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CHAPTER 1

INTRODUCTION

Over the years optimization of the gas turbine engine has take many forms. There are

typically three major components to a gas turbine engine: the compressor, combustor,

and turbine. This present work will focus on the potential for improvements in an

axial flow compressor. The primary goal of any air breathing compressor is to increase

the pressure of the incoming airflow. This is done most efficiently when the increase

in pressure is very high and the amount of input work is very low. The focus of

this present work is to improve compressor efficiency by experimentally changing the

momentum in the boundary layer of a compressor rotor using plasma actuation.

1.1 Importance of Work

Compressor efficiency has always been a point of interest for turbo-machinery design-

ers. According to Mattingly [1] compressor pressure ratios were on the order of 3:1

to about 5:1 in the 1930’s-40’s. Nearing the end of the 21st century pressure ratios

of 40:1 were being achieved. As compressor efficiency increases the pressure ratio

also increases. These improvements in efficiency were largely due to the knowledge

field advances of variable compressor geometry, rotating stalls, blade tip clearance

effects and three dimensional and unsteady flow phenomena characterization. The

improvements in these fields allowed the increase in pressure ratios. Compressor hard-

ware design has nearly reached an efficiency plateau. This plateau ushers in areas of

study where small improvements to compressor airflow could provide relatively large

improvements to modern day compressor efficiency advancements. As compressor
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efficiency increases overall engine efficiency is increased. To large scale operators of

turbo-machinery, i.e. the airline industry, even a 0.1% increase in efficiency could

correlate to millions of dollars in fuel savings in a one year time frame (based on

$9.5 billion per year fuel cost for United Airlines [5]). Increased compressor efficiency

could also lead to lower operating temperatures which could extend the life of costly

engine hardware. The ability to prevent a stall condition while operating at the edge

of the performance envelope is also of interest for turbo-machinery designers. In high

performance fighter aircraft, as well as cargo aircraft, the issue of compressor rotat-

ing stall prevention is of utmost importance. For military operations a compressor

stall in a single engine aircraft could result in the loss of a weapon system, or even

more catastrophic the loss of life. This present work has the potential to increase

compressor efficiency and to actively prevent a compressor stall.

1.2 Background

1.2.1 Compressor Flow Regime

The gas turbine engine is designed to convert the energy of the incoming fuel into

mechanical power and/or the high speed thrust of a jet. There are three major

components to a turbine engine: the compressor, combustor, and turbine [Figure

1.1]. The compressor section of a gas turbine engine adds work to the free stream

air which enters. The work, which is provided from the downstream turbine section,

compresses the incoming air. This is usually done in multiple stages of rotating

blades. Stator vanes are usually situated between the stages of rotating blades to

redirect airflow to an optimum angle such that more efficient compression can occur.

Blade shape and angle are of critical importance to achieve the desired operating point

conditions. Each blade and stator vane is typically modeled after some known airfoil

shape over which the flow has already been characterized. The compressed air is then

fed into the combustion section where it is diffused and combined with atomized fuel.
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The fuel and air mixture is then ignited after which a massive expansion of the gases

occur. The expanded gases are then forced from the combustion area into the turbine

section of the engine where work is performed on the turbine. This work translates

into rotational motion of the turbine which in turn causes the compressor to rotate.

The compressor and turbine sections are connected with a rigid shaft. The remainder

of the hot gases will then either be used for further work extraction in subsequent

stages of turbine or will exit the engine core.

Once a compressor is designed and built they are usually instrumented on a test

rig where the pumping characteristics are determined [Figure 1.2]. These pumping

characteristics are typically represented by a plot called a compressor map. The

compressor stall line, as seen in the compressor map [Figure 1.3] is a major limiting

factor in the operating envelope of aircraft turbine engines, and is of major concern for

new compressor design. For ideal operation the compressor would operate directly on

the stall line. Since steady operation above the stall line is impossible, and entering

the region even momentarily is dangerous to the compressor the operating line of the

compressor is usually located with a buffer zone between it and the stall line.

Compressors typically stall due to the flow separating from the compressor blades.

Flow separation is primarily caused by an adverse pressure gradient. For a profile

with a curved surface, such as an airfoil, the streamlines of the flow field converge on

the uphill causing an increase in flow velocity and a decrease in pressure. [Figure 1.4]

This consequent fall in pressure is termed a favorable pressure gradient. Once the

flow reaches the high point the streamlines begin to diverge. This divergence causes

a decrease in the flow velocity with a consequent rise in pressure. This pressure rise

is termed an adverse pressure gradient. The decelerating stream causes the boundary

layer thickness to increase such that the stream just parallel to the boundary surface

ceases to flow. The adverse pressure gradient then causes the stream in this confined

area to reverse its flow. The point at which the reversed flow meets the forward flow
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is termed the separation point. The flow reversal causes the fluid near the surface to

advect into the mainstream. It is known that separation will cause a decrease in the

lift force, a sharp increase in drag, decreased heat transfer, and pressure pulsations.

These are all conditions which should be eliminated during compressor operation.

Thus compressor blade airfoil design has largely had a goal of preventing separation

from occurring.

Figure 1.1: Typical Jet Engine [1]

1.2.2 Controlling Compressor Flow

There are multiple ways to control flow conditions over an airfoil. Some of these

include turbulators, chevrons, trips, roughness strips, vortex generators, synthetic

jets, and plasma actuators. All of these methods change the energy in the boundary

layer by adding, removing, or re-characterizing the momentum of the flow. These

flow control mechanisms can be further broken down into active, passive or reactive
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Figure 1.2: Compressor Test Rig [1]

devices. For the purpose of this present work these will be defined as follows. Passive

flow control devices are those which are always considered turned-on. An example

would be a roughness strip, or a trip in the flow. They are a physical part of the

assembly and can be beneficial to the flow control design, while operating in certain

flow regimes. An example of an active flow control device would be a synthetic jet,

or a plasma actuator. These are devices which can be turned on and off as needed.

A reactive flow control device is an active device which is located in a control loop.

Typically a reactive flow device will be enabled or disabled when the system meets

some predetermined flow condition. These flow conditions are typically determined

using a sensing device. Thus when the sensor detects a predetermined condition the

5



Figure 1.3: Compressor Map [1]

information is used by the system to activate the flow control mechanism.

This present work will focus on plasma actuators, which can be an active or reac-

tive flow control mechanism, with the greatest area of usefulness being as a reactive

device. The typical plasma actuator consists of two offset electrodes, one of which

is exposed to air while the other is covered by a thin dielectric material.[Figure 1.5]

When a high voltage AC signal is applied to the electrodes the air at the edge of the

exposed electrode is ionized in the region of the high voltage gradient. The plasma

in this area produces a body force on the surrounding air. This body force was char-

acterized by Enloe et al. [6, 7]. In the paper covering plasma morphology, they found

that the thrust provided by the actuator is directly proportional to the input power,

which is proportional to V7/2. They also clearly determined that the aerodynamic

plasma actuator produces a dielectric barrier discharge, and discounted bulk heating

as a mechanism for affecting the flow. Their final conclusion in the paper over plasma
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Figure 1.4: Flow Separation [2]

morphology was that an electrostatic body force is created by the plasma actuator

which is proportional to the net charge density and the strength of the electric field;

the body force is given by f = ρE = − ε0
λ2

D
φE where ε0 is the permittivity of free space

and λD is the Debye length.

Thus plasma actuators are attractive because they have no moving parts, involve

no mass fluctuation to the system, are light and simple, can easily be installed any-

where, require little power, and can be turned on and off as part of an active or

reactive system. The drawback to plasma actuators is their relatively low momen-

tum imparting capability. As the knowledge in this technological field increases the

momentum capability is sure to increase. Even though the momentum input at this
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point is relatively small adding it in the right place at the right time can have large

effects. It has been shown experimentally many times [8, 9, 10, 11, 12] that plasma

actuators have the capability to delay or prevent separation.

Figure 1.5: Typical Plasma Actuator Construction [3]

1.3 Previous work

Innovative methods for flow control have been investigated over the years, and a

slough of research can be found on a myriad of flow control devices. A broad range

of these devices will now be reviewed concluding with research performed on plasma

actuators, the focus of this present work.
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1.3.1 Compressor Flow Characterization

Of particular interest to this present work was research performed by Prato et al. [13]

which was performed on the same experimental setup as this present research. In their

work Prato et al. characterized the 3-D wake of the trailing edge of the compressor

rotor blades using a five hole probe arrangement. They observed higher total velocity

defects in the hub-wall region and increased wake growth rate in the tip region.

Braunscheidel et al. [14] experimentally demonstrated the effects of synthetic jets

acting on the suction surface of a compressor stator vane. This was done by a row

of spanwise injection slots along the length of the blade actuated by an external

acoustic driver. The effects on a separated flow field at different velocities and ex-

citation frequencies were explored. The system was evaluated using Total pressure

loss reductions across the blade passage. The results showed a weak dependence on

the beneficial effect due to the excitation frequency and a strong dependence on the

amplitude at all frequencies. Loss reductions up to 22% were demonstrated at given

span locations, and a loss reduction of 5.5% was seen for the entire passage.

Kefalakis et al. [15] performed studies on an axial compressor where 1% of the

mass flow rate was used as a tip injection medium. Steady and pulsating jets were

studied as a means to inject momentum at the compressor blade tips. Injection air

angle, quantity, velocity, pulsating frequency, and pressure were all varied in this

study. A 10% increase in stall surge margin was achieved.

Gbadebo et al. [16] studied the effects of suction on a compressor cascade both

computationally and experimentally. Their goal was to model and prevent the 3-D

separation over the suction surface and at the end wall corner of the blade passage.

The numerical analysis displayed that by using 0.7% of the mass flow rate of the

compressor as bleed air that the increases in stagnation pressure and static pressure

rise were, respectively, worth about 1.5 and 4 times the loss in work for the bled air.

Nguyen et al. [17] studied separation flow control on a stator cascade located
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within a low speed axial compressor using air injection. The focus was to create

an adaptive active flow control loop. A 1-D unsteady flow model was used which

incorporated Euler’s equations. The numerical simulation modeled the proposed flow

configuration on the stator cascade, with further work recommended to validate with

experimentation.

1.3.2 Plasma Actuators as a Flow Control Device

Gregory et al. [18] showed the effects of using plasma actuators to effectively switch a

high momentum jet between Coanda attachment walls by inducing a flow asymmetry

across the nozzle of the fluidic oscillator. This use of plasma actuation allows the de-

vice to effectively serve as a fluid amplifier. This plasma actuated fluidic oscillator has

possible uses in flow control applications such as cavity resonance tone suppression,

jet thrust vectoring, and enhancement of jet mixing.

Enloe et al. [19] performed force production measurements on plasma actuators

configured with a single encapsulated electrode and an asymmetric electrode align-

ment. They experimented with the intent of being better able to describe the physics

behind the momentum coupling during plasma actuation. The Dielectric Barrier Dis-

charge (DBD) is known to operate as a two phase process; one on the positive-going

portion of the high voltage AC waveform, and the other on the negative-going por-

tion. Using high speed photography it was determined that approximately 97% of

momentum coupling occurs during the negative-going discharge cycle of the actuation.

Patel et al. [20] showed the effects of using dielectric barrier discharge plasma

actuators for flow control over an unmanned combat air vehicle wing. Control was

implemented on the wing leading edge allowing longitudinal control without the use

of a hinged control surface. This showed great feasibility for hingeless flight control

for highly swept wings at high angle of attack flight conditions, where conventional

flaps and ailerons are ineffective.
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General studies of plasma between two parallel electrodes performed by Shyy et

al. [21] modeled the effects of the dielectric characteristics, applied voltage, frequency,

and the asymmetric configuration of the electrodes. This computational model con-

sidered the effects of these variables on the downstream flow velocities, by measuring

pressure, and the heat transfer due to the plasma field. The model showed a clear

dependence of the induced jet velocity of the applied voltage and frequency. The heat

flux exhibited a similar dependence on the strength of the plasma.

Further modeling of a plasma actuator was performed by Jayaraman et al. [22]

using a 2-D asymmetric actuator operating in Helium gas. The simulations revealed

that the momentum coupling was primarily affected by the combination of factors

such as the geometric arrangement, the waveform of the applied voltage, and dielectric

material. The relationship of the sensitivity of the generated force of the plasma to

the magnitude of the applied voltage showed a near cubic dependence for both the

model in Helium gas and the observed experiments in air.

Gregory et al. [23] showed experimentally that the time-averaged force production

of a dielectric-barrier discharge plasma actuator is independent of the density of the

neutral particles. It is dependent upon the ion density, volume of the plasma, and

the applied electric field. The results showed a linear relationship between force

production and air pressure, with the force going to zero at vacuum conditions.

Leading edge separation control was modeled by Orlov et al. [12] using a space-

time lumped-element circuit. This model of the plasma discharge physics compared

well to some of the characteristic features of the discharge. An application of their

model was studied both numerically and experimentally for a NACA 0021 airfoil.

The airfoil angle of attack and the forcing frequency of the plasma actuator were

varied in this study. Improvements to the airfoil flow characteristics at a post-stall

angle of attack were noted in the numerical simulations with the plasma actuators.

With steady plasma actuation stall was delayed by approximately two degrees of
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angle of attack. During pulsed plasma actuation the stall angle was increased by

as much as five degrees. Their computational results corresponded very well with

experimentation.

Experiments were performed by Greenblatt et al. [24] on a flat plate and an Eppler

E338 airfoil. Both were oriented with plasma actuators on the leading edges with the

intent of controlling flow parameters at low flight Reynolds numbers (3000<Re<50,000).

Steady actuation of the plasma was investigated as well as pulsed actuation where

the parameters of duty cycle and forcing frequency varied systematically. Optimum

reduced frequencies for increasing lift in post-stall conditions were approximately be-

tween 0.4 and 1. Profound differences were seen in response to the reduced frequency

and the duty cycle between the flat plate and the E338 airfoil, clearly demonstrating

the effects of the leading edge detail in low Re applications.

1.3.3 Turbomachinary Applications of Plasma Actuators

Van Ness et al. [25] proposed using the active flow control capability of a plasma

actuator to reduce blade tip losses in a low pressure turbine. A 29.5% reduction in

maximum pressure loss at an axial chord Reynolds number of 105 was achieved during

actuation.

Wall et al. [11] performed experiments using a pulsed DC dielectric barrier dis-

charge plasma actuator to reattach a separated flow of a highly loaded turbine blade

suction surface. Using phase locked particle image velocimetry (PIV) he showed that

at a pulse rate of 100 pulses per second the 70% velocity contour in the boundary

layer was moved closer to the wall by 39%.

Doc Vo [26] modeled a circumferential plasma actuator on a compressor case

near the compressor rotor to induce axial flow acceleration within the tip clearance

gap region, with the intention of suppressing tip clearance flow responsible for spike

formation and short length-scale rotating stall inception. His computational study
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was carried out to optimize actuator location and required actuation strength required

to achieve the desired effects. He showed that plasma actuation near the rotor leading

edge and concentrated in the tip gap region most efficiently suppressed the criteria for

spike stall inception. The simulations indicated that actuation effectiveness decreases

with increasing compressor speed and that stronger actuation strength than that of

conventional plasma actuators may be needed.

Wu et al. [27] outfitted a Teflon compressor case with plasma actuators in order

to measure the efficiency increase of a subsonic axial compressor during actuation.

They calculated the pressure rise coefficient and flow coefficient for the compressor

test rig with and without plasma actuation to represent compressor performance. The

experiment showed that, with plasma actuation, the mass flow coefficients near stall

decreased by as much as 5.2% at a constant rotor speed.

Mabe et al. [10] tested airfoils of varies sizes varying free stream velocity, angle

of attack, and flap deflection angle. Two sets of data were presented: one where

the plasma actuator was located at 5% chord and the other where the actuator was

located just upstream of the flap, about 75% chord. It was determined that the

input momentum was very weak and not sufficient to prevent separation at Reynolds

numbers greater than 100,000. The plasma actuators used in the study only provided

sufficient momentum to be effective at very low Reynolds numbers, such as those

appropriate to micro-air-vehicles.

Van Ness II et al. [28] performed five-hole probe measurements and stereo PIV

measurements on the tip gap of a turbine blade. A Pak-B Pratt and Whitney blade

was cantilevered in a cascade of blades such that a gap existed between the measure-

ment blade and the end wall of the test rig. The plasma actuator was located on

the tip of the blade in the gap region and a variety of Reynolds numbers and plasma

forcing frequencies were investigated. The results documented that the unsteady dis-

turbances produced by the plasma actuator affected the circulation and positions of
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the tip-gap and passage vortices.

Huang et al. [9] used a linear cascade of turbine blades to examine the effects

of using plasma actuators for controlling separation. They characterized the flow

using surface pressure, laser-Doppler velocimetry, and hot wire measurements. It was

determined that unsteady actuation was more effective than the steady actuation at

reattaching the separated flow, while using less power.

14



CHAPTER 2

EXPERIMENTAL SETUP

2.1 OSCAR facility

The Oklahoma State Compressor Aerodynamics Research Facility (OSCAR) was fi-

nalized in 2004 [29]. It is located in Room 059 of the lower basement of the ATRC.

The OSCAR facility features a 1.5 stage low speed axial flow compressor with a cas-

ing radius of 18 in. The inlet consists of 43 guide vanes followed by 21 cambered

and twisted rotor blades followed by a final stage of 25 stator blades. The principle

purpose of this facility is to explore stall, surge, wake interaction and other unsteady

aerodynamic and aero elastic phenomena found in axial compressors. A photograph

of the compressor test rig can be seen in Figure 2.1.

The compressor rotor is driven by a 50hp US Electric motor (model R135A) and

is capable of driving the compressor up to 1600 rpm. An inverter manufactured by

ABB (model ACS600) is used to adjust the torque and speed control of the electric

motor that drives the compressor rotor. A secondary fan, which controls the mass flow

through the compressor, is located at the aft of the compressor assembly. A separate

50hp electric motor manufactured by US Electric (model 38-21-1750) is used to drive

the secondary fan. The secondary fan operates at a constant 1750 rpm and pulls a

nominal volumetric flow rate of up to 40,000 cfm. This volumetric flow rate equates

to a total mass flow rate of 3059 lbm/min, at standard day conditions. A conical

shaped plug located in the aft end of the compressor rig is used to control the mass

flow rate. This plug is used to increase or decrease the mass flow rate by axially

traversing into or out of the flow exit, effectively changing the exit area.

15



Figure 2.1: Photo of OSCAR facility

A National Instruments PCI-6071E series card provides data collection capability

for the OSCAR facility. The data collection card(DCC) is capable of handling a

sampling rate of 1.2 MHz. A BNC-2090 breakout box connects instrumentation on

the OSCAR facility through a single cable to the computer. The computer program

used to manage the data acquisition device was LabView.

2.2 Measurement Instrumentation

A digital tachometer composed of a Keyence laser head and amplifier (models LV-

H35, 21A) relays a voltage signal to the DCC. A schematic of the measurement

instrumentation system can be seen in figure 2.2. The laser head is mounted aft of

the compressor rotor and stator stages. In the compressor casing where the laser

mounts there is a hole which allows the laser beam to penetrate. There is a reflective

strip mounted on the rotating hub which passes under the focused beam of the laser.
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The voltage signal to the DCC changes as the laser passes over the reflective strip,

thus allowing one to calculate the RPM and to have the capability of indexing the

beginning and end of a rotation cycle.

Figure 2.2: Schematic of Compressor rig instrumentation

A hotwire was used extensively during this research. The probe was mounted

one chord length downstream of the compressor rotor trailing edge. The probe was

mounted such that the immersion depth into the compression path could be varied.

A schematic of the hotwire installation can also be seen if figure 2.2. A single normal

sensor probe with a five micron welded tungsten sensor length of 1.2 mm and a Dantec
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Mini CTA (Model 54T30) were used to transfer a voltage signal from the hotwire to

the DCC. This voltage signal was then converted into a velocity value using the

standard hot wire calibration process [30]. A schematic of the hotwire calibration

process can be seen if figure 2.3. The controllable air jet assembly, manufactured by

Dantec, was outfitted with a compressed air inlet and a pressure port. Compressed

shop air was connected to the air inlet and a digital manometer, manufactured by

Infiltec, was connected to the pressure port. To calibrate the hotwire the probe was

mounted within a half inch from the calibration air jet, perpendicular to the flow.

A lever on the air jet assembly allowed the user to adjust the strength of the jet,

while the pressure port allowed measurement of the jet pressure. The jet pressure

was set at a series of values between zero and three inches of H2O as measured from

the manometer, and the voltage output of the hotwire was recorded. The labview

interface allowed the 10 kHz signal from the hotwire to be averaged once per second,

and that was the hotwire voltage recorded. A sample of the calibration data can

be seen in table 2.1. The velocity value was calculated using Bernoulli’s equation,

with a conversion factor from inches to meters. The resulting data in graphical form

and the curve fit equation can seen in figure 2.4. This equation and similar ones

were used to convert the hotwire voltage data into velocity measurements for this

study. Classical hotwire calibration is usually done using King’s power law however

according to Jorgenson [31] power law curve fits are less accurate than polynomial

fits, especially over wide velocity ranges. Jorgenson recommends using a fourth order

polynomial. The cubic polynomial curve fit equation displayed in figure 2.4 provided

a correlation coefficient of 0.999 thus the cubic spline was deemed satisfactory.

2.2.1 Uncertainty of Hotwire Velocity Calculations

Uncertainty calculations were made on the hotwire data. The standard hotwire er-

ror calculations were followed using Dantec’s practical guide by Jorgenson [31]. To
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Figure 2.3: Schematic of Hotwire Calibration Setup

develop the total uncertainty of the hotwire velocity samples the vectoral sum of the

relative uncertainties of the individual sources of error needed to be calculated. This

was done using the below equation.

U(tot) = 2 ∗
√∑

u(yi)2

where u(yi) is the relative uncertainty of the various error sources, and U(tot) is

the total uncertainty.

According to Jorgenson when a dedicated calibrator is used to calibrate a hotwire,

similar to the one used in this study, the relative standard uncertainty is +/- 1.0%.
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Figure 2.4: Hotwire calibration graph and curve fit equation

This uncertainty value only applies when measuring flows greater than 5 m/s, which

is the case in this study. Jorgenson also provides a standard relative uncertainty for

the linearisation conversion for the curve fit equation of +/- 0.5%. The precision error

of the hotwire data was calculated using the typical standard deviation method. An

average standard deviation of a baseline run at 600 RPM was calculated to be +/-

0.5%. The remaining sources of error of humidity, temperature variation, ambient

pressure, probe positioning, and analog to digital conversion were neglected either

due to their ability to be controlled during experimentation or due to their typically
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Table 2.1: Hotwire calibration sample data

Voltage [V] Velocity [m/s] Pressure [in. H2O]

1.856 0.0 0.0

2.28 6.6 0.1

2.339 9.3 0.2

2.377 11.3 0.3

2.406 13.1 0.4

2.429 14.7 0.5

2.508 20.7 1

2.557 25.4 1.5

2.629 35.9 3

insignificant values.

Thus to calculate total uncertainty the above equation was used with the u(yi)

represented in table 2.2. The total uncertainty calculated was +/- 2.5%, which pro-

vided a 95% confidence interval. This uncertainty is of a typical magnitude for hotwire

measurements.
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A graphical representation of this confidence interval is displayed in figure 2.5.

This graph depicts the velocity values for average baseline blade velocity at 600 RPM,

showing the error bars for a 95% confidence interval.

Table 2.2: Sources of error for velocity uncertainty calculations

Source of Uncertainty u(yi) [+/-%]

Precision 0.5

Calibration 1.0

Linearisation 0.5

Total Uncertainty 2.5

Figure 2.5: Uncertainty of Velocity measurements using hotwire
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2.3 Data Retrieval and Signal conditioning

A software package called LabView was used to monitor, collect, and analyze data.

The data received from the Laser and the hotwire was controlled through LabView

using the front panel and block diagram found in Appendix A. This code was created

in order to receive the data from the instrumentation, control the sampling rate, and

write measurement files which were later used to analyze the data. Formulas were

also incorporated into the code to provide real time data for flow velocities and RPM.

The DCC sampling rate was adjusted using Labview. Sampling rates of 5 kHz to 50

kHz were used during the course of this research.

To analyze data in this quantity a Visual Basic for Applications (VBA) computer

program was written [Appendix B]. This program performs a window averaging

algorithm which takes data from several compressor revolutions and averages them.

This allowed the velocity data downstream of the blades to go from the form of

highly noisy in appearance to a well developed wake structure as seen in figures 2.6

and 2.7 respectively. It is of note that the velocity axis scale of the two graphs are the

same. This window averaging technique allows the wake velocity to be visually and

quantitatively compared. The pattern of the wake has a frequency of 21 cycles per

window which coincides with the 21 blades of the compressor rotor per one revolution.

Further programming was also done in VBA to perform an average of the wake

velocity following each blade. The program allows the user to average the velocity

in the wake of each rotor blade, allowing one to compare the differences of the wake

between an average blade and a blade of interest. Take for example a sampling rate

of 10,000 Hz and a rotor speed of 600 RPM, with 21 blades in the rotor this equates

to 1050 blade passings in a 5 second sampling period. This also results in about 48

samples of data per blade passing. The VBA computer code takes all passings of an

individual blade, one out the total of 21, and averages all 50 passings of that single

blade in those 5 seconds. It accomplishes this for all 21 blades in the rotor.
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The VBA program also performs momentum calculations. This was done using

the equation below.

D′ = ρ
∫ y/2

−y/2
U2(U1 − U2)dy

where D’ is the drag per unit length, U1 is the free stream velocity, U2 is the

downstream velocity and ρ is the density of air. The integral was solved on a per

blade basis using a numerical trapezoidal method.

Figure 2.6: Velocity measurements of the rotor wake at 600RPM
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Figure 2.7: Window averaged velociy measurements of the rotor wake at 600RPM

2.3.1 Drag Calculation Uncertainty

The uncertainty for the drag calculations was determined using the VBA program.

The drag for an average blade was calculated using average wake velocity data. The

hotwire velocity calculation uncertainty of + 2.5% was then imposed on that average

wake velocity data. The -2.5% wake velocity was processed through the VBA program

and the drag was recorded. The +2.5% wake velocity was then processed as well and

that drag value recorded. The resulting drag values displayed a range of 10% of the

average blade drag. Thus it was determined that the drag calculation uncertainty
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was +/- 5%.

2.4 Plasma actuator

2.4.1 Construction

Typical plasma actuators used in this research were constructed using a 0.5 inch wide

copper strip as the exposed electrode and a 0.25 inch wide copper strip as the buried

electrode. The actuators were constructed of varied lengths throughout the research.

This research focused on the effect of linear actuators as flow control mechanisms in

an axial flow compressor, thus all actuators used were linear. The dielectric material,

which separated the two electrodes, was also varied throughout this research. Kapton

of 0.002 inch thickness and .010 inch thick Teflon were used as dielectric materials.

2.4.2 Power and Control

To power the plasma actuator a high AC voltage must be used. This was accom-

plished using a transformer (Model MINIMAX7) which was powered using an MPJA

DC power supply (Model 14601PS). This was the transformer and power source com-

bination that was used throughout this research. The input to the transformer was

varied throughout the experimentation and typically had values ranging from 12 to

15 volts with about one amp of current.

A rotating coupling connector manufactured by Mercotac (Model 230) mounted

to the front of the rotor shaft was used to transfer power from the power supply to

the transformer. The transformer was located in the inner hub of the compressor and

was temporarily attached to the inner diameter of the hub using hook and pile. A 22

AWG multi-stranded wire was used to connect all components. To transfer power to

the plasma actuator, located on a rotor blade, leads of varying conductive material

were run from the inner hub through a port to the actuator. It was determined during
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the exploratory analysis that leads with the lowest profile possible needed to be used,

in order to reduce flow field interference.

It is common to use pulsed actuation when using a plasma actuator. Each new

pulse creates a new vortex that advects downstream. Although the maximum veloc-

ity drops compared to the steady case the benefit is seen in the increase of turbulent

kinetic energy created by the advected vortices, and by the decrease in power con-

sumption. In this present study the plasma actuator was pulsed using a 5 V DC relay

(SPDT Micromini) and a Tektronix function generator(Model CFG253). A photo-

graph of the pulsed power setup can be seen in figure 2.8 and a schematic of the

system can be seen in figure 2.9. The function generator delivered a square wave at

various frequencies to the relay. The square wave was set at an amplitude of five volts

and to a 50% duty cycle.

2.4.3 Calculating Forcing Frequency

For the inflow conditions at various regimes of laminar and turbulent cases, the scaling

of dimensionless frequency of oscillation is important. Geometric parameters are

often used to characterize the frequency of oscillation. Comparison between various

methods can be achieved by using the forcing frequency as a dimensionless parameter.

The physical significance of a reduced forcing frequency is related the amount of time

it takes a vortex to travel the characteristic length, which in this case is the chord

length at midspan. Thus at a reduced forcing frequency of one a new vortex is created

when the previous vortex reaches the trailing edge.

F+ =
fLssl

U1

where, F+ is the reduced forcing frequency, f is the forcing frequency, Lssl is

the distance along the suction surface length from the leading edge of the blade to

the location of actuation, and U1 is the relative free stream velocity. The relative
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Figure 2.8: Photograph of the pulsed power system

free stream velocity was calculated using the velocity triangle method as described in

Mattingly [1]. Values of f ranging from 10 Hz - 50 Hz are used in this study, resulting

in F+ values seen in table 2.3. The forcing frequency to achieve the optimum reduced

forcing frequency of one is also displayed in table 2.3.

In this study the reduced frequency was limited by the responsiveness of the

transformer. Exploratory results showed that the output signal of the transformer

ceased displaying a pulsed signal at input pulsing frequencies greater than 50 Hz.
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Figure 2.9: Schematic of the pulsed power system

Table 2.3: Reduced Forcing Frequencies at Various RPM and Forcing Frequencies

Forcing Frequency 350 RPM 600 RPM

F = 10Hz 0.071 0.050

F = 30Hz 0.214 0.150

F = 50Hz 0.356 0.250

F+ = 1 140 Hz 200 Hz
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2.4.4 Application to Compressor Blades

Once the actuators were constructed they were adhered to a compressor rotor blade

using an adhesive tape, with the plasma region located at various chord locations

throughout the research[Figure 2.10]. An actuator can be seen during actuation in

Figure 2.11, and the same actuator can be seen with low ambient lighting conditions

in Figure 2.12.

Figure 2.10: Plasma actuator on a compressor blade: approx. 1/4 chord

2.5 Particle Image Velocimetry Setup

Particle Image Velocimetry (PIV) is a whole-flow-field technique providing instanta-

neous velocity vector measurements in a 2-D cross-section of the flow. In PIV, the

velocity vectors are derived from sub-sections of the target area of the particle-seeded

flow by measuring the movement of particles between two light pulses. The flow field

is infiltrated with small tracer particles which are carried by the flow, and are tracked

from one image to the other. A laser light sheet is used to illuminate the target area.

The time between the images captured is known, and PIV algorithms are used to
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Figure 2.11: Plasma actuator on a compressor blade with visible plasma

Figure 2.12: Plasma actuator on a compressor blade with visible plasma in low am-

bient lighting

compute the particle velocities. A schematic of the PIV arrangement can be seen in

figure 2.13.

The flow field is seeded with smoke particles of the order 1 micron in diameter,

generated from a SAFEX 2010 fog generator. A 2-D light sheet is projected in the
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Figure 2.13: Schematic of the PIV setup

plane of the tunnel at the mid-actuator using a dual-head 50 mJ Nd-YAG laser from

New Wave Research (Solo PIV III). The light sheet is aligned and adjusted using a

series of 3 lenses. First, the beam emitted from the laser is focused using a converging

lens. The second in the series is a diverging lens, placed at the focal length of the first

(converging) lens, and serves to create a more concentrated, thinner beam. The third

lens in the series is cylindrical, and spreads the beam into a 2-D sheet with a thickness

of approximately 2 mm. The laser is pulsed in sync with a Kodak Megaplus ES 1.0

CCD camera which has 1008 x 1018 pixels. A timing control unit from Taitech allows

time between a pair of pulses from 1 µs to 1 ms. The camera is placed in multiple

locations above the cascade.

The CCD camera is able to capture each light pulse in separate image frames.

Epix frame grabbing hardware and software is used to acquire binary image pairs for

processing. For each run, 124 images are captured at a rate of 10 Hz. Fluid parcels
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registered by CCD pixels are advected with individually estimated velocities and

total accelerations. A Wall Adaptive Lagrangian Parcel-Tracking algorithm (WaLPT)

developed by Sholl and Savas [32], is adopted to track the fluid parcels. A standard

DPIV algorithm is employed to determine the initial velocity field, and the routines

in WaLPT allow for more accurate measurement of the velocities near the wall by

essentially mirroring the flow about the interface using an image parity exchange

(IPX) routine.[33] IPX reverses the flow on the other side, providing a group of

particles under the surface. With IPX turned on, the interrogation windows can be

extended across the surface, allowing the calculation of near-wall velocity. Velocity

and reverse flow probability fields obtained in post-processing are averaged over the

entire run. The surface is masked using XCAP resulting in a higher accuracy of the

wall derivatives providing better boundary layer calculations. The PIV computer

code can be found in the thesis by Ramakumar [34].

2.6 Determining Re and Actuator Placement for Experimentation

Preliminary studies were completed to theoretically determine the optimum area of

interest for this study. The main area of study was to do determine the chord wise lo-

cation and corresponding Reynolds number at which separation occurs on the subject

compressor blade configuration.

2.6.1 XFOIL Results

According to Hanson [29] the compressor blades used in the OSCAR facility are based

on a modified NACA 65-010 airfoil. A program named XFOIL was used to analyze

flow conditions over the NACA 65-010 airfoil. XFOIL is an interactive program

for the design and analysis of subsonic isolated airfoils [4]. The coordinates for the

NACA 65-010 airfoil needed to be loaded into XFOIL, thus the x and y coordinates

were generated using a source code found on the University of Illinois website [35].
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Once the airfoil coordinates were loaded into XFOIL the Reynolds number and angle

of attack seen by the airfoil were systematically varied with results seen in figure

. To determine the relative Reynolds number for the compressor rotor at various

angles of attack the velocity triangle method was used [1]. These velocities were then

used to calculate the Reynolds numbers which coincided with the proper span wise

location. It will later be seen in this study that the operating RPMs of 350 and

600 became points of interest, which correlate to Reynolds numbers of 170,000 and

260,000 respectively. Once the relative velocities were determined the effective angles

of attack could also be calculated using the method in Mattingly. Angles of attack

of six and 20 degrees were calculated for the 350 and 600 RPM cases respectively

at the midspan location with the mass flow fan in operation and with the conical

plug set as described in the experimental results. It was determined for the NACA

65-010 airfoil at the specified Reynolds numbers that separation was mostly a leading

edge phenomenon. The XFOIL results can be seen in figures 2.14 and 2.15 for the

350 and 600 RPM cases respectively. XFOIL was also used to determine the size of

trip which was necessary to effect the flow at the subject operating conditions. This

was done by examining the dump files to extract the boundary layer displacement

thickness delta star. These dump files can be found in Appendix C. The resulting

delta star values can be seen in table 2.4. They were calculated by re-dimensionalizing

the XFOIL delta star values using the midspan chord length as a multiplier. It was

determined that a 1/16 inch (0.00159 meter) thick trip was sufficient to cause a trip

to the boundary layer in both the 350 and 600 RPM flow regimes. A trip of 0.00159

meter thickness was determined to be about nine times the greatest boundary layer

displacement thickness.
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Figure 2.14: NACA 65-010 at various angles of attack for 350 RPM case [4]

Figure 2.15: NACA 65-010 at various angles of attack for 600 RPM case [4]
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Table 2.4: XFOIL Caculations for Delta Star at 350 and 600 RPM

Delta Star [m] 350 RPM 600 RPM

1/4 Chord 7.35 E -6 175 E -6

Leading Edge 9.8 E -6 58.87 E -6
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CHAPTER 3

EXPERIMENTAL RESULTS

3.1 Exploratory Results

3.1.1 Quiescent Plasma Actuator Characterization

The plasma actuators tested in the quiescent state were done so such that their

construction would mirror that which was used in the compressor rotor application.

This required that the plasma have an eight inch operating length. The actuator was

constructed using a 0.5 inch wide eight inch long copper strip as the exposed electrode

and a 0.25 inch wide eight inch long copper strip as the buried electrode. Kapton of

0.002 inch thickness and .010 inch thick Teflon were used as dielectric materials.

During quiescent experiments the voltage and amperage from the transformer was

measured. The voltage was measured using a Northstar voltage probe (Model PVM-

1) with a 1000:1 scaling factor. Amperage was measured using NK Technologies AC

current transducer (Model AT2-010) which was set at a range of 0 to 200 amps for a

range of 0 to 10 volts output. Both measuring devices were connected with a BNC

cable to a Tektronix digital oscilloscope.

The actuators were powered using a transformer. The input and output of that

transformer varied, dependent upon the dielectric material. The power required by

both configurations of actuator, the Kapton and Teflon dielectric, showed some dif-

ferences. As can be seen in Table 3.1 the Teflon actuator configuration required less

power at the 15 volt setting, drawing only .85 amps. The Kapton actuator drew one

amp at the 15 volt setting. The Teflon configuration also had a higher peak to peak
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voltage signal when measured after the transformer. The higher peak to peak voltage

can be attributed to the lower dielectric constant that Teflon has over Kapton. Its

voltage was nearly twice that of the Kapton configuration as can be seen in comparing

figures 3.1 and 3.2.

Table 3.1: Power usage by plasma actuators using Kapton and Teflon as dielectric

Parameter Teflon Kapton

Voltage(V) 15 15

Current(A) 0.85 1.0

Power(W) 12.75 15

The plasma actuator configurations were characterized in the quiescent state using

particle image velocimetry (PIV). The actuator was mounted in a semi-enclosed state

to prevent random airflow from affecting the PIV results. The mounting orientation,

enclosure, and laser setup can be seen in figures 3.3 and 3.4.

It can be seen in the velocity profile diagrams figure 3.5 for Kapton and figure 3.6

for Teflon, that the actuators produced a wall jet in the boundary layer region. This

resultant momentum was input in the region within one centimeter from the surface.

Figures 3.5 and 3.6 display velocity profiles for the Kapton and Teflon dielectrics with

steady plasma actuation. In these figures it can be seen that the Kapton configura-

tion only produce a maximum velocity of about 5 cm/s while the Teflon configuration

produced a maximum velocity of about 40 cm/s. Figures 3.7 and 3.8 display veloc-

ity profiles for the same arrangement but for a forcing frequency of 50 Hz. These

figures display that a maximum velocities of about 3 cm/s and 9 cm/s were seen on

the Kapton and Teflon configurations respectively. The Teflon dielectric configured

actuator displayed the better performance at a lower power consumption level. This

was explained by the amount of peak to peak voltage that was inherent to the Teflon

configuration due to its lower dielectric constant. Although the Teflon configuration
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required less average power the instantaneous power was greater due to the elevated

driving voltage over the Kapton configuration. It is also of note that each of the

velocity profiles display a time averaged velocity. This averaged velocity typically

displays fluctuations up to 30%. Thus the jet is not a constant laminar jet, it fluc-

tuates significantly which actually proves beneficial due to its effect as a turbulator.

This increase in turbulence adds momentum to the flow by increasing the turbulent

kinetic energy in the boundary layer.

Figure 3.1: Voltage and amperage on a plasma actuator with Teflon as dielectric

Momentum calculations were performed on the PIV measurements to characterize

how much momentum was being imparted to the flow. This momentum calculation

was carried out in the same manner as the drag calculations referred to in section

2.3. The momentum deficit of an average blade wake was also calculated using this

method. The momentum deficit for an average blade at 600 RPM was calculated to be

0.6012 N/m. The momentum addition for both the Teflon and Kapton configurations

during steady actuation can be seen in table 3.2. It was calculated that the Teflon

configured actuator contributed a magnitude of 0.1075% of the blade wake momentum

deficit.
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Figure 3.2: Voltage and amperage on a plasma actuator with Kapton as dielectric

Figure 3.3: Quiescent PIV Laser setup

3.1.2 Baseline Data

All preliminary results that will be described below were achieved by operating the

rotor at a variety of RPM with the mass flow fan in operation at a constant RPM.

Data collection was initiated using the Labview code, which wrote measurement files

for both the laser and hotwire signals. The measurement files were then imported into
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Figure 3.4: Quiescent PIV mounting orientation

Figure 3.5: Quiescent Velocity profiles for steady plasma actuation with a Kapton

dielectric

Excel where the VBA computer program performed the data analysis. The conical

plug which controls the mass flow on the OSCAR setup was kept at roughly a one inch

opening. This provided the mass flow rate which the preliminary analysis showed as

the optimum area of interest. The preliminary hotwire results were taken one chord
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Figure 3.6: Quiescent Velocity profiles for steady plasma actuation with a Teflon

dielectric

Figure 3.7: Quiescent Velocity profiles for pulsed plasma actuation with a Kapton

dielectric at F = 50 Hz

length downstream with an immersion location at one half span. The compressor was

run at 200, 400, and 600 RPM and baseline data was taken. It can be seen in Fig

2.7 that the wake structure at 600RPM was very organized and well defined. As the
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Figure 3.8: Quiescent Velocity profiles for pulsed plasma actuation with a Teflon

dielectric at F = 50 Hz

Table 3.2: Momentum characterization of various configurations

Parameter Momentum D’ [N/m] % of Blade wake

Average Blade wake -0.6012 1.0

Teflon 6.46 E-04 0.1075

Kapton 0.083 E-04 0.0014

RPM went up or down from this point the signal became less organized. It can be

seen in figures 3.9 and 3.10 that there is a poorly defined wake pattern at 250 and

700 RPM respectively.

3.1.3 Mechanical trip

To verify that the VBA data processing program was working correctly a mechanical

trip was installed on one of the blades. A 3/16 by 1/16 by 5 in. long strip of plastic

was adhered to the suction side of one of the compressor blades using aluminum tape.

As described earlier this trip height was analytically determined to be sufficient to
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Figure 3.9: Velocity measurement at 250 RPM, displaying poor wake structure

effect the boundary layer for both the 350 and 600 RPM cases. It was located at

approximately one quarter chord as can be seen in figure 3.11. It was verified in the

post processed data that the trip was visible. There was a large momentum deficit in

the wake of the trip blade, and the tripped blade was located at the expected point in

the data. Preliminary runs with the compressor RPM set at 200, 400, and 600 were

performed. The best wake structure and trip response was seen at the 600 RPM level

thus this operating region became a point of interest.

3.1.4 Plasma actuator as a steady trip

The initial test to determine the effect of a plasma actuator was performed using

a five inch long actuator with the plasma region located approximately at quarter

chord on the suction side of one blade. The actuator was configured such that the

momentum input was actually counterflow to the compressor flow field as seen in
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Figure 3.10: Velocity measurement at 700 RPM, displaying poor wake structure

figure 3.12. The typical orientation for actuators is in the co-flow direction, as seen

in figure 3.13. Thus the counterflow actuator can act as a steady trip when powered.

The plasma was powered by the transformer using a 15 volt input. Data was recorded

at 600 RPM with the plasma both on and off. The leads connecting the transformer

to the plasma actuator were two 22 AWG multi-stranded wires. These ran from the

actuator to the hub interior, where the transformer was located. They were adhered

near the root of the blade in an attempt to minimize flow field interference.

At 600 RPM it was noted that the counterflow plasma actuator acted as a trip

similar to the mechanical trip which also remained installed. As seen in figure 3.14

the actuator was located on the eighth wake position while the mechanical trip was

located on the 11th wake position.

It was also of interest that the flow seemed to speed up in the blade passage directly

following the actuated blade, as can be seen in figure 3.14. This was later determined
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Figure 3.11: Mechanical trip installed at 1/4 chord

to be due to the wires which were used to power the actuator. Although they were

adhered near the root of the blade to minimize flow interference their presence was

still visible in the measurements. When they were replaced with flat copper strips in

subsequent testing the blade passage profile returned to normal. It was reasoned that

the wires had a throttling effect on the flow in the subject blade passage by slightly

decreasing the blade passage area.
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Figure 3.12: Plasma actuator in a counter flow orientation
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Figure 3.13: Plasma actuator in a co-flow orientation
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Figure 3.14: 600 RPM steady plasma actuation at 1/4 chord
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3.2 Parametric Results

The parametric study focused on two areas of interest. With the conical plug in a

fixed position and the mass flow fan at a constant RPM the designed operating range

was estimated using the exploratory results. It was reasoned that if the mechanical

trip was not visible in the window averaged data that the boundary layer was such

that the momentum imparting capabilities of the plasma actuator would have little

effect. The mechanical trip was only clearly visible in the data between 350 and 600

RPM, thus the parametric study focused on the upper and lower ends of this operating

regime. Based on previous work done by Visbal et al. [36] that showed a counter-flow

actuator can provide an effective on-demand boundary-layer tripping device. Visbal

surmised that this property could be effective for the control of laminar separation.

Thus the counter flow orientation was explored as well. In the preliminary studies

it was determined that for Reynolds numbers between 15 x 104 and 30 x 104 that

separation was generally a leading edge phenomenon. Thus for the parametric study

actuators were placed at 1/4 chord and as close to the leading edge as the actuator

configuration would allow, which equated to about the 1/15 chord location.

The actuators were powered at the same magnitude as the exploratory results.

All actuators used in the parametric analysis incorporated the Teflon dielectric which

resulted in a 15 volt, .85 amperage draw from the power source. This was the power

that drove the transformer to its 30 kV performance.

It will be seen in the parametric results that the effect of the plasma actuators on

the compressor flow was compared using a percent change in drag. These drag values

were calculated using the aforementioned D’ equation multiplied by the actual blade

span. Thus the drag values compared were no longer per unit length. The percent

change in drag was calculated by taking the difference between the subject run at
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one of the given forcing frequencies and the actuator blade with the actuator turned

off. That difference was then taken as a percentage of the non-actuated plasma blade

drag value. This was done in order to remove the physical presence of the actuator on

the blade as being a contributor to the drag increase, thus making the non-actuated

blade the baseline blade for comparative purposes. A positive value of D denotes

a decrease in the total drag of the compressor rotor blade, and a negative value

denotes an increase in drag. For comparison purposes the drag was calculated for

the mechanical trip at both the 350 and 600 RPM cases and was found to have a

negative change in drag of 7% and 28% respectively. Thus at 350 RPM the tripped

blade had a 7% increase in drag over the non actuated plasma blade and at 600 RPM

the tripped blade had a 28% increase in drag over the non actuated plasma blade.

The majority of the following graphs contain velocity quantities versus the number

of data points averaged. An alternate way to present the data would be to graph the

velocity quantity versus the tangential distance normalized by the blade spacing [Y/S],

which would locate y = 0.5 at the wake center. This alternative method is depicted

in figure 3.15.

Figure 3.15 compares a non actuated plasma blade with an average blade and the

blade with the mechanical trip. It can be seen that the mechanical trip has a much

greater velocity deficit in the blade wake than the average and non-actuated plasma

blade. In this figure and all that follow that contain an average blade plotted against

the plasma blade it must be understood that the average blade contains twenty times

the amount of realizations in the average than the subject blade. Take for instance

the 600 RPM case shown in figure 3.15. At 600 RPM the subject plama blade passes

the hotwire 50 times in the five second sample. Thus the plasma blade consists of

an average with 50 realizations. The average blade on the other hand consists of the

remaining 20 blades in the rotor, thus for the same five second sample 1000 blades

pass the hotwire. Thus the average blade consists of an average with 1000 realizations.
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Figure 3.15: Wake velocity per blade for the mechanical trip blade, and average blade,

and a non-actuated plasma blade at 600RPM
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3.2.1 Counter and Co-Flow Results for 600 RPM at Various Forcing Fre-

quencies

The first set of results were achieved with the rotor RPM set to 600, which equated

to a Reynolds number of about 2.6 x 104. The data was sampled at 10 kHz and

analyzed using the window averaging computer program. The forcing frequency was

varied using forcing frequencies of 10 Hz, 30 Hz, and 50 Hz. Data was also sampled

with the actuator off and in steady actuation. The hotwire was located at the midspan

location, one chord length downstream. Results were taken with the actuator at 1/4

chord and at the leading edge locations.

600 RPM 1/4 chord results

A summary of the drag data for both flow orientations can be seen in figure 3.16 for

the 1/4 chord actuator configuration at 600 RPM. The graph shows the change in

percent delta D for various forcing frequencies. The data reveals that the counter flow

orientation increases the drag in the wake of the plasma blade with increasing forcing

frequency. It also shows that for the co-flow orientation that as the forcing frequency

increases so does the decrease in drag. It is of note that at a forcing frequency of 10

Hz and at zero Hz, which signifies steady plasma operation, the percent change in

drag is negative. This signifies that there is a drag increase on the plasma bade at

these forcing frequencies.

The individual graphical results for the counter flow orientation can be see in

figures 3.17(a) through 3.21(b) for both the entire rotor revolution and for the plasma

blade itself for the 1/4 chord cases run at 600 RPM. In this group of figures the plasma

blade wake is located in the eighth blade position and the mechanical trip remained

installed on the eleventh blade position. It can be seen in these figures that mechanical
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Figure 3.16: Drag variations at various forcing frequencies for 600 RPM with Plasma

at 1/4 Chord

trip is visually evident. It can also be seen in the plasma blade wake measurements

that there is a velocity decrease evident on the suction side of the blade wake. This

would coincide with the actuator being located on the suction surface, and it acting

to remove momentum from the flow.
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.17: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma Off
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The individual graphical results for the co-flow orientation can be see in figures

3.22(a) through 3.26(b) for both the entire rotor revolution and for the plasma blade

itself for the 1/4 chord cases run at 600 RPM. In this group of figures the plasma

blade wake is located in the seventh blade position and the mechanical trip remained

installed on the eleventh blade position. It can be seen in these figures that mechanical

trip is visually evident. It can also be seen in the plasma blade wake measurements

that there is a velocity decrease evident on the suction side of the blade wake for

both the 30 Hz and 50 Hz case but none is evident in the steady or 10 Hz case. This

would coincide with the actuator removing more momentum at the higher forcing

frequencies.

600 RPM Leading edge results

A summary of the drag data for both flow orientations can be seen in figure 3.27 for

the leading edge actuator configuration at 600 RPM. The graph shows the change

in percent delta D for various forcing frequencies. The data reveals that the counter

flow orientation increased the drag in the wake of the plasma blade with increasing

forcing frequency. It can be seen that there is a major increase in drag at a forcing

frequency of 10 Hz. Results show that for the leading edge counter flow actuator at

any forcing frequency had an unpredictable and deleterious effect on the blade wake.

The graph also shows that for the co-flow orientation that as the forcing frequency

increased the drag began to decrease. It is of note that at a forcing frequency of zero

Hz, which signifies steady plasma operation, the percent change in drag was at its

optimum for both the counter and co-flow orientations, and better than the baseline

blade for the co-flow case. This could indicate that a pulsed leading edge actuator may

be too disruptive to the flow at this Reynolds number, and may possibly encourage

separation.
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The individual graphical results for the counter flow orientation can be see in

figures 3.28(a) through 3.32(b) for both the entire rotor revolution and for the plasma

blade itself for the leading edge cases run at 600 RPM. In this group of figures the

plasma blade wake is located in the eighth blade position and the mechanical trip

remained installed on the eleventh blade position. It can be seen in these figures that

mechanical trip is visually evident. It can also be seen in the plasma blade wake

measurements for most forcing frequencies that actuation increased the peak of the

wake over that of an average blade. It can be seen in the 10 Hz case that the drag

was increased significantly. The 50 Hz forcing frequency begins to show a decrease in

velocity on the suction side of the blade wake. This would coincide with the actuator

being located on the suction surface and acting to remove momenutm from the flow.

58



(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.18: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.19: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.20: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.21: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 50Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.22: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.23: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.24: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.25: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.26: Wake velocity for 600 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 50Hz
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Figure 3.27: Drag variations at various forcing frequencies for 600 RPM with Plasma

at leading edge
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.28: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.29: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.30: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.31: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.32: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 50Hz
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The individual graphical results for the co-flow orientation can be see in figure

3.33(a) through 3.37(b) for both the entire rotor revolution and for the plasma blade

itself for the leading edge cases run at 600 RPM. In this group of figures the plasma

blade wake is located in the seventh blade position and the mechanical trip remained

installed on the eleventh blade position. It can be seen in these figures that mechanical

trip is visually evident. It can also be seen in the plasma blade wake measurements

for most forcing frequencies that actuation increased the peak of the wake over that

of an average blade.
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.33: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.34: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.35: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.36: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.37: Wake velocity for 600 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 50Hz
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3.2.2 Counter and Co-Flow Results for 350 RPM at Various Forcing Fre-

quencies

The second set of results were achieved with the rotor RPM set to 350, which equated

to a Reynolds number of about 1.7 x 104. The data was sampled at 10 kHz and

analyzed using the window averaging computer program. The forcing frequency was

varied using forcing frequencies of 10 Hz, 30 Hz, and 50 Hz. Data was also sampled

with the actuator off and in steady actuation. The hotwire was located at the midspan

location, one chord length downstream. Results were taken with the actuator at 1/4

chord and at the leading edge locations.

350 RPM 1/4 chord results

A summary of the drag data for both flow orientations can be seen in figure 3.38 for

the 1/4 chord actuator configuration at 350 RPM. The graph shows the change in

percent delta D for various forcing frequencies. The data reveals that the counter

flow orientation may tend to decrease the drag in the wake of the plasma blade with

increasing forcing frequency. It also shows that for the co-flow orientation that as the

forcing frequency increases so does the increase in drag. It is of note that at a forcing

frequency of zero, which signifies steady plasma operation, the percent change in drag

for the co-flow case is at its peak. This signifies that there is a drag decrease on the

plasma bade during steady plasma actuation of approximately 12%, although as the

forcing frequency increases so does the drag.

The individual graphical results for the counter flow orientation can be see in

figures 3.39(a) through 3.43(b) for both the entire rotor revolution and for the plasma

blade itself for the 1/4 chord cases run at 350 RPM. In this group of figures the

plasma blade wake is located in the eighth blade position and the mechanical trip
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Figure 3.38: Drag variations at various forcing frequencies for 350 RPM with Plasma

at 1/4 Chord

remained installed on the eleventh blade position. It can be seen in these figures that

mechanical trip is not always visually evident. It can also be seen in the plasma blade

wake measurements for the zero forcing frequency that there is a velocity decrease

evident on the suction side of the blade wake. Then as the blade passes there is

a steeper velocity gradient as compared to the average blade as the wake velocity

returns to the free stream velocity magnitude. Thus making this forcing frequency

the optimum for decreasing drag for this actuator and flow configuration. This could

be the actuator’s effect on the airflow by encouraging reattachment of the airflow,

and thus increasing the velocity.
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.39: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.40: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.41: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.42: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.43: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Counter Flow Plasma at F = 50Hz
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The individual graphical results for the co-flow orientation can be see in figures

3.44(a) through 3.48(b) for both the entire rotor revolution and for the plasma blade

itself for the 1/4 chord cases run at 350 RPM. In this group of figures the plasma

blade wake is located in the seventh blade position and the mechanical trip remained

installed on the eleventh blade position. It can be seen in these figures that mechanical

trip is not always visually evident. It can also be seen in the plasma blade wake

measurements that there is a velocity decrease evident on the suction side of the

blade wake for 50 Hz case. Then as the blade passes there is a steeper velocity

gradient as compared to the average blade as the wake velocity returns to the free

stream velocity magnitude. Thus making this forcing frequency the optimum for

decreasing drag for this actuator and flow configuration. This could be the actuator’s

effect on the airflow by encouraging reattachment of the airflow, and thus increasing

the velocity.
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.44: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.45: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.46: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 10Hz

91



(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.47: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.48: Wake velocity for 350 RPM per revolution (a), and per blade (b): 1/4

Chord Co-Flow Plasma at F = 50Hz
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350 RPM Leading edge results

A summary of the drag data for both flow orientations can be seen in figure 3.49 for

the leading edge actuator configuration at 350 RPM. The graph shows the change

in percent delta D for various forcing frequencies. The data reveals that both the

counter and co-flow actuators decreased drag in the wake of the plasma blade at

a forcing frequency of zero. The co-flow orientation decreased drag by about 10%

and the counterflow by about 6% during steady actuation. As the forcing frequency

increased the change in drag became sporadic and unpredictable. It is of note that at

a forcing frequency of zero Hz, which signifies steady plasma operation, the percent

change in drag was at its optimum for both the counter and co-flow orientations. This

could indicate that a pulsed leading edge actuator may be too disruptive to the flow

at this Reynolds number, and may possibly encourage separation.

The individual graphical results for the counter flow orientation can be see in

figure 3.50(a) through 3.54(b) for both the entire rotor revolution and for the plasma

blade itself for the leading edge cases run at 350 RPM. In this group of figures the

plasma blade wake is located in the eighth blade position and the mechanical trip

remained installed on the eleventh blade position. It can be seen in these figures

that mechanical trip not always visually evident. It can also be seen in the plasma

blade wake measurements at a forcing frequency of zero, which is steady plasma

actuation, that the blade wake is much improved over that of the plasma blade in the

off condition.
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Figure 3.49: Drag variations at various forcing frequencies for 350 RPM with Plasma

at leading edge
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.50: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma Off
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.51: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.52: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.53: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.54: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Counter Flow Plasma at F = 50Hz
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The individual graphical results for the co-flow orientation can be see in figure

3.55(a) through 3.59(b) for both the entire rotor revolution and for the plasma blade

itself for the leading edge cases run at 350 RPM. In this group of figures the plasma

blade wake is located in the seventh blade position and the mechanical trip remained

installed on the eleventh blade position. It can be seen in these figures that mechanical

trip is not always visually evident. It can also be seen in the plasma blade wake

measurements at a forcing frequency of zero, which is steady plasma actuation, that

the blade wake is much improved over that of the plasma blade in the off condition.
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.55: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma Off

104



(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.56: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma Steady
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.57: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 10Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.58: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 30Hz
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(a) Wake velocity per revolution

(b) Wake velocity for plasma blade

Figure 3.59: Wake velocity for 350 RPM per revolution (a), and per blade (b): Lead-

ing edge Co-Flow Plasma at F = 50Hz
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3.2.3 Comparison Between Reynolds Numbers

The counter and co-flow cases at 1/4 chord for both Reynolds numbers analyzed were

compared further. This target area for further analysis was chosen due the trends

which were visible in the data. The leading edge results appeared to possibly be

random in nature so they were not explored further.

It can be seen in figure 3.60 that there are visible trends for both Reynolds numbers

with the actuator in the co-flow orientation. The Re of 170,000 was for the 350 RPM

and the Re of 260,000 was for the 600 RPM case. At a Re of 170,000 the forcing

frequency of zero, thus steady actuation, had the most desirable effect of decreasing

the drag by 12%. As the forcing frequency increased the deleterious effects to the flow

increased as well, reaching a 10% increase in drag at a forcing frequency of 50 Hz. At

a Re of 260,000 a forcing frequency of zero increased the drag by 13% as opposed to

the 12% decrease over the lower Reynolds number. The drag continued to decrease

in a steady trend until it reached its maximum of 18% drag reduction at a forcing

frequency of 50 Hz.

As for the counter flow oriented actuator it can be seen in figure 3.61 that there

are visible trends for both Reynolds numbers. It is of note that these results trend

inversely of the co-flow results. Again the Re of 170,000 was for the 350 RPM and the

Re of 260,000 was for the 600 RPM case. At a Re of 170,000 the forcing frequency

of zero, thus steady actuation, had the most deleterious effect by increasing the drag

by 9%. As the forcing frequency increased the effects became improved and actually

reached a 4% decrease in drag at a forcing frequency of 50 Hz. At a Re of 260,000

a forcing frequency of zero had no effect on the flow as opposed to the 13% increase

in drag that the co flow orientation showed. The drag continued to increase until it

reached its minimum of 13% drag increase at a forcing frequency of 50 Hz.
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Figure 3.60: Change in drag on a co-flow actuator at 1/4 chord at various Reynolds

numbers

Figure 3.61: Change in drag for a counter flow actuator at 1/4 chord at various

Reynolds numbers
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CHAPTER 4

CONCLUSIONS

4.0.4 Discussion

Two configurations of a plasma actuator were experimented with in the quiescent

state. PIV measurements were performed on actuators with Teflon and Kapton used

as the dielectric material. The results of the quiescent PIV measurements showed that

the actuators produced a wall jet in the boundary layer region. This resultant mo-

mentum was input in the region within one centimeter from the plasma surface. The

velocity profiles for the Kapton and Teflon dielectrics with steady plasma actuation

showed that the Kapton configuration only produce a maximum velocity of about 5

cm/s while the Teflon configuration produced a maximum velocity of about 40 cm/s.

The velocity profiles for the same arrangement but for a forcing frequency of 50 Hz

displayed maximum velocities of about 3 cm/s and 9 cm/s on the Kapton and Teflon

configurations respectively. The Teflon dielectric configured actuator displayed the

better performance at a lower power consumption level. This was attributed to the

elevated magnitude of peak to peak voltage that was inherent to the Teflon configura-

tion. Although the Teflon configuration required less average power the instantaneous

power was greater due to the elevated driving voltage over the Kapton configuration.

Momentum calculations were also performed on the two actuator configurations and

an average compressor rotor blade wake. It was determined that the Teflon configured

actuator input 1.16% of the momentum of the blade wake momentum deficit.

Blade wake momentum calculations were performed on the compressor rotor in

response to various plasma actuator operating conditions. Both leading edge and 1/4
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chord plasma actuator configurations were operated in both the counter and co-flow

directions. The blade wake of the rotor was measured in this parametric analysis

using a hotwire at relative Reynolds numbers of 170,000 and 260,000.

The compressor rotor momentum calculations showed that leading edge actuation

can have an unpredictable effect and can cause an increase in drag, at these Reynolds

numbers and power settings.

The optimum forcing frequency for a co-flow actuator at 1/4 chord was deter-

mined. The optimum condition was at steady actuation for a Reynolds number of

170,000 and at a forcing frequency of 50 Hz for a Reynolds number of 260,000. The

counter flow actuator orientation at 1/4 chord showed decreased effects over the co-

flow case. The maximum drag decrease was seen at a Reynolds number of 170,000

and a forcing frequency of 50 Hz.

Based upon the input power of the actuator of 12.75 W and the change in the

blade power for the best case scenario of 0.523 W (where power is equal to drag

times velocity), one can see that the power recovered by using the plasma actuator to

decrease blade drag under these conditions is substantially lower than the actuator

power, having an efficiency of approximately 4.1%. Hence, the final conclusion is that

the potential for blade drag reduction is moderate at certain operating conditions.

4.0.5 Future work

These results are applicable to a single blade in a compressor rotor. It is reasoned that

the effects would be comparable if applied to every blade in the rotor. Maximum drag

reduction of a single blade was determined in this study to be approximately 18%.

If this drag reduction could be experienced to the entire rotor flow field significant

improvements are possible. The drag reduction may scale down by a certain factor

with full rotor actuators, which could be a focus or further study, but even small drag

reductions in off optimum compressor conditions could prove beneficial.
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The drag reduction as a reactive device could prove beneficial for preventing off

optimum conditions; such as a compressor entering a spike or modal stall condition. If

the situation could be detected a control system could activate the plasma actuators

decreasing the drag in a certain quadrant of rotor blades, for spike stall prevention,

or the entire rotor of blades to reduce the effect of a modal stall. As compressor

rotor blade drag is decreased the flow velocity is increased. This has the potential

of increasing downstream pressure for the same amount of work input, or decreasing

the amount of work input to achieve the same pressure ratio.

One area of improvement for this study would be the survivability of the actuator

itself. Actuators are prone to burn through if the dielectric becomes too hot, or has

some compromised area, or if an unexpected power burst occurs. Alternate dielectric

materials should be explored with the possibility of embedding the actuator in a

compressor blade. This would be optimized over adhering it to the surface of the

blade. Also, as displayed in this study and others, a counter flow actuator actually

has benefits over a co-flow actuator at certain operating conditions. Further study

could be focused on this area to either design a single actuator that has counter and

co-flow capabilities, or by equipping the compressor rotor blades with alternating

actuator types.

A second are of improvement would be that of the transformer. To limit variables

in this study a single transformer was used throughout. Also to simplify this study it

was decided to pulse the power signal before it entered the transformer. This limited

the magnitude of the forcing frequency due to the response time of the transformer. It

was determined experimentally that the subject transformer would only show a pulsed

signal at a maximum forcing frequency of 50 Hz. Any forcing frequencies greater

than 50 Hz no longer appeared pulsed, it was steady in appearance. The subject

transformer was also limited to a 15 V input, thus limiting the total power of the

actuator. Thus by exploring with different transformers one could create a stronger
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plasma field and have the ability to increase the forcing frequency. Experience has

shown that a reduced forcing frequency of about one usually has the peak effectiveness

on the flow. Thus for this set of experiments a forcing frequency on the order of 250

Hz would have had the optimum effects on the flow.

Further studies could also involve varying the mass flow through the compressor,

and measuring the flow field at different spans. This would allow one to characterize

the actuation phenomena throughout the compressor map. Variations in forcing

frequency duty cycle could also be performed. Experience has proven this to be an

effective method to decrease power requirements.
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APPENDIX A

Labview Front Panel and Block Diagram

Labview was used exclusiveley to monitor, collect, and analyze data during the para-

metric analysis. The data received from the Laser and the hotwire was controlled

through LabView using the front panel and block diagram found here. This code was

created in order to receive the data from the instrumentation, control the sampling

rate, and write measurement files which were later used to analyze the data. Formulas

were also incorporated into the code to provide real time data for flow velocities and

RPM. The DCC sampling rate was adjusted using Labview. Sampling rates of 5 kHz

to 50 kHz were used during the course of this research.

The front panel displays real time laser and hotwire voltage signals. The Laser

signal is fed through a timing and transition measurement block where the RPM

is calculated. This value is shown on the front panel. A formula was instituted to

calculate the number of revolutions per second in order to calculate the number of

blade passes per second. These two values are also shown on the front panel. A

spectral measurement block was added in order to perform a fast fourier transform

(FFT) on the hotwire signal. This FFT showed a peak at the frequency of the blades

passing. This was compared to the laser measurement calculations of blade frequency

to insure accuracy. It is of note that the FFT showed no clear blade frequency signal

unless the mass flow fan was on.

It can also be seen in the block diagram that the signals for four pressure trans-

ducers were available for further research. These pressure transducers which were

installed in the OSCAR DAQ facility were not utilized for this present study.
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Figure A.1: Screen shot of Labview front panel
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Figure A.2: Screen shot of Labview block diagram
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APPENDIX B

Visual Basic Code: Window Averaging Algorithm

Dim LAS(60000) As Single, Ind(1000) As Single, i As Single,

Lstore As Single, Diff(60000) As Single, AVG(50000),

Bmin As Double, Bmax As Double, Iavg As Integer

Sub average()

n = 1

s = 1

For i = 2 To 50000

Lstore = LAS(i - 1)

LAS(i) = Cells(i, 2)

Diff(i) = LAS(i) - Lstore

If Diff(i) < -0.9 Then

Ind(n) = i

n = n + 1

End If

Next i
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j = 1

Iavg = (Ind(2) - Ind(1))

’Deterime Iavg - the average number of data

’points per revolution

For i = 1 To 999

Cells(i + 1, 4) = Ind(i)

If Ind(i + 1) = 0 Then GoTo 20

If (Ind(i + 1) - Ind(i)) > Iavg + 10 Or (Ind(i + 1) - Ind(i)) _

< Iavg - 10 Then GoTo 50

Isum = Isum + (Ind(i + 1) - Ind(i))

Iavg = Isum / j

j = j + 1

50

Next i

20

Cells(2, 6) = Iavg

’Print hotwire voltage values to Sheet 2- Each column

’is 1 revolution (Revloutions which have

’number of data points +/-20 of the Average are excluded

’ from the Window Average algorithm)
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For i = 2 To 1000

If Finish < -500 Then GoTo 10

Startold = Start

Start = Ind(i) - 1

Finold = Finish

Finish = Ind(i + 1) - Ind(i)

If Finish < Iavg - 20 Then GoTo 10

If Finish > Iavg + 20 Then GoTo 10

Calculate

For j = 1 To Finish

Sheet2.Cells(j + 1, s) = Cells(Start + j, 3)

Next j

10

s = s + 1

Next i

’Write window Averaged voltage values from sheet two to sheet one

For i = 1 To Iavg

Cells(i + 1, 7) = "=AVERAGE(Sheet2!RC[-6]:RC[39])"

Next i
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Cells(2, 6) = Iavg

End Sub

Sub bladeaverage()

Dim myRange As Range, AVG(5000) As Single, Iavg As Integer, _

Ind(5000), Interval As Integer

Iavg = Cells(2, 6)

For i = 2 To Iavg

AVG(i - 1) = Cells(i, 7)

Next i

Set myRange = Worksheets("Sheet1").Range("G2:G2500")

Bmax = Application.WorksheetFunction.Max(AVG)

Bmin = Application.WorksheetFunction.Min(myRange)

Cells(4, 6) = Bmax

Cells(5, 6) = Bmin

j = 1

’Find the lowest velocity in the wake of each blade

For i = 2 To Iavg

Middle = Bmax - ((Bmax - Bmin) / 2) * 1 ’This value of 1 may

’need to be modified at different RPM
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If AVG(i) > Middle Then GoTo 40

If AVG(i + 1) < AVG(i) Or AVG(i + 2) _

< AVG(i) Or AVG(i + 3) _

< AVG(i) Or AVG(i + 4) < AVG(i) _

Or AVG(i + 5) < AVG(i) _

Or AVG(i + 6) < AVG(i) Or AVG(i + 7) _

< AVG(i) Or AVG(i + 8) < AVG(i) _

Or AVG(i + 9) < AVG(i) Or AVG(i + 10) _

< AVG(i) Or AVG(i + 11) < AVG(i) _

Or AVG(i + 12) < AVG(i) Or AVG(i + 13) _

< AVG(i) Or AVG(i + 14) < AVG(i) _

Or AVG(i + 15) < AVG(i) Or AVG(i + 16) _

< AVG(i)Or AVG(i + 17) < AVG(i) _

Or AVG(i + 18) < AVG(i) Or AVG(i + 19) _

< AVG(i) Or AVG(i + 20) < AVG(i) _

Then GoTo 40

Ind(j) = i - 1

Interval = (Iavg / 21) / 2

i = i + Interval

j = j + 1

Cells(6, 6) = j

40

Next i
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For i = 1 To Iavg / 21

Cells(i + 1, 9) = Ind(i)

Next i

For i = 1 To 20

For j = 1 To 2 * Interval

If Ind(i) < Interval Then GoTo 77

Sheet3.Cells(j, i) = AVG(Ind(i) - (Interval - j))

Next j

77

Next i

tripbld = Application.InputBox( _

prompt:="Select a trip blade location", Type:=1)

For j = 1 To 2 * Interval

Sheet1.Cells(j + 1, 12) = AVG(Ind(tripbld) - (Interval - j))

Next j

removetripbld = MsgBox("Remove Trip blade from average?", _

vbYesNo, "trip blade")

If removetripbld <> 6 Then GoTo 70

For i = 1 To Interval * 2

Sheet3.Cells(i, tripbld) = ""
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Next i

70

Set twoRange = Worksheets("Sheet1").Range("h2:h1000")

Pmax = Application.WorksheetFunction.Max(twoRange)

Pmin = Application.WorksheetFunction.Min(twoRange)

ActiveSheet.ChartObjects("Chart 6").Activate

ActiveChart.Axes(xlValue).Select

ActiveSheet.ChartObjects("Chart 6").Activate

ActiveChart.Axes(xlValue).MinimumScale = Pmin - Pmin * 0.05

ActiveChart.Axes(xlValue).MaximumScale = Pmax + Pmax * 0.05

ActiveSheet.ChartObjects("Chart 6").Activate

ActiveChart.Axes(xlCategory).Select

ActiveSheet.ChartObjects("Chart 6").Activate

ActiveChart.Axes(xlCategory).MaximumScale = Iavg

ActiveChart.Axes(xlCategory).MinimumScale = 0

ActiveSheet.ChartObjects("Chart 3").Activate

ActiveChart.Axes(xlCategory).Select

ActiveSheet.ChartObjects("Chart 3").Activate

ActiveChart.Axes(xlCategory).MaximumScale = Interval * 2

Range("P31").Select

Sheet3.Range("k1:k5000") = ""

End Sub
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Sub clear()

Sheet1.Range("d2:d5000") = ""

Sheet2.Range("a2:bd5000") = ""

Sheet1.Range("g2:g5000") = ""

End Sub

Sub clear1()

Sheet1.Range("l2:l1000") = ""

Sheet1.Range("i2:i1000") = ""

Sheet3.Range("a1:AA5000") = ""

End Sub

Sub clear2()

cleardata = MsgBox("Are you sure you want to delete _

the data?", vbYesNo, "R U sure")

If cleardata <> 6 Then GoTo 70

Sheet1.Range("a2:c60000") = ""

70

End Sub
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APPENDIX C

XFOIL Supplementary Data

XFOIL Dump File for 350 RPM

# s x y Ue/Vinf Dstar Theta Cf H

0.00000 1.00000 0.00000 0.91907 0.025395 0.014905 0.001671 1.704

0.00859 0.99142 0.00044 0.92408 0.024647 0.014600 0.001743 1.688

0.02218 0.97785 0.00118 0.92829 0.024091 0.014344 0.001792 1.680

0.03652 0.96354 0.00207 0.93245 0.023566 0.014095 0.001839 1.672

0.05151 0.94859 0.00317 0.93747 0.022942 0.013804 0.001899 1.662

0.06722 0.93294 0.00459 0.94417 0.022118 0.013432 0.001989 1.647

0.08374 0.91651 0.00628 0.95240 0.021151 0.012997 0.002107 1.627

0.10113 0.89922 0.00819 0.96171 0.020126 0.012527 0.002244 1.607

0.11930 0.88117 0.01023 0.97138 0.019139 0.012062 0.002387 1.587

0.13808 0.86251 0.01238 0.98144 0.018186 0.011602 0.002539 1.568

0.15735 0.84338 0.01464 0.99206 0.017252 0.011141 0.002703 1.549

0.17700 0.82387 0.01698 1.00335 0.016330 0.010676 0.002882 1.530

0.19693 0.80408 0.01938 1.01505 0.015445 0.010221 0.003073 1.511

0.21701 0.78414 0.02178 1.02697 0.014610 0.009781 0.003271 1.494

0.23714 0.76416 0.02417 1.03895 0.013833 0.009363 0.003474 1.477

0.25723 0.74421 0.02652 1.05103 0.013104 0.008962 0.003684 1.462

0.27722 0.72435 0.02882 1.06313 0.012423 0.008581 0.003899 1.448

0.29708 0.70461 0.03105 1.07531 0.011784 0.008217 0.004122 1.434

0.31680 0.68501 0.03319 1.08726 0.011197 0.007877 0.004344 1.421

0.33637 0.66555 0.03524 1.09916 0.010648 0.007554 0.004572 1.410

0.35579 0.64623 0.03719 1.11075 0.010145 0.007252 0.004798 1.399

0.37505 0.62706 0.03904 1.12241 0.009667 0.006962 0.005032 1.388

0.39414 0.60804 0.04076 1.13370 0.009229 0.006693 0.005263 1.379

0.41308 0.58918 0.04237 1.14498 0.008813 0.006434 0.005501 1.370

0.43185 0.57046 0.04384 1.15575 0.008436 0.006195 0.005732 1.362

0.45046 0.55190 0.04517 1.16644 0.008078 0.005967 0.005967 1.354

0.46890 0.53350 0.04636 1.17694 0.007742 0.005750 0.006204 1.346

0.48719 0.51524 0.04739 1.18669 0.007441 0.005553 0.006427 1.340

0.50536 0.49708 0.04824 1.19567 0.007172 0.005374 0.006635 1.335

0.52349 0.47897 0.04891 1.20298 0.006954 0.005224 0.006802 1.331
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0.54162 0.46084 0.04941 1.20944 0.006762 0.005089 0.006947 1.329

0.55979 0.44267 0.04975 1.21538 0.006588 0.004964 0.007077 1.327

0.57801 0.42446 0.04994 1.22086 0.006430 0.004847 0.007191 1.327

0.59628 0.40619 0.04998 1.22613 0.006281 0.004734 0.007296 1.327

0.61459 0.38788 0.04988 1.23105 0.006144 0.004627 0.007384 1.328

0.63294 0.36953 0.04964 1.23578 0.006016 0.004524 0.007459 1.330

0.65131 0.35116 0.04927 1.24039 0.005897 0.004423 0.007519 1.333

0.66967 0.33281 0.04878 1.24562 0.005771 0.004317 0.007584 1.337

0.68796 0.31453 0.04817 1.25108 0.005649 0.004210 0.007638 1.342

0.70613 0.29638 0.04745 1.25660 0.005534 0.004105 0.007674 1.348

0.72411 0.27841 0.04661 1.26254 0.005422 0.003997 0.007695 1.356

0.74185 0.26070 0.04566 1.26864 0.005318 0.003891 0.007690 1.367

0.75925 0.24333 0.04461 1.27502 0.005223 0.003784 0.007653 1.380

0.77623 0.22639 0.04347 1.28151 0.005143 0.003681 0.007571 1.397

0.79269 0.20998 0.04224 1.28835 0.005075 0.003577 0.007440 1.419

0.80851 0.19421 0.04094 1.29527 0.005029 0.003478 0.007240 1.446

0.82359 0.17919 0.03960 1.30275 0.004999 0.003378 0.006974 1.480

0.83784 0.16501 0.03823 1.31041 0.004999 0.003281 0.006616 1.524

0.85118 0.15174 0.03685 1.31875 0.005025 0.003183 0.006167 1.579

0.86358 0.13941 0.03548 1.32776 0.005086 0.003085 0.005615 1.648

0.87504 0.12803 0.03413 1.33791 0.005184 0.002983 0.004960 1.738

0.88559 0.11757 0.03281 1.34946 0.005331 0.002874 0.004199 1.855

0.89528 0.10796 0.03153 1.36349 0.005522 0.002750 0.003363 2.008

0.90418 0.09915 0.03028 1.38129 0.005751 0.002600 0.002496 2.212

0.91235 0.09107 0.02907 1.40389 0.006019 0.002419 0.001705 2.488

0.91987 0.08364 0.02790 1.43296 0.006288 0.002195 0.001054 2.864

0.92681 0.07679 0.02677 1.46930 0.006547 0.001930 0.000380 3.393

0.93322 0.07048 0.02569 1.51385 0.006760 0.001624 -0.000199 4.163

0.93915 0.06463 0.02464 1.56551 0.006914 0.001295 -0.000497 5.339

0.94467 0.05921 0.02362 1.61802 0.007000 0.000988 -0.000574 7.084

0.94982 0.05416 0.02263 1.67554 0.006994 0.000681 -0.000618 10.270

0.95463 0.04944 0.02165 1.75068 0.006841 0.000305 -0.000674 22.454

0.95915 0.04503 0.02069 1.76690 0.006708 0.000238 -0.002453 28.144

0.96340 0.04089 0.01975 1.76974 0.006491 0.000229 -0.002560 28.385

0.96741 0.03699 0.01883 1.77235 0.006186 0.000220 -0.002661 28.073

0.97120 0.03331 0.01792 1.77480 0.005814 0.000213 -0.002758 27.282

0.97479 0.02983 0.01703 1.77715 0.005387 0.000207 -0.002850 26.055

0.97820 0.02653 0.01616 1.77940 0.004910 0.000201 -0.002937 24.395

0.98144 0.02341 0.01530 1.78157 0.004381 0.000197 -0.003019 22.279

0.98454 0.02043 0.01444 1.78376 0.003817 0.000193 -0.003099 19.814

0.98749 0.01761 0.01356 1.78618 0.003243 0.000189 -0.003187 17.175
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0.99032 0.01494 0.01263 1.78915 0.002673 0.000185 -0.003297 14.473

0.99304 0.01240 0.01165 1.79329 0.002118 0.000180 -0.003453 11.781

0.99566 0.01000 0.01060 1.79991 0.001587 0.000173 -0.003715 9.166

0.99819 0.00775 0.00946 1.81227 0.001097 0.000163 -0.004277 6.721

1.00063 0.00566 0.00819 1.83905 0.000673 0.000147 -0.004346 4.563

1.00300 0.00379 0.00673 1.89211 0.000413 0.000124 0.009282 3.322

1.00532 0.00218 0.00506 1.96149 0.000273 0.000098 0.036172 2.801

1.00759 0.00090 0.00319 2.01363 0.000196 0.000073 0.060467 2.678

1.00982 0.00010 0.00111 1.97788 0.000122 0.000051 0.134650 2.366

1.01203 0.00010 -0.00111 1.58004 0.000099 0.000046 0.157903 2.173

1.01427 0.00090 -0.00319 1.04256 0.000121 0.000055 0.083563 2.198

1.01654 0.00218 -0.00506 0.66967 0.000139 0.000064 0.046766 2.191

1.01885 0.00379 -0.00673 0.39354 0.000162 0.000073 0.022967 2.224

1.02123 0.00566 -0.00819 0.18028 0.000176 0.000079 0.009710 2.219

1.02367 0.00775 -0.00946 0.01929 0.000230 0.000103 0.000791 2.230

1.02620 0.01000 -0.01060 -0.09963 0.000230 0.000103 0.004084 2.230

1.02882 0.01240 -0.01165 -0.19214 0.000280 0.000123 0.006150 2.283

1.03153 0.01494 -0.01263 -0.26120 0.000311 0.000138 0.007785 2.248

1.03437 0.01761 -0.01356 -0.32325 0.000334 0.000148 0.008858 2.261

1.03732 0.02043 -0.01444 -0.36996 0.000380 0.000165 0.008502 2.310

1.04042 0.02341 -0.01530 -0.40917 0.000410 0.000179 0.008913 2.288

1.04366 0.02653 -0.01616 -0.44490 0.000441 0.000192 0.008941 2.296

1.04707 0.02983 -0.01703 -0.47822 0.000465 0.000203 0.009153 2.290

1.05066 0.03331 -0.01792 -0.50840 0.000496 0.000215 0.009023 2.303

1.05445 0.03699 -0.01883 -0.53666 0.000521 0.000227 0.009068 2.301

1.05846 0.04089 -0.01975 -0.56452 0.000543 0.000237 0.009208 2.295

1.06271 0.04503 -0.02069 -0.58943 0.000577 0.000249 0.008875 2.316

1.06722 0.04945 -0.02165 -0.61330 0.000603 0.000261 0.008859 2.313

1.07204 0.05416 -0.02263 -0.63563 0.000635 0.000274 0.008642 2.322

1.07718 0.05921 -0.02362 -0.65621 0.000670 0.000288 0.008380 2.331

1.08270 0.06463 -0.02464 -0.67582 0.000704 0.000301 0.008193 2.335

1.08864 0.07048 -0.02569 -0.69444 0.000740 0.000316 0.007964 2.340

1.09505 0.07679 -0.02677 -0.71212 0.000778 0.000332 0.007722 2.346

1.10198 0.08364 -0.02790 -0.72999 0.000811 0.000346 0.007630 2.342

1.10951 0.09107 -0.02907 -0.74762 0.000848 0.000362 0.007465 2.343

1.11768 0.09915 -0.03028 -0.76399 0.000893 0.000379 0.007158 2.355

1.12658 0.10796 -0.03153 -0.78079 0.000929 0.000395 0.007065 2.350

1.13627 0.11757 -0.03281 -0.79682 0.000975 0.000414 0.006818 2.358

1.14682 0.12803 -0.03413 -0.81195 0.001026 0.000433 0.006553 2.366

1.15828 0.13941 -0.03548 -0.82675 0.001074 0.000454 0.006356 2.368

1.17068 0.15174 -0.03685 -0.84096 0.001126 0.000475 0.006139 2.373
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1.18402 0.16501 -0.03823 -0.85482 0.001178 0.000496 0.005957 2.375

1.19827 0.17919 -0.03960 -0.86830 0.001230 0.000518 0.005789 2.376

1.21335 0.19421 -0.04094 -0.88133 0.001282 0.000540 0.005631 2.377

1.22917 0.20998 -0.04224 -0.89357 0.001338 0.000562 0.005450 2.381

1.24563 0.22639 -0.04347 -0.90509 0.001393 0.000584 0.005285 2.384

1.26261 0.24333 -0.04461 -0.91585 0.001449 0.000607 0.005126 2.387

1.28001 0.26070 -0.04566 -0.92594 0.001503 0.000629 0.004983 2.390

1.29775 0.27841 -0.04661 -0.93524 0.001558 0.000651 0.004835 2.393

1.31573 0.29638 -0.04745 -0.94380 0.001614 0.000673 0.004694 2.397

1.33390 0.31453 -0.04817 -0.95196 0.001665 0.000694 0.004587 2.398

1.35219 0.33281 -0.04878 -0.95976 0.001713 0.000714 0.004498 2.397

1.37054 0.35116 -0.04927 -0.96692 0.001763 0.000735 0.004388 2.400

1.38892 0.36953 -0.04964 -0.97383 0.001809 0.000754 0.004312 2.400

1.40727 0.38788 -0.04988 -0.98030 0.001855 0.000773 0.004229 2.401

1.42558 0.40619 -0.04998 -0.98636 0.001900 0.000791 0.004146 2.402

1.44385 0.42446 -0.04994 -0.99151 0.001955 0.000811 0.004016 2.411

1.46206 0.44267 -0.04975 -0.99589 0.002013 0.000831 0.003874 2.422

1.48024 0.46084 -0.04941 -0.99988 0.002068 0.000851 0.003757 2.429

1.49837 0.47897 -0.04891 -1.00277 0.002136 0.000873 0.003585 2.446

1.51649 0.49708 -0.04824 -1.00470 0.002213 0.000897 0.003392 2.467

1.53467 0.51524 -0.04739 -1.00504 0.002316 0.000925 0.003121 2.503

1.55296 0.53350 -0.04636 -1.00392 0.002439 0.000957 0.002813 2.550

1.57140 0.55190 -0.04517 -1.00214 0.002565 0.000989 0.002544 2.593

1.59001 0.57046 -0.04384 -0.99970 0.002697 0.001023 0.002294 2.637

1.60878 0.58918 -0.04237 -0.99678 0.002834 0.001057 0.002067 2.680

1.62771 0.60804 -0.04076 -0.99344 0.002978 0.001093 0.001856 2.725

1.64681 0.62706 -0.03904 -0.98964 0.003136 0.001130 0.001647 2.775

1.66607 0.64623 -0.03719 -0.98547 0.003308 0.001169 0.001445 2.830

1.68549 0.66555 -0.03524 -0.98100 0.003495 0.001209 0.001249 2.892

1.70506 0.68501 -0.03319 -0.97629 0.003701 0.001250 0.001058 2.962

1.72477 0.70461 -0.03105 -0.97134 0.003935 0.001292 0.000865 3.046

1.74464 0.72435 -0.02882 -0.96625 0.004204 0.001335 0.000673 3.148

1.76463 0.74421 -0.02652 -0.96119 0.004501 0.001379 0.000493 3.265

1.78472 0.76416 -0.02417 -0.95625 0.004837 0.001421 0.000325 3.403

1.80484 0.78414 -0.02178 -0.95160 0.005202 0.001463 0.000181 3.556

1.82492 0.80408 -0.01938 -0.94729 0.005613 0.001502 0.000053 3.737

1.84486 0.82387 -0.01698 -0.94338 0.006060 0.001539 -0.000050 3.939

1.86451 0.84338 -0.01464 -0.93989 0.006517 0.001573 -0.000122 4.144

1.88377 0.86251 -0.01238 -0.93673 0.006956 0.001604 -0.000167 4.336

1.90256 0.88117 -0.01023 -0.93388 0.007383 0.001634 -0.000193 4.518

1.92073 0.89922 -0.00819 -0.93135 0.007803 0.001662 -0.000209 4.696
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1.93811 0.91651 -0.00628 -0.92913 0.008229 0.001687 -0.000217 4.879

1.95464 0.93294 -0.00459 -0.92714 0.008555 0.001710 -0.000219 5.004

1.97035 0.94859 -0.00317 -0.92530 0.008712 0.001732 -0.000216 5.030

1.98534 0.96354 -0.00207 -0.92349 0.008649 0.001754 -0.000210 4.932

1.99967 0.97785 -0.00118 -0.92174 0.008457 0.001775 -0.000199 4.765

2.01326 0.99142 -0.00044 -0.92006 0.008266 0.001795 -0.000183 4.605

2.02186 1.00000 0.00000 -0.91907 0.008463 0.001807 -0.000146 4.684

2.02186 1.00010 0.00000 0.91907 0.033859 0.016712 0.000000 2.026

2.03045 1.00869 0.00003 0.92284 0.032315 0.016441 0.000000 1.965

2.04032 1.01856 0.00012 0.92482 0.031335 0.016302 0.000000 1.922

2.05165 1.02989 0.00027 0.92675 0.030386 0.016170 0.000000 1.879

2.06466 1.04290 0.00049 0.92867 0.029452 0.016042 0.000000 1.836

2.07961 1.05784 0.00079 0.93063 0.028520 0.015914 0.000000 1.792

2.09677 1.07500 0.00118 0.93261 0.027592 0.015787 0.000000 1.748

2.11647 1.09470 0.00169 0.93459 0.026673 0.015662 0.000000 1.703

2.13910 1.11732 0.00234 0.93652 0.025773 0.015544 0.000000 1.658

2.16509 1.14329 0.00317 0.93833 0.024901 0.015435 0.000000 1.613

2.19493 1.17312 0.00421 0.93992 0.024069 0.015341 0.000000 1.569

2.22921 1.20737 0.00550 0.94119 0.023288 0.015268 0.000000 1.525

2.26856 1.24669 0.00712 0.94197 0.022575 0.015224 0.000000 1.483

2.31375 1.29184 0.00911 0.94205 0.021945 0.015219 0.000000 1.442

2.36565 1.34368 0.01157 0.94112 0.021427 0.015271 0.000000 1.403

2.42525 1.40320 0.01458 0.93867 0.021061 0.015406 0.000000 1.367

2.49369 1.47154 0.01825 0.93372 0.020930 0.015682 0.000000 1.335

2.57228 1.55000 0.02272 0.92426 0.021217 0.016221 0.000000 1.308

2.66253 1.64009 0.02814 0.90530 0.022436 0.017370 0.000000 1.292

2.76618 1.74353 0.03469 0.86171 0.026643 0.020439 0.000000 1.304

2.88519 1.86229 0.04257 0.76705 0.042648 0.030210 0.000000 1.412

3.02187 1.99863 0.05203 0.71782 0.214907 0.042713 0.000000 5.031
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XFOIL Dump File for 600 RPM

# s x y Ue/Vinf Dstar Theta Cf H

0.00000 1.00000 0.00000 1.25086 0.417136 0.030750 -0.000009 13.565

0.00859 0.99142 0.00044 1.25153 0.413754 0.030494 -0.000009 13.568

0.02218 0.97785 0.00118 1.25266 0.410043 0.030070 -0.000009 13.636

0.03652 0.96354 0.00207 1.25386 0.406168 0.029621 -0.000009 13.712

0.05151 0.94859 0.00317 1.25512 0.401945 0.029154 -0.000010 13.787

0.06722 0.93294 0.00459 1.25646 0.397227 0.028669 -0.000010 13.856

0.08374 0.91651 0.00628 1.25787 0.391977 0.028162 -0.000010 13.919

0.10113 0.89922 0.00819 1.25937 0.386226 0.027631 -0.000010 13.978

0.11930 0.88117 0.01023 1.26096 0.380073 0.027078 -0.000010 14.036

0.13808 0.86251 0.01238 1.26263 0.373567 0.026508 -0.000011 14.093

0.15735 0.84338 0.01464 1.26438 0.366729 0.025926 -0.000011 14.145

0.17700 0.82387 0.01698 1.26618 0.359575 0.025334 -0.000011 14.194

0.19693 0.80408 0.01938 1.26805 0.352161 0.024735 -0.000011 14.238

0.21701 0.78414 0.02178 1.26998 0.344560 0.024133 -0.000012 14.278

0.23714 0.76416 0.02417 1.27194 0.336822 0.023531 -0.000012 14.314

0.25723 0.74421 0.02652 1.27396 0.328987 0.022931 -0.000012 14.347

0.27722 0.72435 0.02882 1.27601 0.321078 0.022336 -0.000013 14.375

0.29708 0.70461 0.03105 1.27810 0.313132 0.021745 -0.000013 14.400

0.31680 0.68501 0.03319 1.28023 0.305165 0.021158 -0.000013 14.423

0.33637 0.66555 0.03524 1.28240 0.297195 0.020577 -0.000014 14.443

0.35579 0.64623 0.03719 1.28462 0.289231 0.020000 -0.000014 14.461

0.37505 0.62706 0.03904 1.28688 0.281276 0.019429 -0.000015 14.477

0.39414 0.60804 0.04076 1.28920 0.273352 0.018862 -0.000015 14.492

0.41308 0.58918 0.04237 1.29157 0.265465 0.018300 -0.000016 14.506

0.43185 0.57046 0.04384 1.29399 0.257626 0.017742 -0.000016 14.521

0.45046 0.55190 0.04517 1.29647 0.249841 0.017189 -0.000017 14.535

0.46890 0.53350 0.04636 1.29902 0.242118 0.016640 -0.000017 14.550

0.48719 0.51524 0.04739 1.30163 0.234471 0.016095 -0.000018 14.568

0.50536 0.49708 0.04824 1.30433 0.226913 0.015552 -0.000019 14.590

0.52349 0.47897 0.04891 1.30712 0.219439 0.015009 -0.000019 14.620

0.54162 0.46084 0.04941 1.31003 0.212018 0.014465 -0.000020 14.657

0.55979 0.44267 0.04975 1.31306 0.204624 0.013918 -0.000021 14.702

0.57801 0.42446 0.04994 1.31623 0.197248 0.013368 -0.000022 14.755

0.59628 0.40619 0.04998 1.31954 0.189880 0.012816 -0.000023 14.816

0.61459 0.38788 0.04988 1.32301 0.182510 0.012262 -0.000024 14.885

0.63294 0.36953 0.04964 1.32665 0.175140 0.011704 -0.000025 14.963

0.65131 0.35116 0.04927 1.33047 0.167755 0.011146 -0.000026 15.051

0.66967 0.33281 0.04878 1.33448 0.160358 0.010587 -0.000028 15.147

0.68796 0.31453 0.04817 1.33869 0.152962 0.010029 -0.000030 15.251

131



0.70613 0.29638 0.04745 1.34310 0.145576 0.009475 -0.000031 15.365

0.72411 0.27841 0.04661 1.34771 0.138217 0.008925 -0.000033 15.487

0.74185 0.26070 0.04566 1.35254 0.130913 0.008382 -0.000036 15.619

0.75925 0.24333 0.04461 1.35758 0.123687 0.007848 -0.000038 15.760

0.77623 0.22639 0.04347 1.36283 0.116583 0.007327 -0.000041 15.912

0.79269 0.20998 0.04224 1.36827 0.109621 0.006821 -0.000044 16.072

0.80851 0.19421 0.04094 1.37387 0.102856 0.006333 -0.000048 16.241

0.82359 0.17919 0.03960 1.37960 0.096334 0.005868 -0.000052 16.418

0.83784 0.16501 0.03823 1.38544 0.090088 0.005427 -0.000056 16.600

0.85118 0.15174 0.03685 1.39133 0.084160 0.005014 -0.000061 16.787

0.86358 0.13941 0.03548 1.39723 0.078561 0.004628 -0.000067 16.974

0.87504 0.12803 0.03413 1.40313 0.073305 0.004272 -0.000072 17.161

0.88559 0.11757 0.03281 1.40900 0.068399 0.003942 -0.000079 17.352

0.89528 0.10796 0.03153 1.41482 0.063823 0.003638 -0.000086 17.543

0.90418 0.09915 0.03028 1.42061 0.059561 0.003358 -0.000093 17.738

0.91235 0.09107 0.02907 1.42637 0.055588 0.003099 -0.000101 17.936

0.91987 0.08364 0.02790 1.43210 0.051878 0.002860 -0.000110 18.140

0.92681 0.07679 0.02677 1.43783 0.048399 0.002638 -0.000120 18.347

0.93322 0.07048 0.02569 1.44358 0.045124 0.002432 -0.000130 18.557

0.93915 0.06463 0.02464 1.44936 0.042034 0.002239 -0.000142 18.774

0.94467 0.05921 0.02362 1.45522 0.039123 0.002058 -0.000155 19.009

0.94982 0.05416 0.02263 1.46120 0.036361 0.001888 -0.000170 19.263

0.95463 0.04944 0.02165 1.46732 0.033735 0.001726 -0.000186 19.544

0.95915 0.04503 0.02069 1.47366 0.031247 0.001572 -0.000205 19.876

0.96340 0.04089 0.01975 1.48027 0.028863 0.001425 -0.000227 20.261

0.96741 0.03699 0.01883 1.48722 0.026573 0.001282 -0.000253 20.723

0.97120 0.03331 0.01792 1.49462 0.024367 0.001144 -0.000285 21.298

0.97479 0.02983 0.01703 1.50262 0.022221 0.001009 -0.000325 22.033

0.97820 0.02653 0.01616 1.51158 0.020141 0.000872 -0.000377 23.106

0.98144 0.02341 0.01530 1.52168 0.018079 0.000734 -0.000450 24.631

0.98454 0.02043 0.01444 1.53356 0.016050 0.000591 -0.000517 27.146

0.98749 0.01761 0.01356 1.54849 0.014054 0.000435 -0.000528 32.304

0.99032 0.01494 0.01263 1.57165 0.012067 0.000222 -0.000543 54.282

0.99304 0.01240 0.01165 1.59033 0.010182 0.000086 -0.003952 119.041

0.99566 0.01000 0.01060 1.59110 0.008441 0.000083 -0.004076 101.657

0.99819 0.00775 0.00946 1.59159 0.006720 0.000083 -0.004101 81.277

1.00063 0.00566 0.00819 1.59158 0.005046 0.000085 -0.004015 59.582

1.00300 0.00379 0.00673 1.59116 0.003527 0.000088 -0.003896 40.211

1.00532 0.00218 0.00506 1.59063 0.002198 0.000090 -0.003818 24.287

1.00759 0.00090 0.00319 1.59219 0.001090 0.000090 -0.003975 12.048

1.00982 0.00010 0.00111 1.61470 0.000292 0.000080 0.002221 3.652
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1.01203 0.00010 -0.00111 1.68189 0.000114 0.000051 0.091632 2.222

1.01427 0.00090 -0.00319 1.38761 0.000116 0.000053 0.076844 2.181

1.01654 0.00218 -0.00506 1.10350 0.000128 0.000059 0.054940 2.188

1.01885 0.00379 -0.00673 0.87042 0.000140 0.000064 0.039075 2.203

1.02123 0.00566 -0.00819 0.66940 0.000151 0.000069 0.028347 2.186

1.02367 0.00775 -0.00946 0.49127 0.000173 0.000080 0.018580 2.162

1.02620 0.01000 -0.01060 0.35756 0.000204 0.000092 0.010833 2.223

1.02882 0.01240 -0.01165 0.25422 0.000216 0.000099 0.007541 2.183

1.03153 0.01494 -0.01263 0.16494 0.000245 0.000109 0.004087 2.244

1.03437 0.01761 -0.01356 0.08860 0.000250 0.000113 0.002230 2.205

1.03732 0.02043 -0.01444 0.02316 0.000315 0.000141 0.000452 2.230

1.04042 0.02341 -0.01530 -0.02742 0.000315 0.000141 0.000536 2.230

1.04366 0.02653 -0.01616 -0.07800 0.000326 0.000146 0.001463 2.235

1.04707 0.02983 -0.01703 -0.12277 0.000358 0.000159 0.002060 2.256

1.05066 0.03331 -0.01792 -0.16222 0.000383 0.000170 0.002563 2.249

1.05445 0.03699 -0.01883 -0.20047 0.000397 0.000177 0.003063 2.245

1.05846 0.04089 -0.01975 -0.23742 0.000414 0.000184 0.003451 2.253

1.06271 0.04503 -0.02069 -0.26987 0.000447 0.000196 0.003547 2.280

1.06722 0.04945 -0.02165 -0.30259 0.000456 0.000203 0.004014 2.248

1.07204 0.05416 -0.02263 -0.33481 0.000478 0.000211 0.004165 2.267

1.07718 0.05921 -0.02362 -0.36393 0.000507 0.000222 0.004203 2.284

1.08270 0.06463 -0.02464 -0.39184 0.000531 0.000233 0.004337 2.280

1.08864 0.07048 -0.02569 -0.41884 0.000557 0.000244 0.004394 2.286

1.09505 0.07679 -0.02677 -0.44665 0.000574 0.000252 0.004600 2.274

1.10198 0.08364 -0.02790 -0.47299 0.000605 0.000264 0.004536 2.293

1.10951 0.09107 -0.02907 -0.49862 0.000632 0.000276 0.004582 2.293

1.11768 0.09915 -0.03028 -0.52484 0.000655 0.000286 0.004679 2.287

1.12658 0.10796 -0.03153 -0.55078 0.000683 0.000298 0.004679 2.294

1.13627 0.11757 -0.03281 -0.57616 0.000713 0.000310 0.004664 2.299

1.14682 0.12803 -0.03413 -0.60090 0.000746 0.000324 0.004626 2.304

1.15828 0.13941 -0.03548 -0.62567 0.000776 0.000337 0.004636 2.303

1.17068 0.15174 -0.03685 -0.64941 0.000813 0.000352 0.004551 2.312

1.18402 0.16501 -0.03823 -0.67342 0.000843 0.000365 0.004580 2.307

1.19827 0.17919 -0.03960 -0.69711 0.000875 0.000379 0.004557 2.308

1.21335 0.19421 -0.04094 -0.72003 0.000909 0.000393 0.004516 2.312

1.22917 0.20998 -0.04224 -0.74213 0.000943 0.000408 0.004477 2.314

1.24563 0.22639 -0.04347 -0.76401 0.000972 0.000421 0.004489 2.310

1.26261 0.24333 -0.04461 -0.78414 0.001011 0.000436 0.004391 2.320

1.28001 0.26070 -0.04566 -0.80399 0.001039 0.000449 0.004401 2.315

1.29775 0.27841 -0.04661 -0.82275 0.001071 0.000462 0.004357 2.318

1.31573 0.29638 -0.04745 -0.84067 0.001101 0.000475 0.004326 2.319
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1.33390 0.31453 -0.04817 -0.85819 0.001127 0.000487 0.004330 2.315

1.35219 0.33281 -0.04878 -0.87487 0.001154 0.000498 0.004305 2.316

1.37054 0.35116 -0.04927 -0.89076 0.001181 0.000510 0.004279 2.317

1.38892 0.36953 -0.04964 -0.90668 0.001200 0.000519 0.004313 2.311

1.40727 0.38788 -0.04988 -0.92218 0.001219 0.000528 0.004328 2.308

1.42558 0.40619 -0.04998 -0.93656 0.001245 0.000538 0.004286 2.313

1.44385 0.42446 -0.04994 -0.95057 0.001266 0.000548 0.004281 2.312

1.46206 0.44267 -0.04975 -0.96357 0.001292 0.000558 0.004233 2.317

1.48024 0.46084 -0.04941 -0.97606 0.001315 0.000567 0.004205 2.319

1.49837 0.47897 -0.04891 -0.98767 0.001341 0.000577 0.004151 2.324

1.51649 0.49708 -0.04824 -0.99824 0.001372 0.000588 0.004070 2.332

1.53467 0.51524 -0.04739 -1.00697 0.001415 0.000602 0.003908 2.351

1.55296 0.53350 -0.04636 -1.01425 0.001463 0.000617 0.003732 2.372

1.57140 0.55190 -0.04517 -1.02070 0.001508 0.000632 0.003589 2.387

1.59001 0.57046 -0.04384 -1.02682 0.001548 0.000647 0.003490 2.395

1.60878 0.58918 -0.04237 -1.03238 0.001589 0.000662 0.003393 2.402

1.62771 0.60804 -0.04076 -1.03792 0.001624 0.000676 0.003333 2.404

1.64681 0.62706 -0.03904 -1.04294 0.001662 0.000690 0.003256 2.409

1.66607 0.64623 -0.03719 -1.04778 0.001698 0.000704 0.003193 2.411

1.68549 0.66555 -0.03524 -1.05253 0.001732 0.000718 0.003144 2.412

1.70506 0.68501 -0.03319 -1.05714 0.001764 0.000731 0.003098 2.412

1.72477 0.70461 -0.03105 -1.06165 0.001796 0.000745 0.003057 2.412

1.74464 0.72435 -0.02882 -1.06598 0.001828 0.000758 0.003013 2.413

1.76463 0.74421 -0.02652 -1.07034 0.001857 0.000770 0.002984 2.411

1.78472 0.76416 -0.02417 -1.07488 0.001881 0.000782 0.002972 2.406

1.80484 0.78414 -0.02178 -1.07987 0.001897 0.000792 0.002992 2.396

1.82492 0.80408 -0.01938 -1.08484 0.001914 0.000801 0.003000 2.389

1.84486 0.82387 -0.01698 -1.08996 0.001928 0.000810 0.003016 2.381

1.86451 0.84338 -0.01464 -1.09576 0.001930 0.000816 0.003074 2.365

1.88377 0.86251 -0.01238 -1.10283 0.001914 0.000818 0.003201 2.339

1.90256 0.88117 -0.01023 -1.11105 0.001887 0.000817 0.003368 2.309

1.92073 0.89922 -0.00819 -1.11985 0.001859 0.000815 0.003533 2.282

1.93811 0.91651 -0.00628 -1.12775 0.001850 0.000815 0.003611 2.271

1.95464 0.93294 -0.00459 -1.13774 0.001811 0.000808 0.003828 2.240

1.97035 0.94859 -0.00317 -1.15329 0.001710 0.000787 0.004368 2.172

1.98534 0.96354 -0.00207 -1.18057 0.001521 0.000741 0.005546 2.053

1.99967 0.97785 -0.00118 -1.22249 0.001299 0.000675 0.007417 1.926

2.01326 0.99142 -0.00044 -1.29386 0.001029 0.000577 0.010956 1.784

2.02186 1.00000 0.00000 -1.25086 0.001439 0.000683 0.005944 2.107

2.02186 1.00010 0.00000 1.25086 0.418576 0.031433 0.000000 13.316

2.03045 1.00869 0.00010 1.24928 0.416120 0.032039 0.000000 12.988
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2.04032 1.01856 0.00043 1.24754 0.415620 0.032709 0.000000 12.707

2.05165 1.02988 0.00095 1.24554 0.415242 0.033482 0.000000 12.402

2.06466 1.04287 0.00170 1.24324 0.414878 0.034376 0.000000 12.069

2.07961 1.05778 0.00272 1.24058 0.414419 0.035413 0.000000 11.702

2.09677 1.07488 0.00407 1.23751 0.413776 0.036617 0.000000 11.300

2.11647 1.09451 0.00582 1.23396 0.412854 0.038019 0.000000 10.859

2.13910 1.11703 0.00806 1.22986 0.411537 0.039652 0.000000 10.379

2.16509 1.14286 0.01090 1.22510 0.409684 0.041560 0.000000 9.858

2.19493 1.17249 0.01445 1.21957 0.407112 0.043793 0.000000 9.296

2.22921 1.20647 0.01889 1.21314 0.403591 0.046414 0.000000 8.695

2.26856 1.24544 0.02440 1.20564 0.398825 0.049501 0.000000 8.057

2.31375 1.29012 0.03119 1.19684 0.392428 0.053151 0.000000 7.383

2.36565 1.34135 0.03953 1.18648 0.383901 0.057492 0.000000 6.677

2.42525 1.40007 0.04972 1.17417 0.372587 0.062700 0.000000 5.942

2.49369 1.46737 0.06215 1.15930 0.357616 0.069040 0.000000 5.180

2.57228 1.54450 0.07723 1.14079 0.337836 0.077004 0.000000 4.387

2.66253 1.63289 0.09546 1.11532 0.311914 0.088106 0.000000 3.540

2.76618 1.73418 0.11744 1.08379 0.276528 0.102056 0.000000 2.710

2.88519 1.85023 0.14384 1.07544 0.224272 0.105603 0.000000 2.124

3.02187 1.98320 0.17546 1.22525 0.088663 0.064788 0.000000 1.369
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