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CHAPTER I
INTRODUCTION

1-1.  Statement of the Problem.

The purpose of this thesis is’chbe extension of the string polygon
method'to the calculation of deformation of coplanar trusses. Thé
analytical expressions for the angle changes of truss panels are de-—

rived in general form and represented by force vectors acting normal ,
to the plane -of the structure. The ’axial 'deforfnation of each member
is shown as a moment vector acting on the corresponding member.
~ Each cell of tﬁe truss is considered as a cloéed polygon .and later on
two of more cells are combined into a new conjugate' structure. The

investigation is'limited to a coplanar statically determinate system.

i

1-2. Historical Background.

The idea ofnrepresenting the deformation of trusses by means of
fictitious loads designated as elastic weights was introduced by Otto
Mohr (1,2). In using elastic weights, Mohr classified these fictitious
loads as top and bottom bar elastic weights and diagonal baf elastic
‘weights and assigned to the angle changes a special value due to each
of these deformations, Theﬁ he applied th'ese elastic weights on a con-
jugate beam and used this beam ir_l computation of deformation similar

to the manner he had done for beams. The calculation of elastic weights



due to the top and bottom member deformation is relatively easy, but
the calculation of elastic weight due to the deformation of diagonal mem-
bers is more involved.

Later on H, Mulizr—Breslau developed an alternate method of
elastic loads which bécame well known as the bar-chain method (3).
The disadvantage being that displacements of only a few joints may be
obtained for any given bar-chain calculation. |

In the American literature the application of elastic weights to
the calculation of deformation of trusses has been discussed in connec-
tion with new ideas by Scordelis and Smith (4) and Lee and Patel (5).

Scordelis and Smith used elasto-static equations to obtain angu-
lar and elastic weights and introduced a conjugate structure of the bar-
chain type. Lee and Patel extended the bar-chain method suggested
by Muler-Breslau to the analysis of indeterminate truss structures.

Algebraic formulaé for the elastic weights of coplanar trusses
have been developed by Tuma (6). - The disadvantage here is théir alge-
braic complexity and the difficulty arising in locating the point of appli-
cation.

The development of the string polygon method opened new possi-
bilities for the analysis of trusses and led to the investigation presented
in this thesis. The historical background was recorded by Tuma and
Oden (7) and reference is given to their work.

In formulation of the stereo-static and elasto-static matrices,

experience was drawn from the papers published by Martin (8) and

Chen (9).



1-3.  Assumptions.

In this study the usual assumptions of the analysis' of trusses are

observed. These assumptions are as follows:

1-4,

1.

Members are made of materials which are homogeneous,
isotropic, and continuous.

Materials are elastic and follow Hooke's Law.

Modulus of ‘Elasticity is the same in tension as in compres-
sioﬁ.

Geometry is not greatly changed by application of loads.
Joints are frictionless hinges where forces and moments

can be neglected.

- All loads are applied at the joints or are carried over to

joints.

The supports are resting on uhyielding foundations.

Sign Convention.

The following sign convention is used:

- (a) All coordinates are positive if measured in the positive direc-
~ tion of the coordinate axes.

~(b) All direction angles are positive if measured counterclock-

wise from the positive direction of the coordinate axes X .

- (c) All force and moment vectors are positive if acting in the

positive direction of the coordinate axes.

- (d) All deformations represented as force or moment vectors

are positive if acting in the positive direction of the coord-

inate axes.



CHAPTER II

STEREO-STATICS

2-1. Geometry.

In this study, each bar of the truss will be considered to be lying
in the : X - Y plane. The general subscripts i, j, k, - - - will denote
the bar between joints 1 and j, j and k or k and i- - -. The

bar ij is shown in Figure 2-1a.

Y
‘T
/X:
\ j
Y! N
ij‘ i 5
ij
Yoi
\ O — X
P Qi -
%04
Fig. 2-1a

Geometry of Bar ij - 6,. = 0°~-90°

4



. A set of axes coincident and perpendicular to the neutral axis of the bar
are called X' and Y', respectively. The angle between X' and X
measured in a counterclockwise direction is Gij . Figures 2-1a, -1b

and - lc show different orientations of bar ij .

Fig. 2-1b

Geometry of Bar ij - eij = 90°~180°

Xoj

Fig. 2-1c

Geometry of Bar ij - Gij = 180° ~360°
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The positive direction of bar ij is the ij-direction with the ori-
gin 1 attheend i. The coordinates x', y' andthe axes X', Y'
are denoted as coordinates and axes of the bar. On the other hand, the
coordinates x , y ‘and the axes ‘X , Y are designated as coordinates
and axes of the whole structurél system.

The length of.the bar 1ij is dij and the length of the same bar
measured.from j is dji . The components of di' in terms of the

direction parameters

%3 = cos eij 4 = cos Gji
| (2-1)
Bij = 'sin eij Bji = sin Gji
rare
i 7 %y 107 %
| (2-2)
i = 4 Py Vi = Yy By

The same components in terms of the coordinates x .and y are

*ij5 7 %oj T *oi 557 %0 T %50

(2-3)
Yiy T Joj T Yoi Yi 7 Yio T Y50
The relationships between the parameters aij s aji and Bij s

Bji are from the {rigonometry (Fig. 2-2).

o = - aji Bij S Bji . (2-4)



Fig. 2-2

Direction Relationship

2-2. Stereo-Static Equilibrium.

The only force existing in a bar ij is the axial force Nij

(Fig. 2-3).

|
)

Fig. 2-3

Free Body of Bar ij



From Eq. (2-2) components of this force (Fig. 2-4) are

i5x T Nij ;
N.. = N..B. . (2-5)
ijy ij Pij
1Y
o - X

Fig. 2-4

- Axial Force Nij and Its Components

Joint i of a general truss is considered and isolated as a free

boﬁy shown in Fig. 2-5, two types of forces will occur:

(a) Loads
(b) Axial forces. }Y
P.
i
N.. _ ol
ij - -
T - — X
. o= N. 1
im
Ny N
].O/ \ok
Fig. 2-5

Free Body of Joint i



The components of these forces in terms of parameters oa's and f's

give two conditions of joint equilibrium.

LF, = 0 (2-6a)
! !
Nij @5 ¥ Ny ogpe ¥ Nypogy + Ny + Pyog, =0

and
EF_ = 0 (2-6b)
i Y
Nis By + Nyp By + Ny By * Ny By * Py B = 0

where % and Bip are cos eip and sin eip respectively, and Pi

is the resultant of all external forces applied at joint' i.

2.3. Stereo-Static Equilibrium Matrix.

Eq's. (2-6a,b) may be written for each joint of the truss and there
will be twice as many equilibrium equations as joints. The system of
joint equilibrium equations is called hereafter the stereo-static equili-

brium matrix. This matrix in full form is:

] ]
LF,, 0
Iy, 0
£F,, 0
. = ) (2-17)
£F, 0
LF, 0
iy
I, 0
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and in symbolic form is:

=) - o]

The stereo-static equilibrium matrix written for a particular

truss shown in Fig. 2-6 is recordedin full form in Table 2-1.

Fig. 2-6

General Simple Truss

From Table 2-1 it becomes evident that the stereo-static

equilibrium matrix (Eq. 2-7) consists of two matrix products

)] - [a]l7) o

Inspection of this set of equations shows that there are thirteen un-
known internal forces and three unknown reactions. Also, there are
two equations for each of the eight joints. With sixteen unknowns and
sixteen equations, this system may be solved and the unknowns evalu-
ated.

The truss selected (Fig. 2-6) is cgnsistent with the equation

m + 3 = 2j _ (2-9)



32 %34
%43 %5
%54 %56

X5y 5y

N

‘TABLE 2-1

STEREO-STATIC EQUILIBRIUM MATRIX - GENERAL SIMPLE‘ TRUSS

11
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" where:

m number of members in the system

h] number of joints in the system .

Using matrix algebra and general matrix notations, Eq. (2-8)

() - - ]

N | = Column matrix (2j X 1) giving the 13 internal

yields

where

forces and 3 reactions.

wy| = Square direction matrix (2j X 2j) for internalt
ST forces and reactions.

P ] = Colufnn matrix (2j X 1) giving all external forces.
:wP: = Diagonal direction matrix (2j X 2j) for external
" T forces.

J = Number of joints in the truss system (8 in this case).

The matrix prqduct
-1
)LL)
is a column matrix composed of the values of each internal force and
reaction.
The application of the stereo-static equilibrium matrix is not
restricted by the size of the truss system, but rather by the computers

capacity to invert the direction matrix.



2.4. Special Cases.

The direction matrix portion of the application of the stereo-
static equilibrium matrix to special truss sections is given in Table

2-2, Table 2-3, and Table 2-4.

13



[¢]
"
-1

2]
"
[-%1-4

- p—

212
%21 %3
°32 %34
%3 %5
54 %6
%5 %7
%6 78
o 7

B2
1821 B2 3
| By By
By3 Bys
ByyPsg
Bss Pgq
By Brg
g7

1 . 8 . 7 ) 6 10 joints

T Bd . ¥ B . 17 members
B .
—l- A N 7 < E G 3 reactions
1 . L) R '
2 3 5%

1y e : . Sy
GENERAL DIRECTION MATRIX : ' SIMPLIFIED DIRECTION MATRIX
a0 oy 1 M oo '
oy % 10 -1 0 ¢y
%38 g s1o1 0 €y .
a7 @ g -1 1 o -C1
Cegy a7 o5y -1 0 <
0 -1
Qg 4 @; 5 1 -1 0 4‘C1
g ' : ) . g 3 . ag 4 1 -1 o +¢1,
%8 % 10 %2 %93 1-1 0 *Cy
“09 101 : %102 10 +Cy
Biio By ' ' o 1 -
Bz B2 10 o0 ! *Cq
B3 g B3g 0 o 1 +C,y
By 7 Byg s o 1 +C,
T By 4 857 B5x o1 -1 +C,
-1 0 -c,
Brq Brs o0 -1 -Gy
Bg g Bg'3 : 854 o0 -1 -Gy
Bgg Bgyo = - By 2 ' Bg 3 o0 -1 -C2
Bi09 Pro1 B102 4 L 0 -1

TABLE 2-2
DIRECTION MATRIX

4!
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W 3 M A W N e B a3 O 0 b W

12 23
-
-1
-‘1
+Cy
0 o
0

45 56

i

-1 +C
P
-

0

0 +Cy
-c3

81 1y 28 37
+C, o
0
0
-1 0
1 -.Cz 0
“Cy -1
1
0
¢ -C, -1
TABLE 2-3

-1

~1

~C

-1

~C,

1 K
2 -1 1
3 -1
4
5
6
7
8
9
1 o
2 ¢ o
3 o
5
6
7
8
9 e

SIMPLIFIED DIRECTION MATRIX

-1

>

I

1 g
g B D F d
A c E G
& 2 3 4 -4 ™
NP P
Ry, Rey .
=3¢ C=g=c
45 56 67 78 89 91 1y Sy 29 28 38 37 4T 48
€, o
-c, ¢,
-c, +C,
1 ¢, +C,
-1+, )
-c, -1 ‘ -C,
1 - ¢, *C,
1 -1 -c, +¢
1 -c, <,
+c, -1
+¢, +C
+Cy +Cy
) +Cy 4,
0 +c, -1
-c; 0 -C,
o o -C4 -Cy
o o -C4 ~Cq
o -c, -Cy
TABLE 2-4

Sx

61



CHAPTER III

ELASTO-STATICS

3-1. Geometry.

The simple truss shown in Fig. 2-6 is considered, and the

axial forces and reactions are assumed to be known as a result of

Eq. (2-10). Each cell is separated as shown in Fig. 3-1.

these cells is shown in Fig. 3-2, and its geometry is discussed in

One of

the following paragraph. For the sake of generality, the joints of the

cell are designated by i, j, k and the cell is denoted by the symbol

From Eq's. (2-3) the components of the bars

H.

are:
By Xpy T Ny
Bk * Fox T Foy
*i " Foi T %ok

3-2. Elasto-Static Equilibrium.

yij
Yj k

ki

ij

Yok

ij , jk, and ki

Yoi
ij

Yok

(3-1)

Due to the deformation of truss members, changes will occur

in the angle of intersection of the members making up each cell.

These ''angle changes' may be represented by joint elastic weights.

Once more the objective of this study is to find expressions for these

elastic weights.

16



Flg, 3_1

Isolated Cells

17

[e>]



18

A +Y

Fig. 3-2

Cell H of Any Truss

Stating Hooke's Law in the form:

NL
A = AR (3-2)
or
A = N) | | (3-3)

where A is the qross—sectional area of the bar; E is the modulus
of elastic»ity; A is the total change in length of the member; N is
the normal force in the member (Eq. 2-10); and A is the axial flexi-
bility of the member. Applying this equation to the truss in Fig. 2-6

and stating it in matrix form, Eq. (3-3) becomes

(] - (0] o

where
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D
i

Column matrix (2j X 1) giving the change in length

of each member in the truss.

N [ = Column matrix (2j X 1) giving the normal force in
each member.
X | = Diagonal flexibility matrix (2j X 2j) giving the

axial fl_exibility of each member.

Representing the conjugate structure as a closed string polygon
and knowing the axial elongation of each member, the conjugate cell
may be loaded as shown in Fig. 3-3. The moment vectors (double |
‘headed vectors) on the conjugate cell are the axial elongation of the
the members of the real cell, and the force vectors are the joint

elastic weights due to deformation of the members of cell "H" .

+Y

) 4

o v - +X
Fig. 3-3

. Conjugate Cell H
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Denoting the hollow circle "O'" as a vector perpendicular to the

X-Y plane in the direction of the positive Z-axis, this conjugate cell

may be shown in the X-Y plane (Fig. 3-4).

|

| Y

Fig. 3-4

Conjugate Cell H

Elasto-static equilibrium of this conjugate cell will give the

unknown joint elastic weights. Since this is a space problem of

second order, i.e., a structure lying in a plane and loaded out of

plane, the elasto-static equilibrium equations are:

IM_ = 0 (3-5a)

Q. .
1

J

By T oo By T ooy Byt Pig Yot Pyg Yo
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i, s SO _ (3-5b)

Bij Byj * BBy + Byi B~ Pig o Py Xo

= FI{H X ok~ 0
EFZ =0 (3-5¢)
§1H+ jH+?kH_ 0
where
?iH = Joint elastic weight (angle change) for joint i of cell H
FjH = Joint elastic weight (angle change) for joint j of cell H
?kH = Joint elastic weight (angle change) for joint k of cell H

and the other terms were defined earlier.

3-3. Elasto-Static Equilibrium Matrix

In matrix form, Eq's. (3-5) become:

& 2 TERE S
% %Gk %i| | By Yoi Yoj Yox | |Pim
By P Pl |%%| * [*o1 %03 Fox| |Fm| = ©

(3-6)
o o of Al L T e

or in matrix shorthand and denoting the matrices in the same order

(] ¢ Fdl e e

Again using the standard matrix notations:

) cc fot fafad) e

This matrix equation gives the joint elastic weights for cell H shown
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in Figs. 3-3 and 3-4. Inspection of these figures and the arm matrix

l:rOIﬂ which is shown again here

*Yoi tYoj TYok
E"OHJ -l "% " %o " Fok
|1 1 1|

shows that this arm matrix may be simplified if the origin is selected
to coincide with one of the joints, say joint i . The simplification is,
of course, a result of the fact that X = 0 and Yii © 0 (Fig. 3-5).

Elasto-gtatic equilibrium of this conjugate cell gives:

=]

i
—
o
(S

where
— - -
- I
EMX 0
[73‘ ] = ™M = 0
y
i EF,X | i 0 i
and

[FH] T [rm]_l ["’H] [:AH:I (3-92)

where now

- (3-9b)

4 =
|t
¢
]
o
1
=
I
b
fon)
=
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X
- *ik
Fig. 3-5
Cell H With Origin at Joint i
and
‘_ _ ) - - D ]
557 Xk 035 - Vi) Pin
" ik " Vik 0
[ ]_ 1 + Xij + yij 0 _J
r. = —_ r
iH D
iH
(3-9c)

T X Yik T Tik Yij

-
o
1

Determinate of arm matrix for cell H (called

hereafter DH)

Substituting from Eq.(3-1)
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%k Yk Pn
Xpi ki (3-10)
RO TN
Dy

3-4. Total Joint Elastic Weights.

Writing out in matrix longhand and using Eq. (3-10), Eq. (3-9)

gives the analytical expressions for the joint elastic weights of cell H .

‘These joint elastic weights are expressed in terms of the coordinates

of their location and the axial elongation of the members of the cell,

Pin *x Y Pm| | %;
P N .
Pm| 7 "o |[" Tm ° Bs;
P KRS R

G Y| | Ay
Bie  PBii| [kl (3-11)
oo lay

Performing the matrix multiplication and writing the joint elastic

weights for the cell,

Pin

= -

Rearranging the terms

o~

ik T Vi B_ij]

~ o~

Xk %k T ik Pk

r —

X % T Vi B

the joint elastic weight for say joint i becomes:

]

Dy

A,

ik (3-12)
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5, i . —

. o T
Pig = ﬂH Ais @i + Agp o t By %i |
P 2 2 (3-13)
- ik
D, |%iiPiy * Ak Pik * Ak P

It should be noted that the expressions in the brackets represent the

horizontal and vertical deformations of the respective bars.
B - S T Pkx T Akix

Summation of A's in the x-direction of cell H

A

(3-14)
LA R SR A - + g
Hy ijy jky * Py
= Summation of A's in the y-direction of cell H
with this notation
X Y.
. ol o Al u
FiH D = AHx B .L AHy (3-15a)
H H
Denoting
LA
Hx
1 = - 5
DL - (3-15b)
r A
A T .
DHy DH (3-15c¢)
the joint elastic weight for joint i of cell H becomes
1 -
P. iH * ik Dir, + ka Hy (3-16a)
Similar operations with the balance of Eq. (3-11) and
- 1 1 &
FjH *1i Dhx * Yii Dhy (3-16b)
P . = D' D! (3-16c)

kg~ %5 P Ex T Yij PHy
The expressions for the joint elastic weights of cell H given by
Eq's. (3-16a, b, c) are perfectly general and can be used for the cal-

culation of joint elastic weights for any cell of the simple truss shown
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~in Fig. 2-6. Because each joint elastic weight represents the angle
change of the cell at a particular point, the sum of joint elastic weights
of two or more adjacent panels may be denoted as the total joint elas-
tic weight and interpreted as the total angle change at that particular
joint. This statement may be interpreted graphically and analytically.

If three adjacent cells shown in Fig. 3-6 are considered, the joint

Fig. 3-6

Three Adjacent Cells H, J, K

elastic weight of each cell at joint k in terms of Eq's. (3-16) is

"d
I

= ! + 1
kH Xij DHx 3ij DHy
- 1 1 -
P, Xim Dix * Yim Df (3-17)

P D!

1
kK *mn “Kx % Ymn DKy

They all represent the angle change at k and the total angle change at
k is

Elsk

Pog * Prg * Pk

P

. (3-18)
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Because each joint elastic weight is a normal vector to the plane X-Y

at k the total joint elastic weight at k is the sum of these vectors.

3-5. Truss String Polygon.

The deformation of each cell has been represented by a triangu-
lar conjugate structure acted on by conjugate moments (axial deforma-
tions) and conjugate forces (angular deformations). The relationship
between deformation and geometry of the structure has been explained
by a conjugate analogy in which the conjugate forces have been denoted
as elastic weights and the conjugate moments as elastic moments. It
has been shown that the conjugate forces and moments are forming a
system of elasto-static equilibrium (Eq's. 3-5a, b, c). Because each
conjugate cell is in a state of elasto-static equilibrium, the whole
structure or any part of it must be in a state of elasto-static equilib-
rium. Consequently, we can now combine two or any number of cells
(by joining them together) into a conjugate system which takes the
shape of a conjugate polygon. Two particular features of this conju-
gate polygon become apparent. The conjugate moments on adjacent
lines will cancel each other and the conjugate moments on the circum-
ference will remain in action. Second, the joint elastic weights at
adjacent points of application will sum and form the total joint elastic
weight.

These statements may now be illustrated by a few typical exam-
ples. If the deformation of the truss shown in Fig. 2-6 is represented
by conjugatecells A, B, C, D, E, F (Fig. 3-7), six isolated
conjugate systems in a state of elasto-static equilibrium are available.

From these six conjugate cells by successive addition a large number



Fig. 3-7

Conjugate Cells
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of composite structures can be produced. For example, if cells A
and B are combined as shown in Fig. 3-8a the conjugate system 1832
is derived with conjugate moments on line 2-8 eliminated. If A, B,
and C are combined, the elimination of conjugate moments will be
done on lines 2-8 and 3-8. This process may be repeated for the com-
binationofcells A, B, C, D and A, B, C, D, E and A, B,
C, D, E, F. This last formation is the total conjugate system
(Fig. 3-8e). The initial form of this system is a string polygon which
can be denoted as a geometric string polygon. After the deformation
takes place, the geometric string polygon becomes the deformation
polygon (all joints will take new positions, all sides will elongate or
contract). Because the sides of the deformation polygon remain
straight, the term ''String Polygon' can be introduced again as in pre-
vious investigations (Tuma, 7; Oden, 10; Wu, 11).

It was said before that this new system represented as a string
polygon with elastic weights at joints and elastic moments on the cir-
cumference is in a state of elasto-static equilibrium and consequently
is itself in equilibrium (no reaction required). From the experience
with the string polygon discussed by Tuma (7), Oden (10), and Wu (11),
it becomes apparent that the slope of the real structure becomes the
shear of the conjugate structure, and the deformation of the real struc-
ture becomes the moment on the conjugate structure. These theorems
can be utilized for calculation of displacements of the real structure
or redundants in indeterminant trusses.

To illustrate the application of these principles, f\;vo cases will
be considered. The conjugate structure of Fig 3-8e isresolved into

two free body sketches as shown in Fig. 3-9. The bent line 18765 is
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one free body and the bent line 12345 is the other.

+Y
. P's
+Z 8 i !
e —— 5 = S
1z ol RSz
M
1 x 15 o 5
[E ’( ln'
1z 2 —— 3 e 4 M's 5z %
Fig. 3-9

Free Body of Conjugate Structure

The conjugate loads of both free body sketches are well defined
by equations in preceding discussions. The cross-sectional elements
on each branch are unknown quantities which, however, must satisfy
elasto-static equilibrium on each branch and can be easily calculated
from equations of elasto-static equilibrium and from either free body
sketch. Béc'ause line 1-5 is a line connecting the points of supports,
the cross-sectional elements are also giving the deformation of the
real structure related to this base line.

The second case which is of even more importance is the resolu-
tion of the conjugate structure along a line which does not pass through

points of support (Fig. 3-10). The bent lines 21876 and 23456 are the
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!
|
Fig. 3-10
Free Body of Conjugate Structure

i
two free body sketches. Again the cros}s—sectional elements are un-

known quantities and satisfy elasto—‘stafie equilibrium on either branch.
Because line 2-6 is a line connecting points that are not supported, i.e.,
the points may deflect, the cross-sectional elements are giving the
relative deformation of the real structure with respect to this base
line.

The application of stereo-static equilibrium, elasto-static
equilibrium, and truss string polygon is shown in.fche last chapter of

this thesis.



CHAPTER IV

APPLICATION AND CONCLUSION

4-1. Procedure of Analysis.

The general analysis for the calculation of elastic weights is
divided into three parts: geoinetry, stereo-statics, and elasto-
statics. The procedure is set forth in the following steps:

Part 1. Geometry.

(a) All joints are designated by Arabic numbers and each cell is
denoted by a capital letter.

(b) The length, slope, and the component of the length of each
member is calculated.

(c)Loads at each joint are resolved into one horizontal and one
vertical component.

Part 2. Stereo-Statics.

(a) The axial forces in all members and the reactive forces at
all points of support are designated by symbols '"N' and
"R" respectively:andare introduced as unknowns.

(b) The stereo-static equilibrium conditions must be satisfied
at each joint and written in terms of the stereo-static equil-
ibrium matrix (Eq. 2-8 or Tables 2-1, 2, 3, 4).

(c) The stereo-static equilibrium matrix is solved by matrix

inversion and for the unknown values of N and R (Eq. 2-10).

33



34

Part 3. Elasto-Statics.

(a) The axial deformation of all members is calculated by means
of the Hooke law (Eq. 3-4).

(b) The determinant D of each cell is calculated with the origin
of coordinates of joints of the cell at any one of the joints
(Eq. 3-9c¢).

(c) The components of deformation of all members are calculated
and summed for each cell (Eq. 3-14).

(d) The numerical constants D} and D;r are computed for each
cell (Eq. 3-15b, c) and substituted into Eq. (3-16a, b, c),
from which the elastic weights are calculated. It should be
noted that the expressions xij . yij 2 xjk . yjk ; and Xyi o
Yii are geometric values with their corresponding signs.

(e) Once the joint elastic weights are known for all cells of the
structure, the conjugate structure of the form of a string
polygon is selected. This can be done in many different ways,
but in any case it is desirable that the conjugate structure
start at a point of zero linear displacement and finish at an
arbitrary point with known or unknown deformation conditions.

(f) Once the conjugate structure is selected, the total joint elas-
tic weights are calculated by means of Eq. (3-18) and these
loads must be applied as force vectors normal to the plane of
the structure at the respective joints. The axial deforma-
tions in a form of moment vectors must be applied along the
sides of the polygon in the positive direction (Fig. 3-5).

(g) The conjugate reactions of the conjugate structure are calcu-

lated bymeans of elasto-static equilibrium and the cross-
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sectional elements of the conjugate structure are obtained :
from the same equation.

(h) The real deformations are equal to their conjugate equiva-

lents.

4-2. Example No, 1.

The procedﬁre above is illustrated in the following problegm. The
Warren truss, loaded as shown in Fig, 4-1, is given. It isJ required to
evaluate the vertical deflection of the lower chord. The 01;oss—
sectional area of the members is either known or assumed and is
recorded on each member (Fig. 4-1). The truss is statically deter-

minate (Eq. 2-9).

Fig. 4-1

Given Structure



The analysis is as follows:

Part 1. Geometry.

36

Joint and cell designation is shown in Fig. 4-1, and the proper-

ties of the members are shown in Table 4-1.

TABLE 4-1
. PROPERTIES OF MEMBERS

'T Components (ft)
Members Length (ft) X ' y
1 2 15 15 0

2 3 15 15 0

3 4 15 15 0

4 5 15 15 0

5 6 25 15 20

6 7 15 15 0
78 15 15 0

8 1 25 15 20

2 8 20 0 20

3 8 25 15 20

3 7 20 0 20

3 6 25 15 20

4 6 20 0 20

Part 2. Stereo-Statics.

The stereo-static equilibrium matrix (Table 2-3) becomes:



10 o 0 0 0 0 0. |+0.8 0 0 0 0 0 0 0 0
-1.0  +1 o .0 0 0 0 0 0 0 0 .o‘ 0 0 0 0
o |-10 - +L0f o 0. 0 0 0 0 0 0 0 o |-08 08 0
0 0 -_1.6 41,0 © 0 0 0 0 0 0 0 0. 0 o o
0 6 o |-1.0--0.8] 0 0 0 0 0 0 0 0 { o o | +L.0
0 ©o o o |+0.8 -L0] 0 0 0 0 0 0 o o |-08] 0
0 0 0 0 0 +1.0 - -1. 0 0 0 0 0 0 0 0 0
0 0 o o 0 0 |[+1.0 -0.8 0 o | o 0 0 +o;a o 0
0.6 0 0 0 0 0 0 |-06 -LO| 0 0 0 0 0 0 0 -
0 0 0 0. o© 0 0 0 0 |+n0{ o _6 0 0 0 0
0 0 o 0 0 o -0 0 0 0 +1. 0 ] +0.6 - +0.6 0
0 0 0 o | o 0 0 0 0o . o 0 | +L 0 0 0 0
0 0 0 6 +0.6] 0 0 0 0 0 o o |-10] 0 0 0
0 0 0 o |-0.6 o 0 0 0 0 0o | -1 0 o |-086] 0
0 0 0 ) 0 0 0 0 0 0 -1. 0 0 0 0 0
0 0 R o 0 0 A-o.si 0 I -1.0| © 0 0 -0.6 | 0 0

LE



Normal Forces and Reactions

N; , = +60kips
N, 5 = +60
Ng , = +75
N, 5 = +75
N, o = -125
Ng o = - 90
N, g = - 90
Ng ; = -100
Ry , = +80
N, g = +40
Ng o= O
N, g = +80
Ry , = 00
Ny g = +50
N, ¢ = +25
Rg , = O

Part 3. Elasto-Statics

Axial Deformations

E = 30X 108 psi.
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A, 5 =+ 72X 107 in
.A2 3 = + 72
A3 4 = F 90
A4 5 = T 920
A5 g6 =~ 100.
Ag o = - 54
A7 g =~ 54
A8 1 =" 80
Az g = + 40
A3 n = 0
A4 6 = + 80
A3 g = + 80
A3 g = + 40

Determinant D

D, = - 43200 in”
Dy = - 43200
Dy = - 43200
D, = - 43200
Dy = - 43200
D = - 43200

The sum of components of deformation and the numerical constants D'

are given in Table 4-2. The joint elastic weights are shown in Table 4-3.
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TABLE 4-2
CELL DEFORMATION CONSTANTS
H | LAy Gn) | EAg (n) Dy, (in. ") Dy, (in. hy
A | -120x10%] -104x10% | +2.80x10%]|+2.40x% 107
B - 24 204 +0.55 +0.55
C - 102 + 64 +2.36 - 1.48
D = 18 i V5D SN +0.74
E ~ 66 - 48 ¥ 1,58 # 111
F - 150, + 160 + 3.47 - 3.70
TABLE 4-3
JOINT ELASTIC WEIGHTS
A B c D E F
- 48.2
+89.8 | - 2.8
+11,1 | +85.4 + 35. 4 - 22.2
+45.2 | +126.2
o 4,2
+14.9 -22.9
- 65.4 - 41.8
-41,7 ] - 8.8 | +30.0 >
(All values X 10 7)
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The conjugate structure is shown in Fig. 4-2, and the total joint elastic

weights in Table 4-4.

1z
\P IP2 TPS IP4 rps
2 3 4 5
-~ — — — - X
My, Mg, My Mgy

'R ' o

5
Fig. 4-2

Conjugate Structure with Elastic Loads

TABLE 4-4
TOTAL JOINT ELASTIC WEIGHTS
i —Pi
1 - 48,2 x 1078
2 +87. 1
3 +51.4
4 +171. 4
5 - 74.2
6 . ' - 75.0
7 -107. 4
8 - 20.0
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- Conjugate Reactions and Cross-Sectional Elements

é

ﬁl = 1029 X 10~
B, = 1222 -6
sz = -0.289in. = 3§,
M3y = - 0.390in. = 63
M4y = -0.380in. = &,

These deflections are shown in Fig. 4-3 as the moment diagram
of the conjugate structure reduced to a conjugate bar and loaded by

the total joint elastic weights.

Py rz Ips TP4 Tﬁs
T 3 3 4 A5
R1 5

Fig. 4-3

Deflections of Lower Chord

The deflections are identical to those obtained by Wang (12).



4-3.

Exgmple No. 2.

43

The truss tower (Fig. 4-4) is given. It is required to find both

the vertical and horizontal deflection and the slope at joint 7.

The

cross-sectional area of each member is recorded on the member in

Fig. 4-4. The structure is statically determinate (Eq. 2-9). The

analysis is as follows:

Part 17

Geometry

Joint and cell des'igna.tion.is shown in Fig. 4-4 and the proper-

ties of the members are given in Table 4-5.

15' . 15' | 15! 15
it 4.0 10 4.0 4.0
| _
E 1
15! alo s s8lo 0o 4lo 4 0
F | @ J
8.0 8.0 4.0 0
» 12K 5 |2 5 7
20! 6lo Do 8lo
- c 30 kips
4 | 1320 N3
. |
400 (6fo s 0
A
1 2.0 —\2
. a0 7
B
Fig. 4-4

Given Structure
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TABLE 4-5
PROPERTIES OF MEMBERS
Component (ft.)

Member Length (ft.)
X Y
1 2 40 40 0
2 3 41.23 10 40
3 4 20 0 20
4 5 20 20 0
5 6 20 20 0
6 7 20 20 0
7 8 25 20 15
8 9 20 20 0
9 10 20 20 0
10 11 20 20 0
11 12 15 0 15
"12 13 20 0 20
13 1 41.23 10 40
1 3 50 30 40
3 13 20 20 0
3 12 28.28 20 20
12 4 20 20 0
12 10 25 20 15
10 4 15 0 15
10 5 25 20 15
5 9 15 0 15
5 8 25 20 15
8 6 15 0 15




Part 2. Sterevo-'Statics

The stereo-static equilibrium matrix (Eq. 2-8) becomes:
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Normal Forces and Reactions

N, , = + 16.9Kkips
N, 5 = - 69.6
Ny , = -120.0
N, 5 = ~-120.0
Ny g = - 40.0
Ny = - 40.0
N7 8 = + 1 50. 0
Ng g = + 80.0
Ng ;o = *+ 80.0
Nio 11 °© 0
Nyp 12 .7 0
N12 13 = + 90.0
Nyg ; = + 929
Ry , = - 315
Ry , = + 615
N, 0 = -120.0
Ny g7 0
Ng g = 0
Ny 3 = + 22.5
N, ;5 = -120.0
N, 5 = - 6586
N3 15 = 0
Ny, g5 = +150.0
N5 10 = + 59.0
Ng o = - 50. 0
R = 0

[y
¥



Part 3.

Elasto-Statics

Axial Deformaitions

>
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Dete_rminant D.
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300
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The sum of component of deformation and the numerical constants D'

~are given in Table 4-6. The joint elastic weights are given in Table

4-7.
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'TABLE 4-6
| CELL DEFORMi&,;TION CONSTANTS
H | LAy, (in.) LA, n.) | Dy, (in. ") Dﬁ}; (in. 1)
A | -20.46x1073| + o0.86x10°3 | - 12.28x10°6 | - 0.54x107®
B | +21.05 | +35.20 +26. 40 + 44. 00
C - 5.00 | +10.00 - 12,50 +25. 00
D | - 10.00 ~+10.00 -25.00 | +25.00
E | -12.55 -  9. 42 | -41.80 - 31,40
F | +22.56 +16.92 | +75.20 | +56.50
la | +18.33 - 13.74 +61.10 - 45,80
| + 500 + 6.24 + 16. 70 + 20,80
1 | +21.62 + 6.24 +72.10 +20. 80
J | - 1.62 - 6.24 - 5.40 - 20.80
+ 15. 02 - 6.24 +50, 10 - 20.80




TABLE 4-7
JOINT ELASTIC WEIGHTS

D

E

E

G

10

11

12

13

- 150

- 362

+ 512

+ 528

+ 2024

- 2552

+ 500

+ 250

- 750

- 500

+ 1000

- 500

- 471
+ 1307

- 836

+-2352

- 1504

- 848

+-1900

-~ 688

- 1213

+ 333

- 312

+ 1442

+ 312

- 1754

+ 312

- 420

+ 108

+ 1314

- 312

- 1002

(All values X 10%)

TS



Fig. 4-5
.Conjugate Tower with Elastic Loads
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Conjugate Structure with Elastic Loads
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+Z

Fig. 4-6b

Conjugate Structure with Elastic Loads

The closed 'conjugate vs:tructure with elastic loads is shown in
Fig, 4-5. This conjugate structure is cut at points 1 and 7 and shown
‘as a:string polygon (Fig. 4-6a, b). The required deformations are
obtained using either Fig. 4-6a or b. The total joint elastic weights
-are shown in Table 4-8, and the copjugate moments are taken from

the axial deformation listing.

Conjugate Reactions and Cross-Sectional Elements

Rlz - O\

V,, = +.00972 Rod. = 6,
M, = +.0150 ft. = Ong
My, = - 54858t = 8,0

These deformations are identical with those obtained by Scordelis (4).
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TABLE 4-8

TOTAL JOINT ELASTIC WEIGHTS

i Fi
1 + 378 X 1078
2 - 362

3 + 2530
4 + 5250
5 + 1405

6 + 900

7 - 312

8 - 582

9 - 1775
10 - 8500
11 + 1307
12 - 1934
13 - 3302
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4-4, Conclusions.

It has been shown in this thesis that the extension of the string
polygon method to the calculation of deformations of coplanar statically
determinant truss systems is possible. Three new ideas have been
developed in this connection:

(2) The algebraic matrix form of the joint elastic weight for a

joint of a triangular truss cell.

(b) The algebraic matrix formulation for the total joint elastic
weight for a statically determinant coplanar truss.

(c) The representation of the geometry of deformation of a co-
planar statically determinate truss by means of a conjugate
string polygon.

The advantages of the string polygon method over some other well-
known methods are:

(a) Displacements of all joints in any direction may be calcu-
lated.

(b) Relative displacements of one joint with respect to any other
joint may be calculated.

(c) All deformations can be expressed algebraically and serve
as influence values.

The application of the string polygon to this type of a problem

gives results which are in good agreement with results based on other

methods.
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