MACHINE LEARNING:

A POTENTIAL FORECASTING TOOL

By

JASDEEP SINGH BANGA

Bachelor of Science (Hons.) in Agriculture
Punjab agricultural University
Punjab, India
2004

Master of Business Administration
Punjab Agricultural University
Punjab, India
2006

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
December, 2017

MACHINE LEARNING:

A POTENTIAL FORECASTING TOOL

Dissertation Approved:

Dr. B. Wade Brorsen

Dissertation Adviser

Dr. Kim Anderson

Dr. Eric A. DeVuyst

Dr. Tim Krehbiel

Name: JASDEEP SINGH BANGA

Date of Degree: DECEMBER, 2017

Title of Study: MACHINE LEARNING: A POTENTIAL FORECASTING TOOL
Major Field: AGRICULTURAL ECONOMICS

Abstract: Technical analysis involves predicting asset price movements from analysis
of historical prices. Many studies have been conducted to determine the profitability
of technical analysis. A composite prediction is considered here by using the buy and
sell signals from technical indicators as inputs. Both machine learning methods like
neural networks and statistical methods like logistic regression are used to get
composite forecasts. Signals from trend-following and mean-reversal technical
indicators are used in addition to variance of prices as inputs. Variance is added to
help technical indicators switch between trend-following and mean-reversal systems.
Five commodities from agricultural, livestock and foreign exchange futures markets
are selected to test the hypothesis of profitability of technical indicators. Special care
is taken to avoid data snooping error.

None of the individual indicators or machine learning models generate significant
profit in single day forecasts. In twenty-day forecasts, only random forest and pipeline
models are profitable. Neural networks and statistical models both failed to deliver
here. The out of sample failure of the neural networks is partly due to the relatively
large number of parameters. Managed futures, however also did poorly in the out of
sample period so the results could also be due to picking a time period where
technical analysis did poorly. Individual indicators did occasionally show significant
profits. Random forests and decision tree find variance as the most important input.
Future research should consider alternative time periods, commodities, systems, and
machine learning algorithms. If a scale neutral variable for variance could be
developed, it should be used so that the models could be trained on data from multiple
commodities to provide more training data.

TABLE OF CONTENTS
Chapter Page

I. 1. MACHINE LEARNING: A POTENTIAL FORECASTING TOOL

INEEOTUCTION ..t ettt et e e e e e e e e et e e e e e e e ee e eeeeaeeeeans 1
TECNNICAL INAICALOTS ..ot e e eeeeeeeeeeeeeeeneees 5
PrediCtion IMOGEISttt e e e e, 9
Data aN0 IMETNOTS ... e 16
RESUIES ...ttt e e e e e et e e e e e e e e aas 20
CONCIUSTONS ... 31
REFERENGCES ... ettt e et a e e e e 34
APPENDICES .. .ottt a e e e 39

O

LIST OF TABLES

Page
Selected Technical Indicators and Their Formulas...........ccccoocvivviiiiiiininiinnennn. 10
Summary Statistics for the INdiCators............cocviiiiiiiice e 17
Summary of Model Performance in COPPEr........ccccveieiievieie e 25
Summary of Model Performance for COIMcooeirieienineneseeeeeeeee 26
Summary of Model Performance for Feeder Cattle...........ccccocevvevviiiiicince 27
Summary of Model Performance for Japanese Yencccccceveverenenineeiinniennn 29
Summary of Model Performance for Eurodollar............ccccooeveieeiiiiicciece 32
Summary of Significance of Profitability of Technical Indicators..................... 33
Summary of Variable Importance Using Random Forest..........ccccceevvvevvenenne. 34
Summary of Variable Importance Using Decision Tree........ccccccevvveverieervaennne 34

Introduction

Technical analysis involves predicting asset price movements from analysis of historical price
movements. Beja and Goldman (1980) argue that the trends exploited by technical analysis are due to
markets frictions that cause markets to be slow to adjust in the absence of technical trading. The trend-
following systems ride along on the actions of informed traders and work best when the market is
unstable. Reversal systems like oscillators should work well when the market is stable. One concern is
that the actions of trend-following technical traders can cause phenomena unrelated to economic

fundamentals.

Brorsen and Irwin (1988) report that among a survey of 32 large commodities fund managers,
only two were not using objective technical analysis. Oberlechner (2001) surveyed foreign exchange
traders and find that a majority of the foreign exchange traders use some sort of technical analysis.
Allen and Taylor (1992) found that 90 percent of traders in London use technical analysis as a primary
or secondary source of information. Park and Irwin (2007) found trading strategies based on technical
analysis were profitable in the futures markets until at least the early 1990s. As more money was
devoted to trading based on technical analysis, its profitability dropped. A large number of trend-
following technical traders may create market bubbles. Improved technical trading systems that could
optimally switch back and forth between trend-following and reversal systems could increase trader’s

profits as well as potentially reduce instability created by trend followers.

The efficient markets hypothesis says that the current price reflects all available information
about the commodity (Malkiel, 1989). In the absence of technical traders, markets have proven to be
slow to adjust due to market frictions such as risk averse traders and behavioral anomalies such as loss
aversion. Technical analysts recognize the trends arising from slow adjustments and exploit them.
Sometimes, even if the trend is random but many investors follow it then the subsequent prediction

becomes self-fulfilling, and sometimes creates a bubble. Boyd and Brorsen (1991) find a strong

relationship between market volatility and technical trading profits. This relationship could be useful

to traders in determining whether to use a trend-following or a reversal system.

Various technical trading rules have been used in past research. Lukac, Brorsen, and Irwin
(1988) use 14 trading systems approximating the full “universe” of trading systems. They find that
technical trading systems produced statistically significant net returns, as compared to the buy-and-
hold benchmark strategy over 1978-1985. Park and Irwin (2005) use 9,385 trading rules from 15 trading
systems to study the profitability of technical analysis and find that technical trading strategies have
not been profitable in the U.S. markets after correction for the costs and data snooping biases over
1985-2004. Various other studies like Ulrich (2009), Szakmary et al. (2010), Roberts (2005), Sullivan
et al. (2003), Olson (2004), and Neely (2003) find evidence both in favor and against profitability of
technical analysis. Roberts (2005) finds that technical rules were capable of generating significant out-
of-sample profits in only 2 of 24 futures markets studied. Park and Irwin (2007) find that out of 95
modern studies, 56 find technical trading strategies being profitable, 20 studies obtaining non-profitable
results and 19 studies having mixed results. They have expressed concerns about data snooping or

publication bias in these studies.

Pruitt et al. (1992) use a combination system of cumulative volume, relative strength, and
moving-averages to document profitability of a technical strategy over a buy-and-hold strategy in stock
markets over 1986-1990. Irwin et al. (1997) compare ARIMA models to performance of technical
trading system in soybean futures markets and find channel systems generate statistically significant
mean returns in their out of sample period. Allen and Karjalainen (1999) use a genetic algorithm to
learn technical trading rules and find that trading rules do not earn consistent excess returns over a buy-
and-hold strategy after considering transaction costs in the out-of-sample test periods of S&P 500 index.
Hamm and Brorsen (2000) develop a neural network trading model for agricultural commodities using
lagged prices as inputs to determine the profitability of trading using signals from neural networks and

find that neural networks did not produce significant profits. Ou and Wang (2009) use a logit model,
3

neural networks, classification tree based models among ten data mining techniques for prediction of

stock markets index movement and find that they have accuracy in forecasting stock price movements.

Most studies of technical trading strategies exhibit one or many flaws like no statistical tests of
return, no out-of-sample verification, data snooping problems are not given proper attention, and
significance of economic profit after transaction costs are not considered. Park and Irwin (2007, p. 817
) put forward three conditions for technical trading strategies that have to be satisfied for meaningful
inference: “(1) markets and trading systems should be comprehensively represented in original study
such that they can be considered broadly representative of the actually use technical systems, (2) testing
procedure must be carefully documented, so they can be “written in stone’ at the point in time the study
is published, and (3) the publication date of the original work should be sufficiently far in the past that
a follow-up study can have a reasonable sample size.” This study takes into consideration all three

conditions of Park and Irwin (2007).

One major difference between the present study and past studies is that, this study uses long-
short trading signals as inputs instead of technical indicators themselves, and also an additional input
representing the variance of prices is used. The potential of using long-short trading signals is that the
model trained on the signals from one commodity can be extended to other commodities. The idea
behind inclusion of variance of change in prices is that it should facilitate the switch between trend-
following and mean-reversal trading systems depending on market conditions. In addition to
determining the profitability of trading rules, random forests and decision trees can rank various trading
rules according to their importance in trend recognition. The other main contribution of this study is
comparison of the performance of random forests, decision tree, ensemble methods (Gaussian naive
Bayesian, random forests, support vector machine, linear regression, and decision tree classifier) and
single classifier models (Neural networks (NN), and logistic regression (LR)) in predicting the

commodity futures market’s direction using technical indicators. In addition, random restarts are used

to avoid the local minima problem of neural networks. This study also evaluates the individual technical

indicators.

Technical Indicators

Technical indicators provide buy-sell trading recommendations. Even though charting is also a major
type of technical analysis, this study only uses mathematically-derived trading rules. Mathematically-
derived technical indicators can be divided into two main groups: trend-following (lagging indicators)
and trend-reversal (leading indicators). Trend-following indicators are designed to follow price
movements and work best when markets have large price movements. Some popular trend-following
indicators include dual moving-average crossover, moving average convergence divergence (MACD),

and price channels.

Trend-reversal or leading indicators measure the momentum in the markets. They are designed
to lead the price movements and identify reversal of the trend. They represent price momentum over a
fixed past period and all prior price action before that period is ignored. This study uses both trend-
following and mean-reversal technical indicators such as moving average indicators, relative strength

index (RSI), stochastic oscillator, commodity channel index (CCI), price channels, and variance.

This study uses the dual moving average crossover system to generate buy and sell signals.
Moving-averages are trend-following techniques. Purcell and Koontz (1999, p. 175) say that “the idea
is that in an upward- or downward-trending market, the shorter moving average tends to move faster
and ‘leads’ the longer average. When the market turns, the shorter average turns more quickly and
crosses the longer and slower-moving average. It is this crossover action that generates the buy and sell
signals” (table 1). This study uses three types of dual moving averages namely (5, 10), (5, 20) and (10,
50). In the dual moving average (5, 10) and (5, 20) the 5 day moving average is considered the short

moving average (SMA) while 10 and 20 day moving average is considered the long moving average
5

(LMA). Dual moving average (10, 50) uses 10-day moving average as SMA and 50-day moving

average as LMA.

Relative strength index (RSI) is a popular momentum indicator and an oscillator. Like many
other momentum oscillators, RSI works best when prices move sideways within a range. RSI is
effective in both upward-and downward-trending markets. Purcell and Koontz (1999, p. 191).
Schwager (1984) consider RSI as important in bringing discipline to a hedging program. Usually a 14-
day look-back period is used for RSI calculation. RSI fluctuates between 0 and 100. RSI at zero means
prices moved lower for all of the 14-day period and average gain equals zero. RSl at 100 means prices
moved up all 14-days. If the RSI drops below 30 then it represents an oversold market and gives a buy
signal. If RSI moves to 70 or higher, it is signaling a correction towards the downside will occur and it

is a sell signal. This study uses both 14-day RSI and 9-day RSI (table 1).

Another oscillator used is the stochastic oscillator. It is a momentum indicator and compares
the closing price to the range of prices over a certain period of time. Thus it is used to forecast reversal
in the commaodity markets when it has reached oversold or overbought levels. It can range between zero
and 100. Usually a 14-day stochastic oscillator is used. The oversold threshold for a 14-day stochastic
oscillator is considered to be at 20, and overbought threshold is represented by 80. Stochastic oscillator
values below 20 indicate that the security is trading near its bottom level and thus generates a buy
signal. Value above 80 indicates that the security is trading near its top level and thus provides a sell

signal (table 1).

Another oscillator used is the commodity channel index (CCI). CCl is first developed to
identify cyclical turns in commodities markets but is now used for equities and currencies too. CCI
when used along with other oscillators can be helpful in estimating direction of price movement. CCI
usually fluctuates between -100 to +100 but values can go beyond this range. If readings on CCI move

above +100, it generates a buy signal and if it moves below -100, it is a sell signal. This study uses the

20-day period to calculate the CCI (CCI 20-day) and uses the typical price (obtained by the combined
average of high, low and closing price of the commodity on a given day) as well as mean deviation of
typical price. It is calculated by dividing the difference between “typical price (TP)” and 20-day SMA
of TP with the mean deviation of the TP. TP is calculated by taking the average of high, low and closing
price of the day. This study uses 20-day period to calculate the CCI. A constant (0.015) is added to
ensure that approximately 70 to 80 percent of the CCI values would fall between -100 and +100. It
measures the current price level relative to the average price level over a look-back period and CCl
readings are higher when prices are above their average and they represent a strong trend. While CCI

readings below -100 signal weakness in prices and thus give a sell signal (table 1).

A price channel is a trend-following system that consists of two lines representing support and
resistance (table 1). For a 20-day channel, the support line is the 20-day low and the resistance line is
the 20-day high. Price channels are used to represent trend direction for any security. They are used to
identify the start of an uptrend or downtrend. In the case of a 20-day price channel, a buy signal is
generated if the last day’s closing price is higher than the maximum of the previous 20 days (excluding
last day) and vice versa. While in the case of 50-day price channel, a buy signal is generated if the last
day’s closing price is higher than the maximum of the previous 50 days. Price channel does not include
the most recent period. For example a 50-day price channel for August 11 would be based on the 50-
day high and 50-day low ending the day before, August 10. This is done as a channel is not possible if

the most recent period was used. Table 2 provides the summary statistics for the indicators.

Boyd and Brorsen (1992) use simulated technical trading profits to study correlation of price
statistics and technical returns. They find trend-following systems are more profitable when price
volatility is high. Another important variable for the present study is standard deviation (CV) of changes
in close price. Yao et al. (2000) has indicated the importance of having a measure of volatility as an

input for the formulation of the neural network for forecasting. Volatility is an indication of an

impending (or in process) major move. The idea behind it is to include a variable that can help switching

between trend-following and mean-reversal systems.

Table 1. Selected Technical Indicators and Their Formulas

Name of Indicators Buy Signal __ Sell Signal Formulas
Ct + Ct—l + Ct—Z + -+ Ct—lO
Dual moving average crossover* SMA>LMA SMA<LMA X = 10
. . Y Uy 2P Dy
Relative strength index (RSI)** RSI>70 RSI<30 RST=100-100/(1+ (———/=——))
. . _ _M—MA;
Commodity channel index (CCl)* ~ CCI<-100 CCI>100 CCl = oD,
. . 0 _ Ct_L14- *
Stochastic oscillator %k** Yok = ———"=*100
14 14

o Lok
Stochastic oscillator %D** %D > 80 %D <20 oD = 2i=0 7Ot-1

20-day price channel Cpooi >MX Cp_q < MX MX = Max(Cp—z: Cn—21)

Note: * denotes trend-following system, ** denotes mean-reversal system, SMA is small
moving average (5 days), LMA is larger moving average (10 days), C; is the closing price, L;
is the low price, H;the high of the day, U, is the upward price change, D; is the downward
price change, My: (H + Ly + C)/3, MA; = (X7, My_i11)/n, Dy = (Xfoy Me_iyq — MA,),
SD, = \J1/14 (T 12,(C, — 1)2, p is the mean of 14-days, SD; is the standard deviation of
training data set, pg is the mean of training data set (Purcell and Koontz, 1999).

Table 2. Summary Statistics for the Indicators

%D

(Three Dugl Dugl Dugl RSI
Commodity %k Day CCc:jI 20- Moving Moving Moving (14- RSI
Average ay Average Average Average day) (9-day)
of %K) (10,5) (20,5) (50,10)
Copper
Max 100 100 362.25 1484.09 1477.81 1467.98 99.61 100
Min 0 0 -666.67 996.79 996.91 99741 0.16 0
Mean 52.26 52.27 8.58 1152.62 1152.51 1152.19 51.29 51.37
SD 37.28 345 111,93 11753 1175 117.38 17.21 20.78
Japanese Yen
Max 100 100 494,14 1000.55 1000.54 1000.52 100 100
Min 0 0 -666.67 999.6 999.61 99961 O 0
Mean 46.6 46.6 -5.95 1000.01 1000.01 1000.01 48.87 48.58
SD 37.35 34.66 112.65 0.17 0.17 0.17 17.94 21.52
Feeder cattle
Max 100 100 442.68 1127.64 1126.62 1124.79 100 100
Min 0 0 -666.67 983.16 98355 98426 O 0
Mean 53.31 53.31 6.68 1041.28 1041.26 1041.19 51.42 51.32
SD 37.44 3481 110.63 28.76 28.75 28.72 17.35 21.72
EuroDollar
Max 100 100 566.76 1030.95 1030.91 1030.85 100 100
Min 0 0 -666.67 999.97 1000.31 1000.8 0 0
Mean 56.53 56.53 18.16 10216 1021.58 1021.53 53.91 53.75
SD 38.9 36.32 114.15 6.71 6.72 6.77 21.37 25.8
Corn
Max 100 100 350.64 128795 1285.49 127531 95.68 100
Min 0 0 -666.67 425.95 42694 43895 O 0
Mean 47.58 47.57 -7.09 871.79 87199 8726 487 48.58
SD 37.35 3457 1115 188.91 188.64 187.8 17.11 20.84

Prediction Models

Several classification techniques have been use to predict the direction of financial markets e.g.

logistic regression (Ohlson, 1980; Pantalone and Platt, 1987; Dimitras et al., 1996, Brownstone, 1996),

multiple discriminant approaches (Altman et al., 1977, Ou and Wang, 2009), support vector machines

(SVM) (Huang et al., 2006; Kim, 2003; Lee, 2009), k-nearest neighbors (Subha and Nambi, 2012),

http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib12
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib13
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib4
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0085
http://www.sciencedirect.com/science/article/pii/S095741740600159X#bib2
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0350
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0230
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0255
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0290
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0440

decision trees (Wu, Lin, and Lin, 2006), neural networks (Kim and Chun, 1998), and ensemble models

(Chun and Park, 2005; Lunga and Marwala, 2006 ; Patel et al., 2015).

Lukac et al. (1988) use twelve technical systems for trading commodities and find four trading systems
produced significant net returns and significant risk-adjusted returns. Various statistical and machine
learning models like logistic regression, decision trees, random forests, artificial neural networks, etc.
are used for predicting accuracy of trading indicators. These models use their capabilities to recognize
pattern and trend of prices and use this knowledge to predict the direction of trade using technical
indicators. Direction of trade in buy-and-hold strategy essentially becomes a dichotomous classification
problem where class labels can take values of 1 or -1, with 1 representing a buy signal and -1

representing a sell signal.

Logistic regression is one of most commonly used modeling techniques of data classification
and is used to estimate the probability of arbitrary response based on one or more predictor variables.
Logistic regression uses a binary output value instead of a numeric value and uses the logistic

distribution function as the link function

e(b0+b1x)
prob(y =1) = REPCETE)
y €[-11]

where, y is a measure of the actual direction of prices (1 if prices went up and -1 if prices went down),
x is a vector of independent variables, b, is the bias or intercept term and b, is the coefficient for the
x, D is the trading signal where D = 1 (buy signal) if prob of success (price increase) > 0.5, D =

—1 (sell signal) if prob of success (price increase) < 0.5.

Decision trees are an important machine learning model. A decision tree algorithm splits the

data set according to a criterion that maximizes the separation of the data, resulting in a tree-like

10

http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0485
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0260
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0405
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0315
http://www.sciencedirect.com/science/article/pii/S0957417415003334#b0365

structure (Breiman et al. 1984). Gini impurity is one of the most commonly used criterions to split each

step in building the tree and is used to minimize misclassification. Gini impurity is computed as:

c
Gini (E) =1-— Zp}
j=1

where, Gini impurity for a set of items with ¢ classes, and j € {1,2,3, ..., c} and pj is fraction of items

labeled with class j in the set. The major advantage of using decision trees is that they are easy to
express as rules while the major disadvantage is that continuous variables are implicitly discretized by

the splitting process, losing information along the way (Dreiseitl and Ohno-Machado, 2002).

Random forests are another highly used machine learning technique for classification due to
their ability to model complex interactions among predictor variables. They have very high
classification accuracy and are considered robust with respect to noise. They can also be used for
determining variable importance. Random forest grows many classification trees, and each tree gives a
classification. The random forests prediction is the classification that receives the most votes across all

trees.

In random forest, each tree is grown as 1) N number of bootstrap samples of size N are drawn
at random with replacement from N observations (for this study the number of observations in the
training data set of each commodity is used as N). This bootstrapping procedure leads to better model
performance because the combination of multiple trees, decreases the variance of the predictions,
without increasing the bias. The process called “feature bagging” is used for candidate split in the
learning process. Under this process if there are M input variables, a number m <M is specified at each
node, m variables (held constant during the growing forest) are selected at random out of the M and the
best split on these m variables is used to split the node (for this study m= 4 and M = 11). This feature
helps to avoid the correlation due to the presence of very strong predictor variables and helps to avoid

overfitting of the training set. Each tree is grown to the largest possible extent without pruning.

11

All the above models are used independently, but forecasting research has long found that
composite forecasts outperform individual forecasts (Brandt and Bessler 1981). Lately new ensemble
learning algorithms provide tools to combine machine learning models and use them together as a single
model for classification purposes. An ensemble is a set of classifiers that learn a target function, and
their individual predictions are combined to classify new examples. Ensemble learning can improve
the performance of one or a number of models, and can be extremely useful when dealing with large
and complex data sets (Dietterich 2000). The idea of ensemble methodology is to weigh several
individual classifiers, and build a predictive model by integrating multiple models. In the simple
majority voting ensemble model that is used here, every model makes a voting (prediction) for each
instance of testing and the final prediction receives the maximum votes (lam and Suen, 1997). In simple
majority ensemble model, an equal weight of 1/k to each classifier where k is the number of classifiers
in an ensemble. The main advantage of the ensemble model is that the different classifiers are unlikely
to make same mistake. In fact, as long as every error is made by a minority of the classifiers, you will
achieve optimal classification. In particular, ensemble models tend to reduce the variance of the
classifiers, and thus can be very useful for reducing the overfitting of the data. Various studies (Maslov
and Gertner, 2006; Rodriguez et al., 2006; and Zhang and Zhang, 2008) have shown that the ensemble

can outperform individual predictors in many cases.

Neural networks are considered universal approximators due to their non-linear approximation
capabilities. Due to their flexible nature, they have potential to combine signals from various technical
indicators and recognize patterns. This flexible nature also results in overfitting the data and thus can
result in poor out of sample results. Hamm and Brorsen (2000) use closing prices as inputs for trading
using neural networks and conclude that it does not work. Neural networks require a large amount of
data to be estimated precisely. Daily futures data provides only a few thousand observations, so pre-
filtering via technical indicators might be helpful. In the present study, neural networks are trained

using the signals from technical indicators as described in appendix 18.

12

Data and Methods

Commodity futures have been of renewed interest due to the need of diversification in periods of high
volatility and potential equity-like benefits of commodity indexes (BIS, 2006). Commodity futures
have potential to generate higher returns of a security on a risk adjustment basis (alpha generation)
through long-short dynamic trading as well as their role of risk diversifiers (Chong, and Miffre, 2010).
These among several other features like deep and liquid exchange-traded futures contracts make futures
markets more attractive for active trading strategies than stock markets. It is interesting to consider
various ways to improve profitability of quantitative trading rules for commodity trading. Many studies
like Stevenson and Bear (1970), Lukac et al. (1988), Kidd and Brorsen (2004), and Sweeney (1986)
find technical trading to be useful for commodity and foreign exchange markets. A total of five futures
prices are selected based on these previous studies, continuity of contract, agricultural importance and
volume of trade. Data consisted of one grain (Corn, C), one currency (JapaneseYen, JY), one interest
rate (EuroDollar, ED), one metal (Copper, HG), and one livestock (feeder cattle, FC) futures markets.
The data used for trading is Corn(C) March 1969 futures contract to December 2016, JapaneseYen (JY)
March 1977 to December 2016, EuroDollar (ED) March 1982 to December 2016, copper (HG) October
1959 to December 2016, and feeder cattle data from March 1974 to December 2016. The time periods
were determined by data availability. The data is divided into training, validation and test data. Training
data comprise 70% of the whole data set while validation data comprise 20% and test data set comprises
10%. Depending on the commaodity, training data usually represented start of the contract to 2003, while
validation data set represents the time period of 2004-2012, and the test data set is 2012-2017. For the
continuity of the trading signal, rollovers are used. The 20" day of the penultimate contract month is
used as the rollover date. Continuous contracts are created by adding the change to the contract price
of the old contract month from the previous day. Continuous contracts are commonly used in simulating

technical trading as the technical signals in Table 1 depend upon changes in prices rather than price
13

levels. If the 20th is not a trading day then the last trading day before it is considered for calculations.
This is done to avoid distortions caused by high volatility during the final contract month and would
keep liguidity costs low by trading in a high volume contract. Closing prices are used for calculating

changes in prices..

Special care is taken to meet all three requirements laid down by Park and Irwin (2007) for
replication of technical trading strategies that have to be satisfied for meaningful inference. A pre-
analysis plan was prepared before starting work on the data and is given in appendix 16. Secondly data
snooping error in neural networks is avoided by using three sets of data (training, validation and testing)

while for other models only training and testing data sets are used.

The dependent variable is also bivariate, and consists of buy and sell signals. It is also scale neutral
and represents the direction of the futures markets. All the signals for the technical indicators are
calculated based on the pseudo price series. This is done to maintain continuity of contract roll overs
and scale neutral inputs. This price series is formed using changes in the closing prices of the futures
contract. Initial price level is assumed to be 1000 and subsequent prices are calculated by adding the

change in closing price to initial price level

P, = 1000

P2:P1+C2

PN=PN—1+CN

where, Py is the first pseudo price, and Cy is the change in closing price. A raw variable is calculated

by taking the difference of natural log of pseudo price series

R; = logP; — logP; 120

14

where, R; is the raw variable, P; is the pseudo price series. Dependent variable is the signals from the

raw variable which takes the form of -1 or +1
-1
Di = {

where, D; is the dependent variable, and R; is the raw variable, D; = —1if R; > 0and D; = 1

otherwise.

Comparison of the profit and loss based on prediction using logistic regression, random forests,
voting ensemble model, pipeline model and neural networks is done. Voting ensemble model is built
using logistic regression, random forests, Gaussian Naive Bayes, decision tree, and support vector
classification models. Random forest model is initially built with ‘20 trees’ and a batch of *10 trees’ is

added until the optimum is reached with lowest ‘Gini’ criteria.

A random number generator is used to pick 20 seeds initially and then the final seed for neural
networks is selected based on the profit of predictions. A validation data set is used for computing the
best random number for use in neural networks. This is done to ensure the purity of out of sample (test
data set) and also as neural networks suffer from the problem of local minima, best seed is selected
based on the highest revenue generated using the validation data set. The selected model is then used
for final neural network using the testing data set. This is done so as to avoid local optima and reach

global optima in neural networks. Three types of neural network models are built:

a) Single hidden layer neural network with five and 17 neurons using “limited-memory BFGS (-
bfgs)” algorithm and “Softmax” activation function, and Single layer with 17 neurons and
“tanh” activation function.

b) Three hidden layer neural network with five and 17 neurons using “l-bfgs” algorithm and

“Softmax” activation function.

15

c) Three hidden layer neural network with five and 17 neurons using “l-bfgs” algorithm and

“tanh” activation function.

L-bfgs is an optimization algorithm in the family of quasi-newton methods that approximates
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm using a limited amount of computer memory.
The difference between I-bfgs and bfgs is that I-bfgs uses only a few vectors that represent the
approximation implicitly rather than n*n as in bfgs. While “Softmax” (normalized exponential
function) is a generalization of the logistic function that transforms a K -dimensional vector z of
arbitrary real values to a k -dimensional vector o (z) of real values in the range [0, 1] that adds up to

1. The function is given by

e?

o(z); = ZK—’Z forj=1,..,K.

k=1€k

Also, tanh is the hyperbolic tangent function where output values range from (-1, 1). Thus
strongly negative inputs to the tanh will map to negative outputs in the neural network. Also, only
zero-values inputs are mapped to near-zero outputs. These properties helps the neural network to train

regularly.

More details about the neural networks (ANNS) have been discussed in appendix 13. Also ANNs
having more than one hidden layer is considered deep learning by some authors (Erhan et al., 2010).
No study to knowledge has compared the profitability of technical indicators in the commodity and
foreign exchange futures options markets using voting ensemble model and compared them with other

highly use statistical and* machine learning methods.

The inputs used are the bivariate buy-sell signals from the technical indicators while previous

studies have directly used the technical indicators directly (Sullivan, Timmermann, and White, 1999;

16

Chang and Osler, 1999; Neely, 2002; Lukac, Brorsen, and Irwin, 1988; Slezak, 2003). Most studies
scale the data into a range of [-1.0, 1.0] with the goal of independently normalizing each feature
component to a specific range, but doing so would result in a commaodity specific model. This study
uses the technical signals (-1 or 1), this way the information in the technical indicator can be as a
classification problem and the trained model can potentially be extended to other commaodities (if the
variance term was excluded). The idea behind this is that the model should be able to recognize the
complex trend and pattern of various indicators, theoretically this pattern should be same for all the
commodities. Thus theoretically, a model formed on one commodity could be used to make predictions
in any other commodity. In addition to the signals, a commodity specific input representing the variance

of the prices has also been used.

The training data is used to search for optimal parameters and these parameters are employed to
evaluate the out of sample performance of the model. Gross profit is calculated on the out of sample
data set. Number of trades is calculated based on the change in buy or sell signal from the previous
signal. Commission cost is assumed to be $5 per single turn (CME group (2016, 4 February). Net profit
is calculated by considering cost of trading and revenue generated from the trades. A short trading

position is taken initially and the account is settled at the end of the trading day

Si= 0; = 011

Ti = 0; = Oiy20

where, S; is the single day revenue, T; is the twenty day revenue, and O; is the opening price of the
21st day. Opening price of the next trading day is used to calculate profit to avoid liquidity bias.
Transaction cost is calculated by multiplying no. of trades with cost of trading per unit and size of the

contract. Total profit is then calculated by subtracting the total cost from total revenue

17

Total Cost = no.of trades * cost per unit * size of contract

Total profit for single day = Y-, S; — cost

n
Total profit for twenty day = Z T; — cost
i=1

Two types of forecasts, a) single day forecast, and b) 20 day forecast, are used to calculate costs per
trade and profit per contract. With a 20-day forecast, the position is held for 20 days without regard to

later price movements. Evaluation is done based on these two types.

This study is hypothesizing that signals from a pool of trend-following and mean-reversal
technical indicators in addition to a variable helping to switch between them when paired with modern
day statistical and machine learning tools have the potential to generate profit in commodity futures

markets.

Both individual and joint hypothesis tests are performed. The first hypothesis is to determine
if the technical indicators and quantitative methods generate significant profit for individual
commodities and the second hypothesis tests determine if any individual indicator or quantitative model

generates significant profit in all the five commodities.

Hypothesis test will be performed by combining the t-values of all the five commodities for

every individual indicator as well as each model

5'5’5’5’5
d 1
Ax —>(0, E)'
Avg.t-val
Net t — value = w,
Vs
5
1
Avg.t — value = < t;
i=1

18

where, t; is t-value for each commodity. Plugging numbers into the above formulas, gives the critical

t-value as 0.87.

Results

Trading is simulated on five commaodities. Table 3 describes the profit and number of trades for copper.
None of the individual indicators or models generated significant profit for single day profit. For 20-
day trading forecast, moving average (10, 50) and stochastic indicator generate significant profit.
Number of trades increase by more than two times when neural networks are used, this increases the
transaction costs and thus reduces the profitability of the technical trading systems using neural
networks. Number of trades is highest for the neural network with three hidden layers and each layer
with 17 neurons and ‘tanh’ activation function and 20 day prediction. Future research may want to
consider reinforcement learning (Deng et al. 2017) as a way of imposing a penalty for the number of

trades.

Table 4 gives the summary of model performance for corn. Only RSI (9 days), CCI 20 day,
and stochastic indicator have significant profit for single day forecast. Number of trades is highest for
stochastic indicator for both single day and twenty day forecast. For twenty day forecast but only
moving average (10, 50) generates significant profit. Stochastic indicator has the highest number of

trades for 20-day forecasts.

Table 5 presents the summary of model performance for feeder cattle. In feeder cattle, neither any
individual indicator nor any statistical or machine learning model is significantly profitable for both
single as well as twenty day forecasts. For single as well as 20 day forecasts, neural networks with three
hidden layers and 17 neurons with ‘I-bfgs’ algorithm and ‘tanh’ activation function has the highest

number of trades, while the pipeline model has the lowest number of trades.

19

Table 6 presents a summary of forecasting performance on Japanese Yen. Most of the statistical
and machine learning models are profitable in Japanese Yen, but only RSI (9 days) and CCI 20 days
individual indicators are profitable and only CCI 20 day generates significant profit for single day
forecasts. None of the other commaodities have this high of a success rate for statistical and machine
learning models. Another particular point is that these models are profitable not only in single day
forecast but also in twenty day forecasts. In the case of 20 day forecasts, six of the seven neural networks
generate significant profit along with random forest and moving average (5, 20). Neural networks with
three hidden layers and 17 neurons with ‘1-bfgs’ algorithm and ‘tanh’ activation function has the highest
number of trades, while moving average indicator (5, 20) has the lowest number of the lowest number
of trades with single day forecast. For twenty day forecast neural networks with three hidden layers and
17 neurons with ‘1-bfgs” algorithm and ‘tanh’ activation function is having highest number of trades,
while moving average indicator (10, 50) has the lowest number of trades.

Table 7 presents the summary of model performance for EuroDollar. As seen in Japanese Yen,
neural networks performed better in EuroDollar. Out of the five neural networks, three are profitable
but none of the statistical and machine learning methods are significantly profitable. While most of the
individual indicators do not generate profit in Japanese Yen, their performance is better in EuroDollar.
In fact, individual indicators performed best in EuroDollar as compared to the other four futures
markets. For single day forecast RSI 9 days and stochastic indicator generate significant profit. For
twenty day forecast moving average (5, 20), 20 day channel, and 50 day channel generate significant
profit. Neural networks with three hidden layer and 17 neurons with ‘l-bfgs’ algorithm and ‘tanh’
activation function has the highest number of trades for both single day and 20-day forecast.

Table 8 summarizes the results. No single technical indicator is significantly profitable in both
single day and 20 day projections. RSI (9 days), CCI (20 days), and stochastic oscillator do generate
significant profit in single day projections. Trend-following indicators like moving average (5, 20) and
moving average (10, 50) generated significant profit in 20 day forecast. RSI (14-days), 20 day channel,

50 day channel, and machine learning methods like neural networks do not produce any significant
20

result. Statistical methods like logistic regression, voting ensemble models, and random forests do not
generate any significant result in single day projections and logistic regression, pipeline model, and

voting ensemble models are loss making in 20 day projections.

21

Table 3. Summary of Model Performance in Copper

Single t - Cost of Cost of
Dag Mean value No. of 20 Day Mean value No. of Trades Profit for Net Profit Trades Profit for 20- Net Profit
y- profit Standard Trades Profit Profit Standard Trades for Single Single Day for Single for 20- for 20-days
Model Profit . . for . . for days ($/
(cents/ (Single Deviation Single (Single (cents/ (20- Deviation 20- (20 Day (S Day ($ day contract) S
Day g Day) Ib.) day) Day) Forecast /contract) /contract) Forecast /contract)
Ib.) Day day))
Moving average (5,10) -10.7 -0.01 0.98 035 110 9258 -0.1 419 071 110 550 -2673.75 -3223.75 550 2314563 -23695.63
Moving average (5,20) -23.66 -0.02 0.98 077 60 14963 0.15 4.19 115 60 300 5915 6215 300 37407.5 37107.5
Moving average (10,50) 236 0.02 0.98 077 28 66152 0.68 414 513 27 140 5899.75 5759.75 135 165380 165245
RSI (14-day) 5.86 0.01 0.98 019 25 54517 -0.56 416 -421 25 125 1465 1340 125 -136292 -136417
RSI (9-day) 20.54 0.02 0.98 067 47 31347 -0.32 418 241 46 235 5134 4899 230 -78367.25 -78597.25
CCl 20-day 227 0.02 0.98 074 43 14132 -0.15 419 -1.08 43 215 5675.25 5460.25 215 -35328.75 -35543.75
20-day channel -28.48 -0.03 0.98 093 92 580.72 -0.6 415 449 92 460 7121 7581 460 -145179.75 -145639.75
50-day channel -28.46 -0.03 0.98 093 24 -608.59 -0.63 415 471 24 120 71155 72355 120 -152146.75 -152266.75
Stochastic indicator 2253 0.02 0.98 0.73 3 58362 06 4.15 451 3 15 5633 5618 15 145904.88 145889.88
Logistic regression -29.28 -0.03 0.98 095 33 64372 -0.66 428 483 34 165 -7319.25 -7484.25 170 -160929.63 -161099.63
Random forest -27.75 -0.03 0.98 -0.9 37 -640.02 -0.66 428 -48 37 185 -6938.5 71235 185 -160004.88 -160189.88
Pipeline model 27.93 -0.03 0.98 -0.91 1 6763 0.7 427 -5.08 1 5 -6983 -6988 5 -169075.38 -169080.38
Voting ensemble model ~ -28.41 -0.03 0.98 093 242 47318 -0.49 43 353 238 1210 71015 -8311.5 1190 -118295.75 -119485.75
gi::a‘l’;ﬁ;";’zg’:ﬂe 1.97 0 0.98 006 129 7407 -0.08 433 055 116 645 493.25 -151.75 580 -18518.38 -19098.38
Neural k (th
Iai:: ;::"éor:elgtm;e:)’ -27.62 -0.03 0.98 09 125 656.36 -0.68 427 493 126 625 -6906 7531 630 -164089.13 -164719.13
Neural k (th
Iai:: ;:"L’f;;ng t;i) -11.97 -0.01 0.98 039 83 521.02 -0.54 429 -39 144 415 -2991.75 -3406.75 720 -130256.13 -130976.13
giﬁ:av'vﬂitffﬁke(fr'gfﬁ 36.74 0.04 0.98 12 155 55075 -0.57 429 -412 159 775 9184.25 8409.25 795 -137687.63 -138482.63
I':iz:a'lge:x’rgkn(:':agﬁ) 2135 -0.02 0.98 07 204 53 -0.05 433 039 157 1020 -5336.5 -6356.5 785 13248.88 -14033.88
gs::'\ﬂr":ﬁ:’;‘;’iémfnes) 4.49 0 0.98 0.15 243 244.1 -0.25 432 -181 250 1215 11225 925 1250 -61024.88 -62274.88
Neural network (three
layers, 17 neurons, -90.35 -0.09 0.98 294 255 -368.04 -0.38 431 274 255 1275 -22587.5 -23862.5 1275 -92009.88 -93284.88

tanh)

22

Table 4. Summary of Model Performance for Corn

Cost of Net Profit Cost of
Single Mean t-value No. of 20 Day Mean v No. of Trades Proflt for for Single Trades . Net Profit
Day ! : § value for Single Day Profit for for 20-day
. profit Standard for Trades Profit Profit Standard Trades K Day for 20-
Model Profit . e)) . for Single Forecast 20-day ($/ Forecast
(Single Deviation Single (Single (cents/ (20- Deviation (20- Forecast day
(cents/ 20- Day (S contract) (S
Day Day Day) Ib.) day) Day) Forecast
Ib.) day Forecast /contract) /contract)
/contract) (S)
($)
Moving average (5,10) -693 -0.58 8.02 -2.49 145 -1416.75 -1.2 39.42 -1.05 141 725 -34650 -35375 705 -70837.5 -71542.5
Moving average (5,20) -350.5 -0.29 8.04 -1.26 75 352.25 0.3 39.41 0.26 73 375 -17525 -17900 365 17612.5 17247.5
Moving average (10,50) -140.5 -0.12 8.04 -0.5 35 3972.75 3.36 39.29 2.94 34 175 -7025 -7200 170 198637.5 198467.5
RSI (14-day) 418 0.35 8.03 1.5 22 45.75 0.04 39.44 0.03 22 110 20900 20790 110 2287.5 2177.5
RSI (9-day) 560.5 0.47 8.03 2.01 48 1348.75 1.14 39.42 1 48 240 28025 27785 240 67437.5 67197.5
CCl 20-day 598.5 0.5 8.03 2.15 48 -3174.25 -2.69 39.35 -2.35 47 240 29925 29685 235 -158712.5 -158947.5
20-day channel -231.5 -0.19 8.04 -0.83 114 -10.75 -0.01 39.44 -0.01 110 570 -11575 -12145 550 -537.5 -1087.5
50-day channel -265.5 -0.22 8.04 -0.95 66 -1699.25 -1.44 39.42 -1.25 62 330 -13275 -13605 310 -84962.5 -85272.5
Stochastic indicator 1269.5 1.06 7.97 4.6 478 1182.75 1 39.41 0.87 468 2390 63475 61085 2340 59137.5 56797.5
Logistic regression 54 0.05 8.04 0.19 88 -1448.25 -1.23 40.66 -1.04 84 440 2700 2260 420 -72412.5 -72832.5
Random forest 274.5 0.23 8.04 0.99 82 929.75 0.79 40.67 0.66 79 410 13725 13315 395 46487.5 46092.5
Pipeline model 224 0.19 8.03 0.8 114 204.25 0.17 40.68 0.15 111 570 11200 10630 555 10212.5 9657.5
Voting ensemble model 262 0.22 8.03 0.94 154 -1519.75 -1.29 40.66 -1.09 151 770 13100 12330 755 -75987.5 -76742.5
Neural network (single g, ;¢ 8.04 069 161 209025 -177 4065 15 135 805 9625 8820 675 -104512.5 -105187.5
layer with 5 neurons)
Neural network (three
. 39 0.03 8.04 0.14 181 -973.75 -0.82 40.68 -0.7 161 905 1950 1045 805 -48687.5 -49492.5
layers with 5 neurons)
Neural network (three
-61 -0.05 8.04 -0.22 180 -1228.25 -1.04 40.67 -0.88 177 900 -3050 -3950 885 -61412.5 -62297.5
layers, 5 neurons, tanh)
N | k (singl
eural network (single g -0.07 8.04 032 261 21125 018 4068 015 213 1305 -4400 5705 1065 -10562.5 -11627.5
layer with 17 neurons)
N | k (singl
eural network (single ;g 0.23 8.04 1 229 167425 142 40.66 12 221 1145 13950 12805 1105 837125 82607.5
layer, 17 neurons, tanh)
Neural network (three 5, ¢ -0.26 8.04 113 201 -2579.75 -2.18 40.63 185 282 1455 -15800 -17255 1410 -128987.5 -130397.5
layers with 17 neurons)
Neural network (three
layers, 17 neurons, -114 -0.1 8.04 -0.41 327 -2777.25 -2.35 40.62 -1.99 380 1635 -5700 -7335 1900 -138862.5 -140762.5

tanh)

23

Table 5. Summary of Model Performance for Feeder Cattle

Cost of Net Profit Cost of
S:;agle Mean vatI;Je No. of 20 Day Mean tvalue No. of Tr?:res Sﬁ:‘oﬂ_}t I;(;r for Single Trades Profit for gftz'())tzzt
y. profit Standard Trades Profit Profit Standard Trades R € v Day for 20- 20-day v
Model Profit . . for) e for 20- Single Forecast Forecast
(cents/ (Single Deviation Sinale (Single (cents/ (20- Deviation da (20- Da ($ Forecast day S/ (S
Day n g Day) Ib.) day) v Day) v (S Forecast contract)
Ib.) Day Forecast /contract) /contract)
/contract) ($)
($)
Moving average (5,10) -205.6 -0.02 1.83 -0.35 97 -76.01 -0.08 8.61 -0.29 96 485 -1028 -1513 480 -380.03 -860.03
Moving average (5,20) -104.91 -0.01 1.84 -0.18 54 -200.48 -0.22 8.61 -0.77 53 270 -524.55 -794.55 265 -1002.38 -1267.38
Moving average (10,50) 6.41 0 1.85 0.01 28 -221.94 -0.24 8.61 -0.85 27 140 32.05 -107.95 135 -1109.68 -1244.68
RSI (14-day) 54.46 0.01 1.85 0.09 21 150.54 0.16 8.61 0.58 20 105 2723 167.3 100 752.68 652.68
RSI (9-day) 125.74 0.01 1.84 0.21 47 189.42 0.21 8.61 0.73 47 235 628.7 393.7 235 947.08 712.08
CCl 20-day 149.45 0.02 1.84 0.25 29 68.76 0.07 8.61 0.26 28 145 747.25 602.25 140 343.78 203.78
20-day channel -119.22 -0.01 1.84 -0.2 116 -729.16 -0.79 8.58 -2.8 116 580 -596.1 -1176.1 580 -3645.78 -4225.78
50-day channel -72.88 -0.01 1.84 -0.12 82 -1064.09 -1.16 8.54 -4.11 82 410 -364.4 -774.4 410 -5320.45 -5730.45
Stochastic indicator 94.76 0.01 1.84 0.16 49 367.78 0.4 8.6 141 49 245 473.8 228.8 245 1838.88 1593.88
Logistic regression -41.93 0 1.85 -0.07 15 -696.99 -0.76 8.82 -2.61 15 75 -209.65 -284.65 75 -3484.95 -3559.95
Random forest -64.59 -0.01 1.84 -0.11 43 -74.58 -0.08 8.85 -0.28 43 215 -322.95 -537.95 215 -372.9 -587.9
Pipeline model -33.14 0 1.85 -0.06 1 -645.68 -0.7 8.82 -2.41 1 5 -165.7 -170.7 5 -3228.4 -3233.4
Voting ensemble model -38.1 0 1.85 -0.06 129 -215.89 -0.23 8.85 -0.8 129 645 -190.5 -835.5 645 -1079.45 -1724.45
gi::a‘l’i::;ﬁzrjré;';g'e 41524 0 185 003 77 11046 -0.12 8.85 041 77 385 -76.2 -261.2 385 -552.3 -937.3
I':iz:jlwﬂit‘g’izrg::e 7853 -0.01 184 -013 129 169.85 0.18 8.85 063 125 645 39265 -1037.65 625 849.25 224.25
Neural network (three
layers, 5 neurons, tanh) -23.8 0 1.85 -0.04 117 -52.57 -0.06 8.85 -0.2 116 585 -119 -704 580 -262.85 -842.85
I':iz:a\,'\”::tl‘;’f:us:sg)'e 019 0 1.85 0 151 309.92 0.34 8.85 116 147 755 -0.95 75595 735 1549.6 814.6
gi::a'17"i2’:‘:;r':s(st':ﬂe) -5.56 0 185 -001 179 211.18 0.23 8.85 079 177 895 2738 922.8 885 1055.9 170.9
Neural network (three
layers with 17 neurons) -16.72 0 1.85 -0.03 197 635.56 0.69 8.83 2.38 196 985 -83.6 -1068.6 980 3177.8 2197.8
Neural network (three
layers, 17 neurons, 12.47 0 1.85 0.02 246 226.85 0.25 8.85 0.85 246 1230 62.35 -1167.65 1230 1134.25 -95.75

tanh)

24

Table 6. Summary of Model Performance of Japanese Yen

Single Mean tvalue No. of Twenty t-value Cost of Profit Net Profit Cost of . .
Day X for Day Mean . . Profit 20- Net Profit
f profit Standard) Trades g . Standard for 20- No.of Trades Single Day for Single Trades
Model Profit . . Single . Profit Profit . . day ($/ 20-day (S/
(Single Deviation (Single Deviation day Trades (Single ($/ Day ($/ (20-
(cents/ Da bay Day) (cents/ (20-day) Forecast Day) contract) contract) day) contract) contract)

¥) v Forecast v ¥) v v
:\;'i‘g?g average 049 -0.0005 0.01 263 104 092 00010 003 122 103 520 -61712.50 -62232.50 515 11470625 114191.25
:\;"’2‘3;‘% average 025 -0.0003 0.01 -1.34 2 178 00020 003 2.38 61 9 -31500.00 -31508.92 305 22308125 222776.25
:\fg‘gg)g average 012 -0.0001 0.01 -0.66 28 149 -0.0017 0.03 -1.99 27 140 -15537.50 -15677.50 135 -186243.75 -186378.75
RS! (14-day) 021 -0.0002 0.01 -1.10 27 337 00038 0.02 -4.63 7 135 2591250 -26047.50 135 42153125 -421666.25
RSI (9-day) 0.26 0.0003 0.01 136 47 366 -00041 002 -4.94 a6 235 32050.00 3181500 230 -457993.75 -458223.75
CCl 20-day 033 0.0004 0.01 178 37 085 -0.0009 0.03 -1.13 35 185 4110000 4091500 175 -105856.25 -106031.25
20-day channel 0 0.0000 0.01 0.00 86 044 -00005 003 -0.59 84 430 -12.50 -442.50 420 5541875 -55838.75
50-day channel 012 -0.0001 0.01 -0.64 32 157 -0.0018 0.03 -2.10 32 160 -14975.00 -15135.00 160 -196643.75 -196803.75
Is:;’;';iztr'c 011 -0.0001 0.01 -0.57 51 212 -0.0024 0.03 -2.83 50 255 -13400.00 -13655.00 250 -264906.25 -265156.25
Logistic regression 0.06 0.0001 0.01 030 103 100 00011 003 131 101 515 6987.50 6472.50 505 125356.25 124851.25
Random forest 021 0.0002 0.01 113 69 184 00021 003 2.41 67 345 2562500 25280.00 335 229687.50 229352.50
Pipeline model 0 0.0000 0.01 0.01 87 0.52 00006 0.03 0.68 85 435 125.00 -31000 425 65393.75 64968.75
|\'\/’1?3t(;neg| ensemble 003 0.0000 0.01 016 153 062 -00007 003 081 151 765 -3650.00 -441500 755 -77900.00 -78655.00
Neural network
(single layer with 5 0.03 0.0000 0.01 017 119 053 -00006 003 070 143 595 3962.50 336750 715 -6671250 -67427.50
neurons)
Neural network
(three layers with 0.3 0.0003 0.01 157 143 265 00030 003 349 156 715 36912.50 36197.50 780 33135625 330576.25
5 neurons)
Neural network
(three layers, 5 009 0.0001 0.01 047 171 193 00022 003 253 145 855 1113625 1028125 725 241356.25 240631.25

neurons, tanh)

Neural network

(single layer with 0.15 0.0002 0.01 0.80 161 2.83 0.0032 0.03 3.73 167 805 18912.50 18107.50 835 354106.25 353271.25
17 neurons)

Neural network

(single layer, 17 0.11 0.0001 0.01 0.61 149 1.95 0.0022 0.03 2.55 190 745 14248.75 13503.75 950 243175.00 242225.00
neurons, tanh)

Neural network

(three layers with 0.03 0.0000 0.01 0.14 211 1.30 0.0015 0.03 1.70 210 1055 3286.25 2231.25 1050 162581.25 161531.25
17 neurons)

Neural network

(three layers, 17 0.09 0.0001 0.01 0.48 265 1.70 0.0019 0.03 2.23 247 1325 11361.25 10036.25 1235 212406.25 211171.25
neurons, tanh)

25

Most of the validation sample is from year 2008 to 2012. In this period neural networks worked very well
and produced good profit (Appendix 1-10). Since the validation data set is also a kind of out of sample data
set, it is interesting to find that when these neural networks are tested on the test sample, many neural
networks were not profitable. Negative returns of commodity trading advisors for the period of 2011- 2016
is also observed by Barclay’s CTA index (Appendix 12). Neural networks are supposed to switch between
the trend-following and mean-reversal system as they have high potential for pattern recognition. But, they
were not successful.

Table 9 presents the ranking of variables performed by random forests on the basis of the impact
on predictor variable. Variance is ranked top among all the variables studied and has the most impact in all
the commaodities. RSI (14-days) and RSI (9 days), Moving average (10, 50), and CCI 20 days are the other
main variables important for prediction. 20 day channel and 50 day channel are always ranked lowest
impact on the predictor variable.

Table 10 presents the ranking of variables performed by decision tree. As ranked by random forest,
decision tree also ranked variance as the most important variable in having an impact on prediction. Also
RSI (14-days) and RSI (9 days), Moving average (10, 50), and CCI 20 days are the other main variables
important for prediction but one difference is that the importance percentage increased for RSI and other
variables but decreased for variance. Decision tree also ranked 20 day channel and 50 day channel as the

variables having lowest impact on the output variable.

26

Table 7. Summary of Model Performance for EuroDollar

Single t- t-) .
Day Mea.n value ZO_D?V Mean value Cost of . Profit Net Profit Cost of Profit 20- Net Profit
. profit Standard No. of Profit X Standard No. of Trades Single Day Single Day Trades
Model Profit) o for Profit . for ; day ($/ 20-day ($/
(Single Deviation - Trades (Cents/ Deviation Trades (Single s/ ($/ (20-
(cents/ Day) Single EUR) (20-day) 20- Day) contract) Contract) day) contract) contract)
EUR) v Day day v v

Moving average (5,10) 046 -0.0006 0.01 121 85 171 0.0022 0.05 122 81 425 57187.50 -57612.50 405 21406250 213657.50
Moving average (5,20) 037 -0.0005 0.01 099 46 335 0.0044 0.05 240 45 230 4656250 -46792.50 225 419062.50 418837.50
Moving average (10,50) 0.08 0.0001 0.01 020 22 133 0.0017 0.05 095 22 110 9687.50 9577.50 110 165937.50 165827.50
RSI (14-day) 009 -0.0001 0.01 024 33 6.84 -0.0089 0.05 495 33 165 1156250 -11727.50 165 -854687.50 -854852.50
RSI (9-day) 0.79 0.0010 0.01 209 41 639 -0.0083 0.05 462 41 205 9843750 9823250 205 799062.50 -799267.50
CCl 20-day 035 0.0004 0.01 094 33 3.85 -0.0050 0.05 276 32 165 44062.50 43897.50 160 48093750 -481097.50
20-day channel 0.43 0.0005 0.01 113 108 498 0.0065 0.05 358 108 540 53437.50 52897.50 540 622187.50 621647.50
50-day channel 0.61 0.0008 0.01 162 90 468 0.0061 0.05 336 90 450 76562.50 76112.50 450 585312.50 584862.50
Stochastic indicator 0.89 0.0011 0.01 398 137 105 -0.0014 0.04 105 133 685 111562.50 110877.50 665 -131250.00 -131915.00
Logistic regression 026 -0.0003 0.01 -0.70 1 475 -0.0062 0.05 3.34 1 5 3281250 -32817.50 5 593125.00 -593130.00
Random forest 0.06 0.0001 0.01 017 19 078 -0.0010 0.05 055 15 95 7812.50 7717.50 75 9811250 -98187.50
Pipeline model 026 -0.0003 0.01 -0.70 1 475 -0.0062 0.05 3.34 1 5 3281250 -32817.50 5 593125.00 -593130.00
Voting ensemble model 023 -0.0003 0.01 061 125 561 -0.0073 0.05 396 119 625 29050.00 -29675.00 595 70123750 -701832.50
Neural k (singl

eural network (single 0.03 0.0000 0.01 009 118 093 -0.0012 0.05 065 132 590 4062.50 347250 660 116862.50 -117522.50
layer with 5 neurons)
Neural network (three 0.32 0.0004 0.01 0.84 142 421 -0.0055 0.05 296 191 710 3968750 3897750 955 526125.00 -527080.00
layers with 5 neurons)
Neural network (three -0.61 -0.0008 0.01 161 134 039 0.0005 0.05 027 128 670 75925.00 -76595.00 640 48750.00 48110.00
layers, 5 neurons, tanh)
Neural network (single 008 -0.0001 0.01 022 120 052 0.0007 0.05 036 117 600 -10300.00 -10900.00 585 65000.00 64415.00
layer with 17 neurons)
Neural network (single 0.43 0.0005 0.01 115 107 423 -0.0055 0.05 298 139 535 54062.50 53527.50 695 529362.50 -530057.50
layer, 17 neurons, tanh)
Neural network (three 0.51 0.0007 0.01 136 148 189 -0.0025 0.05 132 132 740 64062.50 63322.50 660 -236237.50 -236897.50
layers with 17 neurons)
Neural network (three
layers, 17 neurons, tanh) 0.20 0.0003 0.13 005 166 119 -0.0016 0.05 084 164 830 25312.50 2448250 820 149362.50 -150182.50

27

Table 8. Summary of Significance of Profitability of Technical Indicators

Net t-value for Net t-value for 20-Day
Model .
Single Day Forecast Forecast

Moving average (5,10) -1.41 0.08
Moving average (5,20) -0.91 1.08*
Moving average (10,50) -0.04 1.24*
RSI (14-day) 0.09 -2.64
RSI (9-day) 1.27* -2.05
CCl 20-day 1.17* -1.41
20-day channel -0.17 -0.86
50-day channel -0.2 -1.76
Stochastic indicator 1.78* 0.58
Logistic regression -0.25 -2.1
Random forest 0.25 -0.51
Pipeline model -0.17 -2
Voting ensemble model -0.16 -2.04
N .

gural network (single layer 0.2 076
with 5 neurons)
Neu

. ral network (three layers 03 0.89
with 5 neurons)
N

eural network (three layers, 5 036 043
neurons, tanh)
Neural network (single layer

0.29 A

with 17 neurons) 0-19
N .

eural network (single layer, 17 0.41 0.23
neurons, tanh)
Neural network (three layers

. 0.1 -0.1
with 17 neurons) 0.18
Neural network (three layers, 17
neurons, tanh) -0.56 -0.5

11111 a 1 Avg.t-val
Note:[g,g,g,g,g] x = Ax, Ax = (0, E)’ Net t — value = w,

Vs

1 . : . .
Avg.t —value = §21'5=1 t; where, t; is mean t-value for each commodity. Critical t-value is
calculated as 0.87.

28

Table 9. Summary of Variable Importance Using Random Forest

Variable/ Commodity ~ Corn Copper Japanese Yen EuroDollar Feeder Cattle

Moving average (5, 10) 1.00% 0.91% 1.08% 0.87% 1.15%
Moving average (5,20) 0.88% 0.23% 0.94% 0.70% 0.92%
Moving average (10,50) 1.17% 0.38% 1.26% 1.07% 1.10%
RSI (14-day) 1.17% 1.24% 1.76% 1.30% 1.08%
RSI (9-day) 1.14% 0.90% 1.02% 0.88% 1.26%
Stochastic indicator 0.87% 0.71% 0.96% 0.72% 1.13%
CClI 20-day 1.05% 1.00% 1.36% 0.38% 1.15%
20-day channel 0.33% 0.21% 0.35% 0.20% 0.40%
50-day channel 0.25% 0.38% 0.18% 0.09% 0.25%
Variance 92.14% 94.04% 91.11% 93.79% 91.56%

Table 10. Summary of Variable Importance Using Decision Tree

Variable/ Commodity Corn Copper Japanese Yen EuroDollar Feeder Cattle

Moving average (5, 10) 0.67% 0.89% 0.80% 0.84% 0.78%
Moving average (5,20) 0.59% 0.13% 0.75% 0.55% 0.66%
Moving average (10,50) 0.99% 0.19% 0.96% 1.00% 0.72%
RSI (14-day) 0.94% 1.02% 1.34% 1.12% 0.68%
RSI (9-day) 094% 1.11% 0.93% 0.94% 1.05%
Stochastic indicator 0.56% 0.58% 0.70% 0.59% 0.60%
CCI 20-day 0.49% 0.77% 1.22% 0.29% 0.48%
20-day channel 0.25% 0.12% 0.21% 0.14% 0.25%
50-day channel 0.25% 0.22% 0.08% 0.11% 0.16%
Variance 94.33% 94.99% 93.00% 94.41% 94.64%

29

Conclusion

Numerous studies have determined profitability of technical indicators in commodity markets. This
study uses individual indicators alone as well as statistical and machine learning methods with
signals from technical indicators as inputs. Models like the voting ensemble model and pipeline
models are studied for the first time in commodity markets. These models are compared with most
commonly used models like logistic regression, random forests, decision trees, and neural
networks. Three types of neural networks (in total seven neural networks) are studied and special
care has been taken to prevent data snooping error. Among all the individual technical indicators,
RSI 9 days, stochastic indicator, and CCI 20 days generate significant profit for single day forecast.
Trend-following systems like moving average (5, 20) and moving average (10, 50) generate
significant profit for twenty day forecast (long term forecast). Statistical and machine learning
methods are theoretically better as they are supposed to recognize the patterns, but practically they
fail to live up to their potential and work only during certain time periods. None of the statistical
and machine learning methods made significant profit in all the cases, even though they are

profitable in a very few cases but never always.

None of the individual indicators or models generated significant profit in single day
forecast for corn. In twenty day forecasts, only random forests and pipeline models are profitable.
Japanese Yen is an interesting case where six of the seven neural networks studied generated
significant profit for 20 day forecast. Neural networks should be explored more in foreign currency
markets. EuroDollar did not give a similar result for neural networks. Feeder cattle is an interesting
case, it is the only market where 20 day forecast of neural networks is better than single day
forecast. For single day forecasts, all technical indicators, machine learning and statistical models
failed to generate significant profit. For 20 day forecasts neural network with 3 hidden layers of 17

neurons each and “Softmax” activation function generated significant profit. Copper is the only

27

precious metal in this study. Here, twenty day forecasts are not profitable for any quantitative
model, be it statistical or machine learning. Only stochastic oscillator and moving average (10, 50)

generated significant profit and that too only in 20 day forecasts.

In general oscillators did better than trend-following systems in short term forecasting
(single day forecast) but with long term forecasts (twenty day forecast) trend-following indicators
had better success than mean-reversal indicators. Technical indicators should switch between bull
and bear markets. One new indicator, namely the variance of change in closing prices is added to
the other technical indicators, so as to help the switch, but it did not generate profit in all time
periods. Performance of neural networks depend on the time period, they can be highly profitable
for one period and completely fail in another. Neural networks generated profit in validation data
set but the same neural networks worked poorly in testing data, even though both these data sets
are out of sample. For neural networks one problem is likely to be lack of training data, given the
relatively large number of parameters. One possibility is to use intraday data as the remedy. Another
possibility is to pool data across commaodities. As the present research clearly shows the value of
composite forecasting, combining the forecasts from all 20 neural network models might have led
to better forecasts. Future research should look into these possibilities. Future research should
consider using reinforcement learning to estimate the parameters of all models. Future research
should also include a new type of technical indicator to help the system switch between trend-
following and mean-reversal technical trading systems. Variance is the only variable that is not
unit-less. Variance for most of these commodities is higher in the training period than in the out-
of-sample period. Future research needs to develop a scale neutral volatility measure so that it can

estimate a model across a set of commodities.

28

REFERENCES

Allen, F., & Karjalainen, R. (1999). Using genetic algorithms to find technical trading rules. Journal
of Financial Economics, 51(2), 245-271.

Altman, E. I., Haldeman, R. G., & Narayanan, P. (1977). ZETATM analysis: A new model to
identify bankruptcy risk of corporations. Journal of Banking & Finance, 1(1), 29-54.

Barclay's CTA index . Retrieved June 22, 2017, from
https://www.barclayhedge.com/research/indices/cta/sub/cta.html

Beja, A., & Goldman, M. B. (1980). On the dynamic behavior of prices in disequilibrium. The Journal
of Finance, 35(2), 235-248

Boyd, M. S., & Brorsen, B. W. (1991). Factors related to futures markets disequilibrium. Canadian
Journal of Agricultural Economics, 39(4), 769-778.

Brandt, JA, & Bessler, D.A. (1981). Composite forecasting: an application with US hog prices.
American Journal of Agricultural Economics 63(1), 135-140.

Breiman, L., Friedman, J. H., & Olshen, R. A., Stone, C. J., (1984) Classification and regression
trees. Wadsworth, Belmont, California.

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.

Chang, J., Jung, Y., Yeon, K., Jun, J., Shin, D., & Kim, H. (1996). Technical indicators and
analysis methods. Seoul: Jinritamgu Publishing.

Chang, P. K., & Osler, C. L. (1999). Methodical madness: Technical analysis and the irrationality
of exchange-rate forecasts. The Economic Journal, 109(458), 636-661.

Chong, J., & Miffre, J. (2010). Conditional correlation and volatility in commodity futures and
traditional asset markets. The Journal of Alternative Investments, 12(13), 061-075.

Chun, S. H., & Park, Y. J. (2005). Dynamic adaptive ensemble case-based reasoning: application
to stock markets prediction. Expert Systems with Applications, 28(3), 435-443.

CME group, (2016, 4 February). The big picture: A cost comparison of futures and ETFs.
Retrieved June 22, 2017, from http://www.cmegroup.com/trading/equity-index/report-a-cost-
comparison-of-futures-and-etfs.html.

De Groot, C., & Wiirtz, D. (1991). Analysis of univariate time series with connectionist nets: A
case study of two classical examples. Neurocomputing, 3(4), 177-192.

Deng, Y., Bao, F., Kong, Y., Ren, Z. & Dai, Q. (2017). Deep direct reinforcement learning for
financial signal representation and trading. IEEE Transactions on Neural Networks and Learning
Systems 28(3), 653-664.

29

http://www.cmegroup.com/trading/equity-index/report-a-cost-comparison-of-futures-and-etfs.html
http://www.cmegroup.com/trading/equity-index/report-a-cost-comparison-of-futures-and-etfs.html

Dietterich, T. G. (2000, June). Ensemble methods in machine learning. In International workshop
on multiple classifier systems (pp. 1-15). Springer Berlin Heidelberg.

Dimitras, A. ., Zanakis, S. H., & Zopounidis, C. (1996). A survey of business failures with an
emphasis on prediction methods and industrial applications. European Journal of Operational
Research, 90(3), 487-513.

Dreiseitl, S., & Ohno-Machado, L. (2002). Logistic regression and artificial neural network
classification models: a methodology review. Journal of Biomedical Informatics, 35(5), 352-359.

Erhan, D., Courville, A., & Bengio, Y. (2010). Understanding representations learned in deep
architectures. Department d’Informatique et Recherche Operationnelle, University of Montreal, QC,
Canada, Tech. Rep, 1355.

Hamm, L., & Wade Brorsen, B. W., (2000). Trading futures markets based on signals from a neural
network. Applied Economics Letters, 7(2), 137-140.

Huang, C. L., & Wang, C. J. (2006). A GA-based feature selection and parameters optimization
for support vector machines. Expert Systems with applications, 31(2), 231-240.

Kang, S., (1991). An Investigation of the Use of Feedforward Neural Networks for Forecasting.
Ph.D. Thesis, Kent State University.

Kidd, W. V., & Brorsen, B. W. (2004). Why have the returns to technical analysis
decreased? Journal of Economics and Business, 56(3), 159-176.

Kim, K. J. (2003). Financial time series forecasting using support vector machines.
Neurocomputing, 55(1), 307-319.

Kim, S. H., & Chun, S. H. (1998). Graded forecasting using an array of bipolar predictions:
application of probabilistic neural networks to a stock markets index. International Journal of
Forecasting, 14(3), 323-337.

Kuan, C. M., & Liu, T. (1995). Forecasting exchange rates using feedforward and recurrent neural
networks. Journal of Applied Econometrics, 10(4), 347-364.

Lam, L., & Suen, S. Y. (1997). Application of majority voting to pattern recognition: an analysis of
its behavior and performance. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 27(5), 553-568.

Lee, M. C. (2009). Using support vector machine with a hybrid feature selection method to the
stock trend prediction. Expert Systems with Applications, 36(8), 10896-10904.

Lukac, L. P., Brorsen, B. W., & Irwin, S. H. (1988). A test of futures markets disequilibrium using
twelve different technical trading systems. Applied Economics, 20(5), 623-639.

Lunga, D., & Marwala, T. (2006). Time series analysis using fractal theory and online ensemble
classifiers. Al 2006: Advances in Atrtificial Intelligence, 312-321.

Maslov, I. V., & Gertner, |. (2006). Multi-sensor fusion: an evolutionary algorithm
approach. Information Fusion, 7(3), 304-330.

30

Malkiel, B. G. (1989). Efficient market hypothesis. The New Palgrave: Finance. Norton, New
York, 127-134.

Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37), 870-877.

Neely, C. J. (2002). The temporal pattern of trading rule returns and exchange rate intervention:
intervention does not generate technical trading profits. Journal of International Economics, 58(1),
211-232.

Neely, C. J., & Weller, P. A. (2003). Intraday technical trading in the foreign exchange
markets. Journal of International Money and Finance, 22(2), 223-237.

Oberlechner, T. (2001). Importance of technical and fundamental analysis in the European foreign
exchange markets. International Journal of Finance & Economics, 6(1), 81-93.

Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of
Accounting Research, 109-131.

Olson, D. (2004). Have trading rule profits in the currency markets declined over time? Journal of
Banking & Finance, 28(1), 85-105.

Ou, P., & Wang, H. (2009). Prediction of stock markets index movement by ten data mining
techniques. Modern Applied Science, 3(12), 28.

Pantalone, C. C., & Platt, M. B. (1987). Predicting commercial bank failure since
deregulation. New England Economic Review, (July/August 1987hb), 37-47.

Park, C. H., & Irwin, S. H. (2005). The profitability of technical trading rules in US futures markets:
A data snooping free test. AQMAS Research Report, 2005-04.

Park, C. H., & Irwin, S. H. (2007). What do we know about the profitability of technical
analysis? Journal of Economic Surveys, 21(4), 786-826.

Park, C. H., & Irwin, S. H. (2010). A reality check on technical trading rule profits in the US futures
markets. Journal of Futures Markets, 30(7), 633-659.

Patel, J., Shah, S., Thakkar, P., & Kotecha, K. (2015). Predicting stock markets index using
fusion of machine learning techniques. Expert Systems with Applications, 42(4), 2162-2172.

Patuwo, E., Hu, M. Y., & Hung, M. S. (1993). Two-group classification using neural
networks. Decision Sciences, 24(4), 825-845.

Pruitt, S. W., Tse, K. M., & White, R. E. (1992). The CRISMA trading system: The next five
years. The Journal of Portfolio Management, 18(3), 22-25.

Purcell, W.D. and S.R. Koontz. 1999. Agricultural futures and options: Principles and strategies,
2nd edition, Upper Saddle River, NJ, Prentice Hall.

Roberts, M. C. (2005). Technical analysis and genetic programming: Constructing and testing a
commodity portfolio. Journal of Futures Markets, 25(7), 643-660.

31

Rodriguez, J. J., Kuncheva, L. I., & Alonso, C. J. (2006). Rotation forest: A new classifier
ensemble method. IEEE transactions on pattern analysis and machine intelligence, 28(10), 1619-
1630.

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain
mechanisms (No. VG-1196-G-8). Cornell Aeronautical Lab Inc Buffalo NY.

Schwager, J. D. (1984). A complete guide to the futures markets: Fundamental analysis, technical
analysis, trading, spreads, and options. New York, John Wiley & Sons.

Shah, S., Brorsen, B. W., & Anderson, K. B. (2009, April). Liquidity costs in futures options
markets. In Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis,
Forecasting, and Markets Risk Management, St. Louis, MO.

Sharda, R., & Patil, R. (1990, June). Neural networks as forecasting experts: an empirical test.
In Proceedings of the International Joint Conference on Neural Networks (Vol. 2, pp. 491-494).
IEEE.

Slezak, S. L. (2003). On the impossibility of weak-form efficient markets. Journal of Financial and
Quantitative Analysis, 38(03), 523-554.

Stevenson, R. A., & Bear, R. M. (1970). Commodity futures: Trends or random walks? The Journal
of Finance, 25(1), 65-81.

Subha, M. V., & Nambi, S. T. (2012). Classification of stock index movement using k-nearest
neighbors (k-NN) algorithm. Wseas Transactions on Information Science and Applications, 9, 261-
270.

Sullivan, R., Timmermann, A., & White, H. (1999). Data-snooping, technical trading rule
performance, and the bootstrap. The Journal of Finance, 54(5), 1647-1691.

Sullivan, R., Timmermann, A., & White, H. (2003). Forecast evaluation with shared data
sets. International Journal of Forecasting, 19(2), 217-227.

Sweeney, R. J. (1988). Some new filter rule tests: Methods and results. Journal of Financial and
Quantitative Analysis, 23(03), 285-300.

Szakmary, A. C., Shen, Q., & Sharma, S. C. (2010). Trend-following trading strategies in
commodity futures: A re-examination. Journal of Banking & Finance, 34(2), 409-426.

Tang, Z., de Almeida, C., & Fishwick, P. A. (1991). Time series forecasting using neural networks
vs. Box-Jenkins methodology. Simulation, 57(5), 303-310.

Taylor, M. P., & Allen, H. (1992). The use of technical analysis in the foreign exchange
markets. Journal of International Money and Finance, 11(3), 304-314.

Weigend A., Huberman B.A. and Rummelhart D.E. (1992), Predicting sunspots and exchange
rates with connectionist networks, in: Nonlinear Modeling and Forecasting, eds. M. Casdagli and
S. Eubank, SFI Studies in the Sciences of Complexity, Vol. XlI (Addison-Wesley, Reading, MA),
pp. 397-434.

32

Wu, M. C., Lin, S. Y., & Lin, C. H. (2006). An effective application of decision tree to stock
trading. Expert Systems with Applications, 31(2), 270-274.

Yao, J., & Tan, C. L. (2000). A case study on using neural networks to perform technical
forecasting of Forex. Neurocomputing, 34(1), 79-98.

Zhang, C. X., & Zhang, J. S. (2008). A local boosting algorithm for solving classification
problems. Computational Statistics & Data Analysis, 52(4), 1928-1941.

Zhang, G., Patuwo, B. E., & Hu, M. Y. (1998). Forecasting with artificial neural networks: The
state of the art. International Journal of Forecasting, 14(1), 35-62.

33

APPENDICES

Appendix 1. Profit from Random Numbers for Single Day Forecast in Copper

5 Neurons 17 Neurons

MLP with MLP with MLP with _ Cv/'.tﬁ

Random Three tanh tanh MLP with “tanh”

Sr. No. Numbers MLP Only Hidden Function MLP only Fungtion ”Logist.ic" Function

Layers L(aT;‘erfS (f;;ils Function (Three

Layers)
1 66109 498.35 436.25 588.95 400.95 566.65 531.05 206.25
2 78747 176.35 175.95 608.65 717.25 651.15 518.05 470.95
3 50408 610.05 542.15 377.05 404.75 442.85 585.85 607.95
4 93875 175.95 632.75 271.35 671.85 276.85 453.85 372.45
5 44434 168.55 471.25 496.65 629.25 571.55 458.25 460.95
6 40150 489.35 764.15 767.45 388.05 361.35 377.85 735.55
7 25600 69.75 179.15 103.85 548.75 568.15 420.15 486.95
8 30450 1018.05 -67.35 430.45 545.75 958.65 328.45 287.05
9 15476 614.15 164.95 348.35 409.75 623.85 380.95 534.75
10 59372 398.85 180.15 311.75 633.35 360.75 593.25 -41.65
11 4988 426.65 437.95 -193.45 491.55 541.15 -14.65 309.45
12 96774 1140.25 385.15 799.35 663.65 673.15 672.55 476.05
13 81503 469.75 374.95 164.75 754.55 757.55 682.55 255.05
14 24885 214.05 506.95 317.15 831.95 200.95 331.65 649.15
15 82716 577.35 361.65 496.75 462.15 587.05 377.65 78.85
16 27177 544.35 327.55 318.55 519.55 384.55 421.75 306.45
17 96878 233.75 929.05 112.15 528.75 384.95 522.35 665.25
18 14024 717.45 188.95 387.45 526.95 642.35 608.65 318.35
19 74705 386.65 238.25 353.95 353.65 627.15 502.25 453.15
20 6769 218.15 -239.85 500.95 300.85 597.75 674.25 471.45
Mean 457.39 349.5 378.11 539.17 538.92 471.34 405.22

34

Appendix 2. Profit from Random Numbers for 20-day Forecast in Copper

5 Neurons 17 Neurons
e R
Sr. No. Numbers MLP Only Hidden Function MLP only Fun?tion ”Logist.ic" Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 4408.8 1994.8 5900.3 5407.3 3479.1 517 615.8
2 78747 3139.1 -68.9 1229.4 3113.2 4082.1 3937 3692.3
3 50408 2334.3 4731 5290 5440.1 2703.7 3060 3707.3
4 93875 2152 5239 -2156 5069.8 4266.7 4094.1 1097.2
5 44434 1994.4 3119.9 7086 4353.1 4699.3 2369 2857.8
6 40150 3075 7364.1 4629.5 2865.4 1343 3167.3 5124
7 25600 772.5 1346.4 901.4 5311 2984.5 1711.5 3340.7
8 30450 5522.6 -280.6 4412.2 5537.1 6143.7 3292.2 830.5
9 15476 8054.2 2841.3 2970.5 4624.7 6636.4 2844.6 4651.4
10 59372 31354 3682.2 2629 6272 3636.1 5429.5 364.1
11 4988 771.2 3912.8 1035 5498.6 2711.4 225 654
12 96774 4385.9 2626.9 3499.3 5853 6074.1 4635 4069.7
13 81503 7595.3 1177.2 1454 5336.8 6246.7 5202.9 2895.1
14 24885 41219 4180.2 4640.6 5801.3 1753.5 2118.6 3777.3
15 82716 944.8 2122.9 5719.8 5440.9 5348.3 3191 2967
16 27177 6130.1 4938.7 2923.2 6064.5 4928.9 4492.7 1495.9
17 96878 4830.8 3986.1 2537.5 2858.8 4523.6 70.2 1994.1
18 14024 4499.4 2459.5 2737.9 4643.5 5414.4 4739.4 1385.8
19 74705 3694.4 2406.7 2882 6217.3 4215.2 2889 1812.5
20 6769 4226.2 -2248.2 2916.2 2417.6 4687.6 5139 2063.1
Mean 3789.42 2776.6 3161.89 4906.3 4293.92 3156.25 2469.78

35

Appendix 3. Profit from Random Numbers for Single Day Forecast in Japanese Yen

5 Neurons 17 Neurons
Random MLF;}‘:‘; ';2 Mul:r/]lrt\h MLPt:r/mlrt]h MLP with MLPt:rlmlrt]h
Sr. No. Numbers MLP Only Hidden Function MLP only Fun(.:tion ”Logist.ic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 0.7571 0.9145 0.3909 1.1497 0.5467 0.8137 0.7079
2 78747 1.0711 0.8044 0.5452 1.0709 1.0047 0.8395 0.4861
3 50408 0.9919 0.995 1.2795 0.7601 0.8677 0.8243 1.0891
4 93875 1.0591 0.5723 0.8205 0.7457 0.7421 0.9223 0.9997
5 44434 0.2495 1.0721 1.0385 0.7497 0.8475 0.9121 0.1305
6 40150 0.5456 1.2763 0.8913 0.6775 0.8563 0.9753 0.7023
7 25600 1.6641 0.8245 1.2897 1.0275 0.8567 0.6822 0.6021
8 30450 1.1375 0.8837 1.0533 0.9961 1.2121 0.7633 0.5743
9 15476 1.5931 1.3857 1.4693 0.8191 0.8679 0.6635 0.5163
10 59372 1.4065 0.9297 0.7083 1.1289 0.7477 0.9119 0.8065
11 4988 1.3149 0.3099 1.0405 1.0873 0.9518 0.8959 0.7631
12 96774 1.1733 0.9619 1.3707 0.7293 0.8895 0.8809 0.6523
13 81503 1.4119 0.9373 0.7543 0.9983 1.2749 0.7929 1.0637
14 24885 0.5918 0.5401 1.1413 0.7581 0.9907 0.8367 0.6213
15 82716 1.2719 0.7826 1.3381 1.2997 0.9779 0.6781 0.7391
16 27177 1.7763 0.5445 1.0453 0.6661 0.7861 0.4805 0.9006
17 96878 0.6623 1.1661 1.7701 0.6533 0.6603 0.2927 0.7319
18 14024 1.1553 1.1277 1.3425 0.6349 0.8949 0.3417 0.7195
19 74705 0.8126 0.8931 0.5133 0.6263 0.7241 0.6245 1.2611
20 6769 0.6947 0.4199 1.5881 1.1365 0.8192 0.6089 0.4857
Mean 1.067025 0.867065 1.069535 0.88575 0.87594 0.73705 0.727655

36

Appendix 4. Profit from Random Numbers for 20-day Forecast in Japanese Yen

5 Neurons 17 Neurons

MLP with MLP with MLP with _ MLP with

Random Three tanh tanh MLP with tanh
Sr. No. Numbers MLP Only Hidden Function MLP only Funstion ”Logist.ic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 0.71 (0.57) (2.04) 2.67 0.35 (1.17) (0.08)
2 78747 1.07 0.80 0.55 1.07 1.00 0.84 0.49
3 50408 (0.46) (1.19) (1.15) (0.91) (0.14) 2.23 2.23
4 93875 0.83 0.18 (0.96) (0.97) 0.1 0.04 1.89
5 44434 (0.75) 0.57 (1.62) 0.42 0.08 (0.52) 2.08
6 40150 (2.16) (1.13) 1.17 0.83 (1.03) 1.50 (0.91)
7 25600 0.23 (2.58) (1.30) 0.59 1.35 0.03 0.39
8 30450 (2.30) (1.25) (1.77) 1.45 0.16 1.37 0.42
9 15476 (0.07) (0.26) (0.06) (0.84) (0.59) 0.11 1.24
10 59372 (0.59) 1.08 (1.68) 1.96 1.12 (0.01) 1.50
11 4988 (1.49) (1.69) (3.77) 1.63 (1.03) (0.31) 0.87
12 96774 (2.06) 2.48 (0.92) (0.23) 0.86 0.93 (0.30)
13 81503 (0.55) (0.09) 2.17 (0.79) 0.54 (1.45) 1.62
14 24885 (2.29) (1.25) (2.10) 0.24 1.80 (0.09) (0.94)
15 82716 (1.30) (2.17) 2.02 0.17 (1.43) (0.67) 0.29
16 27177 (0.29) (1.04) (1.39) (0.89) 0.83 0.10 0.74
17 96878 (0.90) (1.27) 0.93 0.39 0.51 1.18 0.91
18 14024 0.84 (1.05) (0.14) 0.32 (0.62) (1.05) (0.05)
19 74705 0.66 (1.50) (3.01) (1.15) (0.32) (0.46) 1.33
20 6769 (2.42) (1.37) (0.38) (0.55) (0.08) 0.68 1.87
Mean (0.66) (0.66) (0.77) 0.27 0.17 0.16 0.78

37

Appendix 5. Profit from Random Numbers for Single Day Forecast in Feeder Cattle

5 Neurons 17 Neurons
o M D
Sr. No. Numbers MLP Only Hidden Function MLP only Fun?tion ”Logist.ic" Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 44.02 75.49 244.07 74.47 94.24 124.53 52.85
2 78747 128.18 129.45 108.49 156.20 111.73 117.18 75.80
3 50408 (53.47) 46.17 312.84 74.15 94.50 89.46 56.76
4 93875 173.80 130.15 107.13 89.64 86.65 121.05 92.77
5 44434 116.86 59.62 91.10 130.91 99.08 108.61 101.47
6 40150 77.47 46.60 65.25 143.20 57.19 104.80 132.74
7 25600 (39.48) 104.71 69.78 136.01 154.00 130.49 48.44
8 30450 161.83 159.62 77.78 104.83 57.86 57.33 48.93
9 15476 196.67 79.76 194.45 81.71 76.78 66.63 74.59
10 59372 118.92 24.78 94.65 116.39 60.51 121.68 131.11
11 4988 75.18 145.11 133.12 53.15 101.27 87.08 55.64
12 96774 209.14 148.50 61.59 88.37 105.80 73.10 85.47
13 81503 66.66 140.99 51.15 126.36 78.70 4827 41.01
14 24885 249.26 3.13 215.77 95.14 89.15 89.37 50.58
15 82716 144.51 215.40 24.31 143.65 88.84 70.19 40.93
16 271177 102.55 147.84 240.16 122.55 77.50 98.35 74.31
17 96878 137.65 136.72 209.65 58.95 75.22 105.32 42.26
18 14024 118.88 73.13 167.55 112.82 125.08 86.51 60.35
19 74705 77.23 118.23 21.49 122.90 143.22 98.52 49.91
20 6769 118.35 81.10 171.39 95.06 91.00 96.73 71.54
Mean 111.21 103.33 133.09 106.32 93.42 94.76 69.37

38

Appendix 6. Profit from Random Numbers for 20-day Forecast in Feeder Cattle

5 Neurons 17 Neurons
Random MLPThWr:z MLPt:rImlr:h MLPt:r/mlrt]h MLP with MLPt:rlmlrt]h
Sr. No. Numbers MLP Only Hidden Function MLP only Fun(.:tion ”Logist.ic" Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 1176.17 1228.78 1017.26 1149.44 1040.69 884.35 403.25
2 78747 384.02 1347.35 1528.64 1095.95 1023.6 945.78 549.44
3 50408 94.81 1288.79 1490.02 621.99 917.71 847.78 642.21
4 93875 1024.68 1317.26 887.03 1137.43 753.43 886.97 1144.79
5 44434 887.51 846.1 1079.96 1047.77 1012.09 921.56 688.15
6 40150 1086.64 938.14 232.34 1001.29 880.81 588.1 980.86
7 25600 675.6 34.76 1113.15 789.02 699.71 1091.5 692.82
8 30450 981.55 1082.64 33.36 637.76 1008.72 910.46 554.09
9 15476 1070.44 488.2 1036.73 354.01 665.64 773.19 510.61
10 59372 1075.82 613.04 735.7 1055.14 899.88 790.17 987.93
11 4988 990.35 1296.74 1053.35 798.81 956.08 736.71 508.71
12 96774 1069.58 849.63 622.02 757.5 1239.59 596.3 603.26
13 81503 897.89 860.62 843.09 944.17 1043.64 605.26 722.84
14 24885 1364.88 1215.29 1134.21 722.88 951.76 994.46 884.18
15 82716 1127.72 932.61 908.85 1118.56 1371.37 759.24 718.93
16 27177 1070.53 1340.92 1645.99 1098.45 939.53 890.18 339.56
17 96878 1731.16 1160.18 1130.89 838.32 807.29 783.41 534.34
18 14024 577.61 798.01 1218.79 901.6 976.69 703.23 540.38
19 74705 889.99 465.46 294.56 1132.91 910.85 881.08 653.91
20 6769 1368.05 1061.73 1588.5 915.74 884.55 849.92 738.52
Mean 977.25 958.3125 979.722 905.937 949.1815 821.983 669.939

39

Appendix 7. Profit from Random Numbers for Single Day Forecast in EuroDollar

5 Neurons 17 Neurons
Random MLF')r}\:Vri;Z ML’Z::‘I:‘E MLZ::::S MLP with ML’Z;A::J
Sr. No. Numbers MLP Only Hidden Function MLP only Function “Logistic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 (5.99) (6.09) (5.61) (3.30) (1.72) (1.86) (2.63)
2 78747 (6.69) (3.58) (6.82) (4.56) (1.90) (3.73) (3.13)
3 50408 (8.99) (4.54) (4.31) (3.22) (2.39) (1.66) (1.68)
4 93875 (5.32) (6.87) (7.67) (4.50) (3.59) (2.17) (1.79)
5 44434 (7.76) (4.30) (4.96) (2.91) (4.32) (2.49) (0.07)
6 40150 (6.07) (7.38) (5.94) (2.99) (4.23) (0.84) (1.72)
7 25600 (7.99) (6.21) (6.70) (3.48) (3.04) (0.79) (1.22)
8 30450 (6.68) (5.61) (5.09) (5.41) (3.09) (2.08) (0.61)
9 15476 (1.29) (6.05) (3.52) (4.22) (3.72) (1.45) (3.01)
10 59372 (7.55) (5.54) (5.48) (3.89) (2.41) (1.95) (2.81)
11 4988 (5.59) (7.54) (6.49) (3.42) (4.39) (4.15) (1.31)
12 96774 (8.00) (3.59) (6.01) (3.17) (3.41) (3.13) (2.16)
13 81503 (5.87) (5.68) (1.50) (3.22) (2.43) (2.16) (2.40)
14 24885 (3.90) (3.69) (7.26) (3.51) (3.56) (2.42) (2.96)
15 82716 (8.15) (4.74) (1.37) (5.40) (4.34) (1.38) (2.63)
16 27177 (3.88) (2.73) (5.49) (4.17) (5.94) (4.60) (2.64)
17 96878 (6.04) (6.09) (6.59) (5.07) (3.94) (4.33) (2.61)
18 14024 (7.31) (6.50) (4.56) (4.87) (4.69) (1.05) (2.03)
19 74705 (7.91) (4.73) (7.64) (3.57) (2.46) (2.52) (1.09)
20 6769 (6.33) (4.33) (6.94) (2.43) (4.52) (1.91) (0.46)
Mean (6.37) (5.29) (5.50) (3.86) (3.50) (2.33) (1.95)

40

Appendix 8. Profit from Random Numbers for 20-day Forecast in EuroDollar

5 Neurons 17 Neurons
Random MLF;}‘:‘; ';2 MLPtxrt\h Mul:r/]lrt\h MLP with MLPt:r?rtmh
Sr. No. Numbers MLP Only Hidden Function MLP only Funt':tion ”Logist.ic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1 66109 (58.71) (87.28) (45.73) (58.71) (39.93) (37.81) (36.05)
2 78747 (84.39) (62.52) (86.72) (35.96) (40.40) (38.75) (27.78)
3 50408 (71.02) (64.34) (72.42) (50.51) (58.41) (40.69) (32.46)
4 93875 (62.72) (34.95) (73.71) (41.17) (51.74) (40.02) (34.76)
5 44434 (79.92) (53.32) (80.53) (44.40) (40.50) (32.79) (15.71)
6 40150 (68.70) (71.45) (92.35) (33.99) (18.97) (39.47) (28.36)
7 25600 (85.88) (65.37) (86.41) (56.72) (29.32) (39.03) (30.10)
8 30450 (71.05) (78.00) (67.65) (58.06) (22.36) (28.93) (22.44)
9 15476 (48.56) (75.61) (58.07) (57.51) (47.38) (23.87) (27.72)
10 59372 (73.24) (69.61) (79.99) (37.96) (39.34) (34.62) (32.57)
11 4988 (59.98) (79.30) (54.24) (53.05) (48.78) (37.74) (30.10)
12 96774 (60.22) (35.79) (77.49) (42.01) (53.01) (36.53) (24.49)
13 81503 (75.49) (85.22) (51.98) (56.13) (52.64) (45.51) (38.88)
14 24885 (74.15) (82.10) (88.31) (39.84) (28.16) (34.24) (28.40)
15 82716 (80.44) (51.54) (60.62) (50.95) (49.44) (25.36) (36.67)
16 27177 (27.07) (67.09) (53.02) (39.95) (34.66) (46.36) (25.67)
17 96878 (84.51) (80.67) (94.72) (61.49) (37.06) (23.51) (38.45)
18 14024 (73.20) (61.93) (70.93) (47.09) (48.58) (24.76) (27.94)
19 74705 (81.41) (66.62) (75.93) (49.45) (36.19) (43.60) (32.31)
20 6769 (80.83) (66.55) (80.73) (49.80) (51.47) (31.59) (35.03)
Mean (70.07) (66.96) (72.58) (48.24) (41.42) (35.26) (30.29)

41

Appendix 9. Profit from Random Numbers for Single Day Forecast in Corn

5 Neurons 17 Neurons
Random MLPThWr:z MLPt:rImlr:h Mul:r/]lrt\h MLP with MLPt:rlmlrt]h
Sr. No. Numbers MLP Only Hidden Function MLP only Funt':tion ”Logist.ic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1.00 66109 223.00 363.00 350.00 514.50 218.00 (144.00) 243.00
2.00 78747 187.00 (2.00) 215.00 856.00 152.50 478.50 694.00
3.00 50408 (239.00) 557.50 184.50 367.00 537.50 431.50 (76.50)
4.00 93875 818.50 644.00 667.50 190.50 172.00 694.00 (26.50)
5.00 44434 308.50 804.50 269.00 520.50 (29.00) 439.00 (183.00)
6.00 40150 145.50 (3.50) (196.00) 238.00 596.50 356.00 (448.00)
7.00 25600 (61.50) 211.00 627.00 364.00 641.00 445.00 63.50
8.00 30450 278.50 437.00 92.50 210.50 375.50 385.50 469.50
9.00 15476 415.50 357.50 170.00 516.50 788.00 204.00 386.50
10.00 59372 137.00 149.50 141.50 407.00 509.00 176.00 50.50
11.00 4988 388.00 78.00 (179.50) 30.00 153.00 498.00 222.50
12.00 96774 116.00 255.00 187.00 188.00 236.50 176.50 397.50
13.00 81503 (95.50) 450.00 205.50 (30.00) 431.00 46.50 460.00
14.00 24885 586.50 141.00 95.00 458.50 464.50 696.50 237.50
15.00 82716 81.00 410.50 298.50 434.50 205.00 26.50 117.00
16.00 27177 367.00 547.00 437.00 529.50 381.50 79.50 225.00
17.00 96878 (66.00) 209.50 450.50 286.00 742.50 323.00 511.50
18.00 14024 494.00 207.00 (35.00) 360.00 137.00 512.50 46.50
19.00 74705 (41.00) 273.50 357.50 383.00 404.00 450.00 126.00
20.00 6769 (74.00) 213.00 319.50 557.50 607.00 287.00 636.00
Mean 198.45 315.15 232.85 369.08 386.15 328.08 207.63

42

Appendix 10. Profit from Random Numbers for 20-day Forecast in Corn

5 Neurons 17 Neurons

Mpwith MLPwith MLP with _ MLP with

Random Three tanh tanh MLP with tanh
Sr. No. Numbers MLP Only Hidden Function MLP only Fum;tion ”Logist.ic” Function
Layers (Three (Single Function (Three
Layers) Layer) Layers)
1.00 66109 (1340.75) 2496.25 3130.75 4859.25 1686.75 1010.75 3958.75
2.00 78747 5201.25 608.25 4545.75 6235.25 5060.25 4331.25 2611.75
3.00 50408 (2221.75) 3985.75 7093.75 5801.25 4986.25 1570.25 3123.25
4.00 93875 3526.25 5372.25 794275 (1229.75) 387625 5827.25 (961.25)
5.00 44434 2235.25 3545.75 1625.25 3391.75 34375 3953.25 2708.75
6.00 40150 5070.75 (2729.75) (931.75) 2819.75 244725 3172.75 3856.25
7.00 25600 (012.25) 3929.25 5527.25 4382.75 5827.25 4946.25 1484.25
8.00 30450 5992.75 6218.25 7007.75 2277.25 472925 1684.75 (348.75)
9.00 15476 5075.75 3316.25 4451.25 3421.25 7766.25 4253.75 (164.75)
10.00 59372 (2936.25) 6881.25 3535.75 3449.25 348225 1186.75 2306.25
11.00 4988 4233.75 202.75 (4124.25) 2843.25 (1250.75) 2384.75 3028.25
12.00 96774 (5477.25) 5009.75 (5812.25) 2605.25 359875 2566.25 6253.25
13.00 81503 (2758.25) 7784.75 1463.25 4722.75 6984.25 2428.25 4220.75
14.00 24885 557525 (2246.25) (4824.25) 2287.25 295525 444475 (2353.75)
15.00 82716 (824.75) 5035.75 (2696.75) 4381.75 84325 1273.25 1929.75
16.00 27177 (3010.75) (1163.25) 3884.25 5699.75 (245.25) 3773.75 5030.75
17.00 96878 3607.75 (1690.75) 7267.75 (1055.25) 2287.25 302275 3674.75
18.00 14024 5662.25 2223.75 805.25 2971.25 (2547.25) 3759.25 2437.75
19.00 74705 (1997.75) 6945.25 5594.75 (2819.25) 4789.75 2677.25 2510.75
20.00 6769 (2223.25) (4190.75) 7442.25 3685.75 331225 (914.25) 1976.50
Mean 1068.90 2576.73 2646.43 3036.53 3046.65 2867.65 2364.16

43

Appendix 11. t-values for Profit/ Loss of Corn

. Mean Standard t—.value for Mean 20- Standard t-value for
Model Single Day . Single Day X - 20-day
) Deviation day Profit Deviation
Profit Forecast Forecast

Moving average (5,10) -0.58 8.019 -2.49472 -1.2 39.42 -1.04581
Moving average (5,20) -0.29 8.0354 -1.25919 0.3 39.411 0.260081
Moving average (10,50) -0.12 8.039 -0.50453 3.36 39.29 2.942282
RSI (14-day) 0.35 8.033 1.502131 0.04 39.44 0.033754
RSI (9-day) 0.47 8.027 2.015727 1.14 39.42 0.995611
CCl 20-day 0.5 8.028 2.152118 -2.69 39.35 -2.34732
20-day channel -0.19 8.038 -0.8314 -0.01 39.44 -0.00793
50-day channel -0.22 8.0376 -0.95356 -1.44 39.416 -1.25447
Stochastic indicator 1.06 7.97 4.598157 1 39.41 0.873296
Logistic regression 0.05 8.04 0.193886 -1.23 40.66 -1.03646
Random forest 0.23 8.0374 0.985907 0.79 40.67 0.665223
Pipeline model 0.19 8.03 0.805271 0.17 40.68 0.146102
Voting ensemble model 0.22 8.03 0.941879 -1.29 40.66 -1.08763
Neural network (single layer

. 0.16 8.039 0.691255 -1.77 40.6476 -1.49637
with 5 neurons)
Neural network (three layers 0.03 8.04 0.140029 -0.82 40.6778 -0.69657
with 5 neurons)
Neural network (three layers, -0.05 8.0405 -0.21901 -1.04 40.672 -0.87875
5 neurons, tanh)
Neural network (single layer -0.07 8.04 -0.3159 -0.18 40.68 -0.15111
with 17 neurons)
Neural network (single layer,

0.23 8.0373 1.002082 1.42 40.6614 1.198155

17 neurons, tanh)
Neural network (three layers -0.26 8.0363 -1.13512 218 40.6273 -1.84771
with 17 neurons)
Neural network (three layers, -0.1 8.04 -0.40932 -2.35 40.618 -1.98963

17 neurons, tanh)

44

Appendix 12. t-values for Profit/ Loss of Copper

. Mean Standard t—.value for Mean 20- Standard t-value for

Model Single Day . Single Day X . 20-day
) Deviation day Profit Deviation
Profit Forecast Forecast

Moving average (5,10) -0.01 0.9759 -0.3485 -0.1 4.1946 -0.7087
Moving average (5,20) -0.02 0.9757 -0.7711 0.15 4,1928 1.1459
Moving average (10,50) 0.02 0.9757 0.7691 0.68 4.1397 5.1308
RSI (14—day) 0.01 0.9759 0.1909 -0.56 4,157 -4.2108
RSI (9-day) 0.02 0.9757 0.6693 -0.32 4.1832 -2.406
CCl 20-day 0.02 0.9757 0.7398 -0.15 4,1932 -1.0821
20-day channel -0.03 0.9756 -0.9284 -0.6 4.1527 -4.4901
50-day channel -0.03 0.9756 -0.9277 -0.63 4.1484 -4.7104
Stochastic indicator 0.02 0.9757 0.7343 0.6 4.152 4.5132
Logistic regression -0.03 0.9755 -0.9543 -0.66 42771 -4.8324
Random forest -0.03 0.9756 -0.9046 -0.66 4.2776 -4.804
Pipeline model -0.03 0.9755 -0.9105 -0.7 4.271 -5.0842
Voting ensemble model -0.03 0.9755 -0.9259 -0.49 4.3007 -3.5327
Neural network (single layer 0 0.976 0.0643 -0.08 43277 -0.5496
with 5 neurons)
Neural network (three layers -0.03 0.9756 -0.9004 -0.68 42749 4.9298
with 5 neurons)
Neural network (three layers, -0.01 0.9759 -0.3899 -0.54 42948 -3.8952
5 neurons, tanh)
Neural network (single layer 0.04 0.9752 1.1979 -0.57 42908 41213
with 17 neurons)
Neural network (single layer, -0.02 0.9757 -0.6957 -0.05 4328 -0.3932
17 neurons, tanh)
Neural network (three layers 0 0.9759 0.1463 -0.25 4321 -1.8138
with 17 neurons)
Neural network (three Iayers' -0.09 0.9759 -2.9439 -0.38 4311 -2.7411

17 neurons, tanh)

45

Appendix 13. t-values for Profit/ Loss of EuroDollar

Mean Standard t-value for Mean 20- Standard t-value for
Model Single Pay Deviation Single Day day Profit Deviation 20-day

Profit Forecast Forecast
Moving average (5,10) -0.0006 0.0135 -1.2105 0.0022 0.0505 1.2221
Moving average (5,20) -0.0005 0.0135 -0.9853 0.0044 0.0504 2.3990
Moving average (10,50) 0.0001 0.0135 0.2049 0.0017 0.0506 0.9470
RSI (14-day) -0.0001 0.0135 -0.2445 -0.0089 0.0498 -4.9518
RSI (9-day) 0.0010 0.0134 2.0873 -0.0083 0.0499 -4.6206
CCl 20-day 0.0004 0.0134 0.9371 -0.0050 0.0503 -2.7567
20-day channel 0.0005 0.0135 1.1309 0.0065 0.0502 3.5781
50-day channel 0.0008 0.0135 1.6218 0.0061 0.0502 3.3628
Stochastic indicator 0.0011 0.0080 3.9757 -0.0014 0.0359 -1.0548
Logistic regression -0.0003 0.0134 -0.6978 -0.0062 0.0512 -3.3413
Random forest 0.0001 0.0134 0.1662 -0.0010 0.0515 -0.5496
Pipeline model -0.0003 0.0134 -0.6978 -0.0062 0.0512 -3.3413
Voting ensemble model -0.0003 0.0135 -0.6145 -0.0073 0.0511 -3.9620
Neural network (single layer
with 5 neurons) 0.0000 0.0134 0.0864 -0.0012 0.0515 -0.6546
Neural network (three layers
with 5 neurons) 0.0004 0.0134 0.8441 -0.0055 0.0512 -2.9645
Neural network (three layers,
5 neurons, tanh) -0.0008 0.0134 -1.6148 0.0005 0.0515 0.2731
Neural network (single layer
with 17 neurons) -0.0001 0.0134 -0.2191 0.0007 0.0515 0.3641
Neural network (single layer,
17 neurons, tanh) 0.0005 0.0134 1.1498 -0.0055 0.0512 -2.9827
Neural network (three layers
with 17 neurons) 0.0007 0.0135 1.3564 -0.0025 0.0515 -1.3233
Neural network (three layers,
17 neurons, tanh)

0.0003 0.1347 0.0535 -0.0016 0.0515 -0.8367

46

Appendix14. t-values for Profit/ Loss of Feeder Cattle

Mean t-value for t-value for
Single Day Standard Single Day Mean 20- Standard 20-day
Model Profit Deviation Forecast day Profit Deviation Forecast
Moving average (5,10) -0.0106 1.84 -0.1755 -0.2181 8.61 -0.7680
Moving average (5,20) 0.0006 1.85 0.0107 -0.2415 8.61 -0.8503
Moving average (10,50) 0.0055 1.85 0.0910 0.1638 8.61 0.5766
RSI (14-day) 0.0127 1.84 0.2105 0.2061 8.61 0.7256
RSI (9-day) 0.0150 1.84 0.2504 0.0748 8.61 0.2633
CCl 20-day -0.0120 1.84 -0.1995 -0.7934 8.58 -2.8043
20-day channel -0.0073 1.84 -0.1218 -1.1579 8.54 -4.1125
50-day channel 0.0095 1.84 0.1584 0.4002 8.60 1.4100
Stochastic indicator -0.0042 1.85 -0.0700 -0.7584 8.82 -2.6071
Logistic regression -0.0065 1.84 -0.1079 -0.0812 8.85 -0.2779
Random forest -0.0033 1.85 -0.0553 -0.7026 8.82 -2.4137
Pipeline model -0.0038 1.85 -0.0636 -0.2349 8.85 -0.8048
Voting ensemble model -0.0015 1.85 -0.0254 -0.1202 8.85 -0.4117
Neural network (single layer
with 5 neurons) -0.0079 1.84 -0.1312 0.1848 8.85 0.6331
Neural network (three layers
with 5 neurons) -0.0024 1.85 -0.0397 -0.0572 8.85 -0.1959
Neural network (three layers,
5 neurons, tanh) 0.0000 1.85 -0.0003 03372 8.85 1.1557
Neural network (single layer
with 17 neurons) -0.0006 1.85 -0.0093 0.2298 8.85 0.7872
Neural network (single layer,
17 neurons, tanh) -0.0017 1.85 -0.0279 0.6916 8.83 23756
Neural network (three layers
with 17 neurons) 0.0013 1.85 0.0208 0.2468 8.85 0.8457
Neural network (three layers,
17 neurons, tanh)
-0.0106 1.84 -0.1755 -0.2181 8.61 -0.7680

47

Appendix 15. t-values for Profit/ Loss of Japanese Yen

Model Mean Single Standard ts—i\r/]allieDf:r Mean 20- Standard t—\;::(\)l_udzfor
Day Profit Deviation & v day Profit Deviation v
Forecast Forecast

Moving average (5,10) -0.0005 0.0062 -2.6325 0.001 0.0251 1.2214
Moving average (5,20) -0.0003 0.0062 -1.3398 0.002 0.025 2.3809
Moving average (10,50) -0.0001 0.0062 -0.6604 -0.0017 0.0251 -1.9859
RSI (14-day) -0.0002 0.0062 -1.1018 -0.0038 0.0244 -4.6267
RSI (9-day) 0.0003 0.0062 1.3632 -0.0041 0.0248 -4.9388
CCl 20-day 0.0004 0.0061 1.7752 -0.0009 0.0251 -1.127
20-day channel 0 0.0062 -0.0005 -0.0005 0.0251 -0.5897
50-day channel -0.0001 0.0062 -0.6364 -0.0018 0.0251 -2.0973
Stochastic indicator -0.0001 0.0062 -0.5695 -0.0024 0.025 -2.8311
Logistic regression 0.0001 0.0062 0.297 0.0011 0.0256 1.3087
Random forest 0.0002 0.006 1.1295 0.0021 0.0255 2.4073
Pipeline model 0 0.0062 0.0053 0.0006 0.0256 0.6822
Voting ensemble model 0 0.0062 -0.1551 -0.0007 0.0256 -0.8133
Neural network (single layer 0 0.0062 0.1684 -0.0006 0.0256 -0.6965
with 5 neurons)
Neural network (three layers 0.0003 0.0062 1.5708 0.003 0.0254 3.4866
with 5 neurons)
Neural network (three layers, 0.0001 0.0062 0.4733 0.0022 0.0255 2.5257
5 neurons, tanh)
Neural network (single layer

. 0.0002 0.0062 0.804 0.0032 0.0254 3.7259
with 17 neurons)
Neural network (single layer,

0.0001 0.0062 0.6057 0.0022 0.0255 2.5487

17 neurons, tanh)
Neural network (three layers 0 0.0062 0.1397 0.0015 0.0255 1.704
with 17 neurons)
Neural network (three layers, 0.0001 0.0062 0.4831 0.0019 0.0255 2.2262

17 neurons, tanh)

48

Appendix 16.

Pre analysis plan

1

10.
11.
12.
13.

Use technical indicators for predicting direction of trade.
List: Dual Moving Average indicators(5,10), (S, 20) and (10, 50} days, RSI (14, 9) days, CCI
20 days, 20 day channel, 50 day Channel and Stochastic indicator, Variance (CV).
Compare profit and loss based on prediction using Logistic Regression, Random Forest, voting
ensemble model, pipeline model and neural networks.
Voting Ensemble model uses: Logistic regression, Random forest, Gaussian Naive Bayes,
Decision tree, Support vector classification.
Random forest will be with 20 trees, using “gini” and out of bag error as criteria for selection of
estimators. Start with ‘20 trees’ and keep on adding trees in the batch of "10 trees’ each till
optimum is reached.
Random forest and decision trees will be used to find the mostly used indicators for future
studies.
Random number generator will be used to pick 20 seeds initially and then final seed will be
selected based on the accuracy and profit of predictions. Validation data set will be used for
these computations. This will be computed for neural network only.
Neural network will be of three types:

a) Single hidden layer with one hidden layer and 5 and 17 neurons.

b} Three hidden layer with 5 and 17 neurons each.

c) Repeat the step “a” and “b” with pretraining. Pretraining will be done using RBMs
having 2 hidden layers of 5 neurons each. If pretraining will give same results as in
step (b) then step (c) will not be done.

Neural networks will use “I-gfgs {limited-memory BFGS)” algorithm and “Logistic” activation
function. Step “c” will use “tanh” activation function instead of “Logistic” activation function.
New model will be formed for individual commodities.

List: a) CME EuroDollar futures (ED)

b) CME Japanese Yen JPY futures (JY)

c) CME Copper Futures (HG)

d) CME Feeder Cattle Futures (FC)

e) CME CBOT Corn Futures (C)

Regression tree alone will also be formed for comparison purposes.

Profit will also be calculated using individual indicators.

Validation data set will be used to find random seed only.

Evaluation will be done using the costs per trade and Profit will be calculated per contract. Two
types of forecasts will be used to calculate profit: a) single day prediction and b) 20 day
prediction.

Weacle Frernsn o

F=q-2rui7]

49

Appendix 17. Barclay’s CTA Index

Year CTA Index Year CTA Index Year CTA Index
1980 63.69% 1993 10.37% 2006 3.54%
1981 23.90% 1994 -0.65% 2007 7.64%
1982 16.68% 1995 13.64% 2008 14.09%
1983 23.75% 1996 9.12% 2009 -0.10%
1984 8.74% 1997 10.89% 2010 7.05%
1985 25.50% 1998 7.01% 2011 -3.09%
1986 3.82% 1999 -1.19% 2012 -1.70%
1987 57.27% 2000 7.86% 2013 -1.42%
1988 21.76% 2001 0.84% 2014 7.61%
1989 1.80% 2002 12.36% 2015 -1.50%
1990 21.02% 2003 8.69% 2016 -1.23%
1991 3.73% 2004 3.30% 2017 -0.67%"
1992 -0.91% 2005 1.71%

50

Appendix 18. Neural Networks (Artificial neural networks, ANNS)

ANNs with the k output nodes can be used to forecast multi-step ahead points directly using all the
useful past observations as inputs. ANNSs are considered as the universal function approximators
hence, they can capture nonlinear relationships in a better way. In addition to these characteristics
ANNSs have more properties like ANN learning methods are quite robust to noise in the training
data, long training times are acceptable for ANNs, and they use the black box approach which may
or may not be acceptable to all humans (Mitchell, 1997). Weigend et al. (1992) find the ANN model

to be better than random walk model.

ANN can be constructed using many ways including feedforward and recurrent networks.
Most studies have used the straightforward Multilayer perceptron (MLP) for forecasting (Kang,
1991; Sharda and Patil, 1990). A MLP is an feedforward ANN model that maps sets of input data

onto a set of appropriate outputs (Rosenblatt 1961). This study uses MLP neural networks.

An ANN is typically composed of layers of nodes. MLP neural networks have all the input
nodes in input layer, hidden layer is distributed into one or more hidden layers between input and

output nodes, while the output layer consists of the ouput nodes.

:‘ OUTPUT LAYER

HIDDEN LAYER

INPUT LAYER

51

Figure: An illustrative example of MLP neural network.

There are many critical parameters that effect the performance of an ANN. One of them is
determining the architecture of the ANN. Number of hidden layers, number of hidden neurons ,
number of output neurons, transfer (activation) function for hidden and ouput layer, training
algorithm, Evaluating criteria, number of training iterations and learning rate and momentum are
very crucial for the architecture of the ANN. Several researchers have tried to address these issues,

but there is no consensus on method of determination of these parameters.

Kang (1991) use 1 hidden layer with variable hidden neurons, 1 output neuron, sigmoid
transfer function for both hidden and ouput layer, generalized reduced gradient algortihm and MSE,
mean algebaric percent error (MAPE) and MAD as evaluating criteria with simulated and real time
series data. Schoneburg(1990) use the daily stock price data for forecasting daily stock prices with
10 input neurons, 2 hidden layers, 1 output neuron, sigmoid and sine,sigmoid transfer function for
hidden and output layer respectively, backpropagation (BP) algorithm and MAPE as the evaluating
criteria. Weigend et al. (1992) 12 input neurons. 1 hidden layer with 8 neurons, 1 output neuron,
sigmoid and tanh as activation function, linear function for ouput layer, BP algorithm, average
relative variance (ARV) as evaluation criteria in his forecasting for sunspots daily exchange rate.
Kuan and Liu, 1995 in their work on daily exchange rates use the Newton training algorithm with
sigmoid activation function and linear transfer function with root mean sgare error (RMSE) as

evaluation criterion.

One hidden layer is considered sufficient to approximate any complex nonlinear function
with desired accuracy (Cybenco, 1989) , but one hidden layer results in long training time and bad
network generalization as it requires a very large number of hidden nodes. Also ANNs having more

than one hidden layer is considered deep learning by some authors (Erhan et al., 2010).

52

Number of hidden nodes is another crucial aspect of making ANN. Networks with too few
hidden nodes (neurons) may not be able to train and model data while it is preferred to have fewer
hidden nodes so as to have lower overfitting and better generalization. There is no universal rule
for selecting the number of hidden nodes, it is mostly done by trial and error methods. Generally
the number of hidden nodes depend on the number of input nodes. Many researchers have use
different rules for number of hidden nodes. Lippman (1987) use “2n+1”, while Kang (1991) uses
“n/2” hidden nodes where n is the number of input nodes. Tang et al. (1993) and De Groot and

Wurtz (1991) set the number of hidden nodes to be equal to number of input nodes.

Number of input nodes is considered to be the most critical decision variable for a time
series forecasting problem as it contains the important information about the linear/nonlinear
autocorrelation structure in the data. Zhang et al. (1998), prefer the use of theoretical research to
determine the number of input nodes for nonlinear time series analysis. Many others have adopted
some intuitive or empirical ideas for selecting the number of input nodes. Tang et al. (1991) use
the four input nodes for the quarterly data while Sharda and Patil (1992) use 12 input nodes for the
monthly data. For the purpose of this paper we have relied on theoratical research to decide the

number of input nodes. This study uses five and 17 neurons with one and three hidden layers.

Transfer functions also called activation function determines the relationship between
inputs and output nodes of the neural network. They are known to introduce nonlinearity in the
neural networks. Generally speaking any differentiable continous function can be used as a transfer
function. But for the purpose of time series data bounded, monotonically increasing and
differentiable functions like sigmoid (logistic) , hyperbolic tangent (tanh), sine or cosine function
are use. We can use one activation function for all nodes or we can use different activation functions
for different nodes. Mostly, networks use the same activation function for the nodes in the same
layer. Majority of the reserachers simply use the logistic activation function for all the hidden and

53

output nodes but few reserachers like De Groot and Wurtz (1991) use tanh activtion function but
there is no consensus about this. This study uses the sigmoid function which is special case of

softmax where the number of classes eequals to two.

Training algorithm also known as the optimization method is a nonlinear minimization
problem which works by giving arc weights to parameters to minimize the total or mean squared
errors between the actual and desired output levels. There are many training algorithms like
backpropagation, Levenberg-Marquardt, quasi-Newton (like BFGS and I-BFGS) available to the
researchers. None of these algortims guarantee the global optimal solution to the problem so the
emphasis is mainly on finding the “best” local optima for the solution if global solution is not
available. Patuwo et al. (1993). Apart from being a widely available algorithm in optimization
software, it does not require the learning parameters such as learning rate and momentum which
are required in backpropagation methods. This study uses the I-BFGS algorithm (as explained

earlier in the main text).

Evaluation criteria also known as the cost function or objective function is another
important issue in the neural network architecture. Objective functions such as SSE and MSE or

others that can be described as error are used.

This study uses the L2 penalty (regularization term) parameter of 0.0001. As this study
uses the “constant” (0.5) base learning rate for weight updates and as it stands “constant” keeps the
learning rate constant throughout training. Maximum iterations (i, epochs) is 20,000. Also tolerence
for optimization criteria is 0.00001 for this study. This means that when the loss at iteration i+1
differs less than 0.00001 from that at iteration i, convergence is considerd to be reached and the

algorithm exits.

54

Yao et al. (2000) suggested using a measure of volatiltiy as input for the formulation of the
neural network for forecasting. The ANN should be self-adapting to different situations, for the
pupose of the volatility of the current measurement should be incorporated to the model. A sudden
change in the volatility is an indication of an impending major move. It can signal the beginning of
a trend, an end or a reversal of a trend, or possibly even a price crash or a switch from trend to

reversal.

Appendix 19.

Python code:
55

"""Utilities for the neural network modules

from numpy import genfromtxt

import gzip, cPickle

from glob import glob

import numpy as np

from itertools import chain

import pandas as pd

import baseMultilayerPerceptron

class MultilayerPerceptronClassifier as MLP

csvFile = "C:\\Users\\jasdeep\\Desktop\\datacopper.csv"
csvFileY="C:\\Users\\jasdeep\\Desktop\\datacopperl.csv"
my_data = genfromtxt(csvFile, delimiter=',", skip_header=1)
my_datal = genfromtxt(csvFileY, delimiter=',', skip_header=1)
Data and labels are read

train_set_x = my_data[:7140]

valid_set_x = my_data[7171:9191]

test_set_x = my_data[9221:10210]

train_set_y = my_datal[:7140]

valid_set_y = my_datal[7171:9191]

test_set_y =my_datal[9221:10210]

Divided dataset into 3 parts. 70%,20%,10%

train_set = train_set_x, train_set_y

valid_set = valid_set_x, valid_set_y

test_set = test_set_x, test_set_y

#random_state =0

n_hidden=50

import numpy as np

from sklearn.utils.fixes import expit as logistic_sigmoid

def identity(X):
return X
def logistic(X):
return logistic_sigmoid(X, out=X)
def tanh(X):
return np.tanh(X, out=X)
def relu(X):
np.clip(X, 0, np.finfo(X.dtype).max, out=X)
return X
def softmax(X):
tmp = X - X.max(axis=1)[:, np.newaxis]
np.exp(tmp, out=X)
X /= X.sum(axis=1)[:, np.newaxis]
return X
ACTIVATIONS = {'identity': identity, 'tanh': tanh, 'logistic': logistic,
'relu’: relu, 'softmax': softmax}
def logistic_derivative(Z):
returnZ * (1-2)
def tanh_derivative(Z):
return 1-(Z ** 2)
def relu_derivative(Z):
return (Z > 0).astype(Z.dtype)

DERIVATIVES = {'tanh': tanh_derivative, 'logistic': logistic_derivative,

'relu': relu_derivative, 'identity': lambda x: 1}
def squared_loss(y_true, y_pred):
return ((y_true - y_pred) ** 2).sum() / (2 * y_true.shape[0])

def log_loss(y_true, y_prob):
y_prob = np.clip(y_prob, 1e-10, 1 - 1e-10)
return -np.sum(y_true * np.log(y_prob) +
(1-y_true) * np.log(1 - y_prob)) / y_prob.shape[0]

56

LOSS_FUNCTIONS = {'squared_loss': squared_loss, 'log_loss": log_loss}
def binary_KL_divergence(p, p_hat):

p_hat = np.clip(p_hat, 1e-10, 1 - 1e-10)
return (p * np.log(p / p_hat)) + ((1 - p) * np.log((1 - p) / (1 - p_hat)))
from __future__ import print_function
print(__doc__)
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.datasets import load_digits
from sklearn.neural_network import BernoulliRBM
from sklearn.pipeline import Pipeline
from sklearn import linear_model, datasets, metrics
random_state = 66109
print("Random_state:", random_state)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,), activation="logistic",
algorithm="I-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.5, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)

mlp.fit(train_set_x, train_set_y)
#score_with_mlp_only = mlp.score(test_set_x, test_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
#print ("mlp only prediction: ",x2 [:50])
#print ("shape of x2: ",x2.shape)
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
#df.head()
#print (df)
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values|[:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
#rev=result.values|:,3]
#clospr=result.values|:,4]
rev=0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df{'rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
#print("index: "+str(index)+" val: "+str(val)+" rev: "+str(rev))
#rev = df['rev'].sum()
#print(rev,df['rev'][:-1].sum())
print("Revenue from mlp 20 day,single layer, 5 neurons:", rev)
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,5,5,), activation="logistic",
algorithm="l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.25, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)

mlp2.fit(train_set_x, train_set_y)

57

#score_without_pretraining = mlp2.score(test_set_x, test_set_y)

x = [mlp2.predict(valid_set_x)];

a = np.array(x)[np.newaxis]

x2=a.T

x3 = len(x2)

x4 = np.reshape(x2, (x3,-1))

df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")

#df.head()

dfl = pd.DataFrame(df)

list6 = pd.DataFrame(x4)

list7 = pd.DataFrame(data = list6).reset_index()

list7.columns = ['Second_Index', 'prediction']

del list7['Second_Index']

result = pd.concat([list7, df1], axis=1)

prediction=result.values][:,0]

orgdep=result.values[:,1]

opnpr=result.values[:,2]

rev=0

#for index,val in np.ndenumerate(prediction[:-1]):

for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df{'rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])

print("Revenue from 20 day, three layers, 5 neurons :", rev)

Cross-validate multi-layer perceptron with rbm pre-training
rbms = [BernoulliRBM(batch_size=10, n_components=n_hidden, random_state=random_state,
learning_rate=0.5, n_iter=1000),
BernoulliRBM(n_components=n_hidden, random_state=random_state,batch_size=10,
learning_rate=0.5, n_iter=1000)]

mlp3 = MultilayerPerceptronClassifier(hidden_layer_sizes=(5,5,5,), activation="tanh",
algorithm="l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.25, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=rbms)

mlp3.fit(train_set_x, train_set_y)
x = [mlp3.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction’']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values][:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev=0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, three layres, 5 neurons:", rev)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,), activation="logistic",
algorithm="l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",

58

learning_rate_init=0.5, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)

mlp.fit(train_set_x, train_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values][:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev=0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df{'rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from mlp, 20 day, 17 neurons, 1 layer:", rev)
mlp = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,), activation="tanh",
algorithm="l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.5, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)
mlp.fit(train_set_x, train_set_y)
x = [mlp.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
x3 =len(x2)
x4 = np.reshape(x2, (x3,-1))
import pandas as pd
import numpy as np
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction’']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values][:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev=0
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, 17 neurons, 1 layer:", rev)
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,17,17,), activation="logistic",
algorithm='"l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.25, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)
mlp2.fit(train_set_x, train_set_y)

59

x = [mlp2.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
import pandas as pd
import numpy as np
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values][:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev=0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df{'rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from without_pretraining, 20 day, 17 neurons, 3 layers:", rev)
n_hidden =5
rbms = [BernoulliRBM(batch_size=10, n_components=n_hidden, random_state=random_state,
learning_rate=0.5, n_iter=1000),
BernoulliRBM(n_components=n_hidden, random_state=random_state,batch_size=10,
learning_rate=0.5, n_iter=1000)]
mlp2 = MultilayerPerceptronClassifier(hidden_layer_sizes=(17,17,17,), activation="tanh",
algorithm="l-bfgs', alpha=0.00001,
batch_size=10, learning_rate="constant",
learning_rate_init=0.25, power_t=0.5, max_iter=20000,
shuffle=False, random_state=random_state, tol=1e-5,
verbose=False, warm_start=False)
mlp2.fit(train_set_x, train_set_y)
x = [mlp2.predict(valid_set_x)];
a = np.array(x)[np.newaxis]
x2=a.T
x3 = len(x2)
x4 = np.reshape(x2, (x3,-1))
df = pd.read_excel("C:\\Users\\jasdeep\\Desktop\\reserach_data\\Copper\\random_number_check_data.xIsx")
dfl = pd.DataFrame(df)
list6 = pd.DataFrame(x4)
list7 = pd.DataFrame(data = list6).reset_index()
list7.columns = ['Second_Index', 'prediction’']
del list7['Second_Index']
result = pd.concat([list7, df1], axis=1)
prediction=result.values][:,0]
orgdep=result.values[:,1]
opnpr=result.values[:,2]
rev=0
#for index,val in np.ndenumerate(prediction[:-1]):
for index,val in np.ndenumerate(prediction[:-21]):
For some reason, index is a tuple, so to get the integer index, it is index[0]
rev +=val * (opnpr[index] - opnpr[index[0]+20])
df['rev'][index] = val * (opnpr[index] - opnpr[index[0]+20])
print("Revenue from tanh, 20 day, 17 neurons, 3 layers:", rev)

60

VITA
JASDEEP SINGH BANGA
Candidate for the Degree of

Doctor of Philosophy

Thesis: MACHINE LEARNING: A POTENTIAL FORECASTING TOOL

Major Field: Agricultural Economics

Biographical:
Education:
Completed the requirements for the Doctor of Philosophy/Education in
Agricultural Economics at Oklahoma State University, Stillwater, Oklahoma in

December, 2017.

Completed the requirements for the Master of Quantitative Financial Economics
at Oklahoma State University, Stillwater, Oklahoma in December, 2017.

Completed the requirements for the Master of Business Administration at
Punjab Agricultural University, Ludhiana, Punjab, India in May, 2006.

Completed the requirements for the Bachelor of Science (Agriculture) at Punjab
Agricultural University, Ludhiana, Punjab, India in May, 2004.

