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CHAPTER I
INTRODUCTION

This fesearch will deﬁeloPAa methodology for'assigning random
numbers to the experimental pdints of response surface designs for
increasing the efficiency of Bimulation results. The methodology will
be based on the recent findings of Séhruben and Margolin (52). The
research will compare the efficiency of the recommended methodology
with those of the riv#l methodologies;~ It will use an inventory
simulation model to show and support the analytical findings.
Additionally, ;t will pfesent a new classification for response surface
designs which could help simulation désigners decide which design‘to use.

Response surface-ﬁethodology éoﬂsists of stretegies and experi-
mental designs used for exploring unknown surfaces or for determining
the optimum conditions,‘i.e., the optimum levels of factors involved
in an experiment. For exémple, in a chemical plant 1t is used to
determine the level of guch factors as temperature, concentration,
etc.,, vhich will result in the highest yleld or the lcvest cost. The
desirability of response surface methodology stéms from the fact that
it finds the optimum or discovers an unknown relationship with a
limited number of observations.

The mathematical relationship between the factors and the response

can be expressed as:

G = f(gl) 52! 531 tesy Ek) (l-l)



where G is the response and El, 52, ey Ek represents factors 1 through
k, respectively. Although multiple responses are allowed, this study

is limited to the single response case. Response surface methodology
requires (1) the factors to be quantitative and (2) the response, G,

be measured on a continuous scale.

Generally speaking, the férm of the response function (1.1) is
unknown and the experimenter approximates it by a polynomiai of low
order. To do so, he explores & small sub-region of the experimental
region which enables him to move to another sub-region with a better
set of responses. This process is continued until the sub-region
“containing the possible optimum is found and explored.

The first sub-regilon 18 almost always investigated through fitting
a first order polynomial. Designs used for this purpose are called
first order designs. Depending upon the obtained results, either the
present sub~region will be explored by a second degree equation or a
new sub-region will be examined by anofher first order design. A
second order polynomial is employed when the optimum is suspected to be
in the present region. Designs proposed for fitting a second degree
polynomial are called second orderideaigns. Second ordir designs
should ideally be obtained by adding observations to the points of a
first order design.

Box and Wilson (10), in 1951, investigated response surfaces in
detall and recommended the optimal.strategy and some useful designs for
exploring them. The proposed strategy is called the steepest ascent
(for maximization problems) or the steepest descent (for minimization
problems) method. Although the technique was not new, its épplication

to the purpose at hand was novel. Their work definitely laid the foun-



dation for many studies that have been carried out since then. All the

subsequent work was mainly aimed at determining the most efficient

designs for exploring response surfaces which meet certain assumptions
(1) (6) (7) (9) (20) (21) (22) (23) (24) (37) (40) (41).

When a low order polynomial is fitted to a surface, there could
be two sources of variation between the estimated and the true
responses. One is due to sampling variation and the other is because
of the inadequacy of the fitted equation to represent the true func-
tion. The first one is called variance error and the second one is
called bias errbr. Consequently, some response surface designs have
been derived to minimize variance alone, some to minimize bias alone,
and the rest to minimize both variance and bias. Response surface
methodology and its literature are discussed in Chapter II.

The objective of response surface methodology coincides with the
objective of most simulation studies. Indeed, many simulations are
designed to determine the values of rome factors that will optimize a
response function. Naylor et al. (48) define the purposes of simula-
tion as the determination of the optimum combination of factors and the
general investigation of the relationship between the response and the
factors. However, it is surprising to find only a fe simulation
studies that utilize the concept and the methods of response surfaces.

Although the importance and the benefits of RSM to simulétion have
been emphasized in several papers, simulation designers have, in the
past, been negligent about it (11) (13) (43). The unwillingness to use
response surface methodology 1s perhaps due to three factors. First,
response surface methodology was originally designed for physical -

processes and has yet to rfind its place in synthetically controlled



business experiments. Second, simple design proposals have been hidden
behind complicated'statistical proofs.

Third, in view of RSM's seeming complexity, simulators may have
used an enumerative approach~-changiqg values of the parameters omne at
a time until all possible combinations have been considered. Such as
approach, however, is neither suitable to large-sized complex problems

nor can be employed for finding a functional relationship.

Recently there has been a growing awareness among decision
scientists of the importance of response surface methodology in simula-
tion experiments. Brightman (11) has used design of marketing policies
as an example to show the usefulness of response surface methodology to
simulation experiments. He has argued that

although from a historical viewpoint RSM has been applied

primarily to Operations Management, its greatest value to

decision scientists is its potential application to simu-

lation studies. . . . Once a simulation model has been

built and validated, RSM could be utilized to determine

the best policy in an optimal fashion (p. 495).

Schruben and Margolin (53, p. 524), in discussing the random number
assignment in simulation, write, "our basic development, however,
applies to a wider class of experiments. This class includes response
surface designs, whose true value for simulation has yet to be fully
realized."

Successful application of response surface methodology to simula-
tion requires efficiency in execution. Data generated'by computer
simulation experiments 1is costly. Thus, it 1is vital to obtain as much
information as possible with the minimum possible sample size. In

doing so, variance reduction techniques have been developed for increasing

the efficiency of the desired estimators with a given sample size.



Naturally, the extra work involved for implementing these techniques‘
should not exceed the benefits that will be accrued by the redﬁction in
variance. Two of the most routinely used variance reduction techniques
are (1) common random numbers and (2) antithetic random numbers method.
Random numbers are used in simulation for the random selection of
observations from a given probability distribution. The common random

numbers technique uses the same stream(s) of random numbers for each

experimental point. The antithetic raﬁdom numbers technique uses R,

a vector of random numbers, and (1 - R) to generate each simulation
response. These two techniques, which require no or little e#tra
computer programming as compared to other variance reducing techniques,
induce correlations between responses leading to increases in the
efficiency of results.

The use of common random numbers has empirically been shown to
cause positively correlated responses; the use of antithetic random
numbers has led to negétive correlaticn between responses (38). How-
ever, whether one can benefit from their joint application in the same
simulation experiment has‘been‘coﬁtroversial. While Kleijnen (38) and
Fishman (27) have obtained pessimistic résults, Schrubea and Margolin's
(52) work has proved to be very encouraging. These stulies will be
discussed in Chapter III.

Having aseumed the induction of positive and negative correlation
through utilization of common and antithetic random numbers, Schruben
and Margolin (52) derived an optimal rule for assigning ran&om numbers
to the experimental designs that admit orthogonal blocking. Their

result can be adopted for 2" factorial designs and 2% fractional



factorial designs. These designs have been strongly recommended for
estimating linear effects in response surface methodology.

In summary, response surface methodology and its associated designs
have not received as much attention as they deserve in simulation
analysis. Applying response surface methodology to simulation studies
substantially increases the strength of an already powerful technique.
Alth&ugh designs developed for exploring response surfaces are effi-
cient, more efficiency might be obtained by using two variance reducing

techniques, namely common random numbers and antithetic random numbers.
Study Objectives and Contributions

It 18 the first objective of‘this study to design a methodology
for assigning random numbers (common, antithetic, and independent) to
the design points to increase the efficlency of simulation results.
The second objective 18 to create a presentation scheme for response
surface designs to facilitate their :pplication to simulation.

Specifically, the study shall attempt to:

1. Examine the designs proposed for exploring response surfaces

and provide the user with a summary of these proposals along with the

conditions under which they should be used. This step should not be

mistaken with a review of literature in this field. The objective is
the clarification and reclassification of available designs for future
applications. Over the last three decades, alternative criteria
(minimizing bias, variance, or both) have been aﬁoPted for deriving
the optimal desigﬁs for learning about the behavior of response func-

tions. Regardless of the criterion selected, factorial and fractionmal



factorial designs have been mostly recommended by estimating first

order effects. However, the optimal designs developed for estimating
second order effects have been based on a number of assumptions and should
not be used indiscriminately in different experiments. It is neither
practical nor economical for-a simulation designer to study all the
formulated designs in order to find his appropriate design. Therefore,

to encourage and facilitate the use of response surface designé there

is a need for a study to probe the literature and present it in a

complete and an understandable form.

2. Investigate the assignment of common and antithetic random

numbers to the designs evaluated in (1) above. Since a blocking

arrangement 1s possible in these designs, the study will examine the

implication of applying Schruben and Margolin's assignment rule to them.
°This assignment rule is primarily useful when it is possible to plan
the whole experiment at one time, which is not true for response
surface problems. The sequential nacure of response surface designs
may make it difficult to come‘up with a general rule for assigning
random numbers to the experimental points optimally. The difficulty
arises due to the uncertainty in the number of steeps t ascent itera-
tions needed to redch to the near-stationary regilon. For example, an
assignment rule which is optimal when the number of steepest ascent
iterations required 1s two may have adverse effect on efficiency when
the number of necessary iterations 1s different than two.

The analysis here 1s intended to offer an assignment rule that

remains optimal regardless of the number of steepest ascent iterations

required. In other words, attempts will, first, be made to divide

observations into two oriiogonal blocks‘for all the first order designs.



Since first order designs are, in general, factorial and fractional
factorial designs, this will be an easy task. Second, when the search
process indicates the necessity for fitting a second order polynomial,
a methodology will be developed for generating two orthogonal blocks
by adding observations to the two drthogonal ﬁlocks of the first order
design. The optimality of this methodology cannot be evaluated

analytically. However, empirical work is an alternate way of testing

its validity.

3. Illustrate the application of response surface methodology to

an inventory simulation problem. The last part of this research applies

the analytical results to an inventory simulation case. An illustrative
example will be discussed in detail. The example will provide an
opportunity ta appreciate the potentiality of raspohse surface design

in simulation experiments. ' In addition, it will furnish an empirical

evaluation of the alternative random numbers assignment rules.

Scope and Boundaries

The scope and the boundaries set for this research are as follows:
First, it is limited to maximization problems althougi. minimization
problems can be transferred to maximization problems simply by multi-
plying the response by a negative sign. In fact, the example discussed
at the end of Chapter IV is a minimization problem. Second, to keep
the analysis simple, the discussion (for the most part) will be re-

stricted to two independent variables; however, the obtained results

will be general and can be applied to problems with more than two

independent variables as well. Third, the response function will be



limited to include second order terms at most. This will not create

a great amount of bias in the results because a quadratic function has
been shown (in most cases) to provide an adequate fit in the region
close to the optimum. The adequacy of a quadratic funcﬁion has actual-
ly been assumed in the literature of response surface methodology and
not much discussion exists for cubic funqtions. Fourth, .the stud&
focuses only on the efficiencies that can be‘obtained when common and
antithetic random numbers are assigned to the experimental points.

While other varlance reducing techniques might be more efficient,

they are not as widely and commonly used. Last, it is assumed that
correlation with desired signs can be generated by the use of common and
antithetic random numbers. The validity of this assumption rests on the

empirical findings and not on the mathematical proofs.
Organization of Chapters

Chapter II 1is devoted to discussion of response surface methodology

and contains the proposed experimental designs in chronological order.

Chapter III explains the two variance reduction techniques employed in
this paper. It also discusses the joint application ¢f common and
antithetic random numbers plus the result of Schruben and Margolin's

(52) work upon which part of this study is based. Chapter IV has three

parts. In the first part, a framework is developed for presenting the

proposed designs discussed in Chapter 1I. This framework is detailed

enough to let users with different problems and objectives optimally

select their designs. The second part of Chapter IV examines the

application of Schruben and Margolin's random number assignment rale to
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the designs summarized in the first part. The last part of Chapter IV
applies the analytical results to an inventory simulation. Finally
Chapter V closes the paper by stating the conclusions as well as

implications for future research.



CHAPTER II
RESPONSE SURFACE METHODOLOGY

In this chapter, response surfaces are first defined. Then an
efficient method for exploring them is described. Next, designs devel-
oped for experimenting with the response surfaces are explained.

Finally, a summary of the discussion will be given.
The Concept of Response Surfaces

Response surfaces are usually used for two purposes. First, they
might be used to determine the values of some factors thét will optimize
a response (or a set of responses). Second, they might be employed for
learning about the‘mathematical relationship that exists between the
factors and the responses. The discussion here is aimed at the optimi-
zation aspect of response surfaqes, specifically at single response
maximization problems (for example, a firm which maximizes its profits
based on prices, advertising expenditures, etc.).

Let G denote the response and gl, €2, seey Ek represent factors 1
through k, respectively. Then a response function wheﬁ the factors are
quantitative and the response is measurable on-'a continuous scale can be

expressed by:
Gv= f (gl’ ‘52! LIRS | Ek) (2'1)

In practice, the form of (2.1) is unknown and the experimenter

approximates it by a polynomial of low order. Because of the

11
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experimental error, G, the true response, is never observed and Y is

used to indicate the observed response. For convenlence, designers do
not work with the real values of the factors, but with their standardized
values, A standardized variable has its origin at the center of the
design and its unit is set equal to the amount by which the factor is.

changed. Mathematically it 1s derived as follows:

(Eiu - gi)
X, B e————

iu Si

(2.2)

b

where

- 9 1/2
N (Eiu " Ei)

s, ={ 1 55— :
um=l

and where N represents the total number of observations. Therefore,

for the x's, two relationships will be true:

N N 2
X LI 0 and z Xy = N. (2.3)
u =l , u=1l

A polynomial equation for two standardized variables is:

2 2 3
Y= Byt Byxp F Boxy o+ Bgxy + ByoXy F B %Xy F BpygE) Foes

(2.4)
Clearly, a better fit 1s obtained as terms of higher crder are included.
Each polynomial equation 1s naturally a regression function with X1s Xy
xi, xg, X199 etc., as the independent variables in the regression equa-
tion. In the polynomial equation, Bl and 82 measure the linear effects,
Bll and 822 the quadratic effects, 612 the linear X linear interaction
effects and so on. An investigator is normally able to identify, at
least approximately, the region of factor space corresponding to factor

combinations of his interest. This region i1s called the experimental

region and the problem is to find the point(s) of the maximum response
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in this region. Polynomials provide an approximate fit only within the
experimental region and become untrustworthy when extrapolated.

When the number of factors is small (three or less), there are two
convenient ways to visualize the relationship involved. One method is
to graph the relationship directly to obtain the response surface.
Figure 1 shows a response surface wifh two factors.

An alternative approach is drawing contour lines—-lines of equal
response on a graph whose coordinates represent the levels of the
factors. Figure 2 illustrates some contour lines corresponding to the
response surface In Figure 1. The first technique is useful when there
are one or two factors while the second one can be used with as many as
three factors.

To find the optimal values of the factors, the designer has to
formulate a search strategy. Circumstances that influence his-choice
are:

(1) The magnitude of experimental error
(11) The complexity of the res;onse surface

(111) Whether or not experiments may be conducted sequentially

so that each set may be designed using the knowledge
gained from the previous sets (10, p. 2).

Generally speaking, in response surface problems, the experimenter
does not need to plan the whole experiment at one time and sets of
trials are conducted sequentially allowing him to plan new trials based
on the responses obtained in the previéus ones.

For experiments with small experimental error, a small sub-region
of the factor space may be explored with only a few experimental points
by utilizing a polynomial of low order. This, plus the sequential

nature of the experiments, make it possible for the investigator to

specify the next region t be considered or to choose new points in the
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Figure 1. A Response Surface
;2
(\
50
40 _
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Source: Davies (9, pp. 497-498).

Figure 2. Response Contour Lines Corresponding to
" the Response Surface of Figure 1

14
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present region to be studied next. An efficient method of locating the
optimum level of each factor was adopted from the field of nonlinear
mathematics by Box and Wilson (10). This method, the steepest ascent
method, is discussed below wifhin the context of a situation involving

two factors xl and xz.

Steepest Ascent Method

The steepest ascent method consists of two distinct phases. 1In the
first phase, due to the likely remoteness of the initial conditioms
from the maximum, the surface is approximated locally by a sloping
plane. 1In doing so, the slopes, b, and b, of plane in direction of x

1 2

and x, are estimated. The relative magnitudes and signs of these

1

slopes determine the direction of the greatest increase in responses
called steepest ascent. Graphically this direction is perpendicular
to the contour linesvand shows the amount by which the factors must be
varied for gaining the maximum increase in response.‘ Using the steep-
est ascent direction, the search effort ﬁoves from the initial point
to another point on the §ath of steepest ascent and new slopes will

be calculated. A hypotheticai steepest ascent path, -OIl’ is shown in
Figure 3.

To move from the initial point to another, first, a new point along
the steepest ascent pafh is selected. Then, the response for this point
is measured to find out whether the predicted increase in resﬁonse
actually takes place. (The size of the jump that is made is very much
subjective.) If the actual response is close to the predicted one,
another point is tested along the same path. This process i1s continued

until the actual response is substantially diferrent than the one
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Figure 3. A Hypothetical Steepest Ascent Path, I
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predicted. Af this point, another first degfee polynOmiél is fitted.
and if the linear approximation turns out to be adequate, a new steepest
ascent path is calculated. | il ‘ ﬂ

This procedure will eventually lead to a regibn-in”whiéb_the
surface can no longer be épproximated by a plane and the quadrétic coef~
ficients.become relatively more important. Therefore, the.f;rst”phase
by itself 1s usually inadequate to find the optimum, but will quickly
direct the search procéss to a region close to the maximum.’ This region
is called the near-stationary region and will be explbred in the second
phase.

The initial value and the unit adopted for a factor should be.
changed before exploring the next sub-region if its estimated linear
effect 1is relativély small. A small linear effect could be caused by
one of the following:

1. The factor does not influence the response.

2., The unit seleqted for thils variable is relatively small.

3. The initial valﬁe of this factor is close to a conditional

maximum.

Based on the new estimates, the cause will be determi-ied and appropriate
measures should be taken accordingly.

The objective of the second phase is to determinc the nature of the
near—statiohary region and, if possible, the location of the maximum.
This is done through performing a set of trials in the near-statiomary
region and fitting a polynomial of second degree to the surface in this
region.

Being in the near-stationary region does not necessarily mean that

the experimenter is in thec neighborhood of a global maximum. That will
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be the case only 1f the experimeﬁtal region has one peak, otherwisg
convergence to a local maximum is possible. Steepest ascent method,
therefore, leads to a stationary point which could be (1) a true maxi-
mum (Figure 4a), (2) a stationmary ridge (Figure 4b), (3) a rising ridge
(Figure 46), or (4) a saddle point (Figure 4d).

While graphical presentation is helpful in examining a stationary
point, it demands an enormous amount of wqu and is not useful when
there are more than three factors in the experiment. Canonical analysis
is a mathematical method developed for evaluating the stationary point.
To construct the canonical function, the origin of the design is moved
to the stationary point and the original coordinate axes are rotated
until they correspond to the axes of the conics (the collection of
curves which make up the contour surfaces). The signs and the magnitudes
of the coefficients of the variables in the new coordinate systém
determine the type of maximum reached.

Discovering the nature of the near stationary-ridge is of great
practical importance. ' For example, for a stationary ridge like that in
.Figure 4b there are multiple optimalfsblutions and from ﬁhese alterna-
tives the one that satisfies or optimizes some auxiliary condition
should be selected.

The method discussed above does not ekpldre the whole experimental
region and is based on the premise that the maximum can be reached
through a rising path. It is successful in a global sense only if the
experimental region has one peak.

Before discussing the experimental designs prescribed for the two
phases of the steepest ascent method a word about the importance of the

scales of measurement fc - the variables is in order. As noted earlier,
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the direction of the steepest ascent is at right angles to the contour
lines of equal responses. The slope of a contour line 18 itself a
function of the relative scales of measurements for the two variables.
There is no unique way of determining the relative scales of measure-
ments but it is wise to select them such that the response function

is symmetrical with respect to the factors (19).

A Review of Response Surfaces Experimental

Designs

For any experiment, each combination of the levels of the factors
represents one experimental point and the collection of such points used
for employing the surface i1s called the experimental design. It is
well realized that the random seléction of experimental points may not
only fail to provide accurate estimates of constants but might even
furnish separate estimates of some coefficients. A well developed

experimental design for estimating effects up to order d should meet

the following requirements:

(a) The design should allow the approximating polynomial of
order d (tentatively assumed to be representationally
adequate) to be estimated with satisfactory esccuracy
within the reglon of interest.

(b) It should allow a check to be made on the representa-
tional accuracy of the assumed polynomial.

(c) It should not contain an excessively large number of
points.

(d) It should lend itself to 'blocking'. :

(e) It should form a nucleus from which a satisfactory design
of order d+1 can be built in case the assumed degree of
polynomial proves inadequate (9, p. 197).

A discussion of designs, in chronological order, is given below.
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Factorial and Composite Designs

In 1951, Box and Wilson (10) initiated the development of
experimental designs and method of analysis for fitting polynomials of
first and second degree to the response surfaces. By applying first
vdegree polynomials, one is able to calculate the first order effects by
varying each of the factors at two levels. Box and Wilson set the
lévels of the factors at +1 and -1 and proposed complete and fractional
two level factorial designs for estimating the linear coefficients;
Cochran and Cox (16) have tabulated some useful first order deéigns as

are shown in Table I.

TABLE I

SOME USEFUL FIRST ORDER DESIGNS

Size of Fraction Number of Degrees
Number of Experiment of a of Freedom
Factors (units) Full Factorial "Lack of Fit"
3 8 1 4
4 8 1/2 3
5 8 1/4 2
5 16 1/2 10
6 8 1/8 1
6 16 1/4 9

Source: Cochran and Cox (16, p. 341).

The designs given in Table I provide some degrees of freedom for

testing the adequacy of the linear model assuming that a measure of
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experimental error variance is available.

To estimate the quadratic coefficients, each factor should take at
least three values. Therefore, a natural tendency would be to use a
complete‘or fractional three~level factorial design. But, when the
number of factors is more than two, the number of observations reqqiped
becomes excessively large. Further, the quadratic coefficilents are
estimated with a lower precision compared to the interaction coeffi-
cients (10).

To overcome these two problems, Box and Wilson (10) formulated
composite designs. These designs are constructed by adding further
treatment combinations to 2k factorial or fractional factorial designs.
Composite designs are classified into central and noncentral groups.

In central composite designs there are (2k + 1) additional factor
combinations tested at:

(0, 0, «eey 0); (=00, 05 wuuy 0)3 (@) Oy wuvy 0)5 (0, =0y +vu, 0)3

(0, Gy voes 0)5 « o« (0, Oy vy =a); (0, 0y vuuy Q).

Thus, the total number of experimental points is (2k + 2k + 1) which
for k > 4 is smaller than Bk.

Central designs are helpful when the result of the 2k factorial
design suggests that the surface is curved and the center of the first
experiment 1s close to a point of maximum. On the othe: hand, non-
central composite designs are used when the initial experiment indi-
cates that a factor combination other than the center is close to the
maximum. In noncentral composite designs, the number of treatment com-
binations added is k, one for each factor. The new level of eachvfactor
could be 1 + o or -1 - o depending upon the-possible location of the

maximum. For example, in an experiment with three factors, if the point
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of maximum is thought to be around (-1, -1, 1), then the extra treatment
combinations are: (-1-¢, -1, 1); (-1, -1-o, 1); (-1, -1, 1+q@). Figure
5 shows central and noncentral composite designs for three factors.

In a subsequent paper, Box (2) examined the efficiency of coeffi-
cients in first order designs and concluded the following: assuming
that the linear approximation is adequate, the mosﬁ efficient first
order designs of size N are obtained by having k mutually orthogonal
column vectors each with N elements and orthogonal to U, the column
vector of unit elements.l While the variance and covariances of the
coefficients remain constant for orthogonal rotation of designs, the
magnitude and the arrangement of possible biases will be different.
Therefore, it is feasible to rotate the proposed designs until the
biases are as small as possible. But, unless the experimenter has
some prior knowledge of the response function, he would not be able
to select the optimum design--the one with minimum bias.

DeBaun (20) expanded the idea of central composite designs by
incorporating blocking effect into the analysis. Referring to our pre-
vious discussion of centrai composite designs, DeBaun derived a value
for a that makes fhe added factor combinations form a block orthogonal

to the one formed by the factorial or fractional factorial designs used

in the first phase of the experiment.
Rotatable Designs

Box and Hunter's (9) work, in 1957, resulted in the development of

Fortunately, factorial and fractional factorial designs proposed
by Box and Wilson meet these requirements.
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rotatable designs. They argued that the previous attempts to find the
best designs for fittiﬁg the model G = XB to a surface was interpreted
as selecting a design that would allow the coefficients to be separately
estimated with the smallest variancé.2 In other words, the X'X matrix
should be diagonal, implying orthogonal designs. While construction of
first order orthogonal designs is an easy task, it poses some difficul-
ties for second order designs since some of the independent variables
become correlated, e.g., xi and x?.‘ This correlation is due to the
standardized values of the variables, i.e., +1 and -1. But this problem
caﬁ be resolved by redefining the independent variables in terms of the
orthogonal polynomials. However, it is not clear that the second

order orthogonal designs obtained this way are optimal for at least

two reasons.

First, second order orthogonal designs may cause large biases in
the estimated coefficients. Secondly, the quadratic céefficient Bii
measures the curvature of the surface in the direction of the ith
coordinate axis. Orthogonal polynomiais indicaté the precision with
which the curvature is determined in a given direction of the coordi-
nates axes. However, the curvature may be measured with less precision
in some other direction, possibly of equal importance to the designer.
Based on these reasonings, Box and Hunter (9) formulated rotatable de-
slgns as are described below.

Let z, a k x 7 vector, represent an experimental point and §z de-
note the response estimated at this point. Also, assume that §z is

obtained from a polynomial equation that was fitted by the method of

?g is an N x 1 column vector, 8 is a k x 1 column vector, and X
is an N x k matrix.
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least squares to N observations of an experimental design.ipTheﬁ,;tbevg
variance of ?z is a function of z and oé, the experimental error, and
will certainly decrease if N is increased. Thus, the quangity‘é(éjii ”
NV(?Z) is called the variance function and is defined as the standard-
ized measure of the accuracy with which a design estimates the response
at point z. Figure 6 shows three variance functions for two dimensional
designs,

If there is no prior knowledge about the orientation of the sur-
face, Box and Hunter (9) propose deéigns with variance functions like
that of the pentagonal design shown in Figure 6(b). In other words,
experiments would be designed such that the response 1s estimated with
a constant variance for all the pointsvequidistant from the origin‘of
the design. A formal definition of rotatable designs is given by the
authors:

In general, for any k-dimensional design, if the variance of

response estimated by the fitted polynomial is a function
only of :

I
P2 = I x

i=1

2
i

gso that the variance contours in the space of variables are

circles, spheres, or hyperspheres centered at the origin, the

design will be saild to have a spherical variance function

V(P). An arrangement of points giving such a variance func-

tion will be called a rotatable design (p. 205).

 The conditions derived for first order rotatable designs coincide

with the ones obtained for designs with smallest variance, i.e., X'X
should be an identity matrix. To build second order rotatable designs,
one should set all the odd moments at 0, second moments at 1, and exer-

cise his option on the value of the fourth moment. TFor example, one

value of the fourth moment makes the design rotatable as well as
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(a) 32 Factorial Design (b) Pentagonal Design

(c) Composite Design

Source: Box and Hunter (9, p. 205).

Figure 6. Three Variance Contours for Two
Dimensional Designs
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orthogonal while another value of it makes the variance for the pbints
on a circle with radius 1 equal to the variance for the points at the
center. Box and Hunter (9) concluded their analysis by showing the
formation of orthogonal blocking arrangements for rotatable deéigqs;

A number of procedures have been proposed for constructing second
order and third order rotatable designs. Central composite designs are
capable of forming second order rotatable designs when the value of ¢ is
selected approﬁriately. Balanced incomplete block designs offer a method
for building second and third order rotatable designs. Equiradial sets
provide an alternative technique for bullding second and third order
rotatable designs. Finally, second order rotatable designs may be

formed by using first order designs.
Design Criterion of Mean Squared Deviation

In 1959, Box and Draper (6) criticized the previous approaches to
deriving optimal designs for response surfaces on the grounds that they
had only been concerned with the errors arising from sampling varia-
tion. They maintained that the fitted polynomial always fails, to some
extent, to represent the true function and, therefore, there are two
sources of discrepancy between the true function and the fitted equation
to be considered. One source of discrepancy is due to the sampling
variation and the other is because of the inadequacy of the fitted poly-
nomial. The first one is calléd varlance error and the second one is
called bias error. Based on this logic, they derived new experimental
designs that will be described next.

Let R be the immediate region of interest in the experimental

region T. Also assume that a polynomial of degree d. is fitted to the

1
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region R while the true function which provides an exact fit within the

reglon T 1is of degree d2 > dl' Then the design should minimize:

J = E—Z-j E[?zz - 6(2)1% ax /f dx (2.5)
Op R R

where:

G(z) = the true response at point z

Qz = the estimated response at point z
N = the size of the experiment
Ué = the experimental error

dx = dxl, dx2, crey dxk
J gives the mean squared deviation from the true response, averaged
over the region R and normalized with respect to the variance and the

number of observations. It has two components: 'variance error" and

"bias error."

J=V+ B
I .,N_ZQ [ vy ]c1x+%—2 [ [EY - G(z)]%dx - (2.6)
R R Z
E E
-1 i ;
Q= [ ax « (2.7)
R R |

where:

V = varilance error

B = biés error,

For the situation ﬁhere the true function 1s quadratic éﬁd a linear
approximation was used, minimiziﬁg J resulted in an intuitively obvious
result. If there is a strong belief about the adequacy of the linear
model V alone should be minimized. On the other hand, if'thezéampling
error is negligible and there is doubt about the lineérit&?aBSumption,

then B alone should be minimized. But one is very seldom confronted
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A S A'f.'{ 5
with these extreme cases and of more value are cases in which variance

and.bias both occur. Investigation of these cases surprisingly revealed
that the optimal design derived when bias and variance are minimized
was very close to the one obtained when variance was totally ignored and

bias alone was minimized.

To explain Box and Draper's (6) results, some terms need to be
defined:

1. X1 is a design matrix which includes terms of- order d1 and -

less.
-1 ' -1

2. cij is an element of the matrix C = = N(Xlxl) .

3. Yyq is the limit of the ith variance, i.e., €11 X Yq-
When the surface is truly quadratic over the experimental region T

and a linear polynomial is fitted to a smaller spherical region within

k
T such that I xi <1, it was concluded that:
i=1

(i) V 4+ B is minimized for all Btjand cys, when the third
moments [1jk] of the design are chosgn to be zero.
(i1) V alone is minimized, for T defined by cii < Yi, when
the design 1s chosen to be first order orthogonal with

Cii = Y4, that is with the design of maximum possible
size.

(111) B alone is minimized when the design is chosen to be
first order orthogonal with all third order moments zero
and cyq = 1/(K+2).

(iv) V + B 18 minimized if wvalues of Bi' averaged over all
rotations are substituted, when the design hnas all third
order moments zero and is first order orthogzonal with
the cy4 all equal (6, p. 638).

An optimal class of designs on the basis of these findings is f;ac—
tional by replicated twvo-level factorial designs (in which no two factor
interaction is confounded with the main effect) with added center pdints.
These’designs had‘already been applied to response surfaces by Bo#‘and
Wilson (10). Box and Draper later discussed problems with cubic func-

tions when the fitted polynomials are quadratic functions.
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Designs for Cuboidal Experimental Regions

Draper and Lawrence (24)'expanded Box and Draper's (6) methodology

~ and examined situations with a cuboidal experimental region or when it can
be made cuboidal by linear transformation of variables.  For the all-
biased case their designs are similar to Box and Draper'é (6) rotatable

designs. When both variance and bias are minimized they made the follow-

ing recommendation:

Given
‘ k
-2 2
Yu = 3 xiu u=1, 2, ..., N . (2.8)
1=]1

then:

a. If a linear function is fitted to a quadratic surface,‘choose
a design with large gl Yi.
b. If a quadratic funct:;n is fitted to a cubic surface choosé a
design with large g Y6.

u=1 u
Additional Designs with Criterion of

Mean Squafed Deviation

In light of Box and Draper's results, Karson et <l. (37), in
1969, suggested a new strategy for formulating optimum designs. Their
method is designed to, first, minimize bilas and then use any additional
flexibility to minimize variance. To operationalize this idea, they
developed an estimator such that for a given design:

1. Minimizes integrated square bilas, B, due to terms of specified

higher order omitted from the fitted polynomial.
2. Subject to (1) it achieves minimum integrated variance, V, for

any fixed desigmn.
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Kupper and Meydrech (40), in 1973, made additional contributions to
the formulation of efficient designs when integrated mean squared error
is minimized. They advocated the use of B,

diagonal matrix of appropriately chosen constants.3 The 'best" value

= 5@1, where K is a k x k

. of K, of course, depends on the unknown elements of the parameter vectors
ﬁl and EZ (&2 represents the coefficients of the terms that have not been
included in the model). But if based on the designer's knowledge some
restriction can be imposed on one or more elements of_@l, then it is
possible to find a set of K's that result in J values smaller than K
equal to an identity matrix for eny choice of experimental design.
Although the approaches taken for designing efficient experiments
have been different, the designs recommended for the most part have
been the same. Complete factorial and fractional factorial designs are
proposed for different reasons for estimating first order effects. To
estimate second order effects, new experimental points are normally
added to the result of factorial or fractional factorial designs. The
design selected by the experimenter dictates the location and the
number of additional points to be considered. The experimenter's choice
of design itself depends on his knowledge of the situation. Any prior
information about the response function enables him to economically
find the optimum level of factors with more efficiency.
In the next chapter, Chapter III, the assignment of common, anti-
thetic, and independent random numbers to the experimental points, for

possible increases in efficiency, is discussed.

3Bl and ﬁi are both k x 1 column vectors.



CHAPTER III

VARIANCE REDUCTION TECHNIQUES: COMMON AND

ANTITHETIC RANDOM NUMBERS
Introduction

To implement a simulation experiment, after a model is built and
validated, three critical phases remain to be comsidered. First, an
appropriate computer language needs to be selected. Second, an experi-
mental design that fits the situation should be formulated. Third,
an efficient way of generating observations should be specified (17).
Given the availability of many computer languages, the first phase
will not create any difficulty for the designer. But the last two
phases demand careful attention.

Simulation is a technique for performing sampling experiments on
the abstract model of a real-world system. Therefore, all the experi-
mental designs developed for physical experimentation are applicable
to simulation experiments as well. The optimal design is undoubtedly
the one that furnishes the maximum possible information with the minimum
number of obse.vations. The designs relevant to the purpose of this
study were discussed in Chapter II and will nmot be repeated here.

Phase three deals with the efficiency of execution. Although it is
possible to increase the precision in results by increasing the sample

size, this 1s not usually a satisfactory or an economical solution.

33
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Considerable progress has been made in developing techniques for increas-
ing the efficiency of the desired estimators for a given sample size.
These techniques, which were initially aimed at distribution sampling
experiments, are called variance reductlon techniques. The first
complete survey of the literature in this field was conducted in 1964
by Hammersley and Handscomb (32).

Generally speaking, a technlique 1s called variance-reducing if
the reduction in variance 1s proportionately larger than the increase
in the work involved. Thus, when comparing variance reduction tech-
niques it 1s meaningless to look at the absolute reduction in variances
without comparing the extra computer work involved. The most commonly
known variance reduction techniques are:

1. Stratified Sampling,

2. Selective Sampling,

3. Control Variﬁtes,

4. Importance Sampling,

5. Antithetic Variates, and

6. Coﬁmon Random Numbers.

Before examining the last two techniques in detail, it 1is necessary

to clarify what is meant by increasing the precision of results or

reducing variances. A variance reduction technique, when applied to an
experimental design (as opposed to just one design point), may reduce
the variances of some desired estimates but increase the variance of
some other estimates as well. Therefore, care must be exercised in
applying these techniques to avoid increase in the varlances of the sen-
sitive estimates. This issue will be clarified with respect to variance

reduction techniques applled to response surface designs in Chapter 1IV.
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This chapter fecuses on the use of common and antithetic random numbers
m simulation studies. 1In what follows, first, the rationale behind the
use of these two techniques 1s explained. Second, the role of random
numbers in running a simulation model is discussed. Third, the under-
lying statistical theory for very simple cases will be shown. Last, the
posslbility and the advantages of using the two techniques in the same

simulation experiment will be examined.

Common and Antithetic Random Numbers Versus

Other Variance Reducing Techniques

Many reasons can be cited for preferring common random numbers and
antithetic variates techniques over the other variance reducing tech-
niques. Some of the important reasons are as follows:

1. As mentioned earlier, the extra computer work involved for
implementing each of the variance reduction techniques is a crucial
factor in using them. But, unlike th: first four techniques, antithetic
variates and common random numbers require no or little extra computer
programming time (38).

2. The purpose of many simulation analyses is to compare two or
more systems. To have a fair comparison, it 1is natural to evaluate the
performances of these systems under similar experimental conditions.

In other words, the same random events should occur when each system is

simulated. Using tihe same sequence of random numbers is one way of
creating the same experimental circumstances.
3. Common random numbers and antithetic variates are capable of

inducing positive and negative correlatlon between responses obtained
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under different experimental conditions. The induced correlations can
significantly increase the precision of éimulation results. Schruben
and ﬁargolin (52) have shown situations in which improvement will occur
regardless of the sign of correlations induced.

4., Simulations can be stopped ahd restarted without disturbing

their stochastic properties permitting an early check on the sign of

induced correlations.
The Role of Random Numbers

Simulations ordinarily have one or more stochastic variables with
a known probability distribution. Therefore, a mechanism is needed for
random selection of observations from the given probability distribu-
tion. Uniformly distributed random numbers have served this purpose
for a long time. They can be either stored in the computer or be gen-
erated by the computer itself through the ﬁse of a sequential technique.
Uniformly distributed random numbers (hereinafter called "random num-
bers') are a sequence pf real numﬁeré scaled to the interval [0,1] and
meet two requirements:

1. They are statistically independent.

2. Each number in the sequence has an equal probability of taking

on any value on the interval [0,1].

Since the random numbers generated by the computer are reproducible and
predictable, they have sometimes been called pseudorandom numbers.

The three most common ways of generating random numbers are addi-
tive, multiplicative, and mixed congruential methods. These three
techniques are based on recursive formulas which generate each random

number from the knowledge of the previous one given an initial value,



37

called a seed, is provided. For example, the recursive formula for

the mixed congruential method is:

r " (arn + ¢) (modulo m),

where a, ¢, and m are all positive integers such that a and c are both

smaller than m (38). The relationship states that r is the remainder

+1
when (arn + ¢) is divided by m. A complete discussion of these three
and other random number generation techniques 1s given by a number of
authors (39) and will not be covered here.

When a simulation consiéts of mofe than one Stochastic component,
separate streams of random numberé are normally used to derive each
individual component. The logic behind this practice is to synchronize
the output of different observations and increase the magnitude of the
intended correlation between them (38). For the purpose of this study,
the issues of how random numbers are generated and whether they contain
one or more stream of random ﬁumbers are irrelevant and will not be

discussed any further. However, it will be assumed that a common gen-

erator is used throughout the experiment to generate the random numbers

needed.

Common Random Numbers

Two streams of random numbers will be identical if they have the
same seed values. The use of common random numbers is recommended for
maintaining homogeneous experimental conditions when the objective of
simulation is to compare several alternatives. In order to compare two
alternatives and make a statement about the relative superiority of one

over the other, the differences among system responses, call it T,



38

should be calculated. Common random numbers can cause positive corre-
lation between system responses which in turn leads to reduction in the
variance of [. Tet §l denote the estimated response of system 1 and let
;2 representvthe estimated response of system 2, then the varianée of
can be expressed as: |

var(T) = var(§1 - §2) = var(§l) + var(§2) -2 cov(';l, §2). - (3.1)

Thus, the variance of I will decrease whenever common random numbers
make the covariance term positive. This will be the case only if both
systems react similarly to the stochastic input variables. This point
is graphically shown 1in Figure 7,-adopted from Kleijnen (38).

Figure 7a illustrates a situation where assigning common random
numbers results in negative instead of positive correlation. Applica-
tlon of random numbers to situations like Figure 7b leads to weak posi=-
tive correiation. Figure 7c shows a situation where ;l.and §2 will be
positively corfelated when using the same random numbers.

Although the relationship between the random numbers and the
outpﬁt in simulation is very complex, it is reasonable to assume that
both systems react in the same direction, 1.e., positive correlation

is dinduced.

Antithetic Variates .

‘The antithetic variates technique was devised by Hammersley and
Morton (33) for creating negative correlations in Monte Carlo estima-
tion of the value of an integral. Using this technique, one observation
is generated from r, a random number, and the next one from (1 - r) for

the same system., Let §l represent the sample mean that 1is used for
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Source: Kleijnen (38).

Figure 7. System Responses with the Same Random
Numbers
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estimating 5, the mean of the system responses. Also, 1et'§ll and 512

denote the responses when r and (1 - r) are used respectively. Then,

vy = V2@, *+ vqy) (3.2)
var(y;) = 1/4[var(y;;) + var(y;,) + 2 cov(yy; + y;,0)1  (3.3)

Therefore, if §1l and §12 are negatively correlated, the covariance term
in (3.3) is negative, and the variance of §l will consequently decrease.

To explain the logic behind the induction of negative correlations,
the following three assumptions need to be made:

1. There is only one single value of an input variable affecting

the output to be considered.

2. There exists an increasing monotonic relationship between the

output and the input variable.

3. There is an increasing monotonic relationship between the

input variable and r, the random number.

Now it 1s intuitively obvious that r and 1 - r generate high and
low or low and high values of the input variable and consequently lead
to negatively correlated regponses under the foregoing assumptions.

In practice; however, the assumptions made are unrealistic and are
almost always violated. The responses depend on a sequence of random
numbers, there 18 more than one input variable iﬁvolved, and the mono-
tonic relationship is unjgstified. When either one of these assumptions
i1s relaxed it becomes very difficult, if not impossible, to show that
the antithetic random numbers generate negative correlation. A complete
discussion of common and antithetic random numbers techniques along with

some empirical findings is given by Kleijnen (38).
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Joint Application of Common and Antithetic

Random Numbers

Few studies have been éonducted to investigate the application of
common and antithetic random numbers within the same simulation exper-
iment. These studies fall into two-cétegories: those which limit the
use of antithetic random numbers to réplicate observations within the
same system and those which do not. In the first category, Kleijnen's
(38) work 1s reviewed. Table II éhows a situation where both common and

antithetic random numbers are applied.

TABLE IT

JOINT APPLICATION OF ANTITHETIC AND COMMON RANDOM NUMBERS

System 1 » ' System 2
Run Random Numbers Response Random Numbers Response
1 By* 1 & Yo
2 -3 Y12 -3 Y22
3 L) Y13 L) Y23
) 1% Y14 L-R Y24

*Capital R represents a vector of random numbers and 1 is a vector of

ones.

Source: Kleijnen (38, p. 210).
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Denoting the difference between the two systems by f, it follows:

=y, -7, (3.4)
var([') = var v1 + var Yy - 2 cov(yl, y2) (3.5)
- ) - - -1.2
var(T) = M "L L cov(yli, ylg) + M o] +
« 1#g _
N_2 r I cov(§2j,'§2h) + N—log -
j#h
MNTT I L eovGy,, 2 (3.6)
1=1 4=1

where:
M = the number of runs for system 1.

N = the number of runs for system 2 which is not necessarily equal

to M.
2 - -
cl = var(yli) = var(ylg) i, g=1, ..., M 3.7)
2 v = v =
02 var(yzj) = var(yZh) Jj,h=1, ..., N (3.8)

To reduce the variance of 5, the covariances in (3.6) should have

the following signs:

cov(}li, §1g) <0 1#g K, 8 =1, «ou, M (3.9)
cov(§2j, §2h) <0 i4h i, h=1, ..., K ‘ (3.10)
cov(§li, §2j),< 0 i=1, .Mj=1, ..., N (3.11)

Since the correlation between §li and ;21 is positive and the
correlation between Yoy and y2’1+1 is negative, it follows that yli and
y2,i+l are negatively correlated. Similarly, Yoq and yl,i+l are nega-
tively correlated. These negative cross-correlations, corresponding

to (3.11), are undesirable and will increase the variance. Thus,
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Kleijnen's (38) analysis remains inconcluaive. He then compared thé
efficiency of employing only common random numbers, only antithetic
random numbers, and both antithetic and common random numbers within
the same experiment. The empirical result did not favor any one of
these technidues over others (38).

The motive behind the development of the second category stems
from the difficulties of deriving mathematical proofs supporting gener-
ation of positive and negative correlations between simulation
responses. The difficulty arises due to the nature of simulation.
Simulations are mainly used when the analytical treatment of a situation
is not possible., If all the relationships were mathematically well-
defined, techniques other than simulation would be more efficient (55).
That being. the case, Fishman (27), in 1974, and very recently Schruben
and Margolin (52) based their work on the following assumptions:

Assumption 1: When two observations are made with the samei

randomly selected set of streams, a positive correlation of

unknown magnitude 1s induced between the mean responses.

Assumption 2: When two observations are made with the same

randomly selected set of seeds, but with antithetic streams,

a negative correlation of unknown magnitude is induced
between the mean responses.

Assumption 3: When two observations are made with different
randomly selected streams, the mean responses have zero
correlation (p. 508).

Although applying common and antithetic random numbers has in some
cases decreased the sensitivity of the analysis, the empirical results
in general support the above assumptions. These assuﬁptions provide
a simulation designer with three alternatives for assigning random

numbers to each experimental point. First, a vector of random numbers
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(VRN) used at another experimental point might be selected, causing
positive correlation. Second, a VRN can be selected such that its
elements are the same as another VRN subtracted from one, geqerating
negative correlation. Finally, selecting a VRN not utilized at any
other point will result in uncorrelated responses.

The objective of Fishman's (27) analysis,ﬁas to détect thé;effects
of using correlated random number streams in simulations with linear and

quadratic response surfaces. The equations he examined were:
vy =B, T Byx tEy ‘ (3.12)

2
yg = B, * Byx, +Bx[ tE, (3.13)

‘Two and three observations were used to estimate B coefficients in
equations (3.12) and (3.13) respectively. Hence, correlations between
the y's can be expressed as:

1 ¢
¢ 1

cov(Y) = cé (3.14)

where Y is the vector of y values and ¢ 1s the correlation between Y1

and Yy
1L 9y, 955
cov(Y) = cg 4, 1 b, (3.15)
913 %53 1

where Y is again the vector of y values and ¢i 1s the correlation

h|

between and .
7y 73

Three criteria [(l) generalized variance, (2) prediction variance,

(3) slope variance] were the basis for finding the optimal sign of the

¢'s. For the linear model it was shown that either positively or nega-

tively correlated responses were superior over the independent
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responses. For the quadratic case, 27 possible designs were considered.
Six of these produced a smaller generalized variance and one resulted
in smaller prediction variance. However, no plan guaranteed a smaller
slope variance.

In contrast to the discouraging outcome of Fishman's (27) study,
Schruben and Margolin (52) have obtained very promising results. The
model they adopted was of the form:

Y=3X8+¢ (3.16)
where.i is an N x 1 column vector, 8 is a k x 1 column vector, and X
is an N x k matrix.

Their objective was to find the best design for efficient estima-
tion of 8 in (3.16). The efficiency was measured by the determinant
of the estimator dispersion matrix. In other words, the design with
the smallest value for the determinant of the estimator dispersion matrix
would be the most efficient design. Designs that minimize this deter-
minant are called D optimal (8). After imcorporating blocking into
their analytical work, Schruben and Margolin (52) concluded:

Assignment Rule: For the model in (3.16) with k+l
parameters, the N-point experimental design admits

orthogonal blocking into two blocks of sizes N; and N,,

preferably chosen to be as nearly equal in size as possible;

then for all Ny design points in the first block, use a

set of pseudorandom numbers R, chosen randomly, and for
all N2 design points in the second block, use 1-R (p. 513).

The\assignment rule will give ordinary least square estimators with
smaller D value than will (1) the assignment of the same random number (s)
to all the design points or (2) the assignment of different random num-

bers to the design points when the following inequality is met:

1+ (8- Do, - 2N'1N1N2(p+ +0) 1 - p+)k <1 (3.17)
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Theorem: Assume that the model in (3.16) consists of
the mean plus a subset of k(k < 2n-r) effects. Then, over
the class of designs consisting of N = 2n‘r(r_z 0) design
points (with replication allowed), together with all feasible
induced correlation structures subject to P, = p_ = D,l a

20-T fractional factorial design with the Assignment Rule
results in minimum generalized variance for either the OLS or
WLS2 estimators, i.e., the D criterion is minimized (p. 514).
The findings were proved by: |
1. Assuming a unit variance for‘the responses.
2., Partitioning the X'X matrix into two parté corresponding to
the mean effect and all the remaining effects.
3. Making the appfopriate substitution for the signs of the
induced correlations. "
4. Calculating and comparing the determinants of the estimator
dispersion matrix for the alternative assignment rules.3
The analytical conclusions were tested empirically by applying
them to a hospital resource allocation problem. The empirical results,
in general, confirmed the analytical findings except for the assumption
that positive and negative correlations are of equal magnitude.
Since Schruben and Margolin's (52) assignment rule will be applied
to response surface designs in the next chapter, a word of caution
about the optimality of this assignment rule is in order. A necessary,

but not sufficient, condition for superiority of the recommended rule

over assigmnment of (1) common random numbers or (2)‘iﬁdependent random

lp 1s the correlation coefficient.

OLS means ordinary least squares and WLS means weighted least
squares.

3The results are shown and discussed in the next chapter.



47

numbers to each design point is that the systems responses'behavé éiﬁi;
larly with a given set of random numbers. While most of the empirical
results reported support such an agssumption, it 1s not so difficult
to find systems which violate this assumption.

Wright and Ramsey (56) recently presented some simulation problems
for which the use of comm&n réndom numbers augmented the variance.
They showed, as the literature suggests, that the common random numbers
technique is least effective when tﬂe policies compared are not small
perturbations of each other., That being the case, extra care must be
gxercised in applying the common raﬁdom numbers technique to response
surface designs. Fortunately, howeVér, simulation models-can be
stopped and restarted without disturbing the statistical properties

of theilr results. Therefore, an early check on the sign and the

magnitude of the assumed correlations will make it possible for a
designer to test the validity df'hi% assumptions.

In Chapter IV, first, a methodélogy will be developed to help
simulation designers select an appr?priate response surface design.
~ Next, the application of Schruben aﬁd Margolin's (52) assignment rule

to those designs will be examined. ?Last, an inventory simulation

example will be evaluated.



CHAPTER IV
SELECTION OF A RESPONSE SURFACE DESIGN
Introduction

A problem that a simulation designer often faces is finding thq
relatively optimal values of the controllable conditions, i.e., the.
values that will optimize the simulated responses. For example, in an
inventory simulation the objective Lould be to determine the ordering
quantity and the reordering level that will result in minimum inventory
cost., The first objective of this Ehapter is to develop a systematic
procedure by which one can select a‘response surface design for simula-
tion experiments. The selection wi}l naturally be based on one's
objective and his knowledge of the r:latiomnships involved in the problem.
The second objective is to develop a methodology for incorporating a
random numbers assignment rule, proposed by Schruben and Margolin, in
response surface designs. The final objective 1is to ,rovide an
opportunity for demonstrating and testing the results by the use of an
inventory simulation example. To begin the discussion, a few*terms;and

concepts will be redefined.
Model

The equation that represents the assumed mathematical relationship
between the simulated responses, G, and the controllable conditioms, &'s,

can be written as:

48
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G = f(El’ EZ’ “vey Ek) : (‘J’ol) .

To explore the unknown relationship (4.1), a polynomial equation is
normally adopted. Denoting the observed simulated responses by y (which
is different than the actual responses G), the polynomial equation can

be expressed as:

2 2
y = 30 + 3151 + 8252 + .. +‘Bk£k + Blisl +e o+ BaEt

3 (4.2)

B125180 * B135983 T Brog 1bk-18k T Rnafr T

Although the ultimate objective 1s to find the optimal values of
the £'s, an intermediate objectiﬁe Vould be to estimate the B coefficients.
Viewing the polynomial equation as ? regression equation, B coefficients
can be estimated through the least équare procedure if an adequa;e number
of observations (experimental pointE) are available. Each observation

corresponds to a set of values for the controllable conditions with an

observed simulated response for that combination.
Standardized Variables

Different simulation experimen#s have different controllable
conditions. Therefore, to generalize the discussion, the controllable

factors are assumed to be standardized as follows:

(5, -E)
g, = i 4

where
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It follows then that,

N N 9

Zx, =0 and I x, =N,
iu ia

u=1 u=1

where N is the total number of observations.

The Search Technique

The search technique adopted for the methodology presented in this
chapter 1s the steepest ascent technique. This technique was explained

in Chapter II and will not be repeated here.
The Relative Scales of Variables

In the steepest ascent technique, the direction of search is
determined by the magnitude and the signs of the first order coefficients,
i.e., Bl’ 82, ey Bk which are estimated through fitting a first eorder
polynomial. The relative magnitude of these coefficients is heavily
influenced by the units chosen for the variables. An example will
clarify this point. In an inventory simulation, let the ordering
quantity vary between 5,000 to 50,000 units. Also, let the experimental
levels of this variable be -1, 0, and +1. The designer should then
decide how many unite of the ordering quantity will co-“respond to one
experimental unit. If, for instance, 5,000 units of the ordering
quantity represents one experimental unit, 5,000, 10,000, and 15,000
units will represent experimental levels of -1, 0, and +1 respectively.
The decision is normally based on the designer's insight and the units
selected for the other variables. It is wise and logical to choose the

units such that the resjonse varies symmetrically with respect to all
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the factors. Fallure to use the appropriate units will increase the

amount of work required for finding the optimum conditions.
Experimental Reglon and Subregions

A set conseisting of all the possible combinations of the wvalues of
the controllable conditions is called the experimental region. Due to
the quantitative nature of these conditions, the set has an infinite
number of points in it. Thus, an exhaustive search of the experimental
region i8 not possible. When the steepest ascent technique is employed,
the experimenter evaluates a small region (subregion) of the experimental
region which leads to another subregion, etc.; this process continues
until the region with the possible optimum is found. The designs that
will be discussed in this chapter will explore spherical subregions

with radii equal to one.

Features of the Designs

|

The designs to be presented inithis chapter have been constructed
to satisfy, to the extent possibleJ the following features:

1. The design should allow thg approximating polynomial of degree
d (tentatively assumed to %e representationally adequate) to
be estimated with satisfactory accuracy within the region of
interest.

2. It should allow a check totbe made on the representational
accuracy of the assumed poiynomial.

3. It should not contain an excessively large number of
experimental points,

4. It should lend itself to "blocking".
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5. It should form a nucleus from which a satisfactory design of
order d+1 can be built in case the assumed degree of polynomial

proves inadequate (9).
Experimenter's Priorities (Objectives)

Suppose a polynomial of degree dl is fitted to a small region (R)
of an experimental region (T) that can truly be represented by a
polynomial of degree d2 > dl. ‘Also, assume that a least square
regression with an N points design is used to fit the polynomial of
degree dl to R. Denoting the true response for a point z by G(z), the

estimated response by y(z), and the estimated experimental error by 02,

the mean squared deviation, J, is given by:

J = ;1‘—’5 Iz E[y(2) - 6(2)1? dx/fgx (4.4)

Expression (4.4) can be rewriltten as:

J=V+3B (4.5)
3= Vi@l + B [ By @] - 6(2)17 ax (4.6)
0] a .
E E
where
-1 _ r dx ;
Q= [0, |
V = variance error, and
B = bias error.

|

To select a response surface design, priorities need to be assigned

to variance and bias portions of mean squared deviations. The priorities

may take one of the folluwing three forms:
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1. Minimizing variance is more important than minimizing bias.

2. Minimizing bias is more important than minimizing variance.

3. Minimizing bias and variance are equally important.

The experimenter's knowledge of the problem dictates the alternative
to be sélected. This knowledge may be summarized as fol1ows:

(1) The magnitude of the experimental errors.

(11) The complexity of the response surface.
When the experimental errors are lakge, minimizing variance becomes more
important. On the other hand, when}the experimental errors are small
and the response function is compleg, minimizing bias becomes more

important.

Assumption

In what follows it will be assumed that a linear or a quadratic
equation adequately represents the true function. Therefore, the

discussion will be limited to first and second order designs (models).
.First Order Models

A plane is assumed to be adequate for representin~ the true

function. The model to be fitted is:

y = BO + lel + 82x2 + . . .+ ann 4.7)

The B coefficlents in (4.7) can be eétimated through one of the paths

indicated in the following tree diagram.
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( Individual coefficients should

(1A) be measured separately with
equal precision.
Minimizing Varilance

Equal precision for the responses
(1B) of the points that are equidistant
from the origin of the design.

Designer's
Objective 4 The orientation of design with
(1C) respect to response function is

not known.
Minimiziqg Bias

The orientation of désign with .
(1D) respect to the response function
is known.

Minimizing Both Bias
Land Variance (1E)

Figure 8. First Order Design Options

i
|

Case (lA)--Individual Coefficients

1
Should Be Measured Separately with -

Equal Precision

|
Orthogonal designs will meet the above requirements. Two types of

designs need to be distinguished atithis point (10). Designs of type A
provide unblased estimated of linear coefficients, given that terms of
higher order are insignificant. De;igns of type B provide unbiased
estimates of linear coefficients even though terms of second degree may
exist.

For designs of type A, the numﬁer of observations, N, does not have
to exceed the number of varilables, M. For designs of type B, N must be

larger than M to allow for disassociation of the linear coefficients

from the second degree coefficlents.
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To estimate the B coefficients of a plane, the variables should:
take at least two different values. Therefore, complete and fractiomnal
factorial designs are used to construct designs of type A and B, If
all the’2k possible combinatipns'are performed, the design Qill be a
complete factorial; and when some of the cdmbinations are not performed,
the design will be an incomplete factorial. In the latter category,
multifactor designs of Plackett andrBurman (50) that furnish designs
for 3, 7, 11, 15, ..., 4k-1, 99 factors in N = 4, 8, 12, 16, ..., 4k,
100 (excepting 92) are appropriate‘for designs of type A. The first
column of these designs consists of entirely ones, and the remaining
columns have equal numbers of +1 and -1. When N‘is a power of 2 these
designs correspond to fractional chtorial designs. For example, for
k = 7 and N = 8, Plackett and Burm%n's design will be the same as 1/16
replication of the 27 factorial deeign. The design and its defining

contrasts are shown in Table III.

For intermediate Qalues of k the next higher value is used and the.
appropriate columns are omitted. Fgr example, for k = 5, columns 6 and
7 of Table III will be deleted.

Duplicating Plackett and Burman's designs of appropriate size with
reverged signs results in designs of type B. In other words, from a
type A design with N-1 factors and N observations, one¢ can obtain a type
B design for N factors with 2N obse?vations. For example, when all the
entries of Table III are multipliediby a minus sign and are added to the
original design, a type B design for eight factors‘will be obtained.

When fractional factorial designs are used in bullding designs of

type A and B, the designer should not associate possible significant

interaction effects with the linear effects., In other words, if there
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is doubt about the interaction between two factors, the experiment should

allow for 1solating the suspicious interaction effect.

TABLE III

PLACKETT AND BURMAN'S DESIGN FOR SEVEN FACTORS,
1/16 REPLICATIONS OF 27 FACTORIAL DESIGN

Defining Contrasts: 127 = 135 = 146 = 236 = 245 = 347 = 567

= 1234 =
1256 = 1367 = 1457 = 2357 = 3467 = 3456 =
1234567 = -1
Factors 1 2 3 4 5 6 7
+1 +1 +1 +1 -1 -1 -1
+1 +1 i—l -1 +1 +1 -1
+1 -1 §+1 -1 -1 +1 41
+1 -1 -1 +1 +1 -1 +1
-1 +1 ‘+l -1 +1 -1 +1
-1 +1 :-i +1 -1 +1 +1
-1 -1 +1 +1 41 +1 -1
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Case (1B)--Equal Precision for Responses of

All the Points that are Equidistant from

The Origin of the Design

Designs satisfying the above condition are called rotatable designs.

A first order rotatable design should meet the following requireménts:

N
L xiu
1. All moments of order 1 should be zero. u=1 =0 .
N
N
X, X,
2. Mixed moments of order 2 must be zero. u=1 ¢ I% = o,
N

3. Pure quadratic moments should be equal to a constant. Given

N
‘ z X0
the scale convention, this constant is equal to 1. wu=l =1,
N
Orthogonal designs discussed for Case (1A) meet the above require-
ments. Therefore, first order orthégonal designs are first order
rotatable designs as well. When the second order terms, contrary to

the assumption, are significant, then the expected values of>the B

coefficients will be as follows (9):

N
2
uElxiu k o
E(B) =By +—x— LB m=1, ..,k (4.7)
m=1
N
uzlxiuxjuxﬁu k k .
E(B) =8 + I LB gand h =1, ..., k (4.8)
m m N =1 h=1 gh
N
Based on the scale convention, I Xy = 1. Therefore, when the pure
u=1

quadratic terms are present, the estimate of BO will certainly be biased.

On the other hand, 1f th. designed is formed such that the mixed third
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order moments are zero, the estimates of the linear effects, Bm's, will
be unbiased. Designs of this type may be obtained by duplicating any
first order orthogonal design. Thus, designs of type B discussed in

Case 1A will meet this requirement.

Case (1C)--Minimizing Bias When the Orien-

tation of Design with Respect to the

Response Function is Not Known

There will be interest in minimizing bias when a linear function is
fitted but the true function 1s suspected to be quadratic. The proposed
designs in this category are first;order orthogonal designs with all the
third order moments zero. The req@irement that all third order moments
should be zero is equivalent to chéosing the factorial replicates so
that no two factor interaction is aonfounded with a main effect. The
legitimacy of this requirement wag explained in case 1B. It is
interesting to note that the minim%ziation of bias separately requires
the use of orthogonal designs which%also minimize variance. Designs of
type B satisfy the required conditibn.

A second requirement is that the variances of the B coefficients,
assuming that the subregion under investigation is spherical with
radius equal to one, must be equal to E%E (6, p. 637). This, in turn,
implies that the mean square distance (MSD) of the experimental points

from the center of the design (or subregion) should be equal to GEEE).

k 9 1/2
MSD = z X for all the N points.
m=1
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k 2 1/2 K 1/2
(mzlgm) =\ Tz thus, (4.9)

For example, when k = 4, the design to be adopted should be a type
B design and the levels of the variables should be equal to the square

1
roots of yy) i.e., +.41 and -.41.

Cage (1D)--Minimizing Bias When Orien-

tation of Design with Respect to the

Response Function is Known

In practice, examples of this cése are hard to find. Nevertheless,
when prior knowledge of the second d;gree equation is available, it
might be possible to reduce bias by ihe orthogonal rotation of first
order orthogonal designs. While orthogonal rotation of design will not
affect the variances and covariances; it will change the magnitude and
the arrangement of possible blases. gTherefore, prior knowledge of the
response function enables the designgr to rotate the design until the

arrangement that minimlzes bias is obtained. A detailed discussion

is given by Box (2).

Casc (1I)--Minimizing Both Bias and

Variance

The suggested des*gns again are first order orthogonal designs
with third order moments zero and with the varlances of the B coeffi-
clents all equal. With respect to the MSD of the experimental points

i

|
from the center of the design, Box and Draper's analysis was led to an
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intuitively obvious result: the MSD of the experimental points must be
greater than (E%E 1/2 (the MSD for minimization of bias alone) and less
than unity (the MSD for minimization of variance alone). Since it is

unlikely for a designer to know, in advance, about the magnitude of the

experimental errors as compared to the extent of bias, is it not

possible to determine MSD precisely.

Recapitulation

First order orthogonal designé are the optimal designs in each of
the above categorles. The MSD of Qhe experimental points help designers
decide on the level wof the variables. For example to minimize variance,

|
designs with the largest possible MSD are recommended. In other words,
the experimental points are located on the boundaries of the spherical

subregion.

First order orthogonal designsh with a sufficient number of observa-
tions, will allow detection for depérture from linearity so far as the
interactioﬁ terms are concerned. prever, to detect for the existence
of pure quadratic terms in the true:function, a number of experimental
points should be added to the center of these designs 1i.e., where the

x's are all equal to zero.
Second Order Designs

A designer may choose to fit atquadratic polynomial equation

because of one of the following two reasons:
1. A linear equation has proved to be inadequate~-~the search
process has probably been led to a stationary region. 1In

this case, more observations will be added to the experimental
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points of the last first order design to estimate quadratic
and interaction coefficients.

2. The experimenter knows that the present conditions (the initial
conditiong) are close to the optimal conditions and progress
may only be achieved through fitting a quadratic equation.

The equation to be fitted is:

Y= B.x; + BoXy + eue F Brxy + Biox Xy + BiaxXg + ... 4 4.10)
B-1,1%%k-1 T Bllxi + B22"3 oot Bkkxlzc |

To estimate the P coefficients in (4.10), the x's should take at

least three different values. Conséquently, the temptation is to employ
3k factorial designs. However, ther% are two drawbacks in using these
designs:

1. They requilre large sample sizes.

2. They estimate the quadratic, coefficients with less precision
than the interaction coefficients. Since the objective in the
near statlonary region is to approximate the true function by
a polynomial, it is reasonable to expect that all the second
order effects (interaction or quadratic coefficients) be
measured with almost the same precision. The 3k factorial
designs estimate the.quadraﬁic coefficients wich variancgs
eight times larger than those of the interaction coefficients,

.Since it is generally assumed Ehat a quadratic equation will
provide an adequate fit, attempts for building seqond order designs by
and large have not been directed toward minimizing bilas. Therefore, the
criterion for evaluating first and second order designs are different.

For example, while orthognal designs are desirable for fitting linear
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polynomials, they are not recommended for fitting a second degree
equations. Second order response surface designs will basically fall
into one of the following two categories:

1. Composite designs.

2. Rotatable designs.
An examination of these designs will explain the circumstances under

which they should be apﬁlied. A tree diagram for second order designs

is given 1in Figure 9.

i - Central
Composite Designs Types
‘ | Noncentral
~ Central Composite Designs
- Equiradial Sets
Construction
Rotatable Designs Procedures
3 - Incomplete Blocks
. Simplex-Sum Designs

Figure 9. Second Order Designs

Composite Designs

Composite designs are obtained by adding experimental points to
factorial or fractional factorial désigns. Factorial or fractional
factorial designs used for this purpbse should be large enough to
provide efficient and separate estimhtes of first order and mixed first

order terms. A list of these designs, named type B' designs (10), is
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given by Rao (51). When the first order design applied for the initial
investigation of the present subregion is too small to provide separate
estimates of mixed first order effects, new points should be added to

form a B' design.

Central Composite Designs, Composite designs are either central

or noncentral. Central composite designs are useful when the result of
the first order design suggests that the surface is curved and the
center of the design is close to the optimum. 1In this case, 2k + 1

|
additional points are tested at

(0, 0, .., 0); (=0, 0, 4., Q); (@, 0, ..., 0); (O, -0, «.., 0);

0, o, v.., 3 +o. (0, 0, ov., —d); (0, 0, ..., O).

The value of & may be selected such that the design meets a desired
property. For example, if a designer, for any reason, is interested in

second order orthogonal designs, aishould be set equal to {hN'/(lmz)}l/4
where:

ho= 2 - pl/2y2

N'

i

the number of observations in type B' design,

N

It

the total number of obser&ations,_

n = the number of times each extra observation is replicated;
thus, N - N' = n(2k + 1).

Or 1f it is desired to make the varilances of the estimated second

order coefficients (interaction as well as quadratic terms) equal, o
: .

can be calculated from equation (4.11).
' + n)od - snin'o®

8(k -~ 1)N'20? - 2(k - 1)(2k + DN'2 = 0 .

+ N'{nk(2k + 1) - 4(N' + 3m)}ab +
| : : (4.11)
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After making the appropriate substitutions for n, k, and N' and'also
setting X = dz, equation (4.11) will have a real positive root for Y.

Then 0 will be the square root of X.

A value of o that makes the désign rotatable will be given in the

discussion of rotatable designs on Ipage 67.

Noncentral Composite Designs.% Noncentral composite designs are

helpful when the initial investiga%ion indicates that a factor
combination other than the center is close to the optimum. WNoncentral
composite designs require k additioﬁal observations to be tested at
points dictated by the combination ?lose to the optimum. For example,
in a problem with three factors, ifgthe optimum is thought to be close
to the point (-1, -1, 1), then the %ew combinations should be tested at

(-1-0, -1, 1); (-1, =1-a, 1); (-1, -1, 1 + a).

Rotatable Designs

A second order rotatable design should meet the following

requirements:
N
L x,.
1. All moments of order 1 should be zero. u=1 u =0 .
N
N
X X5
2. Mixed moments of order 2 must be zero. u=1 v - 0, 1 # j.
N
N
z xi
3. All moments of order 3 should be zero. u=l ¢ = 0,
N N N
L x, x, L x, x,!x
u=l 03U g u=l UIURU oy g,

N N
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4, Mixed moments of order 4 with at least one variable with an

N N
3
. z Xy 5u z P S
odd power must be zero. u=1 =0, u=l J =0,
N N
N
X, X x X
u=1 iu ju fu mu _ 0, 143 #28 #mn.

3

5. Pure quadratic moments shohld be equal to a constant. Given

: | 2
the scale convention thls constant i1s equal to 1. in = 1,
N
N
in
6. = constant = 3A4.
sz ! N,a
L *1u®ju | z *1u
7. u=l JU - constant = (1/3) u=1 .
N N
|
k
8 A xy7c

The first four conditions are ﬁantamount to saying that all the
moments of order 4 or less with at ieast one variable with an odd power
must be zero. When the above conditions are met, the variance of the
estimated response for a point, z, has been shown to be a function of
p, the distance from z to the centef, k, and the constant AA 9).
Th:refore, from the class of’rotataﬁle designs, it is possiblé to choose
one which produces a desired value for A4.

While large values of K4 incre;se the precision in the center of
the design, it adversely affects bias for first order coefficients when
third order terms are present in thetmodel. A value of A4 recommended

by Box and Hunter (9) makes the precﬁsion of responses at p = 0 equal to

the precision of responses at p = 1. Thils value attaches equal
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importance to the estimates of the responses within the region bounded

|
by p < 1. Designs with this property are called uniform precision
designs; Values of Ka resulting in uniform precision designs for various

k are given in Table IV.

K
TABLE IV

\
VALUES OF AA FOR SECOND ORDER DESIGNS WITH UNIFORM PRECISION
k 2 3 4 5 6 7 8
. 7
A4 0.7844 0.8385 0.8704 0.8918 0.9070 0.9184 0.9274

Source: Box and Hunter (9, p. 215).

\

When 14 = 1, the correlation céefficient between the quadratic
terms becomes zero, making the design in a sense orthogonal. (The
correlation coefficient between X, and xi for the obtained design is
not zero, however.) A property of ghis design is that the variances
of the pure quadratic coefficilents Qre one half of tho_e of the

interaction coefficients.

|
A convenient method for altering the value of A, is to increase

4

the number of experimental polnts at the center. Although adding the
points at the center may not generat@ an exact value for A4, the
generated value will be close enough for most practical purposes.

Addition of center points has also been used for satisfying the
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inequality A When A, is equal to

k ' .
4 > T 4 the X'X matrix is

—k_
k+ 2°
singular and, therefore, the B coefficients cannot be estimated.
Increasing the number of points at the center will increase the value
of Aa and, consequently, the inequality will be met.

The values of A4 are surely not limited to the values discussed

before. The experimenter's judgment and his rationale could lead to

other values for AA.

Construction of Rotatable Designs

A few alternatives are avallable for building designs that meet
the second order rotatable designs requirements. While all the
alternatives accomplish the same purpose, they are not normally equally
attractive to a designer. The simplicity, the ease with which a method
can be used for sequential experiments, and the methéd’s efficiency
are three logical criteria for selecting a procedure. The four proce-

dures suggested in the literature are examined next.

1. Construction of Second Order Rotatable Designs via Central

Composite Designs. In central composite designs when o is set equal
1/4

to (N') , the design will become second order rotatable as well. N'
is the number of observations in type B' design. Procadure 1 is easy
to use and 1s quite adoptable for sequential experiments (9). The

invehtory example presented at the end of the chapter uses this

procedure to construct a rotatable design.

2. Comnstruction of Second Order Rotatable Designs by Using

Equiradial Sets. This procedure was initially proposed by Box and

Hunter (9) and was further developed by Draper (21) (22) (23),
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Gardiner et al. (30), and Bose and Draper (1). Procedure 2 builds
gecond order rotatable designs from a number of sets of points when

the peints in each set’ére equidistant from the origin. For example,

a two-dimensional second order rotatable design may be constructed by
combining some center points (one set) with a set conmsisting of five
points equidistant from the'origin, This arrangement is called
pentagonal design. While one set in this example consists of the
points at the‘center, this is not a needed requirement. This procedure
is not based on the premise that second order designs are, by and large,
applied when first order designs prove inadequate. Therefore, when
applied to sequential experiments Procedure 2 is not convenient and as
efficient as the first technique. References (9) and (21) furnish lists

of second order rotatable designs built through this technique.

3. Construction of Rotatable Designs Through Balanced Incomplete

Block Designs. Another procedure for building second- order rotatable
designs 1s to use balanced incomplet«< block designs. Using this
procedure, the designs are formed by combining 2k factorial designs
with incomplete block designs in a particular way. Procedure 3 is best
explained through an example. A balanced incomplete 2sign for testing
three factors in three blocks of size (8 = 2) is given in Table V.

After replacing the asterisks in each row by the columns of ZS
factorial design (S = 2) and inserting a column of zeroes wherever
there 18 no asterisk, and adding three center points (polnts 13, 14, and

15), a three level second order rotatable design is obtained as is

shown in Table VI.



TABLE V

A BALANCED INCOMPLETE BLOCK DESIGN FOR THREE FACTORS IN THREE BLOCKS

69

Blocks

Xl Xz X3
1 * *

2 * *
3 * £3
TABLE VI
A SECOND ORDER ROTATABLE DESIGN FOR THREE FACTORS

Blocks Xl X2 X3
1 -1 -1 0
2 1 -1 0
3 -1 1 0
4 1 1 0
5 -1 0 -1
6 1 0 -1
7 -1 0 1
8 1 0 1
9 0 -1 -1

10 0 1 -1
11 0 -1 1
12 0 1 1
13 0 0 0
14 0 0 0
15 0 0 0
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Té ébtain_exact rotatability, the incomplete block designs
. recommended by Box and Behnken (4) require q = 3u, where q is the number

of times each treatment is replicatéd and Yy is the number of times each
pair of treatments appear together in one block. Later, Das and
Narasimham (18) developed a methodology for incomplete block designs
with q # 3u. These authors provide a list of second order rotatable
designs formed by utilizing incomplete block designs for three to
sixteen factors. ‘

In first order designs, the l?vels adopted for the factors are +1
and -1. However, for all the expérimental points obtained through
incomplete block designs, at 1easq one factor has the value of zero.
Consequently, this technique gannét form second order rotatable aesigns
by adding experimental points to those of a first order design. There-
fore, the technique is not effici;nt and suitable for sequential

\
experiments.

4, GConstruction of Rotatabfe Drgigns by Using First Order Rotatable

Designs (Simplex-Sum Designs). Because of the sequential nature of
1

response surface experiments, this procedure seems to be more appealing
|

than the last two procedures (5). Using procedure 4, a second order.
rotatable design is constructed by adding the rows of a first order
design with minimum size (n = k + 1) 1 at a time, where i =1, 2, ..., k
and multiplyirg the obtained rdwé by a set of constants, ti’ called
radius multipliers. When the first order design, D, is of size n, the

i
|

second order rotatable design, D', will have YA points. ' Tables

VII and VIII show designs D and D', respéctively. Di’ in Table VIII,

is an (2) by k matrix whose row$ are made up of all possible sums of the

t

i
|
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rows of D taken 1 at a time. Since for k > 5 the number of design
points required by this technique is large, Box and Behnken (5) recommend
fractions of the derived designs which meet the necessary requirements.

Fractional designs are found by setting'some t.'s equal to zero. A list

i
of simplex-sum designs for two to eight factors is given by Box and

Behnken (S)L

TABLE VII

FIRST ORDER DESIGN OF SIZEn =k + 1

X
%)
D = : L]
X1
X
|
o
|
TABLE VIII

SECOND ORDER ROTATABLE DESIGN

£1P
£20

D' =
fiDi

1Pk
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Extensions

The designe classified in this chapter do not constitute én
exhaustive list of response surface designs. First of all, since it
was assumed that a quadratlc equation will provide an adequate fit,
third order designs were not discussed (7) <18) (30). Second, the
designs that minimize bias and then use any additional flexibility to
minimize variance were not mentioned (37) (40) (41). The reason behind
the deletion is that a general class of designs of this type is nbt
developed yet and each situation should be treated individually. Third,
problems with cuboidal subregions were not discussed; this is a
digression from the rest of the literature that is based on spherical

subregions (24).

Random Number Assignment in

Response Surface Designs

To eliminate the bias due to syrtematic disturbances, naturally,
all the observations corresponding to any design should be performed
in random order. However, some of the observations may be conducted
under more homogeneous conditions than others. Specifically, response
sur: ace designs demand sets of experiments be conductcd at different
times. The procedure for taking advantage of these circumstances is
called "blocking'". All the observations taken at the same time or the
observations with other similar conditions are placed in a block.

Response surface designs benefit from rich and well developed
theories of blocking (9) (20) (47). Orthogonal blocking has been

favored by the majority of the writers in the field. This technique



73

makes the estimated coefficients and the block effects orthogonal and
reduces the residual sum of squares, which is highly desirable. However,
when response surface designs are used in simulation experiments, the
designer is able to manipulate the circumstances such that the experi-
ments are conducted under similar conditions, therefore apparently
eliminating the need for blocking.

But blocking within a different context may increase the efficiency
of simulation results. The analytical work of Schruben and Margalin
(52) recommended the use of two orthogonal blocks. The random numbers
used in one block (R) should be the antithesis (1 - R) of the random
numbers used in the other block. Applying this assignment rule to
response surface designs will pose a problem. The difficulty will
arise because of the sequentiality of response surface experiments, i.e.,
the uncertailnty about the number of first order designs required before
a second order design becomes necessary. The Proposed Methodology (here-
inafter written by capital M) developed next will overcome thié problem and
will conduct all the experiments in two orthogonal blocks regardless of
the number of first order designs needed before a second order design
is used. 1In the discussion that will follow, methodoloyy refers to
the strategles developed for assigning random numbers to response

surface lesigns; and assignment rule refers to part of the strategy

that assigns random numbers to the points of the individual designs.

The proposed Methodology functions as follows: Sets of experiments
that are used for estimating first order effects are conducted in two
orthogonal blocks. All the observations In one block use R and those
in the second block use 1 — R. When the search leads to the near

statlonary region, i.e., estimating second order effects becomes
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desirable, the additional observations will be divided into two parts.
Half of the additional observations will be added to those in omne block
(responses will be generated by R) and the other half will be added to
those in the second block (responses will be generated by 1 - R) while
the orthogonality of the two blocks 1s maintained.

The simulation responses obtained through this Methodology are
more efficient than those generated by applying common or different
random numbers throughout the experiments. This result directly follows
from the work of Schruben and Margolin as is indicated next. Assume
that for response surface experiments, in general, n - 1 first order
designs are employed before the search effort dictates the desirability
of using a second order design. Also assume that the extra observations
are added to those of the nth first order design to form a second order

design. This concept is graphically shown in Figure 10.

First Order Design (1)

First Order Design (2)

First Order Design (n - 1)

R—

First Order Design (n)

Second Order Design
Additional Observations

Figure 10, Graphical Illustration of the Search
Method for Response Surfaces
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Since in the first order design 1 through n the observations will be
divided into two orthogonal blocks and Schruben and Margolin's assignment
rule will be applied, it then follows that the respoﬁses obtained, for
all the n cases, will be more efficient than those obtained from using
common or different random numbers. Also because Schruben and Margolin's
assignﬁent rule will be applied to the second order design formed by
adding the extra observations to the nth first order design, the estimates
obtained in this last stage are also more efficient than those provided
by the alternative assignment ruies.

Yet another methodology for assigning random numbers to response
surface experiments was proposed by Schruben and Margolin (52, p. 514).
Thelir methodology applies R to all the observations of the first order
design and 1 - R to all the observations that are added for forming a
second order design. This methodology is consistent with orthogonal
blocking of response surface experiments when they are used in physical
experiments. It 1is reasonable to have ail the observations of the first
order design which probably are conducted at the same time in one block,
and the additional observations in the second block. The Methodology
proposed here improves Schruben and Margolin's methodology for response
surface experiments in three respects.

Fi:st, Schruben and Margolin's methodology appliesc only to the
last stage of response surface experiments while the one suggested here
applies to every stage. Second, although both approaches apply the
original Schruben and Margolin's assignment rule to the second order
design and are equally attractive, the method developed in this paper
provides more efficient estimates for the nth first order design. The

justification for this c’aim is the superiority of using R and 1 - R
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(when the conditions are met) to the use gflg for all the experimental
points. Third, to apply Schruben and Margolin's methodology, the value
of o should be calculated such that the additional observations will
form a block orthogonal to the one formed by the observations of the
first order design. But for the proposed Methodology, the wvalue of «

is immaterial in building the two orthogonal blocks and could be
calculated to meet an auxiliary conditionm.

To operationalize the proposed Methodology, first order designs
and second order designs described before should be divided into two
"~ orthogonal blocks. Fortunately, these designs can conveniently form
two orthogonal blocks.

Complete and fractional factorial designs used for estimating
first order coefficients can easily form two orthogonal blocks. For
example, for k = 3, the 23 factorial design may be split into two
orthogonal blocks, each with four observations by usingythe three
factors interaction as the defining contrast. When complete or
fractional factorial designs are performed in blocks, the estimates of
some of the coefficients will be confounded with block constrasts. In
other words, the reduction in the size of blocks is ob*ained by the
loss of accuracy on certain high order interaction coefficients. The
estimates of the interaction coefficlents which are used for assigning
the observations to blocks will be mlxed with the estimates of the block
differences. For example, if the three factors interaction is used to
assign the observations of a 23 factorial to two blocks (an observation
is assigned to the first block when the multiplication of the values of
the three factors i1s equal to one and to the second block when the

multiplication 1is equal t» minus one), then the estimate obtained for
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the three factors interaction will represent the blocks differences as
well. The discussion of which interaction coefficient(s) should be
confounded 1s beyond the scope of this paper and will not be presented
here. Confounding is discussed in detail in the books written on the
subject of experimental design (19) (44).

Plackett and Burman's (50) designs can be split into two orthogonal
blocks leading to the estimates of the main effects for 4k-2 factors in
4k observations. These designs normally provide estimates of 4k-1
factors in 4k observations. The estimation of a main factor is sacrificed
for splitting the designs into two parts. No effort is needed for forming
two orthogonal blocks in case of type B designs because they are made up
of two orthogonal blocks. (Duplicating designs of type A with reverse
signs results in formation of type B designs.)

Designs of type B' will form two orthogonal blocks as shown in

Table IX.

TABLE IX

DESIGNS OF TYPE B' FORMED IN TWO ORTHOGONAL BLOCKS

Factorial Design Number of Factors Defining Contrast

23 2, 3 AB=1, ABC=I
2% 4 ABCD=1
27 5, 6, 7 %
28 8, 9, 10 X
2’ 11 *

*The sufficient condition for "dividing these designs into two
blocks is that all combinations of every five factors involving the
first three occur equally, 1.e., the first three factors interaction
is used for comparing the groups (51).
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Designs of type B' are the most appropriate designs for the
Methodology being discussed here. An examination of the necéssary
conditions for performing the second order designs into two orthogonal
blocks will elaborate on this point (9). A second order design with N

points assigned to w = 2 blocks with ny and n, points in each block may

be expressed as

2 k k k
Y = 8 2 + EBx, + I LB,.x,X. |, (4.12)
U ey OW WU i=1 171u 1=1 §=1 ij7iu" ju

where Bow is the expected value of the response in the wth block
corresponding to the conditions at the origin of the design, and Zwu is

a block variable taking the value unity for the observations in the wth

block and zero otherwise.

Equation (4.12) can be rewritten as

k k k 2 _
Y =8 + LR,x, + L IR, x,.x. + LGS (Z_ -12) (4.13)
u o} i=1 171iu i=1 j=1 ij7iu"ju w=l ¥ WU \
where
2 n _ n
Bo - ii?? Bow ? 6w'= Bow - Bo » and Zw N
Block variables, ZWu - Ew’ will be orthogonal to the variables X5 Xy,
X 2 2 h
sy Ko Xps Xy wees Xy X5 Xoh eee, X (X, When
N ——-—
E xiuxju(éwu - Zw) =0 d,3=0,1, ..., k) (4.14)
u=1
(4.14) 18 equivalent to
N N
Lx, x,2_. =2 ¥LXxX, X, . (4.15)
u=1 iu " ju wu V=1 iu ju
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In a second order rotatable or composite designs for i # j,

N '

z X ¥y 0. Thus, it becomes necessary for orthogonal blocking that

u=1 .

n, _
z xiuxju = 0, 1 # 3, (4.16)
u=1
n 2 .

uElxiuxju =0, 1 ¢ 7. (4.17)

Condition I: All the sums of products betwaén %x's within each

block should be zero.

Substituting 1 = § 1in equation (4.15) leads to another requirement

n
n 2 2
1.2 Ic ¥
uElxiu 1, ' u-nl+1 1u n, .
1=+ 2 = 5~ and ——g 2‘ =5 - (4.18)
L X I x
u=1 1u u=1 1u

Condition II: The contribution ¢f each block to the sum of squares
for each variable should be proportional to the
number of observations in that block.

The points to be added to a first order design in order to form a

second order rotatable ot composite design are:

(@, 0, 0, v.., ®); (-0, 0, O, vvs, 0)3 «..3 (0, O, O, ..., Q)3

(0, 0, 0, ..., =)

It 18 ¢lear that these experimentdl points will always satisfy the

first condition regardless of the bloek to which they are assigned.
Therefore, to satisfy the first condition for the second order design

as a whole, the columns associated with the x's in thé first order
design must be mutually orthogonal. Fortunately, firét order designs of

type B' which are used for forming second order designs meet this

requirement.
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Designs of type B' that are made up of two orthogonal blocks meet
the second condition as well. So, care must be taken to assure the
gatisfaction of the second condition when designs are supplemented by
additional observations. To do so, the points with positive and negative
o for each factor should not be assigned to the same block. A systematic
procedure would be to assign .all the points with positive 0 to one block
and the points with négative o to the second block. Since the sum of
squares for each varlable is the same for both blocks, an equal number
of observations in each block satisfies the second condition. If

central points are needed, equal numbers of them should be added to each

block.
Discussion

A technical discussion of the proposed Methodology can be based on
the dispersion matrices of the B coefficients for different assignment
rules as derived by Schruben and Margolin (52). After partitioning the
X matrix as (1, X*) and assuming a unit variance fof the dispersion
matrix, the dispersion matrices for Schruben and Margolin's assignment
rule, the common streams of random numbers, and indep :ndent streams of
random numbers are given by (4.19), (4.20), and (4.21) respectively.1

2 -1
. o, = (NN /N (o, = p) + N (L -0 0

oLS

0 @x'x) ™ @ - o)

(4.19)

oy and p_ denote positive and negative correlations, and Nj and
N2 represent the number of otservations in the first and second block.
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ph

oy +N -0 | 0
Pors = S (4.20)
| o |z - 0,
[ -1
N o
B .= (4.21)
OLS O I(X*'X*)_l
L

Schruben and Margolin's assigmment rule and the common streams of
random numbers are equally efficient in estimating all the main and
interaction effects (Bl, 62, cens Bj, 812,

efficient in estimating those effects than the assignment rule using

...), and they are both more

independent streams of random numbers. However, the common streams of
random numbers provides the least efficient estimate of the mean effect
(60). The issue of whether Schruben and Margolin'svassignment rule is
more efficient than the Independent streams of random numbers in
estimating the mean effect and the extent of its efficiency over the
common streams of random numbers is decided by the magnitude of
(p+ - o_) (see equations 4.19, 4.20, and 4.21). Clearly the larger the
magnitude of the negative correlations induced, the more efficient
Schruben and Margolin's assignment will be. While not discussed by
Schruben and Margolin, it is interesting to note that even if the
antithetic random numbers produce zéro correlations or positive
correlations less than P, (the positiye correlation induced between
the points in the first block by R), Schruben and Margolin's rule will
st11]l be more efficient than the common streams of random numbers for
estimating the mean effect.

The objective of a designer ih early stages of response surface
methodology 18 to estimate the main effects as accurately as possible
to determine the steepest ascent or descent path. Thus the proposed

Methodology that uses Schruben and Margolin's assignment rule and the



82

common streams of random number methodology are both more efficient than
the independent streams of random numbers methodology. Also, because it
provides a better estimate of the mean than the common streams methodology,
the proposed Maethodology appears to be‘the optimal choice.

When the search'process has been led to the near-stationary region,
the efficiency of the interaction effects then becomes ao important as
the efficiency of the main effects. An argument against the proposed
Methodology would be that it confounds the estimate of one or more
interaction effects in dividing the observations into two orthogonal
blocks. However, in a problem with more than two factors, it is not
hard to find a high-order interactlon effact that is expected to be
insignificant and can be used for divi&ing the observations into two
blocks.

Although it is oossible for the proposed Methodology to produce a
more efficient estimate of the mean than the independent streams
methodology, a conservative approach would be to use independent streams
of random numbers when an efficient estimate of the mean is desired.

Two other 1lssues related to the proposed Methodology are discussed next.

| The constructlon of second order designs alone appears to assume
that designs of type B' are used for fitting first order polynomials.
This practice could be criticized because the number of observations
required for designs of type B' is larger than the number of observations
of type A or B. 1In fact, one may argue that the Increase in efficiency
obtained through conducting the experiments into two orthogonal blocks
might be offset by the increase in the number of observations. These
arguments are refuted on the ground that the proposed Methodology assumes

the utilization of B' derigns only when the search effort has been led



83

to the near stationary region and it will surely be supplemented by
additional observations for estimating second order coefficients.
Therefore, if the prevailing conditions are far from the optimum (for

example, around the initial conditions), designs of type A and B could

be used.

Also, the procedure adopted for building rotatable désigns in two
orthogonal blocks is one of the four possible procedures discussed
earlier in this chapter. Comnsequently, questions could be raised about
the merits of the remaining three procedures. A brief examination of
these procedures will provide support for the selected procedure.

Second order rotatable designs built through incomplete block designs

or equiradial sets are not efficilent and suitable for sequential
experiments for the following reason: While some of the experimental
points required for the two methods are those presumably performed in
the previous phase of the analysis; none of the two will form a second
order rotatable design in conjunction with all the experiments used in
the previous phase. Thus, some of the observations performed for
estimating the first order effects will not contribute to the estimation
of the second order effects.

The third procedure, simplex-sum designs, constructs second order
designs from first order designs with k + 1 observations. Methodologi~
cally, this approach seems to be appropriate for sequential experiments.
However, it is very uniikely for a designer to recognize the need for
fitting a second order polynomial with only k + 1 ovbservations. (A
first order orthogonal design with k + 1 observations furnishes neither
an estimate of any interaction effect nor an estimate of the experimental

error.) When the number of observations utilized for estimating the
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first order coefficients is larger than k + 1, then some of them will pot
be used for estimating the second order coefficients. Therefore, based

on the criteria of efficiency and adoptability for sequential experiments,
the central composite design proceduie is likely to be favored over other

techniques availéble for building second order rotatable designs.
Empirical Evaluation of Results

The contribution of the first part of this chapter, which was
developing a new method for presenting response surface designs, remains
to be evaluated. The classification presented in this chapter will
hopefully stimulate the interest in applying response surface designs
to simulation‘through collecting the designs under one cover and
presenting them in a logiéal sequence.

The contribution to be made by the second part of this chapter is,
however, more difficult to gauge. In other words, it is not possible
to say that conducting the experiments in two orthogonal blocks will
bring about the maximum possible efficiency in simulation results. All
that really can be said is that the proposed Methodology is superior
to (1) the assignment of the saﬁe random number (s) to all the design
pdints, and (2) the assignment offdifferent random numbers to all the
design points only when the following two conditions are met:'2

1. The use ofbcommon random numbers and antithetic random numbers

will generate positive an& negative correlations between
responses, respectively.

1

2. {1+ @®-1p, - 2NN, (o, +p )} - p+)k <1 (4.22)

The second condition is necessary only for the superiority of
the Methodology to the assignment of different random numbers.
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While Schruben and Margolin provide empirical support for the
optimality of their random number assignment rule, Wright and Ramsay
(56) recently presented simulation problems for which the use of common
random numbers increased the wvariance. As a result of their findings,
Wright and Ramsay reiterated the argument that the common random numbers
technique fails to induce the desired correlations if the policies
compared are not small perturbations of each other. This argument
implies caution in assuming the generation of positive cofrelations
for response surface experiments. For example, in a simulation with two
variables, depending upon the units of the variables the design point

(-1, ~1) might be too far apart from the design point (+1, +1).

Simulations are normally developed when a problem cannot be solved
analytically. In other words, the regponse function, G = f(x), cannot
be written in a deterministic mathematical form. Additionélly, the form
of the response functlon and the way random numbers, which generate
some of the variables, affect the responses differ in different
simulations. Therefore, the nature of simulation seems to defy a

general analytical investigation of random number assignment rules. The

analytical and empirical investigations of the assignm nt of random
numbers only recommend possible ways for increasing the efficiency of
certain simulations. It is the resbonsibility of a simulation designer
to be familiar with the alternative assignment rules and, based on his
knowledge of the problem or a few pilot runs, assign the random numbers
appropriately.

To supplement and complete the discussions in this chapter, and to
also evaluate the application of the proposed Methodology, and

example of an inventory simulation case 1is presented next.
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The Characteristics of the Inventory Simulation

The

inventory simulation used for empirical investigation is

developed by Professor Billy M. Thornton of the Oklahoma State University.

The input parameters of this simulation are as follows:

a.

The

b.

The

Inventory Situation Characteristics

1--The initial inventory level (50,000 units)

2--Maximum inventory size (100,000 units)

3--Cost of carrying inventory per unit ($.35)

4--0Ordering cost ($2,000 per order)

5--Shortage cost ($5 per unit)

6—-Temporary storage cost ($7 per unit)

7--Number of warm-up periods (15)

8--Number of periods in the simulation (104)

numbers inside the parentheses were used in an example.

Demand Distributions

1--The number of different demand segmen;s——all are assumed
to be normally distributed (1)

2--The number of periods in each segment (104)

3--Means and standard deviations for the demand segments
(12,500 units, 500 units)

4=-A random number seed for demand generator

number inside the parentheses were used in an example.

Delivery Time Distributions

1--The number of different delivery time periods—-all are
assumed to be normally distributed (1)

2--The number of periods in each segment (104)
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3--Means and standard deviations for the delivery time segments

(3.5 and 1)

4--A random number seed for the delivery time generator

d. Policy Variables (Controllable Conditions)
1--The number of policy segments (1)
2-=The number of periods in each policy segment (104)
3~-Ordering quantity and reordering level for each policy

segment

e. Process Generators
Random numbers are generated through a subprogram which is a
part of the simulation program. The following subroutine calls
the subprogram to generate normal random variates using the
Central Limit Theorem (48, p. 95).
SUBROUTINE NORMAL (EX, STDX, X)
SUM = 0.0 |
DO5SI=1, 12
R = RND(R)
5 SUM = SUM + R
X = STDX * (SUM - 6.0) + EX
RETURN
Two other methods for generating normal random variates are the
Direct Approacn and the Fast Procedure (48, p. 95). The Direct Approach

furnishes two normal random variates B& using two random variates as is

shown below.
_ 1/2
Normal random variate 1 = (-2 1oge rl) cos 2Tr

1/2
1) sin 2ﬂr2 (4.24)

9 (4.23)

Normal random variate 2 = (-2 loge r
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The Fast Procedure calculates norﬁal random variates from the
mixture of three densitiles given below.

£(x) = .09578 g, (x) + .0395 g, (%) +0.0027 g (x).
In validating the simulatioﬁ model, the normal random variates produced
by the Central Limit Theorem were compared to those produced by the

other two techniques. This comparison did not suggest any one of these

techniques to be superior to others.

An Illustrative Example

Glven the numbers inside the parentheses, the objective of
the example was to find the ordering quantity and the reordering
level that minimize the average inventory cost for a year. The steepest
descent technique was used to search for the optimum point. Based on
the demand distribution (mean = 12,500 unité per week, standard devia-
tion = 500) and the delivery time distribution (mean = 3.5 weeks,
standard deviation = 1 week) the search effort was squectively
determined to start from the point at which the ordering quantity is
45,000 units and the reordering level is 40,000 units. Additionally,
this point was considered to be far from the optimum ¢ onditions,
therefore a design that provides estimates of the main effects and the
interaction effects would be appropriate. Moreover, since it was not
essential to discover the nature of the relationships involved, the
experimenter's priority was to choose a design that would minimize
variance (Figure 8, page 54). Denoting the ordering quantity by Xy
and the reordering level by Xy, 2 22 factorial design, as shown in
Table X, was used to fit a first order polynomlal to the subregion
around the selected poir-. (A 22 factorial design will satisfy both

conditions 1A and 1B in Figure 8.)
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TABLE X

FACTOR LEVELS FOR THE FIRST EXPERIMENT

Factor -1 +1
Xy the ordering quantity 44,000 46,000
X, the reordering level 39,000 ' 41,000
Note: "1,000 units" was subjectively set equal to one experimental

unit for both wvariables.

Simulation runs were made for the four experimental points and
the center point with the following three alternative random numbers
assignment rules.

1. Indépendent streams of random numbers.

2., Common random numbers.

3. Schruben and Margolin's assignment rule.

The obtained responses are shown in Tables XI, XII, and XIII
respectively.

The responses shown in Table XI, XII, and XIII wer: obtained by
dividing the total inventory costs by 104 (the periods in the simulation).
The 104 period costs were punched on computer cards and were used by a
FORTRAN Program to calculate the Induced correlations between the trials.
The correlation coefficients for the five trials when the independent

streams of random numbers were used are shown in Table XIV.



TABLE XI

920

THE FIRST EXPERIMENT WITH INDEPENDENT STREAMS OF RANDOM NUMBERS

Factor Level Response
Trial X1 X9 y
1 -1 -1 $25,461
2 -1 +1 24,544
3 +1 -1 24,440
4 +1 +1 24,774
5 0 0 25,100
TABLE XII
THE FIRST EXPERIMENT WITH COMMON STREAMS OF RANDOM NUMBERS
Factor Level Response
Trial Xy X9 y
1 ~1 -1 $25,314
2 -1 +1 24,610
3 +1 -1 23,503
4 +1 +1 23,503
5 0 0

24,600
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TABLE XIII

THE FIRST EXPERIMENT WITH SCHRUBEN AND MARGOLIN'S ASSIGNMENT RULE

Factor Level ResEonse
Trial X1 X9 y
1 -1 -1 $25,314
2 -1 +1 . 24,895
3 +1 -1 25,081
4 +1 +1 23,503
5 0 0 24,600
TABLE XIV

CORRELATION COEFFICIENTS FOR INDEPENDENT RANDOM NUMBERS CASE

Trial*
Trial#* 1 2 3 4 5

1 1 ~.25 .27 .01 .27
2 -— 1 -.02 ~.04 .15
3 - — 1 ~.03 -.19
4 _—— — — 1 . , .01
5 - — — —— 1

*
The trial numbers correspond to the previous tables.
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Although some of the coefficients in Table XIV are close to zero,
the independent streams of random numbers did not generate absolutely
independent responses. The obtained correlations may be attributed to
one or both of the following two factors.

1. The nature of the adopted simulatiom.

2. The policies (the experimental points) are too far apart.

The next set of trials will be closer to each other and will
provide an opportunity for examining the validity of the second factor.
To evaluate the efficiency of this‘assignment rule as compared to the
other two, the standard errors of the B coefficients need to be compared.
The evaluation will be presented after the correlation coefficients for
the other two random numbers assignment rules are discussed.

The correlation matrix for the observations of the common random

numbers rule are given in Table XV.

TABLE XV

CORRELATION COEFFICIENTS FOR COMMON RANDOM NUMBERS ASSIGNMENT RULE

~_ 3
1 1 .66 .39 .39 .45
2 — 1 .18 .18 .21
3 — — 1 1.00 .99
4 — — — 1 .99
5 —- —— — _— 1
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The correlation coefficients presented in Table XV support the
hypothesis that the common random numbers assignment rule induces
positive correlations between the simulation responses. However, more
than half of the coefficients show only weak correlations. Two
possible explanations behind obtaining such correlation coefficients
are the ones described in the case of independent streams of random
numbers. A more plausible explanation appears to be the dependence of
the magnitude of the induced correlations on the specific pairs of the

design points.

The correlation coefficients between the responses for the use of

Schruben and Margolin's assignment rule 1is given in Table XVI.

TABLE XVI

CORRELATION COEFFICIENTS BETIWEEN RESPONSES FOR
SCHRUBEN AND MARGOLIN'S ASSIGNMENT RULE

=
|_l
1
=
=
I
=)
|
|=

Trial
Trial 1 2 3 4 5
R 1 1 -.31 -.10 - .39 - .45
1-R 2 -—- 1 .07 ~.09 -.13
1-R 3 -— - 1 -.24 -.25
R 4 - -—= - 1 .99
R 5 ——— — -— -— 1
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The four trisls corresponding to the 22 factorial experiment are
divided into two orthogonal blocks. But adding one observation to the
center of design for estimating the standard errors and including it in
the first block violates that orthogonality condition. However, slight
deviation from the orthogonality is not expected to affect the
efficiency of the assignment rule. The sign of the induced correlations
between the trials that use the same streams of random numbers
was expected to be positive; and the sign of the generated correlations

between the trials that use R and 1 — R was expected to be negative.

Although the signs of all the correlation coefficients in Table XVI are
as anticipated, their magnitudes ara not. The same factors that caused
the weak correlations in case of the common streams of random numbers
are possibly at work here, too.

The standard errors of the R coefficients obtained by each of the

alternative assignment rules is given in Table XVII.

TABLE XVII

STANDARD ERRORS OF THE R COEFFICIENTS FOR THE THREE ALTERNATIVES

Standard Error

Alternatives ‘BO Bl B2 B12
1. 1Independent Streams 109 114 148 133
2. Common Streams 261.9 184 67.7 67.7
3. Schruben and Margolin 44.9 33.7 42.8 55.56
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The commsa gtresws of random nuinbers as expected has the largest
variance for 80. The use of the common streams of random numbers did,
hpwever, reduce the varilances for 62 and 612. The reason that the
variance for Bl was not reduced is the magnitude of some of the
correlation coefficients in Table XV. Schruben and Margolin's assignment
rule, which 18 part of the proposed Methodology, has the most efficient
estimates. This assignment rule reduces the variance of 812 with a
lesser degree than it reduces the variances of Bi and 82. A reasonable

explanation is that the estimate of the interaction effect, B is

122
confounded with the estimate of the blocks contrast.{'Theoretiéaliy,
the variances of Bl’ 82, and 812 for cdmmon streams of random numbers
and Schruben and Margolin's assignment rule must be equal. That would
be the case only if first all the positive and negative correlations

have equal magnitudes; second, if the experimental errors for the two
regression equations are equal.

The next step in the search process 1s to examine the magnitude
and the signs of the estimated coefficlents. This examination will,
first, show the nature of the present subregion; and, second, the
steepest descent path in case the subregion under investigation is not
the near stationary subreglon. The estimate of the B coefficients
according to Schruben and Margolin's assignment (the most efficient

one) are shown in Table XVIII.
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TABLE XVIII

THE ESTIMATES OF THE B COEFFICIENTS

B, = -406.25
B, = -499.25
BT, = -289.75

Since the estimates of the main effects, Bl and 82, are relatively
larger than the estimate of the interaétion effect, 1t was realized that -
reduction in the average lnventory cost moving down on the steepést
descent path might be possible. The calculation of the steepest descent
path and the trials performed on the path are shown in Table XIX,
| After performing 12 trials, the point associated with trial 11
was selected to be the center of the next first order design. The
observations of the second 22 factorial design are shown in Table XX.

In light of the magnitude of main effects obtained previously, the
units adopted in the second set of experiments for X, and x, are 407
and 500 units respectively. While the relative magnitude of the units
was dictated by the slopes, the absolute magnitude of the units was
determined subjectively.

Simulation runs were made for the four expérimental points and the
center point with the three random numbers assignment rules. The
results.are shown in TablesVXXI, XX1I, and XXITI.

The correlation coefficients between the responses when independent

streams of random numbers were employed are gilven in Table XXIV.
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TABLE XIX

CALCULATION OF STEEPEST DESCENT PATH AND SUBSEQUENT TRIALS ON THE PATH

Ordering Quantity Reordering Level

Variables X1 X9
Base level ’ 45,000 units 40,000 units
Unit 1,000 units 1,000 units
Estimated slope x(-)* 406.25 499,25
Unit x slope 406250 499250

Change in level per

1,000 units for Xy 814 1,000%*

Subsequent points on the path:

Point Responses
1 45,814 41,000 23,725
2 46,628 42,000 22,845
3 47,442 - 43,000 21,992
4 48,256 44,000 21,173
5 49,070 45,000 - 20,397
6 49,884 46,000 19,307
7 50,698 47,000 19,079
8 51,512 48,000 18,289
9 52,326 49,000 18,260

10 53,140 50,000 . 18,027
11 53,954 51,000 17,964
12 54,768 : 52,000 , 18,295

*
Because the objective 1s cost minimization, the negative sign is
required. ‘

%%
1,000 units was determined subjectively.
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Factors

-1 +1
Ordering Quantity X 53,547 54,361
Reordering Level X, 50,500 51,500
TABLE XXI
THE SECOND 22 FACTORIAL DESIGN WITH INDEPENDENT STREAMS
Factor Level Response
Trial X1 X y
1 -1 -1 17,766
2 -1 +1 19,894
3 +1 -1 18,230
4 +1 +1 19,498
5 0 0 18,494
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TABLE XXII

2

THE SECOND 2° FACTORIAL DESIGN WITH COMMON STREAMS

OF RANDOM NUMBERS

Factor Level ‘ Response
Trial X1 X9 y
1 - -1 -1 18,507
2 -1 +1 17,831
3 +1 -1 18,448
4 +1 +1 18,631
5 0 0 17,964%

*
The seed value that was used for trial five in-the previous table
was repeated for all the trials in Table XXII.

'TABLE XXIII

THE SECOND 22 FACTORIAL TDESIGN WITH SCHRUBEN

AND MARGOLIN'S ASSIGNMENT RULE

_ Factor Level - Response
Trial X1 X2 v
1 -1 _ -1 18,507
2 A | | . 18,740
3 +1 -1 | - 18,011
4 +1 +1 .+ 18,631

5 0 0 17,964
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TABLE XXIV

CORRELATION COEFFICIENTS FOR INDEPENDENT STREAMS
OF RANDOM NUMBER CASE

1 1 -.15 .08 -.03 02
2 _— 1 -.20 31 -.14
3 — — 1 .14 V42
4 — — — 1 -.16

The correlation coefficients in Table XXIV do not show absolute
independency between the responses, but show weak positive or negative
correlations. The experimental points under consideration here are
closer to each other than the ones considered before., Since the
correlation coefficients in Table XXIV are not an improvement over
those in Table XIV, it may be concluded that the distance between the
experimental points is not affecting the magnitude of the correlations
between the responses. The factor then to blame would be the nature of
the adopted simulation. 'ﬁad, for example, the standard deviations of
the demand and the delivery time been larger, the entries of Table XXIV
might have shown weaker posiﬁive and negative correlationms.

The correlation coefficients between the responses when they were

generated by the same stream of random numbers 1s given in Table XXV,

3
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TABLE XXV

CORRELATION COEFFICIENT BETIWEEN RESPONSES FOR THE
COMMON RANDOM NUMBERS ASSIGNMENT RULE

Trial
Trial 1 2 3 4 5

1 1 87 .22 23 86
2 — 1 14 15 95
3 — ——— 1 .99 23
4 -— - — 1 .25
5 — _— -— —- 1

The use of common streams of random numbars generated positive
correlations between the responses; however, in terms of the magnitude
of the iInduced correlations, the correlation coefficilents are not
better than those presented in Table XXV. Therefore, in this simulation,
the distance between the experimental points does not seem to be the
reason behind the weak correlations. For the adopted simulation, the
magnitude of the positive correlations induced is ostensibly dependent
upon the specific pairs of the design points. (Schruten and Margolin
assumed that the induced correlations are independent »f the design |
points.)

The last correlation coefficlents between responses was obtained
when Schruben and Margolin's assignment rule was applied. These

coefficients are shown in Table XXVI.
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TABLE XXVI

THE CORRELATION COEFFICIENT BETWEEN RESPONSES FOR
SCHRUBEN AND MARGOLIN'S ASSIGNMENT RULE

.05 .08 .23 7,86

R 1 1

1-R 2 -— 1 .18 .00 .08
1-R 3 - --= 1 .00 .10
R 4 ——— — _— 1 .25
R 5 -—~- -— —-— _— 1

The entrles that were expected to be negative in Table XXVI show
elther zero or weak positive correlations. Also, except for plS’ the
anticipated positive correlations show only weak correlations. The
possible explanations for the performance of the common streams of
random numbers are the onés discussed before. The failure of the
antithetic random numbers to generate negative correla.ions may be
attributed to the nature of this simulation, the variability of demand
and the delivery time in particular. The more variations in the demand
and the delivery time, the more fluctuations will be caused between the
inventory costs by low and high, énd high and low random numbers. It
is interesting to note that for the adopted simulation, moving the
experimental points closer to each other adversely affects the parfor-

mance of the antlithetic random numbers.
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The standard error_of the B's for the three alternative random

numbers assignment rules are shown in Table XXVTII.

TABLE XXVII

THE STANDARD ERROR OF THE B'S FOR THE ALTERNATIVE
RANDOM NUMBERS ASSIGNMENT RULE

Standard Error

Alternatives Bo By By B12
1. Independent Streams 141.4 139 190 144,25
2. Common Streams 268 217 © 46.17 46.17
3. Schruben and Margolin 192 144.2 146 172

As in the case of the initial first order design, the common streams
or random numbers increased the varilance of BO and reduced the variances
of BZ and 812. The increase‘in the variance of Bi car be traced back
to the weak correlation coefficients presented in Table XXV. The
inefficiency assoclated with Schruben and'Margoliﬁ's assignment rule is
because of the large experimental error of its corresponding regression
analysis. The mean square error of the regression analysis for
observations of Table XXIIT was about twice larger than theimeah square
error of the regression equation using independent streams of fandom

numbers responses and the regression equation using common streams of
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random numbers responses. Had the mean square errors for tha three
regression equations been equal, Schruben and Margolin's assignment
rule would have been more efficient than the other two assigmment rules.

The variability in mean square errors of the different regression
equations 18 caused by the volatile nature of the adopted simulation.
Certainly, ona would increase the consistency of the responses by running
the individual. simulations for longer periods of time. For simulations
with a volatile nature, the experimental errors are large and consequently
making the application of the response surface methodology inappropriate.
The success of the response surface methodology very much depends on the
magnlitude of the experimental errors. However, this problem could be
overcome by, first, selecting the experimental points closer to one
another. Second, by increasing the number of periods for which each
experimental point is run.

Since the proposed Metﬁodology was used in the initial stage of the
analysis, the search process continued with the estimates obtained through

it. Table XXVIII shows the estimates of the B coefficients.

TABLE XXVIII

THE ESTIMATES OF THE § COEFFICIENTS

él = 348.75
éz = -286.75
B.. = -403.25
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Since the estimate of the Interaction effect is large as compared
to the estimates of the maln effects, a second degree polynomial needs
to be fitted. An examination of the responses 1n Table XXIII led to
the adoption of a second order composite rotatable design. The value
of a for this design based on the formula given in page 67 18 equal to

/s

. This value of o will make it possible to compare Schruben and
Margolin's methodology with the proposed Methodology. So the additional

experimental points are:

2
1 1.414 0
2 -1.414 0
3 0 1.414
4 0 -1.414
5 0 0

To conform to the orthogonality requirement, the experimental
points 1 and 3 were simulated using R and the rest were simulated using
1 - R. Table XXIX shows the results. (Also, 1 and 3 were simulated

using 1 - R and the rest were simulated using R.)

TABLE XXIX

THE ADDITIONAL EXPERIMENTAL POINTS AND THEIR RESPONSES

Factor Level Response
Trial X1 , X9 y

1.414
-1.414

$18,524
18,895
414 17,964
AT 19,966

19,545

(GRS S
[oNeNe)
t
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The correiation coefficients between the ten observations of the
second order rotatable designs when they were all generated by the

common streams of random numbers are shown in Table XXX.

TABLE XXX

CORRELATION COEFFICIENTS BETWEEN RESPONSES OF THE SECOND ORDER
ROTATABLE DESIGN FOR COMMON STREAMS OF RANDOM NUMBERS

Trial '
Trial 1 2 3 4 5 6 7 8 9 10

1 1 .87 .22 .23 .86 .99 .22 .29 .8 .86
2 - 1 14 0 .15 .95 .8 .14 .20 .95 .95
3 -_— = 1 .99 .23 .18 .94 .90 .23 .23
4 -— - -— 1 .25 .20 .93 .91 .25 .25
5 - - - - 1 .82 .24 .30 1 1
(-a, 0) 6 - - -~ - - 1 .19 .25 .82 .82
(@, 0) 7 R - - - -— 1 .83 .24 .24
(0, -a) 8 -— == - - - - - 1 .30 .30
0, a) 9 -— - - - - - - - 1 1
(0, 0) 10 -— - - - - - — - - 1

Table XXX provides further support for the claim that the magnitude
of the 1nduced correlations, in this simultion, depends on the pairs of
the design points. The common streams of random numbers generate
strong positive correlations between the responses only when the policies
(the design points) compared are similar or are close in nature. While
the distances between the design points may, in some cases, indicate the

degree of similarity between the policies, it will not do so in general.
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The correlation coefficients between the design points of Table XXX
when Schruben and Margolin's methodology was applied are presented in

Table XXXI.

TABLE XXXI

CORRELATION COEFFICIENTS BETWEEN THE RESPONSES OF THE SECOND ORDER
ROTATABLE DESIGN FOR SCHRUBEN AND MARGOLIN'S METHODOLOGY

R 1 1 .87 .22 .23 .8 .05 .07 .09 .02 .09
R 2 - 1 .14 .15 .95 .05 .09 .10 .02 .10
R 3 - - 1 .99 .23 -.01 -.01 -.02 -.05 .00
R b = —=  —= 1 .25 .00 .00 .01 .04 .01
R 5 = = - =1 .08 .10 .12 .02 .12
I-R 6 =—= — — - - 1 .15 .18 .60 .20
T-R 7 — = == = - -1 .90 .30 .89
1-R 8 == == == e = = -1 .38 .96
I-R 9 — == = e e e — - .40
I-R 10 == == = a= ee = e e =1

All entries which are located at the intersection of the first
five rows and the last five columns were expected to be negative and
the remaining coefficients were expected to be positive. Because of
the factors explained before most of the coefficients in Table XXXI do
not show strong positive or negative correlations. The correlation
coefficients between the experimental points when the proposed

Methodology was used are given in Table XXXII.
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TABLE XXXTII

CORRELATION COEFFICIENTS BETWEEN THE RESPONSES OF THE SECOND ORDER
ROTATABLE DESIGN FOR THE PROPOSED METHODOLOGY

10

)
a}
[
]
=
=
n
[
o
H
.—I
N
(O]
i
w
)]
~!
(0]
0

R 1 1 .05 .08 .23 .8 .05 .22 .09 .8 .09
1-R 2 == 1 .18 .00 .08 1 .0l .20 .08 .22
I-R 3 == - 1 .00 .10 .16 -.01 .92 .10 .90
R A = | .25 .00 .93 -.01 .25 .01
R 5 = em = =1 .08 .24 .12 1 .12
1-R 6 == == == e= e 1 .02 .18 .08 .20
R y A T | ~.03 .24 .00
I-R 8 == ==  e= a— e ee a1 12 .96
R R U T
I-R 10 == ==  e= = me e emae e ]

As in the previous table, the antithetic random numbers generated
zero or weak correlations betﬁeen the responses. An examination of the
standard errors of the B coefficient; for the common random numbers
methodology, Schruben and Margolin's methodology, and the proposed:
Methodology is given next. Table XXXIII shows the standard errors for
the B-coefficients.

For the second order composlite rotatable design, the proposed
Methodology has produced the most efficient resuits. However, as before,
part of the efficiency is caused by the mean square errors of the
regression equations. The standard error of BO for the common streams
of random numbers is larger than the standard error of BO for the other
two alternatives. This result 1s consistent with the analytical

discussion presented before. The standard errors of all the other
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coefficients would have been the same if 1) all the positive correlations
and also all the negative correlations would have been equal and 2) if
the meén square errors for the three regression equations would have
been equal. The last stage in the search process is evaluation of the

near stationary region which is presented below.

TABLE XXXIII

THE STANDARD ERROR OF THE B COEFFICIENTS FOR ALTERNATIVE
RANDOM NUMBERS METHODOLOGIES

Standard Error

Alternatives Bo By By Bip By By
1. Common Random Numbers 4,560, 3,118 1,389 404 1,172 1,587
2. Schruben and Margolin's
Methodology 2,812 2,017 1,064 358 949 1,123
3. The Proposed Methodology 521 390 311 248 98 351

Analysis of the Fitted Surface

Based on the estimates obtained by the proposed Mec-hodology, the
mathematical relationship between the inventory cost and the ordering

quantity and the reordering level 1is:

.2 2 '
y 18,754 + 108 X, 497 x2 - 403rx1x2 + 11 Xq + 139 x2 (4.25)

To find the stationary point in the near stationary region, partial

derivatives with respect “-o X and x2 for equation (4.25) were calculated.
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After setting the results equal to zero, a system of two equations and
two unknowns was solved. The values of Xy and X, obtained for the

stationary point are:

xl = ,20

X, = 1.25

These values correspond to 54,463 units for the ordering quantity and
51,100 units for the reordering level. The inventory cost of this
policy is $18,389. The response for the stationary point is not better
than all the other responses obtained before. However, since the
inventory simulation under consideration is probabilistic and the
trials are not replicated, this is a likely occurrence.

A closer examination of the stationary point was made possible by
the method of canonical analysis. By transferring the origin of the
second order design to the stationary point and measruing the variables

along the new axes, denoted by X. and X2’ the following canonical equation

1

was obtained.

2

2+ 286.5 x2 (4.26)

y = 18,389 - 136.5 X 2

If the coefficients for Xi and X; were both positive, the stationary

point would have been a true minimum. Since one coefficient is positive
and the other is negative the stationary point is a saddle point. The
fitted contours are hyperbolas elongated in the direction of the Xl axis.,

Therefore, no conclusion can be drawn about the presence of a global

minimum.
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Analysis

Although the empirical investigation was limited to the application
of response surface methodology to an inventory simulation case, the
results do have direct implications for other forms of simulation. The
potential of response surface methodology stems from the efficiency by
which it discovers an unknown relationship or finds the optimum point
regardless of the nature of a problem. Since the objective(s) of many
simulation problems coincide with the rationale behind the use of
response surface methodology, as was the case in the inventory problem,
it 1s natural for most other simulation problems to benefit from it, too.

The inventory simulation example indicated that the response surface
methodology 1s a strong and an efficient technique for simulation. The
average inventory cost which was more than 24,000 for the initial
experiments was substantially reduced to less than 18,000. Only’aboﬁt
20 experiments were needed to discover the relationship between the
simulation responses and the controliable conditionms.

The examination of the example reported here and other examples
not reported in detail provided valuable insight about the application
of response surface methodology in simulation. Some of the pitfalls in
applying response Bﬁrface methodology to simulation ard the way to
minimize thelr impact are as follows. |

General speaking, the performance of response surface methodology
strongly depends on the magnitude of the experimental error.

The response surface methodology is successful when the experimental
error is small. The stochastilc nature of simulation causes volatility

in responses that can lead to large experimental errors. This problem
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is aggrevated when the experimental points under investigation are ;oo
far apart.

Therefore, successful application of response surface methodology
to simulation requires, first, the units selécted for the variables to
be small so that the experimental poiﬁts are not too far apart.
Secondly, each experimental point should be run for adequate intervals
or periods of time to allow for erosion of erratic variations. Another
strategy would be replication bf observations at each experimental
point. Replication of observatlons is in contrast to the spirit of
this research, that is accomplishing the objective of a simulation
study with the least possible number of observations. Additionally,
very little discussion exists in the literature about the assignment
of random numbers to the experiomental points of a design when the
trials are replicated.

To increase the efficiency of results in a simulation that uses
response surface designs, it was shown that it is wise to take advantage
of efficient random numbers assignment rules that are available. The.
common random numbers technlque consistently performed better than the
independent streams of random numbers. TFor the regressions with
comparable experimental errors, the Methodology propesed in this paper
was more efficient than Schruben and Margolin's methodology;;the common
random numbers methodology, and the independent fandom numbers‘
methodology when the expected positive cofrelationé between ‘the
responses were induced.

Due to the nature of simulation, no recommendation Tegar&ing'random
numbers agsignment rule can be made from the empiric;l findidgs of a

simulation. The findings of this study do not support the argument that

P
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the common random numbers technique - performs better when the policies
compared are small perturbations of each other. The findings, however,
suggest that the magnitude of the induced positive correlations depends
on the specific pairs of the design points. With respect to the
antithetic random numbers, the magnitude of‘the induced negative
correlations was larger when the experimental points were further apart.
In other words, moving the experimental points closer to each other
adversely affected the magnitude of the negative correlatioms. The
magnitude of the induced negative correlations could have increased,
to a limited extent, by the increase in the variability of demand. While
no specific random numbers assignment rule can be recommended, the
following two approaches will help one decide on the assignment rule.

First, a few pilot runs in the beginning will enable the designer
to discover the signs and magnitudes of the induced correlations.
Second, simulations can be stopped and restarted without disturbing
their statistical properties. Therefore, an early check on the signs
and magnitudes of induced correlations will allow the designer to test
the validity of his assumptions. If the expected negativé (or zero) and
positive correlations between the responses are realized, the proposed
Methodology will be more efficient than the common random numbers rule.
If only positive correlations are generated, the common random numbers
might be more efficient than the proposed Methodology.

The reclassification of response surface designs supplemented by
the discussion of random numbers assignment rules will, hopefully,

stimulate future application of response surface methodology in simulation.

A summary of the conclusions, and the recommendations for future research

will be given in Chapter V.



CHAPTER V
CONCLUSIONS AND RECOMMENDATIONS

This study was designed to develop a methodology for assigning
random numbers to the experimental points of responsé surface designs
used in simulation. The proposed Methodology was based on the
analytical findings of Schruben and Margolin (52). Additiomally, the
study was Intended to create a presentation scheme for response surface
designs to facilitate their applications to simulation.

In pursuing the objectives of the paper, first, the 1iterature of
response surface methodology was reviewed and presented in Chapter II.
Second, the developments in the area of random numbers assignment were
examined. Third, two tree diagrams were drawn to help designers find their

appropriate designs. Fourth, a methodology was presented for incorporating
Schruben and Margolin's random number assignment rule in response surface
designs used in simulation. Last; the analytical discussions were applied
to an inventory simulation case. A summary of the findings is given
below.

Response surface methodoiogy is rich and advanced in theory. A
number of first order, second order, and third order designs haﬁe been
developed for fitting polynomials to different problems. Experimenters
in chemical laboratories have well taken advantage of response surface
methodology in thelr experiments. The limited application of response

surface methodology to simulation may, in the researcher's opinion, be
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attributed to 1) the availlability of inefficient but simple enumerative
approaches and 2) the lack of an exhaustive and a cohesive presentation
of the subject. Although many books have devoted a chaptar to this
subject, the discussions have been basically fragmented and categorical
(16) (19) (45); In 1971, a complete discussion of the subject was
given by Myers (47). The objective of Myer's book was to cfeate a
contlinued awareness of response surface methodology techniques among
potential users. The book is not orlented toward simultion, and unless
one reads 1t in entirety, he will not be in a position to decide which
design to use. The tree diagrams and their associated discussion in
Chapter IV facilitates the selection process, and through references,
provides an opportunity for further evaluation of the selected design.
The tree dlagram representing first order designs (see Figure 8)
has five branches. Each branch corresponds to a possible objective of
the designer influenced by his knowledge of the problem. Twa.of the
branches are associated’with minimizing variance. Varlance can be
minimized for either the individual coefficients of the response as a
whole. Two other branches are related to minimizing bias. Whether the
orientation of design with respect to response function is known or not
will affect the method used for minimizing bias. Minimization of both

bias and variance is shown on the last branch.

Orthégonal designs are used for all the above cases. However, the
size of designs will not be the same for all the categories. To
estimate the first order coefficlents, variables should be varied at
least at two levels. Thus, complete and fractional factorial designs

are the most appropriate first order orthogonal designs.
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The second order design tree (Figure 9) has two branches represent-
ing second order composite and second order rotatable designs. For
estimating the coefficients of a second order polynomial, variables
should take at least three different values. A class of designs mére
efficient than 3k factorial designs is called composite designs (10).
These designs are obtained by adding‘experimental points to a first
order deesign which is large enough to.estimate the main effects as well
as the first order interaction effects. Composite designs are either
central or noncentral. Central composite designs are appropriate when
the optimum point is suspected to be around the origin of the design.
On the other hand, noncentral composite designs are desirable when the
optimum point is suspected to be close to a combination other than the
origin. Composite designs are easy to apply and are sultable for
sequential experiments. They provide a designer with the opportunity
to form second order orthogonal designs, second order designs with
equal precision for quadratic and interaction effects, and second order
rotatable designs.

Sacond order rotatable designs are useful when the objective is to
have equal precision for all the fesponses that are equidistant from the
" origin. There are four possible procedures for constructing second
order ratatable designs and depending upon the circumstances, one might

be preferred over others. The procedures are:

1. Equiradial sets procedure.

2. Composite designs procedure.

3. Imcomplete block designs procedure.
4. Simplex-sum designs procedure.

The most attractive procedure seems to be composite designs method.
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Since second order designs are normally built by adding points to
first order designs, composite designs and central composite rotatable
designs are widely applied in practice. The other methods developed for
forming second order rotatable designs do not use all the observations
employed foVestimating first order effects and, therefore, are not as
efficient.

One characteristic of sequential experiments is-that sets of
experiments are conducted at different times leading to a possible source
of variation among observations. Consequently, blocking techniques have
been developed to také into account time variation and other heterogeneous
experimental conditions. In simulétion, however, one is generally able
to control the experimental conditions and, therefore, eliminate the need
for blocking. But blocking, through random numbers, has been considered
as a means for increasing the efficiency of simulation. Most empirical
findings to date indicaté that simulation responses generated by the same
random numbers are positively correlated. Similarly, responses generated
by a random number and its antithesis are negatively correlated. Having
taken these findings for granted, Schruben and Margolin (52) investigated
alternative assignment of fandom numbers and conclﬁded the following:

If N experimental points admit orthogonal blocking into two blocks,
preferably chosen to be equal, then assigning a set of random numbers to

the observations in one block and its antithetic set to the second block

results in a smaller D-value than the assignment of common random numbers
to all the design points or different random numbers to all the design

points. D-value refers to the determinant of the estimator dispersion

matrix.
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When response surface designs are planned and performed at one time,
the application of the aforementioned assignment rule will not pose any
problem. ‘But, because response surface methodology is performed in steps,
appropriate measures need to be taken to assure compliance with the rule.
Specifically, addition of experimental points to first order designs
conducted in two orthogonal blocks should keep the blocks mrthogonal.

Faétorial and fractional factorial designs recommended for fitting
first order polynomials can be divided into two orthogonal blocks by
identifying a defining contrast(s). Theories of confounding help one

decide which contrasts should be selected for blocking purposes.

| When the objective is to form second order designs in two orthogonal
blocks by adding points to a first order design, the first order design
should be large enough to provide estimates of the main effects plus
those of palred interaction effects. First order designs meeting this
condition are labeled as designs of type B' and a list of them was given
in Chapter IV. Additionally, it was shown how designs of type B' and

its assoclated second order designs can be performed in two orthogonal
blocks.

It is important to emphasize that not all the first order designs
used at different stages for estimating first order effects have to be
designs of type B'. Except for the last first order design that will
be augmented by additional observations to estimate second order
coefficlents, the rest could be designs with fewer number of
observations. The designer's knowledge about the problem is the key
determinant of the number of experimental points. For instance, if the

designer knows that the initial experiments are far from the optimum,
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he may decide to use a design with the minimum number of observations
just to estimate the main effects.

The Methodology presented in this paper and the common streams of
random numbers are equally efficlent in estimating all the main and
interaction effects; and they are both more eff