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Abstract. The metabolic theory of ecology assumes that rates of selection and adaptation for organisms
are functions of temperature. Niche theory predicts that strong selection pressure should simplify assem-
blages as species are extirpated and taxa pre-adapted for the new environment thrive. Here, we use closed
mesocosms to test the prediction that higher temperatures decrease species richness and increase assem-
blage similarity more and faster than lower temperatures. We incubated two temperate forest soil types at
constant temperatures from 10° to 35°, destructively sampling mesocosms at 30, 180, and 440 d. We quanti-
fied taxonomic richness and assemblage similarity of soil bacteria using 16S rRNA gene amplicons. As pre-
dicted, mesocosms at higher temperatures lost more taxa than those at lower temperature. Contrary to
predictions, the simplified assemblages at higher temperatures became less similar to each other over time.
After 440 d of incubation, the number of taxa lost was a linear function of the difference between treatment
temperature and site mean annual temperature, while assemblage similarity decreased as an accelerating
function of this temperature difference.
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INTRODUCTION

A dominant theme in global change biology is
the role of temperature as a selective filter where
the temporally stable species in an assemblage
have non-negative fitness and thus maintain

population sizes at the temperatures they experi-
ence at that place and time. A corollary of a spe-
cies’ thermal niche matching their environments
is that as environments change, assemblages
should change predictably, with extirpations of
those species with thermal niches further from
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the new temperature regime, and increases in
and/or colonization by species adapted to this
new environment.

Soil bacteria are vital to ecosystems (Bell et al.
2005), yet the temporal stability of diversity and
composition of soil microbial assemblages has not
been well characterized. Most such studies focus
on the dynamics of whole assemblage traits (e.g.,
respiration or microbial biomass, e.g., Bradford
et al. 2008, de Vries and Shade 2013, Pold et al.
2016, Romero-Olivares et al. 2017). Given their
immense diversity and short generation times,
microbial assemblages should be able to react to
changes in climate, especially temperature, faster
than macrobes (Wallenstein and Hall 2011).

Predicting the dynamics of hyper-diverse micro-
bial assemblages in a warming world is a major
challenge to microbial ecology, one compounded
by taxon-specific responses to temperature (Davis
1981, Bradford et al. 2008, Pold et al. 2016), the
increased number of potential species interactions
(Widder et al. 2016), and functional redundancy of
microbial taxa (Wohl et al. 2004). Adding to these
difficulties, temperature can have two major
effects on microbial assemblage dynamics. First,
temperature is a template for selection and adapta-
tion (Garcia-Pichel et al. 2013). Second, tempera-
ture delimits generation time of microbes
(Ratkowsky et al. 1982) and thus the rates at
which species filtering and adaptation can occur.

Generation time in microbes scales with tem-
perature (Ratkowsky et al. 1982). For example,
generation time in Escherichia coli varies 2 orders
of magnitude (from ~1.75 d to 21 min per gener-
ation) from 10°C to 40°C (Ingraham 1958). While
cold temperatures can be fatal to bacteria (e.g.,
Rivkina et al. 2000), many have evolved the abil-
ity to survive cold temperatures (Walker et al.
2006, Schimel et al. 2007). Thus at lower (but not
fatally low) temperatures, bacterial assemblages
should change little, as they are dormant, less
metabolically active, and not changing in abun-
dance, which we will call “the cold-storage
effect.” At higher temperatures, bacterial assem-
blages have the capacity to change quickly as
higher metabolic activity can alter resource con-
centrations and faster generation times can
quickly result in large shifts in assemblage struc-
ture and diversity.

If the match between an environment’s tem-
perature and the thermal ecology of potential

taxa ultimately determines taxon composition
(e.g., through species filtering), then assem-
blages in a closed system (i.e., with no immigra-
tion) should change more and faster at higher
temperatures. Higher temperatures should lead
to more extirpations of species with relatively
low critical thermal maxima, increasing the rela-
tive abundance of species (and therefore the
likelihood of being sampled) with relatively
high critical thermal maxima. Thus at higher
temperatures, mesophilic and thermophilic bac-
teria (Rothschild and Mancinelli 2001) should
do well relative to psychrophiles (Siddiqui et al.
2013). Higher temperatures also allow faster
replacement, via decreased generation time for
the species that have not yet hit their critical
thermal maxima. Thermal niches matching
home environments also mean that the change
should be predictable, as environmental filtering
would leave species from the subset of taxa that
can survive the higher temperatures. Thus,
without immigration and with a greater increase
in temperature, microbial assemblages should
lose more species and become more similar in
composition.
If, on the other hand, taxa do not vary in

their thermal ecology and share resource needs
(i.e., neutral theory; Hubbell 2001), then the tem-
poral dynamics (of a closed system) would be dri-
ven by changing resource concentrations. With
higher metabolic rates driving faster resource con-
sumption, assemblage change would be faster but
follow a random walk where assemblages can
become more different from each other over
longer time periods and at higher temperatures.
Here, we use mesocosms stocked with soil

(and their constituent bacterial flora) from two
coniferous forests to examine how the diversity
and compositional similarity of bacterial flora
change over time across temperatures from 10°C
to 35°C. Our expectation was that, through spe-
cies filtering and/or adaptation, (1) individual
site by temperature treatments (e.g., Niwot 35°C)
would become more similar to each other over
time; (2) that this homogenization would occur
fastest at higher temperatures; and that (3) this
homogenization will be more complete and hap-
pen more rapidly for soils with a greater temper-
ature difference between the mean annual
temperature of their home environments and our
temperature treatments.
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MATERIALS AND METHODS

Soil collection and incubation
We collected ~30 L of soil from the top 10 cm

of mineral soils from two sites in July 2013. The
first was from old-growth forest at H.J. Andrews
Experimental Forest LTER in Oregon, USA
(HJA), at 860 m elevation. The second site was
from a spruce forest at Niwot Ridge LTER in Col-
orado, USA (NWT), at 3186 m elevation. HJA
has a mean annual temperature (MAT) of 8.5°C,
and NWT has a MAT of –3.2°. See https://lterne
t.edu/site-characteristics for additional character-
istics of the two sites. Soils were taken to Nor-
man, OK, and incubated within 72 h of
collection. Total carbon (C) and total nitrogen (N)
in the soils were measured by a LECO TruSpec
Carbon and Nitrogen Analyzer (LECO Corpora-
tion, St. Joseph, Michigan, USA) at the Soil,
Water and Forage Analytical Laboratory at Okla-
homa State University (Stillwater, Oklahoma,
USA).

Each mesocosm was comprised of 500 mL of
homogenized, sieved soil placed in a 900-mL
plastic cup with a tight-fitting lid. A piece of
sterile cotton was used as a stopper in a 1-inch
hole drilled through the lid to allow ventilation.
Each mesocosm was weighed at the start of the
experiment, and that weight was maintained
throughout the experiment by adding distilled
water.

For both soil types, we incubated nine meso-
cosms at temperatures of 10°C, 15°C, 20°C, 25°C,
30°C, and 35°C. We sampled the homogenized,
sieved soils at time zero (i.e., before incubation)
and then sampled three of each temperature
treatment at 30, 180, and 440 d. Sampled soils
were stored at �80°C until all were completed
and analyzed.

Molecular methods
DNA extraction.—Ten grams of soil was col-

lected from different parts of each well-mixed
soil sample and ground in liquid nitrogen. One
gram of this sample was used for microbial
assemblage DNA extraction by DNeasy Power-
Soil DNA Isolation Kit (QIAGEN, Hilden,
Germany).

Library preparation and sequencing.—A two-step
PCR amplification method was used for PCR pro-
duct library preparation as described previously

(Wu et al. 2015). In the first-step PCR, the stan-
dard primers were used to amplify the V4 region
of prokaryotic 16S rRNA genes (515F [50-GTG
CCAGCMGCCGCGGTAA-30] and 806R [50-GGA
CTACHVGGGTWT CTAAT-30]). In the second-
step PCR, phasing primers were designed and
used to increase the base diversity in sequences of
sample libraries. PCR amplification and purifica-
tion were the same as reported previously (Wu
et al. 2015), except amplification cycles (10 cycles
in the first step and 20 cycles in the second step
for the 16S rRNA gene). Sample libraries were
then sequenced by a MiSeq platform (Illumina,
San Diego, California, USA) as described previ-
ously (Caporaso et al. 2012).
Data processing.—Sequencing data generated

from MiSeq were processed to combine paired-
end reads and to filter out poorly overlapped
and unqualified sequences by using a Galaxy
pipeline at http://zhoulab5.rccc.ou.edu:8080.
After demultiplexing of raw fastq data (barcode
error is set as zero) and primer trim, the reads
with average quality score <20 were removed by
Btrim (Kong 2011, Caporaso et al. 2012) and the
paired-end reads were combined by Flash
(Mago�c and Salzberg 2011). Then, sequences con-
taining N (unidentified base) or with length out
the range 240–260 bp (without primers) were
removed. Chimeras were detected by UCHIME
(Edgar et al. 2011) and OTUs were generated by
UCLUST (Edgar 2010) with 97% sequence simi-
larity threshold. The reference databases of 16S
rRNA genes were from Silva SSU 128 release
(Edgar 2010, Quast et al. 2013). OTUs detected in
negative control samples were removed as arti-
facts and/or contaminants. OTUs were identified
taxonomically using the RDP classifier based on
16S rRNA training set 16 (Wang et al. 2007). The
representative sequences were used to build phy-
logenetic tree by FastTree (Price et al. 2009, 2010)
after aligned by PyNAST (Caporaso et al. 2010).
Global singletons were removed as they may be
sequencing errors and are unlikely to affect eco-
logical metrics (Brown et al. 2015) and samples
were rarefied to the same sequencing depth
(20,000 reads) before further analysis.

Statistics
All analyses were performed in R version

2.15.1 (R Core Team 2012). To examine the over-
all effects of site, days, and temperature on
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diversity and assemblage similarity, we used
generalized linear models. For OTU richness, we
used the Poisson distribution with a log link. As
Chao diversity estimates were highly and posi-
tively correlated with OTU counts (r2 = 0.97; see
Appendix S1: Fig. S2), we used S (i.e., OTU rich-
ness) for analyses. For Bray-Curtis similarity
(which can range from 0 to 1), we used a quasi-
binomial distribution with a probit link. We
entered site (Niwot or HJA), temperature (10°C,
15°C, 20°C, 25°C, 30°C, and 35°C), and number
of days (0, 30, 180, and 440). To allow tempera-
ture to be a continuous variable, we assigned
time zero samples 22.5°C, the mean of all our
temperature treatments. While choosing this
temperature for time zero is arbitrary, the results
of interest are how diversity and similarity
change across temperature and time.

As a large number of OTUs were rare, to make
certain that differences in assemblage composi-
tion were not the result of rare species (Shade
et al. 2014) and thus large numbers of zeros in
the presence–absence matrix, we repeated the
Bray-Curtis similarity analysis using the taxa that
were among the 200 most numerically abundant
taxa from each site by temperature treatment.

To understand the importance of relative
change in temperature on assemblage dissimilar-
ity, we performed linear and quadratic regression
on the difference in temperature between the
treatment and MAT of the site. All treatments
were higher than the MAT of both sites, but as
the MAT of Niwot was colder than HJA, the rela-
tive changes were larger. To choose between the
linear and quadratic models, we used ΔAIC
where a decrease in ΔAIC ≥ 2 with the addition
of the quadratic term indicated a better model
(Hilborn and Mangel 2013). We expected that
higher temperatures and higher temperatures
relative to MATwould have the greatest decrease

in diversity and highest increase in assemblage
similarity due to the stronger selection for heat-
tolerant taxa.

RESULTS

Our methods detected a total of 105,146 OTUs at
97% sequence identity with 63,643 OTUs from
Niwot soils and 69,372 OTUs from HJA soils. Gen-
erally, OTU richness declined more and assemblage
similarity decreased more for (1) higher incuba-
tion temperatures, (2) longer incubation times, and
(3) soils from the colder forest, Niwot (Table 1,
Fig. 1).

Soils lost OTUs over time especially at higher
temperatures
Both sites lost OTUs at higher incubation tem-

peratures, but soils from Niwot lost more OTUs
than those from HJA. At HJA, the average OTU
richness at time zero was (mean � SD) 5650 �
305 OTUs (Fig. 1a). After 180 d of incubation,
OTU richness of HJA soils declined significantly
for the two highest temperatures. At 30°C, OTU
richness had declined by 9% to 5196 � 23 OTUs,
while at 35°C, it had declined by 17% to
4673 � 370 OTUs. These declines continued at
these temperatures after 440 d of incubation with
30°C losing 15% (4813 � 504 OTUs) and 35°C
losing 44% (3175 � 880 OTUs) of the initial OTU
richness. The 25°C incubation did not change sig-
nificantly in OTU richness. After 440 d of incuba-
tion, OTU richness for HJA soils increased
significantly for the three coldest temperatures
(10°C = 10%, 15°C = 16%, and 20°C = 18%). As
there were no significant increases for the three
coldest treatments at Niwot, these increases in
OTU richness were likely due to increases of
population sizes of rare species not detected at
time zero, not immigration or contamination.

Table 1. Results of generalized linear model of the effects of temperature, number of days, and site on OTU rich-
ness (using a Poisson distribution) and Bray-Curtis dissimilarity (using a quasi-binomial distribution).

OTU richness Bray-Curtis dissimilarity

Coef. SE z value Pr(>|z|) Coef. SE t value Pr(>|t|)

Intercept 9.16 0.004 2288 <0.001 �0.30 0.025 �12.32 <0.001
Temperature �0.016 0.0002 �105.6 <0.001 0.018 0.0009 19.93 <0.001
Days �0.0007 7.5 9 10�6 �92.32 <0.001 0.0014 0.00005 25.29 <0.001
Site(Niwot) �0.17 0.003 �66.11 <0.001 0.27 0.015 13.70 <0.001

Note: Coef., coefficient estimated by the model; SE, the standard error of the coefficient.
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Over the span of the experiment (i.e., 440 d),
Niwot OTU richness decreased significantly
for all but the coldest temperature (10°C). By
day 180, diversity had decreased significantly
(13.5–47.7%) at 25°C, 30°C, and 35°C; by day
440, soils in the 15°C and 20°C growth chambers
had also decreased significantly (29.2–34.7%),
while soils at warmer temperatures continued to
lose OTUs.

Between-mesocosm similarity of communities
decreased at warmer temperatures
Mean Bray-Curtis similarities started near 0.43

for both sites (0.428 for HJA and 0.432 for Niwot;
Fig. 1c and d) and had not changed after 180 d.
After 440 d, all soil assemblages were signifi-
cantly less similar than day 0 except the coldest
(10°C) treatments (Fig. 1c, d, Table 1) and HJA
soils at 25°C. In Niwot soils, similarity generally

Fig. 1. Soil bacterial assemblages in closed mesocosms lost more OTUs at higher temperature and longer incu-
bation periods at HJA (a) and more so at Niwot (b), having one-half (HJA) and one-third (Niwot) of the starting
OTU richness at 35°C after 440 d of incubation. These assemblages also became more dissimilar at higher tem-
peratures and longer incubation periods at HJA (c) but more so at Niwot (d). The x-axis is not proportional.
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decreased as a function of temperature. HJA
showed a more complex pattern where 20°C and
35°C decreased in similarity more than the 25°C
and 30°C mesocosms.

When we focused on only the most common
OTUs, the outcome—decreased similarity over
time at the higher temperatures (Appendix S1:
Fig. S1)—was also observed. For soils from the
colder Niwot site, the coldest temperature (10°C)
did not decrease significantly in similarity after
440 d. At HJA, the three coldest temperatures
(10°C, 15°C, and 20°C) also did not become less
similar after 440 d. Early in the experiment, some
of the colder treatments became more similar to
each other (Niwot 15°C and 25°C and HJA 10°C,
15°C, and 25°C at 30 d; Niwot 10°C and HJA
20°C at 180 d), but none were significantly more
similar at 440 d.

Differences between MATand treatment
We next tested the proposition that community

responses would be more proportional to the
deviation of temperature of the growth chamber
from the average temperature experienced in the
home environment. Using relative temperature
change, the difference between the site MAT and
the treatment, OTU richness declined over 440 d
of incubation as a linear function of temperature
increase (OTUs = 1999�171.9 9 Δ°C, R2 = 0.87,
P < 0.0001, AIC = 196.7; Fig. 2a). Adding the
quadratic term did not significantly lower the
AIC. Bray-Curtis similarity showed an accelerat-
ing decrease with temperature (ΔBC = 0.02�
(2.2 9 10�3 9 Δ°C) + (2.0 9 10�4 9 Δ°C)2,
R2 = 0.90, P < 0.0001, AIC = �52.8; Fig. 2b) with
the quadratic term significantly better than the
linear model (linear AIC = �44.8).

In summary, we detected fewer OTUs in our
closed mesocosms at higher temperatures and
with longer incubation times. With these
increased losses, mesocosms became less similar
as a function of both absolute and relative tem-
perature increases.

DISCUSSION

Here, we tested two predictions for the dynam-
ics of soil microbial assemblages in a warming
world. Consistent with the tenets of metabolic
and thermal ecology, assemblage dynamics—

Fig. 2. (a) Relative temperature change, the differ-
ence between experimental treatment temperatures
and the MAT of the sites in degrees C (d°C), is predic-
tive of both the number of species lost and increase in
Bray-Curtis dissimilarity over 440 d. The decrease in
OTUs is a linear function of temperature difference
(dOTUs = 1999 � 171.9 9 d°C, R2 = 0.87, P < 0.0001,
AIC = 196.7). Adding a polynomial term did not sig-
nificantly improve this fit (AIC of quadratic regres-
sion = 197.7). (b) The decrease in Bray-Curtis
similarity is accelerating with temperature difference
as the quadratic regression (dBC = �0.02 + (2.2 9

10�3 9 d°C) – (2.0 9 10�4 9 d°C)2, R2 = 0.90, P <
0.0001, AIC = �52.8) is a significant improvement
over the linear model (AIC = �44.8).
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driven by extinctions in these closed systems—ac-
celerated with temperature. The nature of these
assemblage dynamics, where extreme tempera-
tures over more than a year of incubation did not
favor a consistent subset of—presumably ther-
mophilic—taxa. Instead, the assemblages became
significantly less similar. Combined, our results
suggest that changes in microbial communities
due to warming may be difficult to predict.

In general, assemblages became less similar
over time, and this happened faster and to a
greater degree at higher temperatures. These
changes were not driven solely by the loss of rare
species. When considering only the most abun-
dant taxa, similarity decreased more at the high-
est temperatures and more for the soils from
Niwot (Appendix S1: Fig. S1). The coldest assem-
blages changed very little, as would be expected
when there is relatively little metabolic activity.
This cold-storage effect thus maintained assem-
blage diversity and similarity.

There may be a threshold temperature for the
cold-storage effect; thus, with climate change,
colder places may see the largest change if local
temperatures rise above that threshold. Assem-
blages became more dissimilar as an accelerat-
ing function of the difference between their
MAT and our temperature treatments, and this
relationship appears to inflect around 20°C over
MAT (Fig. 2b).

While we only compare two sites here, it is
notable that the results are consistent with the
importance of relative temperature differences,
not solely the absolute temperature of treat-
ments. The MAT of HJA is 11.7°C warmer than
Niwot, and the assemblages from HJA were
more robust to higher temperatures. The implica-
tion of this is that these assemblages may be
locally adapted to the temperatures they had
experienced, and thus, greater changes in tem-
perature should lead to greater simplification.

Temperature as a template for and a driver of
rates of selection

As absolute and relative temperature increases,
mesocosms lost more OTUs and became less sim-
ilar and did so more quickly. These results sug-
gest that at higher absolute temperature and
higher relative temperature change, temperature
acts both a selective template filtering species
and also the driver of the rate at which that

selection occurs. Increasing the metabolic rates of
a microbial assemblage decreases generation time
and increases rates of resource use (e.g., Rat-
kowsky et al. 1982). Thus, both niche and neutral
theories predict that individual turnover (birth–
death) will increase at higher temperatures.
Our initial assumption was that the stronger

selection from higher temperatures would sim-
plify the microbial assemblages, selecting against
psychrophilic OTUs and selecting for the subset
of thermophilic taxa. The decrease in OTU
richness, as well as the faster rates of decline at
highest temperatures, indicates that higher tem-
peratures are a strong selective agent leading to
lower OTU richness at faster rates. That said, we
assumed this selective simplification would be
non-random, selecting for more similar assem-
blages of warm-adapted taxa. We did not
observe this. At the highest temperatures, both
whole assemblages and the most abundant taxa
from those assemblages became more different
from each other over time.

Caveats
By design, our temperature treatments were

not realistic (e.g., no daily or seasonal variation,
temperatures much higher than predicted by glo-
bal warming models, no intentional re-immigra-
tion). Our goal was to focus solely on the
patterns and rates of one ecological process,
extinction. As there is no intentional immigration
in this system, the decrease in similarity could be
due to the lack of re-immigration. In variable but
open environments (e.g., the ocean), bacterial
assemblage diversity and composition were pre-
dictable at interannual scales (Gilbert et al. 2012).
That said, these results may be informative as it
is rare that you can isolate and replicate systems
and quantify the role of extinction alone, and, as
we have shown for the first time, the temperature
dependence of this extinction rate.
These two sites differed in more than just tem-

peratures. Niwot soils had significantly lower
total carbon than HJA (see Appendix S1:
Table S1), and we did not supplement carbon
resources over this experiment. Thus, it is possi-
ble that that the differences seen between Niwot
and HJA, where Niwot lost more OTUs, have
more to do with the Niwot mesocosms running
out of carbon faster than HJA. That said, if this
process were driven by selection due to limiting
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carbon, we would again expect the assemblages
to become more similar over time, as low-carbon
specialists would comprise a larger portion of
the assemblage.

When framed by the suggestion that “every-
thing is everywhere, but the environment selects”
(Baas Becking 1934, quoted in De Wit and Bovier
2006), these results indicate that one or both of
these suggestions are false. These mesocosms
closed to the immigration of novel and re-immi-
gration of extirpated species appear to either have
vastly different starting biotas (i.e., everything is
not everywhere) or that the environmental selec-
tion is merely temperature-driven extinction rates
that are not driven by species traits (i.e., are neu-
tral dynamics; sensu Hubbell 2001).

CONCLUSIONS

Our results show that higher temperatures can
lead to rapid simplification of soil microbial
assemblages through extinction. The magnitude
of species lost appears to be a linear function of
the difference between our temperature treat-
ment and the temperatures the soil microbes
experience in situ. The extinctions show no obvi-
ous directional selection for these assemblages.
In these closed systems, this assemblage-level
thermal churn, where higher temperatures
increase the rates of assemblage dynamics and
send microbial assemblages on seemingly ran-
dom walks to multiple final states, appears to be
an accelerating function of the temperature.
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