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CHAPTER I 

INTRODUCTION 

In the data processing environment, data can be repre-

sented in a variety of ways. The structure ultimately chosen 

for representing the data is heavily for a specific task 

the type influenced by of operations to be performed on the 

data set and by its volume. 

designing graceful data 

There has been much progress in 

structures. Major advances may be 

found in such structures as balanced trees and dynamic forms of 

hashing[16]. However, there have been increasing demands to 

develop efficient structures to meet the diversified require-

ments of modern information society. Commomplace yet 

complicted queries such as "Find all records associated with 

black women aged from 20 to 30 who have an annual income below 

$15,000 and live 

thoughtful design 

in the 

of the 

10 southern states." require 

underlying data and file structures. 

Although it seems to be difficult to get a single solution for 

complex information demands, there appeared recently several 

attempts to design efficient data or file structures for that 

kind of problem. 

We call the structures ''large multidimensional dynamic 

structures''. By 'large', we mean that the data set stored is 

BO l.:.'J.rge that the bulk of dat .. :.t muBt rem.:.'tin on Beeond.:.'J.rY 

1 
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storage, usually random access devices, even when operations 

are being done. By 'multidimensional', we mean that a given 

data set F consists of records R each of which is a k-dimen­

sional key vector such that R = (al, a2, ... , ak), where k is a 

positive integer. By 'dynamic', we mean that we can execute 

common operations on the data set such as FIND, INSERT, DELETE, 

UPDATE and some kinds of range search on-line. 

Recently the grid file[27] was presented as an attempt to 

support efficient operations on multikey processing fields. It 

has many interesting properties which might be useful to cover 

the deficiencies of conventional inverted files. An inverted 

file is a popular structure in the practical application of 

multikey processing. But it has severe space and time overhead 

to maintain sorted index lists for each key type and to perform 

boolean operations. 

The grid file is one of the grid-cell-type data structures 

that organizes the data space in which a set of given objects 

is embedded. It is as a whole a symmetric, adaptable file 

structure designed to process large amounts of multidimensional 

data efficiently[27]. It is symmetric in the sense that every 

key field is treated with the same efficiency ,i.e., the grid 

file does not have a primary key representing a record 

distinctly. 'Adaptable' means that the data structure adapts 

its shape automatically to the content it must 

grid file adjusts its structure dynamically so 

store The 

that bucket 

occupancy and access time are uniform over the entire file, 

even thou.gh the data may be di5tributed highly nonuniformly 
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over the data space. With those properties, the grid file can 

perform efficient queries such as range and nearest neighbor 

queries on multidimensional data. 

Nievergelt[26] groups organizing techniques into two broad 

classes: (1) those that organize the set of given objects to be 

processed and (2) those that organize the space in which those 

data are embedded. The difference can be seen between compa­

rative search in binary search tree and radix search in a trie. 

The former is based on tree structure and the latter relies on 

address computation like a hashing method. In Chapter II, we 

review several structures in each category in view of mu~tikey 

processing. We will cover quadtree[14], k-d tree[3,4], k-d-B 

tree[34] and multidimensional B-tree[38] which can be 

classified as class (1), and an extendible cell method[39], 

interpolated-index maintenance[6] for class (2). In Chapter 

III, we will describe the grid file [27] in general and define 

three abstract data types underlying grid file. In Chapter IV, 

we will esta- blish the major concepts and strategies for 

implementation of grid file structure. Chapter V will cover 

algorithms for the implementation of grid files. In Chapter 

VI, we will describe the structure of a program. We discuss 

the scope of this program such as available dimensions and key 

types, user functions, and available data set size. In Chapter 

VII, we will discuss concurrency problem. Chapter VIII will 

conclude this thesis with a summary of our overall design 

strategies and the results of simulation studies. 



CHAPTER II 

PREVIEW OF MULTIKEY PROCESSING TECHNIQUES 

Tree-structured technique 

(1) Point quadtree[14] is a two-dimensional generalization of 

a binary search tree. Each data point is a node in a tree 

having four sons, which are roots of subtrees corresponding to 

ordered quadrants(Figure-1). The process of inserting into a 

point quadtree is analogous to the scheme used for binary 

search trees. At each node of the tree a four-way comparison 

operation is performed and the appropriate subtree is chosen 

for the next test. Records are inserted at leaf nodes like in 

binary search tree. The tree may be unbalanced. Balancing the 

tree is quite complex; furthermore deletion of a node is more 

complex[36] than insertion. The problem with a large number of 

dimensions in a quadtree is that the branching factors becomes 

very large(2k fork dimensions), thereby requiring 'much storage 

for each node as well as many null pointers for terminal nodes. 

While a quadtree has pointer overhead problem, it has an 

advantage that the comparison operation can be performed in 

parallel for the k values. 

(2) A k-d tree[4] is a multidimensional version of the binary 

search tree with the distinction that at each level of the tree 

4 
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Quad tree representation 

Figure-1. Record space and its quad tree representation 

different coordinate is tested for deciding the direction in 

which a branch is to be made. Two kinds of implementations of 

k-d trees are possible: homogeneous and nonhomogeneous k-d 

trees. A homogeneous k-d tree is a binary tree in which each 

record contains k keys, information, right and left pointers 

and one of k discriminators. In nonhomogeneous k-d trees, all 

records are stored in external nodes or buckets. To insert a 

new rP.cord into a k-d tree, we do a top-down search to find the 

insertion position by comparing at each node visited corres-

ponding keys of the discriminator. A cyclic method is 

generally used for choosing a discriminator among k attributes. 

A simple 2-d tree using cyclic method for choosing the 
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discriminator is shown in Figure-2. However, for many kinds of 

searches one might get better performance by choosing as 

discriminator a certain key whose values are particularly well 

spread or by choosing a key which is often specified in 

queries. 

I 
I 
I 
I 

:----B---:-----

I 
I 
I 
I 
I 
I 
I 
I 

D 

I 
I 

A 

I 
I 
I 
I ___ c _____________ : 

I 
I 

E 
-----F----: 

I I I I 
1--------1-----~---------- ______ I 

A 

/~c 
I\ I\ 
J\ I\ 

I\ 
Record space 2-d tree representation 

Figure-2. Record space and its 2-d tree representation 

Formally, the invariant of a k-d tree is that for any node 

A of a j-discriminator, all nodes in the left subtree of A 

have j-discriminator values less than A's j-discriminator 

value, and likewise all nodes in the right subtree have greater 

j- discriminator values. In contrast to single key binary 
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search trees, it seems to be very difficult to maintain 

balanced k-d trees dynamically. 

(3) k-d-B tree[34] is one of solutions for retrieving multikey 

records via range queries from a large dynamic· balanced index. 

A k-d-B tree is a data structure combining properties of k-d 

trees and B-trees. Hence k-d-B trees are multiway trees with 

fixed sized nodes that are always totally balanced in the sense 

that number of nodes accessed on a path from the root node to a 

leaf node is the same for all leaf nodes. A k-d-B tree 

partitions the search space recursively into two subspaces 

based on comparison with some elements of k discriminators. 

Like B-trees, k-d-B trees consist of a collection of pages. 

However, there are two types of pages in a k-d-B tree. One is 

region pages which contain a collection of (region, pageiD) 

pairs and the other is point pages which contain a collection 

of (point, location) pairs, where location points to a bucket 

in secondary storage. The point pages are the leaf nodes of 

the tree. A 2-d-B tree showing region and point pages is 

presented in Figure-3. 

The invariants of a k-d-b tree are: 

1. Considering each page as node and each page ID in a 

region page as node pointer, the resulting graph 

structure is a multiway tree with a root page. 

Furthermore, no region page contains a null pointer, 

and no region page is empty. 

2. The path length, in pages, from the root page to a leaf 
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page is the same for all leaf pages. 

3. In every region page, the regions in the page are 

disjoint, and their union is a region. 

9 

4. If the root page is a region page(it may not exist, or 

if there is only one page in the tree it will be a 

point page), the union of its regions is domaino x 

domain1 x ... domaink-1. 

5. If (region,child ID) occurs in a region page, and the 

child page referred to by child ID is a region page, 

then the union of the regions in the child page is a 

region. 

6. If the child page is a point page, then all the points 

in the page must be in region. 

To insert a new record into the tree, we search down the 

tree from root page to the point page(leaf node) and add 

(point,location) to the point page. If overflow occurs, we 

split the point page into two point pages and distribute the 

record's index appropriately into the pages. We should do 

back tracking like B-trees and split (region,pageiD) in parent 

range page into two region index pointing two new index created 

one level below. 

(4) Multidimensional B-tree[38] is an extension of the 

multiple-attribute-tree structure, in which the directory is a 

k-level tree, such that a unique path from the root to a leaf 

node corresponds to a distinct combination of the k-attributes. 
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However, this structure uses B-trees to maintain the filial 

sets at each level of the directory. A filial set at level i 

is the set of attribute Ai values appearing together with the 

same value of Ai -1 in the whole data set. Each of the k­

attributes of the data set to be indexed is represented by a 

separate level in this tree-directory and each node is of this 

tree is itself a B-tree. Root nodes of all filial sets at 

level i are linked together and an entry point, e.g. LEVEL(i), 

is provided to the beginning of each such linked list(Figure-

4). There are two kinds of pointers in a node in the B-tree 

for an attribute Ai . One point to a node at the next level in 

the same B-tree containing values of Ai and the other points to 

a B-tree at level(i+l) which contains the sets of values of 

attribute Ai+l. There is an assumption that each node in a B­

tree corresponds to a page on a secondary device. If the order 

of a B-tree is relatively small, the adjacent nodes in the tree 

can be grouped together on the same page in order to avoid 

severe low page occupancy. 

The main concern in insertion is to maintain the ordering 

imposed on the filial sets at each level. If we are going to 

insert a record R(al, a2, ... , an) such that the combination a1, 

a2, .. , ai-l already exists in the tree-directory, but a1, 

a2 , ... , ai does not, we first insert ai into the B-tree at 

level i determined by the combination al, a2, ... , ai-l. Then 

we insert a filial set, Fi, consisting of the single value ai+l 

between the filial sets at level(i+l) associated with ai 'and 

ai .. aeeuming that the value of ai is ineerted between ai ' and 
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// 
level 2 ----~~~- - - - - -

I ~ 
level ~ -~ • - - - - - - - • ~} ~ 

pages or -0}-- ------- 0} -[] 
Figure-4. A multidimensional B-tree of 3 attributes. 

ai ". Finally, we insert values ai+2, ... , an each corresponding 

to a single node B-tree. 

A multidimensional B-tree is a fairly good dynamic 

structure for an environment with 'large' filial set sizes and 

complicated queries[30]. However, this structure is not 

efficient when it has very small filial set sizes especially on 

the last level. 

Address computation technique 

Conventional hashing is a technique for organizing direct 

access data structures with 0(1) access time if there are no 

collisions. However, the access performance may be degraded 
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when collisions of records occur. Hashing is considered to be 

better than a tree structure organization in terms of average 

access time. Traditional hashing methods have two disad-

vantages over tree structures. First, hashing methods can not 

support sequential processing because a hash function scatters 

data over the entire data space destroying sequentiality in the 

original data. Second, hash tables are not extendible and 

their size is intimately tied to the hash function used. So if 

we use improper hash function with a low estimate of the size 

of data set to be processed, a complete reorganization of the 

hash table may be required. Thus, conventional hashing methods 

are good for static data sets. 

Several hashing methods of dynamic form were introduced in 

late 1970's such as dynamic hashing[20], extendible hashing[ll] 

and linear hashing[23]. These are all single key hash schemes. 

We review here two multidimensional versions of extendible- and 

linear- hashing: the extendible cell method[39] and inter-

polation based index maintenance[6]. 

The extendible cell method[39] is a two dimensional 

version of (one dimensional) extendible hashing. We describe 

first the extendible hashing scheme and then generalize it to a 

multi- dimensional hashing. Access time is the most important 

performance characteristic of a hashing scheme. Dynamic 

characteristics which are lacking in conventional hashing can 

be obtained by interposing a large directory address space 

between key space and the physical address space. An exten­

dible hashing file is structured into two parts: a directory 
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and leaf pages (buckets). The directory usually has a header 

in which is stored a quantity called the depth of the 

directory. The directory of the file is a linear table with 

2dx elements. At depth dx of the directory the hash function 

distributes the point data of file F onto an even interval with 

x-spacing 2-dx which accommodates 2dx pointers to leaf pages. 

We may reorganize the directory at each doubling without 

affecting the leaf pages. We can assume the data set domain D 

to be [0,1). Let x in D have the binary representation 

x = ~ ai2-i and f be the hash function f(x) which generates 

the binary representation. This scheme can be implemented by 

an array index calculation using idx(x,dx) = L. 2dx x .1 so 

that the directory forms a one dimensional array of size 2dx. 

The entry of the directory is to be an address pointing to a 

leaf page. Each leaf page in which point data are stored has a 

header that contains a local depth d'x for the leaf page such 

that dx >= d'x. The relation dx >= d'x means that the leaf 

page of d'x is pointed to by more than one directory pointer. 

Overflow in this leaf page does not necessarily trigger 

directory doubling. 

Extendible cell method(EXCELL)[39] is an adaptation of 

this hashing scheme to two dimensional data space. We assume 

the data set domain to be the unit squareD= [0,1) x [0,1). 

Let (x,y) in D have the binary representation such as 

x = I ai2-i, y = I bi2-i and g be the following hash 
i>=l i>=l 

function g(x,y) = I(ai2-(2i-l) + bi2-2i ). By definition an 

EXCELL implementation of a point file F on D is the structure 
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obtained by applying extendible hashing on the one dimensional 

interval [0,1) to g(F). But it is not simple to implement 

efficiently the function g. However, it implies that the leaf 

intervals of EXCELL correspond to rectangles formed by halving 

t·he domain al ternatingly in the x- and y-directions, So an 

EXCELL file maintains a directory which is extendible without 

affecting the leaf buckets. Replacing the hashing function g 

by an array pointer calculation such as idx(x,y) = 

2dY L.. 2dx x..l + L. 2dY y_I, we can have the relation order of a 

directory entry so that the directory forms a two dimensional 

array. In this case, the depth dis dx + dy where dx = rd/2 ~ 

and dy = L d/2 ..1 . An example of a directory in an EXCELL 

method is illustrated pictorially in Figure-5 in case of depth 

3 and d'x = 2, d'y = 1 and bucket capacity is 2. 

2 ____ _ 

X : 
I I 
1-----1 

d'x = 1 
d'y = 1 

:--~~--:-------:------: 
I I I I I I 
I I I I 

: 2 : 2 1 1 --:----,1 
I I ~ 

: : 1~--
1 I 
1------1------ ------ ------ : X : 

3 : : I I 
1---1 

d'x = 1 
d'y = 0 

d'x=2: x : ~ 
d' y= 1 : _x_ : : 3 4 1 1 

I I 

--+---r___.f leaf bucket 

I I 

1 ______ 1--i--- ------ ______ : 
4 ___ __ 

X : 
I I 
1-----1 

d'x = 2 
d'y = 1 

directory 

Figure-5. Directory maintenance in an EXCELL method. 
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Insertion into directory space 3 in Figure-5 results in an 

overflow in the corresponding bucket. At that moment we split 

the bucket and double the directory. The doubled directory is 

given in Figure-6. Deletion can be implemented in reverse way 

checking underflow and merging bucket or directory partition 

when it is necessary. 

The directory is an array of elements which corresponds to 

a rectangle of minimal equal size. To access a record, we use 

the value of its attribute to determine an entry to the 

directory array using the formula for idx(x,y). The entry 

value points to the bucket in which the record is stored. This 

method requires no more than two disk access for a retrieval of 

a point data and is suitable for dynamically varying sets of 

d'x=2 
d'y=2 

d'x=2 
d'y=2 

2 d'x = 1 ----
X :d'y = 1 

I I 
1-----1 

\ I 

2 I 2 \ I 
I I 
I I I 
1- 1- -1 

I 
I I 

2 2 I 1 I 
I I 
I I ____ I ____ 

-1 

3 I I 
I I 
I 1 I 
I I 

I I I 
1- - 1- -I 
I I I 
I I I 

:X :~5 : : 
I I 

•---' 
I I I I 

1------1--- --~------1----1 

4 
X : 

I I 

'---1 
d'x=2 
d'y=1 

I I d'x=l I X I 
I I d'y=O l ___ l 

Figure-6. Directory doubling in an EXCELL method. 
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data with successive allocations of memory. Only when over­

flow occurs in a leaf page pointed to by an entry of the 

smallest cell in the directory, one mus~ double the size of the 

directory. This scheme can be efficient for uniformly distri~ 

buted data sets such as geometric information. 

The second hashing method considered is the interpolation 

based index maintenance[6] which is based on linear hashing 

[23]. It extends the classical hash file organization using 

chaining for overflow areas. A chain is an explicit linear 

list of pages, the first page of which is fixed sized primary 

page and all subsequent pages in a chain are fixed sized 

overflow pages. This method supports common operations such as 

insert, delete, update and find. 

Using an example, we can easily capture the concept under­

lying linear hashing. Suppose that ho is the hashing function 

used to insert the records into a file F. Let k' = ho(k) be 

the index of the chain that must contain the record. We insert 

records with the keys: 

12, 10, 8, 5, 7, 9, 20, 26, 13, 25 

where ho(x) = x mod 3, primary page size= 3, overflow page 

size = 2. We see the resulting set of 3 chains after inserting 

above records in that order in Figure-7 The storage 

utilization factor L is defined to be the ratio of the number 

of records in the file to the number of available records in 

the existing chains. Then in this example L = 10/13 = 0.769. 
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Figure-7. Chain representation in linear hashing. 
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Linear hash must specify upper and lower limit of the 

factor L, i.e. 0 <= a <= L <= b <= 1. Let a = 0.40 and b = 
0.80. If we insert another record '16' into the example file, 

L becomes 11/13 = 0.846 which is over the upper limit b. Then 

we adopt split operation on a chain sequentially by chain index 

from the first chain, which creates a new chain and distribute 

the records into two chains using a new hash function. In our 

example, we split chain 0 using a new hash function h1 (x) = x 

mod 6. Figure-S shows the result with L = 11/16 = 0.6875. As 

more and more records are inserted into the file, we inevitably 

meet the situation in which every original chain has been 

split, thus appearing as if it were loaded using hash function 

h1. To locate a record with key value k, we should check 

whether the chain obtained using k' = ho(k) has split or not. 

If it is split, we access chain k' = hl (k). 
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Figure-8. Chain split in linear hashing. 

Interpolation-based index maintenance[6] is a multi-

dimensional application of linear hashing. Suppose that the 

key space D consists of elements in the k-dimensional space 

[0,1)k. For the purpose of utilizing linear hashing, we define 

a linear order S(a), mapping from d= [O,l)k to [0,1). Let a 

= (al, a2, ... , ak) be a point datum in D. Each component aj , 

1<=j<=k, of the point a has a binary representation. 

Then define 

aj = :Z: aj i 2- i 

i>=1 

S(a) = :Z: 
i>=1 

:z: aj i 2- k ( i - 1 > - j , 

l<=j<=k 
k: constant 
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S(a) now denote a single key which is obtained by interleaving 

bits of original k keys. Hence we can use this single key for 

linear hashing with an appropriate sequence of hash functions 

H=hoh1 

In contrast to extendible hashing method, this scheme does 

not maintain a directory for accessing the record page. So we 

can expect average successful search length of much less than 

two. This scheme utilizes overflow areas by chaining. There­

fore, this structure can have worst-case problem of taking 

O(n) steps in operations for a file with n records. 



CHAPTER III 

GRID FILE 

Introduction 

The Grid File is one of the grid method structures that 

organizes the data space in which those data are embedded. Its 

major design goal is to retrieve records with at most two disk 

accesses from a large volume of data. This scheme maintains a 

grid directory which performs mapping of grid blocks to data 

buckets. All records in one grid block are stored in the same 

bucket. Several grid blocks can share a bucket as long as the 

union of these grid blocks forms a k-dimensional rectangle in 

the record space. The grid directory is used to keep a dynamic 

correspondence between the grid block and the data buckets. 

The grid directory consists of two parts: k one-dimensional 

arrays called linear scales and a dynamic k-dimensional array 

called the grid array(we will use grid directory for grid 

array). Linear scales define a partition of the domain of each 

attribute and are used for computing grid block addresses. The 

linear scales are kept in primary memory and support the 

operations to be defined on a grid file structure in the 

following section. The grids defined by linear scales are in 

one-to-one correspondence with the blocks of a grid directory. 

The values of the elements of the directory are pointers to the 

20 
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relevant data buckets. The grid directory grows easily so 

large that most of its elements should be kept on disk during 

processing since we are handling 'large' files. Buckets which 

usually have more than ten records are kept on disk. The size 

of a bucket is usually a fixed unit of physical transfer, a 

page. 

As a dynamic structure, a grid file supports insertions 

and deletions on-line. Maintaining grid directory dynamically 

is the heart of a grid file structure. When buckets overflow 

as more and more records are inserted, a split-operation is 

triggered. There are two types of splitting. The first, which 

is more common, occurs when several grid blocks share a bucket 

that has just overflowed. In this case, we need only to get a 

new bucket, distribute data between the old and new buckets and 

adjust the ma.pping between grid blocks and buckets. The second 

type arises when we must refine the embedding space(grid 

directory) in addition to the first type of splitting. This is 

caused by an overflow in a bucket, all of whose records lie in 

a single grid block. The merging process has also two types: 

bucket merging and directory merging. Bucket merging, which is 

more common, occurs when the occupancy of a pair of adjacent 

buckets is under a certain threshold. Directory merging arises 

when two adjacent cross sections in the grid directory have 

identical values. This type is rarely of interest except when 

the file shrinks continuously. 

Nievergelt et al.[27] specified in their grid file design 

only those decisions which seem to be essential such as: 



- grid partitions of search space, 

assignments of grid blocks to buckets that result in 

convex bucket regions, 
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- grid directory, consisting of a large dynamic array but 

small linear scales. 

There remain several design policies open because those 

can be established in many different ways by each implementor. 

The most important open issues are (1) choice of splitting 

policy, (2) choice of merging policy, (3) implementation of the 

grid directory, and (4) concurrent access. An efficient 

implementation of the open strategies are the major objectives 

of this thesis. 

Abstract data types underlying 

the grid file 

A grid file essentially consists of three simple abstract 

data types: linear scales, a grid directory and data buckets. 

Linear scales are k one-dimensional arrays, the elements of 

which represent boundaries of intervals in each dimension. The 

grid directory is a k-dirnensional dynamic array whose elements 

are pointers to data buckets. Data buckets are fixed sized 

structures of records in which data are stored. Data 

structures and operations associated with the abstract data 

types can be described as follows in k-dirnensional data space, 

~= 

Sk = D1 x Dz x ... x Dk. 



23 

1) Linear scale 

A grid file partitions the data space into orthogonal 

grids. The k scales define intervals in each dimension of the 

data space. For a grid file of k dimensions, we can charac­

terize its data structure as follow. 

Linear scale: si [no_of_boundary] of scaleType 

scaleType can be one of integer, real 

character, or string. 

1 <= i <= k, i,k : integer 

Basic operations defined on scales are as follows. 

INDEX(si ,keyi ,no_of_boundary): This procedure finds 

interval index value 'idx' of keyi in scale 

Si . 

SPLIT_SCALE(si ,bi ): This procedure inserts a new boun­

dary, bi, into scale si. 

MERGE_SCALE(si ,bi ): This procedure deletes a boundary bi 

from scale si . 

In addition, several binary buddy operations to be 

discussed in the following chapters are supported by scales. 

2) Grid directory 

A grid directory is introduced to represent and maintain 

the dynamic correspondence between grid blocks in the data 

space and data bucket. This is a k-dimensional dynamic array. 

The specific data structure of a grid directory is implemen-
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tation dependent. At the moment, we define grid directory 

formally as a conventional array as follows. 

Grid directory: DR[O:nl-1][0:n2-1] ... [O:nk-1], 

m :integer 

The procedures on a grid directory are defined as follows. 

ACCESS(DR,r,p): This procedure finds a pointer value pin 

directory DR. 'p' is an address of a 

data bucket which contains record 'r'. 

NEXT_BELOW(DR,Di ): This procedure returns the neighbor 

element of current block in a grid 

directory, DR, to "below" direction in 

dimension Di . 

NEXT_ABOVE(DR,Di ): This procedure returns the neighbor 

element of current block in a grid 

directory , DR, to "above" direction in 

dimension Di . 

SPLIT_DR(DR,idx,Di ): This procedure splits directory DR 

at interval 'idx' in a dimension Di. 

Given idx, create a new element idx+1 and' 

rename all grid blocks above idx. 

MERGE_DR(DR,idx,Di ): This procedure merges directory DR 

I 

at interval 'idx' in dimension Di. Given 

idx, remove a row or column of idx-1 and 

rename all grid block above idx. 

ASSIGN(DR,p,B): This procedure assign a grid block with p 

to data bucket B. 
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3) Data Bucket 

A data bucket is a fixed sized structure of records and 

some additional information such as record count. The data 

structure used to organize records within a bucket is of minor 

importance in a grid file structure as a whole. The data 

structure of a bucket can be declared as follows. 

Bucket structure { 

} ; 

Int count, 

Char Record[], 

Char Nonkeyinfo[], 

The operations defined on the bucket are as follows. 

SPLIT_BK(Bl ,Bz): This procedure allocates a new data 

bucket B2 and distributes records in B1 

into the two buckets. Update the 

included additional information if it is 

used. 

MERGE_BK(Bl ,Bz): This procedure moves records in bucket 

B2 to bucket B1 and frees bucket Bz . 

Update the included additional infor­

mation in bucket B1 if it is used. 

Based on the above data structures and operations on them, 

a grid file supports the common operations in file structures 

such as FIND, INSERT, DELETE, UPDATE and some RANGE_QUERY. The 

operations on a grid file F can be defined as follows. 

FIND(F,r,B): This procedure searches the file F to find 
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the record 'r' and returns the record 

position if record 'r' is found or -1 if R 

is not found in the file F. 

INSERT(F,r): This procedure inserts a record 'r' into 

file F if 'r' is not found in F. 

DELETE(F,r): This procedure deletes record 'r' from file 

F if 'r' is found in F. 

UPDATE(F,r): This procedure updates information of record 

'r' in file F. 

RANGE_QUERY(F,range): This procedure reports all 

records in file F satisfying the given 

range. 

The performance of insertions and deletions in a grid file 

are likely to be influenced by efficiency of SPLIT_() and 

MERGE_() operations. The operations are again highly dependent 

on the specific implementation of grid directory. The concepts 

and strategies with this problem are discussed in Chapter IV. 

The associated algorithms are established in Chapter V. 



CHAPTER IV 

CONCEPT AND STRATEGIES FOR IMPLEMENTATION 

OF GRID FILE 

Organization of grid file 

The grid file, as a large data structure based on the 

technique that organizes the embedding space from which the 

data are drawn, decomposes the data space as shown in Figure-

9a. Every subdivision of the existing grid space subdivides it 

into two subspaces. 'Linear scales' are used to keep track of 

the boundaries of the respective subdivisions. The grid 

partition of the data space directly correspond to a k-dimen­

sional array called a 'grid directory'. A cell in the 

partition is called a 'grid block'. Records are stored in a 

fixed-sized storage unit on disk, 

'bucket'. Several grid blocks may 

optimization. Such a set of grid 

which is usually called a 

share a bucket for memory 

blocks forms a 'bucket 

region'. Actually we may need only the structure to organize 

the set of buckets. However, by maintaining the set of buckets 

and grid blocks separately, while keeping a certain corres­

pondence between them, we can design a more efficient dynamic 

structure. The grid directory is introduced to keep such a 

correspondence. In Figure-9b, we describe the above relations 

in the case of 2-dimensions. 
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Figure-9. Grid partition and grid file organization 

We usually evaluate the efficiency of a large search 

structure by disk access time, update time and memory 

utilization. The basic design objectives of a grid file are: 

(1) no more than two disk accesses for point queries; 

(2) splitting and merging of grid blocks to involve only two 

buckets; 

(3) efficient processing of range queries in large linearly 

ordered domains; 

(4) maintaining a reasonable lower bound on average bucket 

occupancy. 

We establiBh several etrategieB to be imposed on the 
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operations discussed in Chapter III just based on the above 

design objectives. 

Access time bound 

As described in section (2) of Chapter III, a grid 

directory is originally defined as a dynamic k-dimensional 

array. The basic operations on grid directory and scales such 

as ACCESS, NEXT_BELOW OR NEXT_ABOVE, SPLIT_, MERGE_, AND ASSIGN 

are also defined in Chapter III. 

The mechanism of search operations is described with the 

above procedures in Figure-10. Assume that linear scales X and 

Y for a 2-d grid file attained the values indicated. 

Age scale 
scale 

X = 
y = 
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Figure-10. Record search mechanism 
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The grid directory is likely to be so large that it must 

be kept on disk. However, since scales X and Y are small 

enough to be kept in primary memory, INDEX() does not require a 

disk access to get the index values, 4 and 2, in scales X andY 

respectively. With these values, we can compute the address of 

the corresponding block in the directory(See Appendix A). So 

we can read correct directory page in one disk access. With 

one more disk access to the bucket where the record r(45,13) 

resides, we can retrieve the record in two disk access times. 

Of course, we can search a record with one disk access if the 

directory entry corresponding to the record is in primary 

memory. We see the case of one disk access for searching when 

we search record r2 immediately after r1 assuming that a unit 

of disk access is four directory blocks. A bucket usually has 

a page size that can be read with one disk access. The 

organization of records within buckets is not an immediate 

interest in a grid file structure. In our design, records are 

fixed sized and are written entry-sequentially; i.e., we insert 

them by the sequence of their arrivals. 

Resident grid directory 

The above searching method implies that the grid directory 

is implemented as a conventional row major order array. 

Generally a conventional array allocation is recommended as an 

actual data structure for a grid directory because of its 

simple implementation, fast access and memory optimization[17]. 

How ever, we can expect some performance degradation when 
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neighborhood relation in all dimensions are important as in a 

geometric information system. We see that we can not retrieve 

the two neighbors, r1 and rs, at one time if one disk access 

reads only four disk blocks as assumed before. For efficient 

neighborhood operations in all dimensions , it is required that 

the elements of a directory for ·neighbors be stored in the same 

disk block if possible. As a solution to this problem, a 

'resident grid directory' is suggested in [15]. A resident 

grid directory is a scaled down version of the grid directory, 

in which the limit of resolution is coarser. Figure-11 shows 

the relations among the resident grid directory, grid directory 

and actual bucket area. 
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grid directory 

grid directory 

Figure-11. A double level grid directory representation. 
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In grid file design, it is assumed that grid directory is 

itself so large that most of its elements must be kept on 

secondary storage during data processing. The resident 

directory scheme partitions the directory space into grid form 

just as data space has grid partition. An element of resident 

directory is to point the corresponding directory block in 

secondary storage. The scales that are needed to contain the 

boundaries which indicate the grid partitions in resident 

directory are called 'resident scales'. The partial directory 

corresponding to each grid block of a resident directory is 

called a 'block directory'. The boundaries defining the grid 

partition in a block directory are kept in block scales. We 

keep only the resident directory and the resident scales in 

primary memory. A block directory is contained in a fixed-

sized bucket located in secondary storage. It may be most 

reasonable that the corresponding block scales be contained in 

the same bucket. The bucket is called a 'directory bucket'. 

The size of a block directory is variable within a directory 

bucket. A directory bucket splits when it overflows as data 

buckets do. Several grid blocks in resident directory can also 

share a directory bucket with a restriction that the union of 

these grid blocks makes a convex form. The organization of 

resident directory scheme is shown in Figure-12. This scheme 

implies that grid directory is again implemented as a grid file 

with an assumption that the size of resident grid directory is 

small enough to be kept in primary memory. This assumption for 

preserving the time bound of two disk accesses is reasonable in 
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most practical applications of the grid file(See Chapter I). 

Assignment of grid blocks to buckets 

The correspondence between grid blocks and buckets is 

maintained dynamically in the grid directory. We should decide 

reasonable strategies in assigning grid blocks to data buckets. 

In order to obtain one of the design objectives of a grid file 

structure, the upper bound of two disk accesses, we should 

guarantee that all the records in one grid block be stored in 

the same bucket. In contrast, several grid blocks must be able 

to share a bucket to keep a reasonable average bucket 

occupancy. We have already defined the bucket region as the 

grid blocks sharing a bucket. It is clear that the shape of 

bucket regions may affect the performance of range queries 

(discussed in Chapter VI) and mapping operations of directory 

after splitting and merging. Since the grid file system is 

based on grid partition of the data space as discussed in 

Chapter III, it is necessary to keep the bucket regions as a 

convex shape, a k-dimensional rectangle, in order to get high 

performance in the above operations. This convex assignment 

strategy of grid blocks to buckets is maintained in all of the 

operations defined on grid file structures. We can see an 

example of convex assignments of disk blocks to buckets with 

maximum record counts of two in Figure-13. This intermediate 

state during grid file processing is used as the basis for 

explaining splitting and merging strategies in the following 

sections. In Figure-13, 1' values denote the hist.ory of 
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splitting of corresponding buckets, which is discussed in the 

following section. 
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Figure-13. Assignment of grid blocks to buckets. 

Splitting strategies 

There are two types of splitting: (1) splitting only data 

buckets and (2) splitting data buckets accompanied by splitting 

of associated directory and scales. The first type of 

splitting occurs when an overflowed data bucket is shared by 

more than one grid block. This type has also two cases: one 

case is that the grid blocks sharing the data bucket to be 

5Plit are adjacent in only one dimenBion, and the other ca5e 



36 

is that they are adjacent in more than one dimension. In the 

previous case as bucket #2 in Figure-13, we merely create a new 

bucket at first. Then we move records according to the boundary 

value of grid blocks and adjust mapping of directory to the 

data bucket. In the latter case as in bucket #1 in Figure-13, 

we additionally need to decide the dimension on which base the 

records move between the two buckets involved in splitting. 

The second type of splitting is triggered when a overflowed 

data bucket is pointed to by a single grid block as in bucket 

#3 and #4 in Figure-13. For this kind of splitting, we must 

decide which dimension shouln be split and where in the 

selected dimension the new boundary should be inserted. 

In choosing the dimension, we can adopt a 'cyclic' 

sequence among the dimensions according to a fixed schedule. A 

splitting policy may favor some attributes by splitting the 

corresponding dimensions more often than others if the charac­

teristics of the data set are known. This results in a higher 

resolution in that dimension. One of our design objectives is 

that split operations involve only two data buckets, the 

original one to be split and a new one. It requires that a 

reasonable average bucket occupancy be maintained for effective 

memory utilization. This means that in the process of 

splitting a directory triggered by the split of bucket #3 we 

need not necessarily split the other bucket of which region is 

split as in the bucket #4 in Figure-13. The resulting state of 

the directory split is shown in Figure-14. In this regard, we 

need only one split boundary in the selected dimension to be 
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inserted in corresponding scale. The boundary need not 

necessarily be chosen at the middle point of the interval. In 

choosing a split boundary, there may be several methods such as 

binary buddy system , Fibonacci buddy system and weighted buddy 

system. 

In our implementation, we prefer to preserve the same 

resolution in every dimension and try to make grid blocks have 

uniform shape of 'k_cubicle' as much as possible. With this 

regard, we impose higher priority on the dimension which has 

less split history in choosing split dimension. We choose the 

binary buddy system to split a boundary value which selects a 

new boundary by bisecting a region to be split. We discuss 

these policies more in Appendix C. The split 

bucket, the number of split operations on 

maintained as a 'region level' (see l' values in 

history of a 

the bucket, is 

Figure_13 and 

14). We also maintain a value 'local level' which implies the 

split history of an interval in scales. These are discussed in 

Chapter V using binary buddy algorithm. The dimension with 

small value of region level has higher priority in splitting. 

The middle value of the region becomes a new boundary, which is 

inserted in the scale corresponding the dimension. 

The simple bisecting of a region may incur bucket and 

directory splitting repeatedly without any moving of records to 

a new bucket if the data in the bucket to be split has 

clustered to the cross section of its region boundaries. Since 

in our grid file design we assume that the data set to be 

processed is 'large' and somewhat uniform distribution in the 
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whole data space at its ultimate steady state, the split 

strategies chosen have their own right. We note that the 

directory size is a function of both the data volume and its 

distribution to data spaces based on grid partitioning. It is 

independent of the insertion sequence of a given data set. 

In addition to the fundamental splitting operations in 

single level grid file structure discussed so far, we need to 

establish a certain constraint on resident directory level 

since we are going to implement a double level grid file 

structure. Splitting of resident directory and resident scales 

can be performed in exactly the same way as that of single 

level scheme based on the same splitting policies. It happens 

when a directory bucket corresponding to a single block in 
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resident directory overflows(as directory bucket #2 and #3 in 

Figure-12). A continued splitting of a block directory with 

its block scales overflows the fixed-sized directory bucket 

which accommodates them. At that time we have to split the 

directory bucket. The bucket·split is shown in Figure-15. We 

also maintain region level of each directory bucket in resident 

.directory as we do in block directory for each data bucket. In 

splitting a directory bucket, the split dimension and split 

boundary are decided relative to the resident directory. We 

also adopt the same policies in choosing the split dimension 

and split boundary as those for splitting a data bucket. The 

splitting constraints of the binary buddy system on the whole 

block 
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data space guarantee that the split boundary on which the 

directory bucket is split always exists also as a boundary in 

the corresponding block scales. The block scales is divided at 

the boundary into two new block scales. Along the split 

boundary, the block directory is divided into two at the 

dimension defined by the scales. Each of two block directories 

and block scales is assigned separately to two new directory 

buckets and the other block scales not involved in the split 

are assigned to both of the new directory buckets. Finally we 

need to adjust the mapping between the resident directory and 

directory buckets. An example of grid file operations in 

Appendix B. 

Merging strategies 

Merging is attempted when a data bucket's occupancy falls 

below a certain lower threshold due to continued deletions. 

Actual merging is triggered when there is a proper candidate 

and the new bucket occupancy after merging would not be above a 

certain upper threshold. Bucket merging naturally makes a 

bucket region in a directory. 

corresponding to the bucket 

Considering a bucket region 

#1 in Figure-13, the vertical 

boundary inside the bucket region is unnecessary. We can also 

expect another situation for directory merging when buckets #3 

and ~4 are to be merged in Figure-13. However, considering the 

overhead of splitting and merging, directory merging is not 

always preferable in most applications especially when the file 

size is growing steadily or the file has reached a steady state 



41 

where the frequencies of insertions and deletions are almost 

same. 

A bucket merging operation usually requires three decision 

policies: (1) selecting candidate buckets for merging; (2) if 

there are several candidates, determining which ones are to be 

merged; (3) setting the upper and lower thresholds of bucket 

occupancy after and before merging. For selecting candidates, 

two different methods have been suggested in [27]: namely, the 

neighbor system and the k-dimensional (binary) buddy system. 

Figure-16 shows the two methods. 'Buddy system' allows a data 

bucket to merge only one adjacent buddy in each dimension. 

Hence, the number of candidate bucket may be up to k. The 

'neighbor system' has up to 2k candidates since it allows the 

data bucket to merge with either of its two adjacent neighbors 

provided that the resulting bucket region is also convex form. 

Since the number of candidates in neighbor system is large than 

that of buddy system, there may be more chances to merge 

bucket. 
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However, the merging by neighbor method may give rise to the 

'no more 

appears 

mergeable state' condition. 

in Figure-17. Though the 

An example of this state 

buddy system in two 

dimensional grid file guarantees no occurrence of this state, 

it also possible in more than two dimensional grid file. This 

no-mergeable-state in directory clearly affects the grid file 

performance resulting in lower average data bucket occupancy 

and requiring more access of the directory in range queries 

because of large directory size. For lower and upper thre­

sholds of bucket occupancy which trigger merging operations, 

there is no optimal levels obtained by mathematical analysis 

yet. Nievergelt et al. [27] suggest around 70 percent and no 

more than 80 percent value for upper threshold. 

In our implementation of grid file, we also choose the 

binary buddy system for searching for a proper candidate for 

merging to maintain consistency with the splitting operation. 

In this system all buddies have same region levels in all 

corresponding dimensions, thereby assuring that the bucket 

region made after merging be convex form. If there is more 

than one candidate, we choose that which has largest value of 

region level to keep the directory block shape uniform since it 

has split more times. We choose 25 percent and 75 percent for 

lower and upper thresholds respectively. 

In merging directory bucket, two block directories are 

merged into a bucket if the new directory bucket occupancy is 

sufficiently below the bucket capacity. Otherwise, the new 

directory bucket has to be split again with a few split of its 
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block directory and block scales. No optimum upper threshold 

is known yet. By one directory split operation, the directory 

size grows more greatly in higher directory bucket occupancy 

and in a higher dimension structure. Merging directory buckets 

also may be necessary only for continuously shrinking files 

considering the overhead of split and merge. Anyway, we can 
\ 

use the same methods for searching for candidate buckets as 

those used in merging data buckets. The two block scales of 

the bucket to be merged are appended to each other along the 

merge dimension. We can obtain all other block scales defining 

other dimensions for the new block directory from corresponding 

block scales in the old block directories by choosing more 

refined scales in every dimension. We see the merging of 

directory bucket in Figure-18. 
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CHAPTER V 

ALGORITHMS FOR A GRID FILE 

The algorithms for our implementation of a grid file are 

discussed in this chapter. In our design of a grid file, the 

grid scales are simple one dimensional dynamic arrays and the 

grid directory is a k-dimensional dynamic array of row major 

order. Splitting and merging operations are based on binary 

buddy system. The value 'level' of a bucket which implies the 

split history upon the bucket is maintained in corresponding 

grid blocks of the buckets. It is just the number of splitting 

operations to get the corresponding intervals in scales and is 

based on the similar concept of 'depth' in extendible hashing 

structure[39] discussed in Chapter II. We will call this a 

'region level' to differentiate it from a 'local level' of a 

single grid block which is defined as an interval in scales. 

The value of a region level is kept in the directory along 

with a pointer to a bucket and count of records in the bucket 

in our design. This means that we have most of the information 

about bucket in a directory rather than in the bucket itself. 

This may result in a large directory but we can gain efficiency 

of fewer disk accesses in deciding a dimension and a boundary 

value for splitting and merging operations. If a data bucket 

has the same valu.e for region and loe.~.l levelz, it me.~.nz that 

45 



46 

the bucket corresponds to 

several blocks which make a 

a single directory block and with 

bucket region otherwise. Local 

level can be obtained by a simple computation on scales as they 

keep the boundary values of splitting operations. 

Basic algorithms for binary buddy system 

Our implementation of grid file is based on a binary buddy 

system in splitting and merging operations associated with 

insertion and deletion respectively. The history of repeated 

bucket splitting can be represented in the form of a binary 

tree. The tree representation with its grid file structure is 

shown in Figure-19, which shows the state after buckets #4 and 

#1 are split in Figure-14. The leaf values are pointers to 

bucket addresses in disk storage. Only the leaf values are 

kept in directory entries. Splitting occurs at any level. 

However, split of bucket on lowest level triggers directory 

split additionally(as in leaves #3, 4, 5, and 6). But merge 

can be done on lowest level only. In our algorithms, 

mergeable sets are (3,5), (4,6), 

convex regions. 

(3,4) and (5,6) which make 

In order to simplify the explanation of the algorithms 

hereafter, we implement our grid file in the data space of long 

integer [0, MAX), MAX= 2n, n = 16. The entries of grid scales 

are by definition boundary values of intervals in each 

dimension of the data space. Algorithm 1 obtains the local 

level of an interval. If we are given the lower and upper 

boundary of an interval in a scale based on binary buddy 



system, the correctness of the algorithm is straightforward. 

Algorithm 1 

get_level(scale,low_bound,up_bound,MAX) 

i <- 0; 
while( i 

j <­
if ( 

fi 

< n ) 
Right_shift( MAX, i); 

j = (up_bound - low_bound) 
return( i); 

i <- i + 1; 
end while 

end get_level 

1 ---------------------7 

/~ 
2 1 ---------------7 

/\ /'\ 
3 (2) (1) (7) -------) 

1\ 
3 4 ----------------------------~ 

1\ 1\ 
(5) (3) (6) (4) ----------------------~ 

level 0 

level 1 

level 2 

level 3 

level 4 

Figure-19. Tree representation of bucket splitting. 
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We need to know the buddy region of a given region for 

merging operation. In binary buddy system, the buddies have 

same levels in every dimension corresponding each other. There 

is only one valid buddy of an interval in each dimension 

between upper neighbor and lower neighbor which has same size 

of region. We can decide the valid buddy by checking the 

validity of the combined region of the buddies in view of 

binary buddy system because a pair of buddies should have been 

split from a region. The algorithm for getting buddy is shown 

below. 

Algorithm 2 

Is_valid_interval (scale,low,up,MAX) 

i <- right_shift(MAX, level); 
if(( low MODi) = 0 ) 

return(valid); 
else 

return(invalid); 
fi 

end Is_valid_interval 

Algorithm 3 

Get_buddy(scale, low, up, MAX) 

if( low = minimum value in scale) 
low_of_buddy <- up; 
up_of_buddy <-up+ (up- low); 

else if( Is_valid_interval(scale,low-(up-low),up,MAX) 
low_of_buddy <- low-(up-low); 
up_of_buddy <- low; 

else 
low_of_buddy <- up; 
up_of_buddy <-up+ (up-low); 

fi 
return(low_of_buddy,up_of_buddy); 

end Get_buddy 
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In order to rearrange the mapping between directory and 

buckets after insertions and deletions, we need sometimes to 

get the whole bucket region of a directory block which contains 

the records involved in the operations. With INDEX operation, 

we obtain an index value of an interval in a scale where a 

record is located. With the index value, we can get lower 

bound and upper bound of the interval in each dimension. We 

compute local level of the interval with the bound values. The 

region level of each dimension is kept in each directory entry. 

With the difference value of the two levels, we get its region 

boundary values. This procedure follows Algorithm 4 below. 

For example, we should rearrange mapping of the whole region of 

bucket ~1 if a record is inserted into or deleted from the 

bucket. 

Algorithm 4 

Get_region(scale,low,up,region_level,MAX) 

local_level <- get_level(scale,low,up,MAX); 
i <- (local_level- region_level); 
call get_bud() i times; 
return(whole buddy range); 

end Get_region 

Grid file algorithms 

We have decomposed a grid file into three abstract data 

types in Chapter III,namely, grid scales, grid directory and 

c'J..~ta bu.ol-:et, .~nc'l. <jef ined procedtJ.res on t11e ADT' s. Procedt:tres 
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on grid directory and data buckets are dependent on those of 

grid scales. Maintaining scales in primary memory is a unique 

scheme of grid file structure. With indices obtained by the 

Algorithm 5, we can compute the address of a block in the 

directory corresponding to the data bucket(See Appendix A). 

The procedures on scales are performed by the following 

algorithms. 

Algorithm 5 

Index(scale, key, no_of_boundary) 
curr_index <- 0; 
while(·curr_index < no_of_boundary) 

if( key < scale[curr_index] ) 
increment curr_index; 
return( curr_index); 

fi 
increment curr_index; 

end while 
return(unsuccess); 

end Index 

Split_scale(scale, curr_index, no_of_boundary) 

new_bound <- (middle value of lower bound and upper 
bound of curr_index interval in the scale); 

allocate new_scale the size of which increased by 1; 
i, j <- 0; 
while ( i < no_of_boundary) 

new_scale[i] <- scale[j]; 
if( i = curr_index) 

increment i; 
new_scale[i] <- new_bound; 

fi 
increment i,j; 

end while 
free (scale) ; 

end Split_scale 
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Merge_scale(scale, curr_index, no_of_boundary) 

allocate new_scale the size of which is decreased by 1; 
i,j <- 0; 
while ( i < no_of_boundary) 

if ( i is not equal to curr_index) 
new_scale[j] <- scale[i]; 
increment j; 

fi 
end while 
free( scale); 

end Merge_scale 

We keep in primary memory only the most recently used 

directory and scales, and a data bucket. Therefore, if we are 

going to access a different directory bucket or data bucket, we 

should replace current ones with the new ones. Two global 

variables, curr_RBN and currDR_RBN, represent the currently 

active data bucket and directory bucket, respectively. The 

replacement procedure is included in the following search 

algorithm. 

Algorithm 6 

Find(grid_file,record) 

do for each resident scale 
curr_DR_index <- Index(resident_scale,key,. ); 

od 
Access curr_directory bucket with curr_DR_index; 
if accessed directory bucket is not equal to 

currDR_RBN , 
load new scale and directory from the bucket; 
currDR_RBN <- accessed RBN; 

fi 
do for each scale 

curr_index <- Index(scale,key,no_of_boundary); 
od 
Access current data bucket with curr_index; 
if accessed RBN is not equal to curr_RBN 

load new_bucket; 
curr_RBN <- accessed RBN; 

fi 



compare record with every existing record in current 
data bucket pointed by curr_RBN 

if same record is found 
return its position in the bucket 

else 
return(unsuccess) 

fi 
end Find 

Insertion algorithms 

52 

If insertions result in an overflow in the corresponding 

data bucket, splitting should occur. It is necessary to define 

the splitting of a region along a split boundary bi of 

dimension Di. Let the whole data space S be Do x D1 x ... x Dk-1 

in k dimensional data space. If bi is not included in Di, the 

region of that dimension remains unchanged by splitting. 

Otherwise, let Di = [mini, ... ,maxi), the boundary values of 

which are kept in scale, Si; splitting the region results in 

two new regions: 

S1 = Do x ... x Di [mini , ... , bi ) x ... x Dk -1 , 
S2 = Do x . .. x Di [bi , ... , maxi ) x . .. x Dk- 1 . 

We call region S1 the lower region and region S2 the upper 

region. A point data (keyo,key1, ... ,keyk-1) is said to locate 

at the lower region of bi if keyi < bi , and at the upper region 

of bi otherwise. A data bucket is split along bi by creating a 

new data bucket; then moving all the records located in the 

opposite region to the current region, where the record to be 

inserted locates, into the new bucket. If it happens that 

there is no movement of records due to data clustering, 

recursive splitting is needed. If the data bucket involved in 
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splitting is being pointed by a single block, directory 

splitting is triggered along the dimension which has largest 

region level. The procedure is described by the following 

algorithms. 

• 
Algorithm 7 

Split(bucket, si, directory) 

if the data bucket is pointed by several directory 
blocks 

else 

fi 

call split_bucket(curr_RBN,new_RBN) only; 

call split_scale(si ,curr_index,no_of_boundary); 
call split_directory(DR,curr_index,Di ); 

end Split 

Split_bucket(curr_RBN,new_RBN} 

call get_region(si) to get bucket region; 
I* get split boundary, bi *I 

bi <- (low_of_region + up_of_region) I 2; 
if record ri in current bucket < bi 

else 

fi 

do for all records rj in current bucket 
if rj is in upper region of bi 

move rj to the new bucket; 
fi 

od 

do for all records rj in current bucket 
if rj is in lower region of bi 

move rj to the new bucket; 
fi 

od 

rearrange mapping of directory to data buckets in the 
whole bucket region; 

end Split_bucket 

Split_directory(DR,idx,Di) 

new_size <-no * n1 *·. ·* (ni+l) *· .. * nk-1; 
allocate new directory of new_size; 
name all blocks below split index in Di; 
copy entry Di ni ·at Di ni + 1 ; 



rename all blocks above split index in Di; 
free old directory; 

end Split_directory 

cf. ni = number of intervals in si of Di 

Insert(grid_file,record) 

call Find(record); 
if record does not exist 

if bucket is not full 
insert record into bucket; 

else 

fi 

call split(scale,directory,bucket); 
Insert(grid_file,record); 

else 
'duplicate record error'; 

fi 

end Insert 

Deletion algorithms 
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As discussed in the previous chapter, continued deletions 

of records in a· data bucket drops the bucket occupancy below a 

certain threshold. Then we need to merge the bucket to 

maintain a reasonable average bucket occupancy ratio. Bucket 

merge makes a bucket region in the directory by definition and 

the region level of the merge dimension decreases by one. Then 

there may be some boundary that no longer needs to be kept in 

directory when it is shared in the whole span of a dimension. 

In this case, we may merge directory and scale. We define the 

merge operation along a merge boundary mj of dimension Di as 

follows. 

Let the whole data space S be S1 such that: 

S1 = Do x ... x Di [mini , . , mj - 1 , mj , mj + 1 .. , maxi ) x ... x Dk- 1 

The interval (mj-1 ,mj) and (mj ,mj+l) in Di is merged into one 
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interval (mj-1 ,mj+l) resulting S like S2 such that: 

S2 = Do x ... x Di [mini , .. , mj -1 , m.j + 1 , .. , maxi ) x ... x Dk -1 . 

Merge occurs at the same leaf level in view of binary 

split tree if we represent region level as in Figure-19. 

Deletion operations will be done by the following algorithms. 

As in insertion, file read/write operation is hidden in the 

algorithms. 

Algorithm 8 

Merge(bucket, scale,directory) 

call Candidate(cand_bucket,cand_dim); 
if there is no valid cand_bucket 

return(not mergeable); 
else 

call Merge_bucket(cand_bucket,cand_dim); 
if merge_bucket results in need of directory merge 

call Merge_directory(DR,curr_index,dim); 
fi 

f . 
~ . 

end Merge 

Candidate(cand_bucket,cand_dim) 

do for k dimensions 
get region buddy bucket; 
if (buddy_rec_cnt + to_be_merged_bk_cnt) is less than 

the upper_threshold AND their region level are 
same in k dimensions then 

cand_bucket <- region buddy bucket; 
fi 

od 

if valid cand_bucket exist 
comparing region levels of sharing dimensions, 
select cand_bucket of largest region; 
cand_dim <- sharing dimension of largest region; 
return(cand_bucket, cand_dim); 

else 
return(no candidate); 

fi 
end Candicl.~t.e 



Merge_bucket(cand_bucket,sharing_dim) 

i, j, k <- 0; 
while( i,j,k < bucket size) 

while(to_be_merged_bk[j] exists) 
j <- j + 1; 

end while 
while(cand_bucket[k] does not exist) 

k <- k + 1; 
end while 
if ( k >= bucket size) 

break; 
fi 

to_be_merged_bk[j] <- cand_bucket[k]; 
increment i,j,k by one; 

end while 
rearrange mapping of directory to buckets; 

end Merge_bucket 

Merge_directory(DR,idx,Di) 

ne~_size <-no * n1 *·. ·* (ni-l) *·. ·* nk-1; 
allocate new directory of new_size; 
name all blocks below merge index idx in Di ; 
merge off blocks of idx in Di ; 
rename all blocks above idx; 
free ol~ directory; 

end Merge_directory 

Delete(grid_file,record) 

call Find(record); 
if record exists in curr_RBN 

erase record from the bucket; 
decrement record count; 
check bucket occupancy; 
if the occupancy is less than low threshold 

call Merge(bucket,scale,directory); 
fi 

else 
'record does not exist'; 

fi 

end Delete 

56 



CHAPTER VI 

THE PROGRAM STRUCTURE 

Grid file program 

The grid file structure was programmed in C-language and 

run on Eunice operating system of VAX 11/780. We implemented 

the structure with processing two keys of long integer values 

generated by two independent random number generating programs. 

We built the grid file structure based on double level 

directory structure, which adopts resident directory scheme. 

For the simplicity, we separated the file structure into four 

files: resident scale file, resident directory file, directory 

bucket file, and data bucket file. However, we made it 

invisible to users. From a user's perspective, the grid file 

structure is a single file. The user interface operations 

discussed below are invoked by referencing a single file name. 

The overall structure of the grid file is shown in Figure-20. 

Our program consists of two parts: procedures for building the 

grid file structure and user interface procedures. 

The file building procedures are performed with the 

algorithms discussed in Chapter V. The structure of our 

program described in program design language is included in 

Appendix D. Our program of grid file structure provides with 
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the following operations: 

- creating, opening and closing a grid file. 

- inserting and deleting records in a grid file. 

- updating a record in a grid file. 

- searching a record in a grid file. 

- range query. 

The operations included in first and second groups may be 

performed with batch input files as well as interactively 

through terminals. Updating is a simple procedure that finds a 

specified record in a grid file and that if the record exist in 

the file, allows changing the associated information. The 

fourth and fifth groups are included in query operations. We 

discuss them in the following section. 

Range query program 

The grid file structure is a multikey searching structure 

of a data set that is characterized by a small number of 

attributes but the domain of each attribute is large and 

linearly ordered. Multikey searching structures allow a number 

of different searching types, each appropriate for answering a 

certain kind of query. The query type is usually classified 

into four categories: exact match query, partial match query, 

range query and best match query. 

Exact match query is the simplest type among them. This 

searches for a specific record defined by the full attributes, 

k keys ink dimensional structures. We can use the Find() 

algorithm directly for this kind of query. The grid file 
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established aims to guarantee no more than two disk accesses 

for both successful and unsuccessful search in this query. A 

partial match query is a more complicated type of query in a 

multikey file that specifies a subset of attriputes, t keys 

among k keys, t < k. In this query, we ask for all records 

that have those t values, independent of the other (k - t) 

attributes. This can be done in the following range query if 

we accept the whole range of each domain of the (k -t) keys. 

In a range query we specify a range of values for each of 

the k keys, [lowi ,upi ], 1 <= i <= k, and all records that 

satisfy the range are reported. One of the design objectives 

of a grid file structure is to build an efficient structure for 

the range queries. For this purpose, a grid file partitions 

the whole data space into grid cells. Hence, we need not check 

all other attributes as well in obtaining a specified range in 

one attribute domain. That is, we do not need to do a 

recursive search as in 

difficult to compare query 

structures since they are 

Saritepe[37] attempted an 

k-d-tree implementation. It is very 

efficiencies of different search 

based on different design concepts. 

analytical comparison between grid 

file and k-d-B-tree structures. Though she considered grid 

scale accesses and directory accesses at the same level in node 

access 

showed 

count, which lessen the grid file performance, 

that k-d-B-tree performance drops rapidly as 

recursive partition frequency grows. 

she 

the 

We give below a range query algorithm in a grid file. A 

constraint is imposed on the algorithm such that we must allow 
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only one disk access each per data bucket and directory bucket 

in searching for the records that satisfy the range specified 

in the range query. Though in the algorithm we check every 

record to see whether each key value satisfies the query 

region, we do not need to do so if the bucket region in the 

domain is completely contained in the query region. Since the 

internal structure of records in a data bucket is not of direct 

interest of grid file design, we insert records randomly into 

data buckets in our implementation. But we sort them easily 

within bucket boundary, showing at least partially sorted form 

for query reporting. 

Algorithm 9 

Range_query(grid_file) 

do for k dimensions 

od 

I* get query range interactively *I 
get lower_ and upper_bound for searching; 

I* call Index() *I 
get begin_resident_index with lower bound; 
get end resident index with upper bound; 

allocate directory_bucket_queue; 

do for all resident directory blocks in the range 
get directory_bucket_RBN; 
if this RBN is not in directory_bucket_queue 

insert the RBN into the queue; 
load the directory_bucket pointed by the RBN; 

else 
break; 

fi 

do for k dimensions 
begin_index <- Index 

(scale,lower_bound,no_of_boundary); 
end_index <- Index(scale,upper_bound,no_of_boundary); 

od 

allocate data_bucket_queue 



od 

do for each block traversing directory bounded by 
begin_index and end index. 

od 

get data_bucket_RBN; 

if this RBN is not in data_bucket_queue 
insert the RBN into the queue; 
load the data_bucket pointed by the RBN; 

else 
break; 

fi 

sort records in the data_bucket; 
report records within query range; 

free ( data_bucket_queue); 

free ( directory_bucket_queue); 

end range_query 
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As shown implicitly in the range query algorithm, our 

program also uses a single fixed page replacement policy. 

Besides the resident directory and scales, the program keeps in 

primary memory only the most recently used block directory and 

its scales(not whole of directory bucket) and a data bucket. 

We assume that resident directory size could be small enough 

to be kept in primary memory during operations in most appli-

cations. We can show it as following simple case. 

Let us define size parameters in our grid file structure 

using resident directory scheme as follows: 

r = average size in bytes of an entry of resident 

directory used to point a directory bucket, 

rs = size of the resident directory in bytes, 

ps = size of a directory bucket in bytes, 

d = average size in bytes of an entry of a block directory 

used to point a data bucket, 



bs = size of a data bucket in bytes, 

c = size of a record in bytes. 
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Then the grid file structure accommodates approximately the 

following data volume, v or number of records, n: 

v = (rs/r) * (ps/d) * bs in bytes, 

n = v I c. 

Let ps and bs be 512 bytes. Implementation of our grid file 

structure showed about 69.6 percent data bucket occupancy. We 

expect a slightly lower percentage of directory bucket 

occupancy. This factor, of course, is not necessary in a 

single level grid file. If r and d are both 12 bytes, 10 k 

bytes of resident directory in our grid file is able to handle 

about 18.2 Mbytes. This means that the structure can also 

process about 284,500 records each 64 bytes long. Hence, a 

few ten kbyte of resident directory is sufficient for a 

practical application of grid file structure. In this regard, 

scale size can be negligible compared with that of directory. 

If we assume that every scale has b intervals, directory size 

has O(bk) and size of scales has O(kb). Since the entries of 

scales are boundary values of intervals, we can use a long 

integer for any kind and any length of key types converting 

them into canonical forms of long integer. 



CHAPTER VII 

CONCURRENCY CONTROL ON GRID FILE 

General 

A grid file is a large multikey access data structure. Of 

course, a single user may use the file system exclusively. 

However, we naturally expect that several different users 

access the data set simultaneously. As our structure is a 

multikey structure which is designed to process several 

attributes asymmetrically, we may think of it as a unification 

of several distinct data sets. Hence, it is more likely that 

many users share the data set manipulating it with a subset of 

the attributes of their own concern. 

The file structure as well as the data set itself is not 

static as many users request a certain process to be executed 

on the structure such as insert, delete and find. When a large 

data structure is embedded on a system which allows a number of 

'transactions' to be done concurrently, some kind of 'concur­

rency control mechanism' is needed as a part of the system to 

guarantee that concurrent transactions do not interfere with 

each other's operation. Efficient concurrency control has long 

been of interest especially in the database area. The 

objective of concurrency 

among users who attempt 

control is to prevent interference 

to access the shared data set simul-
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taneously, keeping as high a level of concurrency as possible. 

We acquire concurrency on a system by interleaving 

operations for different users. In the absence of proper 

concurrency control, the interference among the interleaved 

operations is apt to produce wrong results even though the 

operations are correct in themselves. We can see two typical 

cases of the problems as follows: 

c~se 1: Lost updates. 

Suppose two different branch offices of a bank attempt 

simultaneously to send their money to their headquarters on 

line. As illustrated in Figure-21, the two transactions may be 

interleaved resulting in a wrong balance at headquarters. We 

see that the update of Branch A was lost because the tran-

saction of Branch B overwrites it. 

time 
t1 
t2 
t3 
t4 
t5 

HQ Balance 
$1,000,000. 

$1,700,000. 
$1,200,000. 

TR by Branch A 

READ $1,000,000. 

ADD $700,000. 

Figure-21. Lost update. 

Case 2: Inconsistent Information. 

TR by Branch B 

READ $1,000,000. 

ADD $200,000. 

Suppose headquarters checks the total balance of the two 

branches and its own. If we assume that Branch A sends 
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$200,000 to Branch B, the information retrieved is wrong though 

there is no loss of update as shown in Figure-22. 

time 
tl 
t2 

t3 

t4 

t5 

HQ 
Balance $1,000,000. 
READ $1,000,000. 
bl = $1,000,000. 
READ A $700,000. 
bl = $1,700,000. 

t6 READ B $400,000. 
bl = $2,100,000. 

Branch A 
$700,000. 

SUB 
bl_A 

$200,000. 
= $500,000. 

Branch B 
$200,000. 

ADD 
bl_B 

$200,000. 
= $400,000. 

Figure-22. Inconsistent information. 

In a system in which concurrent access is allowed, users 

access the shared data expecting that the data satisfies 

certain consistency assertions specified for the system and 

that they get the result within a reasonable time. The basic 

problem in concurrency control is how to guarantee the 

correctness of a system state undergoing interleaved 

transactions. Eswaran et al. [12] established the notion of 

consistency and proposed the predicate lock method as a 

concurrency control mechanism. They suggested 'seriali-

zability' concept even though they did not use the term itself. 

Serializability[35,40] means that the effect of concurrent 

transactions should be the same as if the transactions have 

been run in a certain serial order. Rosenkrantz et al. [35] 

showed that serializability is both necessary and sufficient 

for consistency. It is generally used as the correctness 
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criterion of concurrency control mechanisms. 

Many methods for achieving serializability have appeared 

in the literature. They can be classified into three 

categories such as locking, timestamping order and optimistic 

methods. First, in locking method[12,16] a transaction 

acquires a lock on a object so that it may not be changed in 

some unpredictable manner. There are generally two kinds of 

locks so called exclusive/shared lock or write/read lock. For 

the implementation of locking method, two protocols are needed 

such as granting and releasing protocol of lock(lock and 

unlock). Hence, basic locking method is called a two-phase­

locking method(2PL). Unfortunately, a pure 2PL may lead to a 

deadlock situation in which a transaction waits indefinitely 

for its lock request to be granted. 2PL and its variants are 

most widely used in practical applications imposing some 

constraints to prevent deadlock. Second, in timestamping order 

method[33], every transaction is assigned a unique timestamp. 

A shared lock request for an object by a transaction is granted 

only if there is no other exclusive request with a larger 

timestamp. Similarly, an exclusive lock request on an object 

is accepted only if there is no other exclusive or shared lock 

on the object with a larger timestamp. Third, the optimistic 

method[19] is based on the assumption that conflicts among 

transactions in real application are quite unlikely. In this 

method, every transaction is allowed to perform its executions 

without any control. The history of a transaction is collected 

and a validation step is performed at the end of each 



transaction to determine whether or not to commit the 

transaction. 

Applications 
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We may separate large data structures into two classi­

fications from several points of view such as static and 

dynamic structures, or tree and address computation structures, 

or single and multiple key structures. A concurrency control 

mechanism for static structures may be relatively simple and 

essentially is included in that for dynamic structures. In 

view of multiuser environment of large database area, it is 

natural that there be strong demand for efficient concurrency 

control mechanism. Since in current dynamic databases, tree 

structures have been widely used as indices, it is also natural 

that many researchers in the field of concurrency have been 

attracted to building the mechanism for the tree structures. 

Actually, a number of papers have appeared in the literature as 

solutions to concurrency problems in tree structures. They 

include for examples, [2], [18], and [22] for B-trees and its 

variants, and [25] for binary tree structures. In contrary, 

quite a few solutions have been published for hashing 

structures. We may refer to [8,9] for extendible hashing and 

[7] for linear hashing. Nobody proposed any solutions of 

concurrency problems for multikey structures including a grid 

file. 

Most of the solutions are based on two-phase-locking with 

slight modifications of the data structures and imposing a 
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certain ordering in granting lock requests in order to prevent 

deadlocks. Locking methods remain still the most popular 

scheme in concurrency control mechanism. If we assume that 

locking method is also available for a (single level) grid 

file, we can suggest some design policies as follows under the 

general design objective that the mechanism allow a high 

degree of concurrency among user interface procedures. 

minimize the number of locks held at one time by a 

process. 

minimize exclusive lock and its time. 

make each process independent as much as possible. 

We have three basic user interface procedures: FIND(), 

INSERT() and DELETE(). Insert and delete procedure may invoke 

SPLIT() and MERGE() respectively. We have also three basic 

entities which are to be locked: scale , directory and bucket. 

However, directory is defined by scales, we had better consider 

these two entities as an entity named as directory. First of 

all, we may consider split bucket and merge bucket operations 

independent with insert and delete operations though those are 

called by these procedures. The reason is that split bucket 

is triggered whenever the bucket overflows without being 

affected by other procedures and decision for bucket merge is 

made after delete procedure commits. Hence, we can defer the 

restructuring operations. During the operations, we create new 

buffers and build new ones based on the old versions to be 

restructured. Exclusive locks are to be requested at the end 
/ 

of the operations when we need change the pointers to the 
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entities. So, find operations may be done almost in parallel 

with any other operations. Insert and delete of data may 

operate in parallel if they are working on different bucket. 

We may take the inherent advantage of grid file such that 

access path to bucket are disjoint and the depth of access is 

shallow compared to those of tree structures. 

Building a correct and efficient concurrent algorithm is 

not simple. In addition to the problems discussed so far, we 

have to consider the problems which may arise in multi-

programming and parallel processing environments. 

must take into account of the recovery problems 

concurrency control[l]. 

Finally, we 

together with 



CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

A grid file is a large multidimensional dynamic structure 

which uses address computation techniques A single level 

grid file consists of three abstract data types, namely, linear 

scales, a directory and data buckets. A double level grid file 

maintains the directory in two levels such as a resident 

directory and block directories. Data buckets are fixed-sized 

structure units for storing data sets. A directory is used to 

manage data sets dynamically. Linear scales define the grids 

of a directory. Three major design objectives of a grid file 

are: (1) time bound of two disk accesses to search for a point 

data in disk memory; (2) reasonable average bucket occupancy; 

(3) efficient processing for range queries. 

To realize the three design objectives, three basic design 

strategies are established: "(1) maintaining a grid directory, 

data buckets; (2) splitting elements of which are pointers to 

with only two buckets involved; ( 3 ) grid partitioning the 

embedding space of a whole data set. 

We have implemented a double level grid file of two 

dimensions. In a double level grid file, a directory is 

partitioned in grids and the corresponding sets of blocks of 

the directory are also stored in fixed-sized buckets, namely, 
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directory buckets. A resident directory is used to manage 

dynamically the growing and shrinking sets. Its entries are 

pointers to the directory buckets. A resident directory scheme 

is proposed to lessen disk accesses in neighborhood operations 

for processing geometric data sets which require that all 

dimensions be treated symmetrically[15]. In choosing a 

splitting dimension, we check region level in all dimensions 

and select the dimension which has smallest value. A split 

boundary is obtained by binary buddy system which for the value 

bisects the lower and upper boundary value of the interval to 

be split. In directory merging, we also adopt binary buddy 

system. 

Our simulation studies are carried out with the following 

objectives: 

I. Evaluation of memory utilization 

(1) Bucket occupancy ratio 
(2) Efficiency of resident directory 
(3) Efficiency of directory 

II. Estimation of processing time 

(1) Insertion cost 
(2) Deletion cost 

Our simulation studies are done with key attributes of 

both long integer values obtained by two independent random 

generator programs. The following table shows the memory 

utilization statistics when we inserted 600 and 1,200 records. 

record size 
record count 
size of data buckets in bytes 
number of records per data bucket 
Bize of directory bucketB in byteB 

16 
600 
256 

16 
512 

16 
1,200 

256 
16 

512 



number of blocks in resident directory 
number of directory buckets 
number of data buckets 
average bucket occupancy 
average directory bucket occupancy 

average number of blocks in 

4 
4 

56 
0.6690 
0.5461 

resident directory per directory bucket(r) 

average number of blocks in 
block directories per data bucket(b) 

12 
9 

109 
0.6877 
0.5280 

1.17 

2.5 
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During the insertions, we checked the intermediate 

statistics every 40 record insertions and computed averages of 

each value of the middle 4 lines in the above table. The 

following table shows the results: 

grand average number of blocks in 
resident directory per directory bucket 

grand average number of blocks in 
block directory per data bucket 

1.25 

2.1 

Our studies show the same result in average data bucket 

occupancy as that of a single level grid file[27]. It shows 

about 0.69 occupancy ratio throughout the insertion period. 

Our grid file structure keeps the occupancy ratio at steady 

state. where insertion and deletion frequencies are almost the 

same. It maintains over 50% occupancy until the data set size 

decreases by continuous deletions to 40% initial steady state. 

The grand average number of blocks in block directory per data 

bucket is a parameter to show the directory size in a single 

level grid file. Nievergelt et al. [27] show that b fluctuates 

around 2 as the number( record_count/bucket capacity) 

increases. With this regard, they recommend 10 or more for 

data bucket capacity(c) in applications. The parameter value(b) 
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in our studies show similar results as their's. Furthermore, 

we expect naturally the same result, r = 2, in the relation 

between a resident directory and directory bucket since both 

data bucket and directory bucket are split when the buckets 

overflow without any other conditions. The number, r = 1.25, 

in the above tables is because a resident directory has split 

only a few times and there is a little possibility to make 

bucket regions. The efficiency of directory shows the same 

level in both a single level and a double level grid file. It 

is because the data sets used for both simulations are obtained 

by random number generator programs. In practical applications 

of a grid file(c > 10) where data clustering is likely, more 

than two directory entries are needed for a data bucket and 

also more than two entries of resident directory are needed 

for a directory bucket. It is clear that the number becomes 

greater in a single level grid file because it split the whole 

span of the embedded data space while a double level confines 

split in a directory bucket. In this regard, The charac­

teristics of data set suitable for a grid file are: (1) a small 

number of attributes(k < 10); (2) the domain of each attribute 

is large and linearly ordered; (3) attributes are independent 

each other. Since the size of directory entry is quite small 

compared to a bucket size, directory size causes no problems. 

We discussed the size o± a resident directory and showed that 

it is small enough to be kept in primary memory. Considering 

the possible internal fragmentation(low occupancy ratio) in 

directory bucl{ets though a dou.ble level grid file confineB 
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directory split in a directory bucket, it is not yet known 

whether a single level grid file is more efficient or not in 

view of memory utilization. 

Though a grid file has a time bound of two disk accesses 

for searching a point data, not much has been studied about 

time cost for insertion and deletion which are accompanied by 

splitting and merging. Each of a single insertion and a single 

deletion requires four disk accesses in a double level grid 

file(two accesses for searching and each one access for writing 

data buckets and directory buckets). Overall factors and times 

of disk accesses for a single insertion and a single deletion 

in a double level grid file are: 

I. Insertion cost 

Factors Disk accesses 

searching 2 
data bucket split 2 
directory split 1 
directory bucket split 2 
resident directory split 0 
mapping directory to data bucket 0 

total 7 

II. Deletion cost 

Factors Disk accesses 

searching: 2 
data bucket merge 3 
directory merge 1 
directory bucket merge 3 
resident directory merge 0 
mapping directory to data bucket 0 

total 9 
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The distribution of probabilities of each operations are 

not studied yet. It may depend on implementation strategies. 

If we are given an average values in the distribution of the 

probabilities, we can get average time cost in view of disk 

access. Splitting and merging may require many disk accesses 

especially in those operations on directory. A single level 

grid file which uses a conventional row major order array for a 

directory requires reorganizing of the entire directory when 

splitting and merging are needed. A number of disk access are 

needed in this kind of split and merge operations. A double 

level grid file minimize the disk accesses by confining the 

operations in a block directory and a resident directory which 

resides always in primary memory. So in view of time cost of 

insertions and deletions, a double level grid file is more 

efficient. 

We remain some work to be done as further studies. It 

should include: 

(1) Quantify the simulation studies, 
(2) Implement other strategies and compare performance, 
(3) Implement concurrency control on a grid file. 
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APPENDIX A 

ADDRESS COMPUTATION FOR DIRECTORY ACCESS 

We have implemented a directory as a k-dimensional array. 

The directory is so large that we keep it in secondary memory. 

With the k index values obtained by INDEX() on k scales which 

define the directory, we can read a directory block corresponding 

to a bucket in one disk access. Giv~n the address of the 

beginning of the directory, we can compute the relative address 

of a block. 

directory: array[Do] .... [Dk-1] of drelem. 
drelem : a directory entry. 
addr(x) : address of x. 
sizeof(x) : size of x in byte. 

The implementation of multidimensional arrays can be derived 

from that of one dimensional arrays. We see this for a two-

dimensional array, and then generalize it to k dimensions. 

In case of k = 2, Do = n and D1 = m, we may consider 

directory [Do][Dl] as an array A[l], ... ,A[n] in which each A[i] 

is in turn an array of m elements consisting the i-th row of the 

array(assume row major order). The address of A[i] is the sum of 

addr(A[l]) and the offset to i-th row. Then, 

sizeof(a row of A) = m * sizeof(drelem) 
addr(A[i]) = addr(A[l]) + (i- 1) * sizeof(a row of A) 

= addr(A[l]) + (i- 1) * m * sizeof(drelem). 

The address of directory[i,j] is the sum of addr(A[i]) and the 

offset to j-th column. Therefore, 
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addr(directory[i,j]) = addr(A[i]) + (j - 1) * sizeof(drelem) 
= addr(A[1]) + [(i- 1) * m + (j - 1)] * sizeof(drelem) 
= addr(directory[l,l]) + 

[(i - 1) * m + (j - 1)] * sizeof(drelem) 

In a k-dimensional directory, we consider it as an array 

A[al :b1] ... [ak:bk]. Let sr = sizeof(a row of A) and se = 
sizeof ( drelem). 

When k = 1, 
addr(A[i]) = addr(A[a1]) + (i - a1) * se. 

We may consider A to be an (k-1)-dimensional array, 

Ak-1 [al :b1] .... [ak-1 :bk-1] of one dimensional array, 

A [ il , .. , ik - 1 , j ] , ak < = j < = bk . Then, by (1 ) , 

Then, 

addr(A[il, ... ,ik]) = addr(Ak-1 [il, ... ,ik-1 ]) 
+ ( ik - ak ) * se. 

addr ( Ak- 1 [ i1 , ... , ik- 1 ] ) = addr ( Ak- 2 [ i1 , ... , ik- 2 ] ) 
+ ( ik- 1 - ak -1 ) * sr 

where sr = (bk - ak + 1) * se. Therefore, 

addr (A [ i1 , .... , ik ] ) = addr ( Ak- 2 [ il , ... , ik- 2 ] ) 

( 1 ) 

( 2 ) 

+ ( ik - 1 - ak - 1 ) ( bk - ak + 1 ) * s e + ( ik - ak ) * s e . 

If we apply (2) repeatedly, we get 

addr (A [ i1 , ... , ik ] ) = addr ( A1 [ i1 ] ) 

' 
+ se * t ( ( ij - aj ) I1 

j = 2 
( bm - am + 1 ) j . 

By ( 1), 
addr ( Al [ i1 ] ) = addr ( A1 [ a1 ] ) + ( i1 - a1 ) * st, 

where addr(Al [a1 ]) means the beginning address of the entire 

array, and st is the total size of an array of A1. 

st = se IIm=2(bm- am+ 1). Finally, we get 

addr(directory[il, ... ,ik]) = addr(A[il, ... ,ik]) 
= addr(directory[a1, ... ,ak]) 

+ se * ~ ( ( ij - aj ) TI ( bm - am + 1 ) '[ . 
j4-1 J 

For k = 2, (3) shows as follow: 
addr(directory[il ,iz]) = addr(directory[al ,a2]) 

+ [(il-a1)(bz-az+1) + (iz-az)] * se. 

( 3 ) 
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If we substitute as follows: 

i1 = i, iz = j, a1 = az = 1, bz-az+l = m, we get 

addr(directory[i,j]) = addr(directory[l,l]) 
+ [(i -1) * m + (j - 1)] * se. 

This is exactly the same as we have derived directly at the 

beginning. In the C-implementation of array arithmetic, indexes 

start with zero, se is a unit of a array, and array name has a 

address value. So, the address computation function is 

simplified as follow: 

addr address of a block with index values, i and j. Then, 

addr = directory+ i * b + j, 

when we declare a directory as directory[a][b] of drelem. 

For k = 3, we can derive the following formula following the 

procedures used above. 

addr = directory + b * c * i + c * j + k, 

when we declare a directory as directory[a][b][c] and the index 

values in each dimension are i,j,k respectively. 



APPENDIX B 

A SIMPLE EXAMPLE OF GRID FILE OPERATIONS 

A simple example of insertion and deletion accompanied by 

splitting and merging operations is presented in this appendix. 

ko 
kl 
k2 

age, boundary value 
salary, 
department no. 

16 - 76. 
8 - 128, unit:$1000. 
000 - 800. 

data bucket capacity = 2 records. 
upper threshold for merging data bucket = 1 record. 
directory bucket capacity = 4 blocks of a directory. 
upper threshold for merging directory bucket = 2 blocks. 
lower threshold for merging directory bucket = 1 block. 

sequence of arriving of data record: 

~ ko kl k2 
insert a 29 35 110 

b 70 110 200 
c 34 50 310 
d 60 92 700 
e 47 40 210 
f 45 70 510 
g 50 75 150 
h. 55 73 450 
i 75 120 250 
j 65 35 750 

delete b, g, i, h, e, a, j' c. 

step 1. Initial state and a data bucket full. 

128 
I 

I 
I 
I 
I 

8 I 

800 

16 1-------t 

resident directory 

128 

-~---- Zoo 
16t------- 76 

block directory 

85 

800 



1 

I I I ______ , 

1' _____ _ 

=> 

data bucket 

: a : 
: __ b __ : 

step 2. When record c arrives, find data bucket full. 
Split directory along first dimension. 
Split data bucket. 
Insert c and d. 

I 

1--------1 

resident dir. 

1 2 
a b I 

I 
: __ c ___ : ________ : 

data buckets 

I 

1-----1----t 

block dir. 

2' 
b 

: __ d_ 
I 
I 
I 

--1 

step 3. When record e arrives, find data bucket(#2) full. 
Split directory along second dimension. 
Split the data bucket and insert e. 

I 

1--------1 

resident dir. 

1 ______ 2 _______ 3 _______ _ 
: a : b : e : 
: ___ c ____ : __ d ___ : ______ : 

1- - - - -1- - - - --1 

block dir. 

data buckets 

step 4. When record f arrives, find data bucket(#1) full. 
Split data bucket. Insert f and adjust mapping. 
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I 

1 3 
t--------1 

I- - - - -1- - - - -t 

resident dir. block dir. 

1 ________ 2 ________ 3 ________ 4 _______ _ 
: a : b : e : f : data buckets 
: ___ c ____ : ___ d ____ : ________ : ________ : 

step 5. When record g arrives, find data bucket(#2) full. 
Split resident directory along first dimension. 
Split directory bucket along the split boundary of 
resident directory. 

I II 

I--- --1---- -t 

~----t t-----t 

resident dir. block dir. 

1 ________ 2 ________ 3 ________ 4 _______ _ 
: a : b : e : f : 
: ___ c ____ : ___ d ____ : ________ : ________ : data bucket 

step 6. Split directory in dir bucket II. 
Split data bucket(#2) and insert record g. 
Insert h. 
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1 _______ 2 _______ 3 _______ 4 _______ 5 -------
: a : b : e : f : d : 
: ___ c ___ : ___ g ___ : _______ : _______ : ___ h ___ : 

data bucket 

t-----1 

blocl';: dir. 



step 7. When record i arrives, find data bucket full. 

I 

Split resident directory along second dimension. 
Split directory bucket along the split boundary of 
resident directory. 

resident directory. 

L I III 
----------

1-- -- - -1----- -1 

II III 

2 3 

1------1 r------' 

block directory. 

step 8. Split block directory II. Split data bucket(#2). 
Insert record i and j. 

1 _____ 2 _____ 3 -----4 _____ 5 -----6------
II : a : b : e : f : d : g : 

: __ c __ : __ i __ : __ j __ : _____ : __ h __ : _____ : 

data buckets 
1-- _,_- -1 

block dir. 

step 9. Delete b. 2 
I I 
I I 
I i I 
1- -1 

step 10. Delete g. Underflow occurred in data bucket(#6). 
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Find candidate #2 and merge it to #6(current bucket). 
Merge directory II. 



f-----1 

block dir. 

1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 ____ _ 

: a ://///: e : f : d : i : 
: __ c __ :/1///: __ j __ : _____ : __ h __ : _____ : 

data buckets. /Ill : in avail list. 

Delete i. No merge candidate. 
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step 11. 
step 12. Delete h. Underflow occurred in bucket #5 and found 

candidate bucket #6. Merge #6 to #5. 
Merge block directory II. 

resident directory. 

1- ____ , ____ _.,. 

I 

r-----i 1-----1 

>-----1 

block directory. 

1 _____ 2~ _____ 3 ______ 4 _______ 5 ______ 6 _____ _ 
: a ://////: e : f : d ://////: 
: __ c __ ://////: __ j ___ : ______ : ______ ://///1: 

data bucket 

step 13. Underflow in directory bucket II. Found merge candidate 
directory bucket III. Merge them and adjust mapping in 
resident directory. 

1----------1 

=> 

r-----1-----1 

resident directory. 
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I II 

f-----< f-----t 

block directory. 

step 14. Delete e, a and j. Underflow in data bucket #3. Find 
merge candidate #5. Merge block directory. Underflow in 
directory bucket II, but no candidate directory bucket. 

I II 

t-----1----4 1----4 

resident dir. block directory. 

1 _____ 2 _____ 3 _____ 4 _____ 5 ______ 6 ____ _ 

: c :;;;;;: d : f :11111:111/1: 
: _____ ://///: _____ : _____ ://///://///: 

data bucket 

step 15. Delete c. Underflow in data bucket #1. Find merge 
candidate bucket #4. Merge them into #1. Underflow in 
directory bucket I. Find candidate bucket II. Merge 
them and adjust mappin~ in resident directory. Merge 
resident directory. 

=> 

1-----1-----1 1----------f 

resident directory. 
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I I 

=> 
---- ---l 
1 3 
____ j ____ i 

1-----; 
..._ ___ .... 1-----·-----; 

block directory 

1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 ____ _ 
: f :;;;;;: d :;;;;;:;;;;;:;;;;;: 
: _____ ://///: _____ :;;;;;:;;;;;:;;;;;: 

data bucket. /1111 bucket in avail-list. 



APPENDIX C 

A DISCUSSION ON THE STRATEGIES OF CHOOSING 

SPLIT AND MERGE DIMENSIONS 

AND BOUNDARY VALUES 

We discuss here the strategies of choosing a dimension to 

be split and a boundary value(split position ) to be inserted 

in the dimension in some informal way. In choosing the split 

dimension, if we are given the characteristics of data set such 

as its distribution and some necessity to refine in a certain 

dimension, we can adapt our policy to that characteristics. 

Otherwise, we must establish a determinable sequence. 

The simplest is a 'cyclic' method which selects one 

dimension in turn among all dimensions. This method works well 

in a single level grid file[27]. However, we can expect 

undesirable state in a double level grid file as discussed 

below. 

A grid file is a multikey access structure which treats 

all keys symmetrically. Without any specific information of 

attributes of each dimension, we do not need to make them more 

refined in some dimension. We keep the refined-level as 

uniform as possible in all dimensions. The local levels 

discussed in main chapters define the refined-level in each 

dimension. We compute the levels with procedures on each 
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scale. Our algorithm for choosing a dimension to be split is 

as follow: 

get_split_dim: 

I* subscripts denote dimensions *I 

do for each dimension i I* 1 <= i <= k *I 
leveli <- get_level(); I* by Algorithm 1 *I 

od 

find the smallest leveli ; 
if found several dimensions of the same smallest value 

then 

fi 

numberj <- numbers of entries in a scale defining 
the dimensions; 

find the smallest numberj ; 
if found several dimensions of same numberj then 

return(1);1*first dimension to get a unique dim *I 
fi 
return( j); 

return(i); 
end get_split_dim 

We may meet the same state of directory like State 1 in 

both the cycle method and level method(we call the method of 

the algorithm above hereafter) when we start splitting t.he 

directory at vertical dimension. The numbers in blocks of the 

directory are pointers to data buckets. Assuming that data 

bucket #1 is to be split and followed by directory splitting, 

each state is as State 2. 

Comparing the two states, we see that local levels vary 

from one to three in the state by cycle method and from one to 

two in the state by level method. Using the same data set, we 

get different refinement among dimensions. We expect more 

fluctuation in query reponse time when levels spread more 

widely. In view of the neighborhood property, we prefer to the 



state 1: 

1 2 3 
I 
I 

I I I I 

1---~---~-------1 
I I I I 
I I I I 

: 4 5 6 
, ___ , ___ • _______ ! 

I I I I 

7 8 9 
I I I I l ___ l ___ l _______ l 

By cycle method 

3 1 
I I 

---~---1-------
1 I 
I I 
I I 
I I 

1 2 

I I l ___ l __ _ 

I I 
I I 

4 5 

3 

I 

-------1 
6 

I 
I 
I 
I 

l ___ l ___ l _______ l 

I I I I 

7 8 : 9 
I I I I 
I --- I--- I ------- I 

By level method 

__ : ___ : ___ : _______ : ___ 2 
I I I I 
I I I I 

split sequence in 
both cases. 

--:---:---:-------:--- 4 
I I I I 
I--- I--- I------ I 

I I 
I I 

state 2: 

5 
I 

-~-------------1 I 
I I 

2 3 1 2 3 : 1: 1 

10: --'---'---'-------·--
I I I 
1-1-1---
1 I I 
I I I 

:4:4: 5 

I _______ I 

6 I 
I l_l_l ___ l _______ l 

I I I I 1 

:7:7: 8 : 9 
I I I I I 
I- I -1 -- 1 ------- 1 

I 
1 

By cycle method 

1 I I I 

:1o : 2 3 : 
I I I I 

1---~---~-------1 
I I I I 
I I I I 

: 4 5 : 6 , ___ , ___ , _______ 1 

I I I I 

: 7 : 8 9 : 
I I 1 I 
I--- I---I------ I 

By level method 

5 

94 



95 

state by level method. Moreover, the simplicity of cycle method 

in choosing the dimension to be split can not be obtained in a 

double level grid file. We have to maintain the cycle sequence 

separately in grid directory and each block directory. 

Otherwise, the variance of level value becomes greater. We may 

meet state 3 when data bucket #9 is split and directory 

splitting follows in State 2. 

state 3: 

I 
I 

1: 2 
10 

4 4 5 
- - ---
1 1 8 
7 7 8 - -

By cycle 

3 

------
6 

-------
11 6 

9 --- --
method 

6 
I 

--------~---1 I I 
I I I 

1 : 2 : 3 : 3 ___ l ___ l ___ l __ _ 

I • I 

10 : 2 3 : 3 
I 

- -1--
I 
I 

4 : 5 6 6 ___ I __ _ 

I 

7 : 8 9 11 
I 

--·1--

By level method 

Assume that we split the directory bucket containing the 

block directory of state 3 along vertical dimension. We choose 

the split boundary which separate blocks corresponding to data 

bucket #2 and #3 in each block directory to keep the binary 

split constraints. In case of cycle method, one of new 

directory buckets contains four blocks and the other contains 

12 blocks. In contrast, each new directory bucket has 8 blocks 

in level method. This implies that level method makes more 

'adaptable' structure which is one of characteristics of grid 
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file. We expect more uniform response time in user interface 

insertions and deletions. 

In choosing a boundary value for splitting and merging 

operations in grid file, we can adopt directly the splitting 

and merging policies of buddy systems on which recently many 

papers Have appeared in literature[7,24,32]. These discribe 

the dynamic memory allocation mechanisms and their performance 

from the stand point of operating systems. There are three 

standard buddy systems: binary, Fibonacci and weighted buddy 

systems. We digress from our discussion to summarize their 

work. The average internal fragmentation of the binary buddy 

system is larger than that of the Fibonacci buddy system which 

is larger than that of weighted buddy system. The external 

fragmentation of binary buddy system is less than that of 

Fibonacci buddy system which is less than that of weighted 

buddy system. The total fragmentation of the three buddy 

system are almost the same showing around thirty percent value. 

With systems, they conclude there is a reasonable assurance 

that no better buddy system can be chosen without knowledge of 

the actual memory request distribution. 

In a grid file, we split a data bucket into two and 

maintain a correspondence between the bucket and its embedded 

space location in a directory. In maintaining the directory 

dynamically, we can adopt the address computation methods of 

buddy systems for splitting and merging operations. 

In binary buddy system, the entire memory space consists 

of 2m words, which means the address space is [0,2m). This 
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method splits its memory spaces by bisecting them. So the 

address of a block of size 2k is a multiple of 2k. Memory 

sizes allowed are 1, 2, 4, 8, 16, In Fibonacci buddy 

system, the initial entire address space is size Fn and blocks 

size Fi are split into blocks of size Fi-1 and Fi-2(Fi is the 

i'-th Fibonacci number). So the allowed memory sizes are 1. 2, 

3, 5, 8, 13, ... In a weighted buddy system blocks may be of 

sizes 2k, 0<= k <= m, and 3*2k,0 <= k <= m-2 when initial total 

memory size is 2m. So the allowed block sizes are 1, 2, 3, 4, 

6, 8, 12, ... 

In binary buddy system, we can easily compute the address 

of a buddy of a block given the block's address and its size as 

follows: 

A : a block of size 2k, 
addr(A) : address of A. 

if addr(A) mod 2k+l = 0 then 
addr(buddy(A)) = addr(A) + 2k; 

else if addr(A). mod 2k+l = 2k then 
addr(buddy(A)) = addr(A) - 2k; 

fi 

This address computation method is applied to our buddy 

system algorithms shown in Chapter V. The address computation 

in binary and weighted buddy systems are somewhat straight-

forward. But that of Fibonacci buddy system was not efficient 

until Cranston et al.[8] designed the method. We expect more 

complexity in choosing split boundary when a directory bucket 

is split. We can not find any reason to choose other than 

binary buddy system since the bucket occupancy and directory 

size are not to be affected by any of these three methods. 



APPENDIX D 

PDL DESCRIPTION OF A GRID FILE PROGRAM 

The grid file program we have implemented for k - 0 - w 

dimensions is described in this appendix using program design 

language(PDL). We believe that this can be easily extended to 

higher dimension cases with slight modification. We have 

sometimes followed C-like statements in the descriptions. We 

denote variables with upper case letters in procedures. The 

global variables are explained at the beginning. But we have not 

declared every local variable in every procedure trying to make 

them self-explainable with their pseudo names. Indices of arrays 

begin with zero value. In most cases, ARRAY[O] is related with 

the first dimension and ARRAY[l] with the second dimension. 

The global variables declared: 

File descriptors and pointers: 

rs_scfd - resident scale file. 
rs_drfd - resident directory file. 
drfd - directory bucket file. 
bkfd - data bucket file. 
datafp - batch input data file. 
outfp - output file. 

File pointers acting in primary memory: 

rescale[k] 

res_drf 
scale[k] 
directory 

- array of pointers to resident scales of k 
dimensions. 

- resident directory. 
- array of pointers to block scales of k dimensions. 
- block directory. 
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Structured variables: 

structure { short level[k], -region level. 
short shared; - show sharing dimension. 
short cnt; - record count. 
long RBN; - pointer to bucket. 

} drelem; - entry of each directory. 
structure { long key[k] - key values. 

char info[INFOLEN] - non key information. 
} record, bucket[NO_REC]; 

structure { long bkcnt; 
long availhead; 
long availcnt; 

} bkhead, drbkhead; - head of each bucket file. 

Flags and Others: 

- array of entry numbers of resident scale. 
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reschead[k] 
rs_idx[k] 
schead[k] 
idx[k] 
rsaddr 
addr 
curr_RBN 

- array of current index in each resident scale. 

. currDR_RBN 
*_changed 
* init 

- array entry numbers of block scale. 
- array of current index in each block scale. 

pointer to current cell in resident directory. 
- pointer to current cell in block directory. 
- pointer to currently acting data bucket. 
- pointer to currently acting directory bucket . 
show if *_file is modified or not. 
show if *_file is for created one or not. 

Major defined variables: 

NO SHARE = -1 : This means that current cell in directory is not 
a bucket region, e.g. a single block. 

X SHARE = 0 : This means that current cell forms a bucket 
regin with its neighbor(s) to the direction of 
first dimension. 

YSHAR.E = 1 This means that current cell forms a bucket 
region with its neighbor(s) to the direction of 
second dimension. 

XYSHARE = 2 This means that current cell forms a bucket 
region with its neighbor(s) to both directions 
of first and second dimensions. 

These values are to be kept in the field 'shared' of the 

structured variable 'drelem' which is an entry of directory. 

The values are used extensively to distinguish the cases of 

merging and splitting discussed in Chapter IV. We have some more 

defined-variables that are explainable by themselves. 



main:proc(argument); 
I* get arguments from OIS *I 

if argument number < 2 then 
message and exit; fi 

initialize flags; 
clear BUCKET with -1 in each key; 

if argument number is two then 
open files and assign file descriptors; 
load their headers calling load*(fd,case); 

else if argument number is three then 

fi 

creat files and assign file descriptors; 
initialize their headers calling load*(fd,case); 
initialize *_INIT flags with TRUE; 

if data file opened then I* batch operation *I 
call build_gridfile(datafp); fi 

if DO_INIT = TRUE then I* for just created grid file *I 
call statitstics(gridfile); fi 

I* user interface procedure *I 
call menu(); 
do while(opcode < NO_FUNCT) 

od 

when(opcode) 
0: get keys and call find(gridfile,RECORD); 
1: get RECORD and call insert(gridfile,RECORD); 
2: get keys and call delete(gridfile,RECORD).; 
3: call update(gridfile); 
4: call range_query(gridfile); 

call menu(); 

if DO_INIT or RSDR_CHANGED then 
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I* gridfile is created or resident directory changed *I 
write RESCHEAD[k] and RESCALE[K] to file RS_SCFD; 
write RES_DRF to RS_DRFD; 

fi 

if DR_CHANGED then I* directory is changed *I 
seek the beginning of DRFD; 

fi 

write DRBKHEAD; 
seek the position of current resident directory bucket. 
write SCHEAD[K], SCALE[K], and DIRECTORY to file DRFD; 

if BK_CHANGED then I* bucket is modified *I 
seek the beginning of file BKFD; 

fi 

write BKHEAD; 
seek the position of current data bucket; 
write BUCKET; 

close files; 
end main 



The following procedures are to load files into primary 
memory. 
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loadrescale(): this is to load resident scale file from RS_SCFD. 
loadresdrf(): This is to load resident directory from RS_DRFD. 
loaddrf() : This is to load current directory from DRFD. 
loadbkf() : This is to load current data bucket from BKFD. 

loadrescale:proc(fd,case) 
I* This is to load resident scale file *I 

if CASE is for existing gridfile then 
seek the beginning of file RS_SCFD; 
read RESCHEAD[k]; 
allocate RESCALE[k] with each size of RESCHEAD[k]; 
read RESCALE[k]; 

else I* for a new created grid file *I 

fi 

initialize RESCHEAD[k] with each 2; 
allocate RESCALE[k] WITH each size of 2; 
initialize RESCALE[k] with MINBOUND[k] and MAXBOUND[K]; 

end loadrescale 

loadresdrf:proc(fd,case) 
I* This is to load resident directory file *I 

allocate RES_DRF with size of multiply of RESCHEAD[k]-1; 
if CASE is for a created gridfile then 

initialize entries of RES_DRF with 0 and NOSHARE each; 
else I* for existing gridfile *I 

seek the beginning of RS_DRFD; 

fi 

read RES_DRF from the file RS_DRFD; 
currDR_RBN = -1 I* means that current directory not 

loaded yet *I 

end loadresdrf 

loaddrf:proc(fd,case) 
I* This is to load current directory *I 

if CASE is for a created grid file then 
initialize DRBKHEAD and SCHEAD[k]; 
allocate SCALE[k] and DIRECTORY with initial sizes; 
initialize SCALE[k] and DIRECTORY with init values; 
curr_RBN = 0 I* point to first data bucket *I 
write DRBKHEAD to DRFD; 

else if CASE is for a opened gridfile then 
read DRBKHEAD from the opened file; 
curr_RBN = -1; I* There is no current data bucket *I 

else I* replacement of directory bucket *I 
if DR_CHANGED then /* directory was modified */ 

seek currDR_RBN position of fd; 
write SCHEAD[k], SCALE[k] and DIRECTORY; 

fi 
seek new position for new directory; 
read new SCHEAD[KJ; 
allocate SCALE[k], DIRECTORY with SCHEAD[k] values; 



fi 

read SCALE[k], DIRECTORY from fd; 
DR_CHANGED = FALSE; 

end loaddrf 
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loadbkf:proc(fd,case) I* case shows a new bucket position *I 
if CASE is for a created gridfile then 

initialize BKHEAD with inti values; 
write BKHEADinto file BKFD; 
curr_RBN = 0 I* point first databucket *I 

else if CASE is for a opened gridfile then 
read BKHEAD from file BKFD; 

else I* replacement of current BUCKET *I 
if current bucket was changed then 

fi 

fi 

seek current data bucket position in BKFD; 
write current BUCKET; 

clear current BUCKET; 
seek and read BUCKET from the new bucket position in BKFD; 
BK_CHANGED = FALSE; 

end loadbkf 

build_gridfile: proc(datafp) 
do while get_record(datafp) not EOF 

if RECORD.KEY[O] < 0 then 
negate RECORD.KEY[O]; 
call delete(BKFD,RECORD); 

else 
call insert(BKFD,RECORD); 

fi 
od 
close data file; 

end build_gridfile 

insert: proc(fd,RECORD) 
if record keys are not valid then 

message and return; fi 
if find(fd,RECORD) < 0 then I* find() is a function *I 

if ADDR-> CNT < MAX_NO_REC then I* bucket not full */ 
insert RECORD in current BUCKET; 
increment ADDR->CNT; 
arrange mapping of directory; 
DR_CHANGED = BK_CHANGED = TRUE; 

else I* bucket full *I 
call split(gridfile); 
call insert(fd,RECORD); 

fi 
else 

message 'record found' 
fi 

end inBert 



delete: proc(fd,RECORD) 
if record keys are not valid then 

message and return; fi 

if (i = find(fd,RECORD)) >= 0 then 
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I* i stands for the record position in bucket *I 
clear record BUCKET[i]; 

else 

fi 

decrement ADDR->CNT; 
arrange mapping of directory; 
DR_CHANGED = BK_CHANGED = TRUE; 
if ADDR->CNT < LOW_THRESHOLD then 

call merge(gridfile); fi 

message 'record not exist'; 

end delete 

find:function(fd,RECORD) 
do for all k 

RS_IDX[k] = index(RESCALE[k],RECORD.KEY[k],RESCHEAD[k]); 
od 

I* following computation is for the case: k = 2 *I 
RSADDR = RES_DRF + RS_IDX[1] * (RESCHEAD[0]-1) + RS_IDX[O]; 
if RSADDR->RBN != currDR_RBN then 

fi 

POS = new directory bucket position ; 
call loaddrf(DRFD,POS); I* replacement of directory *I 
currDR_RBN = RSADDR->RBN; 

do for all k 
IDX[k] = index(SCALE[k],RECORD.KEY[k],SCHEAD[k]); 

od 
I* following computation is for the case: k = 2 *I 

ADDR =DIRECTORY+ IDX[1] * (SCHEAD[O] - 1) + IDX[O]; 
if ADDR->RBN != curr_RBN then 

fi 

POS = new data bucket position; 
call loadbkf(BKFD,POS); I* replacement of bucket *I 
curr_RBN = ADDR->RBN'; 

search RECORD in current BUCKET; 
if found then return the record position in BUCKET; 
else return (-1); 
fi 

end find 

split: proc() 
if ADDR->SHARED > NOSHARED then/* curr dir is a bucket region*/ 

call split_bucket(new_RBN,ADDR->SHARED); 
else 

DIM= get_split_dimension(); 
if current directory will be overflowed then 

call split_resident(); 
else 
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call split_scale(SCALE[dim],IDX[dim],SCHEAD[dim],O); 
increment SCHEAD[DIM]; 

fi 
fi 

call split_dr(DIRECTORY,IDX[k],DIM,ISRES= 0); 
DR_CHANGED = TRUE; 

end split 

split_resident:proc 
if RSADDR->SHARED > NOSHARE then/* directory bucket region *I 

split_dr_bucket(DRFD,RSADDR->SHARED); 
else 

fi 

DIM= get_split_dim(); 
call split_scale(RESCALE[dim],RE_IDX[dim],RESCHEAD[dim],l); 
increment SCHEAD[DIM]; 
call split_dr(RES_DRF,RE_IDX[k],DIM,isres = 1); 
RSDR_CHANGED = TRUE; 

end split_resident 

split_scale:proc(scl[i], INDEX[i], no_of_boundary,ISRES) 
get LOW_ and UP_BOUND of interval IDX in the SCL[i]; 
NEW_BOUND = (LOW_BOUND + UP_BOUND ) I 2; 
allocate NEW_SCALE the size of which is increased by 1; 
1, j = 0; 
do while 1 < no_of_boundary 

od 

1-th entry of NEW_SCALE = j-th entry of SCL[i]; 
if 1 = INDEX[i] then 

increment 1; 
1-th entry of NEW_SCALE = NEW_BOUND; 

fi 
increment l,j; 

free SCL[i]; 
if ISRES = 0 then I* this is for block scale *I 

SCALE[i] = NEW_SCALE; 
else I* this ia for resident scale *I 

RESCALE[i] = NEW_SCALE; 
fi 

end split_scale 

merge_scale:proc(scl[i], index[i], no_of_boundary,isres) 
allocate NEW_SCALE the size of which is decreased by 1; 
l,j = 0; 
do while 1 < NO_OF_BOUNDARY 

if 1 != INDEX[i] then 

od 

fi 

j-th entry of NEW_SCALE = 1-th entry of SCL[i]; 
increment j ; 

increment 1; 

free SCL; 



if ISRES = 0 then I* for block scale *I 
SCALE[i] = NEW_SCALE; 

else 
RESCALE[i] = NEW_SCALE; 

end merge_scale 

split_dr:proc(curr_dr,idx[k],dim,sch[k],isres) 

NEWSIZE = (SCH[O] - 1) * (SCH[1] - 1); 
allocate NEW~DR with size of NEWSIZE; 
if DIM = 0 then 

CURR_SIZE = (SCH[O] - 2) * (SCH[1] - 1); 
i,j = 0; 
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I* traverse current DIR to copy entries to new DIR *I 
do while i < CURR_SIZE 

od 

if i mod (SCH[O] - 2)) = idx[O] then 
if current SHARED < XSHARE then 

current SHARED = XSHARE; 

fi 

else if current SHARED = YSHARE then 
current SHARED = XYSHARE; 

fi 
j-th entry of NEW_DR = i-th entry of CURR_DR; 
j = j + 1; 

j-th entry of NEW_DR = i-th entry of CURR_DR; 
i = i + 1; 

else if DIM = 1 then 

fi 

CURR_SIZE = (SCH[O] - 1) * (SCH[1] - 2); 
i,j = 0; 
do while i < CURR_SIZE 
if i < (SCH[O] - 1) * IDX[1] then 

i-th entry of NEW_DR = i-th entry of CURR_DR; 
j"= j + 1; 

else if (SCH[0]-1) * IDX[l] <= i < (SCH[0]-1) *(IDX[1]+1) 
if current SHARED < XSHARE then 

current SHARED = YSHARE; 
else if current SHARED = XSHARE then 

current SHARED = XYSHARE; 
fi 
i-th entry of NEW_DR = i-th entry of CURR_DR; 
(i+SCH[0]-1)th entry of NEW_DR= i-th entry of CURR_DR; 
j = j + 2; 

else 

fi 

j-th entry of NEW_DR = i-th entry of CURR_DR; 
j = j + 1; 

increment i; 
od 

free CURR_DR; 
if ISRES then 



RES_DRF = NEW_DR; 
else 

DIRECTORY = NEW_DR; 
fi 

end split_dr 

split_bucket:proc(new_RBN,shared) 
if SHARED = XYSHARE then 

fi 

if ADDR->LEVEL[O] > ADDR->LEVEL[1] then 
SHARED = YSHARE; 

else 
SHARED = XSHARE; 

fi 

if SHARED = XSHARE then 
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call region() to get LOW and UP region boundary in SCALE[O]; 
SPLIT_BOUND = ( LOW + UP) I 2; 
get region LOW_ and UP_INDEX in each dimension; 

if UP <= SPLIT_BOUND then 
i,j = 0; 
do while i < NO_REC in BUCKET 

od 

if BUCKET[i].KEY[O] >= SPLIT_BOUND then 
move BUCKET[i] to NEW_BUCKET[j]; 
j = j + 1; fi 
increment i; 

I* adjust mapping of DR to buckets *I 
i =region LOW_INDEX[O]; 
k =region LOW_INDEX[1]; 
do while i <= region UP_INDEX[O] 

do while k <= region UP_INDEX[1] 
PTR = DIRECTORY+ i * (SCHEAD[OJ - 1) + k; 
if k-th boundary in SCALE[O] < SPLIT_BOUND then 

PTR->CNT = PTR->CNT - j; 
else 

PTR->CNT = j; 
PTR->RBN = BKHEAD.AVAI~HEAD; I* new bucket pos *I 

fi 
increment PTR->LEVEL[O]; 

I* adjust SHARED value *I 
get local level with SCALE[O]; 
I* get split level by adding one to region level *I 

SPLIT_LEVEL = ADDR->LEVEL[O] + 1; 
if LOCAL_LEVEL > SPLIT_LEVEL then 

do nothing; 
else if LOCAL_LEVEL = SPLIT_LEVEL then 

if LOW_INDEX[l] = UP_INDEX[l] 
PTR->SHARED = NOSHARED; 

else 
PTR->SHARED = YSHARE; 

fi 
fi 
increment k; 



od 
increment i; 

od 
else if LOW >= SPLIT_BOUND then 

fi 

perform the same algoritm as above with appropriate 
SCALE and SHARED dimension; 

else if SHARED = YSHARE then 

fi 

perform the same algorithm as above with appropriate 
SCALE and SHARED dimension; 

if UP <= SPLIT_BOUND then 
perform same algorithm as XSHARE case; 

else if LOW > SPLIT_BOUND then 
perform same algorithm; 

fi 

DR_CHANGED = BK_CHANGED = TRUE; 
if BKHEAD.AVAILCNT > 0 then 

else 

POS = BKHEAD.AVAILHEAD * BKSIZE + sizeof(BKHEAD); 
BKHEAD.AVAILHEAD = the next avail bucket RBN at POS; 
write NEW_BUCKET at POS of BKFD; 
decrement BKHEAD.AVAILCNT; 

if BK_INIT then 
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write the very first BUCKET at the next of BKHEAD; 
else 

fi 

seek the end of BKFD; 
fi 
write NEW_BUCKET; 
increment BKHEAD.AVAILHEAD; 
increment BKHEAD.BKCNT; 

end split_bucket 

split_dr_bucket: proc(shared) 
if SHARED = XYSHARE then 

fi 

if RSADDR-> LEVEL[O] > RSADDR->LEVEL[1] then 
SHARED = YSHARE; 

else 
SHARED = XSHARE; 

fi 

CURR_SIZE = (SCHEAD[O] - 1) * (SCHEAD[1] - 1); 

if SHARED = XSHARE then 
REGION_LEVEL = RSADDR->LEVEL[O]; 
call region() to get region LOW_ AND UP BOUND in RESCALE[O]; 
SPLIT_BOUND = (LOW_BOUND + UP_BOUND) I 2; 
get SPLIT_IDX in SCALE[O]; 
get region LOW_ and UP_INDEX in each dimension; 
TO_SCALE[1] = T1_SCALE[1] = SCALE[1]; 
TO_SCHEAD[l] = Tl_SCHEAD[l] = SCHEAD[1]; 
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if UP_BOUND <= SPLIT_BOUND then 
allocate TO_SCALE[O] with size of (SPLIT_IDX + 1); 
allocate T1_SCALE[O] with size of (SCHEAD[O]-SPLIT_IDX); 
divide SCALE[O] into two at boundary SPLIT_IDX; 
copy lower region of SCALE[O] to TO_SCALE[O]; 
copy upper region of SCALE[O] to T1_SCALE[O]; 
TO_SCHEAD[O] = SPLIT_IDX + 1; 
T1_SCHEAD[O] = SCHEAD[O] - SPLIT_IDX; 
SIZEO = (TO_SCHEAD[O] - 1) * (TO_SCHEAD[1] - 1); 
SIZE1 = (Tl_SCHEAD[O] - 1) * (Tl_SCHEAD[l] - 1); 
allocate TO_DR with size of SIZEO; 
allocate Tl_DR with size of SIZE1; 
i,j,k = 0; 

I* divide DIRECTORY along SPLIT_IDX *I 
do while i < CURR_SIZE 

if i mod (SCHEAD[O] - 1) < SPLIT_IDX 
copy i-th entry of DIRECTORY to j-th entry of TO_DR; 
j = j + 1; 

else 

fi 

copy i-th entry of DIRECTORY to k-th entry of T1_DR; 
k = k + 1; 

i = i + 1; 
od 

I* adjust mapping of RES_DRF to directory bucket *I 
j =region LOW_IDX[1]; i =region LOW_IDX[O]; 
do while j <= UP_IDX[1] 

od 

do while i <= UP_IDX[O] 

od 

PTR = RES_DRF + j * (RSCHEAD[0]-1) + i; 
increment ~TR->LEVEL[O]; 
get LOCAL_LEVEL of i-th interval of RESCALE[O]; 
SPLIT_LEVEL = REGION_LEVEL + 1; 
if LOCAL_LEVEL > SPLIT_LEVEL then 

do nothing; 
else if LOCAL_LEVEL = SPLIT_LEVEL then 

if LOW_IDX[l] = UP_IDX[l] then 
PTR->SHARED = NOSHARE; 

else 
PTR->SHARED = YSHARE; 

fi 
fi 
if i-th boundary in RESCALE[O] >= SPLIT_BOUND then 

PTR->RBN = DRBKHEAD.AVAILHEAD; fi 
increment i; 

increment j; 

else if LOW_BOUND >= SPLIT_BOUND then 

fi 

do same alogrithm but reversing upper and lower 
region of split boundary; 

else if SHARED = YSHARE then 
REGION_LEVEL = RSADDR->LEVEL[l]; 
call region() to get region LOW_ and UP_BOUND in RESCALE[1]; 



SPLIT_BOUND = (LOW_BOUND + UP_BOUND) I 2; 
get SPLIT_IDX in SCALE[1] with SPLIT_BOUND; 
get region LOW_ and UP_IDX in each dimension; 
TO_SCALE[O] = T1_SCALE[O] = SCALE[O]; 
TO_SCHEAD[O] = Tl_SCHEAD[O] = SCHEAD[O]; 

if UP_BOUND <= SPLIT_BOUND then 
TO_SCHEAD[l] = SPLIT_IDX + 1; 
T1_SCHEAD[1] = SCHEAD[l] - SPLIT_IDX; 
allocate tO_SCALE[l] with size of TO_SCHEAD[l]; 
allocate Tl_SCALE[l] with size of Tl_SCHEAD[l]; 
divide SCALE[l] into two at boundary SPLIT_IDX; 
copy the lower region to TO_SCALE[l]; 
copy the upper region to T1_SCALE[l]; 
SIZED= (TO_SCHEAD[O] - 1) * (TO_SCHEAD(1] - 1); 
SIZEl = (Tl_SCHEAD[O] - 1) * (T1_SCHEAD[1] - 1); 
allocate TO_DR with size of SIZEO; 
allocate T1_DR with size of SIZE1; 
i,j,k = 0; 

I* divide DIRECTORY *I 
do while i < CURR_SIZE 

if i < (SCHEAD[0]-1) * SPLIT_IDX then 
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copy i-th entry of DIRECTORY to j-th entry of TO_DR; 
j = j + 1; 

od 

else 

fi 

copy i-th entry of DIRECTORY to k-th entry of Tl_DR; 
k = k + 1; 

i = i + 1; 

I* adjust mapping of RES_DRF to directory bucket *I 
i =region LOW_IDX[1]; j =region LOW_IDX[O]; 
do while i <= UP_IDX[1] 

od 

do while j <= UP_IDX[O] 

od 

PTR = RES_DRF + i * {RESCHEAD[0]-1) + j; 
increment PTR->LEVEL[l]; 
get LOCAL_LEVEL of i-th interval in RESCALE[l]; 
SPLIT_LEVEL = REGION_LEVEL + 1; 
if LOCAL_LEVEL > SPLIT_LEVEL then 

do nothing; 
else if LOCAL_LEVEL= SPLIT_LEVEL then 

if LOW_IDX[O] = UP_IDX[O] then 
PTR->SHARED = NOSHARE; 

else 
PTR->SHARED = XSHARE; 

fi 
fi 
if i-th boundary in RESCALE[l] >= SPLIT_BOUND then 

PTR->RBN = DRBKHEAD.AVAILHEAD; fi 
increment j; 

increment i; 

else if LOW_BOUND >= SPLIT_BOUND then 
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I* do same algorithm but reversing lower and upper 
region of split boundary *I 

fi 
fi 

RSDR_CHANGED = DR_CHANGED = TRUE; 
if DRBK_INIT is TRUE then 

seek DRFD the very next to DRBKHEAD; 
write TO_SCHEAD,TO_SCALE,TO_DR; 
clear the remainder of the directory bucket; 
DRBK_INIT = DRBK_CHANGED = FALSE; fi 

if DRBKHEAD.AVAILGNT > 0 then 
seek DRFD the position of availhead; 
read the next avail directory bucket; 
update the DRBKHEAD.AVAILHEAD with next availhead; 
decrement DRBKHEAD.AVAILCNT; 

else 

fi 

seek DRFD the end of the file; 
increment DRBKHEAD.AVAILHEAD; 
increment DRBKHEAD.BKCNT; 

I* write new directory bucket *I 
write DRFD with Tl_SCHEAD,Tl_SCALE,Tl_DR; 
clear the remainder of the directory bucket; 

free Tl_SCALE and Tl_DR; 
I* substitute current dirctory *I 

SCHEAD = TO_SCHEAD; 
DIRECTORY = TO_DR; 
SCALE = TO_SCALE; 

end split_drbk 

merge:proc(bucket, scale, directory) 
I* call function candidate() to find candidate bucket to be 

merged and the dimensioin for merging. The function returns 
TRUE if there is valid candidate and FALSE, otherwise *I 

if candidate(cand_bucket,cand_dim) is not TRUE then 
message 'no candidate '; 
return; 

fi 

call merge_bucket(cand_bucket,cand_dim) 
if ADDR->SHARED = XYSHARE then 

get full range level F_LEVELk[] in each SCALE[k]; 
if ADDR->LEVEL[O] = F_LEVEL[O] and 

ADDR->LEVEL[l] = F_LEVEL[l] then 
call merge_dr(DIRECTORY,IDX[k],XYSHARE); 

else if ADDR->LEVEL[O] = F_LEVEL[O] then 
compute MERGED_SIZE to be after merge; 
if MERGED_SIZE < LOW_THRESHOLD of DRBKSIZE then 

call merge_scale(SCALE[l],IDX[l],SCHEAD[l]); 
call merge_dr(DIRECTORY,IDX[k],YSHARE); 

fi 
else if ADDR->LEVEL[l] = F_LEVEL[l] then 
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compute MERGED_SIZE to be after merge; 
if MERGED_SIZE < LOW_THRESHOLD of DHBKSIZE t.hen 

call merge_scale(SCALE[O],IDX[O],SCHEAD[O]); 
call merge_dr(DIRECTORY,IDX[k],XSHARE); 

fi 
fi 

fi 
end merge 

candidate: function(cand_bucket,cand_dim) 
I* search the first dimension *I 

get lower and upper bound of interval IDX in SCALE[O]; 
call region() and get region LOW and UP of the interval; 
REG_BUD_LOW[O] = get_buddy(SCALE[O],LOW,UP,MAXBOUND[O]); 
i = 0; 
do while i < SCHEAD[O] 

od 

if i-th boundary in SCALE[O] = REG_BUD_LOW[O] then 
PTR = DIRECTORY + YIDX * (SCHEAD[0]-1) + i; 

fi 

if (ADDR->CNT + PTR->CNT) < UPPER_THRESHOLD and 
ADDR->LEVEL[k] = PTR->LEVEL[k] in each k then 
TO_BE_MERGED[O] = PTR->RBN; fi 
break; 

increment i; 

search the second dimension with the same algorithm as above; 

if both TO_BE_MERGED[K] is available then 
if ADDR->LEVEL[O] > ADDR->LEVEL[l] then 

CAND_BUCKET = TO_BE_MERGED[O]; 
CAND_DIM = 0; I* first dimension *I 

else if ADDR->LEVEL[O] < ADDR->LEVEL[l] then 
CAND_BUCKET = TO_BE_MERGED[l]; 
CAND_DIM = 1; I* second dimension *I 

else if SCHEAD[O] < SCHEAD[l] then 

else 

fi 

CAND_BUCKET = TO_BE_MERGED[l]; 
CAND_DIM = 1; 

CAND_BUCKET = TO_BE_MERGED[O]; 
CAND_DIM = 0; 

else if TO_BE_MERGED[O] is available then 
CAND_BUCKET = TO_BE_MERGED[O]; 
CAND_DIM = 0; 

else if TO_BE_MERGED[l] is available then 
CAND_BUCKET = TO_BE_MERGED[l]; 
CAND_DIM = 1; 

fi 

if there is valid CAND_BUCKET then 
return TRUE; 

else 
return FALSE; 



fi 
end candidate 

merge_bucket:proc(cand_bucket,cand_dim) 
seek BKFD for the position of CAND_BUCKET; 
read the bucket into TEMP_BK[NO_REC]; 
i, j, k = 0 ; 
do while all i,j,k < NO_REC 

od 

do while BUCKET[j].KEY[O] > 0 I* skip record exist *I 
j = j + 1; 

od 
do while TEMP_BK[k].KEY[O] < 0 and k < NO_REC 

k = k + 1; 
od 
if k >= NO_REC then 

break; fi 
BUCKET[j] = TEMP_BK[k]; 
increment all i,j,k; 

I* collect merged bucket at avail list *I 
get total record count, MERGED_CNT; 
clear TEMP_BK[]; 
TEMP_BK[O].KEY[O] = BKHEAD.AVAILHEAD; 
write back TEMP_BK at CAND_BUCKET position; 
BKHEAD.AVAILHEAD = RBN of CAND_BUCKET; 
increment BKHEAD.AVAILCNT; 
DR_CHANGED = BK_CHANGED = TRUE; 

I* adjust mapping of directory *I 
if CAND_DIM = 1 then 
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get low and up boundary of interval IDX[l] in SCALE[l]; 
call region() with the values and decremented 

ADDR->LEVEL[l] to get region LOW_ and UP_BOUND in 
SCALE[1]; 

get low and up boundary of interval IDX[O] in SCALE[O]; 
call region() with the values to get region LOW_ and 

region UP_BOUND in SCALE[O]; 
get region index LOW_IDX[k] and UP_IDX[k] with above values 
i = LOW_IDX[l]; j = LOW_IDX[O]; 
do while i <= UP_IDX[1] 

od 

do while j <= UP_IDX[O] 

od 

PTR = DIRECTORY + i * (SCHEAD[0]-1) + j; 
decrement PTR->LEVEL[l]; 
PTR->CNT = MERGEC_CNT; 
PTR->RBN = ADDR->RBN; 
if PTR->SHARED < XSHARE then 

PTR->SHARED = YSHARE; 
else if PTR->SHARED = XSHARE then 

PTR->SHARED = XYSHARE; 
fi 
increment j; 

increment i; 

else if CAND_DIM = 0 then 
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perform the same algorithm as above base on SCALE[O]; 
fi 

end merge_bucket 

merge_dr: proc(directory,idx[k],merge_dim) 
if MERGE_DIM = XSHARE then 

PRE_MIDX=index(SCALE[O],IDX[O],ADDR->LEVEL[O],MAXBOUND[O]); 
MIDX = PRE_IDX + 1; 
allocate MERGED_DR with decreased size by one column; 

I* copy old directory to new one *I 
i,j,k,l = 0; 
do while i < SCHEAD[1]-1 

od 

do while j < schead[0]-1 

od 

if j != P_MIDX then 
copy 1-th entry of DIRECTORY to k-th entry of 
MERGED_DR; 
increment k,l; 

else 

fi 

1-th entry of DR.SHARED = YSHARE; 
copy 1-th entry to k-th entry of MERGED_DR; 
increment j,k; 
1 = 1 + 2; 

increment j; 

increment i; 

decrement SCHEAD[O]; 
free DIRECTORY; 
DIRCTORY = MERGED_DR; 

else if MERGE_DIM = YSHARE then 
PRE_MIDX = index(SCALE[1],IDX[1],ADDR->LEVEL[1],MAXBOUND[l]); 
MIDX = PRE_MIDX + 1; 
allocate MERGED_DR with decresed size by one row; 
i,j,k,l = 0; 
do while i < SCHEAD[1]-1 

od 

do while j < SCHEAD[0]-1 

od 

if i < PRE_MIDX or i > MIDX then 
copy 1-th entry of DR to k-th entry of MERGED_DR; 
increment l,k; 

else if i = PRE_MIDX then 
1 = 1 + SCHEAD[O] - 1; 
break; 

else if i = MIDX then 

fi 

1-th entry of DR.SHARED = XSHARE; 
copy 1-th entry of DR to k-th entry of MERGED_DR; 
increment l,k; 

increment j ; 

increment i; 

decrement SCHEAD[l]; 
free DR; 



DR = MERGED_DR; 
else if MERGE_DIM = XYSHARE then 

allocate MERGED_DR with size of one; 
entry of MERGED_DR = entry of ADDR; 
MIN= lowest boundary of SCALE[O]; 
MAX= highest boundary of SCALE[O]; 
free SCALE[O]; 

fi 

allocate SCALE[O] with size of two; 
assign MIN to thefirst entry of SCALE[O]; 
assign MAX to the second entry of SCALE[O]; 
MIN= lowest boundary of SCALE[1]; 
MAX= highest boundary of SCALE[l]; 
free SCALE[l]; 
allocate SCALE[l] with size of two; 
assign MIN to the first entry of SCALE[l]; 
assign MAX to the second entry of SCALE[l]; 
SCHEAD[O] = SCHEAD[l] = 2; 
free DR; 
DR = MERGED_DR; 

end merge_dr 

update: proc(gridfile) 
I* update records interactively *I 

CONTINUE = TRUE; 
do while CONTINUE = TRUE 

get RECORD from terminal; 

od 

if (i = find(BKFD,RECORD)) >= 0 then 
get NEW_INFO from terminal; 
BUCKET[i].INFO = NEW_INFO; 
BK_CHANGED = TRUE; 

else 
message 'requested record not exist'; 

fi 
get a value for and assign to CONTINUE from terminal; 

end update 

range_query: proc(gridfile) 
I* get range in each dimension I* 
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get range bounds BEGIN[k] and END[k] from terminal; 
BEG_RS_IDX[k] = index(RESCALE[k],BEGIN[k],RESCHEAD[k]); 
END_RS_IDX[k] = index(RESCHEAD[k],END[k],RESCHEAD[k]); 
allocate RS_QUEUE; I* for keeping serched directory bucket *I 

i = BEG_RS_IDX[O]; j = BEG_RS_IDX[l]; 
do while i <= END_RS_IDX[O] 

do while j <= END_RS_IDX[l] 
RSADDR = RES_DRF + j * (RESCHEAD[O] - 1) + i; 
if RSADDR->RBN is in RS_QUEUE 

break; 
else 

insert RSADDR->RBN into RS_QUEUE; 



od 

od 
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fi 
if RSADDR->RBN != currDR_RBN then 

POS = RSADDR->RBN * DRBKSIZE + sizeof(DRBKHEAD); 
call loaddrf(DRFD,POS); I* replace directory *I 
currDR_RBN = RSADDR->RBN; 

fi 
I* do for both of k *I 

if first boundary in SCALE[k] < BEGIN[k] then 
BEG_IDX[k] - index(SCALE[k],BEGIN[k],SCHEAD[k]); 

else 
BEG_IDX[k] = 0; 

fi 
if last boundary in SCALE[k] > END[k] then 

END_IDX[k] = index(SCALE[k],END[k],SCHEAD[k]); 
else 

END_IDX[k] = SCHEAD[k] - 1; 
fi 

allocate QUEUE; I* for keeping serched data bucket *I 
k = BEG_IDX[O]; 1 = BEG_IDX[1]; 
do while k <= END_IDX[O] 

od 

do while 1 <= END_IDX[1] 

od 

ADDR = DIRECTORY + 1 * (SCHEAD[O] - 1) + k; 
if ADDR->RBN is in QUEUE then 

break; 
else 

insert ADDR->RBN into QUEUE; 
fi 
if ADDR->RBN != curr_RBN then 

fi 

POS = ADDR->RBN * BKSIZE + sizeof(BKHEAD); 
call loadbkf(BKFD.POS); 
curr_RBN = ADDR->RBN; 

sort records in current BUCKET; 
report records in the RANGE; 
1 = 1 + 1; 

k = k + 1; 

free QUEUE; 
j = j + 1; 

i = i + 1; 

free RS_QUEUE; 
end range_query 
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