + 14. 9 - 22. 9 

7 - 65. 4 - 41. 8 

8 - 41. 7 8.3 + 30. 0 - . -6 
(All values X 10 ) 
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The conjugate structure is shown in Fig. 4-2. and the total joint elastic 

weights in Table 4-4. 

y 

r2 C C C 
•• .. ' X 

!I[l M21 M32 M43 lVI54 . lR5 

Fig. 4-2 

Conjugate Structure with Elastic Loads 
.•. . •.·· .. 

TABLE 4-4 

TOTAL JOINT ELASTIC WEIGHTS 

i P. 
' 1 

1 - 48, 2 X 10- 6 
' 

2 + 87. 1 

3 + 51. 4 

4 +171. 4 

5 - 74. 2 

6 - 75. 0 

7. -107.4 

8 - 20. 0 
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Conjugate Reactions and Cross-Secti,onal Elements 

Rl = 1029 X 10- 6 

R5 1222 X 10- 6 

ivf - - 0. 289 in. = 62 2y 

M3y = - 0, 390 in. = 63 

M4y = - 0. 380 in. = 64 

These deflections are shown in Fig. 4- 3 as the moment diagram 

of the conjugate structure reduced to a conjugate bar,.and loaded by 

the total joint elastic weights. 

rl f2 r3 JP4 [5 
2 3 4 

~1 !R5 
'=:::::::J 6 2 163 i~ 

Fig, 4-3 

Deflections of Lower Chord 

The deflections are identical to those obtained by Wang (12). 
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4-3. Example No. 2. 

The truss tower (Fig. 4-4) is given. It is required to find both 

the vertical and horizontal deflection and the slope at joint 7. The 

cross-sectional area of each member is recorded on the member in 

Fig. 4-4. The structure is statically determinate (Eq. 2-9), The 

· analysis is as follows: 

. . 

Part .1. Geometry 

Joint and cell designation is shown in Fig. 4,.4 and the proper-

ties of the members are given in Table 4-5. 

15' 

20 1 

401 

(-3. 

J 15' 15' t 

A 

4.0 

40' 

H I 
4 0 

Fig. 4-4 

Given Structure 

15' 15' 

4.0 

30 kipi,; 
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TABLE 4-5 

PROPERTIES OF MEMBERS 

Component (ft.) 
Member Length (ft. ) 

X y 

1 2 40 40 0 

2 3 41. 23 10 40 

3 4 20 0 20 

4 5 20 20 0 

5 6 20 20 0 

6 7 20 20 0 

7 8 25 20 15 

8 9 20 20 0 

9 10 20 20 0 

10 11 20 20 0 

11 12 15 0 15 

12 13 20 0 20 

13 1 41. 23 10 40 

1 3 50 30 40 
-

3 13 20 20 0 

3 12 28.28 20 20 

12 4 20 20 0 

12 10 25 20 15 

10 4 15 0 15 

10 5 25 20 15 

5 9 15 0 15 

5 8 25 20 15 

·8 6 15 0 15 
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Part 2. Stereo-Statics 

The stereo-static equilibrium matrix (Eq. 2-8) becomes: 



0 0 0 0 0 0 0 0 ·o 0 l+.24251 0 0 0 0 0 0 0 B 0 0 0 0 ~11 N 12 
0 

0 .0 0 0 0 0 0 0 0 ·o 0 0 ·o 0 0 0 0 0 0 0 0 0 0 N 2 3 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1-1. o I 0 l·0.6 1--~ 0 0 0 0 N 3 4 0 

0 0 0 0 (I 0 0 .Q 0 0 I 0 I 0 0 0 1-1. o I 0 0 0 0 0 0 N 4 5 

0 0 0 I -1. 0 +1. o I 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 0 0 ·o 0 0 l-o. a l+o. a I 0 .N 5 6 0 

.Q 0 0 0 1-1. o +1. o I 0 0 0 0 .o 0 .Q 0 0 0 0 1 0 I 0 0 0 0 0 0 0 0 N 6 7 0 

0 0 0 0 l-1. 0 -o.a I 0 0 0 0 .o ·O 0 0 ·o 0 0 ·o 0 0 0 0 0 0 0 N 7 8 0 

0 0 0 0 0 l+o.8 -1. o I 0 0 0 0 0 0 0 0 

~ 
0 o. 0 0 0 0 EJ 0 

N 8 91 

I : 0 0 0 0 o· 0 0 l+l. 0 -1. o I 0 Ii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N 9. 10 

0 o· 0 0 0 0 0 0 1+1. 0 -1. o I 0 0 .0 .0 0 I 0 I 0 0 0 0 0 0 1-o. a !+o. a I 0 0 

:10 111 
I 

0 

0 0 0 0 0 0 ·o 0 0 (+1. 0 0 I 0 0 ·o 0 0 0 0 0 0 0 0 0 0 0 0 0 .IL12 

0 0 0 0 0 0 0 0 0 0 I 0 0 I 0 0. 0 0 0 0 rfl · l·,.+·I 0 0 0 N12 131 I 0 

0 O· 0 0 0 0 0 0 i:J 0 0 I 0 -.24251 0 0 0 0 0 0 0 0 0 0 0 N13 l I + I 0 I = o 

0 () 0 0 0 0 0 0 0 0 f+.9102! -1.o I o· 0 0 0 o o Bo o 0 0 0 R 1 y I I 0 

0 0 0 0 0 o· 0 0 0 0 0 1 ·-1. o I 0 o· 0 0 o· 0 0 0 0 () 0 R 2 y I I 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 I 0 I 0 1-0. 8 +. 101 f 0 0 0 0 
N 4 IOI I 

0 

0 0 I -1. o 0 I· o 0 0 O· 0 0 ·o 0 0 0 0 t+1. o I 0 0 0 I 0 I 0 0 0 0 .o 0 N10 6 0 

0 0 o I 0 0 I 0 0 0 0 0 ·O 0 0 0 0 0 1+1. o I 0 0 0 0 0 0 1+0.6 j+o. s !. 0 N 6 9. l I 0 

0 0 0 0 I 0 0 I ·o 0 0 0 0 0 ·o 0 0 0 0 f+1. o I 0 0 0 0 0 0 O· 0 
Nl3 31 

1.:0 0 0 0 I 0 -,.o. 6 I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 N12 4 

0 0 0 0 o· 0 1-o. s 0 I .{) 0 0 0 0 0 0 0 0 l-1. o I 0 0 0 0 0 0 6 0 N I 3 I I 0 

0 0 0 0 0 0 0 I 0 0 l 0 0 0 .o 0 0 

~ 
0 0 0 0 0 0 0 0 0 N 3 121 I 0 

0 0 0 0 0 0 0 I 0 0 I 0 0 0 0 0 0 0 0 0 0 1-0.6 ,-0.6 I 0 0 N 10 121 I 0 0 

0 0 0 0 0 0 0 0 I -0 -1. o I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ·o 
NIO 5 I I 0 

0 0 0 0 0 0 0 0 0 I +1. o -1. o I 0 0 0 0 0 0 c±P 0 I ·. 7071 +o •. 6 I 0 0 0 N 5 8 I I 0 

0 0 0 0 0 0 0 0 0 0 0 ·l+!.O •. 97021 0 0 0 0 0 0 0 ·O 0 0 0 
.~ 1 XI I 

0 I ~ 0 
a., 
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Normal Forces and Reactions 

Nl 2 = + 16. 9 kips 

N2 3 = ~9.6 

N3 4 = 120.0 

N4 ·5 = - 120. 0 

N5 = 40.0 6 

N6 .7 = 40.0 

N7 8 = + 50.0 

Na. 9 
;c + 80.0 

Ng 10 = + 80.0 

NlO 11 
;: 0 

Nll = 0 12 

N12 13 = + 90.0 

N13 = + 92, 9 1 

Rl = - 37.5 y 

R = + 67.5 2 y 

N4 10 = - 120. 0 · 

N5 9 = 0 

·N 
6 8 = 0 

N3 13 = + 22.5 

N4 12 
;:; - 120. 0 

N. = - 65.6 1 3 

N3 12 = 0 

NlO 12 
.,. + 150. 0 

N 5 10 = + 50.0 

N5 = - 50.0 8 .. 

Rl = 0 
X 
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Part 3. Elasto-Statics 

Axial Defor.ma:tions (E = 30 X 106) 

Al = + 5. 6 X 10'.'" 3 (feet) 2 

A2 = - 15. 9 3 

A3 = - 10; 0 
4 

A4 5 = - 10. 0 

A5 6 = - 6.7 

A6 7 = - 6.7 

A7 = + 10. 4 
8 

Aa = + 13. 3 9 

Ag 10 = + 13. 3 

A10 11 
:; 0 

Au = 0 
12 

Al2 = + 10. 0 13 

A13 1 = + 21. 3 

A4 = - 7.5 10 

A5 = 0 9 

A6 = 0 
8 

A3 = + 5.0 13 
' 

A4 12 
:;: - ro.o 

A1 3 
:;: - 18. 2 

A3 = 0 
12 

Alo = + 15. 7 12 

A5 = + 10. 4 10 

A5 = - 10.4 
8 
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Determinant D, 

DA 1600 ft. 2 = 

DB =· - 800 

DC = - 400 

DD = - 400 

D = 300 
E. 

OF =. 300 

DG ;:; 300 

DH = 300 

DI . - - 300 

. DJ = 300 

~ ;: 300 

The sum of component of deformation a:p.d the numerical constants D' 

are given in Table 4-6. The joint elastic weights are given in Table 

4 .. 7_ 
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TAB1tE 4-6 

CELL DEFORMA,TION CONSTANTS 
i 

H EAHx (in.) EAHy (in.) · DHx (in. - l) D' (' .. 1) Hy 1n. 

A - 20. 46Xlo- 3 + 0. 86X 10- 3 - 12. 28Xl0 .. 6 .,. 0. 54Xl0- 6 

B + 21. 05 
I + 35 .. 20 + 26. 40 + 4;4. 00 i 

C - 5.00 + 10. 00 - 12. 50 + 25. 00 

D - 10. 00 + io. oo - 25. 00 + 25. 00 
! 

E - 12.55 - 9.42 7 41. 80 - 31. 40 
' 

F + 22. 56 + 16. 92 + 75. 20 + 56. 50 

G + 18. 33 - 13 .. 74 + 61. 10 - 45. 80 
I 

H + 5.00 + 6.24 + 16. 70 + 20. 80 

I . + 21. 62 + 6.24 + 72. 10 + 2(r.-80 

J - 1. 62 - 6.24 .. 5.40 - 20. 80 .. 

·K + 15. 02 - · 6. 24 + 50, 10 - 20. 80 



i l .A· :B C 

1 - 150 + 528 

2 - 362 

3 + 512 + 2024 + 500 

4 

5 

6 

7 

8 

9 

10 

11 

12 + 250 

13 - 2552 - 750 

TABLE 4-7 

JOINT ELASTIC WEIGHTS 

D E F G 

- - 500 

+ 1000 +-2352 + 1900 

- 688 

- 471 - 1504 - 1213 

+ 1307 

- 500 - 836 - 848 

H 

+ 333 

- 21 

- 312 

·:•I. :J K 

+ 1442 + 312 

- 420 + 1314 

- 312 

+ 312 + 108 - 1002 

- 1754 

6 
(All values X 10 ) 

u, 
1--' 
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Fig. 4-5 

. Conjugate Tower with Elastic Loads 

+Y 

+Z 

Fig. 4,..aa 

Conjugate Structure with Elastic Loads 
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+Y 
+Z 

Fig. 4-6b 

Conjugate Structure with Elastic Loads 

The closed conjugate s,tructure with elastic loads is shown in 

Fig, 4-5. This conjugate structure is cut at points 1 and 7 and shown 

as a:string polygon (Fig. 4-6a. b). The required deformations are 

obtained usitlg either Fig. 4-6a orb. The total joint elastic weights 

-are shown in Table 4-8, and the conjugate moments are taken from 

the axial deformation listing. 

Conjugate Reactions and. Cross-Sectional Elements 

Itlz = 0 

V7z ::;: + . 00972 Rod. ::;: 87z 

M ·- + . 0150 ft. = 67x 7x 

M7y = - . 5485 ft. = 67y 

These deformations are identical with those obtained by Scordelis·· (4). 
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TABLE 4-8 

TOTAL JOINT ELASTIC WEIGHTS 

i P. 
1 

1 +· 378 X 10- 6 

2 - 362 

3 + 2530 

4 + 5250 

5 + 1405 

6 + 900 

7 - 312 

8 - 582 

9 - 1775 

10 - 3500 

11 + 1307 

12 - 1934 

13 - 3302 
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4-4. Conclusions. 

It has been shown in this thesis that the extensioµ of the string 

polygon method to the calculation of deformations of coplanar statically 

determinant truss systems is possible. Three new ideas have been 

developed in this connection: 

(a) The algebraic matrix form of the joint elastic weight for a 

joint of a triangular truss cell. 

(b) The algebraic matrix formulation for the total joint elastic 

weight for a statically determinant coplanar truss. 

(c) The representation of the geometry of deformation of a co­

planar statically determinate truss by means of a conjugate 

string polygon. 

The advantages of the string polygon method over some other well­

known methods are: 

(a) Displacements of all joints in any direction may be calcu­

lated. 

(b) Relative displacements of one joint with r~spect to any other 

joint may be calculated. 

(c) All deformations can be expressed algebraically and serve 

as influence values. 

The application of the string polygon to this type of a problem 

gives results which are in good agreement with results based on other 

methods. 
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