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Abstract: This dissertation is comprised of three studies on the relationship between energy 

and environmental issues and the regional economy. The first study presents evidence that 

electricity influx to the U.S. Northeast increased after the introduction of the Regional 

Greenhouse Gas Initiative (RGGI), a carbon emissions abatement program. Electricity 

influx means that emissions reductions achieved in the region are offset by increased 

emissions in other electricity-producing regions, as local generation is replaced with 

electricity imports. The empirical analysis is conducted using the synthetic control method. 

Results indicate that electricity imports increased after RGGI’s establishment in 2009—

with the increase predominantly coming after the emission cap was reduced in 2014—

which suggests that leakage is occurring. 

 I then switch to exploring recent new energy development activity. In the second 

essay, I study a potential negative externality associated with hydraulic fracturing. More 

specifically, I examine the impact of unconventional drilling on housing prices. A 

prospective home buyer may want to avoid a place near sites that have been drilled using 

unconventional drill technologies, since those activities may lead to a variety of negative 

impacts including noise and underground water contamination. Adopting a hedonic price 

model, I estimate the avoided cost in two counties, Canadian and Payne, in Oklahoma. 

However, an environmental pollutant source and housing price may be difficult to explain 

with linear model, and I apply a semiparametric approach to deal with the possible non-

linear relationship. The empirical results are consistent with in terms of physical housing 

characteristics and locational aspects in all cases, and find only a minimal impact of drilling 

activity on housing prices in the benchmark models. Further, the semiparametric estimation 

supports the finding that there is a limited relationship between unconventional drilling and 

housing prices in these counties.  

In the third essay, I study a possible positive impact associated with recent energy 

development. I examine the regional employment change associated with recent energy 

developments in Arkansas, Kansas, and Oklahoma. Those three states have experienced a 

drastic increase in unconventional drilling, further, Kansas and Oklahoma show a rapidly 

growing wind energy sector. Those two types of relatively new energy development 

activities could be a beneficial source for employment in rural areas. Considering 

heterogeneous boom periods in the energy development activities in the three states, I apply 

a panel fixed effects model. I additionally incorporate a spatial econometrics specification 

to deal with spatial autocorrelation concerns. The results indicates that energy development 

activity does increase regional employment, but only for a small subset of industries. 

Moreover, the agricultural sector is negatively affected by energy development in most 

cases. In addition, unconventional drilling activity provides a larger positive impact on 

local employment than does activity for local wind farms. 
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CHAPTER I 

 
EVIDENCE OF INCREASED ELECTRICITY INFLUX FOLLOWING THE REGIONAL 

GREENHOUSE GAS INITIATIVE  

Abstract 

The Regional Greenhouse Gas Initiative (RGGI), a carbon emissions abatement program, 

focuses on regulating electricity generators to achieve its abatement targets. However, the 

program is geographically limited (a states in the northeast U.S.) and electricity can be 

easily imported from neighboring regions. This study presents evidence that electricity 

influx to the U.S. Northeast increased after the introduction of the RGGI. Electricity 

influx means that emissions reductions achieved in the region are offset by increased 

emissions in other electricity-producing regions, as local generation is replaced with 

electricity imports. The empirical analysis is conducted using the synthetic control 

method. Results indicate that imports increased after RGGI’s establishment in 2009—

with the increase predominantly coming after the emission cap was reduced in 2014—

which suggests that leakage is occurring.  

Key words: RGGI, Carbon Emissions, Synthetic Control Method, Leakage, Pollution 

Haven hypothesis
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Introduction  

Carbon emission trading is widely viewed as an important policy tool to mitigate climate 

change, but current trading initiatives are fragmented. For example, the United States has 

several regional efforts, including the Western Climate Initiative and the Regional 

Greenhouse Gas Initiative (RGGI), while many U.S. states choose to not participate in 

any emissions reduction program. Unfortunately, with interstate and international 

markets in carbon-producing industries, reducing global emission levels through an 

assortment of regional initiatives may be difficult. This is because regional initiatives can 

suffer from leakage, which occurs when emission reductions in regulated regions are 

offset by emission increases elsewhere, as industries shift production into unregulated 

regions. 

To date, only a few studies empirically examine the effectiveness of carbon 

emissions abatement programs in the United States. Economic research on these 

programs has primarily used theoretical models to predict leakage; for example, Chen 

(2009) found in electricity market simulations that CO2 leakage was positively related to 

higher carbon prices from the RGGI program. Several studies have studied leakage in 

California’s carbon cap-and-trade program: Bushnell et al. (2014) and Caron et al. (2015) 

both concluded that California’s carbon abatement policy increased electricity imports 

and increased carbon emissions in states exporting electricity to California. 

There is a rich empirical literature on leakage and pollution havens (Levinson and 

Taylor, 2008; Wagner and Timmins, 2009; Antimiani et al, 2012; Aichele and 

Felbermayr, 2015). On the effects of RGGI specifically, Murray and Maniloff (2015) 

examined coal and natural gas utilization rates in power generation and found evidence of 
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leakage into Pennsylvania. However, Murray and Maniloff (2015) recommend further 

study on the leakage issue. Fell and Maniloff (2015) examined electricity generator-level 

data and found some but not all of the emissions reduction due to RGGI was offset by 

increases in non-RGGI emissions. Kim and Kim (2016) performed a case study on the 

relationship between the introduction of RGGI and fuel switching from coal to natural 

gas among participating states; natural gas contains less carbon than coal, thus such fuel 

switching is one way to reduce carbon emissions. 

This paper adds to the growing weight of evidence of carbon emissions leakage 

by examining trends in electricity imports into the RGGI region. If a leakage problem is 

associated with RGGI, then we expect electricity imports into the region increased 

following the establishment of the program. Our investigation extends the existing 

literature by applying the synthetic control method (SCM) to develop a counterfactual to 

measure leakage from the abatement program. Relative to standard regression-based 

comparisons such as difference-in-differences, SCM relies less on subjective researcher 

judgements to develop the comparison group and is robust to potential confounders that 

vary period-by-period. Kim and Kim (2016) use SCM to show that RGGI accelerated 

coal to natural gas fuel switching in affected states. We use SCM to compare electricity 

imports into RGGI states using a weighted average of non-RGGI states. To assess the 

sensitivity of these comparisons, we develop several alternative counterfactuals from 

revised donor pools of non-RGGI states (i.e. the comparison group), in addition to 

placebo experiments. Results indicate that electricity imports into the RGGI region 

increased after the emissions cap was put in place. 
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Overview of the Study Region  

RGGI is a cap and trade program for greenhouse gas emissions (GHG) in the 

northeastern United States. The RGGI emissions cap went into effect January 1, 2009, 

making it one of the first U.S. GHG abatement programs. As of 2015, there are nine 

states participating, including Connecticut, Delaware, Maine, Maryland, Massachusetts, 

New Hampshire, New York, Rhode Island, and Vermont. New Jersey participated 

between 2009 and 2011 but withdrew from the program in 2012. Currently, fossil fuel 

power plants in participating states with electricity generating capacity of 25 megawatts 

(MW) or larger capacity are subject to the GHG regulations of RGGI. The share of 

carbon emissions from electricity generation in the RGGI region is about 25% of the 

region’s total carbon emissions. Over the previous decade, carbon emissions from 

electricity generation in the RGGI region accounted for 6 to 7% of all U.S. emissions.  

The scale of the cap has changed over time as the number of participating states 

declined and decisions were made to reduce the allowable amount of emissions. Initially, 

the cap was set at 188 million CO2 short tons per year for the ten states participating 

between 2009 and 2011. Following the withdrawal of New Jersey, the cap was reduced to 

165 million CO2 short tons per year. In 2013, based on a comprehensive review of 

emissions compliance over the first two years’ (2009-2010), RGGI announced it would 

lower the cap beginning in 2014. The newly reduced cap was 91 million short tons, with 

planned reductions of 2.5% each year between 2015 and 2020.1 

As a whole, the RGGI region consumes more electricity than it generates, making 

it a net importer of electricity. Panel A in Figure I-1 illustrates the aggregate level of 

                                                           
1 More details can be found in RGGI (2013) and http://www.rggi.org/design/overview. 
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imports between 2005 and the third quarter of 2017. Prior to RGGI, the region imported 

between 0 and 2 terawatt-hours (TWh), or 0 to 7%2 of its total electricity consumption. 

The figure shows that after the establishment of RGGI, net imports rose considerably and 

consistently exceeded 1.5 TWh. 

 

Empirical Strategy 

We apply the synthetic control method (SCM) to measure the effect of RGGI on 

state-level electricity imports. Synthetic controls are a relatively new methodology to 

measure treatment effects in case studies. SCM was developed by Abadie and 

Gardeazabal (2003), who used it to estimate the effect of armed conflict on economic 

development. Abadie et al. (2010) further formalized the method to measure the effects 

of anti-tobacco legislation on cigarette consumption. Subsequently, there have been 

several applications of the SCM to carry out comparative case studies (Billmeier and 

Nannicini, 2013; Cavallo et al., 2013; Ando, 2015; Bilgel and Galle, 2015; Rickman et 

al., 2017).  

Several studies have applied SCM to evaluate the effects of regional 

environmental policies. Maguire and Munasib (2016b) examined the effect of renewable 

portfolio standards (RPS) policy among states, and found that Texas is the only state to 

have substantially increased its renewable energy capacity; Maguire and Munasib 

(2016a) showed that the RPS policy did not raise electricity prices in Texas. As 

mentioned earlier, Kim and Kim (2016) found that the establishment of RGGI 

encouraged fuel switching from coal to natural gas among electricity generators. 

                                                           
2 During 2005-2015, average electricity consumption is 25.57 Twh per quarter in the whole RGGI region. 
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For the purposes of this investigation, SCM holds several advantages over 

propensity score matching (PSM) and regression-based methods such as difference-in-

difference (DID) that are often used to measure program and treatment effects. First, the 

small cross-section component of our data makes finding a suitable match between a 

RGGI state and one or more non-RGGI states (among the 37 available, not including 

Alaska, California,3 and Hawaii) dubious. Second, our data vary at the quarter-state level 

starting in 2005, which yields 16 pre-RGGI time periods. PSM is not well suited take 

advantage of long time series and while DID can, it relies on parallel pre-intervention 

trends between the treated and comparison groups. In contrast, SCM sets up a treated unit 

with a counterfactual composed of a weighted combination of the non-treated units; 

because these weights are determined by similarities across treated and non-treated units 

in the pre-intervention period, the validity of SCM’s counterfactual actually improves 

with a longer time series (Abadie et al. 2010). 

In our application, SCM works by constructing a weighted average of non-RGGI 

states to mimic the characteristics of a RGGI state prior to the adoption of the initiative. 

If the trend in electricity imports of the synthetic control closely resembles the trend in 

the RGGI unit prior to program adoption, then the post-adoption trend in the synthetic 

state will provide an unbiased counterfactual.  

Following Abadie et al. (2010), we formally define the effect of an intervention 

with the equation: 

(1) 𝛼𝑗𝑡 = 𝑌𝑗𝑡
𝐼 − 𝑌𝑗𝑡

𝑁 

                                                           
3 California introduced carbon cap and trade in 2013. Thus, we exclude California from the donor pool. 
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where 𝛼𝑗𝑡 is the effect of the intervention for state j at time t, 𝑌𝑗𝑡
𝐼  is the observed outcome 

and 𝑌𝑗𝑡
𝑁 is the outcome that would have occurred if the intervention did not take place. In 

this study, the outcome Y is measured as electricity imports.4 We define electricity 

imports as electricity consumption less electricity generation in a state: 

(2) 𝐼𝑚𝑝𝑜𝑟𝑡𝑠 = 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 − 𝐸𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 

Let intervention occur in period T0, j = 1 represent a RGGI state and j = 2, 3,…, J  

represent the “donor pool” of states that could be used to estimate the counterfactual. 𝑌𝑗𝑡
𝑁 

can be modeled as 

(3) 𝑌𝑗𝑡
𝑁 = 𝑍𝑗𝜃𝑡 + 𝜆𝑡𝜇𝑗 + 𝜖𝑗𝑡 

where Zj includes relevant covariates not affected by the abatement program, θt are time-

specific parameters, μj are state-specific unobservables and λt are unknown common 

effects. For the covariates, we include indexes of heating degree days (HDD) and cooling 

degree days (CDD).5 Electricity imports will rise in the months that residents and 

businesses need to use heating and cooling units to control indoor temperatures. We also 

include covariates for population and state gross domestic product (GSP), as well as the 

average electricity import level prior to the RGGI intervention. Define 𝐰 as a 𝐽 × 1 

vector of weights such that 0 ≤ 𝑤𝑗 ≤ 1 and ∑ 𝑤𝑗 = 1𝐽
𝑗=2 . Suppose there is a 𝑤𝑗

∗ such that 

(4) ∑ 𝑤𝑗
∗𝑌𝑗𝑡 = 𝑌1𝑡

𝐼𝐽
𝑗=2  for 𝑡 = 1, … , 𝑇0  and ∑ 𝑤𝑗

∗𝑍𝑗 = 𝑍1
𝐽
𝑗=2  

                                                           
4 Cheaper prices could have cause electricity consumption and therefore imports to increase, but in fact 

electricity consumption has been fairly constant (or slightly decreasing) while electricity generation has 

decreased in RGGI states. 
5 HDD and CDD are defined as follows: 

HDD for a given day = Max [65˚F (or18˚C) - Average temperature for the day, 0]; 

CDD for a given day = Max [Average temperature for the day - 65˚F (or18˚C), 0] 
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which means that there is a collection of weights wj
* that matches the treated state in 

every  pre-treatment period to the synthetic state. Then Abadie and Gardeazabal (2003) 

and Abadie et al. (2010) show that the effect of interest, 𝛼1𝑡 for t > T0, can be estimated 

by 

(5) 𝛼1𝑡̂ = 𝑌1𝑡
𝐼 − ∑ 𝑤𝑗

∗𝑌𝑗𝑡

𝐽

𝑗=2

 

In practice equation (4) will not hold exactly so the synthetic control is selected so that it 

holds approximately. The scale of discrepancy—in this case, how closely the 

characteristics of the treated state are to the characteristics of the synthetic state—should 

be assessed carefully, because SCM should not be used if the synthetic control unit does 

not approximate the treated unit prior to treatment. We assess the synthetic control match 

for our application in the results section below. 

To estimate the vector of weights, 𝐰, let Ω1 be the vector of pre-intervention 

characteristics of the treated unit and Ω0 be the matrix of pre-intervention characteristics 

of the non-treated units. To generate the synthetic control, the weights are chosen to 

minimize the discrepancy between the treated and the non-treated units, ‖Ω1 − Ω0𝐰‖. 

Specifically, following Abadie et al. (2010), 𝐰 is chosen to minimize 

√(Ω1 − Ω0𝐰)′𝐕(Ω1 − Ω0𝐰), where 𝐕 is a positive definite and diagonal matrix that 

minimizes the mean squared prediction error (MSPE)6 in the pre-intervention period.  

An important matter in our application is that the RGGI intervention affects a 

group of states rather than a single state. The synthetic control method was designed for 

comparative case studies, rather than a collection of treated units. To circumvent this 

                                                           
6 𝑀𝑆𝑃𝐸 =

1

𝑇0
∑ (𝑌1𝑡 − ∑ 𝑤𝑗

∗𝑌𝑗𝑡
𝐽
𝑗=2 )2𝑇0

𝑡=1  
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limitation, we conduct two sets of case studies: The first calculates Ω1 as weighted 

average of the characteristics of the nine constituent RGGI states; we refer to this as the 

composite RGGI state. Of course, this composite treatment group would obscure 

heterogeneity across individual states. We therefore implement a second case study that 

applies SCM to each RGGI state. 

The variables for the composite RGGI were calculated as population-weighted 

averages. The weights were the population of each member state divided by the 

population in the RGGI region. As shown in Panel B in Figure I-1, proportionate changes 

in electricity imports in the composite region closely mimic changes in the region as a 

whole. Although not reported here, we experimented with other definitions of the treated 

unit but found the final results to be similar.7 In our application, the SCM procedure 

constructs the synthetic control as a weighted combination of the states in the donor pool, 

based on the pre-treatment values of the variables measuring population, GSP, CDD, 

HDD, electricity imports and electricity prices. The effect of RGGI is then measured by 

the difference in imports between the composite RGGI state and the synthetic control in 

the post-initiative period. 

 

Data 

Our investigation uses quarterly state-level data. The electricity generation and 

consumption data come from the U.S. Energy Information Administration (EIA). We 

                                                           
7 We also applied SCM to a modification of equation (2), by measuring imports as the share of electricity 

consumed in the region. Expressing the variable of interest as a share is desirable because it normalizes the 

units of comparison between the RGGI region and non-RGGI states. This is akin to the approach used by 

Kim and Kim (2016), who examined the effect of RGGI on the share of electricity in the region produced 

by coal versus natural gas. Pre-RGGI imports averaged 4.83%, but after RGGI the average share doubled 

to 11.54%, while the synthetic control share increased only slightly from 5.98% to 7.05%. The implied 

effect in shares is therefore qualitatively similar to the effect in levels reported in this paper. 
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measure electricity generation from all energy sources through ‘Electric Power 

Monthly,’8 which is provided by the EIA. More specifically, electricity generation is 

measured as the sum generated from all generating fuel sources in the electric power 

industry of each state. Electricity consumption data and electricity prices are collected 

from EIA-861M (formerly EIA-826) detailed data at the EIA.9 This detailed data series 

include the sum of electricity consumption and sale prices from all sectors, including 

residential, commercial, industrial, transportation, and other sales sectors, in each state. 

The sources for the other variables are as follows. State-quarterly total population 

data are not available, so we use the state population counts from the civilian non-

institutional population aged16 years and older as a proxy. This data come from the 

Bureau of Labor Statistics (BLS).10 Weather data (HDD and CDD) come from the 

National Oceanic and Atmospheric Administration (NOAA).11 The best available time 

period for the GSP series is quarterly. Thus, we adjust the other data series to this time 

frame. Quarterly state GSP data are published by the U.S. Bureau of Economic Analysis 

(BEA).12 The time span of the data runs from the first quarter of 2005 to the third quarter 

of 2017 (making the total number of time periods 51). Summary statistics of these 

variables are presented in Table I-1. 

 

Results and Discussion  

 

                                                           
8 Available at https://www.eia.gov/electricity/data/state/. 
9 Available at https://www.eia.gov/electricity/data/eia861m/index.html. 
10Available at http://www.bls.gov/lau/rdscnp16.htm. 
11Available at ftp://ftp.cpc.ncep.noaa.gov/htdocs/products/analysis_monitoring/cdus/degree_days/archives/. 
12Available at http://www.bea.gov/regional/. 
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Case study 1: Results for the composite RGGI state 

We first compare the trends observed for the composite RGGI state with its synthetic 

control. SCM produces a synthetic control made up of four states: Florida (9.7%), Texas 

(23.5%), Virginia (48.6%), and Wisconsin (18.3%). Table I-2 shows the means of the 

predictive variables used to generate the synthetic control. Between the composite RGGI 

and its synthetic counterpart, which are shown in columns one and two, respectively, the 

match is good in terms of population, GSP and electricity imports. The match is weaker 

in terms of CDD, HDD and electricity price. However, we can see that the other 37 states 

yields a comparison group that is on average less populated, lower GSP and were net 

exporters of electricity. Furthermore, it would be difficult to improve the match on CDD, 

HDD and prices because the RGGI region is has colder winters and higher prices 

compared to the rest of the country.13 

Figure I-2 compares electricity import trends in the composite RGGI state and the 

synthetic control. During the pre-treatment period, the two trends tend to rise and fall 

simultaneously and fluctuate around 0.4 Twh (RGGI, 0.37; Synthetic RGGI, 0.35). 

However, the synthetic control’s pre-treatment imports are more variable. This variability 

suggests the synthetic control provides a low-power test of the effect of RGGI on 

electricity imports, if the initiative is in fact suffering from leakage. Our analysis may 

therefore fail to detect an effect if the effect is small. 

Figure I-2 shows that electricity imports into the RGGI region increased 

following the establishment of the initiative. The import level of the counterfactual 

fluctuates around 0.5 Twh with no discernable upward trend. In contrast, imports to the 

                                                           
13 Excluding variables such as electricity price can improve the match on the other predictors, but do not 

significantly affect the results. 



 
 

12 
 

composite RGGI fluctuate initially around 0.7 Twh and later around 1.0 Twh. In other 

words, electricity imports in the composite RGGI state exceed what the synthetic control 

predicts would have happened without the program. This suggests that the abatements 

achieved in the RGGI region have been at least partially offset by higher electricity 

imports and thus more emissions in non-RGGI states. 

We use placebo experiments to infer the robustness of the SCM predictions. We 

use the techniques described in Abadie et al. (2010) to conduct these placebo 

experiments. Specifically, we iteratively apply SCM to each of the 37 states in the donor 

pool as if they had participated in a RGGI-like program. We then calculate the difference 

between the placebo state and the synthetic control’s electricity imports. As no placebo 

state was part of RGGI, on average there should be no difference between the state’s 

imports and the synthetic control’s imports in the post-treatment period. Following 

Abadie et al. (2010), we drop the placebo runs that in the pre-treatment period have a 

synthetic control with a prediction error more than twice as large than the error of the 

RGGI synthetic control; this eliminates states that received a relatively poor comparison 

group from SCM. The placebo test provides statistically significant evidence if the 

estimated RGGI effect is consistently larger than the placebo effects. 

Figure I-3 graphs the RGGI and placebo effects. The solid black line measures the 

effect in the composite RGGI state while the dashed lines measure the placebo effects. 

The figure shows that the effect in the composite RGGI state at first fluctuates 

considerably in the post-intervention period. In the first few years, this effect is not 

abnormally large compared with the placebos. However, the effect in the composite 

RGGI quickly rises above the other placebo effects after the emissions cap was reduced 
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in 2014. This pattern is consistent with electricity imports increasing only after the 

emission cap became binding.  

These results indicate that RGGI caused electricity imports to increase, generating 

a leakage problem. This effect is statistically significant based on the results of the 

placebo test. We also constructed p-values from the test (Cavallo et al, 2013), which 

averaged 0.098 after 2014, which indicates an effect that is statistically significant at the 

ten percent level. These results are available upon request. 

The remaining robustness checks use synthetic controls developed from more 

restrictive donor pools and groups of covariates. Abadie et al. (2015) recommend 

excluding units from the donor pool that are dissimilar from the treated unit. These 

restrictions can help avoid interpolation biases and overfitting. In fact, since the 

counterfactual is a convex combination of the units in the donor pool, dropping some 

units as potential matches will sometimes improve the pre-intervention match. We 

consider six different donor pool restrictions: eliminating states with 10 times more or 10 

times less 1) electricity consumption, 2) electricity generation and 3) GSP, and 

eliminating units with 5 times more or 5 times less 4) electricity consumption, 5) 

electricity generation and 6) GSP. We also examine the effect of dropping the weather 

indices CDD and HDD and, separately, dropping the GSP and population variables in 

generating the counterfactual. This yields 21 robustness checks (6 donor pool restrictions 

+ no-donor pool restriction, and 2 covariate restrictions + no-covariate restriction). For 

brevity, we do not show the states and the associated weights that compose the 

counterfactual for each of the 21 cases. Wisconsin is selected in most of the 21 cases, 
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generally with a weight exceeding 40%. The other states selected include Florida, 

Michigan, Minnesota, Nevada, Texas, and Virginia.  

Figure I-4 compares electricity imports in the composite RGGI state with the 21 

alternative synthetic controls. The solid black line measures imports in the composite 

RGGI state while the dashed lines measure imports in the synthetic controls. As with the 

original counterfactual, displayed in Figure I-2, electricity imports steadily rise in the 

composite RGGI over and above all of the synthetic controls. After the emissions cap is 

reduced, there is no quarter in which imports in a synthetic control exceed imports in the 

composite RGGI. Overall, these checks demonstrate that the large differences displayed 

in Figure I-2 are not due to idiosyncrasies in the synthetic control.  

 

Case study 2: Using individual RGGI states as the treated unit 

We now apply SCM to each state in the RGGI region as if it were an independently 

treated unit, while continuing to omit all other RGGI states from the donor pool. Table I-

3 presents descriptive statistics of the characteristics of the nine RGGI states and their 

synthetic controls. Except electricity prices, the other matches are good for all states 

except the two least-populated states in the region (Delaware and Vermont) and the 

largest state (New York). In general, it is hard to construct close counterfactuals for the 

smallest and largest states, as there are relatively few states that can match their 

characteristics.  

The results, displayed in Figure I-5, show six states (Delaware, Maine, Maryland, 

Massachusetts, New Hampshire, and New York) clearly increased their electricity 

imports compared to the synthetic controls. Electricity imports to Rhode Island fluctuate 
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around the level of its synthetic control just after the introduction of the program, 

although the import level generally exceeds the synthetic control after the 2012. 

Electricity imports to Vermont did not substantially change until late 2014, when 

electricity imports increased rapidly; this late increase could nevertheless be due to RGGI 

policies, as it coincides with the reduction in the emissions cap. In fact, Vermont heavily 

relied on nuclear power up until 2014, with between 70% and 80% of electricity 

generated by nuclear power. However, nuclear power generation ceased after 2014 when 

the state switched to renewable sources of power generation. Since 2015, more than 50% 

of Vermont’s electricity has come from hydraulic power generation, with wind power 

generation and biomass making up the balance. The dramatic fuel switch made in the first 

quarter of 2015 explains the abrupt increase Vermont’s electricity imports. Connecticut is 

the only state that decreased imports after RGGI.  

We apply here the robustness checks that were also applied in the case of the 

composite RGGI state. Figure I-6 displays these results. The solid black lines measure 

imports in the RGGI states and the dashed lines measure imports in the alternative 

synthetic controls. The alternative synthetic controls for Maine, Maryland, 

Massachusetts, New Hampshire, and New York continue to provide strong evidence that 

electricity influx into these states increased after the adoption of RGGI. The trend in 

Connecticut—the only state SCM suggests reduced imports—is generally but not 

consistently below the alternative synthetic controls; thus, there is not strong evidence 

that electricity imports into Connecticut decreased because of RGGI. 

Table I-4 presents differences in electricity import levels between the treated and 

synthetic control units. These differences are averaged across the 21 alternative synthetic 
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control counterfactuals. The first row is the (quarterly) average of the discrepancy prior to 

the establishment of RGGI. The values in the first row are close to 0 because SCM 

minimizes the discrepancy between treated and control units in the pre-intervention 

period. Overall, compared to their counterfactuals, electricity imports have increased 

following the establishment of RGGI in the composite state and every individual state. In 

addition, the average difference between the treated states and their counterfactuals has 

generally increased over time. The upward trend is prominent after the emissions cap was 

reduced in 2014.  

 

Conclusions 

This paper presents research on electricity leakage from the Regional Greenhouse Gas 

Initiative (RGGI). RGGI aims to reduce carbon emissions within participating states by 

limiting the emissions of fossil fuel power plants. If electricity generation from these 

plants is being shifted outside the region as a result of the initiative, creating a leakage 

problem, then this would be associated with increased electricity imports into the region. 

To date, there have been few empirical studies of the leakage problem, which we 

examined using data on electricity imports. We employed the synthetic control method 

(SCM) to measure the effect of RGGI on electricity imports, which develops a 

counterfactual for the region. Comparisons between the actual and counterfactual 

outcomes provide evidence that electricity imports increased following the establishment 

of RGGI, currently by 1 Twh per quarter. To examine heterogeneity in the effect of 

RGGI across individual states, we performed an additional case study that applied SCM 
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on a state-by-state basis. The predicted outcome generally held up compared to numerous 

donor pool and covariate modifications.  

A regional carbon emissions initiative may fail to achieve its goals if it suffers 

from a serious leakage problem. This study found a leakage effect is associated with 

RGGI. RGGI is an important step in reducing carbon emissions, but avoiding leakage 

will likely require a nationwide policy. 
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Table I-1. Summary Statistics 

Variable Mean Std. Dev. Min Max Observations 

Electricity Generation (Twh) 7.045 6.225 0.130 45.464 2499 

Electricity Consumption (Twh) 6.435 5.808 0.420 40.562 2499 

Electricity Import (Twh) -0.610 1.994 -7.674 6.314 2499 

Electricity Price  9.668 2.842 4.613 18.973 2499 

Population (Million people) 5.051 5.306 0.388 30.962 2499 

GSP (Billions of current dollars) 330.913 390.575 0.000 2716.655 2451 

CDD 100.984 133.922 0.000 625.667 2499 

HDD 419.596 379.995 0.000 1618.333 2499 
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 Table I-2. Comparing Predictor Means Between Baseline Case and Other Donor Pool Units 

  Composite RGGI Synthetic RGGI The other 32 States1 The other 37 States2 

     

Population 9,085,940.80 9,041,267.00 3,646,311.50 4,375,556.16 

GSP (Millions of 

current dollars) 
647,112.26 565,671.00 203,169.40 248,405.40 

CDD 64.40 144.60 103.59 110.95 

HDD 475.56 318.70 421.87 407.44 

Electricity 

imports (Twh) 
0.37 0.35 -1.20 -1.10 

Electricity Prices 14.16 8.33 7.12 7.31 
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Table I-3. Predictor Means for SCM: Individual Member State Case 

  CT 
Synthetic Synthetic CT 

DE 
Synthetic Synthetic DE  

MA 
Synthetic Synthetic MA 

CT (21 cases AVG) DE (21 cases AVG) MA (21 cases AVG) 

Population      2,701,620.00       3,220,567.00       3,013,488.85        662,193.60    1,690,762.00         905,076.05   5,118,906.00   5,568,677.00     5,614,042.46  

GSP (Millions current 

USD) 
        226,610.30          208,548.20          203,770.98          55,377.38          83,514.56           50,818.55       367,481.10       332,273.00         352,084.27  

CDD                   57.63                    76.57                    60.63               106.48               127.06                   98.56                 47.90                 76.39                   80.81  

HDD                 484.63                  495.08                  515.44               364.96               397.09                463.02              517.90              509.39                489.87  

AVG Electricity Import 

(Twh) 
-0.04 -0.04 -0.04                   0.33                    0.32                     0.31                   0.90                   0.90                     0.90  

Electricity Prices                   15.28                      8.36                      7.23                  10.38                    7.50                     7.26                 14.74                   8.08                     8.05  

  
MD 

Synthetic Synthetic MD 
ME 

Synthetic Synthetic ME 
NH 

Synthetic Synthetic NH 

  MD (21 cases AVG) ME (21 cases AVG) NH (21 cases AVG) 

Population      4,307,697.00       4,420,005.00       4,736,684.92    1,053,317.00    1,159,071.00     1,078,060.28   1,036,515.00   1,162,497.00     1,073,555.46  

GSP (Millions current 

USD) 
        280,673.60          273,739.30          293,075.46          48,497.44          60,342.24           60,074.84         60,010.25         60,568.22           60,812.75  

CDD                   99.29                  119.03                  103.22                  21.15                  45.50                   59.19                 32.04                 47.84                   63.97  

HDD                 377.02                  376.12                  378.60               648.63               622.88                573.65              602.69              595.26                562.47  

AVG Electricity Import 

(Twh) 
                    1.27                      1.27                      1.27  -0.43 -0.44 -0.43 -1.00 -1.00 -1.00 

Electricity Prices                   10.61                      8.30                      8.10                  12.70                    7.17                     7.55                 13.75                   7.47                     7.65  

  
NY 

Synthetic Synthetic NY 
RI 

Synthetic Synthetic RI 
VT 

Synthetic Synthetic VT 

  NY (21 cases AVG) RI (21 cases AVG) VT (21 cases AVG) 

Population   15,143,189.00    14,133,658.00    13,024,415.69        837,655.20        974,534.80         858,311.50       500,477.60       634,982.40         630,096.02  

GSP (Millions current 

USD) 
     1,082,367.00          756,677.60          730,935.44          47,265.63          59,978.64           48,922.56         24,543.19         34,083.83           34,034.09  

CDD                   66.40                  283.07                  111.09                  55.52                  92.43                   65.06                 26.40                 57.49                   53.54  

HDD                 465.81                    66.94                  455.62               479.56               517.00                565.52              648.98              613.97                615.53  

AVG Electricity Import 

(Twh) 
                    0.19                      0.13                      0.18                    0.11                    0.10                     0.11  -0.05 -0.05 -0.05 

Electricity Prices                   15.16                      9.96                      9.39                  13.77                    7.62                     7.01                 11.67                   6.90                     6.91  
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Table I-4. Differences in Electricity Imports Between Treated and Synthetic Control Units (Unit: Twh) 

  
Composite 

RGGI 
CT DE MA MD ME NH NY RI VT 

Total Electricity import levels (Before 

RGGI) 
0.001 0.001 0.019 0.003 0.003 0.001 -0.003 0.014 0.002 0.001 

Average electricity import per quarter 

(2009-2017.3) 
0.690 -0.253 0.247 0.843 0.820 0.324 0.308 0.970 0.120 0.205 

Average electricity import per quarter 

(2009-2013) 
0.446 -0.238 0.260 0.524 0.502 0.173 0.275 0.684 0.080 0.085 

Average electricity import per quarter 

(2014-2017.3) 
1.016 -0.274 0.229 1.268 1.243 0.526 0.352 1.352 0.173 0.365 
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  Figure I-1. Electricity Influx Scale and Trend in RGGI States. 
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Figure I-2. RGGI and its Synthetic Electricity Imports  
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 Figure I-3. Placebo Experiments for the Composite RGGI  

Note: Solid lines represent for differences of electricity import level between RGGI and its synthetic control group, and dotted lines represent for differences of 

electricity import level between other donor pools and its synthetic control group. 

  



 
 

25 
 

 

Figure I-4. Robustness Test for the Composite RGGI  

Note: Solid lines represent for Composite RGGI, and dotted lines represent for synthetic RGGI from 21 robustness tests. 
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Figure I-5. RGGI Member States and Their Synthetic Electricity Imports
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Figure I-6. Robustness Tests for Individual RGGI Member State 
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CHAPTER II 

 
THE IMPACT OF UNCONVENTIONAL DRILLING ON HOUSE PRICES IN CENTRAL 

OKLAHOMA 

Abstract 

Recent energy development may benefit some aspects of a regional economy (such as 

increased jobs), however there may also be negative impacts on the local environment 

such as noise and underground water contamination. I study one possible negative 

externality from recent energy development activity - namely, the impact of 

unconventional drilling on housing price. A prospective home buyer may want to avoid a 

place near sites that have been drilled using unconventional drill technologies. Adopting 

a hedonic price model, I estimate the avoided cost in two counties, Canadian and Payne, 

in Oklahoma. It may be possible that the relationship between an environmental pollutant 

source and housing price may be non-linear, and so I apply a semiparametric approach to 

deal with this possibility. The empirical results are consistent in terms of physical 

housing characteristics and locational aspects in all cases, with drilling activity having 

only a minimal effect in benchmark models. Further, the semiparametric estimation results 

support the findings that drilling activity has limited impacts on local housing prices.  

Key words: Shale Gas, Hedonic Analysis, Housing Values, Environmental Costs, 

Semiparametric Estimation.  
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Introduction 

Oklahoma has experienced a dramatic increase in unconventional shale gas drilling since 

the mid-2000s. From a regional economics perspective, this creates additional 

employment opportunities and likely generates positive externalities across many 

industries (for example, retail and construction). A significant amount of research has 

documented the associated regional economic impacts, including those for employment 

and income (Weber, 2012; Weber, 2014; Munasib and Rickman, 2015; Paredes et al., 

2015; Komarek, 2016; Maniloff and Mastromonaco, 2017). Additionally, several studies 

have examined negative externalities associated with the drilling increase, such as 

exacerbated educational attainment or declines in well-being in regions with high levels 

of drilling activity (Rickman et al., 2017; Maguire and Winters, 2017).  

There is a concern that a hydraulic fracturing contaminates underground water 

(Muehlenbachs et al., 2015; Delgado et al., 2016; Wrenn et al., 2016). Thus, a 

prospective home buyer may want to avoid a place near sites that have been drilled using 

unconventional technologies. If this is the case, this preference would reveal itself in the 

house price. Several recent studies have found this to be the case. To date, at least, four 

papers (Muehlenbachs et al., 2015); Gopalakrishnan and Klaiber, 2013; Delgado et al., 

2016; and Balthrop and Hawley, 2017) have examined this negative externality from 

energy development using a hedonic analysis.  

Most of this previous literature focuses on the shale gas drilling impact on house 

prices in Pennsylvania, and one study examined same effect in Texas. Note that 

Oklahoma has lots of unconventional drilling activity (like Pennsylvania); alternatively, 
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the state has a strong history of conventional oil production (like Texas). However, to our 

best knowledge, there are no similar studies for Oklahoma. Considering this, the aim of 

this study to fill in this research gap and estimate the impact of unconventional shale 

drilling on housing prices in Oklahoma. 

 

Literature Review 

How environmental quality influences housing price is a popular topic in hedonic 

analysis. In particular, newly introduced energy development activities – wind turbine 

installation and unconventional shale drilling – have recently attracted researchers’ 

attention. On the whole, energy development activities generally have a negative impact 

on house prices. Our discussion start with two studies – Gibbons (2015) and Dröes and 

Koster (2016) – that examine the negative effect of wind farms on nearby house prices. 

Gibbons (2015) noted people’s concerns with the negative visual impacts from nearby 

wind farm. This study used housing transaction data in England and Wales during 2001-

2012, however, unlike traditional hedonic analysis, the inclusion of housing 

characteristics are optional, and instead the focus is on the visual impact from wind farms 

to house prices. Dröes and Koster (2016) explored same topic using house transaction 

data in Dutch for years 1985-2011. The result of this study support the one of Gibbons 

(2015). Those two studies both found that wind farms negatively influenced nearby 

housing prices.  

Shale drilling activities incur concerns about noise and water contamination, and 

economic theory suggests that such environmental disutility would lower nearby housing 

prices. Several studies examined these negative externalities from shale gas development 
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by applying hedonic analysis to the local housing market (Muehlenbachs et al., 2015; 

Gopalakrishnan and Klaiber, 2013; Delgado et al., 2016; and Balthrop and Hawley, 

2017).  

Among those, three papers (Muehlenbachs et al., 2015; Gopalakrishnan and 

Klaiber, 2013; Delgado et al., 2016) focus on a county (or counties) in Pennsylvania, but 

their results are varied. Gopalakrishnan and Klaiber (2013) is the first published research 

work examining shale drilling booms effect on house prices. Applying housing 

transaction data of Washington County in Pennsylvania, this study is performed using 

standard hedonic analysis. They consider housing characteristics (such as area, number of 

rooms, etc), and use geographical data for shale well and land use of its surrounding area. 

They found that property values are negatively impacted by nearby shale gas exploration 

activity. The time span of their housing transaction dataset covers 2008-2010. 

Regrettably, it is hard to argue that this analysis fully encompasses pre and post shale 

boom period, considering the fact that the shale boom started in the mid-2000s. 

Muehlenbachs et al. (2015) show that such an impact can be represented in two different 

ways. They consider a more comprehensive geographical area (36 counties in 

Pennsylvania) and time period (1995-2012). They found that the impact is large and 

negative for the nearby groundwater-dependent homes, while a small and positive impact 

is found for piped-water-dependent homes. This implies that people are concerned about 

water contamination caused by shale drilling, and this concern is captured in housing 

prices located near shale drilling sites. Delgado et al. (2016) studied same issue. In this 

study, two counties in Pennsylvania are considered in 2006-2012 and 2004-2013 for each 

county. They show that a robustly significant negative effect does not exist for 
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unconventional gas wells on property values. Balthrop and Hawley (2017) empirically 

show that unconventional drilling has a negative influence on a housing prices for 2005–

2011 in Tarrant County, Texas. Further, they estimate the conventional well impact as 

well, and do not find a statistically significant effect from a conventional well. This 

difference between conventional and unconventional impacts on the local housing market 

is an important part of their analysis.     

In sum, relatively few papers provide empirical evidence that environmental 

concerns caused by unconventional shale drilling lower house prices. Three studies focus 

on Pennsylvania in the Marcellus shale play region, and one paper considered a single 

county in Texas. To date, there is no study on this issue for Oklahoma, even though the 

state of Oklahoma is one of the most heavily drilled regions for unconventional wells. 

This paper attempts to fill in this research gap. Referencing previous literatures and the 

economic theory of negative externality, we expect that house prices may be lowered 

where they are located near a well site or as a shale drilling has increased. However, we 

need to consider localized characteristics as well. Compared to Pennsylvania, Oklahoma 

has a long history for fossil fuel mining. This implies that people in Oklahoma may be 

less apprehensive to new energy development activity. Thus, the sign of the effect is 

theoretically ambiguous.  

 

Study Region: Canadian County and Payne County in Oklahoma 

Oklahoma is one of the leading states in the nation for unconventional drilling activity. 

During 2001-2016, a total of 4,644 shale wells were drilled across the state. Twelve 
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counties including Canadian and Payne counties, had more than 100 shale well sites 

drilled during this time.14 In this study we consider two counties – Canadian and Payne15. 

Canadian county is one of seven counties in the Oklahoma City metropolitan area. 673 

shale wells were drilled during the period of analysis, giving the county the highest shale 

well density in Oklahoma (See Table II-1). Canadian county is composed of part of one 

major city (Oklahoma City) and 10 other communities including medium-sized cities 

such as Mustang, El Reno, and Yukon. Most of these are located in the eastern portion of 

the county. Our housing transaction data (from the county assessors’ office) shows that 

purchases took place close to these 10 communities. Alternatively, most of the drilling 

activity took place in more remote western portion of the county (See Figure II-1).  

Payne County had 173 shale wells from 2001-2016, making it the 9th highest 

shale well density in Oklahoma. Stillwater and Cushing are the biggest cities in the 

county and these two cities generate about 81% of all total housing transactions. Counter 

to the pattern seen in Canadian County, however, the well sites and residential area are 

more overlapping in nature16 (See Figure II-2). Thus the two counties chosen offer 

different scenarios for the relationship between drilling site, and housing transaction in 

Oklahoma.  

 

                                                           
14 Twelve counties where have more than 100 wells are Canadian, Pittsburg, Hughes, Coal, Grady, Carter, 

Blaine, Wagoner, Payne, Stephens, Marshall, and Logan. Six counties (Atoka, Garvin, Johnston, Noble, 

Garfield, and Dewey) have more than 50 wells. 25 counties do not have any well.   
15 The population of Canadian county is 116,332 and the population of Payne County is 77,448 in 2010. 
16 It can be verified in our dataset. Mean value of the number of drillings within specific radius from a 

house for Payne County are bigger than the one of Canadian County. In addition, mean value of distance 

between a house and the nearest shale well in Payne County is smaller than its counterpart in Canadian 

County (See Table II-2). 
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Methodology 

 

Hedonic price model 

To examine how unconventional shale drilling impact on house price, we adopt a hedonic 

price analysis. Hedonic analysis is the most commonly used empirical methodology to 

study housing price evaluation. The spirit of hedonic analysis is that the value of an item 

can be estimated using its characteristics. Further, an implicit price of each attribute 

corresponds to the market equilibrium price for that attribute. This can be verified by a 

classical microeconomic foundation.  

Consider the following hedonic price function: 𝑃𝑖 = 𝑓(𝐻𝑖, 𝑄𝑖), where 𝑃𝑖 refers to 

the price of the 𝑖 th house, 𝐻𝑖 refers to the characteristics of the 𝑖 th house (such as number 

of rooms, number of bathrooms, age, and so on), and 𝑄𝑖 implies a quality of 

neighborhood environment for the 𝑖 th house.17 Then 
𝜕𝑃𝑖

𝜕𝑄𝑖
 can be regarded as the marginal 

implicit price of the house with respect to environmental quality. This can be verified by 

assessing the traditional utility maximization problem (UMP). A utility maximizing 

consumer has a utility function 𝑢(𝑒, 𝐻, 𝑄), subject to 𝑤 =  𝑒 + 𝑃(𝐻, 𝑄), where e refers to 

expenditure for the consumer, H and Q are same as above, and 𝑤 is consumer’s income. 

Then, we have following Lagrangian:  𝐿 =  𝑢(𝑒, 𝐻, 𝑄) + 𝜆(𝑤 − 𝑒 −  𝑃(𝐻, 𝑄)). Taking 

derivatives with respect to Q and e to get an optimized solution, then  
𝜕𝐿

𝜕𝑄
=

𝜕𝑢

𝜕𝑄
− 𝜆

𝜕𝑃

𝜕𝑄
=

0, and 
𝜕𝐿

𝜕𝑒
=

𝜕𝑢

𝜕𝑒
− 𝜆 = 0. Combining those two equations gives us 

𝜕𝑃

𝜕𝑄
=  

𝜕𝑢

𝜕𝑄
/

𝜕𝑢

𝜕𝑒
 . Let WTP 

                                                           
17 In this study, environmental quality represents relationship between a house and unconventional drilling 

site. 
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be a willingness to pay for an individual who has utility level 𝑢0 for the house with 

characteristics H and Q. In this case, WTP satisfies 𝑢(𝑤 − 𝑊𝑇𝑃, 𝐻, 𝑄) ≡ 𝑢0. Taking a 

total derivative of this equation, we can find that 
𝜕𝑊𝑇𝑃

𝜕𝑄
=  

𝜕𝑢

𝜕𝑄
/

𝜕𝑢

𝜕𝑒
. This condition exactly 

matches the implicit market price derived above: 
𝜕𝑃

𝜕𝑄
=

𝜕𝑢

𝜕𝑄
𝜕𝑢

𝜕𝑒

=  
𝜕𝑊𝑇𝑃

𝜕𝑄
. That is, the marginal 

willingness to pay for an environmental quality is exactly the same as the implicit market 

price.18 

 

Empirical estimation strategy: Benchmark model 

Regarding the estimation of the hedonic price function, there is no consensus on the 

specific functional form to use. Further, Harvorsen and Pollakowski (1981) found that the 

true hedonic functional form is generally unknown. In spite of limited guidance on this 

issue, several different transformation equations are commonly used, including the semi-

log, double log, and Box-Cox. However, we include many dummy variables in our 

analysis, thus, the semi-logarithmic equation is preferred over double log form. 

Considering this, we start with semi-logarithmic equation as our benchmark model. Then, 

we estimate a hedonic price using the specification: 

(1) ln(𝑃𝑖𝑡) = ∑ 𝛼𝑗

𝑗

𝑋𝑖𝑡𝑗 + 𝛽𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑖𝑡 + 𝛾𝑃𝑊𝑖𝑡 + 𝛿𝐷𝑖𝑠𝑡𝑖𝑡 + 𝜁𝑡 + 𝜂𝑖 + 𝜀𝑖𝑡 

                                                           
18 This approach incorporates the market demand price using the consumer’s utility maximizing problem. 

For the supply side, the market price can be derived with the producer’s profit maximizing problem. We 

assume that housing supply is fixed in this study. 
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where the variable 𝑋𝑖𝑡 includes control variables in terms of housing characteristics such 

as the number of bedrooms, number of bathrooms, area square feet, and age of building. 

𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑖𝑡 denotes control variables related to drilling information. The variable 𝑃𝑊𝑖𝑡 is 

a dummy that takes a value of one if the house has public water supply available to it. 

The variable 𝐷𝑖𝑠𝑡𝑖𝑡 includes controls for distance between a house and major road or 

highway. The 𝜁𝑡 are time dummies—specifically, year fixed effects. The 𝜂𝑖 are 

community fixed effects. A community is a city or town in the two counties. For 

Canadian County, there are seven community districts: El Reno; Mustang; Okarche, 

Oklahoma City; Piedmont; Union City; and Yukon. For Payne County, there are  sixteen 

community districts: Coyle; Cushing (Rural); Cushing (Town); Drumright; Glencoe 

(Rural); Glencoe (Town); Morrison; Oak Grove; Perkins (Rural); Perkins (Town); Ripley 

(Rural); Ripley (Town); Stillwater (Rural); Stillwater (Town); Yale (Rural); and Yale 

(Town)19. 

To examine the impact of drilling on housing price, previous studies — 

Gopalakrishnan and Klaiber (2013); Muehlenbachs et al. (2015); Delgado et al. (2016); 

and Balthrop and Hawley (2017) — use a count variable, called a ring, to represent the 

number of wells within a specific distance (i.e. a density measure). Again, Muehlenbachs 

et al. (2015) and Delgado et al. (2016) considered how far a well is located from a house. 

In this study, we adopt both types, distance and density, of variables to measure drilling 

effects. Take those into account, we can re-state our benchmark models as follows:  

                                                           
19 These communities are defined by each county assessor.  
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(2) ln(𝑃𝑖𝑡) = ∑ 𝛼𝑗

𝑗

𝑋𝑖𝑡𝑗 + 𝜌𝐷𝑖𝑡 + 𝛾𝑃𝑊𝑖𝑡 + 𝛿𝐷𝑖𝑠𝑡𝑖𝑡 + 𝜁𝑡 + 𝜂𝑖 + 𝜀𝑖𝑡 

(3) ln(𝑃𝑖𝑡) = ∑ 𝛼𝑗

𝑗

𝑋𝑖𝑡𝑗 + 𝜎𝐶𝑁𝑇𝑖𝑡 + 𝛿𝑃𝑊𝑖𝑡 + 𝛿𝐷𝑖𝑠𝑡𝑖𝑡 + 𝜁𝑡 + 𝜂𝑖 + 𝜀𝑖𝑡 

where 𝐷𝑖𝑡 refers to the distance between a house and its nearest shale drilling well 

location. 𝐶𝑁𝑇𝑖𝑡 refers to the number of drillings within a specific radius from a house. 

We consider three radius criteria (0-3,500 ft; 3,501-5,000 ft; and 5,001-6,500 ft)20.  

 

Additional estimation: Semiparametric approach 

To verify the robustness of the benchmark model results, we incorporate a 

semiparametric estimation approach. Although the physical housing characteristics are 

usually well explained by a linear relationship, some of attributes may not be identified 

by linear estimation. For example, Ekeland et al. (2004) argue that nonparametric 

estimations may better explain hedonic price model, due to an existence of nonlinearities 

between house prices and their associated attributes. On the other hand, nonparametric 

techniques have some disadvantages such as lesser precision and requiring a lot of 

observation (known as curse of dimensionality), although nonparametric modelling 

shows good robustness (Robinson, 1988). Anglin and Gencay (1996) applied 

semiparametric approach to estimate a hedonic price function. They argue that the 

semiparametric approach shows better empirical results than parametric model. Returning 

                                                           
20 Previous studies introduced similar, but slightly different, distance standards. Muehlenhachs et al. (2015) 

uses1km, 1.5km, and Gopahakrishnan and Klaiber (2014) considered 0.75 mile and 2miles. The range of 

Delgado et al. (2016) is 1mile-4miles. Balthrop et al. (2017) uses 0-3,500 ft, 3,501-5,000 ft, and 5,001-

6,500 ft. 
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the effects of unconventional drilling on housing prices, Delgado et al. (2016) applied 

this semiparametric specification, and showed that a nonlinear relationship exist between 

housing price and unconventional drilling site. Applying this empirical strategy, physical 

housing characteristics such as number of bedrooms are specified in the linear part in the 

model, while the control for unconventional drilling well is modelled in the non-linear 

part.   

To model a partially linear specification as our robustness test strategy, consider a 

following generalized partial linear equation,  

(4) 𝑦 = 𝑋Γ + 𝑓(𝑧) + 𝜀 

where y denotes house price, X is a control variable vector for physical housing attributes 

(e.g. number of rooms, age of building etc), and z is an impact from a drilling site. In this 

partially linear model, the unknown function 𝑓(𝑧) is determined by the data, and the rest 

of the controls are specified linearly. To estimate this, we adopt Robinson (1988)’s 

double residual model. To discuss how to derive a double residual estimator, we start 

with taking a conditional expectation (only for Z) in the equation (4). Then we get 

(5) 𝐸(𝑦|𝑍) = 𝐸(X|𝑍)Γ + 𝑓(𝑧) + 𝐸(𝜀|𝑍). 

Again, combining those equation (4) and equation (5) leads to 

(6) 𝑦 − 𝐸(𝑦|𝑍) = (𝑋 − 𝐸(𝑋|𝑍))Γ + 𝜀. 

An advantage of this approach is that the unknown function 𝑓(𝑧) can be removed as 

equation (6) demonstrates. It can then restated as, 

(7) 𝑦̃ = 𝑥̃Γ + 𝜀̃, where 𝑎̃ = [𝑎 − 𝐸(𝑎|𝑍)]. 
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Equation (7) is exactly a linear equation form. That is, Γ is a consistent estimator, and we 

can estimate it by using a traditional OLS estimator, thus 

(8) Γ̂ = (𝜀2̃
′𝜀2̃)−1𝜀2̃

′𝜀1̃. 

Then, by the nonparametric regression estimation for each of error term (𝜀1 & 𝜀2), and 

replacing those estimates into equation (8), Γ̂ can be estimated (note that 𝜀1 implies (𝑦 −

𝐸(𝑦|𝑍)), and 𝜀2 implies (𝑋 − 𝐸(𝑋|𝑍))). Finally, we can obtain unknown function 𝑓(𝑧) 

by non-parametric regression (y- 𝑋Γ̂) on Z. 

 

Data 

House transaction data 

Our house transaction data were provided by the county assessor’s office from both 

Payne and Canadian Counties. The dataset is composed of characteristics of house, sales 

price and date of sale, and precise geographic location (address or latitude/longitude 

coordinates). The housing characteristics include attributes such as the number of 

bedrooms and bathrooms, the year in which the house was built, living area in square 

feet, indicators for town of residence, indicators for basement, garage, fireplace, and 

central air. The time period of the dataset for both counties covers the years from 2001 to 

2016. This time span encompass the pre and post shale gas drilling period (note that the 

peak drilling years were 2013 and from Table II-1). The raw data from the county 

assessor’s office contained some observations with missing data or inappropriate location 

information. After removing these observations, our housing transaction sample for 

Canadian and Payne counties have 17,757 and 9,730 observations, respectively. 

Summary statistics are represented in Table II-2.  
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Drilling and the other geographical data 

Historical unconventional drilling data was obtained from the Oklahoma Geological 

Survey21. This dataset includes precise geographical information (latitude and longitude 

coordinates) and date information for the completion of each shale drilling site. Using 

this information, a distance between a house and a well is calculated.22 Under our 

modeling approach, this control can then explain how a house price can be influenced by 

the nearest distance to a drilling site. Based on the distance information, the number of 

drilling sites within a specific radius from a house are counted. Previous studies applied 

different, but relatively similar distance standards. Following Balthrop and Hawley 

(2017), we applied three different distances cases (0-3,500 ft; 3,501-5,000 ft; and 5,001-

6,500 ft) in this study.23 This control can explain how a house price can be influenced by 

the density of drilling near a house’s location.  

We also consider conventional wells in our analysis to assess if differences exist 

between the impacts for conventional and unconventional wells. Historical conventional 

drilling data was gathered from the Oklahoma Corporation Commission (OCC)24. The 

dataset from OCC contains all drilling logs from wells drilled since 1900. We eliminate 

                                                           
21 http://www.ou.edu/content/ogs/data/oil-gas.html 
22 All the distance information are valid only when the shale gas well was drilled prior the housing 

transaction date. 
23 Unlike the other three previous papers on Pennsylvania locations, Balthrop and Hawley (2017) studied 

Dallas Fort Worth area where has long oil mining history, similar to Oklahoma. 
24 http://www.occeweb.com/og/ogdatafiles2.htm  

http://www.ou.edu/content/ogs/data/oil-gas.html
http://www.occeweb.com/og/ogdatafiles2.htm
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unconventional drilling (Directional Hole and Horizontal Hole) observations from the 

well completion master file to construct a conventional well dataset.    

The other spatial data components are information on the distance between a 

house and a major highway and local road, and the accessibility of public water supply. 

Using a Shape file from the Oklahoma department of transportation25 a distance is 

calculated in ArcGIS software. The public water accessibility was created using a shape 

file from the Oklahoma water resource board26. This variable takes on a value of one if 

the housing location overlaps with public water provision within the state. Roughly 93% 

of transacted houses in Canadian County are located inside the public water supply 

region. That is, about 93% Houses in Canadian County have public water accessibility. In 

Payne County, 81% of houses are connected to the public water supply. This variable is 

important because of environmental concerns about drilling sites and possible water 

contamination. If a property is located on a site not served by public water, there may be 

more concerns about the impact of nearby drilling (since the property likely maintains 

their own well)27. 

 

Results and Discussion 

As described in the methodology section, our estimation model includes controls for 

shale well information, physical characteristics of the house, and information related to 

                                                           
25 http://www.okladot.state.ok.us/hqdiv/p-r-div/maps/shp-files 
26 http://www.owrb.ok.gov 
27 Based on the importance, previous studies (Muehlenhachs et al., 2015; Gopahakrishnan and Klaiber, 

2014; and Delgado et al., 2016) are considered this measure in their studies.  

http://www.okladot.state.ok.us/hqdiv/p-r-div/maps/shp-files
http://www.owrb.ok.gov/
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location such as distance to highway and downtown. In general, estimates accord closely 

with theoretical expectations. For instance, the more bedrooms (or bathrooms), the higher 

the sale price. Further, both Canadian and Payne Counties show very similar estimation 

results to each other. Overall, the estimation results generally suggest that unconventional 

well impacts are not significant. We will document the case that considers community-

level fixed effects for each of the two counties. 

 

Baseline regression: Housing characteristics and locational components 

Results of baseline regressions are estimated models in equation (2) and (3). The house 

transaction data include some suspicious entries, such as extremely low purchase prices 

(e.g. minimum value of housing price is $500 in Canadian County and $25 in Payne 

County). We suspect that some of house transaction cases could be not appropriately 

reported or transacted. Even though they are actual transacted price, it is hard to say that 

they are reflective of a real value of the houses. Considering this, we estimate our 

baseline regression models excluding observations with housing prices less than $5,000. 

However, regardless of whether these low housing price are excluded, the estimation 

results are not very different from the dataset of all observations. Thus, we will discuss 

the estimation results excluding the low housing prices. Baseline regression results are 

represented in Table II-3 (unconventional drilling well) and Table II-4 (conventional 

drilling well). And the estimation results with including all dataset are represented in 

Table II-Appendix-1 (unconventional drilling well) and Table II-Appendix-2 

(conventional drilling well). 
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In general, the estimation results for the physical characteristics of a house are 

consistent with the results from most hedonic studies dealing with housing prices. 

Increasing the number of bedrooms and bathrooms raises the house price, other things 

being equal. More specifically, one extra bedroom lead to increase of housing price 

roughly 2.8-3.5% in Canadian County and 3.3-4.1% in Payne County. Similarly, one 

extra bathroom increases housing price 15.9-16.6% in Canadian County and 13.2-15.7%. 

On the other hand, the sale price is decreased around 0.6% in Canadian County and 0.4% 

in Payne County by each additional year of age, with older houses, leading to lower 

prices (ceteris paribus). Regarding the public water supply variable, if a house is located 

in public water piped area, the price of the house is roughly 3% higher than others in 

Canadian county. In Canadian county about 93% of house are linked in this public water 

supply region. In Payne County, the public water supply rate is 81%, and estimation 

results demonstrate that there is no impact of public water supply on the housing price in 

Payne County. One possibility since rural wells are relatively more common in Payne 

County, no premium exists for public water. Still, the difference between Payne and 

Canadian County in this regard are interesting, and require additional insight. 

Estimation results for the control variables regarding geographical distances are 

also interesting. In general, the results on this category of independent variables are very 

similar to each other between the two counties, with one exception. This exception is the 

distance to center of the biggest city in the county; Stillwater or Oklahoma City. The 

Payne County results suggest that having a house located further away from Stillwater, 

results in a higher housing price. Alternatively, in Canadian County, housing prices do 

not reflect a significant effect in terms of the distance to Oklahoma City. One possibility 
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is that Stillwater is a college town, with a heavy percentage of houses located in the city 

limits dedicated to student living. Houses located just outside of the town (in suburban 

Stillwater) would be larger, and more typically dedicated to family-oriented residences. 

This may lead to an increase in housing price as houses are located farther away from the 

center of the town.  Positive signs for the non-square term (distance to highway or the 

nearest center28) implies that a house price is increased as the distance grows ceteris 

paribus. However, after a certain point this trend may change. For example, if we have a 

highway very close to our house, the noise and traffic congestion may reduce our welfare. 

Thus people do not prefer a very close interstate or highway. However, if highways are 

located too far from a house, travel to other towns and regions becomes too inconvenient. 

In addition, most major highways or interstates go through big cities rather than small 

towns. Considering those issue, the sign of the non-square term and the square term for 

highway are a reasonable result. But note that the value is very small (less than 0.1 % per 

mile). 

 

Baseline regression: The impact of unconventional drilling well 

Four variables – the nearest distance to shale well from a house and the number of 

unconventional drilling well within specific distances (0-3,500 ft; 3,501-5,000 ft; and 

5,001-6,500 ft) – are used to model the impact of unconventional drilling on housing 

price. Unlike estimation results for physical and locational condition, discussed above, 

                                                           
28 Except Oklahoma City, the farther from the center may incur some inconvenience such as longer travel 

distance etc. 
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the estimation results for this category of variables are not significant in general. The 

nearest distance between a house and its nearest shale well are statistically insignificant 

in both Canadian and Payne counties. Only one estimate value (number of 

unconventional drilling wells between 5,001 and 6,500 ft) for Canadian county is 

significant, and its sign is negative. However, considering all the other estimation results 

regarding unconventional drilling impact, it is hard to argue that increasing the number of 

unconventional drilling wells between 5,001 and 6,500 ft would lower housing price. As 

we briefly noted, environmental quality is not necessarily linearly related with housing 

price (Ekeland et al., 2004 and Anglin and Gencay, 1996). Further, Delgado et al. (2016), 

examining the same issue in Pennsylvania, argued that a nonlinear relationship existed in 

one of the two counties in their study regions. We will discuss this issue further in the 

semiparametric estimation results section, following the discussion of conventional well 

impacts in the next section. 

 

Baseline regression: Conventional drilling well impact and additional estimation 

Unlike Pennsylvania, Oklahoma has a long energy mining history (See Figure II-3). 

Practically, Oklahoma residence may less pay attention to unconventional drilling wells, 

as many people may fail to recognize the difference between conventional drilling and 

unconventional drilling. Thus, examining the reaction to conventional drilling may be 

beneficial when discussing the possible impact of unconventional drilling. We estimate 

the impact using the same regression model as for the unconventional drilling well cases, 

and the results are represented in Table II-4. The estimation results show that all the 



 
 

49 
 

physical housing characteristics and locational components are very similar to those for 

the unconventional drilling well estimation results in both counties. However, there is a 

conflicting result for the drilling impact explanatory variables. For Canadian County 

there is a negative significant effect from the nearest well distance variable. Although the 

other drilling control variables estimates do not show a significant effect, this is in direct 

contrast to the results from the unconventional drilling well (where no impacts were 

found) and compared to Payne County as well. Payne County shows the exact reverse 

effect compared to Canadian County. We will discuss this result further in the 

semiparametric estimation results section that follows.  

On the other hand, some of the distance between a house and its’ nearest 

unconventional drilling well is over 40 miles. Intuitively, being over 10 miles from a well 

should not have any impact on housing price. Taking this into account, we additionally 

estimates with change several conditions. To do this, we first allocate forcefully the 

distance variable as a missing if the distance larger than 25 miles. Then we apply same 

way with 10 miles standard. The estimation results are in Table II-Appendix 3 (Canadian 

County) and Table II-Appendix 4 (Payne County). All of the results for the physical 

housing characteristics are in accordance with the results from benchmark regression. In 

addition, the nearest distance to unconventional drilling well are not significant in any of 

the cases.   

 

Semiparametric estimation results 
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Estimation results for the linearly modelled portion of the semiparametric approach are 

reported in Table II-5. All results for the housing characteristics are very close to those 

for the baseline regression models in Table II-3 and Table II-4. Now, we switch to a 

further discussion of the drilling impact. Previous studies argue for the possibility of a 

non-linear relationship between an environmental pollutant source and a housing price 

(Ekeland et al., 2004 and Anglin and Gencay, 1996). Most of all, Delgado et al. (2016) 

provide evidence of a nonlinear relationship between shale drilling activity and property 

value in their study region by applying semi-parametric estimation. Figure II-4 and 

Figure II-5 are the semiparametric results for the effect of distance to the nearest 

conventional (or unconventional) well on the log of housing price. For Canadian County, 

the distributions of both unconventional drilling and conventional drilling well make it 

difficult to distinguish whether a nonlinear relationship exists. For Payne County, the 

results show more vague relationship. Based on the semiparametric estimation, both 

counties do not show an evident relationship between housing price and distance to 

drilling site. We provide the Hardle-Mammen test results in Table II-5. The null 

hypothesis for this test is that the parametric and non-parametric fits are not different, and 

rejecting the null implies that the polynomial adjustment is suitable, (rather than a linear 

specification). Except for one case (conventional drilling well in Canadian County), we 

reject the null hypothesis at 90%, thus, we may argue for the non-linear relationship 

between a housing price and its’ nearest drilling site. Moreover, the test statistics from 

both type of wells in Payne County are strongly rejected at the 99% level. Based on this 

we may argue that we do not find consistent and significant evidence to suggest that 
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drilling activity significantly influences nearby housing price in both Canadian and Payne 

Counties. 

 

Conclusions 

In this study, we examined the existence of externalities from unconventional drilling on 

housing prices in two Oklahoma counties. In addition, considering the long tradition of 

resource mining in Oklahoma, we examined the impact from conventional drilling as 

well. The empirical results are consistent with prior hedonic models regarding the 

influence of physical housing characteristics and locational aspects in all cases. However, 

the results for all specifications in terms of drilling activity find minimal significant 

effects. To examine a possible non-linear relationship between housing price and drilling 

site, we provide a semiparametric estimation. The results from this empirical strategy 

support the absence of consistent evidence of any effect from drilling site on housing 

price. These results are in conflict with those from several earlier studies (Muehlenbachs 

et al., 2015; Gopalakrishnan and Klaiber, 2013; and Balthrop and Hawley, 2017). 

However, these results are in line with Delgado et al. (2016), which is the only study to 

use a non-linear empirical specification on this topic. One possibility for the lack of 

significance associated with any of the unconventional drilling variables is that 

countervailing impacts are at work: negative ones associated with environmental or 

scenic concerns and positive ones associated with possible gains from mineral rights. 

This study did not explicitly consider such mineral rights. It may be that potential gain 

from mineral rights may have a positive influence on housing price.   
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Several limitations exist for this study. Although we compare the results between 

unconventional drilling and conventional drilling, these are aspects associated with shale 

well activity that are not fully accounted for in our model. Gopalakrishnan and Klaiber 

(2013) argues that a prospective consumer may become aware of shale drilling through 

one of four paths—online open database, increased truck traffic, noise from drilling, or 

the visible aspect of drilling. Their study region is Pennsylvania, which has experienced a 

rapid increase in unconventional drilling since the mid-2000s, however, they do not have 

a comparatively long history of conventional crude oil mining. Because of this lack of 

history with conventional drilling, a prospective home buyer in Pennsylvania may be 

wary of environmental changes associated with shale gas drilling. Alternatively, 

Oklahoma has a long tradition of mining crude oil, and local residents may be 

accustomed to the sights of drilling activity or unable to distinguish between conventional 

and unconventional sites. This can be restated as people in Oklahoma having less 

sensitivity to unconventional drilling in comparison to Pennsylvania.29 This implies that 

the extent of the impact may be comparatively small in Oklahoma than Pennsylvania, 

which may be one reason for the lack of results in this analysis. 

The empirical results from this study suggest the effect of unconventional drilling 

does not have a clear impact on housing prices. However, the boom of unconventional 

drilling started less than 10 years ago (particularly in the counties considered here). The 

(lack of) results call for additional study over a longer time and more areas to observe 

potential exclusive effects from unconventional drilling. In terms of policy implications, 

                                                           
29 Wrenn et al. (2016) studied people’s risk averting behavior on the unconventional shale drilling. Using 

consumer’s water bottle purchasing data in Pennsylvania, they found that expenditures associated with 

risk-averting practices in Pennsylvania shale region was bigger than 19 million USD for the year 2010. 
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the minimal impact of drilling on housing prices in these two Oklahoma counties 

suggests that revamping property tax policy out of concern for oil and gas effects is likely 

not necessary. However, policy maker need to investigate further the possible negative 

health effects from environmental contamination associated with this activity.    
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Table II-1. Number of Unconventional Drilling and Transaction of House 

Year 
Canadian County Payne County 

Wells House Transactions Wells House Transactions 

2001 0 1 0 222 

2002 0 3 0 285 

2003 0 0 0 293 

2004 0 4 0 424 

2005 0 2 0 451 

2006 0 5 0 480 

2007 1 5 0 493 

2008 20 1,747 0 509 

2009 37 1,830 0 529 

2010 59 1,579 2 508 

2011 77 1,559 1 510 

2012 132 1,813 14 728 

2013 135 2,104 22 888 

2014 85 2,324 77 1,012 

2015 82 2,344 40 1,093 

2016 45 2,437 17 1,305 

Total 673 17,757 173 9,730 

Note: 1. Numbers of house transactions are based on after data trimming of Assessor’s Office raw data. 

Sources: Drilled Well (the Oklahoma Geological Survey); House Transactions (the assessors’ office in each 

county)   

 

  



 
 

55 
 

 Table II-2. Summary Statistics 

Variable 
Canadian County Payne County 

Obs Mean Std. Dev. Min Max Obs Mean Std. Dev. Min Max 

Public Water 17757 0.93 0.26 0 1 9730 0.81 0.39 0 1 

Distance to Nearest Road 17757 417.23 409.14 0.00 4152.35 9730 383.73 440.22 3.79 3157.57 

Distance to Nearest Hway 17757 1155.47 1233.68 0.03 10652.10 9730 1136.68 1132.32 14.12 7172.08 

Distance to Nearest Well 

(Un-conv. Drilling) 
17748 12.63 6.24 0.26 47.87 7940 8.30 8.60 0.09 40.87 

Count in Ring I 

(Un-conv. Drilling) 
17757 0.00 0.02 0 1 9730 0.04 0.32 0 8 

Count in Ring II 

(Un-conv. Drilling) 
17757 0.00 0.02 0 1 9730 0.04 0.33 0 6 

Count in Ring III 

(Un-conv. Drilling) 
17757 0.00 0.02 0 1 9730 0.09 0.57 0 10 

Distance to Nearest Well 

(Conv. Drilling) 
17757 1.85 1.20 0.01 8.25 9730 2.21 1.12 0.03 6.98 

Count in Ring I 

(Conv. Drilling) 
17757 0.16 0.44 0 5 9730 0.07 0.41 0 10 

Count in Ring II 

(Conv. Drilling) 
17757 0.15 0.42 0 5 9730 0.10 0.37 0 6 

Count in Ring III 

(Conv. Drilling) 
17757 0.21 0.52 0 6 9730 0.14 0.44 0 6 

Sale Price 17757 159960.7 169233.5 500 4,700,000 9730 125332.3 126248.7 25.00 6,100,000 

Age of Bldg 17757 25.88 29.44 0 2010 8628 34.78 28.31 0 120 

# of BATH 17603 1.95 0.55 0 6 9727 1.71 0.93 0 8 

# of Beds 17562 3.10 0.75 0 38 8603 3.04 0.94 0 12 

Area  17757 1754.66 664.64 72 8585 8618 2162.29 1036.99 0 11011.16 

Sources: Drilled Well (the Oklahoma Geological Survey & the Oklahoma Corporation Commission); House 

Transactions (the assessors’ office in each county); Road Information (the Oklahoma Department of 

Transportation); Public water accessibility (the Oklahoma water resource board) 
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Table II-3. Benchmark Model Results for Unconventional Drilling Well 

Ln (Sale Price) 
Canadian County Payne County 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dist to the nearest  0.001 - - - -0.003   - 

drilling site (0.002) - - - (0.003)   - 

Ring Boundary I  - -0.591 - - - 0.008  - 

(0-3500 ft) - (0.551) - - - (0.032)  - 

Ring Boundary II - - 0.203 - -  0.021 - 

(3501-5000 ft) - - (0.163) - -  (0.034) - 

Ring Boundary III - - - -0.269* -   -0.009 

(5001-6500 ft) - - - (0.150) -   (0.017) 

Bedrooms 0.034*** 0.035*** 0.034*** 0.028** 0.041** 0.033** 0.033** 0.033** 

 (0.012) (0.012) (0.012) (0.012) (0.016) (0.015) (0.015) (0.015) 

Bathrooms 0.166*** 0.166*** 0.166*** 0.159*** 0.157*** 0.132*** 0.132*** 0.132*** 

 (0.040) (0.040) (0.040) (0.038) (0.020) (0.020) (0.020) (0.020) 

Age of Building -0.006** -0.006** -0.006** -0.006** -0.004*** -0.004*** -0.003*** -0.004*** 

 (0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.032** 0.032** 0.032** 0.024** 0.026 0.057 0.058 0.053 

 (0.014) (0.013) (0.013) (0.012) (0.053) (0.048) (0.047) (0.047) 

Dist to Biggest City 0.007 0.003 0.006 0.006 0.044*** 0.051*** 0.051*** 0.051*** 

(OKC or Stillwater) (0.014) (0.014) (0.014) (0.013) (0.011) (0.010) (0.010) (0.010) 

Dist to the 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

biggest city_sq (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_nearest_road 0.000* 0.000* 0.000* 0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year FE Y Y Y Y Y Y Y Y 

Community FE Y Y Y Y Y Y Y Y 

R-sq 0.596 0.596 0.596 0.602 0.442 0.457 0.457 0.457 

adj. R-sq 0.595 0.595 0.595 0.601 0.439 0.454 0.454 0.454 

N 16848 16850 16850 16785 6730 8227 8227 8227 

Robust Standard errors in parentheses       

* p<0.1  ** p<0.05  *** p<0.01        

Note: All the models in this baseline regression are estimated without housing price under $5,000 

 

 

 

 

 

 

 

 



 
 

57 
 

Table II-4. Benchmark Model Results for Conventional Drilling Well 

Ln (Sale Price) 
Canadian County Payne County 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dist to the nearest  -0.006** - - - 0.039*** - - - 

drilling site (0.003) - - - (0.008) - - - 

Ring Boundary I  - 0.008 - - - 0.004 - - 

(0-3500 ft) - (0.007) - - - (0.036) - - 

Ring Boundary II - - 0.009 - - - -0.070*** - 

(3501-5000 ft) - - (0.007) - - - (0.027) - 

Ring Boundary III - - - -0.001 - - - -0.001 

(5001-6500 ft) - - - (0.005) - - - (0.020) 

Bedrooms 0.037*** 0.037*** 0.029** 0.029** 0.031** 0.033** 0.032** 0.033** 

 (0.012) (0.012) (0.012) (0.012) (0.015) (0.015) (0.015) (0.015) 

Bathrooms 0.168*** 0.168*** 0.160*** 0.160*** 0.136*** 0.132*** 0.133*** 0.132*** 

 (0.042) (0.042) (0.040) (0.040) (0.020) (0.020) (0.020) (0.020) 

Age of Building -0.007** -0.007** -0.006** -0.006** -0.003*** -0.004*** -0.003*** -0.004*** 

 (0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.036*** 0.036*** 0.029** 0.029** 0.062 0.055 0.062 0.055 

 (0.014) (0.014) (0.012) (0.012) (0.048) (0.048) (0.048) (0.048) 

Dist to Biggest City 0.007 0.007 0.010 0.010 0.045*** 0.051*** 0.052*** 0.051*** 

(OKC or Stillwater) (0.014) (0.014) (0.013) (0.013) (0.011) (0.010) (0.010) (0.010) 

Dist to the 0.000 0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 

Biggest City_sq (0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_nearest_road 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year FE Y Y Y Y Y Y Y Y 

Community FE Y Y Y Y Y Y Y Y 

R-sq 0.590 0.590 0.598 0.597 0.458 0.457 0.457 0.457 

adj. R-sq 0.590 0.589 0.597 0.597 0.455 0.454 0.454 0.454 

N 17241 17241 17145 17145 8227 8227 8227 8227 

Robust Standard errors in parentheses       

* p<0.1  ** p<0.05  *** p<0.01        

Note: All the models in this baseline regression are estimated without housing price under $5,000 
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Table II-5. Results of Linear Part in Semiparametric Estimation 

Ln (Sale Price) 

Canadian County Payne County 

Unconventional 

Drilling Well 

Conventional 

Drilling Well 

Unconventional 

Drilling Well 

Conventional 

Drilling Well 

Bedrooms 0.034*** 0.035*** 0.034** 0.032** 

 (0.012) (0.012) (0.016) (0.015) 

Bathrooms 0.160*** 0.166*** 0.161*** 0.136*** 

 (0.037) (0.040) (0.020) (0.020) 

Age of Building -0.006** -0.006** -0.003*** -0.003*** 

 (0.003) (0.003) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.037*** 0.033** 0.033 0.058 

 (0.014) (0.013) (0.054) (0.048) 

Dist to Biggest City 0.018 0.006 0.055*** 0.055*** 

(OKC or Stillwater) (0.013) (0.014) (0.012) (0.011) 

Dist to Biggest City_sq -0.000 0.000 -0.000 -0.000 

 (0.000) (0.000) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_nearest_road 0.000 0.000 -0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Year FE Y Y Y Y 

Community FE Y Y Y Y 

R-sq 0.563 0.596 0.381 0.418 

adj. R-sq 0.562 0.595 0.377 0.415 

N 16846 16852 6728 8225 

Critical value (95%): 1.96 

Critical value (90%): 1.645 
    

Hardle-Mammen 

Test Statistics 
1.824 0.787 3.792 8.900 

Robust Standard errors in parentheses   

* p<0.1  ** p<0.05  *** p<0.01    
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Figure II-1. Locations for House Transaction and Unconventional Drilling Well Sites in Canadian County 

Note: ☼ indicates shale drilling site, and  indicates the location of traded house 

Source: Drilled Well (the Oklahoma Geological Survey, achieved on the July 21, 2017); House Transactions (the Canadian County assessors’ office, achieved on 

the September 21, 2017) 
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Figure II-2. Locations for House Transaction and Unconventional Drilling Well Sites in Payne County 

Note: ☼ indicates shale drilling site, and  indicates the location of traded house 

Source: Drilled Well (the Oklahoma Geological Survey, achieved on the July 21, 2017); House Transactions (the Payne County assessors’ office, achieved on the 

September 20, 2017) 
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Figure II-3. Crude Oil Production Trend in OK, OH, PA, NY, VA, and WV  

Source: U.S. Energy Information Administration (https://www.eia.gov/dnav/pet/pet_crd_crpdn_adc_mbbl_m.htm) 
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Distance to Nearest Unconventional Drilling Well  

(Canadian County)  

Distance to Nearest Conventional Drilling Well 

(Canadian County) 

  

Figure II-4. Semiparametric Results for Canadian County  

Note: 1. Both figures represent that the logarithm of housing price is against to a distance between a house and its nearest well (unconventional drilling well, left; 

conventional drilling well, right). 

2. Horizontal axes are distance between a house and its nearest well. Vertical axes are logarithmic house sale prices. 

3. The shaded areas indicating the computed 95% confidence interval. 
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Distance to Nearest Unconventional Drilling Well  

(Payne County)  

Distance to Nearest Conventional Drilling Well 

(Payne County) 

  

Figure II-5. Semiparametric Results for Payne County 

Note: 1. Both figures represent that the logarithm of housing price is against to a distance between a house and its nearest well (unconventional drilling well, left; 

conventional drilling well, right). 

2. Horizontal axes are distance between a house and its nearest well. Vertical axes are logarithmic house sale prices. 

3. The shaded areas indicating the computed 95% confidence interval.
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CHAPTER III 

 
REGIONAL EMPLOYMENT LEVEL CHANGES ASSOCIATED WITH RECENT ENERGY 

DEVELOPMENT ACTIVITIES IN ARKANSAS, KANSAS, AND OKLAHOMA  

Abstract 

A drastic increase in unconventional drilling and wind energy installation may be a 

beneficial source for employment in rural areas. This study examines the regional 

employment changes associated with those recent energy developments in Arkansas, 

Kansas, and Oklahoma. Considering heterogeneous boom periods in energy development 

activities (both oil and wind) in the three states, we apply a panel fixed effect model, and 

additionally try to correct for possible spatial autocorrelation by incorporating a spatial 

econometric approach. The results indicates that energy development activity does 

increase regional employment, but only for a small subset of industries. Moreover, the 

agricultural sector is negatively affected by energy development in most cases. I also find 

that the unconventional drilling activity provides larger positive impacts on local 

employment than does activity associated with wind farm installation. 

Key words: Local Employment, Unconventional Drilling, Wind Farm, Resource 

Extraction 
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Introduction 

Over the last decade, a new technology in energy development has emerged in the United 

States. This technique applies a combination of horizontal drilling and hydraulic 

fracturing and has changed the face of domestic energy production. This boom in 

unconventional drilling has made the share of crude oil production from hydraulic 

fracturing over 50% in 2015 (see Figure 1). Further, this drastic increase in 

unconventional drilling is an important source of employment in rural areas, although it is 

restricted to shale play regions. We study the broader economic impacts of these 

activities that may generate employment opportunities and income for residents of 

unconventional drilling boom counties. More specifically, we examine how recent energy 

development (shale gas drilling) influences employment levels across a variety of 

industries in Arkansas, Kansas, and Oklahoma. Arkansas and Oklahoma have seen 

sizable increases in unconventional drilling since the mid-2000s, while Kansas has seen 

smaller (but more recent) increases. 

We also consider recent wind energy installations as another potentially 

influential variable for regional employment levels. As a policy option for reducing 

greenhouse gas emissions, wind energy is the most popular renewable energy source in 

the United States. Wind energy power plants require specific geographical conditions, 

and both Kansas and Oklahoma are sufficiently windy areas. The trend of wind farm 

installation overlaps with the shale drilling period, with some delay (See Table III-1). In 

particular, significant new wind installations took place in Oklahoma during 2009-2016, 

which is the same time frame for the increase in hydraulic fracturing shown in Figure 1. 

However, previous studies on the economic contributions of unconventional drilling 
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generally do not consider the possible wind farm effect. Because wind power is 

increasing rapidly in recent decades, not controlling for its impact may overestimate the 

employment effects associated with unconventional drilling activity. Thus, the purpose of 

this study is to estimate the regional economic impact associated with recent energy 

development (both shale drilling and wind farm activity).  

 

Literature Review 

The recent literature regarding the regional economic impacts of shale drilling activities 

is quite extensive. In general, those studies can be categorized in two veins: one that finds 

positive associated economic effects (Weber, 2012; Weber, 2014; Munasib and Rickman, 

2015; Paredes et al, 2015; Komarek, 2016; Maniloff and Mastromonaco, 2017) and 

another focused on the negative externalities from those energy developments (Rickman 

et al, 2017; Maguire and Winters, 2017; Wrenn et al, 2016).  

On the whole, the results across the existing literature vary considerably. Most 

studies find that shale drilling has led to increased levels of employment. However, the 

results for the allocated income impacts are not consistent. Weber (2012) is the first 

published empirical research work for regional economic impact from shale drillings in 

the U.S. He used a triple difference in difference approach30 to estimate the treatment 

effect in Colorado, Texas, and Wyoming. Weber (2012) found that each million dollar 

investment in shale gas production contributed 2.35 jobs in shale boom counties. 

Munasib and Rickman (2015) applied a synthetic control method to examine the shale 

                                                           
30 For the three time period (years in 1993, 1999, and 2007), he defined dependent variable as 𝑦𝑖 =

(𝑦𝑖; 2007 − 𝑦𝑖;1999) − (𝑦𝑖; 1999 − 𝑦𝑖;1993). Applying this, we may observe how economic conditions in 

boom counties increased through the boom period compared to pre boom period.  



 
 

70 
 

drilling impacts in Arkansas, North Dakota, and Pennsylvania. Their results demonstrate 

significant geographical heterogeneity. For North Dakota, they found that drilling activity 

had positive effects on the labor market and population growth, and lowered the poverty 

rate. Arkansas shows similar results, but only for the four most drilled counties. In fact, 

shale drilling in Arkansas is highly focused in those four counties. In our dataset, drilling 

activities in those four counties corresponds to 88.68% of all activity across whole state. 

Lastly, the results for Pennsylvania do not a show positive impact across any of the 

outcome measures.  

Paredes et al (2015) and Komarek (2016) studied the treatment effect of 

unconventional drilling activity in the Marcellus shale play region. This region lies across 

Ohio, New York, Pennsylvania, and West Virginia. These two studies applied same 

empirical strategy (panel fixed effect model), although Paredes et al (2015) used 

propensity score matching as well. In general, their results show that shale drilling led to 

increasing levels of employment. However, the results for the income impacts are varied. 

The result for income from Paredes et al (2015) tells us that the income impacts were not 

consistent across the Marcellus region. Komarek (2016)’s results reveal that income 

levels generally increased by 11%, however, they declined four years after the drilling 

activity. Maniloff and Mastromonaco (2017) consider the entire U.S., and applied a 

difference-in-difference approach with two time periods (2005 and 2011). They found 

that the shale boom created 550,000 jobs over the entire nation. 

Several studies consider negative externalities from shale development. Weber 

(2014) applied the same approach as Weber (2012), but expanded the time span up until 

2010, and considered different states (Arkansas, Louisiana, Oklahoma, and Texas). The 
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economic impact results for this updated analysis are in accordance with those for Weber 

(2012). However, this study took the analysis one step further. Using educational 

attainment as a dependent variable, the study showed that participating in a shale boom 

did not lead to a decline in overall educational attainment. Alternatively, Rickman et al. 

(2017) also examined educational attainment levels in shale boom regions across 

Montana, North Dakota, and West Virginia. They applied a synthetic control method, and 

found that educational attainment in both high school and college completion in the boom 

regions were lowered compared to their counterfactual. Sensitivity analysis using placebo 

tests support the results. This is in direct contrast to the result from Weber (2014). Wrenn 

et al (2016) studied people’s risk averting behavior associated with unconventional shale 

drilling. Specifically, they tested whether perceptions about the link between 

unconventional drilling and unsafe drinking water could be quantified. Using consumer’s 

water bottle purchasing data from Pennsylvania, they found that concerns about unsafe 

water in areas with unconventional drilling led to over $19 million in risk-averting water 

purchases in 2010 in the Pennsylvania shale region. Maguire and Winters (2017) applied 

a panel regression model using household well-being survey data. Their estimation 

results tell us that horizontal wells lower a resident’s life satisfaction and raise the 

number of poor mental health days. Those results are statistically significant for the full 

sample in Texas and specifically for the Dallas Fort Worth metro area.   

In sum, an array of literature has studied how unconventional shale development 

influences the drilling boom regions. The contribution of this paper is to consider a 

longer, continuous time period, which allows for a more persuasive result. From a 

geographical perspective, we focus on Arkansas, Kansas, and Oklahoma. Among those 
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three states, Both Arkansas and Oklahoma were examined in previous studies: Weber 

(2014) and Maniloff and Mastromonaco (2017). However, these two studies use just two 

or three time periods, while we consider a continuous 16 year time span. In addition, 

Kansas was not considered in any other study. Moreover, we consider another newly 

introduced and rapidly increasing energy development project– wind farms. To our best 

knowledge, wind energy was not considered in any other study. Finally, we will apply 

newly available employment data from the Upjohn Labor Institute. Although most 

previous studies dealing with regional economic impacts of shale drilling use county 

level official government employment data from the Bureau of Labor Statistics (BLS), 

this dataset has serious problems with missing data in many rural counties. The Upjohn 

data overcomes this issue by applying a 2-stage technique to estimate missing 

observations. This updated dataset will allow for more precise impacts, particularly in 

rural counties where drilling can play a large role in the local economy. 

 

Study Region: Shale Plays and Wind Farm 

The geographical region for our study comprises three shale plays: the Excello 

Mulky, Fayetteville, and Woodford. The Excello Mulky is a shale play across Southern 

Kansas and Northern Oklahoma. The Fayetteville is a shale play region that exists mostly 

in Arkansas, and very a small part of Oklahoma. The Woodford play is limited to 

Oklahoma (See Figure 2). 6,447 shale wells were drilled in Arkansas during the 2001-

2016 period, and 918 wells and 4,644 wells had drilled in same period in Kansas and 

Oklahoma, respectively (See Table III-2).   
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Shale wells are focused in a small number of counties. However, the density of 

drilling activity is somewhat different over the three states. Arkansas shows the most 

density, with nearly all drilling activity focused on a small number of counties. More 

specifically, four counties – Cleburne, Conway, Faulkner, Van Buren, and White31 – 

account for about 97.15% of the total number of drilled wells in the state during the 

2001-2016 time frame. In Kansas, the drilling is slightly more spread out. Six counties – 

Barber, Comanche, Harper, Reno, Sherman, and Sumner32 – make up 71.79% of the 

Kansas state total. Twelve counties – Blaine, Canadian, Carter, Coal, Grady, Hughes, 

Logan, Marshall, Payne, Pittsburg, Stephens, and Wagoner33 – in Oklahoma have more 

than 100 wells, and the total number of wells among those counties is 82.11% of the state 

total. The most distinguishing characteristics of wells in Oklahoma is that four counties 

(Canadian, Grady, Logan, and Wagoner) with significant drilling activity are classified as 

metropolitan. 

There is another recent energy development activity of interest in our study 

region, which is wind energy. Kansas and Oklahoma have been adopting wind energy as 

part of their energy portfolio, and the share of electricity generation by wind energy have 

been increasing rapidly. Table III-1 shows wind farm installation status in both states in 

terms of capacity in megawatts during the 2001-2016 period. On the other hand, there are 

no wind farms in Arkansas.  

                                                           
31 Number of wells are as follows: Faulkner (546), Cleburne (1,205), Conway (1,333), Van Buren (1,453), 

and White (1,726) 
32 Sherman (47), Sumner (49), Reno (64), Barber (80), Comanche (115), Harper (304) 
33 Logan (122), Marshall (148), Stephens (163), Payne (173), Wagoner (185), Blaine (199), Carter (237), 

Grady (298), Coal (490), Hughes (555), Pittsburg (570), Canadian (673) 
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Empirical Strategy 

We apply a panel data econometric approach to examine the causal relationship between 

the unconventional drilling boom and changes in regional employment levels. There are 

four widely-used approaches to examine a treatment effect: (1) difference in difference; 

(2) panel regression model; (3) synthetic control method, and (4) propensity score 

matching. Each method has its own challenge to show a true treatment effect. For 

example, the difference in difference technique can argue for a causal relationship if the 

common trend assumption is shown to hold. Synthetic control methods require good 

balancing between the control and counterfactual group. Panel regression models require 

the isolation of an interesting variable, and take advantage of both time and geography 

variation across the data.  

We first use panel regression model to identify the effect of shale drillings on 

regional economic impacts in Arkansas, Kansas, and Oklahoma. The most critical reason 

is that the difference in difference and synthetic control method consider one specific 

intervention time. However, it is hard to pinpoint a single intervention starting point in 

our study region, although some previous studies consider the year 2006 as the start of 

shale boom. Shale drilling in both Arkansas and Oklahoma reached the three digit level 

after 2006, however, there were several dozen drillings in 2004 and 2005 as well (See 

Table III-2). Kansas shows some delay in its pace of drilling. Their boom seems to start 

after 2012, but more than 40 drillings were recorded in 2006 (See Table III-2). On the 

other hand, as discussed earlier, we also consider wind farm capacity in our empirical 
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model. The introduction of wind farms overlaps with shale drilling activity, although 

most wind farms began slightly later. In addition, the time of installation of the wind 

turbines varies. All things considered, we start our empirical specification with a panel 

regression model. 

We expect an increase in employment level, as the number of shale drillings 

increases and (or) wind farm capacity is increased, other things being equal. We test this 

hypothesis using the specification: 

(1) ln(𝐸𝑠𝑖𝑡) =  𝛽1𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑠𝑖𝑡 + 𝛽2𝑊𝑖𝑛𝑑𝐹𝑎𝑟𝑚𝑖𝑡 + 𝛽3𝑋𝑖𝑡 + 𝛾𝐺𝑟𝑜𝑢𝑝 + 𝜏𝑡 + 𝛿𝑖 + 𝜀𝑖𝑡 

where  𝐸𝑠𝑖𝑡 is an employment level for industrial sector 𝑠 of county i in year t. We 

consider six industrial fields, which are sectors for total, agricultural, mining, 

construction, retail trade, and oil and gas extraction. These are sectors that are likely to be 

influenced by energy activity (Komarek, 2016; Weber, 2014; Paredes et al., 2015). The 

variable 𝐷𝑟𝑖𝑙𝑙𝑖𝑛𝑔𝑠𝑖𝑡 refers to the number of newly added unconventional drillings.34 

𝑊𝑖𝑛𝑑𝐹𝑎𝑟𝑚𝑖𝑡 is measure of newly added installation of wind farm. 𝑋𝑖𝑡 includes time 

varying control variables, including population. Additionally, we categorized three or 

four groups in each state in terms of metropolitan status and drilling activity.35 This group 

effects are captured in 𝐺𝑟𝑜𝑢𝑝. The τt are time (year) fixed effects. The 𝛿i are individual 

(county) fixed effects. As we discussed in study region section, there exist different 

characteristics in the distribution of both shale drilling and wind farm activity in the three 

                                                           
34 Note that the panel nature of the data allows changes across years to be assessed. 
35 For Arkansas and Kansas, counties are categorized in three groups (group one is shale drilling counties; 

group two is non-shale drilling metropolitan counties; group three is non-shale drilling & non metro 

counties). There are four groups in Oklahoma (group one is non-metro shale drilling counties; group two 

is metro shale drilling counties; group three is non-shale drilling metropolitan counties; group three is non-

shale drilling & non metro counties). 
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states. Considering this the heterogeneity, we run the empirical model for each state 

separately. 

 

Spatial econometrics estimation 

In general, one county’s economy is closely related to its neighbor’s. If this is the case, 

there is a high chance to have a spatial autocorrelation problem in simple the OLS 

specification. To take care of this concern, we additionally consider a spatial 

econometrics approach along with benchmark regression model. To do this, the two most 

common specifications, the spatial lag model and spatial error model, are adopted in this 

study. The spatial lag model (denoted SAR in the results tables) takes the following form: 

(2) 𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜀, 𝜀~ 𝑁(0, 𝜎2𝐼𝑛) 

where y is a vector of observations on the dependent variable (log of sectoral 

employment level), and W denotes spatial weight matrix. The first term of the right hand 

side in equation (2) is a spatially lagged dependent variable. We construct the weight 

matrix following a queen contiguity method. This method regards a region as a neighbor 

when a common border is shared. Thus this technique considers a surrounding spatial lag 

effect. As equation (2) suggests, if ρ=0, then the spatial lagged dependent variable would 

be cancelled out, and there is no spatial dependence. The resulting model becomes basic 

OLS model.  

The spatial error model (denoted SEM in the results tables) assumes that the 

errors of model are spatially correlated. Restating this, the value of the dependent 
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variable can be influenced by the value of the independent variable of neighbor. The 

model form is as follow: 

(3) 𝑦 = 𝑋𝛽 + 𝜀, 𝜀 =  𝜆𝑊𝜀 + 𝑢, 𝑢~ 𝑁(0, 𝜎2𝐼𝑛) 

where y is the dependent variable, W is the spatial weights matrix, X includes 

independent variables, and  𝜀 is a vector of spatially autocorrelated error terms. This 

spatial error model is appropriate when there is little theoretical reason to suspect y is 

directly affected by its neighbor, but spatial heterogeneity still exists in the data. Finally, 

note that both the spatial lag and error models are space recursive rather than time 

recursive. That is, we do not consider the impact of a neighbor from time t-1, only time t. 

Also, the weight matrix here does not change over time (since counties do not change 

neighbors). 

  

Data 

Employment levels  

We use county-level employment data from Bureau of Labor Statistics (BLS)36. All of 

the counties in three states are used in the panel, which runs from year 2001 to year 2016. 

In general, both unconventional shale drilling and wind installation activity started in 

mid-2000s, thus the time period includes both prior and post for the event time. We 

consider the employment level on the six industrial sectors, which are total industry 

(NAICS Code: 10), agriculture (NAICS Code: 11), mining (NAICS Code: 21), 

                                                           
36 https://www.bls.gov/cew/datatoc.htm  

https://www.bls.gov/cew/datatoc.htm
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construction (NAICS Code: 23), retail trade (NAICS Code: 44-45), and oil and gas 

extraction (NAICS Code: 211). This two and three digit NAICS data is generally 

available for our counties of interest. 

When we consider a more detailed level (i.e. three digits NAICS code), we face a 

significant missing data issue. Further, this data problem becomes worse for rural 

counties. This data issue is mainly due to data suppression in the process of data 

collection. BLS indicates that roughly 60 % of the most detailed level data are suppressed 

for confidentiality reasons (to protect identity or identifiable information of employers). 

This data suppression problem can be very problematic for researchers. To circumvent 

this issue, Isserman and Westervelt (2006) apply a two stage approach to estimate 

employment numbers for counties with missing data. Following Isserman and Westervelt 

(2006), Upjohn Labor Institute estimates the missing data for all six-digit NAICS codes 

for all counties across to county. This Upjohn data serves as the basis for the remainder 

of our discussion, although results using the original BLS data reported in the appendix. 

One downside of using the Upjohn data is that it is only available through 2015. 

 

Unconventional drilling data 

Historical unconventional drilling data for Arkansas, Kansas, and Oklahoma were 

obtained from Geological Surveys in each state37. This dataset includes precise 

geographical information (latitude and longitude coordinates) and date information for 

                                                           
37 Arkansas (http://www.geology.ar.gov/fossilfuel_maps/fayetteville_play.htm); Kansas 

(http://chasm.kgs.ku.edu/ords/qualified.ogw4.HorizWells); and Oklahoma 

(http://www.ou.edu/content/ogs/data/oil-gas.html) 

http://www.geology.ar.gov/fossilfuel_maps/fayetteville_play.htm
http://chasm.kgs.ku.edu/ords/qualified.ogw4.HorizWells
http://www.ou.edu/content/ogs/data/oil-gas.html
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the completion of each unconventional drilling site. The unconventional drilling site 

records for Arkansas conflicts of all well drilling logs for the Fayetteville Shale play 

region. Hydraulic fracturing has also been applied to mine natural gas in the Fayetteville 

shale area. The Kansas shale drilling data contains all records for horizontal wells in 

Kansas, including both oil and natural gas. The Oklahoma data is for the completion of 

all oil and gas shale wells.  

 

Wind farm and population data 

Wind Farm installation data come from U.S. Department of Energy Information 

Administration (EIA). More specifically, we collect all installed electricity generator 

information from EIA-860. EIA-860 includes the status of all equipment associated with 

existing and operating electric generating plants in the United States. This report contains 

county-level geographical information and is updated annually. We have data from 2001-

2016. 

Population data was acquired from the U.S. Census. The Census provides 

population measures every five years as part of the American Community survey. 

However, our dataset requires estimates for each year. Thus, the county intercensal 

estimates dataset from the U.S. Census38 was used. Summary statistics for the discussed 

data are presented in Table III-3-A (BLS Data) and Table III-3-B (Upjohn Data). 

 

                                                           
38 https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html  

https://www.census.gov/data/datasets/time-series/demo/popest/intercensal-2000-2010-counties.html
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Results 

Each state shows different trends in population and employment growth of the mining 

sector (See Figure 3). In general, metro areas perform better when compared to the other 

regions in all three states. Population levels in unconventional drilling counties in 

Arkansas increased compared to non-metro and non-shale drilling regions. However, 

both Kansas and Oklahoma shows similar trends between unconventional drilling 

counties and non-unconventional drilling counties in terms of population growth. 

Regarding the mining sector employment, Arkansas shows a huge increase for hydraulic 

fracturing counties during 2006-2011, however, employment in the mining sector in 

Oklahoma increased substantially less when compared to the other regions. 

We will focus our discussion on the estimation results using the Upjohn Labor 

Institute dataset. The BLS dataset results are similar, but have some noticeable 

differences. The BLS dataset results are reported in the Appendix (Tables III-Appendix-5 

through III-Appendix-10). As noted, we modeled the unconventional drilling and wind 

farm impact on employment levels across five industrial sectors (Total, Retail Trade, 

Construction, Agriculture, and Mining). And we additionally examine one three digit 

NAICS code, 211, that corresponds to Oil & Gas Extraction (OGE). Like the population 

trends, the estimation results for sectoral employment change associated with 

unconventional drilling are different in each state. In addition, we perform a preliminary 

test for spatial dependence using the total aggregate employment variable in each year for 

all those three states. These results are shown in the Appendix (Table III-Appendix-2 

through III-Appendix-4). They show that spatial modeling techniques may be appropriate 

in KS and OK, but not Arkansas. 
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The estimation results for Arkansas are represented in Table III-4 (baseline 

model) and Table III-5 (spatial model). In general, additional unconventional drilling lead 

to employment growth across all industry sectors, except in agriculture. The extent of the 

increased employment level associated with each additional unconventional drilling are 

0.1-1.4% in these benchmark models, and 0.2-1.1% in the spatial models. Although the 

levels of change vary, the increasing rates for the mining and OGE fields are noticeable. 

Further, the employment decreases in the agricultural sector is statistically significant in 

both results. This is consistent with the idea that mining activity could detract from the 

local agricultural sector. 

The results for the group dummies do not follow our expectation in the 

benchmark models. Group I (unconventional drilling counties) shows a negative 

statistically significant sign across all sectors, except mining. Although the statistical 

significance and sign are switched in the spatial econometrics estimation results, the 

reason for the sign for the mining and OGE fields are not clear. These negative estimates 

suggest that these groups have a negative impact compared to the benchmark group 

(Group III: Non-metro & Non-unconventional drilling counties). One possibility is that a 

high share of drilling activity are near county boundaries, and a neighboring county has 

increased their own employment statistics.  

There are two limitations on the spatial econometrics estimation result in 

Arkansas. The first one is negative ρ values in both the total aggregate and retail trade 

sector. This may be possible in cases where one big shopping area strongly attract 

shoppers from its’ neighbors. It is unclear that this is the case for Arkansas. The second 

limitation is the post specification test (global Moran’s I) still strongly against the null 
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that error has no spatial autocorrelation, except construction sector. This implies the 

spatial autocorrelation issue is not fully taken care of in our spatial econometrics 

specification, although the estimation are fairly consistent among two different spatial 

models (spatial lag model and spatial error model) and baseline regression models (those 

benchmark model include county fixed effect).    

The results for Kansas are as follows (Table III-6 and Table III-7). Except for the 

construction sector, the baseline results show similar trends to Arkansas in terms of the 

drilling effect. More specifically, only the construction sector does not show a 

statistically significant impact across the six industrial fields. Parameter estimates on 

Group I show a positive sign that implies employment levels in unconventional drilling 

counties are increased across all the six industrial sectors. Group II dummy estimates 

show somewhat unexpectedly large values, although these values are lowered in the 

spatial econometrics estimation (Table III-7). Additional wind farm installations led to 

increases in the total aggregate employment level, although the value is not economically 

meaningful. However, spatial econometric estimation makes noteworthy changes to the 

results. Most of all, additional unconventional drillings are no longer significant in most 

sectors, except for mining. The signs of the group dummy parameters remain the same, 

but the values are lowered to double-digit percentage range. The impact of wind farm 

activity is also different. There is no statistically significant result for total employment 

anymore, however the mining sector switched to positive and significant. Like the 

Arkansas result, global Moran’s I show that strongly against the null in most industry 

sectors, although no significance is shown for the retail trade sector. However, ρ values 

are all positive in the spatial econometrics results for Kansas. Also the residual Moran’s I 
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values has been reduced from their aggregate levels (Table III-Appendix-4), suggesting 

that the model does account for some spatial autocorrelations. 

Overall, the results of drilling impact in the baseline models for Oklahoma are 

closely line with those results of Kansas (Table III-8 and Table III-9). Except for the 

retail trade and agricultural sectors, additional unconventional drilling leads to an 

increase in employment at the 0%-0.4% range. The case of wind farm does provide any 

effect on employment level. Results from spatial econometrics specification show that the 

drilling impact on employment level is generally no longer significant, however, it does 

increase employment in the mining and OGE sectors around 0.8%-1.2%. The same 

limitation for the spatial econometrics specification in Oklahoma is seen in the post-

estimation test result. Only the construction sector specification provides evidence that 

the error terms are not spatially correlated. 

Now we combine two states, Kansas and Oklahoma, considering the existence of 

both types of energy development activities in both locations. To perform this integration, 

three categories for the group control variable (Group I for unconventional drilling 

counties; Group II for metro counties; and Group III for all the other remained counties) 

are applied. The results are represented in Table III-10 (baseline regression) and Table 

III-11(spatial model). The results of benchmark models show all positive and significant 

effects, except for the agricultural sector (a negative and significant effect is found for the 

agricultural sector). In addition, additional wind energy has positive effects in the total 

aggregate, mining, and OGE sectors. However, the scale of those estimates is small 

compared to unconventional drilling activity. These results are fairly consistent with the 

other estimation results (Tables III-6 and III-8). One unexpected result for this case is that 
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estimates of Group I are negative and highly significant for sectors in mining and OGE. 

This is inconsistent with our theory, and may indicate a specification problem. The 

results for the unconventional drilling from the spatial models show similar trends (Table 

III-11). They all have positive and significant impacts, except for the agricultural sector. 

The agricultural sector does not have any significant effect in this spatial specification. In 

addition, the scale of the estimates is larger than for the baseline results. There is one 

more notable change in the spatial model results. For all cases we consider (spatial lag or 

spatial error), the unexpected results for Group I estimates are switched to positive and 

significant. This suggests that it is important to control for spatial effects when seeking a 

model consistent with economic theory. Global Moran’s I show that strongly against the 

null in all across the industry sectors, and this is the limitation of this spatial econometrics 

specification.   

 

Conclusions 

Two types of relatively new energy developments, unconventional drilling and wind 

energy, have been increasing rapidly in the United States. This surge in both types of 

energy development may be an important source of employment in rural areas. In some 

areas, wind farm installations overlap with the unconventional drilling period; other states 

have both types of activity but occur in mutually exclusive timeframes; still others have 

only one type (and not both). The majority of the previous literature on this topic has 

examined the economic contributes of unconventional drilling in various regions or 

states, and a small number of studies have looked at impacts associated with wind 
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development. However, these studies typically focus on a single type of energy 

development, and generally do not consider the possible effects of alternative energy 

expansion.  

The purpose of this study is to estimate the regional employment impacts 

associated with recent energy development (both shale drilling and wind farm activity) in 

Arkansas, Kansas, and Oklahoma. The time span of our dataset (2001-2015) 

encompasses both pre and post- energy development growth periods. We take advantage 

of the fact that each county has a different boom period for the alternative types of energy 

development (including many that never experienced any type of boom). We estimate the 

treatment effect of the two types of energy activity by applying a panel regression model, 

with county-level employment in a variety of industries as the dependent variable. 

Further, to take into account possible spatial dependence, we additionally applied a 

spatial econometrics strategy, including both the spatial lag model and spatial error 

model.  

The results indicate that energy development activity does increase regional 

employment, but only for a small subset of industry sectors and regions. Although wind 

farm activity spurred employment growth in the mining sector in both Kansas and 

Oklahoma, they are relatively smaller than the unconventional drilling impact. That is, 

the employment impacts for unconventional drilling activity are larger than those for 

wind farms in these regions. A reasonable conjecture based on this limited and small 

employment impact is that both shale drilling and wind farm installation can lead to 

employment growth in some industries. However, the employed period may not be long, 

and it is possible that newly available job is a temporary one. Some job seekers may have 
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found a temporary position in the energy development project, however, it is not counted 

since it was temporary. Even though the increased job is not a permanent position, it may 

lead to an increase in consumption in a market. This may lead to growth in the retail trade 

sector. 

One notable contribution of this study is the use of newly available county-level 

employment data from the Upjohn Labor Institute. Most previous studies on this topic 

use official governmental county business patterns (CBP) employment numbers, which 

suffer from missing data in many rural counties. This updated data applies Isserman and 

Westervelt’s (2006) technique to overcome this employment suppression. This, in turn, 

allows for the estimation of more precise impacts, particularly in rural counties where 

drilling or wind development can play a large role in the local economy. In addition, we 

applied spatial econometric approach to deal with potential spatial autocorrelation. As 

discussed, the spatial econometrics specification provide relatively consistent results with 

the non-spatial models. However, post estimation test statistics indicate that spatial 

autocorrelation is not fully treated, and this is a limitation of the study. 

In future work, we may consider some additional dependent variables. For 

example, if we try the accommodation (NAICS code 72) sector, we may discuss on the 

effect of mobility of workers (influx from outside workers). In addition, we can try other 

industrial sectors (transportation; NAICS code 48) or some alternative measures, such as 

income levels (from BLS), poverty rates (from USDA), unemployment (from BLS), and 

educational attainment or crime rate. Finally, we will look into the life span of drilling-

related employment in the future. Detailed information on the employment structure (e.g. 
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how many jobs are created for drilling and how many jobs are needed to O&M) would be 

a useful topic for further discussion.  

As discussed, employment changes associated with the recent energy 

development vary across industrial sectors. This study allows for a better understanding 

of how industry employment responds to various energy development activities. In 

particular, advocates of wind energy development can point to increased employment in 

several industries (construction, agriculture, and mining); however, their impacts are 

always lower than those for newly drilled wells. Policy makers should recognize the 

differences in employment impacts across these natural resource typologies as they 

design energy policy for the future.   
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Table III-1. The Status of Wind Farm Installation 

Year Kansas (MW) Oklahoma (MW) Kansas (New) Oklahoma (New) 

2001 112 0 0 0 

2002 112 0 0 0 

2003 113.4 176.3 1.4 176.3 

2004 113.4 176.3 0 0 

2005 263.4 474.3 150 298 

2006 363.4 594.3 100 120 

2007 363.4 688.8 0 94.5 

2008 812.3 707.7 448.9 18.9 

2009 1011.3 1129.8 199 422.1 

2010 1071.8 1480 60.5 350.2 

2011 1271.8 1810.8 200 330.8 

2012 2718.4 3132.9 1446.6 1322.1 

2013 2968.2 3132.9 249.8 0 

2014 2968.2 3779.5 0 646.6 

2015 3573.2 5001.4 605 1221.9 

2016 4469.1 6644.1 895.9 1642.7 

Source: U.S. Department of Energy Information Administration (EIA-860) 
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Table III-2. Number of Shale Drillings and Shale Gas Production Share  

Year AR Share (%) KS Share (%) OK Share (%) All Share (%) 

2001 1 N.A. 6 N.A. 2 N.A. 9 N.A. 

2002 0 N.A. 4 N.A. 2 N.A. 6 N.A. 

2003 0 N.A. 0 N.A. 5 N.A. 5 N.A. 

2004 14 N.A. 4 N.A. 37 N.A. 55 N.A. 

2005 47 N.A. 3 N.A. 64 N.A. 114 N.A. 

2006 150 N.A. 41 N.A. 135 N.A. 326 N.A. 

2007 492 7.27% 17 0.00% 318 3.09% 827 10.36% 

2008 770 13.19% 11 0.00% 554 7.94% 1,335 21.12% 

2009 939 16.95% 7 0.00% 352 8.01% 1,298 24.95% 

2010 865 14.88% 10 0.00% 343 7.55% 1,218 22.43% 

2011 850 11.76% 28 0.00% 439 5.95% 1,317 17.71% 

2012 769 9.90% 225 0.01% 442 6.14% 1,436 16.05% 

2013 585 8.99% 224 0.03% 485 6.11% 1,294 15.13% 

2014 506 7.72% 236 0.01% 646 6.46% 1,388 14.19% 

2015 438 6.07% 80 0.01% 528 6.53% 1,046 12.60% 

2016 21 N.A. 22 N.A. 292 N.A. 335 N.A. 

2001-2016 6,447  918  4,644  12,009  

Note: 1. The first column of each state is the number of shale drillings in the year. 

2. The second column is shale gas production share over national shale gas production. The share is 

calculated based on the data from EIA (https://www.eia.gov/dnav/ng/ng_prod_shalegas_s1_a.htm)   

https://www.eia.gov/dnav/ng/ng_prod_shalegas_s1_a.htm
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Table III-3-A. Summary of Statistics (BLS Data) 

All (AR, KS, OK) Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 4,112 5.71 43.73 0 289 

Wind Farm (MW) 4,112 12.46 61.31 0 496.6 

Population 4,112 36453.83 80534.48 1210 782970 

Employment (Total) 4,112 15251.97 45057.64 458 450460 

Employment (Ag) 4,089 87.08 199.32 0 3656 

Employment (Mining) 3,583 231.55 925.21 0 16205 

Employment (211) 2,239 106.40 635.36 0 9391 

Employment (Construction) 4,096 688.14 2079.08 0 20672 

Employment (Retail Trade) 4,112 1759.17 5039.88 0 47616 

Arkansas Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1200 5.37 29.08 0 289 

Wind Farm (MW) 1200 0 0 0 0 

Population 1200 38165.63 55179.40 5144 393250 

Employment (Total) 1200 15056.95 31772.13 963 250394 

Employment (Ag) 1200 113.86 149.98 0 859 

Employment (Mining) 852 94.72 237.55 0 1828 

Employment (211) 241 16.89 43.16 0 281 

Employment (Construction) 1200 653.32 1396.57 0 11223 

Employment (Retail Trade) 1200 1772.40 3412.88 0 26303 

Kansas Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1680 0.55 4.55 0 118 

Wind Farm (MW) 1680 2.59 25.88 0 470.2 

Population 1680 26801.00 72750.72 1210 584451 

Employment (Total) 1680 12475.64 39591.53 458 337886 

Employment (Ag) 1670 60.28 102.79 0 673 

Employment (Mining) 1531 71.05 152.41 0 936 

Employment (211) 985 25.10 65.94 0 547 

Employment (Construction) 1664 566.33 1851.67 0 14928 

Employment (Retail Trade) 1680 1392.87 4564.32 0 40635 

Oklahoma Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1232 3.77 14.03 0 142 

Wind Farm (MW) 1232 5.39 33.52 0 496.6 

Population 1232 47949.44 105891.50 2162 782970 

Employment (Total) 1232 19227.82 60269.35 637 450460 

Employment (Ag) 1219 97.43 308.10 0 3656 

Employment (Mining) 1200 533.48 1533.03 0 16205 

Employment (211) 1013 206.74 932.55 0 9391 

Employment (Construction) 1232 886.59 2790.52 0 20672 

Employment (Retail Trade) 1232 2245.77 6681.79 0 47616 

Note: This BLS dataset includes observations from 2001 to 2016 
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Table III-3-B. Summary of Statistics (Upjohn Data) 

All (AR, KS, OK) Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 3855 3.03 18.35 0 289 

Wind Farm (MW) 3855 2.20 22.12 0 496.6 

Population 3855 36336.98 80051.43 1210 775949 

Employment (Total) 3855 13065.03 40684.07 242 374277 

Employment (Ag) 3027 34.47 71.85 0 877 

Employment (Mining) 3271 213.64 800.00 0 15226 

Employment (211) 2072 114.89 535.28 0 7827 

Employment (Construction) 3851 676.95 2073.23 0 19415 

Employment (Retail Trade) 3855 1796.10 4954.84 28 46079 

Arkansas Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1125 5.71 30.00 0 289 

Wind Farm (MW) 1125 0 0 0 0 

Population 1125 38053.78 54803.21 5175 392932 

Employment (Total) 1125 13154.43 28633.71 406 231352 

Employment (Ag) 1052 73.59 101.35 0 877 

Employment (Mining) 797 101.61 243.43 1 2397 

Employment (211) 273 60.90 107.67 0 571 

Employment (Construction) 1125 612.48 1340.35 5 12738 

Employment (Retail Trade) 1125 1856.78 3510.62 54 28167 

Kansas Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1575 0.57 4.69 0 118 

Wind Farm (MW) 1575 2.20 23.43 0 470.2 

Population 1575 26741.83 72380.29 1210 578758 

Employment (Total) 1575 10727.39 37445.14 242 328124 

Employment (Ag) 1205 9.53 13.77 0 121 

Employment (Mining) 1350 87.07 170.55 0 1494 

Employment (211) 876 37.19 78.32 0 706 

Employment (Construction) 1571 589.90 2018.03 0 16820 

Employment (Retail Trade) 1575 1419.74 4560.34 28 37850 

Oklahoma Obs Mean Std. Dev. Min Max 

Shale Wells (Count) 1155 3.77 14.23 0 142 

Wind Farm (MW) 1155 4.33 29.60 0 496.6 

Population 1155 47749.05 105222.10 2200 775949 

Employment (Total) 1155 16165.63 52912.37 323 374277 

Employment (Ag) 770 20.06 52.00 0 403 

Employment (Mining) 1124 445.08 1305.70 1 15226 

Employment (211) 923 204.61 787.20 0 7827 

Employment (Construction) 1155 858.16 2646.23 2 19415 

Employment (Retail Trade) 1155 2250.21 6420.11 63 46079 

Note: This BLS dataset includes observations from 2001 to 2015 
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Table III-4. Baseline Regression Results for Arkansas (Upjohn Data) 

 Arkansas ln (Total) ln (Retail Trade) ln (Construction) 

Drilled Wells 0.001*** 0.000*** 0.002*** 

(Newly Added) (0.000) (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) 

Group I -1.739*** -1.548*** -2.062*** 

 (0.029) (0.031) (0.147) 

Group II 0.961*** 1.167*** 1.855*** 

 (0.104) (0.090) (0.189) 

R-sq 0.995 0.994 0.955 

N 1125 1125 1125 

 Arkansas ln (Agricultural) ln (Mining): NAICS_21 
ln (Oil & Gas Extraction): 

NAICS_211 

Drilled Wells -0.000* 0.014*** 0.008* 

(Newly Added) (0.001) (0.002) (0.005) 

Population 0.000*** 0.000*** 0.000 

 (0.000) (0.000) (0.000) 

Group I -1.692*** -0.364 -1.443*** 

 (0.141) (0.408) (0.501) 

Group II -4.058*** -0.157 -1.023 

 (0.818) (0.896) (3.408) 

R-sq 0.855 0.844 0.786 

N 1051 797 266 

Note: Year fixed effects and county fixed effects are included for all results.
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Table III-5. Spatial Model Estimation Results for Arkansas (Upjohn Data) 

Arkansas ln (Total), SAR ln (Total), SEM ln (R. T.), SAR ln (R. T.), SEM ln (Const.), SAR ln (Const.), SEM 

Drilled Wells 0.003*** 0.002*** 0.002*** 0.002*** 0.007*** 0.007*** 

(Newly Added) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.025 -0.024 0.198*** 0.167*** 0.021 0.000 

 (0.064) (0.059) (0.058) (0.053) (0.089) (0.089) 

Group II 0.040 -0.071 0.102 -0.008 0.312*** 0.303*** 

 (0.078) (0.074) (0.082) (0.075) (0.080) (0.079) 

Rho -0.202*** - -0.182*** - 0.005 - 

 (0.042) - (0.042) - (0.038) - 

Lambda - -0.238*** - -0.260*** - -0.082 

 - (0.049) - (0.047) - (0.056) 

Global Moran’ I -0.074 -0.074 -0.086 -0.086 -0.026 -0.026 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.178 0.178 

R-sq 0.615 0.616 0.600 0.601 0.576 0.576 

N 1125 1125 1125 1125 1125 1125 

Arkansas ln (Ag), SAR ln (Ag), SEM ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells -0.005*** -0.006*** 0.011*** 0.011*** 0.009*** 0.009*** 

(Newly Added) (0.001) (0.001) (0.001) (0.001) (0.002) (0.002) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000* 0.000* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.362*** -0.349*** -0.242* 0.194 -0.128 -0.093 

 (0.105) (0.124) (0.143) (0.164) (0.228) (0.243) 

Group II -0.444*** -0.380*** -0.231* -0.089 -0.079 -0.056 

 (0.089) (0.095) (0.119) (0.121) (0.215) (0.228) 

Rho 0.489*** - 0.271*** - 0.091 - 

 (0.029) - (0.037) - (0.057) - 

Lambda - 0.503*** - 0.302*** - 0.074 

 - (0.029) - (0.041) - (0.061) 

Global Moran’ I 0.386 0.386 0.170 0.170 0.154 0.154 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.034 0.033 0.185 0.263 0.084 0.078 

N 1125 1125 1125 1125 1125 1125 
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Table III-6. Baseline Regression Results for Kansas (Upjohn Data) 

Kansas ln (Total) ln (Retail Trade) 

Drilled Wells 0.001*** - 0.001*** 0.003*** - 0.003*** 

(Newly Added) (0.000) - (0.000) (0.001) - (0.001) 

Wind Farm - 0.000*** 0.000** - 0.000 0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 2.208*** 2.209*** 2.208*** 2.028*** 2.029*** 2.028*** 

 (0.028) (0.028) (0.028) (0.033) (0.033) (0.033) 

Group II 4.678*** 4.682*** 4.677*** 4.156*** 4.170*** 4.156*** 

  (0.043) (0.043) (0.043) (0.078) (0.078) (0.078) 

R-sq 0.997 0.997 0.997 0.992 0.992 0.992 

N 1575 1575 1575 1575 1575 1575 

Kansas ln (Construction) ln (Agricultural) 

Drilled Wells 0.002 - 0.002 -0.010*** - -0.009*** 

(Newly Added) (0.002) - (0.002) (0.003) - (0.004) 

Wind Farm - 0.000 0.000 - -0.000 -0.000 

(Newly Added) - (0.000) (0.000) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** -0.000** -0.000** -0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 2.585*** 2.585*** 2.584*** 0.251** 0.254** 0.251** 

 (0.114) (0.114) (0.114) (0.115) (0.115) (0.115) 

Group II 6.537*** 6.543*** 6.534*** 1.314*** 1.282*** 1.315*** 

  (0.169) (0.169) (0.169) (0.454) (0.453) (0.454) 

R-sq 0.967 0.967 0.967 0.689 0.687 0.689 

N 1570 1570 1570 1202 1202 1202 

Kansas ln (Mining): NAICS_21 ln (Oil & Gas Extraction): NAICS_211 

Drilled Wells 0.005** - 0.005** 0.004** - 0.003** 

(Newly Added) (0.002) - (0.002) (0.002) - (0.001) 

Wind Farm - 0.001 0.001 - 0.001 0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000** 0.000** 0.000** 0.000** 0.000** 0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.999*** 1.001*** 0.999*** 0.443*** 0.444*** 0.443*** 

 (0.065) (0.065) (0.065) (0.096) (0.096) (0.097) 

Group II -1.555*** -1.537*** -1.563*** -2.781*** -2.773*** -2.792*** 

  (0.417) (0.417) (0.417) (0.639) (0.639) (0.639) 

R-sq 0.879 0.879 0.879 0.840 0.840 0.840 

N 1348 1348 1348 871 871 871 

Note: Year fixed effects and county fixed effects are included for all results.
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Table III-7. Spatial Model Estimation Results for Kansas (Upjohn Data) 

Kansas ln (Total), SAR ln (Total), SEM ln (Retail Trade), SAR ln (Retail Trade), SEM 

Drilled Wells -0.003 - -0.003 -0.002 - -0.001 -0.001 - -0.001 -0.001 - -0.001 

(Newly Added) (0.003) - (0.003) (0.004) - (0.004) (0.003) - (0.003) (0.004) - (0.004) 

Wind Farm - 0.000 0.000 - -0.000 -0.000 - -0.000 -0.000 - -0.000 -0.000 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.394*** 0.391*** 0.394*** 0.458*** 0.384*** 0.385*** 0.361*** 0.360*** 0.361*** 0.385*** 0.384*** 0.385*** 

 (0.054) (0.054) (0.054) (0.058) (0.059) (0.059) (0.057) (0.056) (0.057) (0.059) (0.059) (0.059) 

Group II 0.427*** 0.426*** 0.427*** 0.746*** 0.879*** 0.880*** 0.567*** 0.566*** 0.567*** 0.879*** 0.879*** 0.880*** 

 (0.085) (0.085) (0.085) (0.101) (0.093) (0.093) (0.092) (0.092) (0.092) (0.093) (0.093) (0.093) 

Rho 0.317*** 0.318*** 0.318*** - - - 0.228*** 0.228*** 0.228*** - - - 

 (0.028) (0.028) (0.028) - - - (0.030) (0.030) (0.030) - - - 

Lambda - - - 0.172*** 0.025 0.025 - - - 0.025 0.025 0.025 

 - - - (0.054) (0.052) (0.052) - - - (0.052) (0.052) (0.052) 

Global Moran’ I 0.062 0.063 0.062 0.062 0.063 0.062 0.009 0.009 0.009 0.009 0.009 0.009 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.558 0.558 0.566 0.558 0.558 0.566 

R-sq 0.494 0.493 0.494 0.500 0.500 0.500 0.473 0.473 0.473 0.477 0.477 0.477 

N 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 

Kansas ln (Construction), SAR ln (Construction), SEM ln (Agriculture), SAR ln (Agriculture), SEM 

Drilled Wells 0.007 - 0.007 0.005 - 0.005 -0.008 - -0.008 -0.008 - -0.008 

(Newly Added) (0.008) - (0.008) (0.004) - (0.004) (0.006) - (0.006) (0.006) - (0.006) 

Wind Farm - 0.001 0.001 - 0.001 0.001 - -0.001 -0.000 - -0.000 -0.000 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.478*** 0.468*** 0.477*** 0.551*** 0.545*** 0.550*** 0.287*** 0.280*** 0.287*** 0.290*** 0.284*** 0.291*** 

 (0.068) (0.068) (0.068) (0.074) (0.074) (0.074) (0.064) (0.063) (0.064) (0.064) (0.064) (0.064) 

Group II 1.033*** 1.032*** 1.033*** 1.381*** 1.380*** 1.381*** 0.126 0.126 0.126 0.139 0.140 0.139 

 (0.094) (0.094) (0.094) (0.108) (0.108) (0.108) (0.101) (0.101) (0.101) (0.105) (0.105) (0.105) 

Rho 0.327*** 0.328*** 0.328*** - - - 0.029 0.029 0.029 - - - 

 (0.028) (0.028) (0.028) - - - (0.037) (0.037) (0.037) - - - 

Lambda - - - 0.224*** 0.227*** 0.225*** - - - 0.037 0.039 0.037 

 - - - (0.047) (0.047) (0.047) - - - (0.039) (0.038) (0.039) 

Global Moran’ I 0.082 0.083 0.082 0.082 0.083 0.082 0.075 0.075 0.075 0.075 0.075 0.075 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.443 0.443 0.443 0.444 0.444 0.444 0.060 0.057 0.060 0.060 0.057 0.059 

N 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 
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Table III-7. Spatial Model Estimation Results for Kansas (Upjohn Data) (Continued) 

Kansas ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells 0.005 - 0.007** 0.006* - 0.007** -0.001 - -0.002 -0.002 - -0.002 

(Newly Added) (0.004) - (0.003) (0.003) - (0.003) (0.003) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.003*** 0.003*** - 0.003*** 0.003*** - 0.001 0.001 - 0.001 0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.666*** 0.658*** 0.664*** 0.671*** 0.668*** 0.673*** 0.723*** 0.721*** 0.723*** 0.750*** 0.748*** 0.751*** 

 (0.078) (0.077) (0.077) (0.082) (0.081) (0.082) (0.085) (0.085) (0.085) (0.083) (0.083) (0.083) 

Group II -0.096 -0.093 -0.093 0.073 0.082 0.077 -0.252** -0.251** -0.251** -0.192* -0.191* -0.191* 

 (0.117) (0.117) (0.116) (0.119) (0.119) (0.119) (0.102) (0.102) (0.102) (0.101) (0.101) (0.101) 

Rho 0.377*** 0.376*** 0.378*** - - - 0.098*** 0.097*** 0.097*** - - - 

 (0.025) (0.025) (0.025) - - - (0.030) (0.030) (0.030) - - - 

Lambda - - - 0.423*** 0.422*** 0.424*** - - - 0.109*** 0.108*** 0.109*** 

 - - - (0.027) (0.027) (0.027) - - - (0.033) (0.033) (0.033) 

Global Moran’ I 0.272 0.273 0.272 0.272 0.273 0.272 0.258 0.259 0.258 0.258 0.259 0.258 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.093 0.095 0.093 0.201 0.200 0.199 0.188 0.188 0.187 0.189 0.189 0.188 

N 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 1575 
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Table III-8. Baseline Regression Results for Oklahoma (Upjohn Data) 

Oklahoma ln (Total) ln (Retail Trade) 

Drilled Wells 0.000** - 0.000** 0.000 - 0.000 

(Newly Added) (0.000) - (0.000) (0.000) - (0.000) 

Wind Farm - 0.000 0.000 - 0.000 0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000** 0.000*** 0.000** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.232*** -0.230*** -0.231*** -0.024 -0.023 -0.024 

 (0.040) (0.040) (0.040) (0.021) (0.021) (0.021) 

Group II 0.832*** 0.833*** 0.831*** 0.764*** 0.765*** 0.764*** 

 (0.039) (0.040) (0.039) (0.038) (0.038) (0.038) 

Group III 3.971*** 3.914*** 3.961*** 3.200*** 3.170*** 3.194*** 

  (0.265) (0.276) (0.265) (0.232) (0.238) (0.233) 

R-sq 0.993 0.993 0.993 0.994 0.994 0.994 

N 1155 1155 1155 1155 1155 1155 

Oklahoma ln (Construction) ln (Agricultural) 

Drilled Wells 0.003*** - 0.003*** -0.005** - -0.005** 

(Newly Added) (0.001) - (0.001) (0.002) - (0.002) 

Wind Farm - -0.000 -0.000 - -0.001 -0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) 

Population -0.000 -0.000 -0.000 -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.269*** 0.275*** 0.268*** 1.089*** 1.061*** 1.090*** 

 (0.093) (0.094) (0.093) (0.319) (0.315) (0.317) 

Group II 3.007*** 3.020*** 3.008*** 0.792** 0.742** 0.799** 

 (0.099) (0.101) (0.100) (0.312) (0.297) (0.310) 

Group III 6.385*** 6.111*** 6.406*** 7.958*** 8.485*** 8.036*** 

  (0.492) (0.478) (0.491) (1.657) (1.648) (1.650) 

R-sq 0.958 0.958 0.958 0.784 0.783 0.784 

N 1155 1155 1155 767 767 767 

Oklahoma ln (Mining): NAICS_21 ln (Oil & Gas Extraction): NAICS_211 

Drilled Wells 0.003** - 0.003** 0.004** - 0.004** 

(Newly Added) (0.001) - (0.001) (0.002) - (0.002) 

Wind Farm - 0.000 0.000 - 0.001 0.001 

(Newly Added) - (0.000) (0.000) - (0.001) (0.001) 

Population 0.000 0.000** 0.000 -0.000 0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 3.931*** 3.941*** 3.931*** -3.480*** -3.444*** -3.456*** 

 (0.336) (0.334) (0.336) (0.462) (0.461) (0.463) 

Group II 1.278*** 1.291*** 1.276*** -3.348*** -3.310*** -3.333*** 

 (0.323) (0.321) (0.323) (0.242) (0.247) (0.244) 

Group III 5.763*** 5.437*** 5.731*** 3.298*** 2.897*** 3.226*** 

  (0.864) (0.848) (0.867) (1.042) (1.054) (1.039) 

R-sq 0.927 0.927 0.927 0.903 0.902 0.903 

N 1124 1124 1124 917 917 917 

Note: Year fixed effects and county fixed effects are included for all results. 
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Table III-9. Spatial Model Estimation Results for Oklahoma (Upjohn Data) 

Oklahoma ln (Total), SAR ln (Total), SEM ln (Retail Trade), SAR ln (Retail Trade), SEM 

Drilled Wells 0.001 - 0.001 0.000 - 0.001 0.002 - 0.002 0.001 - 0.001 

(Newly Added) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) 

Wind Farm - -0.000 -0.000 - -0.001 -0.001 - 0.000 0.000 - -0.001 -0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.406*** 0.413*** 0.406*** 0.418*** 0.411*** 0.406*** 0.404*** 0.416*** 0.405*** 0.408*** 0.411*** 0.406*** 

 (0.071) (0.071) (0.071) (0.065) (0.063) (0.063) (0.070) (0.069) (0.070) (0.063) (0.063) (0.063) 

Group II 0.881*** 0.907*** 0.881*** 1.130*** 1.112*** 1.095*** 0.893*** 0.930*** 0.892*** 1.090*** 1.112*** 1.095*** 

 (0.098) (0.091) (0.099) (0.089) (0.074) (0.086) (0.095) (0.087) (0.095) (0.085) (0.074) (0.086) 

Group III 0.582*** 0.583*** 0.582*** 0.719*** 0.691*** 0.690*** 0.607*** 0.608*** 0.607*** 0.692*** 0.691*** 0.690*** 

 (0.093) (0.093) (0.093) (0.084) (0.086) (0.087) (0.097) (0.096) (0.096) (0.087) (0.086) (0.087) 

Rho 0.053 0.052 0.053 - - - 0.016 0.015 0.016 - - - 

 (0.035) (0.035) (0.035) - - - (0.036) (0.036) (0.036) - - - 

Lambda - - - -0.232*** -0.251*** -0.248*** - - - -0.243*** -0.251*** -0.248*** 

 - - - (0.048) (0.046) (0.047) - - - (0.046) (0.046) (0.047) 

Global Moran’ I -0.079 -0.080 -0.079 -0.079 -0.080 -0.079 -0.084 -0.085 -0.083 -0.084 -0.085 -0.083 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.419 0.422 0.419 0.535 0.534 0.534 0.504 0.503 0.503 0.509 0.508 0.508 

N 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 

Oklahoma ln (Construction), SAR ln (Construction), SEM ln (Agriculture), SAR ln (Agriculture), SEM 

Drilled Wells 0.002 - 0.002 0.001 - 0.001 -0.004 - -0.004 -0.003 - -0.003 

(Newly Added) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.000 0.000 - -0.000 -0.000 - -0.001 -0.001 - -0.001 -0.001 

(Newly Added) - (0.002) (0.002) - (0.002) (0.002) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.339*** 0.349*** 0.340*** 0.387*** 0.393*** 0.387*** 0.394*** 0.371*** 0.388*** 0.397*** 0.379*** 0.391*** 

 (0.085) (0.085) (0.086) (0.085) (0.084) (0.085) (0.125) (0.125) (0.126) (0.127) (0.126) (0.128) 

Group II 1.469*** 1.498*** 1.468*** 1.828*** 1.849*** 1.828*** 0.211 0.123 0.208 0.222 0.148 0.220 

 (0.109) (0.101) (0.109) (0.118) (0.108) (0.119) (0.191) (0.173) (0.191) (0.189) (0.170) (0.189) 

Group III 0.688*** 0.690*** 0.689*** 0.899*** 0.900*** 0.899*** -0.152 -0.160 -0.159 -0.142 -0.149 -0.149 

 (0.126) (0.126) (0.126) (0.125) (0.125) (0.125) (0.146) (0.147) (0.147) (0.148) (0.149) (0.149) 

Rho 0.171*** 0.171*** 0.171*** - - - 0.086* 0.087* 0.085* - - - 

 (0.038) (0.038) (0.038) - - - (0.051) (0.051) (0.051) - - - 

Lambda - - - -0.059 -0.061 -0.060 - - - 0.109** 0.112** 0.108** 

 - - - (0.060) (0.060) (0.061) - - - (0.054) (0.053) (0.054) 

Global Moran’ I -0.019 -0.019 -0.019 -0.019 -0.019 -0.019 0.095 0.102 0.096 0.095 0.102 0.096 

P-Value > Z (·) 0.357 0.341 0.358 0.357 0.341 0.358 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.120 0.120 0.117 0.477 0.476 0.477 0.051 0.047 0.051 0.051 0.048 0.051 

N 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 
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Table III-9. Spatial Model Estimation Results for Oklahoma (Upjohn Data) (Continued) 

Oklahoma ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells 0.010*** - 0.009*** 0.012*** - 0.012*** 0.008*** - 0.008** 0.009*** - 0.009*** 
(Newly Added) (0.003) - (0.003) (0.004) - (0.004) (0.003) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.004*** 0.003*** - 0.003** 0.003** - 0.001 0.001 - 0.001 0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.002) (0.002) - (0.002) (0.002) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.565*** 0.642*** 0.586*** 0.479*** 0.554*** 0.497*** 0.647*** 0.703*** 0.655*** 0.664*** 0.718*** 0.670*** 

 (0.111) (0.109) (0.111) (0.126) (0.128) (0.127) (0.116) (0.115) (0.117) (0.126) (0.126) (0.127) 

Group II 0.084 0.272 0.092 0.087 0.325 0.096 -0.004 0.150 -0.000 0.136 0.307* 0.139 

 (0.219) (0.215) (0.218) (0.238) (0.240) (0.238) (0.185) (0.177) (0.184) (0.190) (0.183) (0.189) 

Group III 0.423*** 0.449*** 0.446*** 0.530*** 0.545*** 0.543*** 0.148 0.160 0.158 0.285* 0.292** 0.291* 

 (0.124) (0.124) (0.124) (0.133) (0.134) (0.133) (0.142) (0.142) (0.142) (0.148) (0.148) (0.148) 

Rho 0.369*** 0.362*** 0.364*** - - - 0.239*** 0.235*** 0.237*** - - - 

 (0.033) (0.033) (0.033) - - - (0.036) (0.036) (0.036) - - - 

Lambda - - - 0.389*** 0.372*** 0.384*** - - - 0.237*** 0.227*** 0.235*** 

 - - - (0.040) (0.041) (0.040) - - - (0.041) (0.042) (0.042) 

Global Moran’ I 0.188 0.170 0.177 0.188 0.170 0.177 0.249 0.234 0.240 0.249 0.234 0.240 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.267 0.270 0.274 0.249 0.250 0.254 0.269 0.267 0.271 0.105 0.103 0.107 

N 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 1155 
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Table III-10. Baseline Regression Results for Kansas & Oklahoma (Upjohn Data) 

Oklahoma ln (Total) ln (Retail Trade) 

Drilled Wells 0.001*** - 0.001*** 0.001*** - 0.001*** 

(Newly Added) (0.000) - (0.000) (0.000) - (0.000) 

Wind Farm - 0.000*** 0.000** - 0.000 0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.503*** -0.498*** -0.499*** -0.754*** -0.751*** -0.752*** 

 (0.025) (0.025) (0.025) (0.015) (0.015) (0.015) 

Group II 2.814*** 2.750*** 2.808*** 2.006*** 1.936*** 2.004*** 

 (0.167) (0.181) (0.168) (0.190) (0.204) (0.190) 

R-sq 0.995 0.995 0.995 0.993 0.993 0.993 

N 2730 2730 2730 2730 2730 2730 

Oklahoma ln (Construction) ln (Agricultural) 

Drilled Wells 0.003*** - 0.003*** -0.006*** - -0.006*** 

(Newly Added) (0.001) - (0.001) (0.002) - (0.002) 

Wind Farm - 0.000 -0.000 - -0.001 -0.000 

(Newly Added) - (0.000) (0.000) - (0.001) (0.001) 

Population -0.000** -0.000 -0.000** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -1.368*** -1.363*** -1.368*** -1.088*** -1.108*** -1.098*** 

 (0.098) (0.099) (0.098) (0.311) (0.312) (0.313) 

Group II 4.186*** 3.969*** 4.186*** 6.115*** 6.527*** 6.131*** 

 (0.325) (0.319) (0.325) (1.192) (1.197) (1.191) 

R-sq 0.964 0.964 0.964 0.735 0.733 0.735 

N 2725 2725 2725 1969 1969 1969 

Oklahoma ln (Mining): NAICS_21 ln (Oil & Gas Extraction): NAICS_211 

Drilled Wells 0.005*** - 0.004*** 0.005*** - 0.004*** 

(Newly Added) (0.001) - (0.001) (0.001) - (0.001) 

Wind Farm - 0.001*** 0.001** - 0.001** 0.001* 

(Newly Added) - (0.000) (0.000) - (0.001) (0.001) 

Population 0.000 0.000 0.000 0.000** 0.000** 0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -2.180*** -2.157*** -2.164*** -0.839*** -0.808*** -0.814*** 

 (0.092) (0.094) (0.095) (0.124) (0.130) (0.130) 

Group II 0.449 0.151 0.428 1.132 0.857 1.086 

 (0.872) (0.883) (0.873) (1.004) (0.994) (1.001) 

R-sq 0.914 0.914 0.914 0.885 0.884 0.885 

N 2472 2472 2472 1788 1788 1788 

Note: Year fixed effects and county fixed effects are included for all results. 
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Table III-11. Spatial Model Estimation Results for Kansas & Oklahoma (Upjohn Data) 

Oklahoma ln (Total), SAR ln (Total), SEM ln (Retail Trade), SAR ln (Retail Trade), SEM 

Drilled Wells 0.003* - 0.003* 0.005***  0.007*** 0.005***  0.005*** 0.007***  0.007*** 

(Newly Added) (0.002) - (0.002) (0.002)  (0.002) (0.002)  (0.002) (0.002)  (0.002) 

Wind Farm - 0.001 0.001  0.001 0.001  0.001 0.001  0.001 0.001 

(Newly Added) - (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001)  (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.401*** 0.412*** 0.401*** 0.460*** 0.459*** 0.438*** 0.383*** 0.401*** 0.383*** 0.437*** 0.459*** 0.438*** 

 (0.043) (0.042) (0.043) (0.047) (0.047) (0.048) (0.044) (0.044) (0.044) (0.048) (0.047) (0.048) 

Group II 0.397*** 0.393*** 0.398*** 0.588*** 0.629*** 0.640*** 0.448*** 0.442*** 0.449*** 0.639*** 0.629*** 0.640*** 

 (0.062) (0.062) (0.062) (0.071) (0.074) (0.073) (0.067) (0.067) (0.067) (0.073) (0.074) (0.073) 

Rho 0.346*** 0.349*** 0.346*** - - - 0.310*** 0.315*** 0.310*** - - - 

 (0.020) (0.020) (0.020) - - - (0.021) (0.021) (0.021) - - - 

Lambda - - - 0.295*** 0.247*** 0.241*** - - - 0.240*** 0.247*** 0.241*** 

 - - - (0.034) (0.034) (0.034) - - - (0.034) (0.034) (0.034) 

Global Moran’ I 0.098 0.099 0.098 0.098 0.099 0.098 0.082 0.085 0.082 0.082 0.085 0.082 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.496 0.494 0.496 0.497 0.495 0.497 0.469 0.466 0.469 0.470 0.467 0.470 

N 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 

Oklahoma ln (Construction), SAR ln (Construction), SEM ln (Agriculture), SAR ln (Agriculture), SEM 

Drilled Wells 0.005** - 0.004** 0.007*** - 0.007*** -0.003 - -0.003 -0.003 - -0.003 

(Newly Added) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) 

Wind Farm 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

(Newly Added) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Population 0.421*** 0.437*** 0.421*** 0.462*** 0.482*** 0.464*** 0.334*** 0.324*** 0.334*** 0.341*** 0.332*** 0.340*** 

 (0.053) (0.053) (0.053) (0.060) (0.060) (0.060) (0.059) (0.059) (0.059) (0.060) (0.059) (0.060) 

Group I 0.766*** 0.760*** 0.767*** 0.985*** 0.973*** 0.985*** 0.025 0.024 0.023 0.039 0.039 0.037 

 (0.076) (0.075) (0.075) (0.091) (0.091) (0.091) (0.081) (0.081) (0.081) (0.083) (0.083) (0.083) 

Group II - 0.001 0.001 - 0.001 0.001 - -0.001 -0.001 - -0.001 -0.001 

 - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Rho 0.375*** 0.379*** 0.376*** - - - 0.060** 0.060** 0.060** - - - 

 (0.021) (0.021) (0.021) - - - (0.030) (0.030) (0.030) - - - 

Lambda - - - 0.324*** 0.330*** 0.326*** - - - 0.075** 0.077** 0.075** 

 - - - (0.035) (0.035) (0.035) - - - (0.031) (0.031) (0.031) 

Global Moran’ I 0.111 0.113 0.111 0.111 0.113 0.111 0.108 0.112 0.108 0.108 0.112 0.108 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.430 0.428 0.430 0.427 0.424 0.427 0.070 0.066 0.069 0.069 0.066 0.069 

N 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 
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Table III-11. Spatial Model Estimation Results for Kansas & Oklahoma (Upjohn Data) (Continued) 

Oklahoma ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells 0.008*** - 0.007** 0.009*** - 0.009*** 0.005** - 0.005** 0.006** - 0.006** 

(Newly Added) (0.003) - (0.003) (0.003) - (0.003) (0.002) - (0.002) (0.003) - (0.003) 

Wind Farm 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

(Newly Added) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Population 0.475*** 0.507*** 0.482*** 0.398*** 0.426*** 0.409*** 0.573*** 0.598*** 0.577*** 0.599*** 0.623*** 0.603*** 

 (0.066) (0.065) (0.066) (0.070) (0.069) (0.069) (0.071) (0.070) (0.071) (0.073) (0.072) (0.073) 

Group I 0.018 0.023 0.030 0.257*** 0.249*** 0.265*** -0.129 -0.130 -0.125 0.029 0.025 0.032 

 (0.089) (0.089) (0.089) (0.089) (0.089) (0.089) (0.089) (0.089) (0.089) (0.092) (0.092) (0.092) 

Group II - 0.004*** 0.003*** - 0.003*** 0.003*** - 0.001 0.001 - 0.001 0.001 

 - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Rho 0.485*** 0.487*** 0.483*** - - - 0.224*** 0.226*** 0.223*** - - - 
 (0.017) (0.017) (0.017) - - - (0.022) (0.022) (0.022) - - - 

Lambda - - - 0.537*** 0.537*** 0.535*** - - - 0.245*** 0.246*** 0.244*** 

 - - - (0.019) (0.019) (0.019) - - - (0.024) (0.024) (0.024) 

Global Moran’ I 0.330 0.331 0.327 0.330 0.331 0.327 0.305 0.305 0.303 0.305 0.305 0.303 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.229 0.226 0.232 0.088 0.083 0.091 0.142 0.140 0.142 0.252 0.247 0.253 

N 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 2730 
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Figure III-1. Share of Oil Production in the U.S. 

Source: U.S. Energy Information Administration 
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Figure III-2. Locations of Shale Plays in the U.S. 

Source: U.S. Energy Information Administration 
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Population (Arkansas) Employment Level in Mining Sector (Arkansas) 

  

Population (Kansas) Employment Level in Mining Sector (Kansas) 

  

Population (Oklahoma) Employment Level in Mining Sector (Oklahoma) 

  

Figure III-3. Trends of Population and Employment Levels in Mining Sector  

Source: Population (U.S. Census); Employment level (BLS) 
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APPENDICES 
 

Table II-Appendix-1. Unconventional Drilling Well Results (Estimation with All Data) 

Ln (Sale Price) 
Canadian County Payne County 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dist to the nearest  0.002 - - - -0.001 - - - 

drilling site (0.002) - - - (0.003) - - - 

Ring Boundary I  - -0.623 - - - 0.016 - - 

(0-3500 ft) - (0.565) - - - (0.032) - - 

Ring Boundary II - - 0.235 - - - 0.033 - 

(3501-5000 ft) - - (0.180) - - - (0.035) - 

Ring Boundary III - - - -0.273* - - - -0.002 

(5001-6500 ft) - - - (0.158) - - - (0.018) 

Bedrooms 0.046*** 0.046*** 0.046*** 0.046*** 0.049*** 0.043*** 0.043*** 0.043*** 

 (0.013) (0.013) (0.013) (0.013) (0.018) (0.017) (0.017) (0.017) 

Bathrooms 0.178*** 0.178*** 0.178*** 0.178*** 0.169*** 0.139*** 0.139*** 0.139*** 

 (0.042) (0.042) (0.042) (0.042) (0.022) (0.022) (0.022) (0.022) 

Age of Building -0.007** -0.007** -0.007** -0.007** -0.004*** -0.004*** -0.004*** -0.004*** 

 (0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.032** 0.033** 0.033** 0.033** 0.010 0.020 0.023 0.017 

 (0.015) (0.015) (0.015) (0.015) (0.059) (0.053) (0.053) (0.053) 

Dist to Biggest City 0.003 -0.004 0.000 -0.003 0.016 0.024** 0.024** 0.024** 

(OKC or Stillwater) (0.016) (0.015) (0.015) (0.015) (0.013) (0.012) (0.012) (0.012) 

Dist to the 0.000 0.001 0.000 0.001 0.003*** 0.002*** 0.002*** 0.002*** 
biggest city_sq (0.001) (0.000) (0.001) (0.000) (0.001) (0.001) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_nearest_road 0.000* 0.000* 0.000* 0.000* -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year FE Y Y Y Y Y Y Y Y 

Community FE Y Y Y Y Y Y Y Y 

R-sq 0.577 0.577 0.577 0.577 0.442 0.454 0.454 0.454 

adj. R-sq 0.576 0.576 0.576 0.576 0.439 0.451 0.451 0.451 

N 16900 16902 16902 16902 6813 8334 8334 8334 

Robust Standard errors in parentheses       

* p<0.1  ** p<0.05  *** p<0.01        
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Table II-Appendix-2. Conventional Drilling Well Results (Estimation with All Data) 

Ln (Sale Price) 
Canadian County Payne County 

(1) (2) (3) (4) (5) (6) (7) (8) 

Dist to the nearest  -0.006* - - - 0.048*** - - - 

drilling site (0.003) - - - (0.009) - - - 

Ring Boundary I  - 0.010 - - - -0.027 - - 

(0-3500 ft) - (0.007) - - - (0.048) - - 

Ring Boundary II - - 0.013* - - - -0.060** - 

(3501-5000 ft) - - (0.007) - - - (0.029) - 

Ring Boundary III - - - 0.003 - - - -0.005 

(5001-6500 ft) - - - (0.006) - - - (0.023) 

Bedrooms 0.056*** 0.056*** 0.056*** 0.056*** 0.040** 0.042** 0.042** 0.043*** 

 (0.014) (0.014) (0.014) (0.014) (0.017) (0.016) (0.017) (0.017) 

Bathrooms 0.176*** 0.176*** 0.175*** 0.176*** 0.143*** 0.139*** 0.140*** 0.139*** 

 (0.045) (0.045) (0.045) (0.045) (0.022) (0.022) (0.022) (0.022) 

Age of Building -0.007** -0.007** -0.007** -0.007** -0.004*** -0.004*** -0.004*** -0.004*** 

 (0.003) (0.003) (0.003) (0.003) (0.000) (0.000) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.033** 0.033** 0.033** 0.033** 0.026 0.018 0.023 0.018 

 (0.016) (0.016) (0.016) (0.016) (0.053) (0.053) (0.053) (0.053) 

Dist to Biggest City 0.002 0.002 0.002 0.002 0.017 0.023** 0.024** 0.024** 

(OKC or Stillwater) (0.015) (0.015) (0.016) (0.016) (0.012) (0.012) (0.012) (0.012) 

Dist to the 0.000 0.000 0.000 0.000 0.003*** 0.002*** 0.002*** 0.002*** 
biggest city_sq (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_nearest_road 0.000 0.000 0.000 0.000 -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 0.000 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Year FE Y Y Y Y Y Y Y Y 

Community FE Y Y Y Y Y Y Y Y 

R-sq 0.564 0.564 0.564 0.564 0.456 0.454 0.454 0.454 

adj. R-sq 0.563 0.563 0.563 0.563 0.453 0.451 0.451 0.451 

N 17312 17312 17312 17312 8334 8334 8334 8334 

Robust Standard errors in parentheses       

* p<0.1  ** p<0.05  *** p<0.01        
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Table II-Appendix-3. Additional Estimation for Canadian County 

Ln  

(Sale Price) 

Distance farther than  10 Mile 25 Mile 

Data Treatment Allocate to missing Allocate to missing 

 (1) (2) (5) (6) 

Distance to the nearest -0.000 -0.001 0.002 0.000 

Unconventional drilling Site (0.006) (0.005) (0.002) (0.002) 

Bedrooms 0.037*** 0.029** 0.048*** 0.035*** 

 (0.012) (0.012) (0.013) (0.012) 

Bathrooms 0.148*** 0.142*** 0.180*** 0.168*** 

 (0.018) (0.016) (0.043) (0.040) 

Age of Building -0.014*** -0.013*** -0.007** -0.006** 

 (0.000) (0.000) (0.003) (0.003) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

Public Water Supply 0.035 0.041* 0.034** 0.035*** 

 (0.025) (0.022) (0.015) (0.014) 

D_OKC 0.035** 0.041*** 0.001 0.006 

 (0.016) (0.014) (0.016) (0.015) 

D_OKC_sq -0.001 -0.001* 0.000 0.000 

 (0.001) (0.000) (0.001) (0.000) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_nearest_road -0.000 -0.000 0.000* 0.000 

 (0.000) (0.000) (0.000) (0.000) 

D_road_sq -0.000 -0.000 -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

Excluding <$5,000 No Yes No Yes 

R-sq 0.628 0.652 0.575 0.594 

adj. R-sq 0.626 0.650 0.574 0.593 

N 6879 6840 16555 16502 

Robust Standard errors in parentheses   

* p<0.1  ** p<0.05  *** p<0.01    

Note: Year fixed effects and community fixed effects are considered for all the results.  
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Table II-Appendix-4. Additional Estimation for Payne County 

Ln  

(Sale Price) 

Distance farther than  10 Mile 25 Mile 

Data Treatment Allocate to missing Allocate to missing 

 (1) (2) (5) (6) 

Distance to the nearest 0.013 0.010 -0.003 0.001 

Unconventional drilling Site (0.011) (0.010) (0.005) (0.004) 

Bedrooms 0.041** 0.036** 0.046*** 0.042*** 

 (0.019) (0.018) (0.018) (0.016) 

Bathrooms 0.206*** 0.189*** 0.173*** 0.162*** 

 (0.024) (0.022) (0.022) (0.021) 

Age of Building -0.004*** -0.003*** -0.004*** -0.003*** 

 (0.001) (0.000) (0.000) (0.000) 

Area 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

Public Water Supply -0.048 -0.008 0.017 0.024 

 (0.071) (0.064) (0.063) (0.057) 

D_Stillwater 0.017 0.053*** 0.018 0.051*** 

 (0.016) (0.013) (0.013) (0.012) 

D_Stillwater_sq 0.003*** 0.000 0.003*** 0.000 

 (0.001) (0.001) (0.001) (0.001) 

D_Nearest Highway 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_Highway_sq -0.000*** -0.000*** -0.000*** -0.000*** 

 (0.000) (0.000) (0.000) (0.000) 

D_nearest_road -0.000 -0.000* -0.000 -0.000 

 (0.000) (0.000) (0.000) (0.000) 

D_road_sq 0.000 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) 

Excluding <$5,000 No Yes No Yes 

R-sq 0.428 0.423 0.425 0.422 

adj. R-sq 0.424 0.419 0.422 0.419 

N 4772 4714 6394 6321 

Robust Standard errors in parentheses   

* p<0.1  ** p<0.05  *** p<0.01    

Note: Year fixed effects and community fixed  
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Table III-Appendix-1. Wind Farm Counties 

Kansas Oklahoma 

County 
Wind Farm 

(MW) 

Shale Drilling 

(Count) 
County 

Wind Farm 

(MW) 

Shale Drilling 

(Count) 

Barber 570.2 80 Beaver 497.7 0 

Butler 150 8 Caddo 199 38 

Clark 200 8 Canadian 298.5 673 

Cloud 201 0 Comanche 225.3 0 

Coffey 199 6 Custer 147 18 

Elk 200 0 Dewey 853.6 57 

Ellis 205.7 1 Ellis 225 1 

Ellsworth 201 0 Garfield 398.8 60 

Ford 423.9 17 Grady 408.8 298 

Gray 507.5 20 Grant 299 18 

Haskell 249.8 13 Harper 233.4 0 

Kiowa 116.5 6 Kay 558.8 0 

Lincoln 249.3 0 Kingfisher 298 17 

Marshall 73.8 0 Kiowa 148.8 0 

Ness 198.6 16 Murray 250 1 

Pottawatomie 0 0 Osage 150.4 5 

Pratt 423.1 5 Roger Mills 453.1 0 

Rush 50.7 2 Stephens 249.9 163 

Sumner 150 49 Texas 320 0 

Wichita 99 0 Washita 74 0 

- - - Woodward 355 0 

Source: U.S. Department of Energy Information Administration (EIA-860) 
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Table III-Appendix-2. Moran’s I and Geary’s C Test Stat for Arkansas in each year 

AR Moran's I Geary's C 

 Contiguity (Queen) Distance Based W  Contiguity (Queen) Distance Based W  

Year I p-value I p-value c p-value* c p-value 

2001 0.042 0.431 0.066 0.241 0.940 0.411 0.891 0.124 

2002 0.049 0.379 0.071 0.211 0.931 0.344 0.883 0.099 

2003 0.055 0.332 0.075 0.190 0.924 0.297 0.877 0.084 

2004 0.056 0.326 0.076 0.184 0.923 0.294 0.876 0.081 

2005 0.057 0.316 0.076 0.184 0.920 0.274 0.874 0.076 

2006 0.063 0.277 0.081 0.161 0.913 0.234 0.868 0.062 

2007 0.070 0.236 0.087 0.139 0.906 0.197 0.862 0.051 

2008 0.073 0.219 0.090 0.126 0.903 0.185 0.860 0.047 

2009 0.074 0.216 0.091 0.122 0.903 0.185 0.858 0.045 

2010 0.075 0.212 0.093 0.117 0.902 0.178 0.857 0.043 

2011 0.079 0.191 0.099 0.098 0.898 0.160 0.851 0.036 

2012 0.082 0.174 0.102 0.087 0.894 0.146 0.848 0.031 

2013 0.084 0.165 0.105 0.081 0.892 0.137 0.845 0.028 

2014 0.086 0.160 0.107 0.076 0.890 0.132 0.842 0.026 

2015 0.088 0.151 0.108 0.072 0.889 0.126 0.840 0.024 

2016 0.088 0.149 0.108 0.072 0.887 0.122 0.839 0.023 
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Table III-Appendix-3. Moran’s I and Geary’s C Test Stat for Kansas in each year 

KS Moran's I Geary's C 

 Contiguity (Queen) Distance Based W  Contiguity (Queen) Distance Based W  

Year I p-value I p-value c p-value* c p-value 

2001 0.345 0.000 0.330 0.000 0.649 0.000 0.653 0.000 

2002 0.344 0.000 0.329 0.000 0.651 0.000 0.655 0.000 

2003 0.341 0.000 0.327 0.000 0.653 0.000 0.657 0.000 

2004 0.342 0.000 0.328 0.000 0.652 0.000 0.655 0.000 

2005 0.349 0.000 0.333 0.000 0.645 0.000 0.650 0.000 

2006 0.351 0.000 0.335 0.000 0.642 0.000 0.648 0.000 

2007 0.350 0.000 0.333 0.000 0.644 0.000 0.649 0.000 

2008 0.356 0.000 0.339 0.000 0.638 0.000 0.643 0.000 

2009 0.349 0.000 0.333 0.000 0.644 0.000 0.649 0.000 

2010 0.346 0.000 0.330 0.000 0.647 0.000 0.652 0.000 

2011 0.339 0.000 0.322 0.000 0.653 0.000 0.659 0.000 

2012 0.336 0.000 0.319 0.000 0.656 0.000 0.661 0.000 

2013 0.335 0.000 0.319 0.000 0.657 0.000 0.661 0.000 

2014 0.338 0.000 0.321 0.000 0.653 0.000 0.658 0.000 

2015 0.340 0.000 0.324 0.000 0.651 0.000 0.655 0.000 

2016 0.346 0.000 0.331 0.000 0.646 0.000 0.648 0.000 
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Table III-Appendix-4. Moran’s I and Geary’s C Test Stat for Kansas in each year 

OK Moran's I Geary's C 

 Contiguity (Queen) Distance Based W  Contiguity (Queen) Distance Based W  

Year I p-value I p-value c p-value* c p-value 

2001 0.161 0.015 0.220 0.000 0.823 0.020 0.805 0.007 

2002 0.160 0.015 0.218 0.000 0.823 0.020 0.807 0.007 

2003 0.155 0.019 0.212 0.001 0.829 0.025 0.812 0.009 

2004 0.156 0.018 0.215 0.001 0.828 0.023 0.810 0.008 

2005 0.160 0.015 0.217 0.001 0.824 0.020 0.808 0.008 

2006 0.159 0.016 0.214 0.001 0.825 0.021 0.811 0.008 

2007 0.162 0.014 0.219 0.000 0.821 0.018 0.804 0.006 

2008 0.160 0.016 0.218 0.000 0.823 0.020 0.803 0.006 

2009 0.161 0.015 0.219 0.000 0.823 0.019 0.803 0.006 

2010 0.155 0.019 0.212 0.001 0.830 0.025 0.811 0.008 

2011 0.149 0.023 0.207 0.001 0.835 0.029 0.815 0.010 

2012 0.142 0.029 0.202 0.001 0.843 0.039 0.821 0.013 

2013 0.145 0.027 0.205 0.001 0.839 0.033 0.818 0.011 

2014 0.148 0.024 0.208 0.001 0.836 0.030 0.817 0.011 

2015 0.158 0.017 0.217 0.000 0.827 0.022 0.809 0.008 

2016 0.164 0.013 0.222 0.000 0.821 0.018 0.803 0.006 
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Table III-Appendix-5. Baseline Regression Results for Arkansas (BLS Data) 

 Arkansas ln (Total) ln (Retail Trade) ln (Construction) 

Drilled Wells 0.000*** 0.000 0.001*** 

(Newly Added) (0.000) (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) 

Group I -1.522*** -1.619*** -1.668*** 

 (0.022) (0.015) (0.045) 

Group II 1.116*** 0.994*** 2.042*** 

 (0.064) (0.086) (0.158) 

R-sq 0.998 0.996 0.962 

N 1200 1183 1101 

 Arkansas ln (Agricultural) ln (Mining): NAICS_21 
ln (Oil & Gas Extraction): 

NAICS_211 

Drilled Wells -0.002** 0.006*** 0.000 

(Newly Added) (0.001) (0.002) (0.009) 

Population 0.000* -0.000 0.000 

 (0.000) (0.000) (0.000) 

Group I -0.666*** 1.562*** 0.016 

 (0.101) (0.382) (4.166) 

Group II 0.129 0.852 -1.966 

 (0.273) (0.658) (6.849) 

R-sq 0.938 0.839 0.971 

N 675 355 52 

Note: Year fixed effects and county fixed effects are included for all results.
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Table III-Appendix-6. Spatial Model Estimation Results for Arkansas (BLS Data) 

Arkansas ln (Total), SAR ln (Total), SEM ln (R. T.), SAR ln (R. T.), SEM ln (Const.), SAR ln (Const.), SEM 

Drilled Wells 0.002*** 0.001*** 0.002*** 0.002*** 0.004*** 0.004*** 

(Newly Added) (0.001) (0.000) (0.000) (0.000) (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.052 0.005 0.157*** 0.133*** 0.226*** 0.245*** 

 (0.052) (0.047) (0.056) (0.051) (0.074) (0.076) 

Group II 0.097 -0.009 0.068 -0.013 0.159* 0.209*** 

 (0.065) (0.061) (0.080) (0.072) (0.083) (0.078) 

Rho -0.221*** - -0.145*** - 0.065** - 

 (0.041) - (0.038) - (0.030) - 

Lambda - -0.264*** - -0.183*** - 0.038 

 - (0.052) - (0.041) - (0.038) 

Global Moran’ I -0.081 -0.081 -0.026 -0.026 -0.019 -0.019 

P-Value > Z (·) 0.000 0.000 0.169 0.169 0.321 0.321 

R-sq 0.662 0.663 0.471 0.467 0.356 0.315 

N 1200 1200 1200 1200 1200 1200 

Arkansas ln (Ag), SAR ln (Ag), SEM ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells -0.005*** -0.005*** 0.003* 0.003* 0.002 0.002 

(Newly Added) (0.001) (0.001) (0.002) (0.002) (0.010) (0.010) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.195** -0.194* 0.172 0.100 0.475 0.470 

 (0.098) (0.100) (0.119) (0.127) (1.713) (1.675) 

Group II 0.061 0.053 -0.458*** -0.425*** -2.044*** -2.071*** 

 (0.088) (0.088) (0.131) (0.137) (0.178) (0.180) 

Rho 0.057** - 0.326*** - -0.001 - 

 (0.024) - (0.039) - (0.061) - 

Lambda - 0.049** - 0.348*** - -0.018 

 - (0.024) - (0.041) - (0.056) 

Global Moran’ I 0.087 0.087 0.242 0.242 0.219 0.219 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.002 0.002 0.150 0.129 0.007 0.007 

N 1200 1200 1200 1200 1200 1200 
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Table III-Appendix-7. Baseline Regression Results for Kansas (BLS Data) 

Kansas ln (Total) ln (Retail Trade) 

Drilled Wells 0.001*** - 0.001*** 0.002*** - 0.002*** 

(Newly Added) (0.000) - (0.000) (0.001) - (0.000) 

Wind Farm - 0.000** 0.000** - 0.000*** 0.000*** 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 2.089*** 2.089*** 2.089*** 1.938*** 1.939*** 1.938*** 

 (0.012) (0.012) (0.012) (0.027) (0.027) (0.027) 

Group II 4.449*** 4.451*** 4.448*** 4.255*** 4.258*** 4.252*** 

  (0.034) (0.034) (0.034) (0.075) (0.076) (0.076) 

R-sq 0.998 0.998 0.998 0.993 0.993 0.993 

N 1680 1680 1680 1657 1657 1657 

Kansas ln (Construction) ln (Agricultural) 

Drilled Wells 0.004 - 0.004 -0.000 - -0.000 

(Newly Added) (0.003) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.001 0.000 - -0.000 -0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000 0.000 0.000 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 2.562*** 2.562*** 2.561*** 0.662*** 0.661*** 0.662*** 

 (0.125) (0.125) (0.124) (0.097) (0.097) (0.097) 

Group II 6.229*** 6.240*** 6.224*** -0.592 -0.593 -0.591 

  (0.148) (0.149) (0.148) (0.383) (0.383) (0.383) 

R-sq 0.964 0.964 0.964 0.923 0.923 0.923 

N 1400 1400 1400 926 926 926 

Kansas ln (Mining): NAICS_21 ln (Oil & Gas Extraction): NAICS_211 

Drilled Wells 0.008** - 0.008** 0.007** - 0.008** 

(Newly Added) (0.003) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.000 -0.000 - -0.000 -0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000** 0.000** 0.000** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.714*** 0.742*** 0.714*** 0.151** 0.153** 0.151** 

 (0.089) (0.089) (0.089) (0.066) (0.066) (0.066) 

Group II 0.507* 0.559* 0.507* 4.519*** 4.602*** 4.529*** 

  (0.284) (0.291) (0.284) (1.105) (1.124) (1.101) 

R-sq 0.934 0.932 0.934 0.939 0.937 0.939 

N 767 767 767 319 319 319 

Note: Year fixed effects and county fixed effects are included for all results.
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Table III-Appendix-8. Spatial Model Estimation Results for Kansas (BLS Data) 

Kansas ln (Total), SAR ln (Total), SEM ln (Retail Trade), SAR ln (Retail Trade), SEM 

Drilled Wells -0.003 - -0.003 -0.002 - -0.001 -0.000 - -0.000 -0.001 - -0.001 

(Newly Added) (0.003) - (0.003) (0.003) - (0.003) (0.003) - (0.003) (0.003) - (0.003) 

Wind Farm - 0.000 0.000 - 0.000 0.000 - 0.000 0.000 - 0.000 0.000 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.339*** 0.335*** 0.338*** 0.392*** 0.402*** 0.402*** 0.393*** 0.392*** 0.392*** 0.403*** 0.402*** 0.402*** 

 (0.047) (0.046) (0.047) (0.050) (0.058) (0.058) (0.055) (0.055) (0.055) (0.058) (0.058) (0.058) 

Group II 0.419*** 0.419*** 0.419*** 0.746*** 0.815*** 0.815*** 0.555*** 0.555*** 0.555*** 0.815*** 0.815*** 0.815*** 

 (0.076) (0.076) (0.076) (0.087) (0.090) (0.090) (0.089) (0.089) (0.089) (0.090) (0.090) (0.090) 

Rho 0.307*** 0.307*** 0.307*** - - - 0.201*** 0.202*** 0.202*** - - - 

 (0.027) (0.027) (0.027) - - - (0.028) (0.028) (0.028) - - - 

Lambda - - - 0.125** 0.038 0.037 - - - 0.037 0.038 0.037 

 - - - (0.053) (0.043) (0.043) - - - (0.043) (0.043) (0.043) 

Global Moran’ I 0.043 0.044 0.044 0.043 0.044 0.044 0.017 0.019 0.017 0.017 0.019 0.017 

P-Value > Z (·) 0.004 0.003 0.004 0.004 0.003 0.004 0.251 0.200 0.244 0.251 0.200 0.244 

R-sq 0.516 0.516 0.516 0.523 0.523 0.523 0.380 0.380 0.380 0.382 0.382 0.382 

N 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 

Kansas ln (Construction), SAR ln (Construction), SEM ln (Agriculture), SAR ln (Agriculture), SEM 

Drilled Wells -0.007 - -0.008 -0.007 - -0.007 -0.024*** - -0.023*** -0.024*** - -0.024*** 

(Newly Added) (0.009) - (0.010) (0.004) - (0.004) (0.006) - (0.006) (0.006) - (0.006) 

Wind Farm - 0.001 0.001 - 0.001 0.001 - -0.001 -0.000 - -0.001 -0.000 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.459*** 0.446*** 0.456*** 0.494*** 0.484*** 0.492*** 0.166** 0.139* 0.167** 0.187** 0.160** 0.187** 

 (0.067) (0.067) (0.067) (0.071) (0.070) (0.071) (0.080) (0.080) (0.080) (0.081) (0.081) (0.081) 

Group II 1.029*** 1.027*** 1.029*** 1.251*** 1.251*** 1.252*** -0.464*** -0.462*** -0.464*** -0.423*** -0.416*** -0.424*** 

 (0.091) (0.091) (0.091) (0.100) (0.100) (0.100) (0.097) (0.097) (0.097) (0.096) (0.095) (0.096) 

Rho 0.205*** 0.205*** 0.205*** - - - 0.146*** 0.140*** 0.146*** - - - 

 (0.022) (0.022) (0.022) - - - (0.023) (0.024) (0.023) - - - 

Lambda - - - 0.144*** 0.145*** 0.144*** - - - 0.148*** 0.142*** 0.148*** 

 - - - (0.033) (0.033) (0.033) - - - (0.023) (0.023) (0.023) 

Global Moran’ I 0.068 0.067 0.068 0.068 0.067 0.068 0.077 0.077 0.077 0.077 0.077 0.077 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.268 0.268 0.267 0.147 0.147 0.147 0.059 0.069 0.059 0.064 0.075 0.064 

N 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 
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Table III-Appendix-8. Spatial Model Estimation Results for Kansas (BLS Data) (Continued) 

Kansas ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells -0.002 - -0.003 -0.003 - -0.003 0.002 - 0.002 0.002 - 0.002 

(Newly Added) (0.004) - (0.004) (0.004) - (0.004) (0.002) - (0.003) (0.002) - (0.003) 

Wind Farm - 0.001 0.001 - 0.001 0.001 - -0.001 -0.001 - -0.001 -0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.736*** 0.729*** 0.732*** 0.765*** 0.757*** 0.761*** 0.196 0.205 0.201 0.192 0.202 0.198 

 (0.097) (0.097) (0.097) (0.095) (0.094) (0.095) (0.154) (0.153) (0.154) (0.155) (0.154) (0.155) 

Group II -0.010 -0.008 -0.011 0.077 0.077 0.075 -0.492*** -0.493*** -0.493*** -0.524*** -0.524*** -0.525*** 

 (0.116) (0.117) (0.117) (0.108) (0.108) (0.108) (0.180) (0.179) (0.179) (0.182) (0.180) (0.181) 

Rho 0.103*** 0.100*** 0.102*** - - - -0.043 -0.043 -0.044 - - - 

 (0.029) (0.029) (0.029) - - - (0.045) (0.045) (0.045) - - - 

Lambda - - - 0.121*** 0.119*** 0.121*** - - - -0.042 -0.041 -0.042 

 - - - (0.031) (0.030) (0.031) - - - (0.046) (0.045) (0.045) 

Global Moran’ I 0.160 0.164 0.160 0.160 0.164 0.160 0.088 0.090 0.088 0.088 0.090 0.088 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.215 0.215 0.214 0.214 0.215 0.213 0.134 0.132 0.134 0.133 0.131 0.133 

N 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 1680 
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Table III-Appendix-9. Baseline Regression Results for Oklahoma (BLS Data) 

Oklahoma ln (Total) ln (Retail Trade) 

Drilled Wells 0.000 - 0.000 0.000* - 0.000* 

(Newly Added) (0.000) - (0.000) (0.000) - (0.000) 

Wind Farm - 0.000 0.000 - 0.000 0.000 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.354*** -0.353*** -0.353*** -0.030 -0.029 -0.030 

 (0.030) (0.030) (0.030) (0.019) (0.019) (0.019) 

Group II 0.332*** 0.333*** 0.332*** 0.578*** 0.580*** 0.578*** 

 (0.034) (0.034) (0.034) (0.065) (0.065) (0.065) 

Group III 3.447*** 3.419*** 3.436*** 2.754*** 2.724*** 2.752*** 

  (0.199) (0.204) (0.200) (0.343) (0.347) (0.344) 

R-sq 0.996 0.996 0.996 0.994 0.994 0.994 

N 1232 1232 1232 1228 1228 1228 

Oklahoma ln (Construction) ln (Agricultural) 

Drilled Wells 0.002** - 0.001* -0.006*** - -0.006*** 

(Newly Added) (0.001) - (0.001) (0.001) - (0.001) 

Wind Farm - 0.001** 0.001** - 0.001*** 0.001*** 

(Newly Added) - (0.000) (0.000) - (0.000) (0.000) 

Population -0.000 -0.000 -0.000 -0.000** -0.000*** -0.000* 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.442*** 0.449*** 0.444*** -1.484*** -1.477*** -1.458*** 

 (0.147) (0.148) (0.148) (0.211) (0.204) (0.209) 

Group II 2.440*** 2.443*** 2.433*** -0.215 -0.235* -0.203 

 (0.141) (0.141) (0.142) (0.138) (0.129) (0.136) 

Group III 6.114*** 5.901*** 6.013*** 2.829*** 3.137*** 2.694*** 

  (0.381) (0.382) (0.383) (0.729) (0.727) (0.731) 

R-sq 0.967 0.967 0.967 0.889 0.887 0.890 

N 1072 1072 1072 904 904 904 

Oklahoma ln (Mining): NAICS_21 ln (Oil & Gas Extraction): NAICS_211 

Drilled Wells 0.001 - 0.001 0.004*** - 0.004** 

(Newly Added) (0.001) - (0.001) (0.002) - (0.002) 

Wind Farm - -0.000 -0.000 - 0.001 0.000 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -3.401*** -3.410*** -3.406*** -6.010*** -5.996*** -6.009*** 

 (0.535) (0.537) (0.536) (0.376) (0.375) (0.375) 

Group II -4.536*** -4.545*** -4.538*** -6.575*** -6.545*** -6.575*** 

 (0.133) (0.136) (0.134) (0.216) (0.223) (0.218) 

Group III -2.325** -2.199** -2.299** -3.667*** -3.671*** -3.713*** 

  (0.948) (0.926) (0.945) (0.760) (0.767) (0.771) 

R-sq 0.938 0.938 0.938 0.980 0.979 0.980 

N 898 898 898 324 324 324 

Note: Year fixed effects and county fixed effects are included for all results.
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Table III-Appendix-10. Spatial Model Estimation Results for Oklahoma (BLS Data) 

Oklahoma ln (Total), SAR ln (Total), SEM ln (Retail Trade), SAR ln (Retail Trade), SEM 

Drilled Wells 0.001 - 0.001 0.000 - 0.001 0.002 - 0.002 0.001 - 0.001 

(Newly Added) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) 

Wind Farm - -0.000 -0.000 - -0.001 -0.001 - -0.000 -0.000 - -0.001 -0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I 0.362*** 0.369*** 0.361*** 0.373*** 0.436*** 0.428*** 0.421*** 0.432*** 0.420*** 0.431*** 0.436*** 0.428*** 

 (0.063) (0.063) (0.063) (0.058) (0.064) (0.064) (0.070) (0.069) (0.070) (0.065) (0.064) (0.064) 

Group II 0.672*** 0.701*** 0.672*** 0.887*** 1.090*** 1.066*** 0.840*** 0.882*** 0.841*** 1.057*** 1.090*** 1.066*** 

 (0.096) (0.088) (0.096) (0.087) (0.081) (0.091) (0.099) (0.092) (0.100) (0.090) (0.081) (0.091) 

Group III 0.515*** 0.515*** 0.515*** 0.633*** 0.694*** 0.693*** 0.587*** 0.587*** 0.587*** 0.695*** 0.694*** 0.693*** 

 (0.085) (0.085) (0.085) (0.076) (0.090) (0.090) (0.100) (0.100) (0.100) (0.090) (0.090) (0.090) 

Rho 0.036 0.035 0.036 - - - 0.037 0.035 0.036 - - - 

 (0.034) (0.034) (0.034) - - - (0.035) (0.035) (0.035) - - - 

Lambda - - - -0.225*** -0.213*** -0.210*** - - - -0.202*** -0.213*** -0.210*** 

 - - - (0.045) (0.046) (0.046) - - - (0.045) (0.046) (0.046) 

Global Moran’ I -0.078 -0.080 -0.079 -0.078 -0.080 -0.079 -0.076 -0.078 -0.077 -0.076 -0.078 -0.077 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

R-sq 0.479 0.483 0.480 0.543 0.543 0.543 0.445 0.447 0.447 0.471 0.471 0.471 

N 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 

Oklahoma ln (Construction), SAR ln (Construction), SEM ln (Agriculture), SAR ln (Agriculture), SEM 

Drilled Wells 0.001 - 0.000 0.001 - 0.000 -0.007*** - -0.007*** -0.007*** - -0.008*** 

(Newly Added) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) (0.002) - (0.002) 

Wind Farm - 0.002* 0.002* - 0.002* 0.002* - 0.001 0.001 - 0.001 0.001 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) - (0.001) (0.001) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.189** -0.181** -0.184** -0.190** -0.182** -0.184** -0.593*** -0.639*** -0.589*** -0.599*** -0.646*** -0.594*** 

 (0.089) (0.089) (0.089) (0.092) (0.091) (0.092) (0.104) (0.104) (0.104) (0.105) (0.105) (0.105) 

Group II 0.725*** 0.726*** 0.718*** 0.813*** 0.819*** 0.809*** 0.594*** 0.442*** 0.597*** 0.633*** 0.478*** 0.637*** 

 (0.107) (0.097) (0.106) (0.120) (0.110) (0.119) (0.128) (0.118) (0.127) (0.124) (0.114) (0.123) 

Group III 0.214* 0.222* 0.222* 0.284** 0.293** 0.292** -0.582*** -0.577*** -0.576*** -0.602*** -0.594*** -0.596*** 

 (0.118) (0.118) (0.118) (0.121) (0.121) (0.121) (0.124) (0.124) (0.124) (0.130) (0.130) (0.130) 

Rho 0.117*** 0.119*** 0.119*** - - - -0.003 0.002 -0.005 - - - 

 (0.025) (0.025) (0.025) - - - (0.029) (0.029) (0.029) - - - 

Lambda - - - 0.078** 0.079** 0.079** - - - -0.040 -0.036 -0.043 

 - - - (0.033) (0.033) (0.033) - - - (0.033) (0.034) (0.034) 

Global Moran’ I 0.035 0.034 0.036 0.035 0.034 0.036 0.043 0.039 0.037 0.043 0.039 0.037 

P-Value > Z (·) 0.053 0.058 0.047 0.053 0.058 0.047 0.018 0.034 0.040 0.018 0.034 0.040 

R-sq 0.249 0.249 0.250 0.163 0.163 0.163 0.101 0.104 0.104 0.102 0.105 0.105 

N 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 
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Table III-Appendix-10. Spatial Model Estimation Results for Oklahoma (BLS Data) (Continued) 

Oklahoma ln (Mining), SAR ln (Mining), SEM ln (211), SAR ln (211), SEM 

Drilled Wells 0.007* - 0.007* 0.008** - 0.008** -0.003 - -0.002 -0.003 - -0.002 

(Newly Added) (0.004) - (0.004) (0.004) - (0.004) (0.004) - (0.005) (0.004) - (0.005) 

Wind Farm - 0.002 0.001 - 0.001 0.001 - -0.002 -0.002 - -0.002 -0.002 

(Newly Added) - (0.001) (0.001) - (0.001) (0.001) - (0.002) (0.002) - (0.002) (0.002) 

Population 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) 

Group I -0.043 0.019 -0.031 -0.082 -0.022 -0.072 -0.114 -0.175 -0.162 -0.117 -0.176 -0.164 

 (0.127) (0.127) (0.128) (0.140) (0.141) (0.142) (0.287) (0.294) (0.295) (0.294) (0.301) (0.302) 

Group II -0.614*** -0.459** -0.605*** -0.596*** -0.425* -0.587*** -0.278 -0.371 -0.311 -0.247 -0.337 -0.280 

 (0.217) (0.214) (0.217) (0.227) (0.225) (0.227) (0.385) (0.348) (0.391) (0.382) (0.344) (0.389) 

Group III -0.272* -0.252* -0.257* -0.227 -0.212 -0.216 -0.601* -0.655* -0.649* -0.553* -0.606* -0.599* 

 (0.146) (0.148) (0.148) (0.156) (0.157) (0.157) (0.336) (0.344) (0.344) (0.328) (0.336) (0.336) 

Rho 0.219*** 0.212*** 0.216*** - - - 0.048 0.050 0.050 - - - 

 (0.032) (0.032) (0.032) - - - (0.053) (0.053) (0.053) - - - 

Lambda - - - 0.226*** 0.216*** 0.223*** - - - 0.019 0.022 0.021 

 - - - (0.034) (0.034) (0.034) - - - (0.053) (0.053) (0.053) 

Global Moran’ I 0.141 0.128 0.132 0.141 0.128 0.132 0.037 0.033 0.033 0.037 0.033 0.033 

P-Value > Z (·) 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.072 0.073 0.040 0.072 0.073 

R-sq 0.090 0.087 0.091 0.128 0.131 0.132 0.208 0.194 0.195 0.210 0.197 0.197 

N 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 1232 
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