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CHAPTER I 

INTRODUCTION 

This research will develop_a methodology for assigning random 

numbers to the experimental points o£ response surface designs for 

increasing the efficiency of simulation results. The methodology will 

be based on the recent findings of Schruben and Margolin (52). The 

research will compare the efficiency of the recommended methodology 

with those of the rival methodologies~ It will use an inventory 

simulation model to show and support the analytical findings. 

Additionally, it will present a new classification for response surface 

designs which could help simulation designers decide which design to use. 

Response surface-methodology consists of strategies and experi

mental designs used for exploring unknown surfaces or for determining 

the optimum conditions, i.e., the optimum levels of factors involved 

in an experiment. For example, in a chemical plant it is used to 

determine the level of such factors as temperature, concentration, 

etc., ~hich will result in the highest yield or the l~rest cost. The 

desirability of response surface methodology stems from the fact that 

it finds the optimum or discovers an unknown relationship with a 

limited number of observations. 

The mathematical relationship between the factors and the response 

can be expressed as: 

(1.1) 

1 
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\-lhere G is the response and ~l » ~ ,. , ••• , f; .. retpresents factors 1 through 
i k 

k, respectively. Although multiple responses are allowed, this study 

is limited to the single response case. Response surface methodology 

requires (1) the factors to be quantitative and (2) the response, G, 

be measured on a continuous scale. 

Generally speaking, the form of the response function (1.1) is 

unknown and the experimenter approximates it by a polynomial of low 

order. To do so, he explores a small sub-region of the experimental 

region which enables him to move to another sub-region with a better 

set of responses. This process is continued until the sub-region 

containing the possible optimum is found and explored. 

The first sub-region is almost always investigated through fitting 

a first order polynomial. Designs used for this purpose are called 

first order designs. Depending upon the obtained raeults, either the 

present sub-region will be explored by a second degree equation or a 

new sub-region will be examined by anoLher first order design. A 

second order polynomial is employed when the optimum is suspected to be 

in the present region. Designs proposed for fitting a second degree 

polynomial are called second order designs. Second order designs 

should ideally be obtained by adding observations to the points of a 

first order design. 

Box and Wilson (10), in 1951, investigated response surfaces in 

detail and recommended the optimal strategy and some useful designs for 

exploring them. The proposed strategy is called the steepest ascent 

(for maximization problems) or the steepest descent (for minimization 

problems) method. Although the technique was not new, its application 

to the purpose at hand was novel. Their work definitely laid the faun-



dation for many studies that have been carried out since then. All the 

subsequent work was mainly aimed at determining the most efficient 

designs for exploring response surfaces which meet certain assumptions 

(1) (6) (7) (9) (20) (21) (22) (23) (24) (37) (40) (41). 

When a low order polynomial is fitted to a surface, there could 

be two sources of variation between the estimated and the true 

responses. One is due to sampling variation and the other is because 

of the inadequacy of the fitted equation to represent the true func

tion. The first one is called variance error and the second one is 

called bias error. Consequently, some response surface designs have 

been derived to minimize variance alone, some to minimize bias alone, 

and the rest to minimize both variance and bias. Response surface 

methodology and its literature are discussed in Chapter II. 

3 

The objective of response surface methodology coincides with the 

objective of most simulation studies. Indeed, many simulations are 

designed to determine the values of r0me factors that will optimize a 

response function. Naylor et al. (48) define the purposes of simula

tion as the determination of the optimum combination of factors and the 

general investigation of the relationship between the response and the 

factors. However, it is surprising to find only a fe·1 simulation 

studies that utilize the concept and the methods of response surfaces. 

Although the importance and the benefits of RSM to simulation have 

been emphasized in several papers, simulation designers have, in the 

past, been negligent about it (11) (13) (43). The unwillingness to use 

response surface methodology is perhaps due to three factors. First, 

response surface methodology was originally designed for physical 

processes and has yet to ilnd its place in synthetically controlled 
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business experiments. Second, simple design proposals have been hidden 

behind complicated statistical proofs. 

Third, in view of RSM's seeming complexity, simulators may have 

used an enumerative approach--changing values of the parameters one at 

a time until all possible combinations have been considered. Such as 

approach, however, is neither suitable to large-sized complex problems 

nor can be employed for finding a functional relationship. 

Recently there has been a growing awareness among decision 

scientists of the importance of response surface methodology in simula-

tion experiments. Brightman (11) has used design of marketing policies 

as an example to show the usefulness of response surface methodology to 

simulation experiments. He has argued that 

although from a historical viewpoint RSM has been applied 
primarily to Operations Management, its greatest value to 
decision scientists is its potential application to simu
lation studies •.•. Once a simulation model has been 
built and validated, RSM could be utilized to determine 
the best policy in an optimal fashion (p. 495). 

Schruben and Margolin (53, p. 524), in discussing the random number 

assignment in simulation, write, "our basic development, however, 

applies to a wider class of experiments. This class includes.response 

surface designs, whose true value for simulation has yet to be fully 

realized." 

Successful application of response surface methodology to simula-

tion requires efficiency in execution. Data generated by computer 

simulation experiments is costly. Thus, it is vital to obtain as much 

information as possible with the minimum possible sample size. In 

doing so, variance reduction techniques have been developed for increasing 

the efficiency of the desired estimators with a given sample size. 
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Naturally, the extra work involved for implementin& these techniques 

should not exceed the benefits that will be accrued by the reduction in 

variance. Two of the most routinely used variance reduction techniques 

are (1) common random numbers and (2) antithetic random numbers method. 

Random numbers are used in simulation for the random selection of 

observations from a given probability distribution. The common random 

numbers technique uses the same stream(s) of random numbers f@~ each 

experimental point. The antithetic random numbers technique uses R, 

a vector of random numbers, and (h- R) to generate each simulation 

response. These two techniques, which require no or little extra 

computer programming as compared to other variance reducing techniques, 

induce correlations between responses leading to increases in the 

efficiency of results. 

The use of common random numbers has empirically been shown to 

cause positively correlated responses; the use of antithetic random 

numbers has led to negative correlatien between responses (38). How-

ever, whether one can benefit from their joint application in the same 

simulation experiment has been controversial. While Kleijnen (38) and 

Fishman (27) have obtained pessimistic results, Schrubtn and Margolin's 

(52) work has proved to be very encouraging. These st~Jies will be 

discussed in Chapter III. 

Having aspumed the induction of positive and negative correlation 

through utilization of common and antithetic random numbers, Schruben 

and Margolin (52) derived an optimal rule for assigning random numbers 

to the experimental designs that admit orthogonal blocking. Their 

n n~ result can be adopted for 2 factorial designs and 2 fractional 



factorial designs. These designs have been strongly recommended for 

estimating linear effects in response surface methodology. 

6 

In summary, response surface methodology and its associated designs 

have not received as much attention as they deserve in simulation 

analysis. Applying response surface methodology to simulation studies 

substantially increases the strength of an already powerful technique. 

Although designs developed for exploring response surfaces are effi

cient, more efficiency might be obtained by using two variance reducing 

techniques, namely common random numbers and antithetic random numbers. 

Study Objectives and Contributions 

It is the first objective of this study to design a methodology 

for assigning random numbers (common, antithetic, and independent) to 

the design points to increase the efficiency of simulation results. 

The second objective is to create a presentation scheme for response 

surface designs to facilitate their ~pplication to simulation. 

Specifically, the study shall attempt to: 

1. Examine the designs proposed for exploring response surfaces 

and provide the user with a summary of these proposalJ along with the 

conditions under which they should be used. This ste!_1 should not be 

mistaken with a review of literature in this field. The objective is 

the clarification and reclassification of available designs for future 

applications. Over the last three decades, alternative criteria 

(minimizing bias, variance, or both) have been adopted for deriving 

the optimal designs for learning about the behavior of response func

tions. Regardless of the criterion selected, factorial and fractional 
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factorial designs have been mostly recommended by estimating first 

order effects. However, the optimal designs developed for estimating 

second order effects have been based on a number of assumptions and should 

not be used indiscriminately in different experiments. It is neither 

practical nor economical for·a simulation designer to study all the 

0 

formulated designs in order to find his appropriate design. Therefore, 

to encourage and facilitate the use of response surface designs there 

is a need for a study to probe the literature and present it in a 

complete and an understandable form. 

2. Investigate the assignment of common and antithetic random 

numbers to the designs evaluated in (1) above. Since a blocking 

arrangement is possible in these designs, the study will examine the 

implication of applying Schruben and Margolin's assignment rule to them. 

This assignment rule is primarily useful when it is possible to plan 

the whole experiment at one time, which is not true for response 

surface problems. The sequential nature of response surface designs 

may make it difficult to come up with a general rule for assigning 

random numbers to the experimental points optimally. The difficulty 

arises due to the uncertainty in the number of steepr t ascent itera

; 
tions needed to reach to the near-stationary region. For example, an 

assignment rule which is optimal when the number of steepest ascent 

iterations reCJuired is two may have adverse effect on efficiency when 

the number o: necessary iterations is different than two. 

The analysis here is intended to offer an assignment rule that 

remains optimal regardless of the number of steepest ascent iterations 

required. In other words, attempts will, first, be made to divide 

observations into two ordwgonal bloc.ks for all the first order designs. 
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Since first order designs are, in general, factorial and fractional 

factorial designs, this will be an easy task. Second, when the search 

process indicates the necessity for fitting a second order polynomial, 

a methodology will be developed for generating two orthogonal blocks 

by adding observations to the two ~rthogonal blocks of the first order 

design. The optimality of this methodology cannot be evaluated 

analytically. However, empirical work is an alternate way of testing 

its validity. 

3. Illustrate the application of response surface methodology to 

an inventory simulation problem. The last part of this research applies 

the analytical results to an inventory simulation case~ An illustrative 

example will be discussed in detail. The example will provide an 

opportunity to appreciate the potentiality of response surface design 

in simulation experiments. In addition, it will furnish an empirical 

evaluation of the alternative random numbers assignment rules. 

Scope ana Boundaries 

The scope and the boundaries set for this research are as follows: 

First, it is limited to maximization problems althougi• minimization 

problems can be transferred to maximization problems simply by multi

plying the response by a negative sign. In fact, the example discussed 

at the end of Chapter IV is a minimization problem. Second, to keep 

the analysis simple, the discussion (for the most part) will be re

stricted to two independent variables; however, the obtained results 

will be general and can be applied to problems with more than two 

independent variables as well. Tbird, the response function will be 



limited to include second order terms at most. This will not create 

a great amount of bias in the results because a quadratic function has 

been shown (in most cases) to provide an adequate fit in the region 

close to the optimum. The adequacy of a quadratic function has actual

ly been assumed in the literature of response surface methodology and 

not much discussion exists for aubic functions. Fourth, the study 

focuses only on the efficiencies that can be obtained when common and 

antithetic random numbers are assigned to the experimental points. 

While other variance reducing techniques might be more efficient, 

they are not as widely and commonly used. Last, it is assumed that 

correlation with desired signa can be generated by the use of e·ommon and 

antithetic random numbers. The validity of this assumption rests on the 

empirical findings and not on the mathematical proofs. 

Organization of Chapters 

Chapter II is devoted to discussion of response surface methodology 

and contains the proposed experimental designs in chronological order. 

Chapter III explains the two variance reduction techniques employed in 

this paper. It also discusses the joint application (f common and 

antithetic random numbers plus the result of Schruben and Margolin's 

(52) work upon which part of this study is based. Chapter IV has three 

parts. In the first part, a framework is developed for presenting the 

proposed designs discussed in Chapter II. This framework is detailed 

enough to let users with different problems and objectives optimally 

select their designs. The second part of Chapter rv·examines the 

application of Schruben and Margolin's random number assignment rule to 



10 

the design& summariz·ed in the first part. The last pa~t of ·C:hapter IV 

applies the analytical results to an inventory simulation. Finally 

Chapter V closes the paper by stating the conclusions as well as 

implications for future research. 



CHAPTER II 

RESPONSE SURFACE METHODOLOGY 

In this chapter, response surfaces are first defined. Then an 

efficient method for exploring them is described. Next, designs devel-

oped for experimenting with the response surfaces are explained. 

Finally, a summary of the discussion will be given. 

· The Concept of Response Surfaces 

Response surfaces are usually used for two purposes. First, they 

might be used to determine the values of some factors that will optimize 

a response (or a set of responses). Second, they might be employed for 

' learning about the mathematical relationship that exists between the 

factors and the responses. The discussion here is aimed at the optimi-

zation aspect of response surfaces, specifically at single response 

maximization problems (for example, a firm which maximizes its profits 

based on prices, advertising expenditures, etc.). 

Let G denote the response and ; 1 , ; 2 , ••• , t;k rep:t.esent factors 1 

through k, respectively. Then a response function when the factors are 

quantitative and the response is measurable on·a continuous scale can be 

expressed by: 

(2.1) 

In practice, the form of (2.1) is unknown and the experimenter 

approximates it by a polynomial of low order. Because of the 

11 
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experimental error, G, the true response, is never observed and Y is 

used to indicate the observed response. For convenience, designers do 

not work with the real values of the factors, but with their standardized 

values. A standardized variable has its origin at the center of the 

design and its unit is set equal to the amount by which the factor is 

changed. Mathematically it is derived as follows: 

where 

si .( ~ 
~-1 

(2.2) 

and where N represents the total number of observations. Therefore, 

for the x's, two relationships will be true: 

and 
N 2 
1: xiu .. N. 

u==l 

A polynomial equation for two standardized variables is: 

(2.3) 

2 2 3 
y = 8o + 81x1 + 82x2 + l1.1x1 + 822x2 + 812xlx2 + 8111xl + • · · <2 •4 ) 

Clearly, a better fit is obtained as terms of higher ceder are included. 

Each polynomial equation is naturally a regression function with x1 , x2 , 

2 2 
x1 , x2, x12 , etc., as the independent variables in the regression equa-

tion. In the polynomial equation, 81 and 82 measure the linear effects, 

811 and s22 the quqdrattic effects, 812 the linear X linear interaction 

effects and so on. An investigator is normally able to identify, at 

least approximately, the region of factor space corresponding to factor 

combinations of his interest. This region is called the experimental 

region and the problem is to find the point(s) of the maximum response 
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in this region. Polynomials provide an approximate fit only within the 

experimental region and become untrustworthy when extrapolated. 

When the number of factors is small (three or less), there are two 

convenient ways to visualize the relationship involved. One method is 

to graph the relationship directly to obtain the response surface. 

Figure 1 shows a response surface with two factors. 

An alternative approach is drawing contour lines--lines of equal 

response on a graph whose coordinates represent the levels of the 

factors. Figure 2 illustrates some contour lines corresponding to the 

response surface in Figure 1. The first technique is useful when there 

are one or two factors while the second one can be used with as many as 

three factors. 

To find the optimal values of the factors, the designer has to 

formulate a search strategy. Circumstances that influence his choice 

are: 

(i) The magnitude of experimental error 
(ii) The complexity of the res;vnse surface 

(iii) Whether or not experiments may be conducted sequentially 
so that each set may be designed using the knowledge 
gained from the previous sets (10, p. 2). 

Generally speaking, in response surface problems, the experimenter 

does not need to plan the whole experiment at one time and sets of 

trials are conducted sequentially allowing him to plan new trials based 

on the responses obtained in the previous ones. 

For experiments with small experimental error, a small sub-region 

of the factor space may be explored with only a few experimental points 

by utilizing a polynomial of low order. This, plus the sequential 

nature of the experiments, make it possible for the investigator to 

specify the next region t be considered or to choose new points in the 
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Figure 1. A Response Surface 

Source: Davies (9, pp. 497-498). 

Figure 2. Response Contour Lines Corresponding to 
the Response Surface of Figure 1 

14 
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present region to be studied next. An efficient method of locating the 

optimum level of each factor was adopted from the field of nonlinear 

mathematics by Box and Wilson (10). This method, the steepest ascent 

method, is discussed below within the ~ontext of a situation involving 

two factors x1 and x2 . 

Steepest Ascent Method 

The steepest ascent method consists of two distinct phases. In the 

first phase, due to the likely remoteness of the initial conditions 

from the maximum, the surface is approximated locally by a sloping 

plane. In doing so, the slopes, b1 and b2 of plane in direction of x1 

and x2 are estimated. The relative magnitudes and signs of these 

slopes determine the direction of the greatest increase in responses 

called steepest ascent. Graphically this direction is perpendicular 

to the contour lines and shows the amount by which the factors must be 

varied for gaining the maximum increase in response. Using the steep

est ascent direction, the search effort moves from the initial point 

to another point on the path of steepest ascent and new slopes will 

be calculated. A hypothetical steepest ascent path, - 0r1 , is shown in 

Figure 3. 

To move from the initial point to another, first, a new point along 

the steepest ascent path is selected. Then, the respouse for this point 

is measured to find out whether the predicted increase in response 

actually takes place. (The size of the jump that is made is very much 

subjective.) If the actual response is close to the predicted one, 

another point is tested along the same path. This process is continued 

until the actual response is substantially diferrent than the one 
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75 

45 

55 65\. ' 

'" L-----------~------------------------~--------------------~xl 
Figure 3. A Hypothetical Steepest Ascent Path, r 0r 1 
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predicted. At this point, another first degree polynomial is fitted 

and if the linear approximation turns out to be adequate, a n~w steepest 

ascent path is calculated. 

This procedure will eventually lead to a reg.ion in which the 

surface can no longer be approximated by a plane and the·quadratic coef

ficients become relatively more important. Therefore, the first phase 

by itself is usually inadequate to find the optimum, but will quickly 

direct the search process to a region close to the maximum. This region 

is called the near-stationary region and will be explored in the second 

phase. 

The initial value and the unit adopted for a factor should be 

changed before exploring the next sub-region if its estimated linear 

effect is relatively small. A small linear effect could be caused by 

one of the following: 

1. The factor does not influence the response. 

2. The unit selected for this variable is relatively small. 

3. The initial value of this factor is close to a conditional 

maximum. 

Based on the new estimates, the cause will be determi·1ed and appropriate 

measures should be taken accordingly. 

The objective of the second phase is to determine the nature of the 

near-stationary region and, if possible, the location of the maximum. 

This is done through performing a set of trials in the near-stationary 

region and fitting a polynomial of second degree to the surface in this 

region. 

Being in the near-stationary region does not necessarily mean that 

the experimenter is in the neighborhood of a global maximum. That will 
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be the case only if the experimental region has one peak, otherwise 

convergence to a local maximum is possible. Steepest ascent method, 

therefore, leads to a stationary point which could be (1) a true maxi

mum (Figure 4a), (2) a stationary ridge (Figure 4b), (3) a rising ridge 

(Figure 4c), or (4) a saddle point (Figure 4d). 

While graphical presentation is helpful in examining a stationary 

point, it demands an enormous amount of work and is not useful when 

there are more than three factors in the experiment. Canonical analysis 

is a mathematical method developed for evaluating the stationary point. 

To construct the canonical function, the origin of the design is moved 

to the stationary point and the original coordinate axes are rotated 

until they correspond to the axes of the conics (the collection of 

curves which make up the contour surfaces). The signs and the magnitudes 

of the coefficients of the variables in the new coordinate system 

determine the type of maximum reached. 

Discovering the nature of the near stationary-ridge is of great 

practical importance. For example, for a stationary ridge like that in 

Figure 4b there are multiple optimal solutions and from these alterna

tives the one that satisfies or optimizes some auxiliary condition 

should be selected. 

The method discussed above does not explore the whole experimental 

region and is based on the premise that the maximum can be reached 

through a rising path. It is successful in a global sense only if the 

experimental region has one peak. 

Before discussing the experimental designs prescribed for the two 

phases of the steepest ascent method a word about the importance of the 

scales of measurement fc· the variables is in order. As noted earlier, 
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the direction of the steepest ascent is at right angles to the contour 

lines of equal responses. The slope of a contour line is itself a 

function of the relative scales of measurements for the two variables. 

There is no unique way of determining the relative scales of measure-

menta but it is wise to select them such that the response function 

is symmetrical with respect to the factors (19). 

A Review of Response Surfaces Experimental 

Designs 

For any experiment, each combination of the levels of the factors 

represents one experimental point and the collection of such points used 

for employing the surface is called the experimental design. It is 

well realized that the random selection of experimental points may not 

only fail to provide accurate estimates of constants but might even 

furnish separate estimates of some coefficients. A well developed 

experimental design for estimating effects up to order d should meet 

the following requirements: 

(a) The design should allow the approximating polynomial of 
order d (tentatively assumed to be representationally 
adequate) to be estimated with satisfactory c-ccuracy 
within the region of interest. 

(b) It should allow a check to be made on the representa
tional accuracy of the assumed polynomial. 

(c) It should not contain an excessively large number of 
points. 

(d) It should lend itself to 'blocking'. 
(e) It should form a nucleus from which a satisfactory design 

of order d+l can be built in case the assumed degree of 
polynomial proves inadequate (9, p. 197). 

A discussion of designs, in chronological order, is given below. 
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Factorial and Composite Designs 

In 1951, Box and Wilson (10) initiated the development of 

experimental designs and method of analysis for fitting polynomials of 

first and second degree to the response surfaces. By applying first 

degree polynomials, one is able to calculate the first order effects by 

varying each of the factors at two levels. Box and Wilson set the 

levels of the factors at +1 and -1 and proposed complete and fractional 

two level factorial designs for estimating the linear coefficients. 

Cochran and Cox (16) have tabulated some useful first order designs as 

are shown in Table I. 

TABLE I 

SOME USEFUL FIRST ORDER DESIGNS 

Size of Fraction Number of Degrees 
Number of Experiment of a of Freedom 
Factors (units) Full Factorial "Lack of Fit" 

3 8 1 4 
4 8 1/2 3 
5 8 1/4 2 
5 16 1/2 10 
6 8 1/8 1 
6 16 1/4 9 

Source: Cochran and Cox (16, p. 341). 

The designs given in Table I provide some degrees of freedom for 

testing the adequacy of the linear model assuming that a measure of 
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experimental error variance is available. 

To estimate the quadratic coefficients, each factor should take at 

least three values. Therefore, a natural tendency would be to use a 

complete or fractional three-level factorial design. But, when the 

number of factors is more than two, the number of observations required 

becomes excessively large. Further, the quadratic coefficients are 

estimated with a lower precision compared to the interaction coeffi-

cients (10). 

To overcome these two problems, Box artd Wilson (10) formulated 

composite designs. These designs are constructed by adding further 

k treatment combinations to 2 factorial or fractional factorial designs. 

Composite designs are classified into central and noncentral groups. 

In central composite designs there are (2k + 1) additional factor 

combinations tested at: 

(0, 0, ... , O); (-a, 0' ••• ' 0); (a., 0, ... , 0); (0, -a., ... , O); 

(0, a, ... ' 0); ••• (0, o, ... , -a); (0, 0, ... , a). 

k Thus, the total number of experimental points is (2 + 2k + 1) which 

for k > 4 is smaller than 3k. 

Central designs are helpful when the result of the 2k factorial 

design suggests that the surface is curved and the center of the first 

experiment is close to a point of maximum. On the othe; hand, non-

central composite designs are used when the initial exp2riment indi-

cates that a factor combination other than the center is close to the 

maximum. In noncentral composite designs, the number of treatment com-

binations added is k, one for each factor. The new level of each factor 

could be r+ a. or -1- a. depending upon the possible location of.the 

maximum. For example, in an experiment with three factors, if the point 
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of maximum is thought to be around (-1, -1, 1), then the extra treatment 

combinations are: (-1-a, -1, 1); (-1, -1-a, 1); (-1, -1, l+a). Figure 

5 shows central and noncentral composite designs for three factors. 

In a subsequent paper, Box (2) examined the efficiency of coeffi-

cients in first order designs and concluded the following: assuming 

that the linear approximation is adequate, the most efficient first 

order designs of size N are obtained by having k mutually orthogonal 

column vectors each with N elements and orthogonal to U, the column 

1 vector of unit elements. While the variance and covariances of the 

coefficients remain constant for orthogonal rotation of designs, the 

magnitude and the arrangement of possible biases will be different. 

Therefore, it is feasible to rotate the proposed designs until the 

biases are as small as possible. But, unless the experimenter has 

some prior knowledge of the response function, he would not be able 

to select the optimum design--the one with minimum bias. 

DeBaun (20) expanded the idea of central composite designs by 

incorporating blocking effect into the analysis. Referring to our pre-

vious discussion of central composite designs, DeBaun derived a value 

for a that makes the added factor combinations form a block orthogonal 

to the one formed by the factorial or fractional faccorial designs used 

in the first phase of the experiment. 

Rotatable Designs 

Box and Hunter's (9) work, in 1957, resulted in the development of 

1 Fortunately, factorial and fractional factorial designs proposed 
by Box and Wilson meet these requirements. 
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rotatable designs. They argued that the previous attempts to find the 

best designs for fitting the model G c XS to a surface was interpreted 

as selecting a design that would allow the coefficients to be separately 

· 2 I estimated with the smallest variance. In other words, the X X matrix 

should be diagonal, implying orthogonal designs. While construction of 

first order orthogonal designs is, an easy task, it poses some difficul-

ties for second order designs since some of the independent variables 

2 2 
become correlated, e.g., xi and xj. This correlation is due to the 

standardized values of the variables, i.e., +1 and -1. But this problem 

can be resolved by redefining the independent variables in terms of the 

orthogonal polynomials. However, it is not clear that the second 

order orthogonal designs obtained this way are optimal for at least 

two reasons. 

First, second order orthogonal designs may cause large biases in 

the estimated coefficients. Secondly, the quadratic coefficient 8 .. 
11 

measures the curvature of the surface in the direction of the ith 

coordinate axis. Orthogonal polynomials indicate the precision with 

which the curvature is determined in a given direction of the coordi-

nates axes. However, the curvature may be measured wjth less precision 

in some other direction, possibly of equal importance to the designer. 

Based on these reasonings, Box and Hunter (9) formulated rotatable de-

signs as are described below. 
A 

Let z, a k x 1 . vector, represent an experimental point and y de-z 
A 

note the response estimated at this point. Also, assume that Y is 
z 

obtained from a polynomial equation that was fitted by the method of 

2 G is an N x 1 column vector, ..§.is a k x 1 column vector, and X 
is an N x k matrix. 
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least squares to N observations of an experimental design •.. Thep, the 

A 2 
variance of Yz is a function of z and O'B' the experimental error, and 

will certainly decrease if N is increased. Thus, the quantity V(z) "" 

NV(Y ) is called the variance function and is defined as the standard-z . 

ized measure of the accuracy with which a design estimates the response 

at point z. Figure 6 shows three variance functions for two dimensional 

designs. 

If there is no prior knowledge about the orientation of the sur-

face, Box and Hunter (9) propose designs with variance functions like 

that of the pentagonal design shown in Figure 6(b). In other words, 

experiments would be designed such that the response is estimated with 

a constant variance for all the points equidistant from the origin of 

the design. A formal definition of rotatable designs is given by the 

authors: 

In general, for any k-dimensional design, if the variance of 
response estimated by the fitted polynomial is a function 
only of 

so that the variance contours in the space of variables are 
circles, spheres, or hyperspheres centered at the origin, the 
design will be said to have a spherical variance function 
V(P). An arrangement of points giving such a variance func
tion will be called a rotatable design (p. 205). 

The conditions derived for first order rotatable designs coincide 

with the ones obtained for designs with smallest variance, i.e., X'X 

should be an identity matrix. To build second order rotatable designs, 

one should set all the odd moments at 0, second moments at 1, and exer-

cise his option on the value of the fourth moment. For example, one 

value of the fourth moment m~kes the design rotatable as well as 
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Source: Box and Hunter (9, p. 205) • 

Figure 6. Three Variance Contours for Two 
Dimensional Designs 
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orthogonal while another value of it makes the variance for the po~nts 

on a circle with radius 1 equal to the variance for the points at the 

center. Box and Hunter (9) concluded their analysis by showing the 

formation of orthogonal blocking arrangements for rotatable designs. 

A number of procedures have been proposed for constructing second 

order and third order rotatable designs. Central composite designs are 

capable of forming second order rotatable designs when the value of a is 

selected appropriately. Balanced incomplete block designs offer a method 

for building second and third order rotatable designs. Equiradial sets 

provide an alternative technique for building second and third order 

rotatable designs. Finally, second order rotatable designs may be 

formed by using first order designs. 

Design Criterion of Mean Squared Deviation 

In 1959, Box and Draper (6) criticized the previous approaches to 

deriving optimal designs for response surfaces on the grounds that they 

had only been concerned with the errors arising from sampling varia

tion. They maintained that the fitted polynomial always fails, to some 

extent, to represent the true function and, therefore, there are two 

sources of discrepancy between the true function and the fitted equation 

to be considered. One source of discrepancy is due to the sampling 

variation and the other is because of the inadequacy of the fitted poly

nomial. The first one is called variance error and tne second one is 

called bias error. Based on this logic, they derived new experimental 

designs that will be described next. 

Let R be the immediate region of interest in the experimental 

region T. Also assume 'i1at: a polynomial of degree d1 is fitted to the 
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region R while the true function which provides an exact fit within the 

region T is of degree d2 > d1 • Then the design should minimize: 

J = N 2 J E (Y - G ( z) ] 2 dx I J dx 
crE R z R 

where: 

G(z) • the true response at point z 

" Y = the estimated response at point z z 

N • the size of the experiment 

2 
crE x the experimental error 

dx = dx1 , dx2 , ... , dxk 

(2.5) 

J gives the mean squared deviation from the true response, averaged 

over the region R and normalized with respect to the variance and the 

number of observations. It has two components: "variance error" and 

"bias error." 

J • V + B 

J aN~ J V[Y ]dx + NQ J [EY - G(z)] 2dx 
R z 2 R z 

E E 

(2.6) 

n-l a f dx (2. 7) 
R 

where: 

V ~ variance error 

B "" bias error. 

For the situation where the true function is quadratic and a linear 

approximation was used, minimizing J resulted in an intuitively obvious 

result. If there is a strong belief about the adequacy of the linear 

model Valone should be minimized. On the other hand, if the·sampling 

error is negligible and there is doubt about the linearity assumption, 

then B alone should be minimized. But one is very seldom confronted 
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with these extreme cases and of more value are cases in which vari.apce 

and bias both occur. Investigation of these cases surpris:!-ngly revealed 

that the optimal design derived when bias and variance are minimi~ed 

was very close to the one obtained when variance was totally ignored and 

bias alone was minimized. 

To explain Box and Draper's t6) results, some terms need to be 

defined: 

1. x1 is a design matrix which includes terms of, order d1 and , 

less. 

2. -1 -1 
cij is an element of the matrix f = N(XiX1) . 

3. yi is the limit of the ith variance, i.e., c11 ~ y1 . 

When the surface is truly quadratic over the experimental region T 

and a linear polynomial 
k 2 

is fitted to a smaller spherical region within 

T such that 

(i) 

(ii) 

'(iii) 

(iv) 

r: xi:::_ 1, 
i=l 

it was concluded that: 

V + B is minimized for all aij and ci. , when the third 
moments [ijk] of the design are chos~n to be zero. 
V alone is minimized, for T defined by Cii ~ Yi, when 
the design is chosen to be first order orthogonal with 
cii = Yi, that is with the design of maximum possible 
size. 
B alone is minimized when the design is chosen to be 
first order orthogonal with all third order moments zero 
and cii • l/(K+2). 
V + B is minimized if values of Bij averaged over all 
rotations are substituted, when the design has all third 
order moments zero and is first order ortho5onal with 
the cii all equal (6, p. 638). 

An optimal class of designs on the basis of these findings is frac~ 

tiona! by replicated t·-;ro-level factorial designs (in which no two fa~;:tor 

interaction is confounded with the main effect) with added center poip.ts. 

These designs had already been applied to response surfaces by Box and 

Wilson (10). Box and Draper later discussed problems with cubic func-

tiona when the fitted polynomials are quadratic functions. 
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Designs for Cuboidal Experimental Regions 

Draper and Lawrence (24) expanded Box and Draper's (6) methodology 

and examined situations with ta cuboidal experimental region or when it can 

be made cuboidal by linear transformation of variables. For the all-

biased case their designs are similar to Box and Draper's (6) rotatable 

designs. When both variance and bias are minimized they made the follow-

ing recommendation: 

then: 

Given 

a. 

b. 

.2 
y -u 

u•l,Z, ••• ,N (2.8) 

If a linear function is fitted to a quadratic surface, choose 
N 4 

a design with large ~ y • 
u=l u 

If a quadratic function is 
N 

design with large E 
u=l 

fitted to a cubic surface choose a 

Additional Designs with Criterion of 

Mean Squared Deviation 

In light of Box and Draper's results, Karson et ~1_. (37), in 

1969, suggested a new strategy for formulating optimum designs. Their 

method is designed to, first, minimize bias and then use any additional 

flexibility to minimize variance. To operationalize this idea, they 

d8veloped an estimator such that for a given design: 

1. Minimizes integrated square bias, B, due to terms of specified 

higher order omitted from the fitted polynomial. 

2. Subject to (1) it achieves minimum integrated variance, V, for 

any fixed design. 
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Kupper and Meydrech (40), in 1973, made additional contributions to 

the formulation of efficient designs when integrated mean squared error 

is minimized. They advocated the use of B1 = !~1 , where K is a k x k 

3 diagonal matrix of appropriately chosen constants. The "best" value 

of K, of course, depends on the unknown elements of the parameter vectors 

~l and ~2 (~2 represents the coefficients of the terms that have not been 

included in the model). But if based on the designer's knowledge some 

restriction can be imposed on one or more elements of ~l' then it is 

possible to find a set of K's that result in J values smaller thanK 

equal to an identity matrix fo.r any choice of experimental design. 

Although the approaches taken for designing-efficient experiments 

have been different, the designs recommended for the most part have 

been the same. Complete factorial and fractional factorial designs are 

proposed for different reasons for estimating first order effects. To 

estimate second order effects, new experimental points are normally 

added to the result of factorial or fractional factorial designs. The 

design selected by the experimenter dictates the location and the 

number of additional points to be considered. The experimenter's choice 

of design itself depends on his knowledge of the situa~ion. Any prior 

information about the response function enables him to economically 

find the optimum level of factors with more efficiency. 

In the next chapter, Chapter III, the assignment of common, anti-

~hetic, and indepe~dent random numbers to the experimental points, for 

possible increases in efficiency, is discussed. 

3£1 and ~1 are both k x 1 column vectors. 



CHAPTER III 

VARIANCE REDUCTION TECHNIQUES: COMMON AND 

ANTITHETIC RANDOM NUMBERS 

Introduction 

To implement a simulation experiment, after a model is built and 

validated, three critical phases remain to be considered. First, an 

appropriate computer language needs to be selected. Second, an experi

mental design that fits the situation should be formulated. Third, 

an efficient way of generating observations should be specified (17). 

Given the availability of many computer languages, the first phase 

will not create any difficulty for the designer. But the last two 

phases demand careful attention. 

Simulation is a technique for performing sampling experiments on 

the abstract model of a real-world system. Therefore, all the experi

mental designs developed for physical experimentation are applicable 

to simulation experiments as well. The optimal design is undoubtedly 

the one that furnishes the maximum possible information with the minimum 

number of obse~·vations. The designs relevant to the purpose of this 

study were discussed in Chapter II and will not be repeated here. 

Phase three deals with the efficiency of execution. Although it is 

possible to increase the precision in results by increasing the sample 

size, this is not usually a satisfactory or an economical solution. 

33 
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r.onsiderable progress has been made in developing techniques for increas

ing the efficiency of the desired estimators for a given sample size. 

These techniques, which were initially aimed at distribution sampling 

experiments, are called variance reduction techniques. The first 

complete survey of the literature in this field was conducted in 1964 

by Hammersley and Handscomb (32). 

Generally speaking, a technique is called variance-reducing if 

the reduction in variance is proportionately larger than the increase 

in the work involved. Thus, when comparing variance reduction tech

niques it is meaningless to look at the absolute reduction in variances 

without comparing the extra computer work involved. The most commonly 

known variance reduction techniques are: 

1. Stratified Sampling, 

2. Selective Sampling, 

3. Control Variates, 
• 

4. Importance Sampling, 

5. Antithetic Variates, and 

6. Common Random Numbers. 

Before examining the last two techniques in detail, it is necessary 

to clarify what is meant by increasing the precision of results or 

reducing variances. A variance reduction technique, when applied to an 

experimental rlesign (as opposed to just one design point), may reduce 

the variances of some desired estimates but increase the variance of 

some other estimates as well. Therefore, care must be exercised in 

applying these techniques to avoid increase in the variances of the sen

sitive estimates. This issue will be clarified with respect to variance 

reduction techniques app~ied to response surface designs in Chapter IV. 
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This chapter f•cusea on the use of common and antithetic random numbers 

~u simulation studies. In what follows, first, the rationale behind the 

use of these two techniques is explained. Second, the role of random 

numbers in running a simulation model is discussed. Third, the under

lying statistical theory for very simple cases will be shown. Last, the 

possibility and the advantages of using the two techniques in the same 

simulation experiment will be examined. 

Common and Antithetic Random Numbers Versus 

Other Variance Reducing Techniques 

Many reasons can be cited for preferring common random numbers and 

antithetic variates techniques over the other variance reducing tech

niques. Some of the important reasons are as follows: 

1. As mentioned earlier, the extra computer work involved for 

implementing each of the variance reduction techniques is a crucial 

factor in using them. But, unlike th: first four techniques, antithetic 

variates and common random numbers require no or little extra computer 

programming time (38). 

2. The purpose of many simulation analyses is to compare two or 

more systems. To have a fair comparison, it is natural to evaluate the 

performances of these systems under similar experimental conditions. 

In other words> the same random events should occur when each system is 

simulated. Using ti1e same sequence of random numbers is one way of 

creating the same experimental circumstances. 

3. Common random numbers and antithetic variates are capable of 

inducing positive and negative correlation between responses obtained 



36 

under different experimental conditions. The induced correlations can 

significantly increase the precision of simulation results. Schruben 

and Margolin (52) have shown situations in which improvement will occur 

regardless of the sign of correlations induced. 

4. Simulations can be stopped and restarted without disturbing 

their stochastic properties permitting an early check on the sign of 

induced correlations. 

The Role of Random Numbers 

Simulations ordinarily have one or more stochastic variables with 

a known probability distribution. Therefore, a mechanism is needed for 

random selection of observations from the given probability distribu

tion. Uniformly distributed random numbers have served this purpose 

for a long time. They can be either stored in the computer or be gen

erated by the computer itself through the use of a sequential technique. 

Uniformly distributed random numbers (hereinafter called "random num

bers") are a sequence of real numbers scaled to the interval [0,1] and 

meet two requirements: 

1. They are statistically independent. 

2. Each number in the sequence has an equal probability of taking 

on any value on the interval [0,1]. 

Since the random numbers generated by the computer are reproducible and 

predictable, they have sometimes been called pseudorandom numbers. 

The three most common ways of generating random numbers are addi

tive, multiplicative, and mixed congruential methods. These three 

techniques are based on recursive formulas which generate each random 

number from the knowledge of the previous one given an initial value, 



37 

called a seed, is provided. For example, the recursive formula for 

the mixed congruential method is: 

rn+l • (arn + c)(modulo m), 

where a, c, and m are all positive integers such that a and c are both 

smaller than m (38). The relationship states that rn+l is the remainder 

when (ar + c) is divided by m. A complete discussion of these three 
n 

and other random number generation techniques is given by a number of 

authors (39) and will not be covered here. 

When a simulation consists of more than one stochastic component, 

separate streams of random numbers are normally used to derive each 

individual component. The logic behind this practice is to synchronize 

the output of different observations and increase the magnitude of the 

intended correlation between them (38). For the purpose of this study, 

the issues of how random numbers are generated and whether they contain 

one or more stream of random numbers are irrelevant and will not be 

discussed any further. However, it will be assumed that a conunon gen-

erator is used throughout the experiment to generate the random numbers 

needed. 

Common Random Numbers 

Two streams of random numbers will be id~ntical if they have the 

same seed values. The use of cormnon random numbers is recommended for 

maintaining homogeneous experimental conditions when the objective of 

simulation is to compare several alternatives. In order to compare two 

alternatives and make a statement about the relative superiority of one 

over the other, the differences among system responses, call it r, 
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should be calculated. Common random numbers can cause positive corre

lation between system responses which in turn leads to reduction in the 

variance of r. T.et yl denote the estimated response of system 1 and let 

y2 represent the estimated response of system 2, then the variance of 

can be expressed as: 

(3.1) 

Thus, the variance of r will decrease whenever common random numbers 

make the covariance term positive. This will be the case only if both 

systems react similarly to the stochastic input variables. This point 

is graphically shown in Figure 7, adopted from Kleijnen (38). 

Figure 7a illustrates a situation where assigning common random 

numbers results in negat'ive instead of positive correlation. Applica

tion of random numbers to situations like Figure 7b leads to weak posi

tive correlation. Figure 7c shows a situation where y1. and y2 will be 

positively correlated when using the same random numbers. 

Although the relationship between the random numbers and the 

output in simulation is very complex, it is reasonable to assume that 

both systems react in the same direction, i.e., positive correlation 

is induced. 

Antithetic Variates 

The antithetic variates technique was devised by Hammersley and 

Morton (33) for creating negative correlations in Monte Carlo estima~ 

tion of the value of an integral. Using this technique, one observation 

is generated from r, a random number, and the next one from (1 - r) for 

the same system. Let y1 represent the sample mean that is used for 
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estimating G, the mean of the system responses. Also, let y11 and y12 

denote the responses when r and (1 - r) are used respectively. Then, 

yl = l/Z(yll + yl2) <3 •2) 

var{J1) • l/4[var{J11) + var(y12) + 2 cov<Y11 + y12)] (3.3) 

Therefore, if y11 and y12 are negatively correlated, the covariance term 

in (3.3) is negative, and the variance of y1 will consequently decrease. 

To explain the logic behind the induction of negative correlations, 

the following three assumptions need to be made: 

1. There is only one single value of an input variable affecting 

the output to be considered. 

2. There exists an increasing monotonic relationship between the 

output and the input variable. 

3. There is an increasing monotonic relationship between the 

input variable and r, the random number. 

Now it is intuitively obvious that r and 1 - r generate high and 

low or low and high values of the input variable and consequently lead 

to negatively correlated responses under the foregoing assumptions. 

In practice, however, the assumptions made are unrealistic and are 

almost always violated. The responses depend on a sequence of random 

numbers, there is more than one input variable involved, and the mono-

tonic relationship is unjustified. When either one of these assumptions 

is relaxed it becomes very difficult, if not impossible, to show that 

the antithetic random numbers generate negative correlation. A complete 

discussion of common and antithetic random numbers techniques along with 

some empirical findings is given by Kleijnen (38). 
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Joint Application of Common and Antithetic 

Random Numbers 

Few studies have been conducted to investigate the application of 

common and antithetic random numbers within the same simulation exper-

iment. These studies fall into two categories: those which limit the 

use of antithetic random numbers to replicate observations within the 

same system and those which do not. In the first category, Kleijnen's 

(38) work is reviewed. Table II shows a situation where both common and 

antithetic random numbers are applied. 

TABLE II 

JOINT APPLICATION OF ANTITHETIC AND COMMON RANDOM NUMBERS 

S:tstem 1 S:tstem 2 
Run Random Numbers Response Random Numbers Response 

1 R * -1 Yu Rl Y21 

2 l - R - -1 yl2 1 - R - -1 Yzz 
3 R2 yl3 R2 Y23 

4 l - R - -2 yl4 1 - R - -2 Yz4 

*Capital R represents a vector of random numbers and 1 is a vector of 

ones. 

Source: Kleijnen (38, p. 210), 
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-Denoting the difference between the two systems by r, it follows: 

- - -r • Y - Y 1 2 

Var(r-) • M-2 ~ L: (- - ) + M-J. 2 + 
~ cov yli' y18 cr1 
1 , g 

N-2 ~ ~ (- - ) + N-1 2 
~ ~ cov Yzj' Yzh cr 2 
j " h 

2M-1N-l L: L: (- - ) cov yli' Yzj 
1=1 j .. l 

(3.4) 

(3.5) 

(3.6) 

where: 

M = the number of runs for system 1. 

N • the number of runs for system 2 which is not necessarily equal 

to M. 

cr2 
1 ""' var<Y1i) = var<Y1g) i, g = 1, ... ' M (3. 7) 

(J2 
2 """ var <Y ) 2j var(y2h) j ' h = 1, • • •' N (3 .8) 

To reduce the variance of d, the covariances in (3.6) should have 

the following signs: 

cov(yli' ylg) < 0 i r/: g k, g = 1, .... , M (3. 9) 

cov(J2j, Yzh) < 0 j :f h j ' h .. 1, ... , N (3 .10) 

cov <Yli' y 2j ), < 0 i ::z 1, • .M j = 1, ... ' N (3 .11) 

- -Since the correlation between yli and y2i is positive and the 

correlation between y2i and Yz,i+l is negative, it follows that yli and 

Yz,i+l are negatively correlated. Similarly, Yzi and y1 i+l are nega-
' 

tively correlated. These negative cross-correlations, corresponding 

to (3.11), are undesirable and will increase the variance. Thus, 
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Kleijnen's (38) analysis remains inconclusive. He then compared the 

efficiency of employing only common random numbers, only antithetic 

random numbers, and both antithetic and common random numbers within 

the same experiment. The empirical result did not favor any one of 

these techniques over others (38). 

The motive behind the development of the second category stems 

from the difficulties of deriving mathematical proofs supporting gener-

ation of positive and negative correlations between simulation 

responses. The difficulty arises due to the nature of simulation. 

Simulations are mainly used when the analytical treatment of a situation 

is not possible. If all the relationships were mathematically well-

defined, techniques other than simulation would be more efficient (55). 

That being the case, Fishman (27), in 1974, and very recently Schruben 

and Margolin (52) based their work on the following assumptions: 

Assumption 1: When two observations are made with the same 
randomly selected set of streams, a positive correlation of 
unknown magnitude is induced between the mean responses. 

Assumption 2: When two observations are made with the same 
randomly selected set of seeds, but with antithetic streams, 
a negative correlation of unknown magnitude is induced 
between the mean responses. 

Assumption 3: When two observations are made with different 
randomly selected streams, the mean responses have zero 
correlation (p. 508). 

Although applying common and antithetic random numbers has in some 

cases decreased the sensitivity of the analysis, the empirical results 

in general support the above assumptions. These assumptions provide 

a simulation designer with three alternatives for assigning random 

numbers to each experimental point. First, a vector of random numbers 



(VRN) used at another experimental point might be selected~ C'2.using 

positive correlation. Second, a VRN can be selected such that its 

elements are the same as another VRN subtr~acted from one, gen~rating 

negative correlation. Finally, selecting a VRN not utilized at any 

other point will result in uncorrelated responses. 
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The objective of Fishman's (27) analysis was to ,detect the effects 

of using correlated random number streams in simulations with linear and 

·•· . " . -·-
quadratic response surfaces. The equations he examined were: 

(3.12) 

(3 .13) 

Two and three observations were used to estimate S coefficients in 

equations (3.12) and (3.13) respectively. Hence, correlations between 

the y's can be expressed as: 

c~(Y) = oi [: ~ (3.14) 

where Y is the vector of y values and ¢ is the correlation between y1 

and y2. 

where Y is again the 

between yi and yj. 

Three criteria 

(3) slope variance] 

2 
cov(Y) "" aE 

vector of y values and ¢1j 

[ (1) generalized variance, 

were the basis for finding 

(3 .15) 

is the correlation 

(2) prediction variance, 

the optimal sign of the 

¢'s. For the linear model it was shown that either positively or nega-

tively correlated responses were superior over the independent 
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responses. For the quadratic case, 27 possible designs were considered, 

Six of these produced a smaller generalized variance and one resulted 

in smaller prediction variance. However, no plan guaranteed a smaller 

slope variance. 

In contrast to the discouraging outcome of Fishman's (27) study, 

Schruben and Margolin (52) have obtained very promising results. The 

model they adopted was of the form: 

(3.16) 

where Y is an N x 1 column vector, ~ is a k x 1 column vector, and X 

is an N x k matrix. 

Their objective was to find the best design for efficient estima-

tion of~ in (3.16). The efficiency was measured by the determinant 

of the estimator dispersion matrix. In other words, the design with 

the smallest value for the determinant of the estimator dispersion matrix 

would be the most efficient design. Designs that minimize this deter-

minant are called D optimal (8). After incorporating blocking into 

their analytical work, Schruben and Margolin (52) concluded: 

Assignment Rule: For the model in (3.16) with k+l 
parameters, the N-point experimental design admits 
orthogonal blocking into two blocks of sizes N1 and N2 , 
preferably chosen to be as nearly equal in size as possible; 
then for all N1 design points in the first block, use a 
set of pseudorandom numbers R, chosen randomly, and for 
all N2 design points in the s;cond block, use l-R (p. 513). 

The\, assignment rule will give ordinary least square estimators with 

smaller D value than will (1) the assignment of the same random number(s) 

to all the design points or (2) the assignment of different random num-

bers to the design points when the following inequality is met: 

-1 k 
1 + (N- l)P+- 2N N1N2 (P+ + P_) (1- P+) < 1 (3.17) 



Theorem: Assume that the model in (3.16) consists of 
the mean plus a subset of k(k < zn-r) effects. Then, over 
the class of designs consisting of N • zn-r(r ~ O) design 
points (with replication allowed), together with all feasible 
induced correlation structures subject to P+ ~ P_ = p,l a · 
zn-r fractional factorial design with the Assignment Rule 
results in minimum generalized variance for either the OLS or 
WLs2 estimators, i.e., the D criterion is minimized (p. 514). 

The findings were proved by: 

1. Assuming a unit variance for the responses. 

2. Partitioning the X'X matrix into two parts corresponding to 

the mean effect and all the remaining effects. 

3. Making the appropriate substitution for the signs of the 
3 •,. 

induced correlations. 

4. Calculating and comparing the determinants of the estimator 

dispersion matrix for the alternative assignment rules. 3 

The analytical conclusions were tested empirically by applying 
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them to a hospital resource allocation problem. The empirical results, 

in general, confirmed the analytical findings except for the assumption 

that positive and negative correlations are of equal magnitude. 

Since Schruben and Margolin's (52) assignment rule will be applied 

to response surface designs in the next chapter, a word of caution 

about the optimality of this assignment rule is in order. A necessary, 

but not sufficient, condition for superiority of the recommended rule 

over assignment of (1) common random numbers or (2) independent random 

1 
P is the correlation coefficient. 

2oLs means ordinary least squares and WLS means weighted least 
squares. 

3The results are shown and discussed in the next chapter. 
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numbers to each design point is that the systems responses behave sim~-

larly with a given set of random numbers. While most of the empirical 

results reported support such an assumption, it is not so difficult 

to find systems which violate this assumption, 

Wright and Ramsey (56) recently presented some simulation problems 

for which the use of common random numbers augmented the variance. 

They showed, as the literature suggests, that the common random numbers 

' technique is least effective when the policies compared are not small 

perturbations of each other. That being the case, extra care must be 

exercised in applying the common random numbers technique to response 

surface designs. Fortunately, however, simulation models can be 

stopped and restarted without distutbing the statistical properties 

of their results. Therefore, an early check on the sign and the 

I 

magnitude of the assumed correlations will make it possible for a 

designer to test the validity of hi~ assumptions. 
I 

In Chapter IV, first, a methodology will be developed to help 
' 

simulation designers select an appropriate response surface design. 

Next, the application of Schruben artd Margolin's (52) assignment rule 

to those designs will be examined, 1Last, an inventory simulation 

example will be evaluated. 

• 



CHAPTER IV 

SELECTION OF A RESPONSE SURFACE DESIGN 

Introduction 

A problem that a simulation designer often faces is finding the. 

relatively optimal values of the controllable conditions,. i.e., the 

values that will optimize the simul~ted responses. For example, in an 

inventory simulation the objective could be to determine the orderi~g 

quantity and the reordering level that will result in minimum inventory 

cost. The first objective of this phapter is to develop a systematic 

procedure by which one can select a response surface design for simula

tion experiments. The selection will naturally be based on one's 

objective and his knowledge of the r:!lationships involved in the problem. 

The second objective is to develop a methodology for incorporating a 

random numbers assignment rule, proposed by Schruben and Margolin, in 

response surface designs. The final objective is to 1;rovide an 

opportunity for demonstrating and testing the results by the use of an 

inventory simulation example. To begin the discussion, a few t~rms ,a~q 

concepts will be redefined. 

Model 

The equation that represents the assumed mathematical relationship 

between the simulated responses, G, and the controllable conditions, ~'s, 

can be written as: 

48 
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To explore the unknown relationship (4.1), a polynomial equation is 

normally adopted. Denoting the observed simulated responses by y (which 

is different than the actual responses G), the polynomial equation can 

be expressed as: 

. 2 
y • Bo + 81~1 + 82~2 + ... + 8k~k + SllEl + .... + 

.3 
s12~1~z + 813~1~3 + 8k-l,k~k-l~k + 8111~1 + 

Although the ultimate objective is to find the optimal values of 

the ~'s, an intermediate objective ~ould be to estimate the S coefficients. 

Viewing the polynomial equation as a regression equation, S coefficients 
I 

can be estimated through the least square procedure if an adequate number 

of observations (experimental point~) are available. Each observation 

corresponds to a set of values for the controllable conditions with an 

observed simulated response for that combination. 

Standardized Variables 

Different simulation experimenfs have different controllable 

conditions. Therefore, to generali~e the discussion, the controllable 

factors are assumed to be standardized as follows: 

where 

X "' iu (4.3) 



It follows then that, 

and 
N 2 
I: xiu = N, 

u=l 

where N is the total number of observations. 

The Search Technique 
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The search technique adopted f1or the methodology presented in this 

chapter is the steepest ascent technique. This technique was explained 

in Chapter II and will not be repea'ted here. 

The Relative Scales of Variables 

In the steepest ascent techniq~e, the direction of search is 

determined by the magnitude and the signs of the first order coefficients, 

i.e., s1 , S2 , ... , t\ which are est!lmated through fitting a first order 

polynomial. The relative magnitude of these coefficients is heavily 

influenced by the units chosen for the variables. An example will 

clarify this point. In an inventory simulation, let the ordering 

quantity vary between 5,000 to 50,000 units. Also, let the experimental 

levels of this variable be -1, 0, aad +1. The designer should then 

decide how many units of the ordering quantity will co~respond to one 

experimental unit. If, for instance, 5,000 units of the ordering 

quantity represents one experimental unit, 5,000, 10,000, and 15,000 

units will represent experimental levels of -1, 0, and +1 respectively. 

The decision is normally based on the designer's insight and the units 

selected for the other variables. tt is wise and logical to choose the 

units such that the resr~nse varies symmetrically with respect to all 



51 

the factors. Failure to use the appropriate units will increase the 

amount of work required for finding the optimum conditions. 

Experimental Region and Subregions 

A set consisting of all the possible combinations of the values of 

the controllable conditions is called the experimental region. Due to 

the quantitative nature of these conditions, the set has an infinite 

number of points in it. Thus, an exhaustive search of the experimental 

region is not possible. When the steepest ascent technique is employed, 

the experimenter evaluates a small .region (subregion) of the experimental 

region which leads to another subregion, etc.; this process continues 

until the region with the possible optimum is found. The designs that 

will be discussed in this chapter 'Nil! explore spherical subregions 

with radii equal to one. 

Features of the Designs 

The designs to be presented in this chapter have been constructed 

to satisfy, to the extent possible,[ the following features: 

1. i The design should allow the approximating polynomial of degree 

d (tentatively assumed to ~e representationally adequate) to 

be estimated with satisfactory accuracy within the region of 

interest. 

2. It should allow a check to be made on the representational 

accuracy of the assumed polynomial. 

3. It should not contain an excessively large number of 

experimental points. 

4. It should lend itself to "blocking". 
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5. It should form a nucleus from which a satisfactory design of 

order d+l can be built in case the assumed degree of polynomial 

proves inadequate (9). 

Experimenter's Priorities (Objectives) 

.Suppose a polynomial of degree d1 is fitted to a small region (R) 

of an experimental region (T) that can truly be represented by a 

polynomial of degree d2 > d1 . Also, assume that a least square 

regression with an N points design is used to fit the polynomial of 

degree d1 to R. Denoting the true ll."esponse for a point .z by G(z), the 

2 estimated responRe by y(z), and the estimated experimental error by aE, 

the mean squared deviation, J, is given by: 

J • : 2 fa E[y(z) - G(z)] 2 dx / f~x 

Expression (4.4) can be rewritten as: 

where 

-1 n 

J = :v + B 

Nr2 f Nr2 ? J., 2 R V[y(z)]dx + 2 JR [E[y(z)] - G(z)r dx 
crE crE 

f dx 
R ' 

V =variance error, and 

B = bias error. 

(4. 4) 

(4.5) 

(4.6) 

To select a response surface design, priorities need to be assigned 

to variance and bias portions of mean squared deviations, The priorities 

may take one of the folluwing three forms: 
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1. Minimizing variance is more important than minimizing bias. 

2. Minimizing bias is more important than minimizing variance. 

3. Minimizing bias and variance are equally important. 

The experimenter's knowledge of the problem dictates the alternative 

to be selected. This knowledge may be sununarized as follows: 

(i) The magnitude of the experimental errors. 

(ii) The complexity of the response surface. 

When the experimental errors are latge, minimizing variance becomes more 

important. On the other hand, when the experimental errors are small 
: 

and the response function is complex, minimizing bias becomes more 
I 

important. 

Assumption 

In what follows it will be asstlmed that a linear or a quadratic 

equation adequately represents the true function. Therefore, the 
I 

discussion will be limited to first 1and second order designs (models). 

First. Order Models 

A plane is assumed to be adequate for representin--; the true 

function. The model to be fitted is,: 

(4. 7) 

The S coefficients in (4.7) can be estimated through one of the paths 

indicated in the following tree diagram. 



Designer's 
Objective 

Minimizin Variance 

Minimizin Bias 

Minimizing Both Bias 

Individual coefficients should 
lA be measured separately with 

equal precision. 
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Equal precision for the responses 
lB) of the points that are equidistant 

from the origin of the design. 

The orientation of design with 
(lC) respect to response function is 

not known. 

The orientation of design with . 
lP) respect to the response function 

is known. 

and Variance (lE) 

I 

Figure 8. First Order Design Options 

Case (!A)--Individual Coefficients 

Should Be Measured Separately with 

Equal Precision 

I 

Orthogonal designs will meet t~e above requirements. Two types of 

designs need to be distinguished atithis point (10). Designs of type A 

provide unbiased estimated of lineat coefficients, given that terms of 

higher order are insignificant. De~igns of type B provide unbiased 

estimates of linear coefficients even though terms of second degree may 

exist. 

For designs of type A, the numtier of observations, N, does not have 

to exceed the number of variables, M. For designs of type B, N must be 

larger than M to allow for disassociation of the linear coefficients 

from the second degree coefficients. 
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To estimate the S coefficients of a plane, the variables should 

take at least two different values. Therefore, complete and fractional 

factorial designs are used to construct designs of type A and B. If 

k 
all the 2 possible combinations ·are performed, the design will be a 

complete factorial; and when some of the combinations are not performed, 

the design will be an incomplete factorial. In the latter category, 

multifactor designs of Plackett and Burman (50) that furnish designs 

for 3, 7, 11, 15, •.• ,4k-l, 99 factors inN= 4, 8, 12, 16, •.. , 4k, 

100 (excepting 92) are appropriate for designs of type A. The first 

column of these designs consists of entirely ones, and the remaining 

columns have equal numbers of +1 and -1. When N is a power of 2 these 

designs correspond to fractional f~ctorial designs. For example, for 

k = 1 and N • 8, Plackett and Burm~n's design will be the same as 1/16 
I 

7 replication of the 2 factorial deslign. The design and its defining 

contrasts are shown in Table III. 

For intermediate values of k t~e next higher value is used and the 

appropriate columns are omitted. F~r example, for k = 5, columns 6 and 

7 of Table III will be deleted. 

Duplicating Plackett and Burman's designs of appropriate size with 

reversed signs results in designs of type B. In other words, from a 

type A design with N-1 factors and N observations, on<' can obtain a type 

B design for N factors with 2N obsetvations. For example, when all the 
i 

entries of Table III are multiplied by a minus sign and are added to the 
I 

original design, a type B design for eight factors will be obtained. 

When fractional factorial designs are used in building designs of 

type A and B, the designer should not assoc:late possible significant 

interaction effects with the linear effects. In other words, if there 
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iA doubt about the interaction between two factors, the experiment should 

allow for isolating the suspicious interaction effect. 

TABLE III 

PLACKETT AND BURMAN'S DESIGN FOR SEVEN FACTORS, 
1/16 REPLICATIONS OF 27 FACTORIAL DESIGN 

Defining Contrasts: 127 E 135 = 146 = 236 = 245 = 347 : 567 = 1234 

1256 "" 1367 = 1457 = 2357 = 3467 = 3456 = 

1234567 .. -1 

Factors 1 2 
' 

3 4 5 6 

+1 +1 +1 +1 -1 -1 

' +1 +1 I -1 -1 +1 +1 

+1 -1 1+1 -1 -1 +1 

+1 -1 -1 +1 +1 -1 

-1 +1 .+1 -1 +1 -1 

-1 +1 l_l +1 -1 +1 

-1 -1 +1 +1 +1 +1 

-1 -1 -1 -1 -1 -1 

= 

7 

-1 

-1 

+1 

+1 

+1 

+1 

-1 

-1 
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Case (lB)-~Equal Precision for Responses of 

All the Points that are Equidistant from 

The Origin of the Design 

Designs satisfying the above condition are called rotatable designs. 

A first order rotatable design should meet the following requirements: 

1. All moments of order 1 should be zero. 

2. Mixed moments of order 2 must be zero. 

N 

L: xiu 
u=l 

N 
N 
L: x. x. 

0 . 

u=l ~u JU = 0 . 
N 

3. Pure quadratic moments should be equal to a constant. Given 

I 

the scale convention, this 1 constant is equal to 1. 

N 2 
L: xiu 

u=l = 1 . 
N 

Orthogonal designs discussed for Case (lA) meet the above require-

ments. Therefore, first order orth~3onal designs are first order 

rotatable designs as well. When th~ second order terms, contrary to 

the assumption, are significant, then the expected values of the S 
I 

coefficients will be as follows (9); 

N 2 
1.: xiu 

u-=1 
E(So) = Sa + N 

N 

k 

.1.: smm 
ni=l 

k k 

m=l, ••• ,k, . (4. 7) 

1.: xi xj Xn l U U JVU 
E ( 6 ) == S + .;:;U....;"" :;;..__N __ _ 

m m 
1.: 1.: s 

gs:1 h=l gh 
g and h == 1, .•• , k (4.8) 

N 
Based on the scale convention, 1.: x = 1. Therefore, when the pure 

1 iu u= 
quadratic terms are present, the estimate of s0 will certainly be biased. 

On the other hand, if th-.. designed i.s formed such that the mixed third 
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order moments are zero, the estimates of the linear effects, e 's, will m 

be unbiased. Designs of this type may be obtained by duplicating any 

first order orthogonal design. Thus, designs of type B discussed in 

Case lA will meet this requirement. 

Case (!C)--Minimizing Bias When the Orien-

tation of Design with Respect to the 

Response Function is Not Known 

There will be interest in min:i,.mizing bias when a linear function is 

fitted but the true function is suspected to be quadratic. The proposed 

designs in this category are first order orthogonal designs with all the 

third order moments zero. The req~irement that all third order moments 

should be zero is equivalent to choosing the factorial replicates so 
I 

that no two factor interaction is confounded with a main effect. The 

legitimacy of this requirement wa~ explained in case lB. It is 
I 

interesting to note that the minimi\ziation of bias separately. requires 

the use of orthogonal designs which: also minimize variance. Designs of 

! 
type B satisfy the required conditipn. 

A second requirement is that the variances of the S coefficients, 

assuming that the subregion under investigation is spherical with 

1 radius equal to one, must be equal to k+2 (6, p. 637). This, in turn, 

implies that the mean square distance (MSD) of the experimental points 

from the center of the design (or subregion) should be equal to (k~2 ). 

( . k 2 )1/2 
MSD = r xm 

m=l 
for all the N points. 



59 

( k 2) 1/2 = (~)1/2 
L: xm k+2 thus, (4.9) 

mal 

For example, when k c 4, the design to be adopted should be a type 

B design and the levels of the variables should be equal to the square 

1 roots of 4+2 , i.e., +.41 and -.41. 

_9ase (lD)--Minimizing Bias When Orien-

tation of Design with Respect to the 

Response Function is Known 

In practice, examples of this case are hard to find. Nevertheless, 

when prior knowledge of the second degree equation is available, it 

might be possible to reduce bias by ~he orthogonal rotation of first 

order orthogonal designs. While orthogonal rotation of design will not 

affect the variances and covariances, it will change the magnitude and 

the arrangement of possible biases •. Therefore, prior knowledge of the 

response function enables the designrr to rotate the design until the 

arrangement that minimizes bias is obtained. A detailed discussion 

is given by Box (2). 

Cas.: (H)--Minimizing Both Bias and 

Variance 

The suggested des~gns again are.first order orthogonal designs 
I 

with third order moments zero and with the variances of the S coeffi-

cients all equal. With respect to the MSD of the experimental points 

from the center of the design, Box a~d Draper's analysis was led to an 
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intuitively obvious result: the MSD of the experimental points must be 

k 1/2 greater than (k+2) (the MSD for minimization of bias alone) and less 

than unity (the MSD for minimization of variance alone). Since it is 

unlikely for a designer to know, in advance, about the magnitude of the 

experimental errors as compared to the extent of bias, is it not 

possible to determine MSD precisely, 

Recapitulation 

i 
First order orthogonal designs are the optimal designs in each of 

the above categories. The MSD of tihe experimental points help designers 

decide on the level of the variables. For example to minimize variance, 
I 

designs with the largest possible MSD are recommended. In other words, 

the experimental points are located' on the boundaries of the spherical 
' 

subregion. 

First order orthogonal designsi, with a sufficient number of observa-

I 

tions, will allow detection for dep~rture from linearity so far as the 

interaction terms are concerned. However, to detect for the existence 

of pure quadratic terms in the true function, a number of experimental 

points should be added to the center of these designs i.e., where the 

x's are all equal to zero. 

Second Ord~r Designs 

A destgner may choose to fit a quadratic polynomial equation 

because of one of the following two reasons: 

1. A linear equation has proved to be inadequate--the search 

process has probably been led to a stationary region. In 

this case, more observations will be added to the experimental 
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points of the last first order design to estimate quadratic 

and interaction coefficients, 

2. The experimenter knows that the present conditions (the initial 

conditions) are close to the optimal conditions and progress 

may only be achieved through fitting a quadratic equation. 

The equation to be fitted is: 

y = + ... + 
(4.10) 

To estimate the S coefficients in (4.10), the x's should take at 

least three different values. Conse1quently, the temptation is to employ 

k 
3 factorial designs. However, therle are two drawbacks in using these 

designs: 

1. They require large sampl~ sizes. 

2. They estimate the quadratic coefficients with less precision 

than the interaction coefficients. Since the objective in the 

near stationary region is to approximate the true function by 

a polynomial, it is reasonable to expect that all the second 

order effects (interaction or quadratic coefficients) be 

measured with almost the same precision. The 3k factorial 

designs estimate the quadratic coefficients wLh variances 

eight times larger than those of the interaction coefficients • 

. Since it is generally assumed that a quadratic equation will 

provide an adequate fit, attempts for building second order designs by 

and large have not been directed toward minimizing bias. Therefore, the 

criterion for evaluating first and s~cond order designs are different. 

For example, while orthog>nal designs are desirable for fitting linear 
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polynomials, they are not recommended for fitting a sec~nd degree 

equations. Second order response surface designs will basically fall 

into one of the following two categories: 

1. Composite designs. 

2. Rotatable designs. 

An examination of these designs will explain the circumstances under 

which they should be applied. A tree diagram for second order designs 

is given in Figure 9. 

----------"~--------~[ Central Composite Designs Types _ 
Noncentral 

Central Composite Designs 

Equiradial Sets 
Construction 

Rotatable Designs ------~P-r~o~c.ed_u_r~e~s--____ 1 
Incomplete Blocks 

Simplex-Sum Designs 

Figure 9. Second Order Designs 

Composite Designs 

Composite designs are obtained ,bY adding experimental points to 

factorial or fractional factorial designs. Factorial or fractional 

factorial designs used for this purp1ose should be large enough to 

provide efficient and separate estimates of first order and mixed first 

order terms. A list of these designs, named type B' designs (10), is 
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given by Rao (51). When the first order design applied for the initial 

investigation of the present subregion is too small to provide separate 

estimates of mixed first order effects, new points should be added to 

form a B' design. 

Central Composite Designs. Composite designs are either central 

or noncentral. Central composite designs are useful when the result of 

the first order design suggests th~t the surface is curved and the 

center of the design is close to the optimum. In this case, 2k + 1 
I 

additional points are tested at 

(0' 0' ... , 0) ; (-a , 0 , ... , O); (a, 0, ..• , O); (0, -a, ... , 0); 

(0, a, ... ' 0) ; • . • ( 0 , 0 , ••. , -a) ; ( 0 , 0, ... , a) . 

The value of a may be selecte4 such that the design meets a desired 
I 

property. For example, if a designer, for any reason, is interested in 

second order orthogonal designs, a 
1
should be set equal to {hN'/(4n2)}114 

where: 

N' = the number of observations in type B' design, 

N = the total number of observations,. 

n = the number of times each extra observation is replicated; 
thus, N- N' = n(2k + 1). 

Or if it is desired to make the variances of the estimated second 

order coefficients (interaction as well as quadratic terms) equal, a 

can be calculated from equation (4.11). 

2n(N' + n)a8 - 4nkN'a6 + N'{nk'(2k + 1) - 4(N' + 3n)}a6 + 

8(k- l)N' 2a2 - 2(k- 1)(2k + i)N' 2 = 0 • 
(4.11) 



After making the appropriate substitutions for n, k, and N' and also 

2 setting X • a , equation (4.ll)will have a real positive root for X· 

Then a will be the square root of X• 

64 

A value of a that makes the design rotatable will be given in the 

discussion of rotatable designs on page 67. 

Noncentral Composite Designs. I Noncentral composite designs are 
I 

helpful when the initial investigation indicates that a factor 
' 

I 

combination other than the center ~s close to the optimum. Noncentral 

composite designs require k additional observations to be tested at 

points dictated by the combination close to the optimum. For example, 

in a problem with three factors, if' the optimum is thought to be close 

to the point (-1, -1, 1), then the few combinations should be tested at 

( -1-a, -1, 1) ; ( -1, ... 1-a, 1) ; ( -1, -1 , 1 + a) . 

Rotatable Designs 

A second order rotatable design should meet the following 

requirements: 

1. All moments of order 1 should be zero. 

2. Mixed moments of order 2 must be zero. 

3. All moments of 
N 

order 3 should be 
N 

zero. 

N 
L X. 

u=l ~u = 0 . 
N 

N 

l: xi x. 
u=l u JU = 

N 

N 3 
l: xiu 

u=l 
N 

= 0, 

l: x1 xj 
1 u u 0 

U"" = ' 
l: x 1 xj lx.t 

u=l u 4 u = 0, i ::; j f: .t. 
N N 

0, i::; j. 



4. Mixed moments of order 4 with at least one variable with an 

odd power must be zero. 

N 

N 
3 

E xi xj 
u=l u u = 0, 

N 

E X X X X 
u=l iu ju ~u mu = O, i ~ j ~ ~ ~ m. 

N 

N 2 
L; X. X. Xn -

u=l 1u JU ~u = O, 
N 
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5. Pure quadratic moments should be equal to a constant. Given 

6. 

7. 

8. 

I E 2 
the scale convention this constant is equal to 1. xi = 1. 

N 4 
Exiu 
--= 

N 
constant = 31..4 • 

N 2 2 
E xi xj 1 

u~l u u = constant = (1/3) 
N 

k 
>..4 > k + 2 ' 

N 4 
E xiu 

u=l 
N 

N 

The first four conditions are tantamount to saying that all the 

moments of order 4 or less with at least one variable with an odd power 

must be zero. When the above conditions are met, the variance of the 

estimated response for a point, z, has been shown to be a function of 

p, the distance from z to the center, k, and the constant >.. 4 (9). 

Th·.::refore, from the class of rotatable designs, it is possible to choose 

one which produces a desired value for >..4 • 

While large values of >..4 increase the precision in the center of 

the design, it adversely affects bia's for first order coefficients when 

third order terms are present in the! model. A value of >.. 4 recommended 

by Box and Hunter (9) makes the precjision of responses at p ,.. 0 equal to 

the precision of responses at p .. 1.1 This value attaches equal 
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importance to the estimates of the responses within the region bounded 

by p < 1. Designs with this property are called uniform precision 

designs. Values of A4 resulting in uniform precision designs for various 

k are given in Table IV. 

I 

TABI.IE IV 

VALUES OF A4 FOR SECOND ORDEJ DESIGNS WITH UNIFORM PRECISION 

k 2 3 4 5 6 7 8 

0.7844 0. 8385 0.8704 0.8918 0.9070 0.9184 0.9274 

Source: Box and Hunter (9, p. 215). 

' I 

When A4 = 1, the correlation coefficient between the quadratic 

terms becomes zero, making the design in a sense orthogonal. (The 

correlation coefficient between x0 and xi for the obtained design is 

not zero, however.) A property of this design is th&t the variances 

of the pure quadratic coefficients are one half of tho~e of the 

interaction coefficients. 

I A convenient method for alteri~g the value of A4 is to increase 

the number of experimental points at the center. Although adding the 

I points at the center may not generat1e an exact value for A4 , the 

generated value will be close enough for most practical purposes. 

Addition of center point• has also been used for satisfying the 



inequality >.. 4 > k ~ 1• When >.. 4 is equal to k ~ 2 , the X'X matri~ :l.s 

singular and, therefore, the S coefficients cannot be estimated. 

Increasing the number of points at the center will increase the value 

of >.. 4 and, consequently, the inequality will be met. 

The values of >.. 4 are surely not limited to the values discussed 

before. The experimenter's judgment and his rationale could lead to 

other values for >..4 • 

Construction of Rotatable Designs 

A few alternatives are available for building designs that meet 

the second order rotatable designs requirements. While all the 
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alternatives accomplish the same purpose, they are not normally equally 

attractive to a designer. The simplicity, the ease with which a method 

can be used for sequential experiments, and the method's efficiency 

are three logical criteria for selecting a procedure. The four proce-

dures suggested in the literature are examined next. 

1. Construction of Second Order Rotatable Designs via Central 

Composite Designs. In central composite designs when a is set equal 

to (N') 114 , the design will become second order rotatable as well. N' 

is the number of observations in type B' design. Procedure 1 is easy 

to use and is quite adoptable for sequential experiments (9). The 

inventory exarnple presented at the end of the chapter uses this 

procedure to construct a rotatable design. 

2. Construction of Second Order Rotatable Designs by Using 

Equiradial Sets. This procedure was initially proposed by Box and 

Hunter (9) and was further developed by Draper (21) (22) (23), 



Gardiner et al. (30), and Bose and Draper (1). Procedure 2 builds 

second order rotatable designs from a number of sets of points when 

the points in each set are equidistant from the origin. For example, 
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a two-dimensional second order rotatable design may be constructed by 

combining some center points (one set) with a set consisting of five 

points equidistant from the origin. This arrangement is called 

pentagonal design. While one set in this example consists of the 

points at the center, this is not a needed requirement. This procedure 

is not based on the premise that second order designs are, by and large, 

applied when first order designs prove inadequate. Therefore, when 

applied to sequential experiments Procedure 2 is not convenient and as 

efficient as the first technique. References (9) and (21) furnish lists 

of second order rotatable designs built through this technique. 

3. Construction of Rotatable Designs Through Balanced Incomplete 

Block Designs. Another procedure for building second-order rotatable 

designs is to use balanced incomplete: block designs. Using this 

procedure, the designs are formed by combining 2k factorial designs 

with incomplete block designs in a particular way. Procedure 3 is best 

explained through an example. A balanced incomplete L2sign for testing 

three factors in three blocks of size (S = 2) is given in Table V. 

After replacing the asterisks in each row by the columns of 28 

factorial des:lgn (S = 2) and inserting a column of zeroes wherever 

there is no asterisk, and adding three center points (points 13, 14, and 

15), a three level second order rotatable design is obtained as is 

shown in Table VI. 



69 

TABLE V 

A BALANCED INCOMPLETE BLOCK DESIGN FOR THREE FACTORS IN THREE BLOCKS 

Blocks 

1 
2 
3 

Blocks 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
ll. 
15 

* 
* 

TABLE VI 

* 
* 

A SECOND ORDER ROTATABLE DESIGN FOR THREE FACTORS 

x1 xz 

-1 -1 
1 -1 

-1 1 
1 1 

-1 0 
1 0 

-1 0 
1 0 
0 -1 
0 1 
0 -1 
0 1 
0 0 
0 0 
0 0 

* 
* 

x3 

0 
0 
0 
0 

-1 
-1 

1 
1 

-1 
-1 

1 
1 
0 
0 
0 
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To obtain exact rotatability, the incomplete block designs 

recommended by Box and Behnken (4) require q : 3~, where q is the number 

of times each treatment is replicated and ~ is the number of times each 

pair of treatments appear together in one block. Later, Das and 

Narasimham (18) developed a methodology for incomplete block designs 

with q ~ 3~. These authors provide a list of second order rotatable 

designs formed by utilizing incomplete block designs for three to 

sixteen factors. 
I 

In first order designs, the levels adopted for the factors are +1 

and -1. However, for all the experimental points obtained through 

incomplete block designs, at least one factor has the value of zero. 
i 

Consequently, this technique cannot form second order rotatable designs 

by adding experimental points to those of a first order design. There-

fore, the technique is not efficient and suitable for sequential 

experiments. 

4. Construction of Rotatabre D<:signs by Using First Order Rotatable 

Designs (Simplex-Sum Designs). Because of the sequential nature of 

response surface experiments, th~s procedure seems to be more appealing 

than the last two procedures (5); Using procedure 4, a second order 

rotatable design is constructed by adding the rows of a. first order 

design with minimum size (n"" k + 1) i at a time, where i = 1, 2, .•. , k 

and multiplyirg the obtained rows by a set of constants, ti, called 

radius multipliers. When the first order design, D, is of size n, the 

: n 
second order rotatable design, D', will have 2 - 2 points. Tables 

VII and VIII show designs D and D', respectively. D., in Table VIII, 
J_ 

is an (~) by k matrix whose row~ are made up of all possible sums of the 
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rows of D taken i at a time. Since for k > 5 the number of design 

points required by this technique is large, Box and Behnken (5) recommend 

fractions of the derived designs which meet the necessary requirements. 

Fractional designs are found by setting some ti's equal to zero. A list 

of simplex-sum designs for two to eight factors is given by Box and 

Behnken (5). 

TABLE VII 

FIRST ORDER DESIGN OF SIZE n = k + 1 

xl 

x2 
~ 

D = 
~ 

! 

xi 
K 

n 

TABLE VIII 

SECOND ORDER ROTATABLE DESIGN 

D' = 



Extensions 

The designs classified in this chapter do not constitute an 

exhaustive list of response surface designs. First of all, since it 
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was assumed that a quadratic equation will provide an adequate fit, 

third order designs were not discussed (7) (18) (30). Second, the 

designs that minimize bias and then use any additional flexibility to 

minimize variance were not mentioned (37) (40) (41). The reason behind 

the deletion is that a general class of designs of this type is not 

developed yet and each situation should be treated individually. Third, 

problems with cuboidal subregions were not discussed; this is a 

digression from the rest of the literature that is based on spherical 

subregions (24). 

Random Number Assignment in 

Response Surface Designs 

To eliminate the bias due to syrtematic disturbances, naturally, 

all the observations corresponding to any design should be performed 

in random order. However, some of the observations may be conducted 

under more homogeneous conditions than others. Specifically, response 

sur,Jce designs demand sets of experiments be conductL"i at different 

times. The procedure for taking advantage of these circumstances is 

called "blocking". All the observations taken at the same time or the 

observations with other similar conditions are placed in a block. 

Response surface designs benefit from rich and well developed 

theories of blocking (9) (20) (47). Orthogonal blocking has been 

favored by the majority of the writers in the field. This technique 
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makes the estimated coefficients and the block effects orthogonal and 

reduces the residual sum of squares, which is highly desirable. However, 

when response surface designs are used in simulation experiments, the 

designer is able to manipulate the circumstances such that the experi

ments are conducted under similar conditions, therefore apparently 

eliminating the need for blocking. 

But blocking within a different context may increase the efficiency 

of simulation results. The analytical work of Schruben and Margolin 

(52) recommended the use of two orthogonal blocks. The random numbers 

used in one block (~) should be the antithesis (1. - R) of the random 

numbers used in the other block. Applying this assignment rule to 

response surface designs will pose a problem. The difficulty will 

arise because of the sequentiality of response surface experiments, i.e., 

the uncertainty about the number of first order designs required before 

a second order design becomes necessary. The Proposed Methodology (here

inafter written by capital M) developed next will overcome this problem and 

will conduct all the experiments in two orthogonal blocks regardless of 

the number of first order designs needed before a second order design 

is used. In the discussion that will follow, methodolo~ refers to 

the strategies developed for assigning random numbers to response 

surface lesigns; and assignment rule refers to part of the strategy 

that assigns random numbers to the points of the individual designs~ 

The proposed Methodology functions as follows: Sets of experiments 

that are used for estimating first order effects are conducted in two 

orthogonal blocks. All the observations in one block use R and those 

in the second block use 1 - R. When the search leads to the near 

stationary region, i.e., Pstimating second order effects becomes 
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desirable, the additional observations will be divided into two parts. 

Half of the additional observations will be added to those in one block 

(responses will be generated by !) and the other half will be added to 

those in the second block (responses will be generated by l - !) while 

the orthogonality of the two blocks is maintained. 

The simulation responses obtained through this Methodology are 

more efficient than those generated by applying common or different 

random numbers throughout the experiments. This result directly follows 

from the work of Schruben and Margolin as is indicated next. Assume 

that for response surface experiments, in general, n - 1 first order 

designs are employed before the search effort dictates the desirability 

of using a second order design. Also assume that the extra observations 

are added to those of the nth first order design to form a second order 

design. This concept is graphically shown in Figure 10. 

First Order Design (1) I 
First Order Design (2) J 

First Order Design (n - 1) 

First Order Design (n) 
Second Order Design 

Additional Observations 

Figure 10. Graphical Illustration of the Search 
Method for Response Surfaces 
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Since in the first order design 1 through n the observations will be 

divided into two orthogonal blocks and Schruben and Margolin's assignment 

rule will be applied, it then follows that the responses obtained, for 

all the n cases, will be more efficient than those obtained from using 

common or different random numbers. Also because Schruben and Margolin's 

assignment rule will be applied to the second order design formed by 

adding the extra observations to the nth first order design, the estimates 

obtained in this last stage are also more efficient than those provided 

by the alternative assignment rules. 

Yet another methodology for assigning random numbers to response 

surface experiments was proposed by Schruben and Margolin (52, p. 514). 

Their methodology applies ! to all the observations of the first order 

design and 1 - R to all the observations that are added for forming a 

second order design. This methodology is consistent with orthogonal 

blocking of response surface experiments when they are used in physical 

experiments. It is reasonable to have all the observations of the first 

order design which probably are conducted at the same time in one block, 

and the additional observations in the second block. The Methodology 

proposed here improves Schruben and Margolin's methodology for response 

surface experiments in three respects. 

Fi~st, Schruben and Margolin's methodology applies only to the 

last stage of response surface experiments while the one suggested here 

applies to every stage. Second, although both approaches apply the 

original Schruben and Margolin's assignment rule to the second order 

design and are equally attractive, the method developed in this paper 

provides more efficient estimates for the nth first order design. The 

justification for this c 1 .aim is the superiority of using R and l - R 
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(when the conditions are met) to the use of R for all the experimental 

points. Third, to apply Schruben and Margolin's methodology, the value 

of a should be calculated such that the additional observations will 

form a block orthogonal to the one formed by the observations of the 

first order design. But for the proposed Methodology, the value of a 

is immaterial in building the two orthogonal blocks and could be 

calculated to meet an auxiliary condition. 

To operationalize the proposed Methodology, first order designs 

and second order designs described before should be divided into two 

orthogonal blocks. Fortunately, these designs can conveniently form 

two orthogonal blocks. 

Complete and fractional factorial designs used for estimating 

first order coefficients can easily form two orthogonal blocks. For 

example, for k = 3, the 23 factorial design may be split into two. 

orthogonal blocks, each with four observations by using the three 

factors interaction as the defining contrast. When complete or 

fractional factorial designs are performed in blocks, the estimates of 

some of the coefficients will be confounded with block constrasts. In 

other words, the reduction in the size of blocks is ob+-ained by the 

loss of accuracy on certain high order interaction coefficients. The 

estimates of the interaction coefficients which are used for assigning 

the observations to blocks will be mixed with the estimates of the block 

differences. For example, if the three factors interaction is used to 

3 assign the observations of a 2 factorial to two blocks (an observation 

is assigned to the first block when the multiplication of the values of 

the three factors is equal to one and to the second block when the 

multiplication is equal t.) minus one), then the estimate obtained for 
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the three factors interaction will represent the blocks differences as 

well. The discussion of which int-eraction coefficient(s) should be 

confounded is beyond the scope of this paper and will not be presented 

here. Confounding is discussed in detail in the books written on the 

subject of experimental design (19) (44). 

Plackett and Burman's (50) designs can be split into two orthogonal 

blocks leading to the estimates of the main effects for 4k-2 factors in 

4k observations. These designs no'rmally provide estimates of 4k-l 

factors in 4k observations. The estimation of a main factor is sacrificed 

for Splitting the designs into two parts. No effort is needed for forming 

two orthogonal blocks in case of type B designs because they are made up 

of two orthogonal blocks. (Duplicating designs of type A with reverse 

signs results in formation of type B designs.) 

Designs of type B' will form two orthogonal blocks as shown in 

Table IX. 

TABLE IX 

DESIGNS OF TYPE B' FORMED IN TWO ORTHOGONAL BLOCKS 

Factorial Design Number of Factors Defining Contrast 

23 2, 3 AB=I, ABC=! 
24 4 ABCD=I 
25 5, 6, 7 * 
26 8, 9, 10 * 
27 11 * 

* The sufficient condition for•divid~ng these designs into two 
blocks is that all combinations of every' five factors involving the 
first three occur equally, i.e., the first three factors interaction 
is used for comparing the groups (51). 
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Designs of type B' are the most appropriate designs for the 

Methodology being discussed here. An examination of the necessary 

conditions for performing the second order designs into two orthogonq.l 

blocks will elaborate on this point (9). A second order design with N 

points assigned to w = 2 blocks with n1 and n2 points in each block may 

be expressed as 

y 
u 

= 
2 k k k 
~ S Z + ~ Sixi + E E s1.xi x. 

OW WU · U J U JU w=l i=l i=l j=l 

where S is the expected value of the response in the wth block 
OW 

(4.12) 

corresponding to the conditions at the origin of the design, and Z is 
wu 

a block variable taking the value unity for the observations in the wth 

block and zero otherwise. 

Equation 

y = s + u 0 

where 

(4.12) can be rewritten as 

k k k 2 
L: Sixi + L: L: si .xi x. + ~ o (Z -

. 1 u i=l . l J U JU 1 w wu J.= J= w= 

2 n 
E ~ S , o ,= S - S and Z 

N ow w ow o ' w 

n 
w 

=-
N w==l 

z ) w (4.13) 

Block variables, Z - Z , will be orthogonal to the variables x1 , x 2 , 
wu w ' 

2 
. • • ' xk' ... , 

N 

I xi xj (Z 
u=l u u wu 

(4.14) is equivalent to 
N 

z ) = 0 
w 

L: xi xj Z . == 
U""l U U WU 

( i' j = 0' 1' ..• ' k) 

N -
Z E x1 x. 
w u=l u JU 

(4.14) 

(4 .15) 
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In a second order rotatable or composite designs for i ~ j, 

.. o. Thus, it becomes necessary for orthogonal blocking that 

(4.16) 

n2 
~xi xj • 0, i ~ j. 
1 u u 

u• 
(4.17) 

Condition I: All cha suma of p~odu~ts between x'a within each 

block should be zero. 

Substituting i "" j in equation (4.15) leads to another :requirement 

~2 2 
u~~~nl+lxiu 

N 
!: x2 

1 iu 
ll"' 

(4.18) 

Condition II: The contribution of eat:h block to the sum of squares 

for each variable $hould be proportional to the 

number of oba•rvationa in that block. 

The points to be added to a first order design in order to form a 

second order rotatable or compolite design a.re: 

(a, 0, 0, ... , O); (-a, o, 0, ..• , O); .•. ; (O, 0, o, ... ,a); 

(0, 0, 0, ... , -a) 

It is clear that these experimental paifits ~111 a1wayl eatisfy the 

first condition regardl~sl of th• blo~k to ~hich they are assigned. 

Therefore, to satisfy the first condition for the second order design 

as a whole, the columns associated with the x's in the first order 

design must be mutually orthogonaL Fottun.ttely, first order designs of 

typt:~ B' which are used for forming second order designs ml!!et this 

requirement. 
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Designs of type B' that ara made up of two orthogonal blocks meet 

the second condition as well. So, care must be taken to assure the 

satisfaction of the second condition when designs are supplemented by 

additional observations. To do so, the points with positive and negative 

a for each factor should not be assigned to the same block. A systematic 

procedure would be to assign all the points with positive a to one block 

and the points with negative a to the second block. Since the sum of 

squares for each variable.is the same for both blocks, an equal number 

of observations in each block satisfies the second condition. If 

central points are needed, equal numbers of them should be added to each 

block. 

D-iscussion 

A technical discussion of the proposed Methodology can be based on 

the dispersion matrices of the ~ coefficients for different assignment 

rules as derived by Schruben and Margolin (52). After partitioning the 

X matrix as (l, !*) and assuming a unit variance for the dispersion 

matrix, the dispersion matrices for Schruben and Margolin's assignment 

rule, the common streams of random numbers, and indep~ndent streams of 

random numbers are given by (4.19), (4.20), and (4.21) respectively. 1 

(4 .19) 

1p and p_ denote positive and negative correlations, and N1 and 
N2 repr~sent the number of ol:servations in the first and second block. 
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-1 
0 r+ + - p+)] 

N (1 - p+) 
BOLS .. 

(X* I X*) -l (1 
(4.20) 

0 

SOLS [N:l (X*~X*)-i] (4.21) 

Schruben and Margolin's assignment rule and the common streams of 

random numbers are equally efficient in estimating all the main and 

interaction effects (61 , B2 , ••. , Bj, B12 , •.• ),and they are both more 

efficient in estimating those effects than the assignment rule using 

independent streams of random numbers. However, the common streams of 

random numbers provides the least efficient estimate of the mean effect 

(60). The issue of whether Schruben and Margolin's assignment rule is 

more efficient than the independent streams of random numbers in 

estimating the mean effect and the extent of its efficiency over the 

common streams of random numbers is decided by the magnitude of 

(p+- P_) (see equations 4.19, 4.20, and 4.21). Clearly the larger the 

magnitude of the negative correlationR induced, the more efficient 

Schruben and Margolin's assignment will be. While not discussed by 

Schruben and Margolin, it is interesting to note that even if the 

antithetic random numbers produce zero correlations or positive 

correlations less than p+ (the positive correlation ind·:.1ced between 

the points in the first block by~), Schruben and Margolin's rule will 

still be more efficient than the common streams of random numbers for 

estim.lting the mean effect. 

The objective of a designer in early stages of response surface 

methodology is to estimate the main effects as accurately as possible 

to determine the steepest ascent or descent path. Thus the proposed 

Methodology that uses Schr..1ben and Margolin's assignment rule and the 



82 

common streams of random number methodology are both more efficient than 

the independent streams of random numbers methodology. Also, because it 

provides a better estimate of the mean than the common streams methodology, 

the proposed Methodology appears to be the optimal choice. 

When the search process has been led to the near-stationary region, 

the efficiency of the interaction effects then becomes as important as 

the efficiency of the main effects. An argument against the proposed 

Methodology would be that it confounds the estimate of one or more 

interaction effects in dividing the observations into two orthogonal 

blocks. However, in a problem with more than two factors, it is not 

hard to find a high-order interaction effect that is expected to be 

insignificant and can be used for dividing the observations into two 

blocks. 

Although it is possible for the proposed Methodology to produce a 

more efficient estimate of the mean than the independent streams 

methodology, a conservative approach would be to usa independent streams 

of random numbers when an efficient estimate of the mean is desired. 

Two other issues related to the proposed M.ethodology are discussed next. 

The construction of second order designs alone appears to assume 

that designs of type B' are used for fitting first order polynomials. 

This practice could be criticized because the number of observations 

required for designs of type B' is larger than the number of observations 

of type A or B. In fact, one may argue that the increase in efficiency 

obtained through conducting the experiments into two orthogonal blocks 

might be offset by the increase in the number of observations. These 

arguments are refuted on the ground that the proposed Methodology assumes 

the utilization of B' de~igns only when the search effort has been led 
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to the near stationary region and it will surely be supplemented by 

additional observations for estimating second order coefficients. 

Therefore, if the prevailing conditions are far from the optimum (for 

example, around the initial conditions), designs of type A and B could 

be used. 

Also, the procedure adopted for building rotatable designs in two 

orthogonal blocks is one of the four possible procedures discussed 

earlier in this chapter. Consequently, questions could be raised about 

the merits of the remaining three procedures. A brief examination of 

these procedures will provide support for the selected procedure. 

Second order rotatable designs built through incomplete block designs 

or equiradial sets are not efficient and suitable for sequential 

experiments for the following reason: While some of the experimental 

points required for the two methods are those presumably performed in 

the previous phase of the analysis, none of the two will form a second 

order rotatable design in conjunction with all the experiments used in 

the previous phase. Thus, some of the observations performed for 

estimating the first order effects will not contribute to the estimation 

of the second order effects. 

The third procedure, simplex-sum designs, constructs second order 

designs from first order designs with k + 1 observations. Methodologi

cally, this approach seems to be appropriate for sequential experiments. 

However, it is very unlikely for a designer to recognize the need for 

fitting a second order polynomial with only k + 1 observations. (A 

first order orthogonal design with k + 1 observations furnishes neither 

an estimate of any interaction effect nor an estimate of the experimental 

error.) When the number of observations utilized for estimating the 
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first order coefficients is larger than k + 1, then some of them will not 

be used for estimating the second order coefficients. Therefore, based 

on the criteria of efficiency and adoptability for sequential experiments, 

the central composite design procedure is likely to be favored over other 

techniques available for building second order rotatable designs. 

Empirical Evaluation of Results 

The contribution of the first part of this chapter, which was 

developing a new method for presenting response surface designs, remains 

to be evaluated. The classification presented in this chapter will 

hopefully stimulate the interest in applying response surface designs 

to simulation through collecting the designs under one cover and 

presenting them in a logical sequence. 

The contribution to be made by the second part of this chapter is, 

however, more difficult to gauge. In other words, it is not possible 

to say that conducting the experiments in two orthogonal blocks will 

bring about the maximum possible efficiency in simulation results. All 

that really can be said is that the proposed Methodology is superior 

to (1) the assignment of the same random number(s) to all the design 

points, and (2) the assignment of different random numbers to all the 

2 design points only when the following two conditions are met: 

1. The use of common random numbers and antithetic random numbers 

will generate positive and negative correlations between 

responses, respectively. 

2. -1 k {1 + (N- l)p+- 2N N1N2 (p+ + p_)}(l - p+) < 1 (4.22) 

2 
The second condition is necessary only for the superiority of 

the Methodology to the assignment of different random numbers. 



85 

While Schruben and Margolin provide empirical support for the 

optimality of their random number assignment rule, Wright and Ramsay 

(56) recently presented simulation problems for which the use of common 

random numbers increased the variance. As a result of their findings, 

Wright and Ramsay reiterated the argument that the common random numbers 

technique fails to induce the desired correlations if the policies 

compared are not small perturbations of each other. This argument 

implies caution in assuming the generation of positive correlations 

for response surface experiments. For example, in a simulation with two 

variables, depending upon the units of the variables the design point 

(-1, -1) might be too far apart from the design point (+1, +1). 

Simulations are normally developed when a problem cannot be solved 

analytically. In other words, the response function, G = f(x), cannot 

be written in a deterministic mathematical form. Additionally, the form 

of the response function and the way random numbers, which generate 

some of the variables, affectthe responses differ in different 

simulations. Therefore, the nature of simulation seems to defy a 

general analytical investigation of random number assignment rules. The 

analytical and empirical investigations of the assignmrnt of random 

numbers only recommend possible ways for increasing the efficiency of 

certain simulations. It is the responsibility of a simulation designer 

to be familiar with the alternative assignment rules and, based on his 

knowledge of the problem or a few pilot runs, assign the random numbers 

appropriately. 

To supplement and complete the discussions in this chapter, and to 

also evaluate the application of the proposed Methodology, and 

example of an inventory simulation case is presented next. 
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The Characteristics of the Inventory Simulation 

The inventory simulation used for empirical investigation is 

developed by Professor Billy M. Thornton of the Oklahoma State University. 

The input parameters of this simulation are as follows: 

a. Inventory Situation Characteristics 

1--The initial inventory level (50,000 units) 

2--Maximum inventory size (100,000 units) 

3--Cost of carrying inventory per unit ($.35) 

4--0rdering cost ($2,000 per order) 

5--Shortage cost ($5 per unit) 

6--Temporary storage cost ($7 per unit) 

7--Number of warm-up periods (15) 

8--Number of periods in the simulation (104) 

The numbers inside the parentheses were used in an example. 

b. Demand Distributions 

1--The number of different demand segments--all are assumed 

to be normally distributed (1) 

2--The number of periods in each segment (104) 

3--Means and standard deviations for the demand segments 

(12,500 units, 500 units) 

4--A random number seed for demand generator 

the number inside the parentheses were used in an example. 

c. Delive~y Time Distributions 

1--The number of different delivery time periods--all are 

assumed to be normally distributed (1) 

2--The number of periods in each segment (104) 
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3~-Means and standard deviations for the delivery time segments 

(3. 5 and 1) 

4--A random number seed for the delivery time generator 

d. Policy Variables (Controllable Conditions) 

1--The number of policy segments (1) 

2--The number of periods in each policy segment (104) 

3--0rdering quantity and reordering level for each policy 

segment 

e. Process Generators 

Random numbers are generated through a subprogram which is a 

part of the simulation program. The following subroutine calls 

the subprogram to generate normal random variates using the 

Central Limit Theorem (48, p. 95). 

SUBROUTINE NORMAL (EX, STDX, X) 

SUM = 0.0 

DO 5 I = 1, 12 

R ::: RND(R) 

5 SUM == SUM + R 

X z STDX • (SUM - 6.0) + EX 

RETURN 

Two other methods for generating normal random variates are the 

Direct Approacn and the Fast Procedure (48, p. 95)~ The Direct Approach 

furnishes .two normal random variates by using two random variates as is 

shown below. 

Normal random variate 1 = (-2 log )1/2 cos 27fr 2 (4. 23) e rl 

Normal random variate 2 = (-2 log )1/2 sin 27fr 2 (4.24) e rl 
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The Fast Procedure calculates normal random variates from the 

mixture of three densities given below. 

f(x) = .09578 g1 (x) + .0395 g2 (x) + 0.0027 g3 (x). 

In validating the simulation model, the normal random variates produced 

by the Central Limit Theorem were compared to those produced by the 

other two techniques. This comparison did not suggest any one of these 

techniques to be superior to others. 

&1 Illustrative Example 

Given the numbers inside the parentheses, the objective of 

the example was to find the ordering quantity and the reordering 

level that minimize the average inventory cost for a year. The steepest 

descent technique was used to search for the optimum point. Based on 

the demand distribution (mean = 12,500 units per week, standard devia-

tion = 500) and the delivery time distribution (mean= 3.5 weeks, 

standard deviation = 1 week) the search effort was subjectively 

determined to start from the point at which the ordering quantity is 

45,000 units and the reordering level is 40,000 units. Additionally, 

this point was considered to be far from the optimum ronditions, 

therefore a design that provides estimates of the ma:'n effects and the 

interaction effects would be appropriate. Moreover, s~nce it was not 

essential to discover the nature of the relationships involved, the 

experimenter's priority was to choose a design that would minimize 

variance (Figure 8, page 54). Denoting the ordering quantity by x1 

and the reordering level by x2 , a 22 factorial design, as shown in 

Table X, was used to fit a first order polynomial to the subregion 

around the selected poi~-. 2 (A 2 factorial design will satisfy both 

conditions lA and lB in Figure 8.) 
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TABLE X 

FACTOR LEVELS FOR THE FIRST EXPERIMENT 

Factor -1 +1 

x1 the order+ng quantity 

x2 the reordering level 

44,000 46,000 

39,000 41,000 

Note: "1,000 units" was subjectively set equal to one experimental 
unit for both variables. 

Simulation runs were made for the four experimental points and 

the center point with the following three alternative random numbers 

assignment rules. 

1. Independent streams of random numbers. 

2. Common random numbers. 

3. Schruben and Margolin's assignment rule. 

The obtained responses are shown in Tables XI, XII, and XIII 

respectively. 

The responses shown in Table XI, XII, and XIII wer~ obtained by 

dividing the total inventory costs by 104 (the periods in the simulation). 

The 104 period costs were punched on computer cards and were used by a 

FORTRAN Program to calculate the induced correlations between the trials. 

The correlation coefficients for the five trials when the independent 

streams of random numbers were used are shown in Table XIV. 
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TABLE XI 

THE FIRST EXPERIMENT WITH INDEPENDENT STREAMS OF RANDOM NUMBERS 

Factor Level Response 
Trial xl xz y 

1 -1 -1 $25,461 

2 -1 +1 24,544 

3 +1 -1 24,4'40 

4 +1 +1 24,774 

5 0 0 25,100 

TABLE XII 

THE FIRST EXPERIMENT WITH COMMON STREAMS OF RANDOM NUMBERS 

Factor Level Response 
Trial xl x2 y 

1 -1 -1 $25,314 

2 -1 +1 24,610 

3 +1 -1 23,503 

4 +1 +1 23,503 

5 0 0 24,600 
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TABLE XIII 

THE FIRST EXPERIMENT WITH SCHRUBEN AND MARGOLIN'S ASSIGNMENT RULE 

Factor Level ResEonse 
Trial Xl xz y 

1 -1 -1 $25,314 

2 -1 +1 24,895 

3 +1 -1 25,081 

4 +1 +1 23,503 

5 0 0 24,600 

TABLE XIV 

CORRELATION COEFFICIENTS FOR INDEPENDENT RANDOM NUMBERS CASE 

~ Trial* 1 2 3 4 5 

1 1 -.25 .27 . 01 -.27 

2 1 -.02 -.04 .15 

3 1 -.03 -.19 

4 1 .01 

5 1 

* The trial numbers correspond to the previous tables. 

'.·; 
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Although some of the coefficients in Table XIV are close to zero, 

the independent streams of random numbers did not generate absolutely 

independent responses. The obtained correlations may be attributed to 

one or both of the following two factors. 

1. The nature of the adopted simulation. 

2. The policies (the experimental points) are too far apart. 

The next set of trials will be closer to each other and will 

provide an opportunity for examining the validity of the second factor. 

To evaluate the efficiency of this assignment rtile as compared to the 

other two, the standard errors of the S coefficients need to be compared. 

The evaluation will be presented after the correlation coefficients for 

the other two random numbers assignment rules are discussed. 

The correlation matrix for the observations of the common random 

numbers rule are given in Table XV. 

TABLE XV 

CORRELATION COEFFICIENTS FOR COMMON RANDOM NUMBERS ASSIGNMENT RULE 

~rial 
Trial 1 2 3 4 5 

1 1 .66 .39 39 .45 
2 1 .18 .18 .21 

3 1 1.00 .99 

4 1 .99 

5 1 
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The correlation coefficients presented in Table XV support the 

hypothesis that the common random numbers assignment rule induces 

positive correlations between the simulation responses. However, more 

than half of the coefficients show only weak correlations. Two 

possible explanations behind obtaining such correlation coefficients 

are the ones described in the case of independent streams of random 

numbers. A more plausible explanation appears to be the dependence of 

the magnitude of the induced correlations on the specific pairs of the 

design points. 

The correlation coefficients between the responses for the use of 

Schruben and Margolin's assignment rule is given in Table XVI. 

TABLE XVI 

CORRELATION COEFFICIENTS BETWEEN RESPONSES FOR 
SCHR.UBEN AND MARGOLIN'S ASSIGNMENT RULE 

~ 
R 1 - R 1 - R R 

1 2 3 4 Trial 

R 1 1 -.31 -.10 .39 

1 - R 2 1 • 07 -.09 

1 - R 3 1 -.24 

R 4 l 

R 5 

R 

5 

.45 

-.13 

-.25 

.99 

1 
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2 The f~nJr td ,;;1.~:; r.orrusponding to the 2 factorial experiment are 

divided into two orthogonal blocks. But adding, one observation to the 

center of design for estimating the standard errors and including it in 

the first block violates that orthogonality condition. However, slight 

deviation from the orthogonality is not expected to affect the 

efficiency of the assignment rule. The sign of the induced correlations 

between the trials that use the same streams of random numbers 

was expected to be positive; and the sign of the generated correlations 

between the trials that use ! and l - R was expected to be negative. 

Although the signs of all the correlation coefficients in Table XVI are 

as anticipated, their magnitudes are not. The same factors that caused 

the weak correlations in case of the connnon streams of random numbers 

are possibly at work here, too. 

The standard errors of the S coefficients obtained by each of the 

alternative assignment rules is given in Table XVII. 

TABLE XVII 

STANDARD ERRORS OF THE S COEFFICIENTS FOR THE THREE ALTERNATIVES 

Standard Error 

Alternatives 'B 0 81 82 1312 

1. Independent Stre~ms 109 114 148 133 
2. Common Streams 261.9 184 67.7 67.7 
3. Schruben and Margolin 44.9 33.7 42.8 55.56 
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The comn-nn. ~:;uuatt.e. of random numbers as expected has the largest 

variance for s0 • The use of the common streams of random numbers did, 

however, reduce the variances for 82 and 812 • The reason that the 

variance for 81 was not reduced is the magnitude of some of the 

correlation coefficients in Table XV. Schruben and Margolin's assignment 

rule, which is part of the proposed Methodology, has the most efficient 

estimates. This assignment rule reduces the variance of 812 with a 

lesser degree than it reduces the variances of 81 and s2. A reasonable 

~xplanation is that the estimate of the interaction effect, B12 , is 

confounded with the estimate of the blocks contrast. Theoretically, 

the variances of 81 , s2 , and s12 for common streams of random numbers 

and Schruben and Margolin's assignment rule must be equal. That would 

be the case only if first all the positive and negative correlations 

have equal magnitudes; second, if the experimental errors for the two 

regression equations are equal. 

The next step in the search process is to examine the magnitude 

and the signs of the estimated coefficients. This examination will, 

first, show the nature of the present subregion; and, second, the 

steepest descent path in case the subregion under investigation is not 

the near stationary subregion. The estimate of the B coefficients 

according to Schruben and Margolin's assignment (the most efficient 

one) are shown in Table XVIII. 
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THE ESTIMATES OF THE S COEFFICIENTS 

~ = -406.25" 
al = -499.25 
~2 Bi2 = -28~.75 
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Since the estimates of the main effects, a1 and s2 , are relatively 

larger than the estimate of the interaction effect, it was realized that· 

reduction in the average inventory cost moving down on the steepest 

descent path might be possible. The calculation of the steepest descent 

path and the trials performed on the path are shown in Table XIX. 

After performing 12 trials, the point associated with trial 11 

was select~d to be the center of the next first order design, The 

2 observations of the second 2 factorial design are shown in Table XX. 

In light of the magnitude of main effects obtained previously, the 

units adopted in the second set of experiments for x1 and x2 are 407 

and 500 units respectively. While the relative magnitude of the units 

was dictated by the slopes, the absolute magnitude of the units was 

determined subjectively. 

Simulation runs were made for the four experimental points and the 

center point with the three random numbers assignment rules. The 

results are shown in Tables XXI, XXII, and XXIII. 

The correlation coefficients between the responses when independent 

streams of random numbers were employed are given in Table XXIV. 
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TABLE XIX 

CALCULATION OF STEEPEST DESCENT PATH AND SUBSEQUENT TRIALS ON THE PATH 

Ordering Quantity Reordering Level 
Variables X! X2 

Base level 45,000 units 40,000 units 

Unit 1,000 units 1,000 units 

Estimated elope x(-)* 406.25 499.25 

Unit x slope 406250 499250 

Change in level per 
1,000 units for x1 814 1,000** 

Subsequent points on the path: 

Point Responses 

1 45,814 41,000 23,725 

2 46,628 42,000 22,845 

3 47,442 43,000 21,992 

4 48,256 44,000 21,173 

5 49,070 45,000 20,397 

6 49 '88/f ·46,000 19,307 

7 50,698 47,000 19,079 

8 51,51-2 48,000 18,289 

9 52,326 49,000 18,260 

10 53,140 50,000 18,027 

11 53,954 51,000 17,964 

12 54,768 52,000 18,295 

* Because ~he objective is cost minimization, the negative sign is 
required. 

** 1,000 units was determined subjectively. 



TABLE XX 

FACTOR LEVELS FOR THE SECOND 22 FACTORIAL DESIGN 

Factors 

Ordering Quantity x1 
Reordering Level x2 

TABLE XXI 

-1 

53,547 

50,500 

+1 

54,361 

51,500 
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THE SECOND 22 FACTORIAL DESIGN WITH INDEPENDENT STREAMS 

Factor Level Res12onse 
Trial xl xz y 

1 -1 -1 17,766 

2 -1 +1 19,894 

3 +1 -1 18,230 

4 +1 +1 19,498 

5 0 0 18,494 



Trial 

1 

2 

3 

4 

5 

* 

TABLE XXII 

THE SECOND 22 FACTORIAL DESIGN WITH COMMON STREAMS 
OF RANDOM NUMBERS 

Factor Level 
xl x2 

-1 -1 

-1 +1 

+1 -1 

+1 +1 

0 0 

99 

ResEonse 
y 

18,507 

17,831 

18,448 

18,631 

17,964* 

The seed value that was used for trial five· in·,t,he previous table 
was repeated for all the trials in Table XXII. 

Trial 

1 

2 

3 

4 

5 

TABLE XXIII 

THE SECOND 22 FACTORIAL DESIGN WITH SCHRUBEN 
AND MARGOLIN'S ASSIGNMENT RULE 

Factor Level 
Xl xz 

-1 -1 

-1 +1 

+1 -1 

+1 +1 

0 0 

ResEonse 
y 

18,507 

18,740 

·18' 011 

18,631 

17,964 
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CORRELATION COEFFICIENTS FOR INDEPENDENT STREAMS 
OF RANDOM NUMBER CASE 

~ Trial 1 2 3 4 

1 1 -.15 .08 -.03 

2 1 -.20 .31 

3 1 -.14 

4 1 

5 

100 

5 

. 02 

..;..14 

.42 

-.16 

1 

The correlation coefficients in Table XXIV do not show absolute 

independency between the responses, but show weak positive or negative 

correlations. The experimental points under consideration here are 

closer to each other than the ones considered before. Since the 

correlation coefficients in Table XXIV are not an improvement over 

those in Table XIV, it may be concluded that the distance between the 

experimental points is not affecting the magnitude of the correlations 

between the responses. The factor then to blame would be the nature of 

the adopted simulation. Had, for example, the standard deviations of 

the demand and the delivery time been larger, the entries of Table XXIV 

might have shown weaker positive and negative correlations. 

The correlation coefficients between the responses when they were 

generated by the same stream of random numbers is given in Table XXV. 



TABLE XXV 

CORRELATION COEFFICIENT BETWEEN RESPONSES FOR TUE 
COMMON RANDOM NUMBERS ASSIGNMENT RULE 

~ Trial 1 2 3 4 

1 1 • 87 .22 _.23 

2 1 .14 .15 

3 1 • 99 

4 1 

5 1 

The use of common streams of random numbers generated positive 
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5 

• 86 

.95 

.23 

.25 

correlations between the responses; however, in terms of the magnitude 

of the induced correlations, the corcelation coefficients are not 

better than those presented in Table XXV. Therefore, in this simulation, 

the distance between the experimental points does not seem to be the 

reason behind the weak correlations. For the adopted simulation, the 

mag~itude of the positive correlations induced is ostensibly dependent 

upon the specific pairs of the design points. (Schruben and Margolin 

assumed that the induced correlations are independent 0f the design 

points.) 

The last correlation coefficients between responses was obtained 

when Schruben and Margolin's assignment rule was applied. These 

coefficients are shown in Table XXVI. 



TABLE XXVI 

THE CORRELATION COEFFICIENT BETWEEN RESPONSES FOR 
SCHRUBEN AND MARGOLIN'S ASSIGNMENT RULE 

~ Trial 1 2 3 4 

R 1 1 .05 .08 .23 

1 - R 2 1 .18 .00 

1 - R 3 1 .00 

R 4 1 

R 5 
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5 

• 86 

.08 

.10 

.25 

1 

The entries that were expected to be negative in Table XXVI show 

either zero or weak positive correlations. Also, except for p15 , the 

anticipated positive correlations show only weak correlations. The 

possible explanations for the performance of the common streams of 

random numbers are the ones discussed before. The failure of the 

antithetic random numbers to generate negative correla-ions may be 

attributed to the nature of this simulation, the variability of demand 

and the delivery time in particular. The more variations in the demand 

and the delive~y time, the more fluctuations will be caused between the 

inventory costs by low and high, and high and low random numbers. It 

is interesting to note that for the adopted simulation, moving the 

experimental points closer to each other adversely affects the perfor-

mance of the antithetic random numbers. 
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The standard error of the B's for the three alternative random 

numbers assignment rules are shown in Table XXVII. 

1. 
2. 
3. 

TABLE XXVII 

THE STANDARD ERROR OF THE S' S FOR THE ALTERNATIVE 
RANDOM NUMBERS ASSIGNMENT RULE 

Standard Error 

Alternatives So sl s2 

Independent Streams 141.4 139 190 
Common Streams 268 217 46.17 
Schruben and Margolin 192 144.2 146 

sl2 

144.25 
46.17 

172 

As in the case of the initial first order design, the common streams 

or random numbers increased the variance of s0 and reduced the variances 

of s2 and s 12 . The increase in the variance of s1 can be traced back 

to the weak correlation coefficients presented in Table XXV. The 

inefficiency associated with Schruben and Margolin's assignment rule is 

because of the large experimental error of its corresponding regression 

analysis. The mean square error of the regression analysis for 

observations of Table XXIII was about twice larger than the mean square 

error of the regression equation using independent streams of random 

numbers responses and the regression equation using common streams of 
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random numbers responses. Had the mean square errors for the three 

regression equations beett equal, Schruben and Margolin's assignment 

rule would have been mora efficient than the other two assignment rules. 

The variability in mean square errors of the different regression 

equations is caused by the volatile nature of the adopted simulation. 

Certainly, ana would increase the consistency of the responses by running 

the individual simulations for longer periods of time. For simulations 

with a volatile nature, the experimental errors are large and consequently 

making the application of the response surface methodology inappropriate. 

The success of the response surface methodology very much depends on the 

magnitude of the experimental errors. However, this problem could be 

overcome by, first, selecting the experimental points closer to one 

another. Second, by increasing the number of periods for which each 

experimental point is run. 

Since the proposed Methodology was used in the initial stage of the 

analysis, the search process continued with the estimates obtained through 

it. Table XXVIII shows the estimates of the B coefficients. 

TABLE XXVIII 

THE ESTIMATES OF THE B COEFFICIENTS 

A s1 = 348.75 
A s2 = -286.75 
A 

S12 a -403.25 
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Since the estimate of the interaction effect is large as compared 

to the estimates of the main effects, a second degree polynomial needs 

to be fitted. An examination of the responses in Table XXIII led to 

the adoption of a second order composite rotatable design. The value 

of a for this design based on the formula given in page 67 is equal to 

(4) 114 . This value of a will make it possible to compare Schruben and 

Margolin's methodology with the proposed Methodology. So the additional 

experimental points are: 

xl x2 

1 1.414 0 
2 -1.414 0 
3 0 1.414 
4 0 -1.414 
5 0 0 

To conform to the orthogonality requirement, the experimental 

points 1 and 3 were simulated using R and the rest were simulated using 

1 - R. Table XXIX shows the results. (Also, 1 and 3 were simulated 

using!-~ and the rest were simulated using R.) 

TABLE XXIX 

THE ADDITIONAL EXPERIMENTAL POINTS AND THEIR RESPONSES 

Factor Level Response 
Trial xl X2 y 

1 1.414 0 $18,524 
2 -1.414 0 18,895 
3 0 1.414 17 '964 
4 0 -1.414 19,966 
5 0 0 19,545 
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The correlation coefficients between the ten observations of the 

second order rotatable designs when they were all generated by the 

common streams of random numbers are shown in Table XXX. 

TABLE XXX 

CORRELATION COEFFICIENTS BETWEEN RESPONSES OF THE SECOND ORDER 
ROTATABLE DESIGN FOR COMMON STREAMS OF RANDOM NUMBERS 

~ Trial 1 2 3 4 5 6 7 8 9 10 

1 1 . 87 .22 .23 .86 .99 -. 22 .29 • 86 • 86 
2 1 .14 .15 .95 .86 .14 .20 .95 .95 
3 1 .99 .23 .18 • 94 • 90 .23 .23 
4 1 .25 .20 .93 .91 .25 .25 
5 1 .82 .24 . 30 1 1 

(-a., 0) 6 1 .J:-9 .25 .82 • 82 
(a, 0) 7 1 .83 .24 .24 
(0, -a) 8 1 ... 30 .30 
(0, a) 9 1 1 
(0' 0) 10 1 

Table XXX provides further support for the claim that the magnitude 

of the induced correlations, in this simultion, depends on the pairs of 

the design points. The common streams of random numbers generate 

strong positive correlations between the responses only when the policies 

(the design points) compared are similar or are close in nature. While 

the distances between the design points ~ay, in some cases, indicate the 

degree of similarity between the policies, it will not do so in general. 
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The correlation coefficients between the design points of Table XXX 

when Schruben and Margolin's methodology was applied are presented in 

Table XXXI. 

TABLE XXXI 

CORRELATION COEFFICIENTS BETWEEN THE RESPONSES OF THE SECOND ORDER 
ROTATABLE DESIGN FOR SCHRUBEN AND MARGOLIN'S METHODOLOGY 

~ Trial 1 2 3 4 5 6 7 8 9 10 

R 1 1 . 87 .22 .23 . 86 .05 • 07 .09 .02 .09 
R 2 1 .14 .15 .95 • 05 .09 .10 .02 .10 
R 3 1 .99 .23 -.01 -.01 -.02 -.05 .00 
R 4 1 .25 .oo . 00 .01 .04 .01 
R 5 1 .08 .10 .12 .02 .12 
1 - R 6 1 .15 .18 .60 .20 
I-"R 7 1 .90 .30 .89 - -
1 - R 8 1 .38 .96 
I-"R 9 1 .40 
1 - R 10 1 

All entries which are located at the intersection of the first 

five rows and the last five columns were expected to be negative and 

the remaining coefficients were expected to be positive. Because of 

the factors explained before most of the coefficients in Table XXXI do 

not show strong positive or negative correlations. The correlation 

coefficients between the experimental points when the proposed 

Methodology was used are given in Table XXXII. 
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TABLE XXXII 

CORRELATION COEFFICIENTS BETWEEN THE RESPONSES OF THE SECOND ORDER 
ROTATABLE DESIGN FOR THE PROPOSED METHODOLOGY 

~ Trial 1 2 3 4 5 6 7 8 9 10 

R 1 1 . 05 .08 .23 • 86 • 05 .22 .09 • 86 .09 
1 - R 2 1 .18 .oo .08 1 .01 .20 .08 .22 - -
1 - R 3 1 . 00 .10 .16 -.01 .92 .10 .90 
R 4 1 .25 .oo .93 -.01 .25 .01 
R 5 1 .08 .24 .12 1 .12 
1 - R 6 1 .02 .18 .08 • 20 
R 7 1 -.03 .24 .00 
1 - R 8 1 .12 .96 
R 9 1 .12 
1 - R 10 1 

As in the previous table, the antithetic random numbers generated 

zero or weak correlations between the responses. An examination of the 

standard errors of the S coefficient; for the common random numbers 

methodology, Schruben and Margolin's methodology, and the proposed 

Methodology is given next. Table XXXIII shows the standard errors for 

the B coefficients. 

For the second order composite rotatable deSign, the proposed 

Methodology has produced the moat efficient results. However, as before, 

part of the efficiency is caused by the mean square errors of the 

regression equations. The standard error of s0 for the common streams 

of random numbers is larger than the standard error of s0 for the other 

two alternatives. This result is consistent with the analytical 

discussion presented before. The standard errors of all the other 
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coefficients would have been the same if 1) all the positive correlations 

and also all the negative correlations would have been equal and 2) if 

the mean square errors for the three regression equations would have 

been equal. The last stage in the search process is evaluation of the 

near stationary region which is presented below. 

1. 
2. 

3. 

TABLE XXXIII 

THE STANDARD ERROR OF THE S COEFFICIENTS FOR ALTERNATIVE 
RANDOM NUMBERS METHODOLOGIES 

Standard Error 

Alternatives So 1\ s2 sl2 su 

Common Random Numbers 4,560, 3,118, 1,389 404 1,17:2 
Schruben and Margolin's 
Methodology 2,812 2,017 1,064 358 949 
The Proposed Methodology 521 390 311 248 98 

Analysis of the Fitted Surface 

1322 

1,587 

1,123 
351 

Based on the estimates obtained by the proposed Mt':hodology, the 

mathematical relationship between the inventory cost and the ordering 

quantity and the reordering level is: 

(4.25) 

To find the stationary point in the near stationary region, partial 

derivatives with respect ':o x1 and x2 for equation (4.25) were calculated. 
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After setting the results equal to zero, a system of two equations and 

two unknowns was solved. The values of x1 and x2 obtained for the 

stationary point are: 

These values correspond to 54,463 units for the ordering quantity and 

51,100 units for the reordering level. The inventory cost of this 

policy is $18,389. The response for the stationary point is not better 

than all the other responses obtained before. However, since the 

inventory simulation under consideration is probabilistic and the 

trials are not replicated, this is a likely occurrence. 

A closer examination of the stationary point was made possible by 

the method of canonical analysis. By transferring the origin of the 

second order design to the stationary point and measruing the variables 

along the new axes, denoted by x1 and x2 , the following canonical equation 

was obtained. 

y = 18,389 - 136.5 xi + 286.5 x~ (4.26) 

2 2 If the coefficients for x1 and x2 were both positive, the stationary 

point would have been a true minimum. Since one coefficient is positive 

and the other is negative the stationary point is a saddle point. The 

fitted contours are hyperbolas elongated in the direction of the x1 axis. 

Therefore, no conclusion can be drawn about the presence of a global 

minimum. 
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Although the empirical investigation was limited to the application 

of response surface methodology to an inventory simulation case, the 

results do have direct implications for other forms of simulation. The 

potential of response surface methodology stems from the efficiency by 

which it discovers an unknown relationship or finds the optimum point 

regardless of the nature of a problem. Since the objective(s) of many 

simulation problems coincide with the rationale behind the use of 

response surface methodology, as was the case in the inventory problem, 

it is natural for most other simulation problems to benefit from it, too. 

The inventory simulation example indicated that the response surface 

methodology is a strong and an efficient technique for simulation. The 

average inventory cost which was more than 24,000 for the initial 

experiments was substantially reduced to less than 18,000. Only about 

20 experiments were needed to discover the relationship between the 

simulation responses and the controlLable conditions. 

The examination of the example reported here and other examples 

not reported in detail provided valuable insight about the application 

of response surface methodology in simulation. Some of the pitfalls in 

applying response surface methodology to simulation ar.d the way to 

minimize their impact are as follows. 

General ~peaking, the performance of response surface methodology 

strongly depends on the magnitude of the experimental e.rror. 

The response surface methodology is successful when the experimental 

error is small. The stochastic nature of simulation causes volatility 

in responses that can lead to large experimental errors. This problem 
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is aggravated when the experimental points under investigation are too 

far apart. 

Therefore, successful application of response surface methodology 

to simulation requires, first, the units selected for the variables to 

be small so that the experimental points are not too far apart. 

Secondly, each experimental point should be run for adequate intervals 

or periods of time to allow for erosion of erratic variations. Another 

strategy would be replication of observations at each experimental 

point. Replication of observations is in contrast to the spirit of 

this research, that is accomplishing the objective of a simulation 

study with the least possible number of observations. Additionally, 

very little discussion exists in the literature about the assignment 

of random numbers to the experiomental points of a design when the 

trials are replicated. 

To increase the efficiency of results in a simulation that uses 

response surface designs, it was shown that it is wise to take advantage 

of efficient random numbers assignment rules that are available. The 

common random numbers technique consistently performed better than the 

independent streams of random numbers. For the regressions with 

comparable experimental errors, the Methodology proposed in this paper 

was more efficient than Schruben and Margolin's methoG.::>logy, .the common 

random numbers methodology, and the independent random numbers 

methodology when the expected positive correlations between the 

responses were induced. 

Due to the nature of simulation, no recommendation ·regarding:i:-andom . ,_,..,,. ~ . 
. ,. ' "~' 

. . 
numbers assignment rule can be made from the empirical'. findirtgs of a 

,/ 
' .. 

simulation. The findings of this study do not support the argumei1t that 
.. 

' 
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the common random numbers technique · performs better when the policies 

compared are small perturbations of each other. The findings, however, 

suggest that the magnitude of the induced positive correlations depends 

on the specific pairs of the design points. With respect to the 

antithetic random numbers, the magnitude of the induced negative 

correlations was larger when the experimental points were further apart. 

In other words, moving the experimental points closer to each other 

adversely affected the magnitude of the negative correlations. The 

magnitude of the induced negative correlations could have increased, 

to a limited extent, by the increase in the variability of demand. While 

no specific random numbers assignment rule can be recommended, the 

following two approaches will help one decide on the assignment rule. 

First, a few pilot runs in the beginning will enable the designer 

to discover the signs and magnitudes of the induced correlations. 

Second, simulations can be stopped and restarted without disturbing 

their statistical properties. Therefore, an early check on the signs 

and magnitudes of induced correlations will allow the designer to test 

the validity of his assumptions. If the expected negative (or zero) and 

positive correlations between the responses are realized, the proposed 

Methodology will be more efficient than the common random numbers rule. 

If only positive correlations are generated, the common random numbers 

might be more efficient than the proposed Methodology. 

The reclassification of response surface designs supplemented by 

the discussion of random numbers assignment rules will, hopefully, 

stimulate future application of response surface methodology in simulation. 

A summary of the conclusions, and the recommendations for future research 

will be given in Chapter V. 



CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

This study was designed to develop a methodology for assigning 

random numbers to the experimental points of response surface designs 

used in simulation. The proposed Methodology was based on the 

analytical findings of Schruben and Margolin (52). Additionally, the 

study was intended to create a presentation scheme for response surface 

designs to facilitate their applications to simulation. 

In pursuing the objectives of the paper, first, the literature of 

response surface methodology was reviewed and presented in Chapter II. 

Second, the developments in the area of random numbers assignment were 

examined. Third, tv;o tree diagrams were drawn to help designers find their 

appropriate designs. Fourth, a methodology was presented for incorporating 

Schruben and Margolin's random number assignment rule in response surface 

designs used in simulation. Last, the analytical discussions were applied 

to an inventory simulation case. A summary of the findings is given 

below. 

Response surface m.ethodology is rich and advanced in theory. A 

number of first order, second order, and third order designs have been 

developed for fitting polynomials to different problems. Experimenters 

in chemical laboratories have well taken advantage of response surface 

methodology in their experiments. The limited application of response 

surface methodology to simulation may, in the researcher's opinion, be 

114 



115 

attributed to 1) the availability of inefficient but simple enumerative 

approaches and 2) the lack of an exhaustive and a cohesive presentation 

of the subject. Although many books have devoted a chapter to this 

subject, the discussions have been basically fragmented and categorical 

(16) (19) (45). In 1971, a complete discussion of the subject was 

given by Myers (47). The objective of Myer's book was to create a 

continued awareness of response surface methodology techniques among 

potential users. The book is not oriented toward simultion, and unless 

one reads it in entirety, he will not be in a position to decide which 

design to use. The tree diagrams and their associated discussion in 

Chapter IV facilitates the selection process, and through references, 

provides an opportunity for further evaluation of the selected design. 

The tree diagram representing first order designs (see Figure 8) 

has five branches. Each branch corresponds to a possible objective of 

the designer influenced by his knowledge of the problem. Two of the 

branches are associated with minimizing variance. Variance can be 

minimized for either the individual coefficients of the response as a 

whole. Two other branches are related to minimizing bias. Whether the 

orientation of design with respect to response function is known or not 

will affect the method used for minimizing bias. Minimization of both 

bias and variance is shown on the last branch. 

Orthogonal designs are used for all the above cases. However, the 

size of designs will not be the same for all the categories. To 

estimate the first order coefficients, variables should be varied at 

least at two levels. Thus, complete and fractional factorial designs 

are the most appropriate first order orthogonal designs. 
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The second order design tree (Figure 9) has two bra'I).ches r:eptes,ent

ing second order composite and second order rotatable designs. For 

estimating the coefficients of a second order polyno~ial, variables 

should take at least three different values. A class of designs more 

efficient than 3k factorial designs is called composite designs (10). 

These designs are obtained by adding experimental points to a first 

order design which is large enough to estimate the main effects as well 

as the first order interaction effects. Composite designs are either 

central or noncentral. Central composite designs are appropriate when 

the optimum point is suspected to be around the origin of the design. 

On the other hand, noncentral composite designs are desirable when the 

optimum point is suspected to be close to a combination other than the 

origin. Composite designs are easy to apply and are suitable for 

sequential experiments. They provide a designer with the opportunity 

to form second order orthogonal designs, second order designs with 

equal precision for quadratic and interaction effects, and second order 

rotatable designs. 

Second order rotatable designs are useful when the objective is to 

have equal precision for all the responses that are equidistant from the 

origin. There are four possible procedures for constructing second 

order ratatable designs and depending upon the circumstances, one might 

be preferred over others. The procedures are: 

1. Equiradial sets procedure. 

2. Composite designs procedure. 

3. Imcomplete block designs procedure. 

4. Simplex-sum designs procedure. 

The most attractive procedure seems to be composite designs method. 
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Since second order designs are normally built by adding points to 

first order designs, composite designs and central composite rotatable 

designs are widely applied in practice. The other methods developed for 

forming second order rotatable designs do not use all the observations 

employed for estimating first order effects and, therefore, are not as 

efficient. 

One characteristic of sequential experiments is that sets of 

experiments are conducted at different times leading to a possible source 

of variation among observations. Consequently, blocking techniques have 

been developed to take into account time variation and other heterogeneous 

experimental conditions. In simulation, however, one is generally able 

to control the experimental conditions and, therefore, eliminate the need 

for blocking. But blocking, through random numbers, has been considered 

as a means for increasing the efficiency of simulation. Most empirical 

findings to date indicate that simulation responses generated by the same 

random numbers are positively correlated. Similarly, responses generated 

· by a random number and its antithesis are negatively correlated. Having 

taken these findings for granted, Schruben and Margolin (52) investigated 

alternative assignment of random numbers and concluded the following: 

If N· experimental points admit orthogonal blocking into two blocks, 

preferably chosen to be equal, then assigning a set of random numbers to 

the observations in one block and its antithetic set to the second block 

results in a smaller D-value than the assignment of common random numbers 

to all the design points or different random numbers to all the design 

points. D-value refers to the determinant of the estimator dispersion 

matrix. 
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When response surface designs are planned and performed at one time, 

the application of the aforementioned assignment rule will not pose any 

problem. ·But, because response surface methodology is performed in steps, 

appropriate measures need to be taken to assure compliance with the rule. 

Specifically, addition of experimental points to first order designs 

conducted in two orthogonal blocks should keep the blocks mrthogonal. 

Factorial and fractional factorial designs recommended for fitting 

first order polynomials can be divided into two orthogonal blocks by 

identifying a defining contrast(s)! Theories of confounding help one 

decide which contrasts should be selected for blocking purposes. 

When the objective is to form second order designs in two orthogonal 

blocks by adding points to a first order design, the first order design 

should be large enough to provide estimates of the main effects plus 

those of paired interaction effects. First order designs meeting this 

condition are labeled as designs of type B' and a list of them was given 

in Chapter IV. Additionally, it was shown how designs of type B' and 

its associated second order designs can be performed in two orthogonal 

blocks. 

It is important to emphasize that not all the first order designs 

used at different stages for estimating first order effects have to be 

designs of type B'. Except for .the last first order design that will 

be augmented by additional observations to estimate second order 

coefficients, the rest could be designs with fewer number of 

observations. The designer's knowledge about the problem is the key 

determinant of the number of experimental points. For instance, if the 

designer knows that the initial experiments are far from the optimum, 
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he may decide to use a design with the minimum number of observations 

just to estimate the main effects. 

The Methodology presented in this paper and the common streams of 

random numbers are equally efficient in estimating all the main and 

interaction effects; and they are both more efficient than the 

independent streams of random numbers in estimating those effects. 

However, the common streams of random numbers provides the least 

efficient estimate of the mean effect. The question of whether the 

proposed Methodology is more efficient than the independent streams of 

random numbers in estimating the mean effect and the extent of its 

efficiency over the common streams of random numbers is answered by 

the magnitude of the positive and negative correlations. It was shown 

that, the larger the magnitude of the neg~tive correlations induced, the 

more efficient the proposed Methodology will be. However, even if the 

antithetic random numbers produce zero or positive corrcelations less 

than the positive correlation induced between the points in the first 

block, the proposed Methodology will still be more efficient than the 

common streams methodology for estimating the mean. 

The objective of a designer in early stages of response surface 

methodology is to estimate the main effects as accurately as possible 

to determine the steepest ascent or descent path. Thus the proposed 

Methodology that uses Schruben and Margolin's assignment rule and the 

common streams of random numbers are both more efficient than independent 

streams of random numbers. Also, because of providing a better estimate 

of the mean as compared to the common streams of random numbers, the 

proposed Methodology appears to be the best choice. 
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When the search process has been led to the near-stationary region, 

the efficiency of the interaction effects then becomes as important as 

the efficiency of the main effects. An argument against the recQmmended 

Methodology would be that it confounds the estimate of one or more 

interaction effects in dividing the observations into two orthogonal 

blocks. Ho~ever, in a problem with more than two factors, it is not hard 

to find a high-order interaction effect that is expected to be insignifi~ 

cant and can be used for dividing the observations into two blocks. 

The result of the empirical work strongly supported the idea of 

using response surface methodology in simulation. Response surface 

methodology required a limited number of trials to either find the 

optimum (local) or to discover the functional relationship between the 

controllable conditions and the simulation responses. 

The examination of the example reported in Chapter IV and other 

examples not reported in detail provided valuable insight about the 

application of response surface methodology in simulation. Some of the 

pitfalls in applying response surface methodology to simulation and the 

way to minimize their impact are as follows. 

Generally speaking, the performance of the respor.ae surface 

methodology strongly depends on the magnitude of the experimental error. 

The response surface methodology is successful when the experimental 

error is small. The stochastic nature of simulation causes volatility 

in responses that can lead to large experimental errors. This problem 

is aggrevated when the experimental points under investigation are too 

far apart. 

Therefore, successful application of response surface methodology to 

simultion requires, first, the units selected for the variables to be 
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small so that the experimental points are not too far apart. Second 

each experimental point should be run for adequate intervals or periods 

of time to allow for erosion of erratic variations. Another strategy 

would be replication of observations at each experimental point. 

Replication of observations is in contrast to the spirit of this 

research, that is, accomplishing the objective of a simulation study 

with the least possible number of observations. Additionally, very 

little discussion exists in the literature about the assignment of 

random numbers to the experimental points of a design when the trials 

are replicated. 

With respect to random numbers assignment rules, the findings of 

this study do not support the argument that the common random numbers 

technique performs better when the policies compared are small perturba

tions of each other. The findings, however, suggest that the magnitude 

of the induced positive correlations depends on the specific pairs of 

the design points. With respect to the antithetic random numbers, the 

magnitude of the induced negative correlations was larger when the 

experimental points were further apart. In other words, moving the 

experimental points closer to each other adversely affected the 

magnitude of the negative correlations. The magnitude of the induced 

negative correlations could have been increased, to a limited extent, 

by the increase in the variability of demand. 

Due to the nature of simulation no specific recommendation can be 

made about the assignment of random numbers to response surface designs 

used in simulation. However, the empirical findings lend support to 

the belief that the deliberate manipulation of random numbers in most 

cases will enhance the efficiency of the simulation results. A few 
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pilot runs and an early check on the signs and magnitudes of the induced 

correlations will signal the appropriateness of an assignment rule. 

In summary, this study developed an efficient methodology for 

assigning random numbers to the experimental points of response surface 

designs used in simulation. Moreover, it developed a different format 

for presentation and categorization of response surface designs to 

encourage and facilitate their future application mainly in simulation. 

A simulation designer with some knowledge of a problem and an objective 

will, hopefully, be able to appreciate this presentation and use it for 

selecting an appropriate design. 

Recommendations 

Response surface methodology is the union between the fields of 

nonlinear programming and experimental designs. While steepest ascent 

method is an improvement over using the "one variable at a time'; 

technique, its superiority over other nonlinear optimization tools is 

questionable. There is a need for a study to examine the feasibility 

of applying more efficient nonlinear optimization tools to response 

surfaces •. 

Response surface methodology has, so far, been limited to uncon

strained optimization problems.· However, there are circumstances in which 

the optimum conditions should be found given that a number of constraints 

are present. Thus, a new direction of research would be examination of 

experimental designs as they apply to constrained optimization problems. 

Another avenue of future research lies in application of multi

variate analysis, canonical correlation analysis in particular, to 

problems with multiple responses. 
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When response surface methodology is used in simulation, the 

magnitude of the experimental error may make it desirable to replicate 

the observations at each design point. The analytical and empirical 

investigation of random number assignment rules for designs with 

replicated observations accouter an opportunity for future research. 

Generation of response surface designs of higher order or with new 

features is also a challenge to be confronted in the future. But 

with the theory far ahead of the practice, and given the adequacy of 

second order polynomials in most cases, the gain to be obtained by 

pressing for new designs does not appear to be of a great value. 
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