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CHAPTER I 
 

 

INTRODUCTION 

 

 

Prime Numbers 

Prime numbers play critical role in cryptography and they are widely used in various encryption 

algorithms like RSA [1] and Diffie-Hellman (D-H) key exchange [2]. The reason for using prime 

numbers is in the difficulty of factorization of a product of two large prime numbers and the solution 

of the discrete logarithm problem with respect to a large prime that sets up the asymmetry of 

computation that is fundamental to cryptography.    

Since factorizing a given number would be computationally expensive and time consuming, 

primality tests such as Miller-Rabin [3], Fermat [4], AKS [5] are used to determine whether a 

random number generated is prime or not. Primality tests such as Miller-Rabin (M-R) and Fermat, 

determine the primality of a number in probable terms [6]. They are also called compositeness tests. 

AKS is deterministic primality test and can determine with certainty the primality of a number but 

requires considerably more computation resources. Miller-Rabin is the mostly used probabilistic 

primality test in practice [4]. 
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Apart from random prime number generation algorithms and techniques, there are prime number 

sieves used to find all primes up to any number. Some of the most common sieves are the Sieve of 

Eratosthenes [7], the Sieve of Atkin [8], the Sieve of Sundaram [9], and several wheel sieves. In 

this thesis, we have also devised a way to sieve prime numbers that uses less number of operations 

as compared to the Sieve of Eratosthenes. 

Goldbach Partitions 

Goldbach partitions, which are two primes that add up to a given even number, have the potential 

to be used in cryptography [10]. These partitions can be used to find large prime numbers in an 

efficient manner. We investigated Goldbach partitions and found that they require less number of 

attempts to find prime numbers as compared to the incremental search method [6]. Goldbach 

partitions can also be used in secure communication protocols [11, 12]. 

Protocols for Security 

Asymmetric encryption algorithms like RSA and D-H are widely used in public key cryptography 

for authentication, encryption, key exchange and digital signatures. However, symmetric 

encryption algorithms like AES [13], 3DES [14] are used for actual message encryption whereas 

public key algorithms are used for managing and distributing session keys. In RSA encryption, 

there is a pair of public key and the private key and the latter is kept secret. The sender encrypts 

the data using receiver's public key and the receiver decrypts the data using its own private key. D-

H is used for key exchange over an insecure public channel.  Elliptic Curve Cryptography (ECC) 

is gaining importance because its 160-bit key provides the equivalent security as 1024-bit key in 

RSA [15]. Because of its increasing popularity and small key advantage, the elliptic curve variants 

of algorithms like D-H, Digital Signature Algorithm (DSA) [16], etc. named as ECDH and ECDSA 

[17] are standardized. Hashing algorithms are one-way functions and are used to assure message 

integrity. SHA-2 [18] is used in TLS/SSL protocol for creating digital signatures. 
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Multiple Third Parties for Distributing Trust and Secret Sharing 

Imagine a scenario in which two parties wish to communicate securely and rely on a third party for 

the key exchange. The third party knows all the secrets and if it is compromised or becomes 

malicious; this will completely break the security of the system. Relying on a single third party is 

risky and there is dire need of distributing the trust [19]. There can be two solutions to this problem. 

One is not to share the secret completely with the third party. Second is to distribute the secret 

among multiple third parties. Keeping in view such scenario, in this thesis, we propose a secure 

communication protocol which uses a single third party for the key exchange using Goldbach 

partitions. We propose another secure communication protocol using multiple third parties and 

Goldbach partitions in which the secret key is not compromised until all or minimum number of 

third parties are compromised.  

In chapter VII, we present a new scheme to distribute secret shares with two third parties using the 

piggy bank cryptographic paradigm. We also present a protocol to give law enforcing agencies 

access to sensitive information present on a cell phone or a device using secret sharing scheme. 

These ideas for classical systems may also be applied to quantum schemes.  

Certification Authority (CA) 

The purpose of certificate authority (CA) is to issue digital certificates to authenticate and validate 

the identity of organizations as well as individuals on the Internet. Due to their central figure in 

TLS/SSL protocol, they are vulnerable to attacks and if digital certificates are stolen or forged, they 

compromise the trust and security of the system. In this thesis, we propose the use of multiple 

certificate authorities to issue digital certificates and validate the identity of organizations and 

individuals on the Internet. The use of multiple certificate authorities raises the difficulty in stealing 

or forging digital certificates, thereby enhancing the trust and security of the system. 
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CHAPTER II 
 

 

LITERATURE REVIEW 

 

 

Goldbach Partitions 

In 1742, Christian Goldbach gave the ‘strong’ version of the conjecture now named after him which 

states that every even integer can be expressed as a sum of two primes. There is also the ‘weak’ 

Goldbach conjecture, which states that every odd number greater than 7 is a sum of three distinct 

odd primes (Table 2.1). These conjectures have been verified for values ≤ 4× 1018  through 

computer experiments [10]. 

Table 2.1. Example of Goldbach partitions 

Even Numbers Odd Numbers 

16 = 11 + 5 15 = 7 + 5 + 3 

240 = 229 + 11 503 = 179 + 281 + 43 

3186 = 2803 + 383 31019 = 503 +  6907 + 23609 

33330 = 11027 + 22303 493011 = 430543 + 62011 + 457 

 

Here, we focus only on partitions of even numbers.  Most even numbers can be represented as a 

sum of two or more distinct pairs of primes and every distinct pair is called a Goldbach partition.  



5 
 

For n=30: there are three Goldbach partitions: (23, 7), (19, 11) and (17, 13).  

We can calculate the percentage of Goldbach partitions in the range [n/2, n-2] by writing down all 

the primes in given range, subtract every prime from n and check if the difference is also a prime 

[20]. If it is a prime, it is called a Goldbach partition. We calculate the percentage of Goldbach 

partitions by dividing the number of Goldbach partitions from total number of partitions. Figure 

2.1 shows the percentage of Goldbach partitions in the range [n/2, n-2] until 105 using MATLAB. 

We illustrate finding Goldbach partitions and its percentage through an example, where n=28.  

 Range = [n/2, n-2]   = [14, 26]  

 Primes in the range  = 17, 19, and 23 

 (17, 11), (23, 5)   = Goldbach partition(s)   

 (19, 9)     ≠ Goldbach partition(s) 

 % of Goldbach partitions  = 2/3 = 66.6% 

     
Figure 2.1.  Percentage of Goldbach partitions for even numbers in range [n/2, n-2] until 105. 



6 
 

Certification Authority (CA) 

The purpose of certificate authority (CA) is to issue digital certificates to authenticate and validate 

the identity of organizations as well as individuals on the Internet. There have been many incidents 

when CAs have been compromised and some of them were top market shareholders at that time. 

In 2001, Verisign issued certificates to someone impersonating Microsoft. In 2008, Thawte 

mistakenly issued non-Microsoft employee a certificate for Live.com and Comodo issued 

mozilla.org certificate to Startcom.  In 2011, Comodo was compromised and nine fraudulent 

certificates were issued in the names for Google, Yahoo, Live, etc. DigiNotar was also 

compromised and 531 counterfeit certificates were issued which created major issues for Dutch 

government. In 2013, code signing certificate was issued by DigiCert to a bogus company [21].  

Keeping in view such incidents, some enhancements in the existing framework and some 

alternatives were suggested and are discussed in detail in the following paragraphs. 

Certificate Authority Authorization (CAA) DNS Resource Record as mentioned in IETF draft RFC 

6844 allows requesting party to specify which CAs can issue certificates for their domain [22]. Its 

implementation will avoid unintended mis-issuance of certificates and help in detecting possible 

mis-issued certificates. It will provide increased security to existing CA infrastructure by limiting 

the number of CAs allowed to issue certificates for a specific domain. The CAA check at the time 

of issuance of certificates is made mandatory by CA/Browser forum starting September 2017 [23]. 

But, attackers can still manipulate DNS records since the use of Domain Name System Security 

Extensions (DNSSEC) is recommended but not mandatory. 

Public Key Pinning Extension for HTTPS can help prevent man-in-the-middle (MIM) attack and 

impersonation if one or more CAs are compromised [24]. The web server communicates the details 

of the certificate and the public key to be used during first communication. Clients can make 

assertions about which certificates will be used by specific web server and will not establish secure 
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connection if the certificate issued is not the one expected but it does not provide protection when 

used for the first time. 

The idea of Certificate Transparency is to make the SSL certificates a public record so that they 

can be audited and suspicious certificates may be detected but it still requires someone to keep an 

eye on public records to get benefit from this idea [25]. 

The Sieve of Eratosthenes 

The Sieve of Eratosthenes is an ancient but efficient prime number sieve to find all the prime 

numbers up to any number n. The process is as follows:  

1. Make a list of consecutive positive integers starting from 2 till n. 

2. Set 𝑝 as first unmarked number in the list and mark it as prime. 

3. Mark all the multiples of 𝑝. 

4. Set 𝑝 as the next unmarked number to the last 𝑝 in the list and mark it as prime and repeat 

steps 3 and 4 until 𝑝 > √𝑛. 

5. The unmarked numbers are all prime numbers below n. 

Example, n=14  

1. 𝐿 = {2,3,4,5,6,7,8,9,10,11,12,13,14} 

2. 𝑝 =2;  

3. Multiples of 2 = {4,6,8,10,12,14}   L = {2,3,5,7,9,11,13} 

𝑝 =3;  

Multiples of 3 = {6,9,12}    L = {2,3,5,7,11,13}  

Since, 5 > √14.  

Therefore L = {2,3,5,7,11,13} = Prime Numbers till 14.  
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CHAPTER III 
 

 

PROPERTIES OF GOLDBACH PARTITIONS 

 

 

Average Number of Attempts to Find Primes using Goldbach Partitions 

Prime number theorem describes the distribution of prime numbers. It also gives an approximation 

of  the average gap among primes below x and can be calculated using the formula  
𝑥

 𝜋(𝑥)
 , where 

𝜋(𝑥) is the number of prime numbers below 𝑥.  

Suppose, we randomly pick a large odd number and apply primality tests like Miller-Rabin and 

AKS to determine its primality. If it is not prime, we add two to that number and repeat the same 

process until we find the prime number. This process is known as incremental search method to 

find prime numbers [6]. Since, we will only be using odd numbers for primality tests; we can safely 

assume that the average number of attempts to find a prime number will be approximate half of the 

average prime gap calculated using prime number theorem.  

We propose a method to calculate average number of attempts to find a specific number of primes 

using Goldbach partitions and then compare it with incremental search method. The primality can 

be determined using standard primality tests. The method is given as under: 
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1. Calculate the value of 𝑥 = (No. of primes required × 2) + 2. 

2. Generate a sequence of primes and replace the first prime, which is two with one. The 

number of primes in the sequence may be equal to the average prime gap calculated using 

prime number theorem.  

3. Start from 4 and denote it as n.  

4. Subtract 1st number of sequence generated in step 2 from n and determine its primality. If 

it is not a prime, subtract 2nd number of sequence from n and repeat the same process until 

a prime number is found.  

5. Count the number of attempts for finding the prime number in step 4. 

6. Add two to n.  

7. Repeat step 4 through 6 until the value of n is equal to x.  

8. Calculate average number of attempts using this formula. 

𝛴 (𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ∗ 𝑁𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑁𝑜. 𝑜𝑓 𝑝𝑟𝑖𝑚𝑒 𝑛𝑢𝑚𝑏𝑒𝑟𝑠
 

Example: 

We wish to find average number of attempts for finding first four primes using Goldbach partitions 

for which we have to repeat the process until x=10. The process is given as under and Table 3.1 

summarizes the results. 

 Step 1.  x = 4 × 2 + 2 = 10 

 Step 2.   Sequence generated = {1, 3, 5, 7} 

 Step 4-6.  n =4; 4-1 = 3 (Prime)               Number of attempt(s) =1 

 Step 4-6. n =6; 6-1=5 (Prime);                Number of attempt(s) =1 

 Step 4-6. n =8; 8-1=7 (Prime);               Number of attempt(s) =1 
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 Step 4-6.  n =10; 10-1=9 (Not prime), 10-3=7 (Prime)       Number of attempt(s) =2   

Step 7.   Average = Σ (No. of attempts × No. of values) / No. of prime numbers 

  Average= {(1×3) + (2×1)} / 4 = 5/4  

Average number of attempts= 1.25 

Table 3.1. Average number of attempts using Goldbach partitions and incremental search method 

Number of 

primes 

Average number 

of attempts using 

Goldbach 

partitions 

Average number 

of attempts using 

incremental 

search 

Difference in 

number of 

attempts   

25 1.560 2.000 0.441 

168 2.262 2.976 0.714 

1229 3.069 4.068 0.999 

9592 4.078 5.212 1.134 

78498 5.163 6.370 1.207 

  

If we use Goldbach partitions to find specific number of primes, the average number of attempts 

are found to be less as compared to incremental search method.  

As every prime number is of the form 6𝑛 ± 1, we can use this property along with Goldbach 

partitions to reduce the number of attempts in finding prime numbers. Then the proposed modified 

procedure to calculate average number of attempts to find prime numbers using Goldbach partitions 

in a given range is given as under: 

1. Select a range and denote it as range. Input a range in such a way that the lower limit 

is of the form 6𝑘 + 4 where 𝑘 = 0, 1, 2, 3, … 
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2. Generate a sequence of primes replace the first prime, which is two with one. The 

number of primes in the sequences may be equal to the average prime gap calculated 

using prime number theorem.  

3. Start one loop from (lower limit + 6) and denote it as n1. 

4. Subtract 2nd number of sequence generated in step 2 from n1 and determine its 

primality. If it is not a prime, subtract 3rd number of sequence from n1 and repeat the 

same process until a prime number is found.  

5. Count the number of attempts for finding the prime number in step 4. 

6. Add six to n1. 

7. Repeat step 4 through 6 until the value of n1 is equal or less than the upper limit.  

8. Start second loop from (lower limit + 2) and denote it as n2. 

9. Subtract 1st number of sequence generated in step 2 from n2 and determine its 

primality. If it is not a prime, subtract 2nd number of sequence from n2 and repeat the 

same process until a prime number is found.  

10. Count the number of attempts for finding the prime number in step 9. 

11. Add six to n2. 

12. Repeat step 9 through 11 until the value of n2 is equal or less than the upper limit.  

13. Calculate average number of attempts using this formula. 

𝛴 (𝑁𝑜. 𝑜𝑓 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 ×  𝑁𝑜. 𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠)
𝑟𝑎𝑛𝑔𝑒

2

 

Example: 

We wish to find average number of attempts in range from 10 to 30 using Goldbach partitions and 

6𝑛 ± 1 property of primes. The process is given as under and Table 3.2 summarizes the results. 

 Step 1.  Range=10 to 30 
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 Step 2.   Sequence generated = {1, 3, 5, 7, 11} 

 Step 3-5. n1 =16; 16-3=13 (Prime);               Number of attempt(s) =1 

 Step 4-7. n1 =22; 22-3=19 (Prime);               Number of attempt(s) =1 

 Step 4-7. n1=28; 28-3=25 (Not prime), 28-5=23(Prime);   Number of attempt(s) =2   

 Step 8-10.  n2 =12; 12-1 = 11 (Prime)                 Number of attempt(s) =1 

 Step 9-12. n2 =18; 18-1=17 (Prime);               Number of attempt(s) =1 

 Step 9-12. n2=24; 24-1=23 (prime);               Number of attempt(s) =1 

 Step 9-12. n2 =30; 30-1=29 (Prime)              Number of attempt(s) =1 

 Step 13. Average = 
𝛴(𝑁𝑜.  𝑜𝑓 𝑎𝑡𝑡𝑒𝑚𝑝𝑡𝑠 × 𝑁𝑜.  𝑜𝑓 𝑣𝑎𝑙𝑢𝑒𝑠)

𝑟𝑎𝑛𝑔𝑒

2

 

   Average = {(1×6) + (2×1)} / 10 = 8/10= 0.80 

Table 3.2. Average number of attempts using Goldbach partitions and Incremental search method  

Range Average no. of 

attempts using 

Goldbach 

partitions 

(AGGP) 

Average no. of 

attempts using 

Incremental 

search 

(AGPNT) 

Difference in  

number of 

attempts 

10-100 0.978 2.143 1.165 

100-1000 1.578 3.147 1.569 

1000-10000 2.328 4.241 1.913 

10000-100000 2.996 5.381 2.385 

100000-1000000 3.734 6.531 2.797 
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Here, we also observe that while using Goldbach partitions to find prime numbers in a given range, 

the average number of attempts are less as compared to Incremental search method. We can further 

improve the average number of attempts by putting a restriction on maximum number of attempts 

to find a large prime number in a given range. 

 

Reasons to Choose the Range [n/2 to n-2] Instead of [3 to n/2] 

In previous studies [10, 20], the range considered for candidate primes in Goldbach partitions was 

[n/2, n-2], where n is the number for which we make partitions. The process of making Goldbach 

partitions and calculating the percentage of Goldbach partitions is illustrated here through an 

example where n=40. The range is [n/2, n-2] = [20, 38]. The candidate primes in the given range 

are 23, 29, 31 and 37. The partitions are (23, 17), (29, 11), (31, 9), (37, 3). Out of four, three are 

Goldbach partitions. The partitions (31, 9) is not Goldbach partition because 9 is not a prime  

This raises a question why the range [n/2, n-2] is considered and why not the range [3, n/2]. We 

extend the previous example and find Goldbach partitions for the Range [3, n/2] = [3, 20]. The 

partitions are (3, 37), (5, 35), (7, 33), (11, 29), (13, 27), (17, 23), (19, 21). Out of seven, only three 

(23, 17), (29, 11), (37, 3) are Goldbach partitions. The partitions (5, 35), (7, 33), (13, 27), (19, 21) 

are not Goldbach partitions.  

Interesting to note that Goldbach partitions are the same in both ranges: (23, 17), (29, 11), (37, 3). 

We performed simulations and compared the results for n obtained by the product of prime numbers 

which are summarized in Table 3.3. 
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Table 3.3. Comparison of percentages of Goldbach partitions in range [n/2, n-2] and [3, n/2] 

Prime 

numbers 

n No. of 

candidate 

primes in 

range 

[n/2, n-2] 

No. of 

candidate 

primes in 

range 

[3, n/2] 

% of 

Goldbach 

partitions 

in range 

[n/2, n-2] 

% of 

Goldbach 

partitions 

in range 

[3, n/2] 

Difference 

in % 

2,3,5 30 3 5 100.00 60.00 40.00 

2,3,7 42 4 7 100.00 57.14 42.86 

2,3,11 66 7 10 85.71 60.00 25.71 

2,3,13 78 9 11 77.78 63.64 14.14 

2,3,17 102 10 14 80.00 57.14 22.86 

2,3,19 108 11 15 72.73 53.33 19.40 

2,3,5,7 210 19 26 100.00 73.08 26.92 

2,3,5,11 330 28 37 85.71 64.86 20.85 

2,3,5,13 390 32 43 84.38 62.80 21.58 

2,3,5,17 510 42 53 76.20 60.38 15.82 

2,3,7,13 546 42 57 71.43 52.63 18.80 

2,3,7,17 714 56 70 66.07 52.86 13.21 

2,3,7,19 798 60 77 63.33 49.35 13.98 

2,3,11,19 1254 90 113 56.67 45.13 11.54 

2,3,19,23 2622 166 213 46.39 36.15 10.24 

2,3,11,17,23 25806 1306 1534 38.70 32.90 5.70 

2,3,5,7,11,13,17 510510 19865 22465 47.79 42.26 5.53 
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It can be seen that there are more number of candidate primes in the range [3, n/2] but its percentage 

is less than that in the range [n/2, n-2].  The Goldbach partitions are always the same in both ranges 

but the number of candidate primes will be greater in the range [3, n/2] as deduced from prime 

number theorem. This holds true for all cases. For n >= 24, we can predict that there will always 

be more number of partitions but less percentage of Goldbach partitions in the range [3, n/2] than 

in the range [n/2, n-2]. 

 

We did the simulations up to n=50000 and the results are given in Figure 3.1. 

 

Figure 3.1. Percentage difference in ranges [n/2, n-2] and [3, n/2] 
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It is very interesting to note that the difference in percentages of Goldbach partitions between two 

ranges is getting smaller and smaller as the value of n increases. The difference is high when the 

value of n is product of prime numbers as compared to other numbers as shown in Figure 3.2.

 

Figure 3.2. Percentage difference in ranges [n/2, n-2] and [3, n/2] at product of primes 

 

Local Peaks at Integer Multiples of Sequential Product of Primes 

The percentage of Goldbach partitions is more in both ranges when n is product of primes as 

mentioned in previous section. Sequential product of primes means the multiplication of primes in 

sequence such as 2×3 = 6; 2×3×5 = 30; 2×3×5×7 = 210; 2×3×5×7×11 = 2310; 2×3×5×7×11×13 = 

30030; 2×3×5×7×11×13×17 = 510510, etc.   

Another interesting result is that the local peaks are at sequential product of primes and their integer 

multiples. Figure 3.3. shows peaks at product of primes. i.e. 30030= 2×3×5×7×11×13 and at its 

integer multiples 60060 and 90090.  
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Figure 3.3. Percentage of Goldbach partitions in range [n/2, n-2] 

Let us examine it more closely. The figures 3.4 – 3.8. show the local peaks. It was very interesting 

to find that if the range considered is n then first we find the local range. Local range is found in 

such a way that n lies in between two sequential product of primes. Then the local peaks will be at 

the integer multiples of lower sequential product of primes.  

If n = 21000, local range will be 2310 < n < 30030, then the local peaks will be at integer multiples 

of 2310 i.e. 4620, 6930, 9240, 11550, 13360, 16170, 18480, 20790. In other words, between 2310 

and 4620 there will not be a number where percentage of Goldbach partitions will be greater than 

the percentage at 2310. The same will be true for all ranges such as [4620, 6930], [6930, 9240], 

etc. It is important to note that if n = 2310, the local peaks will be at integer multiples of 210 i.e. 

420, 630, 840, 1050, 1260, 1470, 1680, 1890, and 2100. 
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Figure 3.4. Percentage of Goldbach partitions at every 6th number 

 

Figure 3.5. Percentage of Goldbach partitions at every 30th number 
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Figure 3.6. Percentage of Goldbach partitions at every 210th number 

 

Figure 3.7. Percentage of Goldbach partitions at every 2310th number 
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Figure 3.8. Percentage of Goldbach partitions at every 30030th number 

It is also interesting to note that the percentage of Goldbach partitions in both ranges [n/2, n-2] and 

[3, n/2] varies in somehow almost same fashion and is the main reason that the minimum and 

maximum value of difference in both ranges remain very small as the value of n increases. 
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CHAPTER IV 
 

 

THE PROBLEM OF COMPUTING PRIMES 

 

 

The sieve of Eratosthenes is an ancient but efficient prime number sieve to find all the prime 

numbers up to any number n and is described in Chapter II in detail. Since every prime is odd 

except two; we consider a list of positive odd integers up to n instead of all positive integers. We 

declare the first number in the sequence as prime 𝑝, and subtract all the odd multiples of 𝑝 starting 

from 𝑝2 from the original sequence 𝑆 to create a new sequence 𝑆𝑛. Then we set the next number to 

the last p in the new sequence as new 𝑝 and continue this process until the new 𝑝 in the new 

sequence is greater than √𝑛  [26]. 

We illustrate the process through an example where n=53. 

 𝑆 = {3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53} 

The first number in the sequence is 3, which will be considered as a prime number 𝑝. We create a 

sequence using all the odd multiples of 3 starting from 𝑝2 = 9 and subtract it from the original 

sequence 𝑆.  

 𝑆3 =  {9,15,21,27,33,39,45,51} 

 𝑆𝑛 = 𝑆 − 𝑆3 = {3,5,7,11,13,17,19,23,25,29,31,35,37,41,43,47,49,53}
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The next number to the last 𝑝 in the new sequence is 5, which will be considered as a prime 

number 𝑝 now. We create a sequence using all the odd multiples of 5 starting from 𝑝2 = 25 and 

subtract it from the new sequence 𝑆𝑛. 

 𝑆5 =  {25,35,45} 

 𝑆𝑛 = 𝑆 − 𝑆5 ={3,5,7,11,13,17,19,23,29,31,37,41,43,47,49,53} 

The next number to the last 𝑝 in the new sequence is 7, which will be considered as a prime 

number 𝑝 now. We create a sequence using all the odd multiples of 7 starting from 𝑝2 = 49 and 

subtract it from the new sequence 𝑆𝑛. 

 𝑆7 =  {49} 

 𝑆𝑛 = 𝑆 − 𝑆7 ={3,5,7,11,13,17,19,23,29,31,37,41,43,47,53} 

Since √53 = 7.28, and the next number to the last 𝑝 in the new sequence is 11, which is greater 

than √𝑛, we will stop the process here. The new sequence is now the list of all prime number up to 

number n. i.e. 𝑆𝑛 ={3,5,7,11,13,17,19,23,29,31,37,41,43,47,53} 

The problem with the sieve of Eratosthenes is that it crosses off the same number multiple number 

of times. In the above example, the number 45 was crossed off two times as it is the odd multiple 

of 3 and 5 though we have already considered few optimizations to the actual sieve i.e. starting 

from 𝑝2 instead of 𝑝, considering only odd positive integers and odd multiples. The number of 

crossings increase as n increases.  To reduce the number of crossings, we have devised a new way 

of crossing off the numbers and is explained step-by-step here. 

1. Generate a sequence of odd positive integers until n. 

2. Subtract all the odd multiples of 3 and 5 starting from 9 and 25 respectively from the 

original sequence to generate a new sequence 𝑆𝑛. 
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3. Multiply each number in 𝑆𝑛 starting from 7 with itself and the numbers before it and 

we call this number as 𝑥. The number 𝑥 is multiplied in the increasing order starting 

from the first number in the sequence  𝑆𝑛 . Subtract all the products from the 

sequence 𝑆𝑛. 

4. Stop multiplying and move to the next number in the sequence 𝑆𝑛 if the product of two 

numbers is greater than n. 

5. End this process when 
𝑛

𝑥
< 7. 

We illustrate this through an example where n = 169. 

1. Generate a sequence of odd positive integers until n. 

 

Table 4.1. Sequence of odd positive integers until n 

 3 5 7 9 11 13 15 17 19 

21 23 25 27 29 31 33 35 37 39 

41 43 45 47 49 51 53 55 57 59 

61 63 65 67 69 71 73 75 77 79 

81 83 85 87 89 91 93 95 97 99 

101 103 105 107 109 111 113 115 117 119 

121 123 125 127 129 131 133 135 137 139 

141 143 145 147 149 151 153 155 157 159 

161 163 165 167 169      

 

2. Subtract all the odd multiples of 3 and 5 starting from 9 and 25 respectively from the 

original sequence to generate a new sequence 𝑆𝑛. 
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Table 4.2.  Multiples of 3 and 5 starting from 9 and 25 respectively. 

9 15 21 27 33 39 45 51 57 63 

69 75 81 87 93 99 105 111 117 123 

129 135 141 147 153 159 165 25 35 45 

55 65 75 85 95 105 115 125 135 145 

155 165         

 

Table 4.3. New sequence 𝑆𝑛 by subtracting all the odd multiples of 3 and 5. 

 3 5 7 11 13 17 19 23 29 

31 37 41 43 47 49 53 59 61 67 

71 73 77 79 83 89 91 97 101 103 

107 109 113 119 121 127 131 133 137 139 

143 149 151 157 161 163 167 169   

 

3. Multiply each number in 𝑆𝑛 starting from 7 with itself and the numbers before it and we 

call this number as 𝑥. The number 𝑥 is multiplied in the increasing order starting from the 

first number in the sequence 𝑆𝑛. Subtract all the products from the sequence 𝑆𝑛.  

 7 × 7 = 49,  

 11 × 7 = 77, 11 × 11 = 121,  

 13 × 7 = 91, 13 × 11 = 143, 13 × 13 = 169, 

 17 × 7 = 119,      17 × 11 = 187,         (Stop because product is greater than n) 

 19 × 7 = 133,      19 × 11 = 209,         (Stop because product is greater than n) 

 23 × 7 = 161,      23 × 11 = 253,        (Stop because product is greater than n) 
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4. End the process because 169/29 < 7 

Table 4.4. List of all prime numbers until 169 

 3 5 7 11 13 17 19 23 29 

31 37 41 43 47 53 59 61 67 71 

73 79 83 89 97 101 103 107 109 113 

127 131 137 139 149 151 157 163 167  

 

Figure 4.1. shows the comparison between the number of operations of the Sieve of Eratosthenes 

and the new sieve against the value of n which changes from 1 to 108. The new sieve uses less 

number of operations as the value of n increases. 

 

Figure 4.1.  Comparison of number of  operations for Eratosthenes and its improved version 
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CHAPTER V 
 

 

USE OF MULTIPLE CERTIFICATE AUTHORITIES IN TLS/SSL PROTOCOL 

 

 

Certification Authority 

The purpose of certificate authority (CA) is to issue digital certificates to authenticate and validate 

the identity of organizations as well as individuals on the Internet. It is also the responsibility of 

CAs to maintain updated information and validity of issued certificates and they do it using Online 

Certificate Status Protocol (OSCP) and/or Certificate Revocation Lists (CRLs). There is a strict 

hierarchical chain of trust in a tree-like structure and the trust flows downward only. Root CAs are 

the topmost secure CAs and serve as trust anchors for digital certificates. Intermediate CAs are 

below the root CAs and issue most of the certificates to clients or end users. 

 

 

 

 

Figure 5.1.  Certification Authority Hierarchy

Intermediate CA 1

  

Intermediate CA 2 

Issuing CA 1-1 Issuing CA 2-1 Issuing CA 2-2 Issuing CA 1-2 

Root CA 
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In cryptography, X.509 standard specifies the format of digital certificates. Digital certificates are 

also known as public key certificates or SSL certificates. Individuals or organizations apply for a 

digital certificate using CSR (Certificate Signing Request), and then a CA verifies the applicant’s 

credentials and issues digital certificate as shown in Figure 5.2. The applicant usually generates the 

key pair of public and private key and the private key is always kept secret. Digital certificates 

contain the version number of X.509 standard, serial number, issuer name, digital signature of CA, 

validity period, identity of public key owner, public key, and relevant information about the digital 

certificate owner.  

 

Figure 5.2. Process of issuing Digital certificate using single CA 

Digital certificates play critical role in providing secure communication between servers and 

clients. These certificates are used in protocols like SSL/TLS, VPN, IPSec etc. These certificates 

ensure the authenticity of a web server and a client feels secure interacting and sharing its 

information on such websites. When a user visits a website secured by SSL/digital certificate, the 
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user uses the public key contained in the digital certificate for encrypting data. The user also 

receives digital signature of the public key signed by CA’s private key and can be verified using 

CA’s public key and if the user trusts the CA, it will trust the public key contained in the certificate. 

A fake website does not have the private key of CA and hence cannot create a fake digital signature 

to impersonate the actual website. The browsers and operating systems maintain lists of trusted 

CAs and their public keys. 

If the hacker manages to fake a certificate for a particular website and could redirect the traffic to 

his rogue website, then the hacker can read all the information and the browser would not ring any 

alarm because it trusts the CA. The hackers may spoof someone by using the forged certificates 

and they may claim to be one, which they are not. The hackers may also setup a fake root CA using 

OpenSSL and might succeed to add this fake certificate in the collection of root certificates present 

in the computers. Then, they may setup a fake but lucrative e-business website to trap the customers 

and they will be able to steal their credit card information [27].  

CAs have been compromised in the past as mentioned in Chapter II in detail. When a CA is 

compromised, one may think of removing it from the trusted CAs. It will create problems when a 

large CA, who has issued millions of certificates to different organizations, is removed from trusted 

ones because all the websites who were issued certificates by that CA will be seen as insecure even 

if their certificates are not compromised or forged. It implies that we cannot remove those large 

CAs from trusted ones and are bound to trust them forever. 

Keeping in view such incidents, some enhancements in the existing framework and some 

alternatives were suggested and are discussed in detail in Chapter II. 

We also suggest an enhancement to the existing CA ecosystem, which can be used in combination 

with one or more complements and enhancements proposed and are mentioned in Chapter II. We 



29 
 

want to utilize the idea of distributing the trust by using multiple CAs to verify the identity of an 

organization or individual on the Internet as shown in Figure 5.3.  It will have the following 

benefits: 

1. It will make it difficult and harder for the hacker to compromise multiple CAs at the 

same time to create a forged certificate and impersonate any website.  

2. It will also make it easy to remove compromised CA(s) from trusted ones. 

3. It will force every CA to be more vigilant and careful about their security infrastructure. 

 

Figure 5.3. Process of issuing Digital certificate using multiple CAs 

The current format of X.509 v3 certificates only allows only one issuer and single signature on a 

certificate. If we want to use multiple signatures by distinct CAs on the same certificate, some 

updates will be needed for existing X.509 format to pave the way for multiple signatures on the 

same certificate. 
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Another way to verify the certificate is to use the same public key while requesting for a certificate 

from different CAs. While establishing SSL session, the user requests multiple certificates instead 

of just one for verification to establish secure connection. Since the public key is same in every 

certificate, it can be used for encrypting data from the client to the server. If same public key is not 

used in every certificate, then the client may choose which public key it has chosen for encryption 

during TLS/SSL hand shake and the corresponding private key is used at the server side.  

The optimal number of certificates used for verification may be standardized taking into account 

the factors of introduced redundancy, increased security, etc. The provision may be made that if k 

out of n provided certificates are verified, then a secure connection may be established. In case, 

(𝑘 − 𝑛) CA(s) are compromised, the secure connection can be established with certain security 

rating. A new term may be introduced to indicate the security rating of a certain certificate. The 

certificate which can be verified by all CAs will have the highest rating and the one with minimum 

number of CAs will have the lowest rating. 

Analysis 

Since we are using more than one CA, it will make it hard for an attacker to forge or steal digital 

certificates of the same website provided by distinct CAs. It is easier to steal or forge more than 

one digital certificate of different websites when one or more CA(s) are compromised, but it is hard 

to steal or forge the digital certificates of the same website and compromise many CAs and that too 

the exact CAs at the same time.  

We assume that an attacker can compromise any CA with the same probability. Let 𝑝 be the 

probability that a digital certificate can be stolen or forged if a CA is compromised, then 𝑝𝑛 is the 

probability of n CAs compromised since every CA and digital certificate is independent of each 
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other. The rate of successful attack is decreasing exponentially and the difficulty raises 

exponentially even in the worst-case scenario under given assumptions as shown in figure 5.4. 

In reality, some CAs are much more secure and cannot be compromised easily. Compromising 

exactly the same CAs for which the website has digital certificates in a limited time makes it even 

more difficult. Figure 5.4. shows the probability of success vs number of CAs when the probability 

is 0.5. In actual, the probability is much low. 

 

Figure 5.4. Probability of success vs Number of CAs (p=0.5) 

The use of multiple CAs is compatible with the enhancements proposed. It is not the replacement 

of any of the enhancements but complements to the current CA ecosystem. 
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CHAPTER VI 
 

 

SECURE COMMUNICATION PROTOCOLS USING GOLDBACH PARTITIONS 

 

 

Secure Communication Protocol using Single Third Party  

Imagine a scenario in which two parties want to communicate securely and rely on a third party for 

the key exchange. The third party knows all the secrets and if it is compromised or becomes 

malicious; this will completely break the security of the system and hence relying on a single third 

party is risky [19]. There can be two solutions to this problem:  

1. Do not share the secret completely with the third party.  

2. The secret is distributed among multiple third parties.  

Keeping in view the above scenario, first we present a secure communication protocol, which uses 

a single third party for the key exchange using Goldbach partitions. We exchange the key in such 

a way that even if third party reads all the messages sent to it for the key exchange, it is unable to 

determine the key. We assume that third party will not try to look at the communication between 

two parties. We assume that Alice (A) and Bob (B) choose private keys and shares hashed value of 

their private keys ℎ(𝑘𝑎) and ℎ(𝑘𝑏), respectively with the third party (T) during the registration 

period. 
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The protocol is as follows: 

1. The third party chooses a random even number n and send it to both the parties Alice and 

Bob using their private keys. The random number is sum of two primes.  

  𝑇: 𝑛 = 𝑝1 + 𝑝2 

𝑇          𝐴: 𝑛 ⊕ ℎ(𝑘𝑎) 

𝑇          𝐵: 𝑛 ⊕ ℎ(𝑘𝑏) 

 

Figure 6.1. Third party sends random number n to both Alice and Bob 

2. Alice chooses a random number r and sends it to the Bob using the hashed value of n. As 

Bob already knows the value of n, it can decrypt the value of r. Alice and Bob adds r and 

n using Bit XOR.  

𝐴          𝐵: 𝑟 ⊕ ℎ(𝑛) 

𝐴, 𝐵: 𝑞 = 𝑟 ⊕ 𝑛 
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Figure 6.2. Alice sends random number r to Bob 

3. Alice sends a number m to T using the hashed value of r, which is the number of partition 

of q. Third party (T) forwards the same to Bob. As Bob already knows the value of r and 

hence can decrypt the value of m. The partition m will be used as a secret key for the 

communication. 

𝐴          𝑇: 𝑚 ⊕ ℎ(𝑟) 

𝑇          𝐵: 𝑚 ⊕ ℎ(𝑟) 

 

Figure 6.3. Alice sends m to third party and secure connection is established 
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We illustrate this through an example: 

1. T chooses 42 as n, which has four Goldbach partitions: 5+37, 11+37, 13+29, and 19+23 

and sends it to Alice and Bob using hashes of their private keys. 

2. Alice chooses 18 as r, hashes it using 42, and sends it to Bob who then performs XOR 

on r and n: 42 ⊕ 18= 56. The Goldbach partitions of 56 are 53+3, 43+13, and 37+19. 

3. Alice chooses 3 as m, hashes it using 18, and sends it to Bob via Third party. Hence, 

the pair (37, 19) is used as a secret key. 

Security Analysis 

Since, the third party only knows about n and m, it cannot determine the key and even if it is 

compromised, the key remains safe. To derive the key, it needs to know n, r, and m. If the third 

party is looking at the communication between Alice and Bob, it can determine the key and is not 

consistent with our assumption. The Eve needs to intercept the communication between Alice and 

Bob and also needs to compromise the third party in order to determine the key. If Eve wants to 

impersonate as a legitimate third party and reads all the messages sent to it for the key exchange, it 

will still be unable to determine the key. The hashing function used in the protocol is assumed to 

be cryptographically strong.  

We can also calculate the value of q, which is sum of r and n, as a sum of all the values of r sent in 

the previous communications. It will require Eve to know all the previous values of r in order to 

determine the key.  

q =  𝑟1 ⊕ 𝑟2 ⊕ 𝑟3 … ⊕ 𝑟𝑛 ⊕ 𝑛 
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Secure Communication Protocol using Multiple Third Parties 

We can use Goldbach partitions to exchange the key using multiple third parties. This will require 

Eve to compromise all the third parties taking the part in key exchange to determine the key. Any 

third party cannot determine the key unless they compromise all other third parties involved in the 

process. The minimum number of third parties is three. 

We assume that Alice (A) and Bob (B) choose their private keys and shares hashed value of their 

private keys ℎ(𝑘𝑎) and ℎ(𝑘𝑏), respectively with third parties (T) during the registration period. The 

private keys chosen are different for each third party. The symbols used in this protocol have 

nothing to do with the symbols used in the previous protocol. 

The protocol is as follows:  

1. Consider n third parties taking place in the key exchange. They all generate an even random 

number r and send it to both Alice and Bob using hashes of their private keys.  

  𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛: 𝑟1 , 𝑟2, 𝑟3, … 𝑟𝑛 

 𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛          𝐴: 𝑟1 ⊕ ℎ(𝑘𝑎), 𝑟2 ⊕ ℎ(𝑘𝑎), 𝑟3 ⊕ ℎ(𝑘𝑎) … 𝑟𝑛 ⊕ ℎ(𝑘𝑎)  

𝑇1, 𝑇2, 𝑇3, … 𝑇𝑛          𝐵: 𝑟1 ⊕ ℎ(𝑘𝑏), 𝑟2 ⊕ ℎ(𝑘𝑏), 𝑟3 ⊕ ℎ(𝑘𝑏) … 𝑟𝑛 ⊕ ℎ(𝑘𝑏) 

Figure 6.4. All third parties send even random number r to both Alice and Bob 
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2. Both Alice and Bob perform XOR on all the values received from all the third parties.  

𝑞 =  𝑟1 ⊕ 𝑟2 ⊕ 𝑟3 … ⊕ 𝑟𝑛 

3. Alice chooses a random number which is less than or equal to the value of number of 

partitions of q and splits it into the d partitions. Then, it sends one partition to each third 

party using the hash value of specific r, which is then forwarded to Bob using the hash of 

its private key.  

𝑞 =  𝑑1 ⊕ 𝑑2 ⊕ 𝑑3 … ⊕ 𝑑𝑛 

 

Figure 6.5.  Alice sends partitions of a random number to Bob via each third party 

4. Bob performs XOR on all the partitions received from all the third parties. Hence, the key is 

exchanged and can be used for the communication. 

The protocol presented can be modified to XOR the values of only specific m out of n parties to 

derive the key. The parties chosen for key exchange can be changed from time to time for every 

session.  
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Consider three third parties taking part in key exchange. 

1. 𝑇1, 𝑇2, 𝑇3 chooses 24, 30, and 40  as 𝑟1 , 𝑟2, 𝑟3 and send to Alice and Bob using hash of 

their private keys.  

Goldbach partitions of 24: 5+19, 7+17, 11+13 

Goldbach partitions of 30: 7+23, 11+19, 13+17 

Goldbach partitions of 40: 3+37, 11+29, 17+23 

2. Alice and Bob compute q = 011000 ⊕ 011110 ⊕ 101000 = 101110 

q =46 ; Goldbach partitions of 46: 43+3, 41+5, 29+17 

3. Alice chooses two as the partition number and sends using hash value of specific r. 

4. Bob receives all the partitions and computes  

s = 011100 ⊕ 111010 ⊕ 100100 = 000010 = 2  

 Hence (41,5) partition and is used as secret key. 

Security Analysis 

Since every third party only knows about its own communication with Alice and Bob, it cannot 

determine the key on its own. The key can only be compromised if all the third parties taking part 

in the key exchange are compromised at the same time. Using cryptographically strong hash 

function will prevent man-in-the-middle attack. The Eve needs to impersonate all the third parties 

as legitimate third parties taking part in the key exchange, read all the messages and determine the 

key. The number of third parties taking place in key exchange may be varied for each session. 

Another variation is to involve n parties but compute the output of only k parties. 
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CHAPTER VII 
 

 

SECRET SHARING WITH THIRD PARTIES USING THE PIGGY BANK PROTOCOL 

 

A third party can be defined as an entity which facilitates communication between two parties. 

Third parties are widely employed for distributing secrets. This makes the use of third parties 

critical and make them main target for distributed systems and cryptography research.  

Imagine a scenario in which two parties completely trust the third party and use it to exchange 

secrets, but it is compromised or it becomes dishonest, then the system’s security will be completely 

broken. We can use multiple third parties to reduce the risk and increase security.  

Imagine a cell phone or a device with sensitive information which may be a threat to national 

security is in the custody of law enforcing agency but they cannot access it because it is password 

protected and the data wipes out automatically if the wrong password is entered few times. The cell 

phone or device owner company has also refused to provide any backdoor for information to be 

accessed stating the reason that the backdoor may come in wrong hands and hence the security of 

phones or devices in someone’s physical ownership may be compromised. This in fact was what 

happened in the case between FBI and Apple last year. 

Keeping such scenarios in mind, the use of secret sharing scheme becomes logical. We present a 

protocol to distribute the secret shares with two third parties using the piggy bank protocol (Figure. 

7.1). 
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The piggy bank protocol [28] can be used between a third party and the user as it can provide 

authentication, secures double-lock cryptography and counters MIM attack [29]. There have been 

several secret sharing schemes proposed in which the secret is partitioned and shared to various 

distributed servers. Shamir’s secret sharing scheme [30] is based on polynomial interpolation and 

maps the data on y-axis whereas another data partitioning scheme [31] is based on the roots of a 

polynomial on the x-axis. 

For background, consider the specific (k, n) threshold scheme based on polynomial roots where 

k=2 and n=3. The data is partitioned into three pieces and stored on three servers. Data 

reconstruction requires access to at least two out of three servers. This scheme may be called as 

(2,3) threshold scheme. The servers are chosen in such a way that only one piece of data goes to 

each server and this will secure the user’s data from being accessed by any of them until at least 

two of them agree and combine their pieces to recreate the original data  

Proposed Protocol  

In this protocol, we encrypt the secret share as well as the decryption key used for decrypting the 

secret share. Hence, we first decrypt the decryption key of the secret share and then the secret share. 

The terms used in the protocol are explained as: 

Decryption key of the encrypted secret share decryption key: This is used to decrypt the decryption 

key of the secret share in which the latter is encrypted and the former is not. 

Decryption key of the encrypted secret share: This is used to decrypt the secret share. 

Step by Step Protocol 

1. Secret shares are created on user’s device using some appropriate process. 
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2. One unique secret share is encrypted and sent to third party 1 along with the decryption 

key of the encrypted secret share decryption key. Each secret share is encrypted with a 

unique key. 

3. The decryption key of the encrypted secret share is encrypted and sent to third party 2. 

4. Third party 1 sends unique recipient only one encrypted secret share and the decryption 

key of the (encrypted) secret share decryption key. 

5. Third party 2 sends the recipient the decryption key of the (encrypted) secret share and the 

former is also encrypted. 

6. Step 2 to Step 5 are repeated until every recipient receives its secret share. 

7. Every recipient can decrypt the secret share by first decrypting the encrypted secret share 

decryption key using the decryption key received from third party 1 and then decrypting 

the encrypted secret share using the key received from third party 2. 

 

Figure. 7.1. Protocol for distributing secret shares Involving two third parties 
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The above mentioned protocol can be applied in a variety of applications i.e. Cloud Computing. 

Now, we present an application protocol in which the cell phone or device data is accessible to law 

enforcing agencies using secret sharing scheme and two third parties 

Application: Accessing a Cell Phone/Device  

The data is partitioned into three pieces and stored on the servers of law enforcing agencies, judicial 

administration and cell phone/device owner company in such a way that only one piece of secret 

goes to each authority (Figure 7.2). Data reconstruction requires access to at least two out of three 

servers. Law enforcing agencies cannot access cell phone or device until one of other two combine 

their secret share with them. It is assumed that cell Phone or device owner companies would never 

share their secret share until it is the matter of national security because they would never want to 

lose the trust of people. In case, it is the matter of national security and cell phone or device owner 

company has denied to share its secret, the judicial administration can give its share to law 

enforcing agencies and access the cell phone or device. The number of servers can be n and any (k, 

n) secret share can be used to implement this. The decision to select authorities whom the secrets 

are sent is also on the will of the implementation authority. 

 

Fig. 7.2. Protocol for accessing cell phone using secret sharing scheme and two third parties 
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Quantum Secret Sharing 

Now we come to quantum cryptography [32]. The concept of quantum secret sharing has been 

investigated and different schemes have been proposed. The procedure in which a message is split 

into various parts and all of them are required to read the message is described in [33]. A mechanism 

has also been shown to implement this procedure using GHZ states. The advantage of quantum 

case is the detection of eavesdropper because his presence will introduce errors. The concept of (k, 

n) threshold scheme is to divide a secret quantum state into n shares and any set of k shares are 

required to reveal the secret, but any set of  𝑘 − 1 or less shares reveal absolutely nothing about the 

secret [34]. Quantum no-cloning theorem puts a restriction on threshold schemes and requires n < 

2k and in our case n=3, k=2 and hence 3 < 2 (2) = 3 < 4, thus obeys the no-cloning theorem. The 

quantum mechanical version of the piggy bank cryptography protocol is presented in [35] and 

relevant problems of information in [36,37,38].  

Security Analysis 

In proposed protocol, we are using two Third parties and sending encrypted secret share via one 

third party and its decryption key which is also encrypted via other third party. This provides the 

confidentiality to the secret shares even in the case when one of the Third parties is compromised. 

If third party 2 is compromised, the Eve will only have the encrypted secret share decryption key 

and not the secret shares. As the secret share decryption key is also encrypted, it provides another 

level of security to the secret shares and ultimately the secret. If third party server 1 is compromised, 

the Eve will only have encrypted secret shares but not its decryption key and using better encryption 

technique and long decryption key will also make the brute force attack impossible for the Eve. 

Use of the piggy bank protocol between a third party and the user prevents man-in-the-middle 

(MIM) attack if this protocol uses cryptographically strong RNG (Random Number Generation) 

algorithm or complex hash function. Both parties can introduce onetime pad or any other technique 
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for authentication resource to recognize the misinformation from Eve, if she gets holds of the secret 

message. The Piggy bank protocol can also provide authentication. Data partitioning scheme is 

implicitly secure as less than 2 shares cannot deduce any information about the secret. Eve has to 

access at least two servers to construct the secret. 

The protocols presented in this chapter are published in [39]; the passages and figures are 

reproduced with slight modifications.  
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CHAPTER VIII 
 

 

CONCLUSIONS 

 

 

This thesis presents two secure communication protocols based on Goldbach partitions. The first 

secure communication protocol uses a single third party for the key exchange, and the key is 

exchanged in such a way that even if the third party is compromised, the secret key remains safe 

assuming that the third party does not intercept the communication between the communicating 

parties. The second secure communication protocol uses multiple third parties to distribute the trust 

and eliminate the dependency on single third party. The secret key is not compromised until all 

third parties are compromised. In case we are using k out of n parties to exchange the key, at least 

k third parties need to be compromised.  

Goldbach partitions can be used to find large prime numbers in an efficient manner under certain 

conditions. We investigated Goldbach partitions and found that they require less number of 

attempts to find prime numbers as compared to the incremental search method. The local peaks of 

percentage of Goldbach partitions are found to be at sequential product of primes and their integer 

multiples. 
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We also present a new scheme to distribute secret shares with two third parties using the piggy 

bank cryptographic paradigm. We present an application of the given protocol to give law enforcing 

agencies access to sensitive information present on a cell phone or a device using secret sharing 

scheme. These ideas for classical systems may also be applied to quantum schemes. 

We propose the use of multiple certificate authorities to issue digital certificates and validate the 

identity of organizations and individuals on the Internet. The use of multiple certificate authorities 

raises the difficulty in stealing or forging digital certificates, thereby enhancing the trust and 

security of the system. 

We have also devised a way to sieve prime numbers which uses less number of operations as 

compared to the Sieve of Eratosthenes. 
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