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Abstract 

Motor skills are essential in people’s daily life in exploring and interacting with 

the ambient environment. Impairments to motor functions affect the acquisition of 

motor skills, which not only reduce the quality of life, but also impose heavy economic 

burdens to sufferers and their families. Oscillatory activities in electroencephalography 

(EEG), such as the mu rhythm, present functional correlation to motor functions, which 

provide accessible windows to understand underlying neural mechanism in healthy 

persons and perform diagnoses in patients with various motor impairments. It is thus of 

significant importance to further investigate classic and/or identify new motor-related 

EEG oscillatory activities.   

In this dissertation, EEG oscillations from both infants and adults are 

investigated to uncover motor-related neural information noninvasively from the human 

brain regarding their developmental changes and movement representations of body 

parts, respectively. In typical developing infants at 5-7 months of age, knowledge about 

mu rhythm development is expanded by capturing subtle developmental changes of its 

characteristics in a fine age resolution, through the development of new spatio-spectral 

analysis of EEG data recorded longitudinally on a weekly basis. In adults, motor tasks 

involving fine body parts are studied to investigate EEG resolutions in decoding 

movements/motor imageries of individual fingers, which have only been addressed in 

large body parts in literature. Discriminative information in EEG oscillations about 

motor tasks of fine body parts is revealed through the discovery of a novel type of 

spectral structures in EEG, which exhibits better sensitivity to movements of fine body 

parts than the classic mu rhythm. The findings in this dissertation broaden the scope of 
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neural information in EEG oscillations in relation to motor functions, and contribute to 

the understanding about human motor functions at various life stages. These results and 

technologies are promising to be translated to patient studies in the future.  
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Chapter 1: Introduction 

The ability to move freely and interact with the outside world is one of the 

fundamental skills for humans’ activities of daily living. These movements are 

coordinated and controlled by the human motor system, which allows people to explore 

ambient environment and gain life experience. Impairments to the motor system from 

cerebral palsy (CP), spinal cord injuries, stroke, etc. could lead to movement disorders 

and even severe paralysis. In the United States, CP accounts for the most common 

physically disabling condition in children, with prevalence at approximately 3.1 to 3.6 

out of 1000 children (Christensen et al., 2014). As for paralysis, there are about 

5,596,000 Americans suffering from some kind of paralysis, taking up 1.9% of the U.S. 

population (Christopher Reeve Paralysis Foundation, 2009). People with motor 

impairments cannot live, work or exercise like healthy individuals, leading to 

degeneration in quality of life depending on the severity of impairments. At the same 

time, sufferers of motor impairments usually bear with heavy economic burdens. A 

survey published in 2009 reported approximately 25% of families with a paralytic have 

household income lower than $10,000 per year, much lower than the ratio 7% of 

families in general population (Christopher Reeve Paralysis Foundation, 2009). Thus, 

it’s in urgent need for solutions to ease the hardship of these individuals.    

The variety of medical conditions leading to motor impairments can range from 

congenital diseases of the neural system as early as during infancy to acquired diseases 

of the neural system or damages to motor actuators (e.g., limbs) at later ages. The 

former type of conditions, such as CP, has great impact on the formulation of motor 

functions at the developmental phase, while the later ones, such as spinal cord injury, 
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stroke, multiple sclerosis and damage or loss of limbs, usually affect a fully grown 

motor system, resulting in movement disorders or movement difficulties to the 

sufferers. The aforementioned variety in intrinsic characteristics and affected population 

of motor impairments suggests different approaches for interventions that could 

maximize the efforts in promoting motor skills of people with motor impairments. 

Cerebral palsy is one of the typical neurological disorders developed at early 

ages, and it may start during prenatal, perinatal and postnatal stages due to damage or 

abnormal development of motor brains (Jones et al., 2007). CP sufferers usually sustain 

poor movement, balance and posture control. Although the condition of CP is not 

progressive with age, a decrease of spontaneous movements during the first year of life 

has been found for infants who are later diagnosed with CP (Hadders-Algra, 2001). This 

could lead to muscle weakness and atrophy at later ages. Aside from the effect on motor 

skills, recent studies found connections of CP with delayed speech and language 

(Hustad et al., 2014), as well as cognitive development (Bottcher, 2010). Both brain 

plasticity theory at the developing phase (Bach-y-Rita, 1990) and neuronal group 

selection theory (Edelman, 1993; Hadders-Algra, 2000) suggest, with intervention and 

training at early ages, better modulation and coordination of movements can be 

achieved for CP sufferers to promote their motor skills. Common interventions, such as 

physical therapy and occupational therapy, rely heavily on behavioral scores as 

treatment assessment. In such circumstances, neurophysiological biomarkers for motor 

development could provide more direct and accurate information for treatment 

assessment and improvement of intervention design. However, such information is still 
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scarce, since it requires further understanding about typical motor brain development as 

a reference.   

As for motor impairments developed at later ages, either deficiencies of the 

nervous system (caused by various neurological disorders) or damages to the motor 

actuators (damage or loss of limbs), developing advanced assistive technologies is a 

promising approach to promote movement abilities of people with these motor 

impairments. Traditional assistive technologies, such as wheelchair, walker and 

prosthesis, can help them regain some sort of abilities to engage normal life activities. 

However, most of these technologies require a certain level of motor inputs, making 

them inaccessible to people with severe motor disabilities. Hence, novel and advanced 

types of assistive technologies are needed for their assistance.  For instance, patients of 

tetraplegia caused by injuries to high-cervical nerves in spinal cord lose control over all 

limbs, but their motor brain functions might be intact. In such situations, the technology 

of brain-computer interface (BCI) might be a viable approach, which aims to identify 

various activation patterns in brain waves and translates them into control signals for 

external applications, such as an electrical wheelchair, computer programs and 

neuroprosthesis (Wolpaw et al., 2002; Birbaumer, 2006; Schwartz et al., 2006; Muller-

Putz et al., 2005). In this way, BCI users can directly communicate and interact with the 

outside world by performing mental tasks, bypassing the damaged motor pathway. 

Especially, activation patterns from motor tasks gain increasing attention in the field of 

BCI research, since they provide more proactive and intuitive control paradigms for 

BCI users, compared to those from passive mental tasks.  
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As described above, the interventions for motor impairments at different stages 

all rely on the knowledge about human motor brains. Oscillatory activities in human 

electroencephalography (EEG) have exhibited functional correlations to certain brain 

functionalities, indicating the investigation of motor related brain rhythms in EEG 

oscillations could facilitate the understanding about human motor brain. In infant EEG, 

characteristics of the mu rhythm, a type of EEG oscillations from the motor cortex, have 

been investigated to probe motor functions at early stage, due to its close relation to 

motor development (Smith 1941; Hagne et al., 1973). Studies have found the frequency 

band of the mu rhythm (6-9 Hz) to be lower than that of adults (8-12 Hz) and its peak 

frequency shifts to the higher frequency range towards the adult level along maturation 

(Lindsley, 1939; Hagne et al., 1973; Marshal et al., 2002; Orekhova et al., 2006). Such 

correlation makes the mu rhythm a promising biomarker for understanding motor 

development at early ages as well as for intervention assessment. However, most studies 

are with cross-sectional design and/or months/years apart between adjacent age points, 

the subtle longitudinal motor development at a finer age resolution has not been well 

studied. In adults, spectral features from the mu rhythm have demonstrated decoding 

capability of movements/motor imageries (MI) of large body parts, which can serve as 

control features for BCI applications (Gu et al., 2009; Zhou et al., 2009b). One 

challenge for motor-rhythm based BCIs is the limitation of available control features, 

which largely confines BCI systems to simple applications, such as cursor movements 

in restricted dimensions on the computer screen (Wilson et al., 2009; Wolpaw and 

McFarland, 2004). To enlarge the repertoire of control features for BCIs, one possible 

approach is to decode movements/MIs of finer body parts other than whole hands/limbs, 
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such as individual fingers, which are most dexterous body parts and account for 

majority of human interactions with the outside world. However, the feasibility of such 

decoding tasks has not been sufficiently investigated in EEG.  

Both capturing the motor development at finer age resolution and decoding 

movements/MIs of finer body parts are to expand the knowledge of human motor brain, 

in an effort to facilitate the development of interventions for motor impairment at 

different stages. In this dissertation, infant EEG sessions were acquired on a weekly 

basis using high-density EEG sensor nets that contain information of subtle motor 

development within fine age ranges. A procedure involving a series of advanced signal 

processing techniques in both temporal and spatial domains was developed to improve 

signal quality of infant EEG, before spectral analysis was applied to capture 

longitudinal changes of the mu rhythm. My experimental results concur previous 

findings about frequency peak shifting of mu rhythm and complement other 

developmental studies in depicting more detailed developmental curve of the motor 

brain. This expands the scanty knowledge about infant motor development, facilitating 

the development and assessment of interventions to motor impairments at early ages.  

In adult EEG, a novel type of spectral structures from spectral principal 

component analysis (SPCA) was uncovered during experimental tasks of individual 

finger movements. Three decoding tasks involving individual finger movements of one 

hand were designed to comprehensively evaluate the decoding efficacy of the newly 

discovered features. The three tasks are detection of finger movements, pairwise 

decoding of individual finger movements, and decoding individual finger movements 

from one hand, by the order of their difficulty levels. My experimental results show 
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promising decoding performance from the newly discovered spectral structures in EEG 

in all three tasks, demonstrating the existence of sufficient information in EEG 

oscillations for movement identification of fine body parts. Furthermore, the spectral 

structures from SPCA exhibit much better sensitivity to movements of fine body parts, 

comparing to the classic mu rhythm. The identification of four motor imageries from 

thumb and fist from both hands was also explored as an extension of movement 

identification. Similar processing approaches were taken to investigate the feasibility of 

EEG oscillations in decoding different motor imageries involving individual fingers. 

The significantly higher accuracies than guessing in all decoding tasks in this 

dissertation demonstrate the feasibility of discriminating movements/MIs of fine body 

parts as a promising approach towards complex BCI applications with flexible and 

intuitive controls for people suffering from motor impairments. 

With the promising findings mentioned above, this dissertation expands the 

knowledge about human motor brains in both motor development at early ages and 

identification of cortical activation from movements/motor imageries of fine body parts, 

which might have great implications to developing interventions at different ages, 

treatment assessment and motor assistance for people with motor impairments.  

Here is an outline of the dissertation. Following this introductory chapter, 

Chapter 2 provides background knowledge related to the dissertation topic, including an 

introduction to EEG and acquisition system, typical rhythmic activities in EEG 

oscillations and current knowledge about motor development and movement/motor 

imagery identification. Chapter 3 covers a study investigating EEG oscillations of high 

spatial and temporal resolutions to further the understanding about motor development 
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at early stage. Chapter 4 presents studies about EEG resolutions in identifying 

movements of fine body parts, including detection of finger movements from resting 

condition, pairwise decoding of individual finger movements, and decoding individual 

finger movements from one hand. In Chapter 5, a preliminary study of decoding motor 

imageries of individual fingers against fists from both hands is introduced, to probe the 

feasibility of decoding motor imageries of fine body parts from EEG oscillations. 

Chapter 6 draws a conclusion to the dissertation and opens up the discussion and 

suggestion to future works.   
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Chapter 2: Background 

Various brain imaging techniques have been developed to capture neural 

activities of the human brain based on different principles. For instance, functional 

magnetic resonance imaging (fMRI) measures neural activates by detecting the changes 

in blood oxygenation associated with brain activities; magnetoencephalography (MEG) 

implements a very sensitive magnetometer (i.e., superconducting quantum interface 

device, SQUID) to measure magnetic fields induced by neuroelectrical signals in the 

human brain; electroencephalography (EEG) and electrocorticography (ECoG) measure 

electrical signals generated by the human brain by placing electrodes outside of the 

scalp and at the brain surface, respectively. Among these techniques, EEG setup is easy 

and inexpensive, making it more accessible to be used in real world than others. And 

the high temporal resolution of EEG enables the capturing of brain activities at the 

millisecond level. Furthermore, EEG is noninvasive and safe to users comparing to 

invasive techniques like ECoG, which requires clinical surgeries to expose the brain 

surface for electrode placement. Thanks to these merits, EEG is widely adopted in the 

field of biomedical research to study human brain functionalities. 

This chapter aims to provide readers with background information of EEG 

oscillations in human brain research. The neurophysiological origin of EEG is firstly 

discussed, together with the EEG acquisition system implemented in this dissertation. 

Following that is an introduction to typical EEG oscillatory activities, especially the mu 

rhythm, a unique motor rhythm associated with motor functionalities. Then, current 

knowledge about motor development and motor assistive technologies is summarized.  
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2.1 Introduction to EEG 

Neurons are basic working units in the human central nervous system (CNS), 

forming the core components of the brain and spinal cord. There are a large variety of 

neurons discovered in the human nervous system, such as retinal bipolar neurons, 

retinal ganglion neurons, cortical pyramidal neurons, and cerebellar Purkinje neurons, 

just to name a few (Purves et al., 2004).  Typical neurons consist of three major 

components, cell body, axon and dendrites. Their corresponding structures are depicted 

in Figure 2.1 (Figure shared under GNU Free Documentation License Ver. 1.2., 

https://en.wikipedia.org/wiki/Neuron#/media/File:Neuron_Hand-tuned.svg). The cell 

body is the living part of neurons that produces proteins needed by other components. It 

holds basic organelles of a cell, such as nucleus, Golgi apparatus and endoplasmic 

reticulum.  The dendrites are branch-like structures that collect information from other 

neurons, and the axon works as a sender to transmit information out of the neuron.       

 

Figure 2.1 Typical neuron structure 

Typical neurons consist of three components: cell body, dendrite and axon. 
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The neurons in the human brain are all electrically excitable cells that 

communicate to one another via electrical or chemical signals at synapse, where 

exchange of charged ions takes place. Resulted ionic potentials form the physiological 

origin of EEG. By placing electrodes at the surface of the scalp, EEG measures 

aggregated electrical potentials from a large population of underlying neurons, usually 

in the order of thousands and millions. Among different types of neurons, cortical 

pyramidal neurons contribute the most to EEG signals due to the orientation of their 

long apical dendrites that are perpendicular to the cortical surface (Kirschstein and 

Kohling, 2009). Such a cortical organization of pyramidal neurons enhances the 

synchrony of electrical signals being picked up by EEG.  

 

Figure 2.2 EEG measurement of neural electrical activities 

Electrical signals produced by cortical pyramidal neurons are picked up by EEG 
electrodes placed at the scalp. 

 
As illustrated in Figure 2.2 (Figure source: An introduction to EEG. Mind and 

Brain Laboratory. http://www.psych.nmsu.edu/~jkroger/lab/EEG_Introduction.html), 
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electrical signals generated by neurons propagate through different layers of brain 

organisms, such as the cerebrospinal fluid (CSF), skull and scalp, before being 

measured by EEG electrodes placed outside of the scalp. Due to the anisotropic 

conductivity of these organisms, especially the CSF (Wendel et al., 2008) and skull (van 

den Broek et al., 1998), neural electrical signals are smeared and attenuated at the scalp 

level, resulting in tiny magnitudes of signals integrated from multiple sources of 

underlying neural mechanisms.  

 

2.2 EEG Acquisition System 

Advancement in biomedical devices grants researchers access to EEG amplifiers 

with high input impedance to capture tiny cortical signals from the brain with fidelity, 

as well as high spatial and temporal resolutions. Figure 2.3 (a) shows the EEG 

acquisition system (Net Amps 300, Electrical Geodesic Inc., OR, USA) used in the 

studies of this dissertation. From left to right are three core components of the EEG 

system, including an EEG sensor net, an amplifier (Net Amps 300) and a data 

acquisition computer. The 128-channel high-density EEG sensor net covers more 

cortical regions than 32- or 64-channel ones used by many other studies, providing EEG 

with a relatively high spatial resolution. The Net Amps 300 amplifier has an input 

impedance of 200 MΩ compared to below 100 MΩ from most other commercially 

available amplifiers, and is capable of sampling up to 20,000 Hz on all channels 

simultaneously. The added resolutions in temporal and spatial domains provide rich 

information to study the human brain through scalp EEG recordings. Figure 2.3 (b) 

presents an example of a subject wearing the EEG sensor net performing an 
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experimental task in an electromagnetically shielded chamber room. Such an 

experimental setting can minimize electrical and/or magnetic interferences from 

ambient environments in order to acquire EEG with high signal-to-noise ratio (SNR).  

 

Figure 2.3 EEG acquisition system 

(a) Core components of an EGI EEG system, including a sensor net, an amplifier and a 
data acquisition computer. (b) EEG acquisition in a shielded chamber room. 

 

2.3 Oscillatory Activities in EEG 

Ever since Berger’s first recording of human EEG in 1920s, EEG oscillations 

have drawn attentions of researchers for decades due to their close correlations with 

brain functionalities. Various EEG rhythms, neural oscillations within different 

frequency bands, have been discovered and investigated to expand the knowledge about 

the human brain. Posterior alpha rhythm is one of the most prominent EEG rhythms in 

human EEG, reflecting neural oscillations approximately between 8 and 12 Hz. It is 

most obvious at the occipital cortex during wakeful relaxation with eyes closed, and its 
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amplitudes are attenuated with eyes open (Kirschfeld, 2005). Posterior alpha rhythm is 

associated with the idle state of visual functions and its fluctuation reflects functional 

changes in the visual cortex related to visual detection (Vanni et al., 1997; Ergenoglu, et 

al., 2004), sleep (McKinney et al., 2011), attention level (Kim et al., 2013) and 

drowsiness (Lin et al., 2005). Theta rhythm accounts for another EEG rhythmic activity, 

represented by 4-7 Hz of EEG oscillations. Theta rhythm has exhibited location-specific 

functional correlations. While theta rhythm at the frontal cortex is found to associate 

with memory processing of the brain (Urgen et al., 2013), it correlates with function of 

spatial navigation in the parietal cortex (Snider et al., 2013).  

Besides band-specific rhythmic activities in EEG oscillations, recent studies 

reveal spatial and temporal couplings of rhythmic activities from different frequency 

bands (Pfurtscheller et al., 1997, Miller et al., 2009b, Canolty et al., 2006). In the motor 

brain, nonlinear couplings among harmonic frequency components between mu and 

beta rhythms and between low and high beta rhythms have been reported (Pfurtscheller 

et al., 1997, 1999). Coupling between high gamma power and theta oscillation has also 

been observed in cognitive processes of the human brain studied using ECoG signals 

(Canolty et al., 2006). One clinical study further indicates the coexistence of slow shift 

and high frequency oscillation during seizures in epileptic patients (Imamura et al., 

2011). A recent study (Miller et al., 2009b) reported power increase over a broadband 

spectrum (up to 200 Hz) in ECoG data from a finger tapping task. These studies 

demonstrate that well-defined spectral structures over multiple frequency bands might 

exist in brain signals and their changes may contain rich information that is not 

available in the analysis of rhythmic activities at individual frequency bands.  
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2.4 Mu Rhythm from Human Motor Brain 

In the human motor brain, the mu rhythm is a unique EEG rhythm at the alpha 

band (8-12 Hz) (Pfurscheller and Lopes da Silva, 1999; Pfurtscheller et al., 2006; Yuan 

and He, 2014). It shares similar frequency band with the posterior alpha rhythm, but 

they present functional and topographical differences from each other (Marshall and 

Meltzoff, 2011; Niedermeyer, 1997). Unlike posterior alpha rhythm, the mu rhythm is 

minimally affected by light illumination or eye open/close (Kuhlman, 1978). Instead, 

the attenuation of mu rhythm activities can be observed during preparation/execution of 

voluntary movements or motor imageries at the contralateral side of motor cortex, 

accompanied by a harmonic decrease in beta band (13-30 Hz), known as event-related 

desynchronization (ERD) (Pfurscheller and Lopes da Silva, 1999).  

 

Figure 2.4 ERD induced by left hand movement 

 

Figure 2.4 presents an example of ERD pattern induced by left hand movements 

from the resting condition on an EEG channel at the right motor cortex. It shows that 
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power decreases can be observed in both alpha (8-12 Hz) and beta (13-30 Hz) bands, 

when comparing the condition of left hand movements (red curve) to the resting 

condition (blue curve). The ERD is usually followed by a power rebound in the mu 

rhythmic after cessation of movements, known as event-related synchronization (ERS) 

(Pfurscheller and Lopes da Silva, 1999). ERD/ERS patterns of the mu rhythm are 

believed to reflect sensorimotor activation and deactivation (Neuper et al., 2006).  

 

2.5 Mu Rhythm in Understanding Motor Development 

The mu rhythm has been extensively studied to understand the human motor 

brain, due to its functional correlation to motor functions (Pfurscheller and Lopes da 

Silva, 1999; Berchicci et al., 2011). On the one hand, the characteristics of mu rhythm 

are investigated in infant EEG to probe the motor development at early stage. Early 

studies found the range of alpha band in infant EEG to be lower than that of adults 

(Smith, 1938; Lindsley, 1939), with 6-9 Hz generally accepted as the alpha band due to 

its functional resemblance to the adult alpha rhythms (i.e., 8-12 Hz). Similar to adults, 

there are two distinct alpha rhythms in infant EEG. One of them originated from 

posterior cortical sites resembles the posterior alpha rhythm in adults, and the other 

alpha rhythm originated from the central cortical site is analogous to the adult mu 

rhythm. Stroganove et al. (1999) found that the former rhythm presents increased 

activities during darkness comparing to attention with illumination, while activities of 

the latter rhythm are suppressed during darkness, demonstrating their different 

functional correlates.  
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Numerous studies have been carried out to investigate the mu rhythm in infancy 

in an effort to understand the motor development at early stage. As early as 1939, Smith 

reported the transition of EEG oscillations of 7 Hz at 4 months of age to 8.5 Hz at 18 

months of age over sensorimotor system (Smith, 1939). Hagne et al. (1973) found the 

emergence of the mu rhythm peak at 6 months of age and the shift of mu peak 

frequency from 6 Hz at 6 months to 7 Hz at 12 months of age. Marshal et al. (2002) did 

not find the mu peak at 5 months of age, but identified the emergence of 7-8 Hz mu 

rhythm peak at 10 months of age, shifting towards 8 Hz at 14 and 24 months of age. 

Orekhova et al. (2006) found mu ranges from 6.4-8.4 Hz for infants about 10 months of 

age, to 8.4-10.4 Hz for 5-year-old children. Berchicci et al. (2011) reported the shift of 

mu rhythm peaks from 2.75 Hz at as early as 3 months to 8.25 Hz at 11 months of age 

with magnetoencephalographic recordings (MEG).  

Aforementioned studies have enriched the knowledge about the mu rhythm 

during infancy, whereas some disagreements about emergence of the mu rhythm and 

mu peak frequencies at specific ages are presented, impeding the full comprehension of 

the mu rhythm and its indicative role in infant motor development. Considering the time 

span of these studies, evolvement of techniques of EEG recording and signal processing 

over the years might have some impacts on the interpretation. Early studies (Smith, 

1939) were carried out when EEG data were acquired and plotted on EEG chart paper, 

while later studies took advantage of computers, with which EEG could be digitally 

stored and advanced digital signal processing algorithms could be applied (Marshal et 

al., 2002, Orekhova et al., 2006). Most of studies about motor development recruit 

different subjects at each age point, like other cross-sectional studies, lacking the 
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information of cause and effect about motor development. Moreover, durations between 

two age points are usually months apart, while developmental changes of the human 

motor brain in a finer time resolution are not well captured yet. All these factors 

indicate results from more studies are needed to reach conclusive evaluation. 

 

2.6 Mu Rhythm in Developing Assistive Technology 

Aside from capturing motor developmental changes in infancy, the changes of 

mu rhythm activities are used to identify movements or motor imageries of different 

body parts, in an effort to develop advanced assistive technologies for people with 

severe motor disabilities. For people suffering from severe motor disabilities, the BCI 

technology provides alternative channels to perform necessary motor functions in daily 

 

Figure 2.5 Diagram of BCI technology 
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life, bypassing damaged peripheral nerves and muscles (Wolpaw et al., 2002; 

Birbaumer, 2006; Schwartz et al., 2006). BCI decodes neurophysiological signals from 

brain activities and translate human intentions into commands to control external 

devices or computer applications, as illustrated in Figure 2.5 (Adapted from Leuthardt 

et al., 2006).  

Among various brain signals used in BCI, including EEG (Bradberry et al., 

2010; Wolpaw and McFarland, 2004), ECoG (Miller et al., 2010; Pistohl et al., 2012), 

fMRI (Sitaram et al., 2007; Yoo et al., 2004), MEG (Bradberry et al., 2009), EEG-based 

BCI research is gaining popularity over other measurement techniques. This is due to 

some intrinsic merits of EEG recording technique, such as direct reflections of the 

electrical responses of the human brain, cost efficiency and noninvasiveness, as 

described in details in the first paragraph of Chapter 2.  

In EEG oscillations, aside from the change of mu rhythm activities from the 

motor cortex during movement/motor imagery of certain body parts (Wolpaw and 

McFarland, 2004), there are also other brain patterns identified and extracted as control 

features for BCI, such as P300 wave from the parietal lobe (Farwell and Donchin, 1988) 

and steady-state visually evoked potentials (SSVEP) from the occipital lobe (Bin et al., 

2009). Comparing to other features, the mu rhythm-based features are able to provide 

self-initiated stimulus-free control paradigm for BCI users, which fit better for 

applications involving movement controls. However, mu rhythm-based BCIs suffer 

from limited degrees of freedom (DOF), i.e., the small number of reliable control 

signals available, which significantly constrain the complexity of BCI applications. 

During the past decade, movements/motor imageries of large body parts have been 
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investigated in EEG-based BCIs, including wrists (Gu et al., 2009), upper limbs (Doud 

et al., 2011), elbows and shoulders (Zhou et al., 2009b), legs (Pfurtscheller et al., 2006), 

and tongue (Morash et al., 2008). However, the movements of fine body structures, 

such as individual fingers from one hand, have not been well studied in EEG-based 

BCI, while they are the most dexterous part of our body and play an irreplaceable role 

in our daily activities. The successful decoding of fine body parts would greatly 

advance the mu rhythm-based noninvasive BCIs with rich control dimensions.  

 In the following studies of this dissertation, one goal is to investigate the subtle 

changes of mu rhythm in infancy in fine age range with EEG recordings of high spatial 

and temporal resolutions, in an effort to further the understanding about human motor 

development at early stage. Another goal is to investigate resolutions of EEG 

oscillations in decoding movement/motor imageries of fine body. The unified goal of 

this dissertation is to uncover new information in EEG oscillations from human motor 

brain, which not only furthers the understanding about human motor functions but also 

could implicate to effective interventions for people with motor impairments at different 

stages.  
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Chapter 3: Further the Understanding about Motor Development 

Studies in developmental neuroscience suggest the important role of 

understanding motor development through neuroimaging techniques for early diagnosis 

and intervention of motor neurological disorders developed before maturation of the 

human motor brain (Hadders-Algra, 2014). Until now, very little information is 

available to accurately assess the effect of early interventions on motor development. 

Age-related changes in characteristics of the mu rhythm in infant EEG provide a 

potential biomarker for such purposes. However, due to practical difficulties in 

recruiting infant subjects and acquiring EEG from infants, studies about the infant mu 

rhythm are still scarce in comparison to adults. Most of previous studies either focus on 

one single age group or are cross-sectional with different subjects for each age point 

(Orekhova et al., 2006; Stroganova et al., 1999), lacking cause and effect information 

about motor development that is only available in longitudinal studies. Many of these 

studies cover a long age span, with months apart between adjacent age points (Marshall 

et al., 2002), while subtle changes of the mu rhythm within fine age resolutions have not 

been investigated. Furthermore, some discrepancies about emergence of the mu rhythm 

peak and peak frequencies at specific ages are presented from different studies. All 

these factors impede the further comprehension of infant motor development, and more 

efforts and knowledge are urgently needed.  

In this chapter, a longitudinal study investigating mu rhythm development in 

infant EEG is reported, with EEG recordings of high temporal and spatial resolutions. 

EEG data were acquired on a weekly basis from infants during their 5 to 7 months of 

age from high-density EEG sensor net, enabling the close observation of subtle changes 



21 

in the mu rhythm along this period. Spectral analysis was performed to examine the 

developmental changes of the mu rhythm in both spectral and spatial domains. 

Furthermore, a clustering analysis was adopted to refine the separation of frequency 

bands in infant EEG at different age points. The findings concur and complement 

previous studies in capturing the development of rhythmic activities during infancy that 

would facilitate development and assessment of interventions for motor impairments at 

early ages. Some results in this chapter have been reported in Xiao et al., 2015. 

 

3.1 Experimental Design 

3.1.1 Participants 

Ten infant subjects participated in the study, with informed consents obtained 

from their parents before experiments. Data from two subjects were excluded from the 

study, due to the facts that one baby was diagnosed as atypical developing condition 

from post-experiment evaluation and another one exceeded the age range of the study 

after gestation adjustment. The resting eight subjects were healthy infants (4 males, 4 

females), with their gestation adjusted age ranging from 17 to 23 weeks (Mean age: 

20.5 weeks; SD: 1.85 weeks) during their first EEG recordings. The study was reviewed 

and approved by the local institutional review board at the University of Oklahoma 

Health Sciences Center.   

3.1.2 Acquisition of EEG 

EEG data were acquired with EGI Geodesic EEG System 300 (Electrical 

Geodesics, Inc., Eugene, OR), including Net Amps 300 amplifier and 124-channel 

HydroCel Geodesic Sensor Net (HCGSN 130) for infants. EEG sensor nets with three 
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different sizes (40-42 cm, 42-43 cm and 43-44 cm) were adopted to accommodate 

infant subjects of different head circumferences. During experimental recordings, 

infants wearing EEG sensor nets sat on their parents’ laps, and parents were instructed 

to avoid rocking or moving the infants and to keep infants’ heads in upright position. 

Figure 3.1 illustrates an infant participant wears an EEG sensor net during an 

experimental recording. A baby rattle phone app was presented to infants, out of their 

reaching range (approximately 1 meter away), to keep them calm and still during EEG 

recording. EEG signals were recorded at a sampling frequency of 1 kHz for 5 minutes 

of resting data in each experimental session.  

 

Figure 3.1 Participant wearing EEG sensor net 
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Aside from EEG, videos were recorded simultaneously during each session, 

synchronized to EEG signals through EGI’s Netstation software, as shown in Figure 

3.2. Participants were asked to attend weekly EEG recordings until reaching 8 months 

of age or being able to crawl. Only sessions recorded when infants were between 5 and 

7 months of ages were selected for further analysis. Sessions with excessive motion 

artifacts, identified by visual inspection of EEG and video recordings, were also 

removed. There were in general 10 EEG sessions left from each participant after these 

data selection criteria, except one participant with 5 sessions (the participant presented 

crawling ability at as early as the beginning of 7 months of age).  

 

Figure 3.2 Netstation for synchronized EEG and video acquisition 
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3.2 Data Processing 

3.2.1 EEG Preprocessing 

A preprocessing procedure involving multiple signal processing techniques was 

developed to enhance the signal quality of EEG. A flowchart of preprocessing steps is 

depicted in Figure 3.3.  EEG from all sessions firstly went through a 0.3-30 Hz band-

pass digital filter with infinite impulse response (IIR), to remove DC offsets and 

interferences from unwanted high-frequency components, such as muscle activities. 

Secondly, EEG data from channels near boundaries of sensor nets (marked as red in 

Figure 3.4), including those near the neck, ears and eyes, were disregarded. These 

channels were found to be easily affected by head, face and eye movements, and 

susceptible to motion artifacts. That left 70 channels (marked as green in Figure 3.4) in 

the center for further analysis. Thirdly, sections of EEG, with either abnormally large 

amplitudes during visual inspection of EEG waveforms or the presence of abrupt 

voluntary movements from participants identified through video recordings, were 

marked and removed. There were in general 2 minutes of EEG left for each session 

after the bad section rejection. Fourthly, channel statistics was implemented to 

determine channels to be rejected. Specifically, the kurtosis value, which is the fourth 

cumulant of data, was calculated for each channel. Kurtosis measured the peakedness of 

a distribution, and EEG data from channels with kurtosis values larger than 5 standard 

deviation of the mean were removed and interpolated by mean EEG amplitudes of 

surrounding channels. Fifthly, a common average reference (CAR) filter was applied to 

the temporal EEG. The CAR is a spatial filter to further increase the signal-to-noise 

ratio, by removing cross-channel mean from each EEG channel at each sample point. 
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Lastly, a blind source decomposition technique, independent component analysis (ICA), 

was implemented to isolate neuronally generated EEG sources from artifactual ones 

(Delorme et al., 2012). The temporal EEG data were decomposed into 30 independent 

components (IC), and ones associated with common EEG artifacts, such as eye 

movements, electrical activities generated by heart, muscular activities, etc., were 

removed to improve the quality of EEG signals. Some functions involved in the data 

preprocessing procedures were accomplished using the EEGLAB toolbox, developed by 

Swartz Center for Computational Neuroscience in the University of California San 

Diego (Delorme and Makeig, 2004). 

 

Figure 3.3 Flowchart of EEG preprocessing procedure 
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Figure 3.4 EEG sensor layout 

 

3.2.2 Spectral Analysis 

For each EEG channel, power spectral densities (PSD) were estimated based on 

Welch’s method (Welch, 1967). It estimated the spectral powers for each 3-second 

epoch in the temporal EEG waveform using Hanning window with 50% overlaps 

between two adjacent epochs. This resulted in a frequency resolution of 1/3 Hz for 

PSDs, and mean PSDs of all epochs were calculated to obtain averaged estimations. 

The “pwelch” function from Matlab software (R2014a, MathWorks Inc., Natick, MA) 

was used for the PSD calculation.  
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To compensate the scale changes due to the fluctuations of EEG across different 

subjects and recording sessions (Marton et al., 2014), relative power densities were 

computed upon PSD estimations, using  
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motor cortex, were computed to evaluate spectral profiles of EEG powers with respect 

to motor development. 

The relative power densities on each channel were registered to their 

corresponding geodesic locations on the scalp to generate longitudinal topographies for 

each frequency bin. The power-law decaying property of EEG spectrum makes it hard 

to compare topographies across different frequency bins. Hence, relative PSDs from all 

channels at each epoch were normalized to z scores by 

1 2
,         = 1, 1 , 1 , 2, …,30 Hz

3 3

f

f

f R

f

R

R
Z f

µ

σ

−

=                     (3.2) 

where 
fZ  is the z score at the frequency bin f  after normalization. 

fR
µ and 

fR
σ are the 

mean and standard deviation of relative power density at the frequency bin f  across all 

channels, respectively.  
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3.2.3 Spectral Peak Statistics 

To examine the shifting pattern of peak frequency of the mu rhythm along 

maturation, the spectral peak distribution across different frequency bins was 

constructed. For each channel at the motor cortex, a simple 5-point peak selection 

algorithm was applied to the relative PSDs in the range of 2-9 Hz, as below 
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where 
fN indicates if there exists a peak at the frequency bin f  for 

1 2
 = 1, 1 , 1 , 2, …,30 Hz

3 3
f . For each monthly age point, a histogram of peak 

frequency distribution was generated by adding the number of peaks at each frequency 

bin from all motor channels and sessions. To balance the different numbers of sessions 

at different monthly age points, the peak frequency distribution from each monthly age 

point was normalized by dividing the corresponding number of sessions at that age 

point. The total number of peaks within the empirical infant alpha band (6-9 Hz) was 

also calculated for each monthly age point to evaluate developmental changes of the mu 

rhythm.   

3.2.4 Clustering Analysis for Band Separation 

EEG recorded from high-density sensor nets enables the observation of scalp 

representation of spectral information from each frequency bin in high spatial 

resolution. Due to the spatial specificity of EEG rhythmic activities from different 

frequency bands and the empirical separation of three frequency bands below 9 Hz in 

infant EEG (Saby and Marshall, 2012), clustering analysis was conducted to assign each 
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frequency bin to one of the three frequency bands, i.e., delta, theta and alpha, based on 

their spatial patterns to refine the definition of frequency bands in the range of 2-9 Hz. 

The k-means clustering method was adopted for the clustering analysis, which 

assigns observations to different clusters by minimizing point-to-centroid distances, 

fulfilled by the Matlab function k-means (Arthor and Vassilvitskii, 2007). The process 

of clustering analysis can be summarized as following. Firstly, three centroids 

representing spatial patterns of three frequency bands were randomly initiated. 

Secondly, each frequency bin was assigned to one of the three bands by the minimal 

Euclidean distance between their vectors of spatial patterns. Thirdly, the three centroids 

were updated by the mean spatial patterns of frequency bins from each cluster. Lastly, 

the last two steps were repeated until the minimal sum of total Euclidean distances from 

all clusters was achieved. The cluster analysis was performed on EEG data averaged 

from sessions of same weekly age point across all subjects and those averaged from 

same monthly age point, to evaluate frequency band separation in different temporal 

resolutions.    

3.2.5 Subject Variation from Correlation Analysis 

To assess effectiveness of band separation after clustering using data from the 

group level, a correlation analysis was performed at the individual-subject level. 

Monthly scalp representations from refined frequency bands based on results of the 

clustering analysis were firstly generated as templates (9 templates from 3 monthly age 

and 3 frequency bands). Then, correlations between spatial patterns of data from all 

sessions and all frequency bins in individual subjects and spatial patterns of the nine 
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templates were calculated to investigate consistency of these templates from the 

clustering analysis with data from individual sessions and subjects.   

 

3.3 Experimental Results 

3.3.1 Weekly Spectral Changes 

Figure 3.5 provides an up-close observation of changes in relative power 

densities at the motor cortex along weekly age points in the 1/3 Hz resolution. Each 

curve represents an average spectral density from sessions of the same weekly age 

point. By comparing spectral powers of individual frequency bins, it shows spectral 

profiles of EEG follow a power-law decaying pattern, i.e., spectral powers as a 

reciprocal of frequency (Miller et al., 2009a), as early as 20 weeks of age. It can be 

observed that spectral changes across different weekly age points mainly take place at 

the frequency range below 9 Hz, while spectral changes in the higher frequency range 

in infant EEG are few. Furthermore, in the frequency range of 2-9 Hz, large variations 

of spectral powers along the weekly age points take place in various sections, which 

corroborates the development of EEG rhythms in frequency bands during infancy. In 

general, three frequency bands can be approximately obtained in the frequency range of 

2-9 Hz by observing these spectral profiles, that is delta (2-3 Hz), theta (3-6 Hz) and 

alpha (6-9 Hz) bands.  

Among these frequency bands, the delta band presents dominating powers 

among the three, followed by theta and alpha bands. While both delta and theta band 

powers do not present consistent changing trend, with magnitudes fluctuating along 

weekly age points, a clear age-related peak formulation can be observed from 20 weeks 
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until reaching maximal peak at 31 weeks of age in the alpha band. Furthermore, the 

peak frequency of the alpha band presents a shifting pattern towards the high frequency 

range. 

 

Figure 3.5 Weekly spectral profiles 

 

3.3.2 Peak Frequency of the Mu Rhythm 

Besides the age-related changes of spectral profiles, peak frequency distributions 

at different age points provide another angle to evaluate mu rhythm development. 

Figure 3.6(a) presents normalized peak distributions along different monthly age points. 

Three subplots in the figure represent frequency peak distributions between 2 and 9 Hz 

for 5, 6 and 7 months of age, respectively. For all age points, peak frequencies are 

mostly located in the range of theta and alpha bands, with few peaks in the delta band. It 

also shows clear separation between theta and alpha bands for all monthly distributions. 

When looking the shifting patterns of frequency peaks in the alpha band, it reveals the 

modal peak frequency of the mu rhythm shifts from about 6.67 Hz at 5 months of age to 
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7.33 Hz at 7 months of age. When considering the total number of frequency peaks 

within the alpha band, it demonstrates an increasing pattern from 5 to 7 months of age, 

as shown in Figure 3.6(b).    

 

Figure 3.6 Distribution patterns of frequency peaks 

 (a) Frequency peak distributions for different monthly age points (b) Number of peaks 
in the alpha band for different monthly age points. 

 

3.3.3 Spectral Topographies of Individual Frequency Bins 

Figure 3.7 depicts the spatial patterns of relative PSDs from each frequency bin 

along weekly age points. Each row in the figure shows spectral topographies of one 

weekly age point and the columns show spectral topographies of different frequency 
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bins. It presents distinct spatial patterns among distant frequency bins, while reveals a 

certain level of similarities in adjacent frequency bins. When comparing spatial patterns 

of individual frequency bins along weekly age points, smaller variations across different 

age points can be observed than across different frequency bins, while they are more 

interesting to observe for the developmental study of the motor cortex. The power-law 

decaying pattern of EEG spectrum obscures the comparison of spatial patterns of 

different individual frequency bins, due to the large magnitude differences among 

different frequency ranges.   

The spatial normalization across all EEG channels provides one way to set their 

scalp representations to the equal footing.  Figure 3.8 presents the spatially normalized 

spectral topographies from different frequency bins along the weekly age points. It 

reveals distinct scalp distributions at different frequency bins, which can be 

approximately generalized into three classes. The first class mainly resides in the low 

frequency range below or around 3 Hz (within the delta band), with large cortical 

activations focusing on the frontal lobe. From about 3 to 6 Hz, similar to the empirical 

theta band, spectral topographies present large cortical activations near the posterior 

sites, which partially extend to the lateral central sites.  In the empirical alpha band (6-9 

Hz), major activations mostly fall in the central areas covering both lateral and medial 

motor cortices and part of premotor cortices. Only small variations can be observed 

when comparing spatial patterns of the same frequency bin across different weekly age 

points. 
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Figure 3.7 Weekly spectral topographies of 

individual frequency bins 
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Figure 3.8 Normalized weekly spectral 

topographies of individual frequency bins 
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3.3.4 Refinement of Frequency Bands 

Weekly spectral profiles and spectral topographies from the individual 

frequency bins demonstrate the existence of three frequency bands, while their 

separations are coarsely estimated and can be further refined by the clustering analysis. 

Figure 3.9(a) presents the clustering results from the weekly resolution. It reveals three 

clusters mainly gather within three frequency bands, i.e., the delta band (2-3 Hz), the 

theta band (3-6 Hz) and the alpha band (6-9 Hz), which are mostly in line with previous 

observations from their spectral and spatial profiles (Figure 3.5 and 3.8), with only a 

few sessions in the alpha band assigned to other clusters. It further shows the lower 

boundary of the alpha band shifts toward a high frequency range along weekly age 

points, although there are some fluctuations during the shifting process.  

While weekly evaluation provides detailed information to probe developmental 

changes of motor brains, it is also impacted by fluctuations due to variations in both 

EEG data and developmental changes. Figure 3.9(b) presents the clustering results from 

EEG sessions grouped by different monthly age points, aiming to capture the general 

developmental trend. Each row represents clustering results from data averaged at the 

resolution of month, with each column for different frequency bins. It reveals not only 

self-contained clusters, but also age-related changing patterns of boundaries between 

different frequency bands. Particularly, the lower boundary of the alpha band is 5.67 Hz 

at month 5, 6 Hz at month 6 and 6.33 Hz at month 7, demonstrating the pattern of alpha 

band power shifts towards a higher frequency.    
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Figure 3.9 Band definitions from clustering analysis 

 

The spatial patterns of different frequency bands along monthly age points are 

then evaluated based on the refined frequency bands from the clustering analysis on 

EEG of the monthly resolution, as shown in Figure 3.10. Rows of the figure depict 

spectral topographies of delta, theta and alpha bands from top down, and columns are 

for different monthly age points. It demonstrates distinct cortical activations from 

different frequency bands. Delta activities mainly take place at the medial frontal lobe 
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and present a slight decreasing pattern along maturation. Theta activities show similar 

spatial patterns over the cortex along maturation, all located in the posterior regions and 

the lateral central lobe. Alpha band activities are located in in central cortices for all 

three monthly age points. Particularly, similar activations for lateral central cortices are 

observed for three monthly age points, whereas the proportion of alpha band activities 

at the medial central cortical sites to other brain regions present an increasing pattern 

along maturation.  

 
Figure 3.10 Topographies based on refined frequency bands 

 
3.3.5 Results from Individual-Subject Level 

Figure 3.11 shows correlations of the spectral topography of each session from 

all subjects at different frequency bins with the nine topographic templates. For all plots 

in the figure, rows represent sessions from all subjects in a chronical order, with 

columns for individual frequency bins. The subplots in the first row of the figure 

present correlation maps to the delta band topographies of monthly age points. 
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Frequency bins present large correlations at the range of delta band, and consistent 

patterns can be observed from sessions of all subjects. The second row of the figure 

presents correlation maps to the monthly theta band topographies. Similar to delta band, 

most bins in theta band present large correlations, which are consistent across sessions 

from different subjects. The same phenomena can be observed for the alpha band, with 

largest correlations in the range of alpha band and consistency across individual 

subjects, as shown in the third row of the figure.        

 
Figure 3.11 Results from correlation test  
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3.4 Discussion and Summary 

3.4.1 Peak Frequencies in Mu Rhythm  

Peak frequencies in the alpha band have always been the focal point in infant mu 

rhythm studies, since they provide a reference for development of the mu rhythm, 

which in turn shed light on the maturation of human motor brain. However, variations 

from experimental designs, subject groups and data processing techniques in different 

studies, result in discrepancies in formulation and shifting patterns of peak frequencies 

in the mu rhythm. Results of many studies indicate emergence of the mu rhythm peak at 

certain monthly age, although the time of emergence is still inconclusive. For example, 

Marshal et al. (2002) reported emergence of the mu rhythm peak at 10 months of age 

with the peak frequency at 7 or 8 Hz, which moves to 8 Hz at 24 months and 9 Hz at 4 

years of age, while no similar peaks are found at 5 months of age. In agreement, 

Stroganova et al. (1999) reported the identified mu peak frequency increases from about 

7 Hz at 8 months to 7.42 Hz at 11 months. Hagne et al. (1973) demonstrated emergence 

of the mu peak frequency at 6 Hz at 6 months of age, with no similar peaks at 4 months 

of age, while it is 7 Hz at as early as 4 months of age in Smith (1941). More 

significantly, one MEG study argues the existence of the mu rhythm peak as early as 11 

weeks of age at 2.75 Hz, which is overlapped with activities in theta band and shifting 

towards the alpha band along chronological age (Berchicci et al., 2011). Such a 

divergence about peak frequencies of the mu rhythm requires evaluations of more 

studies to reach conclusion.  

 The longitudinal weekly EEG recordings in the present study reveal a gradually 

growing process of a bump shape in spectral profiles in the alpha range, from no-bump 
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patterns in 20 weeks to a clear bump in 24 weeks, which keeps developing until 31 

weeks of age (Figure 3.5). Such a process suggests the emergence of mu rhythm peak 

takes place around 5 or 6 months of age, and provides insights about its formulation. 

Number of frequency peaks in the alpha band from 5 to 7 monthly presents fewest 

counts in 5 months of all three groups, providing collaborative evidence that the 

formulation of mu rhythm peaks has already started since 5 months of age (Figure 

3.6(b)). In term of the pattern of peak shift, both weekly spectral profiles (Figure 3.5) 

and monthly peak distributions (Figure 3.6(a)) demonstrate the shift of peak frequency 

towards a higher frequency range from 5 to 7 months of age, which consolidates 

observations from previous studies with subjects of different age ranges (Marshal et al., 

2002; Stroganova et al., 1999). Moreover, results in the present study show that the 

emergence of peak frequency as presented in the weekly spectral profiles (Figure 3.5) is 

not accompanied with the transition of peaks from the theta to alpha band (Figure 

3.6(a)), favoring the emergence theory of mu rhythm independent of theta band 

activities, which is different from the previous MEG study (Berchicci et al., 2011).      

3.4.2 Band Separation in Infant EEG 

While most previous studies evaluate the development of mu rhythm within the 

frequency range of 6-9 Hz (Marshall et al., 2011, 2013; Saby et al., 2012) or its close 

variant 6-8 Hz (Paulus et al., 2012; Fox et al., 2001; Davidson and Fox, 1989), the 

variation of alpha band range along maturation has not been well investigated yet. The 

high spatial and spectral resolutions of EEG recordings in the present study enables the 

grouping of 1/3 Hz frequency bins into bands by observing and comparing their spectral 

topographies from each monthly age through the clustering analysis. The clustering 
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results show that the alpha band range does change along maturation, with lower 

boundary shifting from 5.67 Hz at 5 months, 6 Hz at 6 months, to 6.33 Hz at 7 months 

of age (Figure 3.9(b)). It suggests age-related changes of alpha band range should be 

taken into account when capturing the developmental change of mu rhythm.   

3.4.3 Cortical Activation of the Mu Rhythm 

With refined frequency bands and the high-spatial resolution in EEG recordings, 

spectral topographies for infant delta, theta and alpha bands are revealed for the first 

time, to the best of my knowledge (Figure 3.10). And the band separations and cortical 

activations are stable with consistency across sessions of individual subjects (Figure 

3.11). Distinct spectral topographies are presented for different frequency bands, 

suggesting different neural correlates behind these rhythmic activities. The findings also 

back up the practice of using band power analysis in the study of infant EEG (Saby and 

Marshall, 2012). Brain regions presenting large alpha activations that mainly fall into 

central cortices provides collaborative evidence for the association between the mu 

rhythm and motor brain development reported in early studies (Smith 1941; Hagne et 

al., 1973). In addition, spectral topographies of the mu rhythm along monthly age points 

reveal spatial specificity in the changing modalities among different sites in the motor 

cortices (third row in Figure 3.10), indicating asynchronous development of different 

cortical regions in motor brains during infancy.     

3.4.4 Implication to Early Intervention for CP 

CP accounts for one of the most common neuropediatric disorders, which 

describes a group of disorders in movement and posture development (Rosenbaum et 

al., 2007). Although CP is non-progressive along age, studies have found early 
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interventions, such as physical therapy, occupational therapy and recently developed 

robotic assistance, present positive effect on the motor development (Blauw-Hospers 

and Hadders-Algra, 2005; Kolobe et al., 2013; Miller et al., 2015). However, little 

evidence has been provided from the neurodevelopmental domain. Results from the 

present study enrich the scanty data about the development of the human motor brain at 

the time exactly before infants develop their first locomotive movement skills, i.e. 

crawling. This provides a promising biomarker for the assessment of effectiveness of 

different interventions and could also potentially serve as guidance for improving early 

interventions to promote motor skills for CP sufferers.  

 

In summary, the longitudinal study about development of the mu rhythm in 

infant EEG is presented in this chapter. The findings concur with previous studies about 

the existence of spatially and functionally distinct frequency bands in infant EEG and 

the association of mu rhythm in the alpha band at central cortices with motor brain 

development. The added information from high spatial and temporal EEG recordings 

enables the evaluation of formulation and shifting patterns of frequency peaks, 

especially spectral topographies of infant mu rhythm in this age range for the first time. 

All these findings further the understanding about typical development of the human 

motor brain, which might have great implication to the early diagnosis, intervention and 

treatment assessment for neurological diseases developed at early ages.  
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Chapter 4: EEG Resolutions in Movements of Fine Body Parts 

While expanding the knowledge of motor development has great implication to 

early interventions for motor impairments at early stages as discussed in the last 

chapter, medical conditions, such as neurological diseases, injuries to spinal cords and 

damaged or missing limbs, have impacts on the already developed human motor 

system, requiring a different type of intervention. The mu-rhythm based BCI 

technology is a promising approach, which detects spectral changes in the mu rhythm 

induced by movements of different body parts as control outputs for external 

applications. Features from the mu rhythm have demonstrated decoding efficacy for 

movements of large body parts, such as whole hands and limbs (Wolpaw and 

McFarland, 2004). But less can be revealed in them about movements of different fine 

body parts that activate adjacent brain regions, such as individual fingers from one 

hand. Several studies have reported spatial and temporal couplings of rhythmic 

activities between alpha and beta frequency bands during movements and motor 

imageries, suggesting the existence of well-defined spectral structures across multiple 

frequency bands (Pfurtscheller et al., 1997, Miller et al., 2009b, Canolty et al., 2006). 

Furthermore, a recent study has presented a type of broadband spectral structures in 

invasive ECoG contain discriminative information about different finger movements 

(Miller et al., 2009b). All these studies point to the possible existence of spectral 

structures in EEG other than the mu rhythm that might contain discriminative 

information about movements of fine body parts.  

In this chapter, studies about decoding movements of fine body parts using EEG 

are described. For the first time, procedures of spectral principal component analysis 
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(SPCA) are applied on EEG acquired during individual finger movements, to identify 

cross-frequency spectral structures in EEG. The newly identified spectral structures 

were examined in their spatial and cross-condition changing patterns. After that, they 

were implemented in three decoding tasks, including detection of finger movements 

from resting, pairwise decoding of individual finger movements and decoding 

individual finger movements (all five fingers) from one hand, all in comparison to the 

classic mu rhythm and its harmonic rhythm in the beta band. These new features reveal 

some similar, but more different spatial and spectral patterns as compared with classic 

mu/beta rhythms. Decoding results further indicate that these new features (91%) can 

detect finger movements much better than classic mu/beta rhythms (75.6%). More 

importantly, these new features reveal discriminative information about movements of 

different fingers (fine body-part movements), which is not available in classic mu/beta 

rhythms. The capability in decoding fingers (potentially hand gestures in the future) 

from EEG will contribute significantly to the development of noninvasive BCIs with 

intuitive and flexible control. The results in this chapter have been published in the 

following peer-reviewed journals, detection of finger movements from resting in 

Frontiers in Neuroscience (Xiao and Ding, 2015); pairwise decoding of finger 

movements is published in PLOS ONE (LiaoCO and XiaoCO et al., 2014); decoding all 

individual finger movements from one hand in Computational and Mathematical 

Methods in Medicine (Xiao and Ding, 2013) and Frontiers in Neuroscience (Xiao and 

Ding, 2015). 



46 

4.1 Experimental Design 

4.1.1 Subject Information and Experimental Protocol  

Eleven healthy and right-handed subjects (1 female and 10 males, mean age: 

26.4 years old, range: 22–32 years old) participated in the studies. All of them provided 

written informed consents prior to taking up the experiments. The studies were 

approved by the Institutional Review Board of the University of Oklahoma. None of 

these subjects had prior training on the experimental procedures in present studies. Due 

to poor data quality, data from one subject were excluded from further analysis.  

EEG experiments were carried out in a dim-lighted and electrically shielded 

chamber room to reduce environmental noises. Subjects were seated in a comfortable 

armchair, with their arms supported in a supine position. During the experiments, 

subjects either rested or performed repetitive movements of individual fingers from one 

hand according to visually presented cues. The stimuli were presented using the E-

Prime software (Psychology Software Tools, Inc., Pittsburgh, PA, USA).  

 

Figure 4.1 Experimental trial design 

Events in each trial: a two-second blank window, a two-second fixation, and a two-
second cue for finger movements.  
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The design of experimental trials was illustrated in Figure 4.1. At the beginning 

of each trial, a two-second blank window on the computer screen allowed subjects to 

prepare for the upcoming trial. Subjects were instructed to relax, blink, or swallow only 

during this period. A fixation cross was then presented for another two seconds as a 

resting condition, during which subjects were required to look at the fixation cross 

without any physical movements. After that, one of five words (i.e., thumb, index, 

middle, ring, little) as a cue was displayed for two seconds, which instructed subjects to 

continuously perform full flexion and extension of the cued finger (usually twice in one 

trial). There were 80 trials for each finger in most subjects, resulting in total 400 trials 

for all five fingers, except one subject who reported difficulties in finishing all trials, 

ending up with 60 trials for each finger. 

4.1.2 Data Acquisition 

During experiments, EEG signals were recorded from a 128-electrode EEG 

system (Geodesic EEG System 300, Electrical Geodesic Inc., OR, USA), sampled at 

either 250 Hz (in the first 6 subjects) or 1000 Hz (in the remaining 5 subjects) and 

referenced to a non-data channel at the vertex.  

At the same time, movements of individual fingers generated potential 

differences, which were measured by five bipolar electrodes placed on both sides of 

each finger at the same sampling rate as in EEG (Figure 4.2). Real-time videos on the 

moving hands were recorded, for the purpose of removing trials from further analysis 

when subjects moved wrong fingers. 
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Figure 4.2 Potential differences generated by finger movements 

 

To evaluate extracted features from EEG as compared to spectral structures in 

ECoG, ECoG data from the BCI Competition IV (Schalk et al., 2007) were analyzed 

following the same approaches in EEG analysis. The data were recorded from three 

epileptic patients using implanted 62-, 48- and 64-electrode grids, respectively, when 

they performed similar individual finger movements as in the present EEG studies. 

Briefly, subjects were cued to move one of five fingers from the hand contralateral to 

implanted grids, with each cue lasting two seconds and followed by a two-second 

resting period. The visual cues were presented using BCI2000 (Schalk et al., 2004). 

During each cue, subjects typically moved the corresponding finger 3 to 5 times. ECoG 

signals were recorded for 10 minutes, digitized at 1000 Hz, and bandpass filtered (0.15–

200 Hz). Kinematic data during finger movements were simultaneously recorded using 

a data glove (Fifth Dimension Technologies, Irvine, CA). 
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4.2 Data Preparation 

4.2.1 Preprocessing 

Datasets recorded at the sampling rate of 1000 Hz were firstly downsampled to 

250 Hz to be consistent with other datasets. The first two-second EEG data in each six-

second trial were removed from further analysis, since the period was designed for 

subjects to engage unavoidable movements, such as blink or swallowing. The remaining 

data were then high-pass filtered at 0.3 Hz using an elliptic infinite impulse response 

(IIR) filter from the EEGLAB toolbox (Delorme and Makeig, 2004) with both forward 

and reverse filtering to minimize phase distortions. A 60 Hz notch filter with a 

transition band of 0.3 Hz was further applied to remove power-line noise. To remove 

common physiological artifacts, independent component analysis (ICA) (Hyvärinen and 

Oja, 2000) from the EEGLAB toolbox was performed, implemented with the Infomax 

algorithm (Bell and Sejnowski, 1995). EEG artifacts, such as generic discontinuities, 

electrooculogram (EOG), electrocardiogram (ECG), and electromyogram (EMG), were 

then identified and rejected using the ADJUST toolbox (Mognon et al., 2011) and 

visual inspections. Total 64 independent components (ICs) were reconstructed and 

about 10 to 20 artifact-related ICs were rejected in each subject.  

For ECoG data, the 60 Hz power line noise and its harmonic components were 

removed using a notch filter with 0.8 Hz transition band (elliptic IIR filter from 

EEGLAB). Channels that contain unusually large values (greater than 105 µV) were 

rejected as bad channels, resulting 61, 46 and 63 channels of ECoG data for each 

subject, respectively. 

Both EEG and ECoG data were re-referenced using a common average 
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reference (CAR) spatial filter before further analysis, which could enhance SNR 

(McFarland et al., 1997): 
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where 0
(t)

n
X and (t)

n
X  are EEG or ECoG signals on channel n and at time t before and 

after CAR, and N is the total number of channels. It was calculated by subtracting EEG 

potential 0
(t)

n
X  at channel n and sample point t to the average potential of total N 

channels at that sample point. 

4.2.2 Extraction of Movement EEG 

Since subjects usually performed finger movements twice in each movement 

segment, i.e., two seconds, the potential differences from each pair of bipolar electrodes 

were band-pass filtered ranging from 0.5 to 2 Hz to capture major kinematic 

information of 1 Hz. It was observed that movement peaks happened when a finger was 

fully flexed, and those peaks were identified using the following criteria. Firstly, the 

amplitudes at the prospective peaks were at least 200 microvolt (µV). Secondly, these 

movement peaks occurred 400 milliseconds (ms) after stimulus onsets, since the 

reaction time from visual stimulus to movement onset was about 180 ms (Welford, 

1980) and the time reaching the peak from movement onset was usually longer than 200 

ms. Thirdly, movement peaks in the last 500 ms of each trial were not used because 

their corresponding EEG data might be contaminated by the following trial. Lastly, 

movement peaks were at least 200 ms apart from each other and, if there were multiple 

peaks within 400 ms time window, the peak with the maximal strength was selected. 

Trials in which subjects made wrong movements were removed. Numbers of detected 
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finger movements and their distributions among individual fingers were listed in Table 

4.1.  

Table 4.1 Summary of trial information from all subjects 

 Trials 
Movem

ents 
Thumb Index Middle Ring Little 

Subject 1 400 409 93 79 80 78 79 

Subject 2 400 485 87 97 117 97 87 

Subject 3 300 380 74 59 84 81 82 

Subject 4 400 435 83 77 86 80 109 

Subject 5 400 396 68 105 88 71 64 

Subject 6 400 396 80 79 80 79 78 

Subject 7 400 394 79 77 80 79 79 

Subject 8 400 394 80 80 79 75 80 

Subject 9 400 395 80 80 75 80 80 

Subject 10 400 394 80 79 80 75 80 

Average 390 407.8 80.4 81.2 84.9 79.5 81.8 

 

Then, EEG data centered at corresponding finger movement peaks in all trials 

were extracted with the length of one second and categorized into different fingers. In 

accordance with data for movements, their corresponding resting data were also 

selected as one-second segments, which were located in the middle of fixation, i.e., 2.5 - 
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3.5s of each 6-second epoch. Movement data and resting data, together with the 

corresponding labels that indicate the fingers moved, were then combined for later 

processing. For ECoG data, the similar procedure for the detection of finger movements 

was performed. Position data from the data glove was in the range of [-5, 10] (with 

arbitrary unit). Finger movement peaks were identified using two criteria: above the 

threshold of 2 and peaks at least 200 ms apart and the one with maximal strength 

selected if there are multiple peaks within 400 ms. ECoG data within one-second 

window corresponding to each movement peak were then extracted as movement trials. 

 

4.3 Spectral Analysis 

4.3.1 Spectral Features from the Mu Rhythm 

To extract spectral features from the mu rhythm, the power spectral densities 

(PSDs) of data on each channel were calculated. Data from a short-time window T 

centered at movement peaks   and resting conditions were used, where   refers to time 

windows for different fingers, and   refers to time windows of corresponding resting 

conditions of different fingers. PSDs were then calculated using a windowed Fourier 

transform (Miller et al., 2009b): 
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where ( ),

n q
P f τ  is the PSD at frequency f and time q

τ  on channel n,
 q
N  is the number 

of movements (including corresponding resting conditions). The Hanning window 

( ) ( )( )1 cos 2 2H t t Tπ= +
 
was used with the window length T of one second. The upper-
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bound frequency fN  was 70 or 125 Hz in EEG data and 200 Hz in ECoG data, 

depending on the different studies.  

Since adult mu rhythm reflects EEG oscillations in the alpha band and it elicits 

harmonic activities in beta band (Pfurscheller and Lopes da Silva, 1999), the spectral 

powers at both 8-12 Hz (i.e., alpha band) and 13-30 Hz (i.e., beta band) were selected as 

movement-related features to evaluate their efficacies in the three decoding tasks 

involving individual finger movements.  

4.3.2 Spectral Principal Component Analysis 

To further reveal movement-related changes in EEG, the principal component 

analysis (PCA) (Glaser and Ruchkin, 1976) was applied to PSD data from both 

movement trials and resting trials in order to identify movement-related spectral 

structures. Depending on decoding tasks, combinations of data from different conditions 

were chosen to reveal spectral structures associated with the specific tasks. For 

detection of finger movements and decoding individual finger movements from one 

hand, all finger movement conditions and their corresponding resting conditions were 

grouped together for the following calculations. For pairwise decoding of finger 

movements, since there were ten pairs of combinations from five finger, PSD data from 

each pair of conditions (i.e., fingers) to be compared and their corresponding resting 

data were grouped for the PCA analysis using the following procedures.  

Grouped PSD data were firstly element-wise normalized to the ensemble 

average spectrum at each frequency and then the logarithm was taken: 
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where ( ),

n q
P f τɶ  is the log-normalized PSD at frequency f and time q

τ  on channel n. 

The purpose of normalization was to evaluate increased or decreased changes in 

specific spectral structures that would be identified with PCA as discussed below. And 

the logarithm operation was to treat increased changes (ranging from zero to infinity 

after logarithm) and decreased changes (ranging from negative infinity to zero after 

logarithm) equally (Miller et al., 2009b). 

The PCA method (Glaser and Runchkin, 1976) was then applied to seek the 

most representative spectral structures in PSD data ( ),

n q
P f τɶ , which calculates the 

eigenvalues λ  and eigenvectors v  of the covariance matrix ( ),C f fɶ  of ( ),

n q
P f τɶ

 

among different frequencies 
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n q n q
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where f  and f′  are frequencies and q
τ  are task conditions from different decoding 

tasks. The covariance matrix reveals the correlation between power spectra of every two 

frequency bins. Its eigenvectors kv  ( )1,2, , fk N= ⋯

 
(principal component, PC) define a 

set of spectral structures in PSD data and their contributions to the variance of PSD data 

are reflected in corresponding eigenvalues kλ . The PCs are rearranged according to 

eigenvalues in a descending order, which forms a set of orthogonal basis in the 

frequency domain denoted as
1 2

( , ) ( , , , )
fN

V f k v v v= ⋯ . The projection of PSD data from 

each trial onto the new basis ( , )V f k  can then be calculated as 

( , ) ( , ) ( , )T
n q n qW k V f k P fτ τ= ⋅

ɶ      1,2, , fk N= ⋯                        (4.5) 
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where ( , )
n q

W k τ are the weights of PSD on nth channel from movement (and resting) data 

of q
τ  projected onto the kth PC. Projection weights were grouped according to conditions 

(resting data were also separated according to finger moved after it) and compared to 

illustrate difference of movement-related changes in spectral structures from different 

finger movements. 

 

4.4 Procedures for Evaluation and Classification  

4.4.1 Evaluation of Spectral Features 

The evaluation of new spectral structures in EEG consisted of two parts: 

qualitative inspection of their characteristic spectral profiles and spatial patterns, and 

quantitative assessment of their efficacies in the three decoding tasks, i.e., detection of 

finger movements from resting, pairwise decoding fingers movements and decoding 

individual finger movements from one hand. These evaluations were performed in 

comparison to classic mu/beta rhythms, and detailed below.  

Firstly, spectral profiles of different features were observed and compared. 

Then, topographies of spectral features associated with the first three PCs (accounted 

for most data variance) were compared with topographies of mu/beta rhythms via visual 

inspections in conditions of resting and movements of different fingers. The 

topographies of mu/beta rhythms were obtained by mapping averaged spectral powers 

within each frequency band on the scalp.  

Secondly, cross-condition changes (i.e. resting vs. movement and movements of 

different fingers) in spatial patterns of mu, beta, and three new spectral features were 

quantitatively evaluated by calculating coefficient of determination (r2 values): 
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where 
1
n  and 

2
n  are numbers of segments for two conditions to be compared.  

1
w  and 

2
w  are the feature vectors of each condition, which are data defining spatial patterns of 

features. They are projection weights on spectral PCs at channels for the three new 

spectral features, and PSDs in the alpha and beta bands at channels for the mu/beta 

spectral features. The 
1 2

( )std w w∪  calculates the standard deviation of data pooled 

together from two conditions. The calculation of r2 values was performed between two 

conditions of same features at channels and, therefore, topographies of differences for 

different features and conditions were generated. 

Lastly, two types of spectral features (i.e., projection weights on the first three 

PCs and alpha/beta band powers) were evaluated in three decoding tasks involving 

individual finger movements. In the first task, movements of five fingers were grouped 

as the movement condition to be decoded from the resting condition. The second and 

third tasks were to decode each pair of fingers and all five fingers from one hand, 

respectively. Furthermore, to study the independence and redundancy of information in 

different features in detecting movements and decoding different finger movements, 

various combinations of spectral features (e.g. three PCs; alpha+beta; and 

alpha+beta+three PCs) were also investigated.  

4.4.2 Classification Procedures 

Classification procedures for evaluation of spectral features through the three 

decoding tasks discussed above are described here. Since most EEG features exhibited 

localized spatial patterns (e.g. mu/beta rhythms over the motor cortex), spectral features 
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from subsets of all EEG channels were used as input features to classifiers to avoid 

negative impacts from irrelevant channels. For the classic mu/beta rhythms features, 

channel C3 (a representative channel at left motor cortex) and its neighbouring channels 

were chosen as feature channels (for right hand movements). For features from the PCs, 

channels were selected based on r2 values between two compared conditions. In general, 

channels were ranked by their corresponding r2 values, and then the first 10 channels 

were chosen as feature channels. If more than two conditions to be compared, i.e. five 

fingers, the union of selected channels for all finger pairs was used. For cases using 

combined features, the union of selected channels for each feature was used. 

The linear support vector machine (SVM) (Vapnik, 1998, 1999) with radial 

basis function (RBF), implemented in a MATLAB package, i.e. LIBSVM (Chang and 

Lin, 2011), was chosen for classification. Briefly, the method maps input feature data 

into a high dimensional space and seeks an optimal separating hyper plane that has 

maximal margins between the two classes of data samples. The penalty parameter and 

gamma value in RBF kernel were determined by a grid-search approach (Hsu et al., 

2010). The decoding features (projection weights on PCs, and mu/beta PSDs) were 

linearly scaled into the range [-1, +1] to avoid numeric range dominance of one feature 

over others. A binary SVM classifier was applied in detecting movements from resting 

and pairwise decoding of finger movements, and the one-versus-one scheme followed 

by a majority voting was used to solve the multiclass classification problem (Hsu and 

Lin, 2002) in decoding five fingers.  
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4.4.3 Assessment of Decoding Performance  

Decoding accuracy (DA) was defined as the number of correctly classified 

movements divided by the total number of movements (Han et al., 2012). To get an 

unbiased estimation of decoding accuracy, trials of individual movements were 

randomly permuted before going through the five-fold cross validation. The five-fold 

cross validation procedure separated the data into two parts, i.e. 80% data for training 

and 20% data for testing, and each subset was used for testing once. Different features 

selected for the classification analysis were obtained from the training data only, which 

made sure that no data in the testing set were involved in building classifiers. The whole 

process was repeated multiple times (20 times for pairwise finger decoding; 30 times 

for other tasks), based on which the mean and variance of decoding accuracies were 

calculated.  

The significance of achieved classification accuracy was also compared with 

respect to guessing level (50% for two-class problem; 20% for five-class problem). 

One-sample Student’s t-test was performed to evaluate whether decoding accuracy was 

significantly higher than the guessing level of the decoding task. And paired Student’s t-

test was performed to compare decoding accuracies from different spectral features. As 

a further exploration, the empirical guessing level p for pairwise decoding of finger 

movements was calculated using a permutation test. During the test, the class labels 

were randomly permuted 500 times and the same classification procedure was 

performed on obtained dataset in each permutation as on the original dataset. The 

decoding accuracies from all permutations were then averaged to obtain the empirical 

guessing level and Student t-test was used to test the significance between comparisons. 
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In a two-class classification problem, the probability (p) and its associated confidence 

intervals were given as (Muller-Putz et al., 2008)  
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where m is the number of total movements from two conditions compared, 
2

1
α

−

Ζ  is the 

2
1

α
−  quantile of standard normal distribution, and α is the significance level, such as 

0.05. The decoding performance of a classifier is considered to be statistically 

significant from the guessing level if it is beyond the confidence intervals of empirical 

guessing level with a significance level α. 

 

4.5 Feature Evaluation Results 

4.5.1 Profiles of Mu/Beta Rhythms 

Figure 4.3 presents the spectral profiles of mu/beta rhythms. Since all subjects 

moved fingers from the right hand, which elicited power changes at the left motor 

cortex, i.e., the contralateral side of brain (McFarland et al., 2000), spectral powers 

averaged over all segments belonging to one condition from a representative channel C3 

on the left motor cortex were chosen to display. The selected channel was marked by 

the red dot on the scalp map. It shows that all finger movements elicit power decreases 

in both alpha band (enclosed by 1st and 2nd vertical lines) and beta band (enclosed by 2nd 

and 3rd vertical lines) compared to the resting (denoted by the cyan curve), while 

spectral powers in the alpha band present much larger decrease. However, no major 

differences in spectral powers among different finger movement conditions can be 

readily identified in both frequency bands. These observations suggest features of 
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spectral powers from individual frequency bands may detect finger movements from 

resting, but may not suffice discrimination of different movements of fine body parts, 

i.e., individual finger movements. 

 

Figure 4.3 Profiles of Mu/Beta rhythms 

 

4.5.2 Profiles of Spectral Structures from PCA 

Figure 4.4 illustrates the first and second PCs of EEG and ECoG data from all 

finger pairs (i.e., ten) in all subjects (i.e., 10 for EEG and 3 for ECoG) along frequency 

domain. Figure 4.4(a) shows that, for EEG, the first PCs are of non-zero value (around 

0.1) over the whole frequency band (up to 125 Hz), which is consistent over all 

comparisons of different finger movements, over distributed EEG channels and over all 

subjects. Moreover, these first PCs are of the same signs and closer to each other than 

they are to zero. The second PCs indicate peaks within the alpha band (8-12 Hz) and 

beta band (around 20-25 Hz) while the high frequency component (> 40 Hz) is near 

zero. These phenomena are similar to the results obtained from ECoG data (Figure 
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4.4(b)), in which the first PCs have the same positively signed magnitudes (around 

0.07) over the whole frequency band (up to 200 Hz) over all comparisons of finger pairs 

and all subjects and the second PCs have elevated deflections away from zero within 

alpha/beta frequency bands as well. However, it is worth to note that the first PCs in 

EEG present a slightly increasing pattern in the low frequency range as compared to the 

ones in ECoG. 

As discussed in the ECoG study (Miller et al., 2009b), the first PC with non-zero 

magnitudes captures the broadband frequency change during finger movements, while 

the second PC reflects the power-decreasing rhythms in low frequency bands, consistent 

with event-related desynchronization (ERD) due to movements (Pfurtscheller and 

Aranibar, 1977). These results indicate that movement-related spectral structures 

reported in previous ECoG studies (Miller et al., 2009b) are also available and can be 

identified in EEG data. 

 

Figure 4.4 Spectral PCs in EEG and ECoG from ten pairs of fingers  

Each curve is the averaged 1st or 2nd principal components across channels in motor 
cortex, from each pair of fingers and subject. (a) EEG data (1 - 125 Hz). (b) ECoG data 

(1 - 200 Hz). 
 

Figure 4.5 depicts the profiles of first three PCs from EEG data of movements 
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from all fingers, with each curve representing spectral structure derived from one 

subject in all plots. It’s noted the profiles of first two PCs are in line with those from 

finger pairs in Figure 4.4(a). All curves in each PC present similar patterns, suggesting 

the consistency of these spectral structures across subjects, while different PCs show 

distinct profiles along the whole frequency range. The 1st PC (blue curves) is generally 

flat with positive elevations across the whole frequency range, which reveals a 

broadband phenomenon. The 2nd PC (red curves) presents spectral peaks at both alpha 

and beta bands while exhibits values close to zero for other frequency bands. The 3rd PC 

(green curves) presents main peaks at the alpha band. 

 

Figure 4.5 Spectral PCs in EEG of movements from all fingers.  

Blue, Red, and Green curves represent profiles of the 1st, 2nd and 3rd PCs, 
respectively.  

 
4.5.3 Spatial Patterns of Different Features 

Distinct spatial patterns are observed in the distributions of projection weights 

on PCs, as shown in Figure 4.6(a). The first row shows the averaged topographies of 

projection weights over all subjects on the 1st PC from different fingers. Bilateral 
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clusters of large projection weights (e.g. around -10) are observed over the primary 

motor (M1) and premotor cortices, which extend more toward anterior areas of the 

brain. And smaller projection weights (e.g. around -4) form an outstanding cluster in the 

posterior parietal area. These brain areas, especially the parietal area, also indicate 

differences when comparing projection weights from movements and resting. Major 

clusters of projection weights on the 2nd PC are mainly over the central area (the second 

row in Figure 4.6(a)), including M1 and supplementary motor area (SMA), which also 

show significant difference between finger movements and resting (with sign changes).  

 

Figure 4.6 Topographies of different types of features  

(a) Topographies of projection weights on different PCs for conditions of different 
finger movements and resting. (b) Topographies of PSDs in alpha and beta bands 
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Unlike the first two PCs, the 3rd PC indicates scattered patterns in distributions of 

projection weights, while some relatively weak patterns can still be observed over the 

central and parietal areas when movement conditions are compared with resting.  

 
Alpha/beta band powers (Figure 4.6(b)) show decreasing patterns during 

movements as compared with resting over bilateral M1, which is consistent with 

previous studies (Pfurscheller, 1989, Magnani et al., 1998, Szurhaj et al., 2001) and 

similar to bilateral patterns over M1 in both the 1st and 2nd PCs. Mu/beta powers 

(especially mu power) also indicate a clustered pattern over the central parietal area, 

similar to what is observed in the 1st PC, while its changes between movements and 

resting are not as large as in the 1st PC (see Figure 4.5 also). It is noted that, while some 

similarities are observed between the PCs and mu/beta powers, many differences are 

also suggested when whole patterns of individual features are compared one to another. 

Figure 4.7 shows exemplary scalp maps of r2 values, which provide quantitative 

metrics for cross-condition differences in individual features. Broader differences over 

M1, SMA, premotor, and parietal areas from three PCs are observed in the comparison 

between movements and resting, while more focused differences over SMA, parietal, 

and some left M1 areas are shown in the comparison of different finger movements. It is 

observed that some areas that indicate large projection weights (e.g. bilateral premotor 

and anterior areas in the 1st PC) show almost no changes across different fingers. It is 

also suggested that much more differences between different conditions are revealed 

from three new spectral features than mu/beta features. In particular, both mu and beta 

powers show almost no difference for movements of different fingers. 
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Figure 4.7 Topographies of r2 values between different task conditions 

1st column: movements and resting; 2nd column: movements of thumb and middle; 3rd 
column: movements of index and little.  
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4.6 Detection of Individual Finger Movements 

4.6.1 Single Features for Classification 

Figure 4.8 presents the accuracy in decoding movements from resting using mu, 

beta, and spectral features from PCs. It indicates that all features individually yield 

significantly higher detection accuracy than the guessing level (p<0.05), suggesting the 

existence of spectral changes in EEG associated with movements. The mean decoding 

accuracy achieved by the spectral feature from the 1st PC is 86.8%, followed by the 2nd 

PC at 76.9% and the 3rd PC at 72.2%, indicating that all three PCs contain 

discriminative information of finger movements from resting. Spectral powers on the 

alpha (70.8%) and beta bands (70.6%) yield lower decoding accuracy than all individual 

PCs, and significantly lower than the 1st PC (p<0.05, Table 4.2). 

 

Figure 4.8 Accuracies in detecting finger movements from individual features 
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Table 4.2 Summary of Student t-test results for movement detection 

AB+3PCs 

0.0212 

0.0001 

0.0000 

0.2236 

0.5667 

0.0002 

0.0001 

0.0001 

0.5020 

0.9870 

NA 

Each entry present p value from statistical test between two features. The bold and underlined entries indicate significant difference (p<0.05). Negative 

entries indicate low decoding accuracy using the feature from column than the one from row. 

B+3PCs 

0.0166 

0.0001 

0.0000 

0.2487 

0.5863 

0.0002 

0.0001 

0.0001 

0.5669 

NA 

-0.9870 

A+3PCs 

0.0206 

0.0001 

0.0000 

0.2609 

0.8308 

0.0003 

0.0001 

0.0002 

NA 

-0.5669 

-0.5020 

A+B 

-0.0125 

-0.5643 

0.2042 

-0.0017 

-0.0006 

0.0036 

0.0247 

NA 

-0.0002 

-0.0001 

-0.0001 

Beta (B) 

-0.0017 

-0.0954 

-0.6402 

-0.0006 

-0.0002 

-0.9324 

NA 

-0.0247 

-0.0001 

-0.0001 

-0.0001 

Alpha (A) 

-0.0055 

-0.0539 

-0.7009 

-0.0011 

-0.0006 

NA 

0.9324 

-0.0036 

-0.0003 

-0.0002 

-0.0002 

3 PCs 

0.0084 

0.0002 

0.0001 

0.0619 

NA 

0.0006 

0.0002 

0.0006 

-0.8308 

-0.5863 

-0.5667 

2 PCs 

0.0193 

0.0004 

0.0003 

NA 

-0.0619 

0.0011 

0.0006 

0.0017 

-0.2609 

-0.2487 

-0.2236 

3rd PC 

-0.0043 

-0.1643 

NA 

-0.0003 

-0.0001 

0.7009 

0.6402 

-0.2042 

-0.0000 

-0.0000 

-0.0000 

2nd PC 

-0.0111 

NA 

0.1643 

-0.0004 

-0.0002 

0.0539 

0.0954 

0.5643 

-0.0001 

-0.0001 

-0.0001 

1st PC 

NA 

0.0111 

0.0043 

-0.0193 

-0.0084 

0.0055 

0.0017 

0.0125 

-0.0206 

-0.0166 

-0.0212 

 

1st PC 

2nd PC 

3rd PC 

2 PCs 

3 PCs 

Alpha (A) 

Beta (B) 

A+B 

A+3PCs 

B+3PCs 

AB+3PCs 

 



68 

4.6.2 Combined Features for Classification 

The top three bars in Figure 4.9 present the decoding accuracy using combined 

features from only one category of spectral features (projection weights on spectral PCs 

or PSDs). It is observed that 2 or 3 spectral PCs together produce significantly higher 

decoding accuracy, i.e. 90% and 91% respectively, than individual PCs (p<0.05 for the 

1st PC and p<0.0005 for the 2nd and 3rd PCs, Table 4.2). Similar phenomenon is also 

observed for the combined alpha and beta bands feature, in which the decoding 

accuracy (i.e. 75.6%) is significantly higher than the feature only from either alpha or 

beta band alone (p<0.05, Table 4.2). Moreover, the combined features from the spectral 

PCs as the input feature for classification show much higher accuracy than the  

 

Figure 4.9 Accuracies in detecting finger movements from combined features 

Results of paired Student’s t-test between each two combinations of features is reflected 
in the figure. ** denotes p <0.01. 
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combined PSD features (p<0.001, Table 4.2). On the other hand, when features from 

different categories are combined (spectral PCs and PSDs), only slight improvements in 

decoding accuracy are observed (91.5% by combining total five features), which are not 

significantly different from ones obtained through the use of combined spectral PCs (i.e. 

91% for combined 3 PCs).  

 

4.7 Pairwise Decoding of Individual Finger Movements 

4.7.1 Single Features for Pairwise Classification 

Figure 4.10 shows the mean decoding accuracies and corresponding standard 

deviations averaged across all subjects, from single features. It indicates that DAs from 

ten comparisons using the broadband feature (i.e., projection weights on the first PC) 

are all higher than 70%, with the lowest DA of 71.43% in index vs. middle and the 

highest DA of 82.41% in ring vs. little. The average DA across all pairs of fingers and 

subjects is 77.11%, which is significantly higher than the empirical guessing level 

51.26% (the red horizontal dashed line) in one-sample t-test (p<0.05). The average DAs 

achieved by spectral features in the two frequency bands are 58.55% (alpha) and 

57.86% (beta), respectively, and all reach significant level against the empirical 

guessing level (p<0.05). Among these features, the difference between alpha and beta 

band is not significant (p>0.05). Furthermore, the broadband feature has significantly 

higher DAs than the feature from any of these individual frequency bands (p<0.05). 

The significance of decoding performance for each pair of fingers using EEG 

data is listed in Table 4.3. With the significance level α as 0.05, most of decoding 

accuracies for all subjects and all finger pairs were above the upper bound of 95% 
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confidence interval of guessing, except four pairs out of one hundred (underlined ones 

in Table 4.3). These results demonstrate that almost all decoding accuracies of ten 

finger pairs from all subjects are significantly better than the guessing level. 

 

Figure 4.10 DAs of pairwise decoding from single features  

The red dashed line indicates the empirical guessing level of 51.26% and the vertical 
lines indicate standard deviations. 

 
4.7.2 Decoding Efficacies from Single and Combined PC Features 

Figure 4.11 illustrates the average decoding accuracies in ten pairs of fingers 

from EEG signals using projection weights on single (from first to fifth) or multiple 

(from first two to first five) PC(s) as input features for classification. As far as single PC 

is concerned, the first PC produces higher DAs than other single PCs, while the 

differences are not significant against the second and third PCs (p = 0.22 and 0.17, 

respectively). In most cases, the decoding accuracy of each pair of fingers decreases 

from the first PC to the fifth PC, indicating that the spectral structure in the first PC is 

more relevant to movements performed by fingers than other PCs. 
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       Table 4.3 Significance test results for pairwise decoding of finger movements 

Std. 

13.25 

11.43 

12.60 

13.51 

13.57 

8.81 

13.32 

12.24 

14.07 

10.78 

Each entry in the table is averaged decoding accuracy / upper bound of (1-α) confidence level, α =0.05. The last two columns of the table show the 

means and standard deviations of decoding accuracies of each pair of fingers across all subjects. Values underlined are not significantly higher than the 

guessing level. 

Mean 

71.27 

74.34 

77.55 

78.16 

69.15 

73.48 

79.64 

71.15 

77.94 

80.21 

Subj.10 

87.29/56.68 

86.56/56.79 

92.39/57.12 

63.25/56.37 

96.29/56.34 

85.33/57.00 

80.23/56.44 

84.23/56.98 

86.78/56.45 

81.74/57.26 

Subj. 9 

99.16/55.40 

98.77/56.81 

99.09/56.83 

94.06/56.51 

62.61/56.76 

81.25/56.51 

83.06/56.68 

71.97/57.08 

76.39/57.23 

70.44/56.51 

Subj. 8 

56.88/56.29 

57.48/56.56 

67.58/56.43 

59.13/56.68 

65.13/56.13 

71.29/56.80 

58.22/56.15 

62.03/56.28 

62.32/56.30 

67.97/57.11 

Subj. 7 

71.50/56.61 

73.65/56.82 

58.20/56.51 

75.50/56.30 

55.13/56.92 

64.67/56.52 

57.97/56.52 

69.26/56.17 

55.71/56.68 

72.90/56.50 

Subj. 6 

56.65/56.49 

66.72/56.40 

74.32/56.93 

95.87/56.27 

62.00/56.30 

63.40/56.43 

95.70/56.62 

55.16/56.47 

96.97/57.38 

97.77/56.99 

Subj. 5 

63.06/65.03 

76.40/60.61 

72.00/57.53 

78.00/57.88 

67.37/58.40 

70.86/63.51 

76.12/67.24 

81.87/58.81 

75.86/62.55 

70.62/57.96 

Subj. 4 

66.77/56.92 

67.61/56.40 

70.03/56.80 

82.86/59.95 

57.53/57.51 

63.84/56.64 

92.39/61.72 

64.67/56.71 

94.13/58.79 

86.95/60.43 

Subj. 3 

75.12/60.20 

75.73/57.90 

87.57/57.32 

76.63/57.76 

89.74/63.79 

87.22/63.10 

80.04/63.29 

94.91/55.95 

71.19/56.31 

90.34/56.74 

Subj. 2 

67.36/56.55 

70.62/60.76 

71.11/56.93 

63.03/56.12 

72.74/58.02 

69.95/55.57 

78.14/56.56 

63.14/57.93 

68.23/61.16 

71.92/57.14 

Subj. 1 

68.89/58.15 

69.82/57.56 

83.21/58.53 

93.33/58.32 

62.97/56.56 

77.03/56.82 

94.50/56.59 

64.23/56.83 

91.87/56.50 

91.47/56.57 

 

thumb vs. 

index 

thumb vs. 

middle 

thumb vs. 

ring 

thumb vs. 

little 

index vs. 

middle 

index vs. 

ring 

index vs. 

little 

middle vs. 

ring 

middle vs. 

little 

ring vs. little 
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When multiple PCs are concerned, it suggests higher DAs than single PCs with 

the statistical significance (p < 0.05). The highest DA can usually be achieved when 

projection weights on first three PCs are used as input features for classification. It 

further indicates that three pairs of fingers (thumb vs. little, ring vs. little, and thumb vs. 

index) achieve the highest DAs using the first three PCs, and others have their highest 

DAs using the first two, four, or five PCs. None of them gets the highest DA from 

single PCs. 

 

Figure 4.11 Decoding accuracies from single and combined PC features 

 

4.7.3 Decoding Performance from Resting Data 

To further verify that it was movement-related changes in EEG data that 

contributed to the decoding accuracies in Figure 4.10, the same classification 

procedures were performed on data from resting conditions prior to individual finger 

movements (they were categorized to different fingers according to movements 

performed after). Figure 4.12 shows that DAs for all pairs of fingers are at the guessing 

level, in the range from 47.24% (index vs. little) to 50.55% (middle vs. ring). 
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Figure 4.12 Decoding accuracies using the resting EEG data 

The red dashed line indicates the empirical guessing level of 51.26% and the vertical 
lines indicate standard deviations. 

 
 

4.8 Decoding Individual Finger Movements from One Hand 

4.8.1 Single Features for Classification of Five Fingers 

In Figure 4.13, confusion matrices of five fingers movements from projection 

weights of single PCs or PSDs of single frequency bands are illustrated. The rows of 

these matrices stand for predicted condition labels, while the columns represent actual 

condition labels. For features from individual PCs, similar performances are achieved in 

all individual PCs and actually moved fingers were dominantly and correctly identified 

in the confusion matrices (diagonal elements with larger values than off-diagonal 

elements). Furthermore, the misclassifications are spread almost evenly in four fingers 

other than the actual one (off-diagonal elements with similar low values). Considering 

different fingers, thumb and little seem usually better classified than other fingers. For 

features from alpha and beta bands, only thumb is classified with relatively high 
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accuracies, while the decoding accuracies of other fingers are close to the guessing level 

(i.e. 20%). Moreover, other four fingers are all confused to thumb, which might be the 

reason for thumb having high decoding accuracy. Spectral features from PCs show 

obvious better performance than features from mu/beta PSDs (best mean decoding 

accuracy in each category: 33.1% vs. 23.4%).  

 

Figure 4.13 Confusion matrices from individual features 

Each row indicates predicted labels and each column indicates true labels. 
 

4.8.2 Combined Features for Classification of Five Fingers 

Combinations of spectral features from PCs yield better decoding performance 

than spectral features from individual PCs (best mean decoding accuracy: 39.7%), while 

combination of features from mu/beta PSDs does not indicate obvious improvement 

(best mean decoding accuracy: 23.3%). As shown in Figure 4.14 (the first row), values 
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of diagonal elements in the confusion matrices from three PCs are further increased, 

which leads to less confusion among fingers (inferring actual labels are better 

classified). Similarly, better decoding performances are achieved in thumb and little 

than other three fingers. On the other hand, the combination of mu/beta PSDs still 

confuses all five fingers to thumb. The combinations of features from two categories 

actually show slightly more confusion among fingers than the combination of three PCs 

(38.1% vs. 39.7%), as shown in Figure 4.14 (the bottom row). 

 

Figure 4.14 Confusion matrices from combined features 

Each row indicates predicted labels and each column indicates true labels. Top row: 
decoding results from combinations within each category of features. Bottom row: 

decoding results from combinations across different categories. 
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4.9 Discussion and Summary 

In the chapter, spectral structures in noninvasive EEG were investigated during 

motor tasks of individual finger movements. Three spectral structures were extracted 

through a PCA analysis from EEG data, which suggested coupled spectral components 

over wide (e.g. 1st PC) and/or multiple frequency bands (e.g. 2nd PC). The spatial 

patterns of these newly identified spectral structures were examined and compared to 

classic mu/beta rhythms. The resolution of these new spectral features in detecting 

movements from resting and decoding individual finger movements (two fingers or all 

five fingers from one hand) was further studied in a classification scheme. The 

experimental results demonstrate that these new spectral structures from the PCA 

analysis indicate consistent and specific motor-related spatial patterns in different 

conditions and subjects. Furthermore, spectral features derived from these new spectral 

structures are able to reveal discriminative information in noninvasive EEG that is 

related to fine body-part movements, i.e. fingers, beyond large body-part movements 

(such as hand and shoulder) that can be decoded using classic motor rhythms (i.e. mu 

and beta rhythms). 

4.9.1 Spectral Structures and Features 

The spectral structures in EEG decomposed by the PCA analysis present 

different profiles along frequency axis, yet consistency can be found across all channels, 

conditions, and subjects (Figure 4.5). These observations are in line with the findings 

from ECoG studies (Miller et al., 2009b), demonstrating the existence of cross-

frequency spectral structures in human EEG measured at both the brain and scalp 

surfaces (Figure 4.4). Particularly, the first spectral structure (1st PC) suggests a 
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broadband non-rhythmic spectral pattern, which is different from other two spectral 

structures. The other two (2nd and 3rd PCs) indicate dominant spectral powers at alpha 

and beta bands, which might resemble rhythmic activities from classic motor rhythms in 

mu and beta bands (Pfurtscheller and Lopes da Silva, 1999), while other aspects of 

these two spectral structures, i.e. spatial pattern and resolution in decoding movements, 

suggest similarity and difference at the same time.  

The spatial patterns of these new spectral structures over the channel domain 

(Figure 4.6) and their spatial difference patterns between different conditions (e.g. 

movement vs. resting) (Figure 4.7) suggest that their activity and activity changes are 

related to motor brain functions, covering the premotor cortex for movement planning 

(Hoshi and Tanji, 2000), M1 for movement execution (Stippich et al., 2002) and the 

posterior parietal cortex (PPC) for integrating sensory and motor information (Fogassi 

and Luppino, 2005). Their capability in decoding movements (see section below) adds 

further evidences in linking these new patterns/features to motor brain functions. 

However, it is unknown, so far, about neural mechanisms behind these spectral 

structures, especially the broadband non-rhythmic one, while neural mechanisms of 

rhythmic brain activities have been well investigated (Pfurtscheller and Lopes da Silva, 

1999, Urgen et al., 2013). Of course, the rhythmic nature of the 2nd and 3rd PCs (across 

multiple frequency bands) and their spatial similarity at certain levels to classic mu/beta 

rhythms might suggest common underlying neural sources among them, while these 

new spectral structures from the PCA analysis might reveal more coupling and 

coordinating patterns across different rhythmic activities that cannot be revealed by 

classic frequency band analysis. 
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4.9.2 EEG Resolutions in Decoding Individual Finger Movements 

EEG resolutions in fine body-part movements have not been sufficiently 

studied, due to the challenges of limited spatial resolution and SNR in EEG signals 

(Hassanien and Azar, 2014). Several studies explored the resolution of EEG in decoding 

finger movements from different hands with accuracies ranging from 70% to 90% 

(Lehtonen et al., 2008, Li et al., 2004).  However, to our knowledge, very few studies 

have been conducted to decode movements of finger from one hand using EEG. Our 

present results suggest that features from spectral PC structures can detect finger 

movements from resting condition with the accuracy up to 86.77% (1st PC), which is 

significantly better than the accuracy achieved with classic mu/beta rhythms (about 

70%). 

An average decoding accuracy of 77.11% was achieved in distinguishing 

movements performed by all pairs of different fingers from one hand in ten subjects. 

Decoding performance was stable across different pairs of fingers (std: 3.72%, Figure 

4.10). When examining decoding accuracies of each pair of fingers across different 

subjects, average decoding accuracies were all above the guessing level with the similar 

level of variations (Table 4.2). Resting data prior to movements do not contain 

information to accurately decode movements (Figure 4.12), indicating EEG spectral 

changes identified in comparisons between different movements and between 

movements and resting are indeed induced by movements. The DAs of all finger pairs 

using EEG are significantly higher than the guessing level (p<0.05), demonstrating the 

feasibility of using such features in discriminating individual finger movements from 

one hand.  
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 For decoding individual finger movements (all five fingers from one hand), our 

confusion matrix analysis further indicates that movements of individual fingers from 

one hand can be dominantly labeled to correct fingers (outstanding diagonal elements in 

confusion matrices) using new spectral features from single-trial EEG data, while all 

fingers are confused to thumb when classic mu/beta rhythmic features are used. It is 

also important to note that dominantly correct labeling using new spectral features for 

all fingers is achieved upon the fact that various fingers, especially those close to each 

other and in the middle, show behavior dependences during movements (Hager-Ross 

and Schieber, 2000). Thumb is the most independent finger in behaving, which is 

consistent with our results that thumb is the one with the least confusion (Figure 4.13 

and 4.14). These facts indicate that some confusion is from inherent characteristics of 

the human motor system. The discriminative information obtained from the PCA 

analysis on EEG regarding different fingers from one hand suggests that noninvasive 

EEG can be used to study fine body-part movements beyond large body-part 

movements that have been well studied using classic rhythmic brain activity (Neuper 

and Pfurtscheller, 1996, Hashimotor and Ushiba, 2013). 

4.9.3 Information Independence and Redundancy in Spectral Features 

Various combinations of spectral features (from new spectral structures and 

mu/beta rhythms) were studied to probe information independence/redundancy within 

and cross feature categories. Combinations of PCs can increase the decoding accuracy 

of movements from resting up to 91%, which is significantly higher than individual PCs 

(p<0.05). This is also comparable to a recent ECoG study achieving an average of 94% 

classification rate in detecting any finger movements from resting (Chestek et al., 
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2013), considering ECoG offers much better signal quality than EEG (Ball et al., 2009). 

In term of finger decoding, confusion matrices are less confused with more single-trial 

EEG data correctly labeled (Figure 4.14). For mu/beta rhythms, combination of alpha 

and beta PSDs also significantly improves accuracy in detecting movements from 

resting over individual frequency band PSDs (p<0.05). However, their combination is 

not able to improve the performance of labeling different fingers, which is reasonable 

since both lack discriminative information in distinguishing fingers when used alone. 

These results suggest that different features within each category exhibit independent 

information in discriminating movements, to which they are sensitive.  

Results from cross-category combinations of features, however, suggest no 

significant improvements in detecting movements from resting (Figure 4.9), which 

might suggest that most discriminative information about movements from resting 

revealed in mu/beta rhythms are also revealed in PCs. Since mu/beta rhythms present 

little efficacy in decoding fingers, it is expected that cross-category combinations of 

PCs with mu/beta features would not lead to improvement of finger decoding 

performance. On the contrary, slight degeneration is observed (Figure 4.14), which 

might be attributed to the non-specific nature of mu/beta features to fingers that 

smoothes out other finger-specific features in the spectral PC structures.  

4.9.4 Implications to BCI Applications and Neuroprosthesis 

Motor rhythm-based BCIs have the merit of providing asynchronous control on 

a single-trial basis (Pfurtscheller et al., 2005, Leeb et al., 2007), while most of other 

popular BCI schemes require repetition of trials for accurate control, such as P300 

(Sellers et al., 2006, Mak et al., 2011) and SSVEP (Wang et al., 2008, Bin et al., 2009). 
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However, limited control signals generated from decoding large body parts using classic 

motor rhythms largely confine the complexity of noninvasive BCI techniques. Until 

now, such BCIs are only applied to simple applications, such as cursor movements on 

the computer screen (Wolpaw and McFarland, 2004, Wilson et al., 2009). In the present 

studies, new spectral features present promising movement detection capability and 

sensitivity to movements of fine body parts, i.e. fingers. With the potential to decode 

gestures in the future, these new features could provide an alternative mean to overcome 

the restriction. To be used in neuroprosthesis, they could not only increase the degree-

of-freedom of control signals, but also contribute to a more naïve mapping from EEG to 

robotic fingers. Further, robust detection of movements from resting can create an idle 

control state, which is crucial in designing online applications for both BCI and 

neuroprosthesis (Blankerz et al., 2002). It is, however, important to note the decoding 

performance has yet to reach the level of practical usage. My studies in this chapter only 

demonstrated the feasibility in decoding movements of fine body parts using 

noninvasive EEG recordings. Its practical usage in the future is expected to be 

dependent on significantly refined detection of usable signals and significantly 

improved classification accuracy.  
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Chapter 5: Towards Decoding Motor Imageries of Fine Body Parts 

In the last chapter, studies about detection of finger movements from the resting 

condition and decoding different individual finger movements were introduced, and the 

experimental results demonstrated EEG’s resolution about fine body movements. For 

people who have already lost moving ability or amputees with missing limbs, real 

movements for training BCIs are no longer an option, but motor imageries can be 

obtained through proper training. Given that both movements and motor imageries 

induce spectral changes in the mu rhythm and they evoke similar cortical activations in 

literature (Miller et al., 2010), it is meaningful to further investigate feasibility of EEG 

in decoding motor imageries (MI) of fine body parts. However, unlike movements that 

are naïve to healthy subjects, motor imageries require extensive training before subjects 

are used to the tasks. Thus, I investigated the feasibility of discriminating four different 

motor imagery (MI) types including thumb and fist from each hand using EEG, as a 

first step in this preliminary study, leaving MIs of all fingers from one hand as future 

works.  

In this chapter, the spectral PCA procedures in decoding finger movements were 

implemented in extracting spectral and spatial features related to different MIs 

involving finger movements. Extracted features were evaluated using a linear 

discriminant analysis (LDA) classifier, resulting in an average decoding accuracy about 

50%, which is significantly higher than the guess level (25% for 4-class classification 

problem) and the 95% confidence level of guess. The preliminary results demonstrate 

the great potential of extracting features from different MIs to generate control signals 

with more degrees of freedom (DOF) for non-invasive brain-computer interface 
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applications. In addition, for movement related applications, especially for 

neuroprosthesis, the present study may facilitate the development of a non-invasive BCI, 

which is highly intuitive and based on users’ spontaneous intentions. The results in the 

chapter were published in Xiao et al., 2012. 

 

5.1 Data Acquisition and Analysis 

5.1.1 Subjects and Materials 

Three subjects volunteered to participate in the study (all males, aged 30 ± 2 and 

right-handed). Two of them had experience in MI-based BCIs, who participated in 

research of one-dimensional cursor tasks (Wolpaw and McFarland, 2004). The third 

subject was naïve to any BCI paradigms. All of them provided informed consents. The 

study was approved by the Institutional Review Board of the University of Oklahoma. 

Experiments were conducted in a shielded chamber room under a dim light. 

Subjects were seated in a comfortable armchair with their arms semi-rested. EEG data 

were recorded using the same EEG acquisition system as the studies in Chapter 4, 

including EGI's Geodesic EEG System 300 (GES 300) and a 128-electrode HydroCel 

Geodesic Sensor Net (Electrical Geodesic Inc., OR, USA). Signals were digitized at 

1000 Hz, referenced to an inactive electrode Cz at the vertex. During recording, subjects 

were instructed to sit still and avoid movements to reduce motion artifacts. BCI2000, a 

general-purpose system for BCI research (Schalk et al., 2004), was used to present 

stimuli to subjects through a LCD monitor. It also streamed EEG data to computers for 

storage, as well as corresponding event markers and time stamps. During recordings, no 

source filters were applied to raw EEG signals. 
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5.1.2 Experimental Design  

Stimuli were presented in a sequence of left thumb movement (LTM), MI of left 

thumb (LT), left fist movement (LFM), MI of left fist (LF), right thumb movement 

(RTM), MI of right thumb (RT), right fist movement (RFM), MI of right fist (RF), and 

fixation (Figure 5.1). Real-movement cues were included in the design to facilitate 

subjects’ adaption to motor imagination, because two subjects reported having 

difficulties following MI cues alone during training sessions. Each condition lasted 3 

seconds, followed by 2 seconds of blank screen for necessary blinks or swallowing. The 

whole sequence was repeated 40 times in one session, resulting in 40 trials for each 

condition and 360 trials in total. In each condition, subjects were instructed to perform 

either real movements or kinesthetic MI indicated by cues. Trials related to fixations 

were counted as resting conditions. During this period, subjects sit still and stared at the 

fixation cross on screen. Only trials related to MIs of thumb and fist and trials from 

resting conditions were used for subsequent processing. The first subject completed 7 

experimental sessions, and other two subjects completed 3 sessions each. 

 

Figure 5.1 Experimental design 

Each sequence of stimulus starts from LTM and ends with fixation. Each stimulus 
lasted for 3 seconds and inter-stimulus interval was 2 seconds. 
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5.1.3 Data Processing 

The data processing procedures are outlined in Figure 5.2. EEGLAB (Delorme 

and Makeig, 2004) was used for preprocessing the acquired EEG data. EEG raw data 

recorded were first down-sampled to 256 Hz to reduce computational load. Then EEG 

data from each channel were re-referenced to the common average reference (CAR) 

obtained across all channels to increase signal-to-noise ratio (SNR) (McFarland et al., 

1997). Bad channels were rejected using Kurtosis method in EEGLAB and interpolated 

using averaged data from surrounding channels. A band-pass filter (0.03 Hz ~ 70 Hz) 

and a notch filter (60 Hz) were applied to remove DC offset and reduce influences from 

power lines. Three-second epoch data corresponding to the length of trials were 

extracted and categorized according to conditions. Data from trials of four MIs and 

resting condition were used for subsequent processing.  

 

Figure 5.2 Diagram of data processing 
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The SPCA was then applied to the preprocessed EEG. The SPCA procedures, 

which have been detailed the descriptions in Chapter 4, will be briefly summarized in 

the following, and the detailed information can be found in Section 4.3.2. Time-series 

EEG trial data were firstly transferred to the frequency domain by calculating the power 

spectrum density (PSD) using Welch’s method (Welch, 1967). Secondly, at each 

channel, PCA was performed on EEG spectral data pooled from trials related to four MI 

conditions and the resting condition to extract useful spectral features (Miller et al., 

2009b). PCA rotated the original coordinate system to maximize variance of each 

principal component (PC) in spectra and minimize covariance among PCs (Johnson and 

Wichern, 2007). In other words, PCA constructed a rotation matrix, which diagonalized 

the covariance matrix of original data. In this way, original EEG spectral data were 

decomposed into various PCs, and spectral features mostly related to all tasks, but 

indicating difference for different tasks, were identified. 

The process of SPCA involved multiple steps. Firstly, covariance matrix of EEG 

spectral data was constructed, revealing inter-frequency correlations and inner-

frequency variances produced by trials from all conditions. Secondly, eigenvectors of 

the covariance matrix were computed, which decomposed EEG spectral data into 

spectral PCs that reflect spectral features related to MIs. Spectral PCs were sorted by 

corresponding eigenvalues in a descending order. Finally, EEG spectral data from trials 

of different MIs were projected onto identified spectral PCs on each channel and their 

projection weights and associated spatial distributions of these weights were calculated 

for different MIs. Only projection weights of the first five PCs were selected for 

consideration, since they already accounted for the most variation within the EEG 
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spectral data (e.g. 99.97% from Session 1 of Subject 1). Based on projection weights and 

their spatial patterns, the PC indicating the most distinguishable features among different 

MIs was identified. 

5.1.4 Selection of Feature Channels and Classification 

Coefficient of determination (r2) evaluated the proportion of variance accounted 

by inter-condition trials to the total variance (Shenoy et al., 2006). It was adopted to 

reveal spatial differences related to different tasks. Four MI conditions (LT, LF, RT, 

and RF) in the present study suggested six MI pairs. For each pair, r2 value was 

calculated on each channel using data of projection weights of both conditions on the 

most distinguishable PC, using Equation 4.6 in Chapter 4. The r2 values from all 

channels were then mapped onto corresponding channel locations on the scalp. 

Channels were rearranged based on their corresponding R2 values for each MI pair. 

Only the channels located above cortical areas associated with motor functions and with 

large R2 values were selected as feature channels. 

In order to evaluate whether identified spatio-spectral features (i.e., spectral PC 

over feature channels) provided indicative information in decoding different MIs, the 

linear discriminant analysis (LDA) classifier was used to simultaneously classify four 

different types of MIs (LT, LF, RT, and RF) using a five-fold cross validation. Eighty 

percent of trials were used to train LDA classifiers, and the rest were used for test. Each 

test trial went through six binary LDA classifiers, which were for each pair of 

conditions. Each LDA classifier voted for one condition and the one with most votes 

was the final label for the test trial, which was compared to the true label for the 

calculation of decoding accuracy in each MI. Average accuracy was calculated by 
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averaging decoding accuracies from four MIs. Trials were randomly permuted 50 times 

for training and testing to yield mean accuracy for each condition. The guess level of 

four-class problems (i.e., 25%) and its 95% confidence interval (CI) were calculated 

(Muller-Putz et al., 2008), which served as references for the significance of 

classification results.  

 

5.2 Spectral Structures from Different Motor Imageries 

Figure 5.3(a) presents the average elements (magnitudes of eigenvectors) of the 

first five principal components in spectral domain. Results from C3 (on the left motor 

cortex) and C4 (on the right motor cortex) were chosen to display since the motor  

 

Figure 5.3 Spectral structures and projection weights 

(a) Average elements of the first five PCs from Subject 1; (b) Average projection 
weights of four MIs and resting condition on the first five PCs from the same subject. 
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cortex is one of the most important brain areas in MI (Miller et al., 2010). Different PCs 

suggest distinct spectral patterns, revealing different underlying physiological 

information in the spectral domain. Comparing PC elements on C3 and C4, general 

structures in elements of same PCs are similar, while they show variations in 

magnitudes, especially for the second, third and fifth PCs. The first spectral PC 

accounts for the largest portion of variance in EEG spectral data (Johnson and Wichern, 

2007), which suggests spectral peaks at 12 Hz and 24 Hz of mu and beta rhythms.  

Figure 5.3(b) visualizes the average projection weights of EEG data from four 

MIs and the resting condition on the first five PCs.  The projection weights on the first 

PC indicate the most distinguishable patterns among different MIs, as well as between 

MIs and the resting condition. While there are some variations on other PCs as well, the 

difference is relatively small. This might suggest that the most useful information for 

discriminating different MIs resides in the first PC. Comparing projection weights on 

the first PC at different channels, it also shows distinct patterns, which indicates 

distinguishable spectral patterns in different MIs exist in multiple channels. It facilitates 

the idea to explore spatio-spectral patterns for decoding different MIs.  

 

5.3 Topography of r2 Values and Classification Results 

Figure 5.4 presents r2
 topographies for each MI pair. It is notable that the 

magnitudes of r2 vary across different pairs, with largest r2
 between LF and RT, and 

smallest r2 between LT and LF. Most observable differences in spatio-spectral patterns 

related to the first PC show on the scalp over brain areas related to motor functions in 
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all MI pairs. It further indicates the different spatial patterns among different MI pairs, 

which suggests distinguishable patterns among four types of MIs. 

 

Figure 5.4 r2 topographies of six MI pairs 

Black dots indicate channel locations. Colorbar represents r2 values. 
 

Figure 5.5 shows the classification results for each MI and their average in a 

four-class MI decoding problem with the use of the identified spatio-spectral pattern. 

The results show the mean decoding accuracies of each condition, obtained from 50 

random permutations of all trials. The decoding accuracies vary across different MIs, 

i.e., LT: 49.4%, LF: 50%, RT: 52.4%, and RF: 40.1%. The decoding accuracies for all 

conditions are significantly higher than the guess level (25%) and the upper boundary at 

the 95% CI (32%). The average decoding accuracy reaches up to 48%, which is also 

significantly higher than the guess level and the upper boundary of 95% CI. 
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Figure 5.5 Average decoding accuracy for each MI  

Black solid line indicates 4-class guess level. Dashed line indicates upper boundary of 
95% CI of the guess level. 

 
 

5.4 Discussion and Summary 

In the chapter, the underlying spatio-spectral features related to different MIs of 

thumb and fist on both hands were explored using EEG. The SPCA used for decoding 

finger movements in studies of Chapter 4 were applied to extract corresponding spectral 

and spatial features of MIs, which were further validated by the LDA classifier with 50 

times of random permutations. The obtained results (48%) demonstrated the existence 

of distinguishable features about different MIs of one hand in noninvasive EEG.  

Unlike other MI-based BCI studies (Costa and Cabral, 2000; Wolpaw and 

McFarland, 2004), which only considered MIs from different hands, the present study 

aims to explore distinguishable features related to MIs of finer movements in one hand, 
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providing a possible mean to increase limited DOFs of control signals for MI-based 

BCIs. Compared to ECoG-based studies (Miller et al., 2009b), experiments using scalp 

EEGs are towards a non-invasive BCI, with signals much lower in SNRs and spatial 

resolutions. Furthermore, data in scalp EEG were from different MI types instead of 

real movements, which further decreased SNRs in data (Miller et al., 2010). These 

aspects impose difficulties in non-invasive EEG-based BCIs. In addition, MIs from both 

hands, rather than just from one hand, are included to increase DOFs in the present 

study. Despite of these difficulties, with the proposed method, extracted spatio-spectral 

features yield a decoding accuracy significantly higher than the guess level and 95% 

confidence level when evaluated by simple LDA classifiers.   

It is worth to note that extracted features are only on the first PC in this 

preliminary study. Other PCs can also contain information useful for decoding different 

MIs. Spatial and spectral features from combination of different PCs may further 

improve the decoding accuracy, as the decoding of finger movements in Chapter 4. 

Moreover, since only a simple classifier is used in the present study, more advanced 

classifiers, such as SVM classifier (Zhou et al., 2009a) used in studies in Chapter 4, 

could be used to improve decoding accuracy. In addition, MI-based BCIs usually show 

progressive performance improvements along with training process (Wolpaw and 

McFarland, 2004; McFarland et al., 2005). More robust features are possible to be 

extracted, when including more sessions in the future. 

 

In conclusion, I investigated the feasibility of discriminating four different MI 

types from both hands, with two MIs from the one hand, using non-invasive scalp EEG. 
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With the proposed methods, a spectral component was identified and showed different 

patterns and spatial distributions in different MIs. Using this new feature, an average 

decoding accuracy significantly higher than the guess level and 95% confidence level 

for four types of MIs was achieved when evaluated by a LDA classifier. The 

preliminary results in this chapter demonstrate the existence of discriminative 

information in EEG oscillations about different MI conditions about fine body parts.   
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Chapter 6: Conclusion and Future Directions 

My research works in investigating EEG oscillations from human motor brains 

are summarized in this dissertation. Three studies are presented, including the capturing 

of neurodevelopmental changes of motor brains in infant EEG, the decoding of different 

individual finger movements and the decoding of motor-imagery tasks involving 

individual finger movements in adult EEG. All studies are carried out through the 

analysis of EEG oscillatory activities. The findings in these studies further the 

understanding about the human motor brain in both developing phase by studying the 

developmental changes of mu rhythm, and mature phase by identifying new 

discriminative information in EEG oscillations about movements/MIs of fine body 

parts. The first aspect expands the scanty knowledge about motor development that 

could potentially be used to assess treatment options of neurological disorders acquired 

during developmental phase of motor brains. The second aspect improves the resolution 

of EEG in classifying motor tasks of different fine body parts that could potentially 

push forward the development of advanced assistive technologies for people with 

severe motor impairments acquired at later ages. Both aspects have great implication to 

interventions for motor impairments at different stages, in an effort to promote motor 

skills and quality of life for people suffering from these medical conditions. 

 

6.1 Added Resolutions in Capturing Motor Development 

Among the limited number of studies about the infant mu rhythm, EEG 

recordings are acquired from various age resolutions, which are largely limited by the 

availability of resources in infant participants. Some studies focus on subjects of the 
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same age group, investigating functional correlates of the mu rhythm at that specific age 

(Stapel et al., 2010; Paulus et al., 2013). Such studies reveal age-specific neural 

mechanisms underlying certain behavioral tasks but don’t provide information about 

their dynamic variations along maturation. There are also studies that are either cross 

sectional with different subject samples in each age group (Stroganova et al., 1999) or 

longitudinal with months apart between different age groups (Marshall et al., 2002). For 

example, Marshall et al. (2002) analyzed EEG longitudinally recorded from 29 subjects 

at 5, 10, 14, 24, 51 months of age. While such studies are good for discovering general 

development of the motor brain with developmental changes in a long age span, 

detailed developmental changes in fine age ranges are overlooked. 

The study in Chapter 3 of this dissertation contributes to the scanty knowledge 

about motor development at early ages. It investigates the age-related changes in EEG 

mu rhythm during infancy in weekly increment between 5 and 7 months of age to 

further the understanding about motor development in a fine age resolution. Compared 

to other studies about the infant mu rhythm, the weekly age resolution of EEG 

recordings and carefully designed data processing procedures enable the capturing of 

detailed information about motor development that is not available before. Firstly, 

results from the present study are able to reveal the emergence of mu rhythm peaks in a 

weekly resolution. Moreover, the added resolutions in EEG recordings enable the 

evaluation of developmental changes of the mu rhythm with spectral peak distributions 

to reveal concrete peak shifting patterns of the mu rhythm along maturation.  

The spatio-spectral analysis taking into consideration of both high spatial and 

spectral resolution of EEG provides even further information. This allows the 
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examination of mu rhythm ranges along maturation and dynamic changes of its spatial 

patterns at this age range. To sum up, the findings in the study of infant mu rhythm in 

this dissertation not only consolidate previous findings about the frequency peak 

formulation and shifting patterns in the infant mu rhythm during maturation, but also 

complement other studies with redefined frequency ranges and changes in spatial 

patterns, providing more insights about motor function development at this age range.  

 

6.2 Improved Resolutions in Decoding Movements/Motor Imageries 

While decoding movements/motor imageries of large body parts using features 

from EEG mu rhythm has been demonstrated in many studies and implemented as 

control signals to drive BCI applications (Yuan and He, 2014; Doud et al., 2011), 

decoding movements/motor imageries of fine body parts are less explored due to the 

doubt that not enough EEG resolution is available to capture difference of activation 

from fine body parts. Such limitation largely confines motor-rhythm based BCIs to 

simple applications. 

The study in Chapter 4 investigates the resolution of EEG oscillatory activities 

in decoding movements of fine body parts. A novel type of spectral structures (spectral 

PCs) in EEG from SPCA analysis is uncovered, presenting distinct spectral and spatial 

characteristics from the classic mu rhythm. Three decoding tasks, i.e., detecting 

individual finger movements from the resting condition, pairwise decoding of 

individual finger movements and decoding all individual finger movements from one 

hand, are designed to comprehensively evaluate the decoding efficacy of spectral PCs in 

comparison to the classic mu rhythm in movements of fine body parts. Significant 
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higher decoding accuracies for all three tasks are achieved by spectral PCs comparing to 

the classic mu rhythm, suggesting the exceeding sensibility to movements of fine body 

parts from the former features. Moreover, significant decoding performance from 

spectral PCs features demonstrates sufficient information in EEG oscillations for 

decoding movements of fine body parts.  

The study in Chapter 5 is an extension to the previous one by taking one step 

further to decode different motor imageries involving finger movements. In this 

preliminary study, four MIs tasks including motor imageries of thumb and fist from 

each hand undergo similar classification procedures as in the previous study, and 

decoding performance demonstrates the feasibility of EEG oscillations in discriminating 

motor imageries of fine body parts.   

The improved resolutions in decoding movements/motor imageries from EEG 

oscillations enable the discrimination of different fine body parts. This would not only 

greatly enlarge the repertoire of control signals available for motor-rhythm based BCIs, 

but also facilitate the development of BCI with flexible and intuitive control paradigms, 

due to the feasible identifications of dexterous body parts in human. 

 

6.3 Implications to Interventions for Motor Impairments 

Motor impairments taking place during different ages require different 

approaches for interventions. Findings from the studies in this dissertation could have 

great implications to the interventions at different stages. For neurological diseases 

during developmental phase of motor brain, early interventions are believed to associate 

with positive effect on the motor development (Hadders-Algra, 2014), while direct 
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neurodevelopmental evidence is still not available. Study in Chapter 3 expands 

knowledge about the development of mu rhythm, which is indicative of the 

development human motor functionalities (Smith, 1941; Hagne et al., 1973). Such link 

makes mu rhythm a potential and promising biomarker to assess the effectiveness of 

early intervention, as well as a guideline for designing effective interventions.  

For damages to the human motor system during mature phase, advanced 

assistive technologies are promising ways to promote movement abilities. BCI 

technology helps sufferers regain communication and mobility bypassing damaged 

neural pathway. Improved resolutions in decoding movements/ motor imageries of fine 

body parts with EEG could overcome the limitations of motor-rhythm based BCIs with 

added control features, and push the complexity of noninvasive BCI applications to 

provide more comprehensive and practical assistance to potential users. 

 

6.4 Recommendations for Future Research 

The studies in the present dissertation contribute to the further understanding 

about the human motor brain and can facilitate the future development and assessment 

of interventions for motor impairments at different stages. However, there are still some 

aspects worthy of future efforts for improvements. In the study of infant motor 

development, EEG sessions are recorded from infants from 5 to 7 months of age on a 

weekly basis, while information beyond this age range is not available due to the 

limitation of experimental design. In future studies, efforts could be extended to EEG 

recorded from participants outside of this age range with the proposed processing 

techniques to capture more complete information of motor development at early ages. 



99 

While features from new spectral structures demonstrate that EEG contains 

information about finger movements and motor imageries, the capability in decoding 

them in single-trial EEG is still suboptimal. Several factors could be culprits and are 

worth exploring for improvements. Although the SVM classifier implemented in the 

present study has been widely adopted, it has been reported that linear program machine 

(a sparse SVM algorithm) can outperform regular SVM in similar decoding tasks using 

ECoG signals (Shenoy et al., 2007). A search for more robust decoding algorithms 

could facilitate the thorough evaluation of new spectral structures and their decoding 

efficacy in these tasks. EEG signals are known to be susceptible to noises, such as, from 

ambient environments, motion artifacts, and many others. While spatial CAR filtering 

and ICA are used to improve SNR in EEG in the present studies, other advanced signal 

processing methods, e.g. common spatial pattern (Ramoser et al., 2000) and stochastic 

resonance (Lin et al., 2008), can be integrated to further improve EEG signal quality. 

Particularly, for decoding individual finger movements, another factor might originate 

from the decoding tasks.  

Movements of individual fingers are usually accompanied with concurrent 

movements of other fingers, due to muscle connections, tendon organization, and neural 

control distribution in the hand (Hager-Ross and Schieber, 2000). It is still unclear 

whether these concurrent movements of uninstructed fingers contribute to 

misclassifications in the confusion matrices (Figure 4.13 and 4.14), requiring further 

efforts to understand the effect from behavior correlation. All of these aspects are 

recommended in future studies to improve decoding performance of fine body parts 

towards practical usage.  
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As for decoding motor imageries of fine body parts, the study in Chapter 5 

demonstrated the EEG’s feasibility with motor tasks involving thumb of each hand as 

an initial step towards rich control features from motor imageries for BCI. Motor 

imageries of ipsilateral fingers would further serve such a purpose, whereas it has not 

been investigated yet, requiring more efforts in future studies.  
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