
.. _

A GRID FILE APPROACH TO LARGE MULTIDIMENSIONAL

DYNAMIC DATA STRUCTURES

BY

CHANG CHUN IJ1AN

Bachelor of Science

Seoul National University

Seoul, Korea

1975

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1988

-n \e. s'\ '5

\9~i
rl~~~"a
C.o f'· J.

A GRID FILE APPROACH TO LARGE

DYNAMIC DATA STRUCTURES

Thesis Approved:

fA I . /(

~il) J~
----~----------------------------------

ii

1302568

I

ACKNOWLEDGMENTS

I wish to express my sincere respect and appreciation to

my major advisor, Dr. Donald D. Fisher, for his guidance on

this study and also for his warm encouragement during my

academic career in Oklahoma State University. I would like to

extend my thanks to Dr. John P. Chandler and Dr. K. M. George

for serving as members of my graduate committee.

I thank my father, Young Poong Han, for his perpetual

confidence in me. I am especially indebted to my beloved

children, You Jin and Eun Sung, and to my wife, Sang Sook, for

their love and understanding.

I am grateful to the Korea Long Term Credit Bank, Seoul,

Korea, which provided me with a chance to study abroad with

financial support.

iii

TABLE OF CONTENTS

Chapter

I. INTRODUCTION

II. PREVIEW OF MULTIKEY PROCESSING TECHNIQUE

Tree-structured technique
Address computation technique

III. GRID FILE.

Page

1

4

4
11

20

Introduction 20
Abstract data types underlying the grid file. 22

IV. CONCEPT AND STRATEGIES FOR IMPLEMENTATION
OF GRID FILE

Organization of grid file
Access time bound
Resident grid directory .
Assignment of grid blocks to buckets.
Splitting strategies.
Merging strategies ..

V. ALGORITHMS FOR A GRID FILE

Basic algorithms for binary buddy system.
Grid file algorithms.

VI. THE PROGRAM STRUCTURE.

Grid file program
Range query program

VII. CONCURRENCY CONTROL ON GRID FILE

General
Applications ...

VIII. SUMMARY AND CONCLUSIONS.

BIBLIOGRAPHY

APPENDIXES .

iv

27

27
29
30
34
35
40

45

46
49

57

57

64

64
68

71

77

82

Chapter Page

APPENDIX A - ADDRESS COMPUTATION FOR DIRECTORY
ACCESS 82

APPENDIX B - A SIMPLE EXAMPLE OF GRID FILE
OPERATIONS

APPENDIX C - A DISCUSSION ON THE STRATEGIES OF
CHOOSING SPLIT AND MERGE DIMENSIONS AND

85

BOUNDARY VALUES.· 92

APPENDIX D - PDL DESCRIPTION OF A GRID FILE PROGRAM . 98

v

LIST OF FIGURES

Figure page

1. Record space and its quad tree representation 5

2. Record space and its 2-d tree representation 6

3. Region and point pages in a 2-d-B tree 8

4. A multidimensional B-tree of 3 attributes 11

5. Directory maintenance in an EXCELL method 14

6. Directory doubling in an EXCELL method 15

7. Chain representation in linear hashing 17

8. Chain split in linear hashing . 18

9. Grid partition and grid file organization 28

10. Record search mechanism 29

11. A double level grid directory representation 31

12. Organization of grid file with resident directory
scheme . 33

13. Assignment of grid blocks to buckets. 35

14. Splitting of bucket and directory 38

15. Splitting of a directory bucket . 39

16. Buddy and neighbor methods in merging 41

17. No more mergeable state of directory. 43

18. Merging of directory buckets. 44

19. Tree representation of bucket splitting 47

20. Structure of a grid file program. 58

21. Lost update . 65

22. Inconsistent information 66

vi

CHAPTER I

INTRODUCTION

In the data processing environment, data can be repre-

sented in a variety of ways. The structure ultimately chosen

for representing the data is heavily for a specific task

the type influenced by of operations to be performed on the

data set and by its volume.

designing graceful data

There has been much progress in

structures. Major advances may be

found in such structures as balanced trees and dynamic forms of

hashing[16]. However, there have been increasing demands to

develop efficient structures to meet the diversified require-

ments of modern information society. Commomplace yet

complicted queries such as "Find all records associated with

black women aged from 20 to 30 who have an annual income below

$15,000 and live

thoughtful design

in the

of the

10 southern states." require

underlying data and file structures.

Although it seems to be difficult to get a single solution for

complex information demands, there appeared recently several

attempts to design efficient data or file structures for that

kind of problem.

We call the structures ''large multidimensional dynamic

structures''. By 'large', we mean that the data set stored is

BO l.:.'J.rge that the bulk of dat .. :.t muBt rem.:.'tin on Beeond.:.'J.rY

1

2

storage, usually random access devices, even when operations

are being done. By 'multidimensional', we mean that a given

data set F consists of records R each of which is a k-dimen­

sional key vector such that R = (al, a2, ... , ak), where k is a

positive integer. By 'dynamic', we mean that we can execute

common operations on the data set such as FIND, INSERT, DELETE,

UPDATE and some kinds of range search on-line.

Recently the grid file[27] was presented as an attempt to

support efficient operations on multikey processing fields. It

has many interesting properties which might be useful to cover

the deficiencies of conventional inverted files. An inverted

file is a popular structure in the practical application of

multikey processing. But it has severe space and time overhead

to maintain sorted index lists for each key type and to perform

boolean operations.

The grid file is one of the grid-cell-type data structures

that organizes the data space in which a set of given objects

is embedded. It is as a whole a symmetric, adaptable file

structure designed to process large amounts of multidimensional

data efficiently[27]. It is symmetric in the sense that every

key field is treated with the same efficiency ,i.e., the grid

file does not have a primary key representing a record

distinctly. 'Adaptable' means that the data structure adapts

its shape automatically to the content it must

grid file adjusts its structure dynamically so

store The

that bucket

occupancy and access time are uniform over the entire file,

even thou.gh the data may be di5tributed highly nonuniformly

3

over the data space. With those properties, the grid file can

perform efficient queries such as range and nearest neighbor

queries on multidimensional data.

Nievergelt[26] groups organizing techniques into two broad

classes: (1) those that organize the set of given objects to be

processed and (2) those that organize the space in which those

data are embedded. The difference can be seen between compa­

rative search in binary search tree and radix search in a trie.

The former is based on tree structure and the latter relies on

address computation like a hashing method. In Chapter II, we

review several structures in each category in view of mu~tikey

processing. We will cover quadtree[14], k-d tree[3,4], k-d-B

tree[34] and multidimensional B-tree[38] which can be

classified as class (1), and an extendible cell method[39],

interpolated-index maintenance[6] for class (2). In Chapter

III, we will describe the grid file [27] in general and define

three abstract data types underlying grid file. In Chapter IV,

we will esta- blish the major concepts and strategies for

implementation of grid file structure. Chapter V will cover

algorithms for the implementation of grid files. In Chapter

VI, we will describe the structure of a program. We discuss

the scope of this program such as available dimensions and key

types, user functions, and available data set size. In Chapter

VII, we will discuss concurrency problem. Chapter VIII will

conclude this thesis with a summary of our overall design

strategies and the results of simulation studies.

CHAPTER II

PREVIEW OF MULTIKEY PROCESSING TECHNIQUES

Tree-structured technique

(1) Point quadtree[14] is a two-dimensional generalization of

a binary search tree. Each data point is a node in a tree

having four sons, which are roots of subtrees corresponding to

ordered quadrants(Figure-1). The process of inserting into a

point quadtree is analogous to the scheme used for binary

search trees. At each node of the tree a four-way comparison

operation is performed and the appropriate subtree is chosen

for the next test. Records are inserted at leaf nodes like in

binary search tree. The tree may be unbalanced. Balancing the

tree is quite complex; furthermore deletion of a node is more

complex[36] than insertion. The problem with a large number of

dimensions in a quadtree is that the branching factors becomes

very large(2k fork dimensions), thereby requiring 'much storage

for each node as well as many null pointers for terminal nodes.

While a quadtree has pointer overhead problem, it has an

advantage that the comparison operation can be performed in

parallel for the k values.

(2) A k-d tree[4] is a multidimensional version of the binary

search tree with the distinction that at each level of the tree

4

I
I

I I
I I I : ____ B _______ : I :

: ___ c ___________ :
: ______ lE ___ :
I I I
I I I

:--F---:
I I I I I I
I I I I I I I

:----:-------A---:--:---:----'

I I I
I I I : _______ D ____ :
I
I

I
I

I I

1---------------'

Record space

5

Quad tree representation

Figure-1. Record space and its quad tree representation

different coordinate is tested for deciding the direction in

which a branch is to be made. Two kinds of implementations of

k-d trees are possible: homogeneous and nonhomogeneous k-d

trees. A homogeneous k-d tree is a binary tree in which each

record contains k keys, information, right and left pointers

and one of k discriminators. In nonhomogeneous k-d trees, all

records are stored in external nodes or buckets. To insert a

new rP.cord into a k-d tree, we do a top-down search to find the

insertion position by comparing at each node visited corres-

ponding keys of the discriminator. A cyclic method is

generally used for choosing a discriminator among k attributes.

A simple 2-d tree using cyclic method for choosing the

6

discriminator is shown in Figure-2. However, for many kinds of

searches one might get better performance by choosing as

discriminator a certain key whose values are particularly well

spread or by choosing a key which is often specified in

queries.

I
I
I
I

:----B---:-----

I
I
I
I
I
I
I
I

D

I
I

A

I
I
I
I ___ c _____________ :

I
I

E
-----F----:

I I I I
1--------1-----~---------- ______ I

A

/~c
I\ I\
J\ I\

I\
Record space 2-d tree representation

Figure-2. Record space and its 2-d tree representation

Formally, the invariant of a k-d tree is that for any node

A of a j-discriminator, all nodes in the left subtree of A

have j-discriminator values less than A's j-discriminator

value, and likewise all nodes in the right subtree have greater

j- discriminator values. In contrast to single key binary

7

search trees, it seems to be very difficult to maintain

balanced k-d trees dynamically.

(3) k-d-B tree[34] is one of solutions for retrieving multikey

records via range queries from a large dynamic· balanced index.

A k-d-B tree is a data structure combining properties of k-d

trees and B-trees. Hence k-d-B trees are multiway trees with

fixed sized nodes that are always totally balanced in the sense

that number of nodes accessed on a path from the root node to a

leaf node is the same for all leaf nodes. A k-d-B tree

partitions the search space recursively into two subspaces

based on comparison with some elements of k discriminators.

Like B-trees, k-d-B trees consist of a collection of pages.

However, there are two types of pages in a k-d-B tree. One is

region pages which contain a collection of (region, pageiD)

pairs and the other is point pages which contain a collection

of (point, location) pairs, where location points to a bucket

in secondary storage. The point pages are the leaf nodes of

the tree. A 2-d-B tree showing region and point pages is

presented in Figure-3.

The invariants of a k-d-b tree are:

1. Considering each page as node and each page ID in a

region page as node pointer, the resulting graph

structure is a multiway tree with a root page.

Furthermore, no region page contains a null pointer,

and no region page is empty.

2. The path length, in pages, from the root page to a leaf

I
I
I

root page

I
I
I I ______ _

---------~--

I
I
I I

--1 -1-

I
I

\~

1 I I I
~ I 1-------1

I I I
-1- I I

I I I
1--1--1

I
I
I
I

I I I I
I --I --I -------I

I
I

I I I I
1-----~---~---1

I
1--

I

I
I

--v

I _______ I

I
I

I I
1---1

I ___ I

I I I
---1-1-1

I
I
I
I

---------------1
I
I

~

I
I
I
I

I
I

I

--------1

._(,-

I
I

.j,.

I
I

-¥

__ I ____ I ___ _

I I
I __ ...!......;.
1-----1 ~

I I --.1->
1---1----1
I I
1 ' .,v

I
I

I I I
I ------I -------- I

region pages

l(:
I I I I I I I

I ---------- I ----------I I---------- I I---------- I

point pages

Figure-3. Region and point pages in a 2-d-B tree

8

page is the same for all leaf pages.

3. In every region page, the regions in the page are

disjoint, and their union is a region.

9

4. If the root page is a region page(it may not exist, or

if there is only one page in the tree it will be a

point page), the union of its regions is domaino x

domain1 x ... domaink-1.

5. If (region,child ID) occurs in a region page, and the

child page referred to by child ID is a region page,

then the union of the regions in the child page is a

region.

6. If the child page is a point page, then all the points

in the page must be in region.

To insert a new record into the tree, we search down the

tree from root page to the point page(leaf node) and add

(point,location) to the point page. If overflow occurs, we

split the point page into two point pages and distribute the

record's index appropriately into the pages. We should do

back tracking like B-trees and split (region,pageiD) in parent

range page into two region index pointing two new index created

one level below.

(4) Multidimensional B-tree[38] is an extension of the

multiple-attribute-tree structure, in which the directory is a

k-level tree, such that a unique path from the root to a leaf

node corresponds to a distinct combination of the k-attributes.

10

However, this structure uses B-trees to maintain the filial

sets at each level of the directory. A filial set at level i

is the set of attribute Ai values appearing together with the

same value of Ai -1 in the whole data set. Each of the k­

attributes of the data set to be indexed is represented by a

separate level in this tree-directory and each node is of this

tree is itself a B-tree. Root nodes of all filial sets at

level i are linked together and an entry point, e.g. LEVEL(i),

is provided to the beginning of each such linked list(Figure-

4). There are two kinds of pointers in a node in the B-tree

for an attribute Ai . One point to a node at the next level in

the same B-tree containing values of Ai and the other points to

a B-tree at level(i+l) which contains the sets of values of

attribute Ai+l. There is an assumption that each node in a B­

tree corresponds to a page on a secondary device. If the order

of a B-tree is relatively small, the adjacent nodes in the tree

can be grouped together on the same page in order to avoid

severe low page occupancy.

The main concern in insertion is to maintain the ordering

imposed on the filial sets at each level. If we are going to

insert a record R(al, a2, ... , an) such that the combination a1,

a2, .. , ai-l already exists in the tree-directory, but a1,

a2 , ... , ai does not, we first insert ai into the B-tree at

level i determined by the combination al, a2, ... , ai-l. Then

we insert a filial set, Fi, consisting of the single value ai+l

between the filial sets at level(i+l) associated with ai 'and

ai .. aeeuming that the value of ai is ineerted between ai ' and

11

//
level 2 ----~~~- - - - - -

I ~
level ~ -~ • - - - - - - - • ~} ~

pages or -0}-- ------- 0} -[]
Figure-4. A multidimensional B-tree of 3 attributes.

ai ". Finally, we insert values ai+2, ... , an each corresponding

to a single node B-tree.

A multidimensional B-tree is a fairly good dynamic

structure for an environment with 'large' filial set sizes and

complicated queries[30]. However, this structure is not

efficient when it has very small filial set sizes especially on

the last level.

Address computation technique

Conventional hashing is a technique for organizing direct

access data structures with 0(1) access time if there are no

collisions. However, the access performance may be degraded

12

when collisions of records occur. Hashing is considered to be

better than a tree structure organization in terms of average

access time. Traditional hashing methods have two disad-

vantages over tree structures. First, hashing methods can not

support sequential processing because a hash function scatters

data over the entire data space destroying sequentiality in the

original data. Second, hash tables are not extendible and

their size is intimately tied to the hash function used. So if

we use improper hash function with a low estimate of the size

of data set to be processed, a complete reorganization of the

hash table may be required. Thus, conventional hashing methods

are good for static data sets.

Several hashing methods of dynamic form were introduced in

late 1970's such as dynamic hashing[20], extendible hashing[ll]

and linear hashing[23]. These are all single key hash schemes.

We review here two multidimensional versions of extendible- and

linear- hashing: the extendible cell method[39] and inter-

polation based index maintenance[6].

The extendible cell method[39] is a two dimensional

version of (one dimensional) extendible hashing. We describe

first the extendible hashing scheme and then generalize it to a

multi- dimensional hashing. Access time is the most important

performance characteristic of a hashing scheme. Dynamic

characteristics which are lacking in conventional hashing can

be obtained by interposing a large directory address space

between key space and the physical address space. An exten­

dible hashing file is structured into two parts: a directory

13

and leaf pages (buckets). The directory usually has a header

in which is stored a quantity called the depth of the

directory. The directory of the file is a linear table with

2dx elements. At depth dx of the directory the hash function

distributes the point data of file F onto an even interval with

x-spacing 2-dx which accommodates 2dx pointers to leaf pages.

We may reorganize the directory at each doubling without

affecting the leaf pages. We can assume the data set domain D

to be [0,1). Let x in D have the binary representation

x = ~ ai2-i and f be the hash function f(x) which generates

the binary representation. This scheme can be implemented by

an array index calculation using idx(x,dx) = L. 2dx x .1 so

that the directory forms a one dimensional array of size 2dx.

The entry of the directory is to be an address pointing to a

leaf page. Each leaf page in which point data are stored has a

header that contains a local depth d'x for the leaf page such

that dx >= d'x. The relation dx >= d'x means that the leaf

page of d'x is pointed to by more than one directory pointer.

Overflow in this leaf page does not necessarily trigger

directory doubling.

Extendible cell method(EXCELL)[39] is an adaptation of

this hashing scheme to two dimensional data space. We assume

the data set domain to be the unit squareD= [0,1) x [0,1).

Let (x,y) in D have the binary representation such as

x = I ai2-i, y = I bi2-i and g be the following hash
i>=l i>=l

function g(x,y) = I(ai2-(2i-l) + bi2-2i). By definition an

EXCELL implementation of a point file F on D is the structure

14

obtained by applying extendible hashing on the one dimensional

interval [0,1) to g(F). But it is not simple to implement

efficiently the function g. However, it implies that the leaf

intervals of EXCELL correspond to rectangles formed by halving

t·he domain al ternatingly in the x- and y-directions, So an

EXCELL file maintains a directory which is extendible without

affecting the leaf buckets. Replacing the hashing function g

by an array pointer calculation such as idx(x,y) =

2dY L.. 2dx x..l + L. 2dY y_I, we can have the relation order of a

directory entry so that the directory forms a two dimensional

array. In this case, the depth dis dx + dy where dx = rd/2 ~

and dy = L d/2 ..1 . An example of a directory in an EXCELL

method is illustrated pictorially in Figure-5 in case of depth

3 and d'x = 2, d'y = 1 and bucket capacity is 2.

2 ____ _

X :
I I
1-----1

d'x = 1
d'y = 1

:--~~--:-------:------:
I I I I I I
I I I I

: 2 : 2 1 1 --:----,1
I I ~

: : 1~--
1 I
1------1------ ------ ------ : X :

3 : : I I
1---1

d'x = 1
d'y = 0

d'x=2: x : ~
d' y= 1 : _x_ : : 3 4 1 1

I I

--+---r___.f leaf bucket

I I

1 ______ 1--i--- ------ ______ :
4 ___ __

X :
I I
1-----1

d'x = 2
d'y = 1

directory

Figure-5. Directory maintenance in an EXCELL method.

15

Insertion into directory space 3 in Figure-5 results in an

overflow in the corresponding bucket. At that moment we split

the bucket and double the directory. The doubled directory is

given in Figure-6. Deletion can be implemented in reverse way

checking underflow and merging bucket or directory partition

when it is necessary.

The directory is an array of elements which corresponds to

a rectangle of minimal equal size. To access a record, we use

the value of its attribute to determine an entry to the

directory array using the formula for idx(x,y). The entry

value points to the bucket in which the record is stored. This

method requires no more than two disk access for a retrieval of

a point data and is suitable for dynamically varying sets of

d'x=2
d'y=2

d'x=2
d'y=2

2 d'x = 1 ----
X :d'y = 1

I I
1-----1

\ I

2 I 2 \ I
I I
I I I
1- 1- -1

I
I I

2 2 I 1 I
I I
I I ____ I ____

-1

3 I I
I I
I 1 I
I I

I I I
1- - 1- -I
I I I
I I I

:X :~5 : :
I I

•---'
I I I I

1------1--- --~------1----1

4
X :

I I

'---1
d'x=2
d'y=1

I I d'x=l I X I
I I d'y=O l ___ l

Figure-6. Directory doubling in an EXCELL method.

16

data with successive allocations of memory. Only when over­

flow occurs in a leaf page pointed to by an entry of the

smallest cell in the directory, one mus~ double the size of the

directory. This scheme can be efficient for uniformly distri~

buted data sets such as geometric information.

The second hashing method considered is the interpolation

based index maintenance[6] which is based on linear hashing

[23]. It extends the classical hash file organization using

chaining for overflow areas. A chain is an explicit linear

list of pages, the first page of which is fixed sized primary

page and all subsequent pages in a chain are fixed sized

overflow pages. This method supports common operations such as

insert, delete, update and find.

Using an example, we can easily capture the concept under­

lying linear hashing. Suppose that ho is the hashing function

used to insert the records into a file F. Let k' = ho(k) be

the index of the chain that must contain the record. We insert

records with the keys:

12, 10, 8, 5, 7, 9, 20, 26, 13, 25

where ho(x) = x mod 3, primary page size= 3, overflow page

size = 2. We see the resulting set of 3 chains after inserting

above records in that order in Figure-7 The storage

utilization factor L is defined to be the ratio of the number

of records in the file to the number of available records in

the existing chains. Then in this example L = 10/13 = 0.769.

0 1

12 10
9 I 7 I

13
I I I I l ____ l

1----1
I I
I I
I

-~--~ - I 25 I
I I

I I l ____ l

I
I
I
~ -

2

8 I
I

5 I
I

20 I
I

I I
1----1

I
I

-~--
I 26 I
I I

I I
1----1

I
I
I
~ -

chain index

primary page
size = 3

overflow page
size = 2

Figure-7. Chain representation in linear hashing.

17

Linear hash must specify upper and lower limit of the

factor L, i.e. 0 <= a <= L <= b <= 1. Let a = 0.40 and b =
0.80. If we insert another record '16' into the example file,

L becomes 11/13 = 0.846 which is over the upper limit b. Then

we adopt split operation on a chain sequentially by chain index

from the first chain, which creates a new chain and distribute

the records into two chains using a new hash function. In our

example, we split chain 0 using a new hash function h1 (x) = x

mod 6. Figure-S shows the result with L = 11/16 = 0.6875. As

more and more records are inserted into the file, we inevitably

meet the situation in which every original chain has been

split, thus appearing as if it were loaded using hash function

h1. To locate a record with key value k, we should check

whether the chain obtained using k' = ho(k) has split or not.

If it is split, we access chain k' = hl (k).

18

0 1 2 3 chain index

12 10 I 8 I 9 I I

7 I 5 I I primary page I I 1

13 I 20 I 1 size = 3 I I I
I 1 I I I I I I l ___ l

1---1 1----1 1--1
1 I I I
I I I I
I I I I

..!... \IIv ..!... -
I 25 ' I 26 I overflow page I I I I
I 16 I size = 2 I I
I I I I
1----1 1----1

I I
I I
I I

..!... ..!...

Figure-8. Chain split in linear hashing.

Interpolation-based index maintenance[6] is a multi-

dimensional application of linear hashing. Suppose that the

key space D consists of elements in the k-dimensional space

[0,1)k. For the purpose of utilizing linear hashing, we define

a linear order S(a), mapping from d= [O,l)k to [0,1). Let a

= (al, a2, ... , ak) be a point datum in D. Each component aj ,

1<=j<=k, of the point a has a binary representation.

Then define

aj = :Z: aj i 2- i

i>=1

S(a) = :Z:
i>=1

:z: aj i 2- k (i - 1 > - j ,

l<=j<=k
k: constant

19

S(a) now denote a single key which is obtained by interleaving

bits of original k keys. Hence we can use this single key for

linear hashing with an appropriate sequence of hash functions

H=hoh1

In contrast to extendible hashing method, this scheme does

not maintain a directory for accessing the record page. So we

can expect average successful search length of much less than

two. This scheme utilizes overflow areas by chaining. There­

fore, this structure can have worst-case problem of taking

O(n) steps in operations for a file with n records.

CHAPTER III

GRID FILE

Introduction

The Grid File is one of the grid method structures that

organizes the data space in which those data are embedded. Its

major design goal is to retrieve records with at most two disk

accesses from a large volume of data. This scheme maintains a

grid directory which performs mapping of grid blocks to data

buckets. All records in one grid block are stored in the same

bucket. Several grid blocks can share a bucket as long as the

union of these grid blocks forms a k-dimensional rectangle in

the record space. The grid directory is used to keep a dynamic

correspondence between the grid block and the data buckets.

The grid directory consists of two parts: k one-dimensional

arrays called linear scales and a dynamic k-dimensional array

called the grid array(we will use grid directory for grid

array). Linear scales define a partition of the domain of each

attribute and are used for computing grid block addresses. The

linear scales are kept in primary memory and support the

operations to be defined on a grid file structure in the

following section. The grids defined by linear scales are in

one-to-one correspondence with the blocks of a grid directory.

The values of the elements of the directory are pointers to the

20

21

relevant data buckets. The grid directory grows easily so

large that most of its elements should be kept on disk during

processing since we are handling 'large' files. Buckets which

usually have more than ten records are kept on disk. The size

of a bucket is usually a fixed unit of physical transfer, a

page.

As a dynamic structure, a grid file supports insertions

and deletions on-line. Maintaining grid directory dynamically

is the heart of a grid file structure. When buckets overflow

as more and more records are inserted, a split-operation is

triggered. There are two types of splitting. The first, which

is more common, occurs when several grid blocks share a bucket

that has just overflowed. In this case, we need only to get a

new bucket, distribute data between the old and new buckets and

adjust the ma.pping between grid blocks and buckets. The second

type arises when we must refine the embedding space(grid

directory) in addition to the first type of splitting. This is

caused by an overflow in a bucket, all of whose records lie in

a single grid block. The merging process has also two types:

bucket merging and directory merging. Bucket merging, which is

more common, occurs when the occupancy of a pair of adjacent

buckets is under a certain threshold. Directory merging arises

when two adjacent cross sections in the grid directory have

identical values. This type is rarely of interest except when

the file shrinks continuously.

Nievergelt et al.[27] specified in their grid file design

only those decisions which seem to be essential such as:

- grid partitions of search space,

assignments of grid blocks to buckets that result in

convex bucket regions,

22

- grid directory, consisting of a large dynamic array but

small linear scales.

There remain several design policies open because those

can be established in many different ways by each implementor.

The most important open issues are (1) choice of splitting

policy, (2) choice of merging policy, (3) implementation of the

grid directory, and (4) concurrent access. An efficient

implementation of the open strategies are the major objectives

of this thesis.

Abstract data types underlying

the grid file

A grid file essentially consists of three simple abstract

data types: linear scales, a grid directory and data buckets.

Linear scales are k one-dimensional arrays, the elements of

which represent boundaries of intervals in each dimension. The

grid directory is a k-dirnensional dynamic array whose elements

are pointers to data buckets. Data buckets are fixed sized

structures of records in which data are stored. Data

structures and operations associated with the abstract data

types can be described as follows in k-dirnensional data space,

~=

Sk = D1 x Dz x ... x Dk.

23

1) Linear scale

A grid file partitions the data space into orthogonal

grids. The k scales define intervals in each dimension of the

data space. For a grid file of k dimensions, we can charac­

terize its data structure as follow.

Linear scale: si [no_of_boundary] of scaleType

scaleType can be one of integer, real

character, or string.

1 <= i <= k, i,k : integer

Basic operations defined on scales are as follows.

INDEX(si ,keyi ,no_of_boundary): This procedure finds

interval index value 'idx' of keyi in scale

Si .

SPLIT_SCALE(si ,bi): This procedure inserts a new boun­

dary, bi, into scale si.

MERGE_SCALE(si ,bi): This procedure deletes a boundary bi

from scale si .

In addition, several binary buddy operations to be

discussed in the following chapters are supported by scales.

2) Grid directory

A grid directory is introduced to represent and maintain

the dynamic correspondence between grid blocks in the data

space and data bucket. This is a k-dimensional dynamic array.

The specific data structure of a grid directory is implemen-

24

tation dependent. At the moment, we define grid directory

formally as a conventional array as follows.

Grid directory: DR[O:nl-1][0:n2-1] ... [O:nk-1],

m :integer

The procedures on a grid directory are defined as follows.

ACCESS(DR,r,p): This procedure finds a pointer value pin

directory DR. 'p' is an address of a

data bucket which contains record 'r'.

NEXT_BELOW(DR,Di): This procedure returns the neighbor

element of current block in a grid

directory, DR, to "below" direction in

dimension Di .

NEXT_ABOVE(DR,Di): This procedure returns the neighbor

element of current block in a grid

directory , DR, to "above" direction in

dimension Di .

SPLIT_DR(DR,idx,Di): This procedure splits directory DR

at interval 'idx' in a dimension Di.

Given idx, create a new element idx+1 and'

rename all grid blocks above idx.

MERGE_DR(DR,idx,Di): This procedure merges directory DR

I

at interval 'idx' in dimension Di. Given

idx, remove a row or column of idx-1 and

rename all grid block above idx.

ASSIGN(DR,p,B): This procedure assign a grid block with p

to data bucket B.

25

3) Data Bucket

A data bucket is a fixed sized structure of records and

some additional information such as record count. The data

structure used to organize records within a bucket is of minor

importance in a grid file structure as a whole. The data

structure of a bucket can be declared as follows.

Bucket structure {

} ;

Int count,

Char Record[],

Char Nonkeyinfo[],

The operations defined on the bucket are as follows.

SPLIT_BK(Bl ,Bz): This procedure allocates a new data

bucket B2 and distributes records in B1

into the two buckets. Update the

included additional information if it is

used.

MERGE_BK(Bl ,Bz): This procedure moves records in bucket

B2 to bucket B1 and frees bucket Bz .

Update the included additional infor­

mation in bucket B1 if it is used.

Based on the above data structures and operations on them,

a grid file supports the common operations in file structures

such as FIND, INSERT, DELETE, UPDATE and some RANGE_QUERY. The

operations on a grid file F can be defined as follows.

FIND(F,r,B): This procedure searches the file F to find

26

the record 'r' and returns the record

position if record 'r' is found or -1 if R

is not found in the file F.

INSERT(F,r): This procedure inserts a record 'r' into

file F if 'r' is not found in F.

DELETE(F,r): This procedure deletes record 'r' from file

F if 'r' is found in F.

UPDATE(F,r): This procedure updates information of record

'r' in file F.

RANGE_QUERY(F,range): This procedure reports all

records in file F satisfying the given

range.

The performance of insertions and deletions in a grid file

are likely to be influenced by efficiency of SPLIT_() and

MERGE_() operations. The operations are again highly dependent

on the specific implementation of grid directory. The concepts

and strategies with this problem are discussed in Chapter IV.

The associated algorithms are established in Chapter V.

CHAPTER IV

CONCEPT AND STRATEGIES FOR IMPLEMENTATION

OF GRID FILE

Organization of grid file

The grid file, as a large data structure based on the

technique that organizes the embedding space from which the

data are drawn, decomposes the data space as shown in Figure-

9a. Every subdivision of the existing grid space subdivides it

into two subspaces. 'Linear scales' are used to keep track of

the boundaries of the respective subdivisions. The grid

partition of the data space directly correspond to a k-dimen­

sional array called a 'grid directory'. A cell in the

partition is called a 'grid block'. Records are stored in a

fixed-sized storage unit on disk,

'bucket'. Several grid blocks may

optimization. Such a set of grid

which is usually called a

share a bucket for memory

blocks forms a 'bucket

region'. Actually we may need only the structure to organize

the set of buckets. However, by maintaining the set of buckets

and grid blocks separately, while keeping a certain corres­

pondence between them, we can design a more efficient dynamic

structure. The grid directory is introduced to keep such a

correspondence. In Figure-9b, we describe the above relations

in the case of 2-dimensions.

27

buckets: I
I

:xxx
I
I

: XXX

I
I

: XX

28

I I
I I

: XXX :
I I I I I
1------1------1------1-----1

1' f 1' t
~---------- --- ---~------

____ 1 ______ 1_1 ____ 1_1 ____ 1

1

------1 I

I
I

------1 I

I I I I I I --:TJ x:x i

X I X X X i

- -------:1! - -ll ____ ; --~=-\ i i
X IX \I I l_j \ I ~-+1-1

I ' I
X I i I

I I I

I----------- I ./_:
I I

1~----------- ------:------:
scales directory

(a) Grid partition (b) Grid file organization

Figure-9. Grid partition and grid file organization

We usually evaluate the efficiency of a large search

structure by disk access time, update time and memory

utilization. The basic design objectives of a grid file are:

(1) no more than two disk accesses for point queries;

(2) splitting and merging of grid blocks to involve only two

buckets;

(3) efficient processing of range queries in large linearly

ordered domains;

(4) maintaining a reasonable lower bound on average bucket

occupancy.

We establiBh several etrategieB to be imposed on the

29

operations discussed in Chapter III just based on the above

design objectives.

Access time bound

As described in section (2) of Chapter III, a grid

directory is originally defined as a dynamic k-dimensional

array. The basic operations on grid directory and scales such

as ACCESS, NEXT_BELOW OR NEXT_ABOVE, SPLIT_, MERGE_, AND ASSIGN

are also defined in Chapter III.

The mechanism of search operations is described with the

above procedures in Figure-10. Assume that linear scales X and

Y for a 2-d grid file attained the values indicated.

Age scale
scale

X =
y =

0, 20, 30, 40, 50, 70
5, 10, 15, 25, 40) Income $1,000 unit

I
I
I
I

I
I

Record to be searched: R(45, 13)

scale:X ->: 0 20 30

y
1 2 3

I

1----

40
I
I

50 :

: INDEX()
4 5
j,

70

5
l _____ , _____ l _____ l ____ _

-----' I I I I I

1 l l : R3
INDEX() 10
.!..-----------7 2

15

25

1 _____ 1 _____ 1 _____ 1~---------~~--~

3 i :_ i Rz)_ i ----- i ----- -----:
I I I I I

4 : : : : : l _____ l _____ l _____ l _____ l _____ l

I I I I I I 40

grid directory

Figure-10. Record search mechanism

ACCESS() &
FIND()

I
I

R1 (45, 13) :
I
I

I I

1----------1
bucket

30

The grid directory is likely to be so large that it must

be kept on disk. However, since scales X and Y are small

enough to be kept in primary memory, INDEX() does not require a

disk access to get the index values, 4 and 2, in scales X andY

respectively. With these values, we can compute the address of

the corresponding block in the directory(See Appendix A). So

we can read correct directory page in one disk access. With

one more disk access to the bucket where the record r(45,13)

resides, we can retrieve the record in two disk access times.

Of course, we can search a record with one disk access if the

directory entry corresponding to the record is in primary

memory. We see the case of one disk access for searching when

we search record r2 immediately after r1 assuming that a unit

of disk access is four directory blocks. A bucket usually has

a page size that can be read with one disk access. The

organization of records within buckets is not an immediate

interest in a grid file structure. In our design, records are

fixed sized and are written entry-sequentially; i.e., we insert

them by the sequence of their arrivals.

Resident grid directory

The above searching method implies that the grid directory

is implemented as a conventional row major order array.

Generally a conventional array allocation is recommended as an

actual data structure for a grid directory because of its

simple implementation, fast access and memory optimization[17].

How ever, we can expect some performance degradation when

31

neighborhood relation in all dimensions are important as in a

geometric information system. We see that we can not retrieve

the two neighbors, r1 and rs, at one time if one disk access

reads only four disk blocks as assumed before. For efficient

neighborhood operations in all dimensions , it is required that

the elements of a directory for ·neighbors be stored in the same

disk block if possible. As a solution to this problem, a

'resident grid directory' is suggested in [15]. A resident

grid directory is a scaled down version of the grid directory,

in which the limit of resolution is coarser. Figure-11 shows

the relations among the resident grid directory, grid directory

and actual bucket area.

/1-----------------------/~
,...,.... I

/// :
/ I

/.... !
./ : physi~l address :

I 7~~· I

I I

I

I
I
I
I
I

I I I (_/
I I I V
I I "I

/ I I . I,..- I

/ :-~--. -7'~r ___ :
./ I I/ I I

~-~--/-:~!= __ --) __ --=!
: : ~
I I ,../ " I
1----V~I

: ... t.... :
I ,,- I I

~--~----

resident
grid directory

grid directory

Figure-11. A double level grid directory representation.

32

In grid file design, it is assumed that grid directory is

itself so large that most of its elements must be kept on

secondary storage during data processing. The resident

directory scheme partitions the directory space into grid form

just as data space has grid partition. An element of resident

directory is to point the corresponding directory block in

secondary storage. The scales that are needed to contain the

boundaries which indicate the grid partitions in resident

directory are called 'resident scales'. The partial directory

corresponding to each grid block of a resident directory is

called a 'block directory'. The boundaries defining the grid

partition in a block directory are kept in block scales. We

keep only the resident directory and the resident scales in

primary memory. A block directory is contained in a fixed-

sized bucket located in secondary storage. It may be most

reasonable that the corresponding block scales be contained in

the same bucket. The bucket is called a 'directory bucket'.

The size of a block directory is variable within a directory

bucket. A directory bucket splits when it overflows as data

buckets do. Several grid blocks in resident directory can also

share a directory bucket with a restriction that the union of

these grid blocks makes a convex form. The organization of

resident directory scheme is shown in Figure-12. This scheme

implies that grid directory is again implemented as a grid file

with an assumption that the size of resident grid directory is

small enough to be kept in primary memory. This assumption for

preserving the time bound of two disk accesses is reasonable in

resident directory

I I I I

I I I ---1--------------~
,~----:---:---- ---:----:--------------~:
I I I I I I
I ...1.. I--------- I ---- I---- I
I I I I I I
I I I I I I
I I I I
I I I I
I I I I I I I I
I ...1.. 1---------1-1--1--1-1
I
I
I
I

l _________ l_l __ l __ l_l

I I I I I I
I I
I I

resident scales I I
I I

ilEBi
I I
1-----------1

I I
I I
I
I
I
I

I
I

pool of directory buckets
j. ~

o ------------I
I I
I h-1 I -
I

" : I I
I I

I I I
I I I
I I I I I
I I I I I
I I I ' l !
1----~-- -- _I

l ____________ l

T I 1 : l I i j
I I

1------------1

33

block scales block directory

X

X
I I
1------1

I

I
I
I
I--------------------

1-----

I
I

I
I

pool of
-!.-

X

X

X
I I
1-----1

I
I

data buckets
.J.,

I
I X

X

I I
1------1

:x
X

I I
1------1

: X
: X

X

I I
1------1

Figure-12. Organization of grid file with
reBident direotory Bcheme.

34

most practical applications of the grid file(See Chapter I).

Assignment of grid blocks to buckets

The correspondence between grid blocks and buckets is

maintained dynamically in the grid directory. We should decide

reasonable strategies in assigning grid blocks to data buckets.

In order to obtain one of the design objectives of a grid file

structure, the upper bound of two disk accesses, we should

guarantee that all the records in one grid block be stored in

the same bucket. In contrast, several grid blocks must be able

to share a bucket to keep a reasonable average bucket

occupancy. We have already defined the bucket region as the

grid blocks sharing a bucket. It is clear that the shape of

bucket regions may affect the performance of range queries

(discussed in Chapter VI) and mapping operations of directory

after splitting and merging. Since the grid file system is

based on grid partition of the data space as discussed in

Chapter III, it is necessary to keep the bucket regions as a

convex shape, a k-dimensional rectangle, in order to get high

performance in the above operations. This convex assignment

strategy of grid blocks to buckets is maintained in all of the

operations defined on grid file structures. We can see an

example of convex assignments of disk blocks to buckets with

maximum record counts of two in Figure-13. This intermediate

state during grid file processing is used as the basis for

explaining splitting and merging strategies in the following

sections. In Figure-13, 1' values denote the hist.ory of

35

splitting of corresponding buckets, which is discussed in the

following section.

2
: x l'x = 1
: ___ : l'y = 1

"' "' ----1---~-------------------
yscale 1 I

I I

3

I
I
I
I
I
I
I I

2

...I.. 1-------
1 I
I I

: X : ~+--t---
:_x_: : 3

I
I

2

4
l'x = 2 :
l'y = 1 .l I I I 1------1--1---

1
I

1

1

l _______ l ___ l ___ l _______________ l

I I I I I

xscale 4 --~-
: x ll'x = 2
: ____ :l'y = 1

------.

--7

1

I
I
I

t
: X
I I
l ____ l

l'x = 1
l'y = 0

3 1

__ , __ _____ : __ 2
I
I
I
1--

I
I
I

-----'

spll. t sequence

Figure-13. Assignment of grid blocks to buckets.

Splitting strategies

There are two types of splitting: (1) splitting only data

buckets and (2) splitting data buckets accompanied by splitting

of associated directory and scales. The first type of

splitting occurs when an overflowed data bucket is shared by

more than one grid block. This type has also two cases: one

case is that the grid blocks sharing the data bucket to be

5Plit are adjacent in only one dimenBion, and the other ca5e

36

is that they are adjacent in more than one dimension. In the

previous case as bucket #2 in Figure-13, we merely create a new

bucket at first. Then we move records according to the boundary

value of grid blocks and adjust mapping of directory to the

data bucket. In the latter case as in bucket #1 in Figure-13,

we additionally need to decide the dimension on which base the

records move between the two buckets involved in splitting.

The second type of splitting is triggered when a overflowed

data bucket is pointed to by a single grid block as in bucket

#3 and #4 in Figure-13. For this kind of splitting, we must

decide which dimension shouln be split and where in the

selected dimension the new boundary should be inserted.

In choosing the dimension, we can adopt a 'cyclic'

sequence among the dimensions according to a fixed schedule. A

splitting policy may favor some attributes by splitting the

corresponding dimensions more often than others if the charac­

teristics of the data set are known. This results in a higher

resolution in that dimension. One of our design objectives is

that split operations involve only two data buckets, the

original one to be split and a new one. It requires that a

reasonable average bucket occupancy be maintained for effective

memory utilization. This means that in the process of

splitting a directory triggered by the split of bucket #3 we

need not necessarily split the other bucket of which region is

split as in the bucket #4 in Figure-13. The resulting state of

the directory split is shown in Figure-14. In this regard, we

need only one split boundary in the selected dimension to be

37

inserted in corresponding scale. The boundary need not

necessarily be chosen at the middle point of the interval. In

choosing a split boundary, there may be several methods such as

binary buddy system , Fibonacci buddy system and weighted buddy

system.

In our implementation, we prefer to preserve the same

resolution in every dimension and try to make grid blocks have

uniform shape of 'k_cubicle' as much as possible. With this

regard, we impose higher priority on the dimension which has

less split history in choosing split dimension. We choose the

binary buddy system to split a boundary value which selects a

new boundary by bisecting a region to be split. We discuss

these policies more in Appendix C. The split

bucket, the number of split operations on

maintained as a 'region level' (see l' values in

history of a

the bucket, is

Figure_13 and

14). We also maintain a value 'local level' which implies the

split history of an interval in scales. These are discussed in

Chapter V using binary buddy algorithm. The dimension with

small value of region level has higher priority in splitting.

The middle value of the region becomes a new boundary, which is

inserted in the scale corresponding the dimension.

The simple bisecting of a region may incur bucket and

directory splitting repeatedly without any moving of records to

a new bucket if the data in the bucket to be split has

clustered to the cross section of its region boundaries. Since

in our grid file design we assume that the data set to be

processed is 'large' and somewhat uniform distribution in the

l'x = 2
1 'y = 2

l'x = 2
l'y = 2

3
: X : j_
:_x_::

5 _____ _:_

: X ::
I I I
1--1....1...

2
: X :
I I
1----1

2

l'x = 1
l'y = 1

2

I I

1

1---- -----~----------
3 4 : 1

I I

1---- ----1---------
: 5 4 1
I I

1----- ----~----------

~---- r---- t----
_____ I

4
: X
I I
1----1

l'x = 2
l'y = 1

I

1

--~

: X :
I I
1----1

l'x = 1
l'y = 0

split boundary

Figure-14. Splitting of bucket and directory

38

whole data space at its ultimate steady state, the split

strategies chosen have their own right. We note that the

directory size is a function of both the data volume and its

distribution to data spaces based on grid partitioning. It is

independent of the insertion sequence of a given data set.

In addition to the fundamental splitting operations in

single level grid file structure discussed so far, we need to

establish a certain constraint on resident directory level

since we are going to implement a double level grid file

structure. Splitting of resident directory and resident scales

can be performed in exactly the same way as that of single

level scheme based on the same splitting policies. It happens

when a directory bucket corresponding to a single block in

39

resident directory overflows(as directory bucket #2 and #3 in

Figure-12). A continued splitting of a block directory with

its block scales overflows the fixed-sized directory bucket

which accommodates them. At that time we have to split the

directory bucket. The bucket·split is shown in Figure-15. We

also maintain region level of each directory bucket in resident

.directory as we do in block directory for each data bucket. In

splitting a directory bucket, the split dimension and split

boundary are decided relative to the resident directory. We

also adopt the same policies in choosing the split dimension

and split boundary as those for splitting a data bucket. The

splitting constraints of the binary buddy system on the whole

block

'
I
I

:~--- directory bucket
I
I

n n ~7---- block directory
u 'U I

I
I

scales~ : ---;.; : f[p
1------------------1 I

{,

I
I
I

I

J..

-\-\-\- : split boundary

:c p
------------------1

Figure-15. Splitting of a directory bucket.

40

data space guarantee that the split boundary on which the

directory bucket is split always exists also as a boundary in

the corresponding block scales. The block scales is divided at

the boundary into two new block scales. Along the split

boundary, the block directory is divided into two at the

dimension defined by the scales. Each of two block directories

and block scales is assigned separately to two new directory

buckets and the other block scales not involved in the split

are assigned to both of the new directory buckets. Finally we

need to adjust the mapping between the resident directory and

directory buckets. An example of grid file operations in

Appendix B.

Merging strategies

Merging is attempted when a data bucket's occupancy falls

below a certain lower threshold due to continued deletions.

Actual merging is triggered when there is a proper candidate

and the new bucket occupancy after merging would not be above a

certain upper threshold. Bucket merging naturally makes a

bucket region in a directory.

corresponding to the bucket

Considering a bucket region

#1 in Figure-13, the vertical

boundary inside the bucket region is unnecessary. We can also

expect another situation for directory merging when buckets #3

and ~4 are to be merged in Figure-13. However, considering the

overhead of splitting and merging, directory merging is not

always preferable in most applications especially when the file

size is growing steadily or the file has reached a steady state

41

where the frequencies of insertions and deletions are almost

same.

A bucket merging operation usually requires three decision

policies: (1) selecting candidate buckets for merging; (2) if

there are several candidates, determining which ones are to be

merged; (3) setting the upper and lower thresholds of bucket

occupancy after and before merging. For selecting candidates,

two different methods have been suggested in [27]: namely, the

neighbor system and the k-dimensional (binary) buddy system.

Figure-16 shows the two methods. 'Buddy system' allows a data

bucket to merge only one adjacent buddy in each dimension.

Hence, the number of candidate bucket may be up to k. The

'neighbor system' has up to 2k candidates since it allows the

data bucket to merge with either of its two adjacent neighbors

provided that the resulting bucket region is also convex form.

Since the number of candidates in neighbor system is large than

that of buddy system, there may be more chances to merge

bucket.

(

I I
1----1

I
I
I
I
I
I

I I I
1-- --+----1 :x ~~ :
I ~"'I I
I__ -.J----1

I I
I I

I
I
I
I

I I I 1-- _.J, ____ I

: ""-~ :
I ~ "-:1 I 1-- __ .J, ____ I

: X : :
I I I I I I
1-- --1----1 , __ --~----1

buddy method
neighbor method

I
I
I
1-
1
I
I
1--
1
I

X

I I I 1-- __ l _____ l

Figure-16, Buddy and neighbor methodES in merging.

42

However, the merging by neighbor method may give rise to the

'no more

appears

mergeable state' condition.

in Figure-17. Though the

An example of this state

buddy system in two

dimensional grid file guarantees no occurrence of this state,

it also possible in more than two dimensional grid file. This

no-mergeable-state in directory clearly affects the grid file

performance resulting in lower average data bucket occupancy

and requiring more access of the directory in range queries

because of large directory size. For lower and upper thre­

sholds of bucket occupancy which trigger merging operations,

there is no optimal levels obtained by mathematical analysis

yet. Nievergelt et al. [27] suggest around 70 percent and no

more than 80 percent value for upper threshold.

In our implementation of grid file, we also choose the

binary buddy system for searching for a proper candidate for

merging to maintain consistency with the splitting operation.

In this system all buddies have same region levels in all

corresponding dimensions, thereby assuring that the bucket

region made after merging be convex form. If there is more

than one candidate, we choose that which has largest value of

region level to keep the directory block shape uniform since it

has split more times. We choose 25 percent and 75 percent for

lower and upper thresholds respectively.

In merging directory bucket, two block directories are

merged into a bucket if the new directory bucket occupancy is

sufficiently below the bucket capacity. Otherwise, the new

directory bucket has to be split again with a few split of its

I
..!...

I
..!...

I
I
I
I
I

..!...
I
I
I
I
I

..!...

directory

I --~ I

-----------~---~~-----~----------

i ,A:-----------:-----:-----:-----:----------:
scales

Figure-17. No more mergeable state of directory.

43

block directory and block scales. No optimum upper threshold

is known yet. By one directory split operation, the directory

size grows more greatly in higher directory bucket occupancy

and in a higher dimension structure. Merging directory buckets

also may be necessary only for continuously shrinking files

considering the overhead of split and merge. Anyway, we can
\

use the same methods for searching for candidate buckets as

those used in merging data buckets. The two block scales of

the bucket to be merged are appended to each other along the

merge dimension. We can obtain all other block scales defining

other dimensions for the new block directory from corresponding

block scales in the old block directories by choosing more

refined scales in every dimension. We see the merging of

directory bucket in Figure-18.

I
I
I
I
I

..J..

I
..J..

I
1--1
I
I
I

I
1--

'~
'} __ '\- I

I

: i :-- --: :
: ---r-(-------:-- :

block scales

I
I
I

I

' {
I

1 I

I
I

~---1

..J.. 1------1 I
I
I
I

..J..

1 :~--: ----
~ I
1------1

: '} :
I --!.. I

...L 1------1 1 ______ 1

I I
I I 1----------------1

I
I

directory
bucket

44

block
directory

-\-\-\- boundary

I
1-

1
I

I I
..J..

I
I
I

..J..
I
I
I

..J..

I
I
I I I I
I --I --I ------I
I/) II""""'\ I I
I, . I 1 I I
1! I i j1 I
~.J.-'- .L------ I
I! I i II I :l_;: u: :
I --I --I ------I l __ l __ l ______ l

I I I I
I
I
I

----------------I

to be merged.

Figure-18. Merging of directory bucket.

CHAPTER V

ALGORITHMS FOR A GRID FILE

The algorithms for our implementation of a grid file are

discussed in this chapter. In our design of a grid file, the

grid scales are simple one dimensional dynamic arrays and the

grid directory is a k-dimensional dynamic array of row major

order. Splitting and merging operations are based on binary

buddy system. The value 'level' of a bucket which implies the

split history upon the bucket is maintained in corresponding

grid blocks of the buckets. It is just the number of splitting

operations to get the corresponding intervals in scales and is

based on the similar concept of 'depth' in extendible hashing

structure[39] discussed in Chapter II. We will call this a

'region level' to differentiate it from a 'local level' of a

single grid block which is defined as an interval in scales.

The value of a region level is kept in the directory along

with a pointer to a bucket and count of records in the bucket

in our design. This means that we have most of the information

about bucket in a directory rather than in the bucket itself.

This may result in a large directory but we can gain efficiency

of fewer disk accesses in deciding a dimension and a boundary

value for splitting and merging operations. If a data bucket

has the same valu.e for region and loe.~.l levelz, it me.~.nz that

45

46

the bucket corresponds to

several blocks which make a

a single directory block and with

bucket region otherwise. Local

level can be obtained by a simple computation on scales as they

keep the boundary values of splitting operations.

Basic algorithms for binary buddy system

Our implementation of grid file is based on a binary buddy

system in splitting and merging operations associated with

insertion and deletion respectively. The history of repeated

bucket splitting can be represented in the form of a binary

tree. The tree representation with its grid file structure is

shown in Figure-19, which shows the state after buckets #4 and

#1 are split in Figure-14. The leaf values are pointers to

bucket addresses in disk storage. Only the leaf values are

kept in directory entries. Splitting occurs at any level.

However, split of bucket on lowest level triggers directory

split additionally(as in leaves #3, 4, 5, and 6). But merge

can be done on lowest level only. In our algorithms,

mergeable sets are (3,5), (4,6),

convex regions.

(3,4) and (5,6) which make

In order to simplify the explanation of the algorithms

hereafter, we implement our grid file in the data space of long

integer [0, MAX), MAX= 2n, n = 16. The entries of grid scales

are by definition boundary values of intervals in each

dimension of the data space. Algorithm 1 obtains the local

level of an interval. If we are given the lower and upper

boundary of an interval in a scale based on binary buddy

system, the correctness of the algorithm is straightforward.

Algorithm 1

get_level(scale,low_bound,up_bound,MAX)

i <- 0;
while(i

j <­
if (

fi

< n)
Right_shift(MAX, i);

j = (up_bound - low_bound)
return(i);

i <- i + 1;
end while

end get_level

1 ---------------------7

/~
2 1 ---------------7

/\ /'\
3 (2) (1) (7) -------)

1\
3 4 ----------------------------~

1\ 1\
(5) (3) (6) (4) ----------------------~

level 0

level 1

level 2

level 3

level 4

Figure-19. Tree representation of bucket splitting.

47

48

We need to know the buddy region of a given region for

merging operation. In binary buddy system, the buddies have

same levels in every dimension corresponding each other. There

is only one valid buddy of an interval in each dimension

between upper neighbor and lower neighbor which has same size

of region. We can decide the valid buddy by checking the

validity of the combined region of the buddies in view of

binary buddy system because a pair of buddies should have been

split from a region. The algorithm for getting buddy is shown

below.

Algorithm 2

Is_valid_interval (scale,low,up,MAX)

i <- right_shift(MAX, level);
if((low MODi) = 0)

return(valid);
else

return(invalid);
fi

end Is_valid_interval

Algorithm 3

Get_buddy(scale, low, up, MAX)

if(low = minimum value in scale)
low_of_buddy <- up;
up_of_buddy <-up+ (up- low);

else if(Is_valid_interval(scale,low-(up-low),up,MAX)
low_of_buddy <- low-(up-low);
up_of_buddy <- low;

else
low_of_buddy <- up;
up_of_buddy <-up+ (up-low);

fi
return(low_of_buddy,up_of_buddy);

end Get_buddy

49

In order to rearrange the mapping between directory and

buckets after insertions and deletions, we need sometimes to

get the whole bucket region of a directory block which contains

the records involved in the operations. With INDEX operation,

we obtain an index value of an interval in a scale where a

record is located. With the index value, we can get lower

bound and upper bound of the interval in each dimension. We

compute local level of the interval with the bound values. The

region level of each dimension is kept in each directory entry.

With the difference value of the two levels, we get its region

boundary values. This procedure follows Algorithm 4 below.

For example, we should rearrange mapping of the whole region of

bucket ~1 if a record is inserted into or deleted from the

bucket.

Algorithm 4

Get_region(scale,low,up,region_level,MAX)

local_level <- get_level(scale,low,up,MAX);
i <- (local_level- region_level);
call get_bud() i times;
return(whole buddy range);

end Get_region

Grid file algorithms

We have decomposed a grid file into three abstract data

types in Chapter III,namely, grid scales, grid directory and

c'J..~ta bu.ol-:et, .~nc'l. <jef ined procedtJ.res on t11e ADT' s. Procedt:tres

50

on grid directory and data buckets are dependent on those of

grid scales. Maintaining scales in primary memory is a unique

scheme of grid file structure. With indices obtained by the

Algorithm 5, we can compute the address of a block in the

directory corresponding to the data bucket(See Appendix A).

The procedures on scales are performed by the following

algorithms.

Algorithm 5

Index(scale, key, no_of_boundary)
curr_index <- 0;
while(·curr_index < no_of_boundary)

if(key < scale[curr_index])
increment curr_index;
return(curr_index);

fi
increment curr_index;

end while
return(unsuccess);

end Index

Split_scale(scale, curr_index, no_of_boundary)

new_bound <- (middle value of lower bound and upper
bound of curr_index interval in the scale);

allocate new_scale the size of which increased by 1;
i, j <- 0;
while (i < no_of_boundary)

new_scale[i] <- scale[j];
if(i = curr_index)

increment i;
new_scale[i] <- new_bound;

fi
increment i,j;

end while
free (scale) ;

end Split_scale

51

Merge_scale(scale, curr_index, no_of_boundary)

allocate new_scale the size of which is decreased by 1;
i,j <- 0;
while (i < no_of_boundary)

if (i is not equal to curr_index)
new_scale[j] <- scale[i];
increment j;

fi
end while
free(scale);

end Merge_scale

We keep in primary memory only the most recently used

directory and scales, and a data bucket. Therefore, if we are

going to access a different directory bucket or data bucket, we

should replace current ones with the new ones. Two global

variables, curr_RBN and currDR_RBN, represent the currently

active data bucket and directory bucket, respectively. The

replacement procedure is included in the following search

algorithm.

Algorithm 6

Find(grid_file,record)

do for each resident scale
curr_DR_index <- Index(resident_scale,key,.);

od
Access curr_directory bucket with curr_DR_index;
if accessed directory bucket is not equal to

currDR_RBN ,
load new scale and directory from the bucket;
currDR_RBN <- accessed RBN;

fi
do for each scale

curr_index <- Index(scale,key,no_of_boundary);
od
Access current data bucket with curr_index;
if accessed RBN is not equal to curr_RBN

load new_bucket;
curr_RBN <- accessed RBN;

fi

compare record with every existing record in current
data bucket pointed by curr_RBN

if same record is found
return its position in the bucket

else
return(unsuccess)

fi
end Find

Insertion algorithms

52

If insertions result in an overflow in the corresponding

data bucket, splitting should occur. It is necessary to define

the splitting of a region along a split boundary bi of

dimension Di. Let the whole data space S be Do x D1 x ... x Dk-1

in k dimensional data space. If bi is not included in Di, the

region of that dimension remains unchanged by splitting.

Otherwise, let Di = [mini, ... ,maxi), the boundary values of

which are kept in scale, Si; splitting the region results in

two new regions:

S1 = Do x ... x Di [mini , ... , bi) x ... x Dk -1 ,
S2 = Do x . .. x Di [bi , ... , maxi) x . .. x Dk- 1 .

We call region S1 the lower region and region S2 the upper

region. A point data (keyo,key1, ... ,keyk-1) is said to locate

at the lower region of bi if keyi < bi , and at the upper region

of bi otherwise. A data bucket is split along bi by creating a

new data bucket; then moving all the records located in the

opposite region to the current region, where the record to be

inserted locates, into the new bucket. If it happens that

there is no movement of records due to data clustering,

recursive splitting is needed. If the data bucket involved in

53

splitting is being pointed by a single block, directory

splitting is triggered along the dimension which has largest

region level. The procedure is described by the following

algorithms.

•
Algorithm 7

Split(bucket, si, directory)

if the data bucket is pointed by several directory
blocks

else

fi

call split_bucket(curr_RBN,new_RBN) only;

call split_scale(si ,curr_index,no_of_boundary);
call split_directory(DR,curr_index,Di);

end Split

Split_bucket(curr_RBN,new_RBN}

call get_region(si) to get bucket region;
I* get split boundary, bi *I

bi <- (low_of_region + up_of_region) I 2;
if record ri in current bucket < bi

else

fi

do for all records rj in current bucket
if rj is in upper region of bi

move rj to the new bucket;
fi

od

do for all records rj in current bucket
if rj is in lower region of bi

move rj to the new bucket;
fi

od

rearrange mapping of directory to data buckets in the
whole bucket region;

end Split_bucket

Split_directory(DR,idx,Di)

new_size <-no * n1 *·. ·* (ni+l) *· .. * nk-1;
allocate new directory of new_size;
name all blocks below split index in Di;
copy entry Di ni ·at Di ni + 1 ;

rename all blocks above split index in Di;
free old directory;

end Split_directory

cf. ni = number of intervals in si of Di

Insert(grid_file,record)

call Find(record);
if record does not exist

if bucket is not full
insert record into bucket;

else

fi

call split(scale,directory,bucket);
Insert(grid_file,record);

else
'duplicate record error';

fi

end Insert

Deletion algorithms

54

As discussed in the previous chapter, continued deletions

of records in a· data bucket drops the bucket occupancy below a

certain threshold. Then we need to merge the bucket to

maintain a reasonable average bucket occupancy ratio. Bucket

merge makes a bucket region in the directory by definition and

the region level of the merge dimension decreases by one. Then

there may be some boundary that no longer needs to be kept in

directory when it is shared in the whole span of a dimension.

In this case, we may merge directory and scale. We define the

merge operation along a merge boundary mj of dimension Di as

follows.

Let the whole data space S be S1 such that:

S1 = Do x ... x Di [mini , . , mj - 1 , mj , mj + 1 .. , maxi) x ... x Dk- 1

The interval (mj-1 ,mj) and (mj ,mj+l) in Di is merged into one

55

interval (mj-1 ,mj+l) resulting S like S2 such that:

S2 = Do x ... x Di [mini , .. , mj -1 , m.j + 1 , .. , maxi) x ... x Dk -1 .

Merge occurs at the same leaf level in view of binary

split tree if we represent region level as in Figure-19.

Deletion operations will be done by the following algorithms.

As in insertion, file read/write operation is hidden in the

algorithms.

Algorithm 8

Merge(bucket, scale,directory)

call Candidate(cand_bucket,cand_dim);
if there is no valid cand_bucket

return(not mergeable);
else

call Merge_bucket(cand_bucket,cand_dim);
if merge_bucket results in need of directory merge

call Merge_directory(DR,curr_index,dim);
fi

f .
~ .

end Merge

Candidate(cand_bucket,cand_dim)

do for k dimensions
get region buddy bucket;
if (buddy_rec_cnt + to_be_merged_bk_cnt) is less than

the upper_threshold AND their region level are
same in k dimensions then

cand_bucket <- region buddy bucket;
fi

od

if valid cand_bucket exist
comparing region levels of sharing dimensions,
select cand_bucket of largest region;
cand_dim <- sharing dimension of largest region;
return(cand_bucket, cand_dim);

else
return(no candidate);

fi
end Candicl.~t.e

Merge_bucket(cand_bucket,sharing_dim)

i, j, k <- 0;
while(i,j,k < bucket size)

while(to_be_merged_bk[j] exists)
j <- j + 1;

end while
while(cand_bucket[k] does not exist)

k <- k + 1;
end while
if (k >= bucket size)

break;
fi

to_be_merged_bk[j] <- cand_bucket[k];
increment i,j,k by one;

end while
rearrange mapping of directory to buckets;

end Merge_bucket

Merge_directory(DR,idx,Di)

ne~_size <-no * n1 *·. ·* (ni-l) *·. ·* nk-1;
allocate new directory of new_size;
name all blocks below merge index idx in Di ;
merge off blocks of idx in Di ;
rename all blocks above idx;
free ol~ directory;

end Merge_directory

Delete(grid_file,record)

call Find(record);
if record exists in curr_RBN

erase record from the bucket;
decrement record count;
check bucket occupancy;
if the occupancy is less than low threshold

call Merge(bucket,scale,directory);
fi

else
'record does not exist';

fi

end Delete

56

CHAPTER VI

THE PROGRAM STRUCTURE

Grid file program

The grid file structure was programmed in C-language and

run on Eunice operating system of VAX 11/780. We implemented

the structure with processing two keys of long integer values

generated by two independent random number generating programs.

We built the grid file structure based on double level

directory structure, which adopts resident directory scheme.

For the simplicity, we separated the file structure into four

files: resident scale file, resident directory file, directory

bucket file, and data bucket file. However, we made it

invisible to users. From a user's perspective, the grid file

structure is a single file. The user interface operations

discussed below are invoked by referencing a single file name.

The overall structure of the grid file is shown in Figure-20.

Our program consists of two parts: procedures for building the

grid file structure and user interface procedures.

The file building procedures are performed with the

algorithms discussed in Chapter V. The structure of our

program described in program design language is included in

Appendix D. Our program of grid file structure provides with

57

ko

resident scales & ~
directory

I
..J_

directory bucket:
block directory &
block scale

resident scale F

resident directory F

1

I I __ _

I
I
I

3

1---

1 2

I

------1
4 2 :

I
l ______ _ --------1 ________ I

I

1

:HEAD:

I
I
I

..J_

I
I
I
I

I

:1 5 2
l ______ l ______ l

I I I

: 1 ___ 6_: __ 7 ---:
I
I

8 : 4
I I I I

..J_ 1-----1-----1
I I

1-------------------1

I
I

I
I

I
I

ko scale kl scale I
I

I I I I
I ---- I ------------------- I--------------- I

1 1 2 3 4
I
I

2

I I I I I I I 1-----1----1----1-----1-----1 _____ 1

1

58

2
directory bucket F HD: i\\\:

data bucket F

data bucket F
after merging

Figure-20.

1 : block scales block directory :\\\: : ___ : _________________________________ :\\\: _

____ 1 _____ 2 ___ 3 ____ 4 ____ 5 ___ 6 ____ 7 _____ 8

:HD : I
I
I
I

I I I I I I I I
1---~-----~-----~-----1-----1 _____ 1 _____ 1 ____ _

avail head
J,

1 2 3 4 5 6 7 8 THn: ----: =Iv/7: : ----: 7 I; 11: -----~07:-
: : :;;;;;: : :;;;;;: :;;;;;: : ___ : _____ :;;;;;: _____ : _____ :;;;;;: _____ :;;;;;:

Structure of a grid file program.

59

the following operations:

- creating, opening and closing a grid file.

- inserting and deleting records in a grid file.

- updating a record in a grid file.

- searching a record in a grid file.

- range query.

The operations included in first and second groups may be

performed with batch input files as well as interactively

through terminals. Updating is a simple procedure that finds a

specified record in a grid file and that if the record exist in

the file, allows changing the associated information. The

fourth and fifth groups are included in query operations. We

discuss them in the following section.

Range query program

The grid file structure is a multikey searching structure

of a data set that is characterized by a small number of

attributes but the domain of each attribute is large and

linearly ordered. Multikey searching structures allow a number

of different searching types, each appropriate for answering a

certain kind of query. The query type is usually classified

into four categories: exact match query, partial match query,

range query and best match query.

Exact match query is the simplest type among them. This

searches for a specific record defined by the full attributes,

k keys ink dimensional structures. We can use the Find()

algorithm directly for this kind of query. The grid file

60

established aims to guarantee no more than two disk accesses

for both successful and unsuccessful search in this query. A

partial match query is a more complicated type of query in a

multikey file that specifies a subset of attriputes, t keys

among k keys, t < k. In this query, we ask for all records

that have those t values, independent of the other (k - t)

attributes. This can be done in the following range query if

we accept the whole range of each domain of the (k -t) keys.

In a range query we specify a range of values for each of

the k keys, [lowi ,upi], 1 <= i <= k, and all records that

satisfy the range are reported. One of the design objectives

of a grid file structure is to build an efficient structure for

the range queries. For this purpose, a grid file partitions

the whole data space into grid cells. Hence, we need not check

all other attributes as well in obtaining a specified range in

one attribute domain. That is, we do not need to do a

recursive search as in

difficult to compare query

structures since they are

Saritepe[37] attempted an

k-d-tree implementation. It is very

efficiencies of different search

based on different design concepts.

analytical comparison between grid

file and k-d-B-tree structures. Though she considered grid

scale accesses and directory accesses at the same level in node

access

showed

count, which lessen the grid file performance,

that k-d-B-tree performance drops rapidly as

recursive partition frequency grows.

she

the

We give below a range query algorithm in a grid file. A

constraint is imposed on the algorithm such that we must allow

61

only one disk access each per data bucket and directory bucket

in searching for the records that satisfy the range specified

in the range query. Though in the algorithm we check every

record to see whether each key value satisfies the query

region, we do not need to do so if the bucket region in the

domain is completely contained in the query region. Since the

internal structure of records in a data bucket is not of direct

interest of grid file design, we insert records randomly into

data buckets in our implementation. But we sort them easily

within bucket boundary, showing at least partially sorted form

for query reporting.

Algorithm 9

Range_query(grid_file)

do for k dimensions

od

I* get query range interactively *I
get lower_ and upper_bound for searching;

I* call Index() *I
get begin_resident_index with lower bound;
get end resident index with upper bound;

allocate directory_bucket_queue;

do for all resident directory blocks in the range
get directory_bucket_RBN;
if this RBN is not in directory_bucket_queue

insert the RBN into the queue;
load the directory_bucket pointed by the RBN;

else
break;

fi

do for k dimensions
begin_index <- Index

(scale,lower_bound,no_of_boundary);
end_index <- Index(scale,upper_bound,no_of_boundary);

od

allocate data_bucket_queue

od

do for each block traversing directory bounded by
begin_index and end index.

od

get data_bucket_RBN;

if this RBN is not in data_bucket_queue
insert the RBN into the queue;
load the data_bucket pointed by the RBN;

else
break;

fi

sort records in the data_bucket;
report records within query range;

free (data_bucket_queue);

free (directory_bucket_queue);

end range_query

62

As shown implicitly in the range query algorithm, our

program also uses a single fixed page replacement policy.

Besides the resident directory and scales, the program keeps in

primary memory only the most recently used block directory and

its scales(not whole of directory bucket) and a data bucket.

We assume that resident directory size could be small enough

to be kept in primary memory during operations in most appli-

cations. We can show it as following simple case.

Let us define size parameters in our grid file structure

using resident directory scheme as follows:

r = average size in bytes of an entry of resident

directory used to point a directory bucket,

rs = size of the resident directory in bytes,

ps = size of a directory bucket in bytes,

d = average size in bytes of an entry of a block directory

used to point a data bucket,

bs = size of a data bucket in bytes,

c = size of a record in bytes.

63

Then the grid file structure accommodates approximately the

following data volume, v or number of records, n:

v = (rs/r) * (ps/d) * bs in bytes,

n = v I c.

Let ps and bs be 512 bytes. Implementation of our grid file

structure showed about 69.6 percent data bucket occupancy. We

expect a slightly lower percentage of directory bucket

occupancy. This factor, of course, is not necessary in a

single level grid file. If r and d are both 12 bytes, 10 k

bytes of resident directory in our grid file is able to handle

about 18.2 Mbytes. This means that the structure can also

process about 284,500 records each 64 bytes long. Hence, a

few ten kbyte of resident directory is sufficient for a

practical application of grid file structure. In this regard,

scale size can be negligible compared with that of directory.

If we assume that every scale has b intervals, directory size

has O(bk) and size of scales has O(kb). Since the entries of

scales are boundary values of intervals, we can use a long

integer for any kind and any length of key types converting

them into canonical forms of long integer.

CHAPTER VII

CONCURRENCY CONTROL ON GRID FILE

General

A grid file is a large multikey access data structure. Of

course, a single user may use the file system exclusively.

However, we naturally expect that several different users

access the data set simultaneously. As our structure is a

multikey structure which is designed to process several

attributes asymmetrically, we may think of it as a unification

of several distinct data sets. Hence, it is more likely that

many users share the data set manipulating it with a subset of

the attributes of their own concern.

The file structure as well as the data set itself is not

static as many users request a certain process to be executed

on the structure such as insert, delete and find. When a large

data structure is embedded on a system which allows a number of

'transactions' to be done concurrently, some kind of 'concur­

rency control mechanism' is needed as a part of the system to

guarantee that concurrent transactions do not interfere with

each other's operation. Efficient concurrency control has long

been of interest especially in the database area. The

objective of concurrency

among users who attempt

control is to prevent interference

to access the shared data set simul-

64

65

taneously, keeping as high a level of concurrency as possible.

We acquire concurrency on a system by interleaving

operations for different users. In the absence of proper

concurrency control, the interference among the interleaved

operations is apt to produce wrong results even though the

operations are correct in themselves. We can see two typical

cases of the problems as follows:

c~se 1: Lost updates.

Suppose two different branch offices of a bank attempt

simultaneously to send their money to their headquarters on

line. As illustrated in Figure-21, the two transactions may be

interleaved resulting in a wrong balance at headquarters. We

see that the update of Branch A was lost because the tran-

saction of Branch B overwrites it.

time
t1
t2
t3
t4
t5

HQ Balance
$1,000,000.

$1,700,000.
$1,200,000.

TR by Branch A

READ $1,000,000.

ADD $700,000.

Figure-21. Lost update.

Case 2: Inconsistent Information.

TR by Branch B

READ $1,000,000.

ADD $200,000.

Suppose headquarters checks the total balance of the two

branches and its own. If we assume that Branch A sends

66

$200,000 to Branch B, the information retrieved is wrong though

there is no loss of update as shown in Figure-22.

time
tl
t2

t3

t4

t5

HQ
Balance $1,000,000.
READ $1,000,000.
bl = $1,000,000.
READ A $700,000.
bl = $1,700,000.

t6 READ B $400,000.
bl = $2,100,000.

Branch A
$700,000.

SUB
bl_A

$200,000.
= $500,000.

Branch B
$200,000.

ADD
bl_B

$200,000.
= $400,000.

Figure-22. Inconsistent information.

In a system in which concurrent access is allowed, users

access the shared data expecting that the data satisfies

certain consistency assertions specified for the system and

that they get the result within a reasonable time. The basic

problem in concurrency control is how to guarantee the

correctness of a system state undergoing interleaved

transactions. Eswaran et al. [12] established the notion of

consistency and proposed the predicate lock method as a

concurrency control mechanism. They suggested 'seriali-

zability' concept even though they did not use the term itself.

Serializability[35,40] means that the effect of concurrent

transactions should be the same as if the transactions have

been run in a certain serial order. Rosenkrantz et al. [35]

showed that serializability is both necessary and sufficient

for consistency. It is generally used as the correctness

67

criterion of concurrency control mechanisms.

Many methods for achieving serializability have appeared

in the literature. They can be classified into three

categories such as locking, timestamping order and optimistic

methods. First, in locking method[12,16] a transaction

acquires a lock on a object so that it may not be changed in

some unpredictable manner. There are generally two kinds of

locks so called exclusive/shared lock or write/read lock. For

the implementation of locking method, two protocols are needed

such as granting and releasing protocol of lock(lock and

unlock). Hence, basic locking method is called a two-phase­

locking method(2PL). Unfortunately, a pure 2PL may lead to a

deadlock situation in which a transaction waits indefinitely

for its lock request to be granted. 2PL and its variants are

most widely used in practical applications imposing some

constraints to prevent deadlock. Second, in timestamping order

method[33], every transaction is assigned a unique timestamp.

A shared lock request for an object by a transaction is granted

only if there is no other exclusive request with a larger

timestamp. Similarly, an exclusive lock request on an object

is accepted only if there is no other exclusive or shared lock

on the object with a larger timestamp. Third, the optimistic

method[19] is based on the assumption that conflicts among

transactions in real application are quite unlikely. In this

method, every transaction is allowed to perform its executions

without any control. The history of a transaction is collected

and a validation step is performed at the end of each

transaction to determine whether or not to commit the

transaction.

Applications

68

We may separate large data structures into two classi­

fications from several points of view such as static and

dynamic structures, or tree and address computation structures,

or single and multiple key structures. A concurrency control

mechanism for static structures may be relatively simple and

essentially is included in that for dynamic structures. In

view of multiuser environment of large database area, it is

natural that there be strong demand for efficient concurrency

control mechanism. Since in current dynamic databases, tree

structures have been widely used as indices, it is also natural

that many researchers in the field of concurrency have been

attracted to building the mechanism for the tree structures.

Actually, a number of papers have appeared in the literature as

solutions to concurrency problems in tree structures. They

include for examples, [2], [18], and [22] for B-trees and its

variants, and [25] for binary tree structures. In contrary,

quite a few solutions have been published for hashing

structures. We may refer to [8,9] for extendible hashing and

[7] for linear hashing. Nobody proposed any solutions of

concurrency problems for multikey structures including a grid

file.

Most of the solutions are based on two-phase-locking with

slight modifications of the data structures and imposing a

69

certain ordering in granting lock requests in order to prevent

deadlocks. Locking methods remain still the most popular

scheme in concurrency control mechanism. If we assume that

locking method is also available for a (single level) grid

file, we can suggest some design policies as follows under the

general design objective that the mechanism allow a high

degree of concurrency among user interface procedures.

minimize the number of locks held at one time by a

process.

minimize exclusive lock and its time.

make each process independent as much as possible.

We have three basic user interface procedures: FIND(),

INSERT() and DELETE(). Insert and delete procedure may invoke

SPLIT() and MERGE() respectively. We have also three basic

entities which are to be locked: scale , directory and bucket.

However, directory is defined by scales, we had better consider

these two entities as an entity named as directory. First of

all, we may consider split bucket and merge bucket operations

independent with insert and delete operations though those are

called by these procedures. The reason is that split bucket

is triggered whenever the bucket overflows without being

affected by other procedures and decision for bucket merge is

made after delete procedure commits. Hence, we can defer the

restructuring operations. During the operations, we create new

buffers and build new ones based on the old versions to be

restructured. Exclusive locks are to be requested at the end
/

of the operations when we need change the pointers to the

70

entities. So, find operations may be done almost in parallel

with any other operations. Insert and delete of data may

operate in parallel if they are working on different bucket.

We may take the inherent advantage of grid file such that

access path to bucket are disjoint and the depth of access is

shallow compared to those of tree structures.

Building a correct and efficient concurrent algorithm is

not simple. In addition to the problems discussed so far, we

have to consider the problems which may arise in multi-

programming and parallel processing environments.

must take into account of the recovery problems

concurrency control[l].

Finally, we

together with

CHAPTER VIII

SUMMARY AND CONCLUSIONS

A grid file is a large multidimensional dynamic structure

which uses address computation techniques A single level

grid file consists of three abstract data types, namely, linear

scales, a directory and data buckets. A double level grid file

maintains the directory in two levels such as a resident

directory and block directories. Data buckets are fixed-sized

structure units for storing data sets. A directory is used to

manage data sets dynamically. Linear scales define the grids

of a directory. Three major design objectives of a grid file

are: (1) time bound of two disk accesses to search for a point

data in disk memory; (2) reasonable average bucket occupancy;

(3) efficient processing for range queries.

To realize the three design objectives, three basic design

strategies are established: "(1) maintaining a grid directory,

data buckets; (2) splitting elements of which are pointers to

with only two buckets involved; (3) grid partitioning the

embedding space of a whole data set.

We have implemented a double level grid file of two

dimensions. In a double level grid file, a directory is

partitioned in grids and the corresponding sets of blocks of

the directory are also stored in fixed-sized buckets, namely,

71

72

directory buckets. A resident directory is used to manage

dynamically the growing and shrinking sets. Its entries are

pointers to the directory buckets. A resident directory scheme

is proposed to lessen disk accesses in neighborhood operations

for processing geometric data sets which require that all

dimensions be treated symmetrically[15]. In choosing a

splitting dimension, we check region level in all dimensions

and select the dimension which has smallest value. A split

boundary is obtained by binary buddy system which for the value

bisects the lower and upper boundary value of the interval to

be split. In directory merging, we also adopt binary buddy

system.

Our simulation studies are carried out with the following

objectives:

I. Evaluation of memory utilization

(1) Bucket occupancy ratio
(2) Efficiency of resident directory
(3) Efficiency of directory

II. Estimation of processing time

(1) Insertion cost
(2) Deletion cost

Our simulation studies are done with key attributes of

both long integer values obtained by two independent random

generator programs. The following table shows the memory

utilization statistics when we inserted 600 and 1,200 records.

record size
record count
size of data buckets in bytes
number of records per data bucket
Bize of directory bucketB in byteB

16
600
256

16
512

16
1,200

256
16

512

number of blocks in resident directory
number of directory buckets
number of data buckets
average bucket occupancy
average directory bucket occupancy

average number of blocks in

4
4

56
0.6690
0.5461

resident directory per directory bucket(r)

average number of blocks in
block directories per data bucket(b)

12
9

109
0.6877
0.5280

1.17

2.5

73

During the insertions, we checked the intermediate

statistics every 40 record insertions and computed averages of

each value of the middle 4 lines in the above table. The

following table shows the results:

grand average number of blocks in
resident directory per directory bucket

grand average number of blocks in
block directory per data bucket

1.25

2.1

Our studies show the same result in average data bucket

occupancy as that of a single level grid file[27]. It shows

about 0.69 occupancy ratio throughout the insertion period.

Our grid file structure keeps the occupancy ratio at steady

state. where insertion and deletion frequencies are almost the

same. It maintains over 50% occupancy until the data set size

decreases by continuous deletions to 40% initial steady state.

The grand average number of blocks in block directory per data

bucket is a parameter to show the directory size in a single

level grid file. Nievergelt et al. [27] show that b fluctuates

around 2 as the number(record_count/bucket capacity)

increases. With this regard, they recommend 10 or more for

data bucket capacity(c) in applications. The parameter value(b)

74

in our studies show similar results as their's. Furthermore,

we expect naturally the same result, r = 2, in the relation

between a resident directory and directory bucket since both

data bucket and directory bucket are split when the buckets

overflow without any other conditions. The number, r = 1.25,

in the above tables is because a resident directory has split

only a few times and there is a little possibility to make

bucket regions. The efficiency of directory shows the same

level in both a single level and a double level grid file. It

is because the data sets used for both simulations are obtained

by random number generator programs. In practical applications

of a grid file(c > 10) where data clustering is likely, more

than two directory entries are needed for a data bucket and

also more than two entries of resident directory are needed

for a directory bucket. It is clear that the number becomes

greater in a single level grid file because it split the whole

span of the embedded data space while a double level confines

split in a directory bucket. In this regard, The charac­

teristics of data set suitable for a grid file are: (1) a small

number of attributes(k < 10); (2) the domain of each attribute

is large and linearly ordered; (3) attributes are independent

each other. Since the size of directory entry is quite small

compared to a bucket size, directory size causes no problems.

We discussed the size o± a resident directory and showed that

it is small enough to be kept in primary memory. Considering

the possible internal fragmentation(low occupancy ratio) in

directory bucl{ets though a dou.ble level grid file confineB

75

directory split in a directory bucket, it is not yet known

whether a single level grid file is more efficient or not in

view of memory utilization.

Though a grid file has a time bound of two disk accesses

for searching a point data, not much has been studied about

time cost for insertion and deletion which are accompanied by

splitting and merging. Each of a single insertion and a single

deletion requires four disk accesses in a double level grid

file(two accesses for searching and each one access for writing

data buckets and directory buckets). Overall factors and times

of disk accesses for a single insertion and a single deletion

in a double level grid file are:

I. Insertion cost

Factors Disk accesses

searching 2
data bucket split 2
directory split 1
directory bucket split 2
resident directory split 0
mapping directory to data bucket 0

total 7

II. Deletion cost

Factors Disk accesses

searching: 2
data bucket merge 3
directory merge 1
directory bucket merge 3
resident directory merge 0
mapping directory to data bucket 0

total 9

76

The distribution of probabilities of each operations are

not studied yet. It may depend on implementation strategies.

If we are given an average values in the distribution of the

probabilities, we can get average time cost in view of disk

access. Splitting and merging may require many disk accesses

especially in those operations on directory. A single level

grid file which uses a conventional row major order array for a

directory requires reorganizing of the entire directory when

splitting and merging are needed. A number of disk access are

needed in this kind of split and merge operations. A double

level grid file minimize the disk accesses by confining the

operations in a block directory and a resident directory which

resides always in primary memory. So in view of time cost of

insertions and deletions, a double level grid file is more

efficient.

We remain some work to be done as further studies. It

should include:

(1) Quantify the simulation studies,
(2) Implement other strategies and compare performance,
(3) Implement concurrency control on a grid file.

BIBLIOGRAPHY

(1) Agrawal, R., and Dewitt, D.J. "Integrated concurrency

control and recovery mechanism:Design and performance

evaluation." ACM Trans. Database Syst., 10, 4(Dec.

1985), 529-564.

(2) Bayer, R., and Schkolnick, M. "Concurrency of operations

on B-trees." Acta Inf. 9(1977), 1-21.

(3) Bentley, J.L. "Multidimensional search trees used for

associative searching." CACM 18, 9(Sept. 1975), 509-

517.

(4) Bentley, J.L. "Multidimensional binary search trees in

database applications." IEEE Trans. Softw. Eng. SE-5,

4(July 1979), 333-340.

(5) Bentley, J.L. and Friedman, J.H. "Data structures for range

searching." Comput. Surv. 11, 4(Dec. 1979), 397-409.

(6) Burkhard, W.A. "Interpolation-based index maintenance." In

Proc. ACM Symp. Principles of Database Systems(1983),

76-89.

(7) Chowdhury, S.K., and Srimani, P.K. "Worst case performance

of weighted buddy systms." Acta Inf. 24, (1987), 555

-564.

(8) Cranston, B., and Thomas, R. "A simplified recombination

scheme for the Fibonacci buddy system." CACM 18,

6(June 1975), 331-332.

77

78

(9) Ellis C.S. "Concurrence in linear hashing." ACM Trans.

Database Systems, 12, 2(June 1987), 195-217.

(10) Ellis, C.S., "Distributed data structures:A case study."

IEEE Trans. Comput. C-34, 12(Dec. 1985), 1178-1185.

(11) Ellis, C.S., "Extendible hashing for concurrent operations

and distributed data." In Proc. ACM SIGACT-SIG.l:'lOD

Symposium on Principles of Database Systems. ACM, New

York, 1983, 106-116.

(12) Eswaran, K.P., Gray, J.N., Lorie, R.A., and Traiger, I.L.

"The notions of consistency and predicate locks in

database system." CACM 19, 11(Nov. 1976), 624-633.

(13) Fagin, R., Nievergelt, J., Pippenger, N. and Strong, H.R.

"Extendible hashing- a fast access method for dynamic

files." ACM Trans. Database Syst. 4, 3(Sept. 1979),

315-344.

(14) Finsel, R.A., and Bentley, J.L. "Quad trees-a data

structure for retrieval on composite keys." Acta Inf.

4(1974), 1-9.

(15) Hinrichs,K., and Nievergelt,J. "The grid file: a data

structure designed to support proximity queries on

spatial objects." In Proc. Workshop on Graph Theoretic

Concepts in Computer Science, Osnabruck, (1983).

(16) Hsu, M., and Chan, A. "Partitioned two-phase locking." ACM

Trans. Database Syst., 11, 4(Dec. 1986), 431-446.

(17) Kriegel, H.P. "Performance comparison of index structure

for mul tikey retrieval. " Proc. ACM SIGMOD, Boston,

Massachusetts (1983), 186-196.

79

(18) Kwong, Y.S., and Wood, D. '"A new method for concurrency in

B-trees.'" IEEE Trans. Soft. Eng., 8, 3(J:1ay 1982), 211-

221.

(19) Kung, H.Y., and Robinson, J.T. '"On optimistic methods for

concurrency control.'" ACJ:1 Trans. Database Syst. 6,

2(June 1981), 213-226.

(20) Larson, P.E. "Dynamic hashing.'" BIT 18(1978), 184-201.

(21) Lee, D.T. and Wong, C.K. '"Worst-case analysis for region

and partial searches in multidimensional binary search

trees and balanced quad trees.'" Acta Inf. 9(1977), 23-

29.

(22) Lehman, P. and Yao, S.B. "Efficient locking for concurrent

operations on B-tree.'" ACM Trans. Database Syst.

6,4(Dec. 1981), 650-670.

(23) Litwin, W. '"Linear hashing: a new tool for file and table

addressing." IN Proc. 6th International Conf. on Very

Large Data Bases, 1980, 212-223.

(24) Lloyd, E.L., and Loui, M.C. "On tne worst case performance

of buddy systems." Acta Inf. ~2, (1985), 451-473.

(25) J:1anber, U. and Ladner, R.E. "Concurrency control in a

dynamic search structure." ACM Trans. Database Syst.

9, 3(Sept.1984), 439-455.

(26) Nievergelt, J. "Trees as data and file structures.

"Lectures Notes on Computer Science, 112, (1981), 35

-45.

(27) Nievergelt, J., Hinterberger, H. and Sevcik, K.C. "The Grid

File: An adaptable, symmetric multikey file

structure." ACM Trans.on Database Syst. 9, 1(Mar.

1984), 38-71.

80

(28) Orenstein, J.A. "Multidimensional Tries used for

associative searching." Inf. Process.Lett. 14, 4(June

1982), 150-157.

(29) Otoo, E.J. and Merrett, T.H. "A storage scheme for

extendible arrays." Computing, 31, 1(1983), 1-9.

(30) Oukel, H. and Scheuermann, P. "Multidimensional B-trees:

analysis of dynamic behavior." BIT, 21, 4(1981), 401

-418.

(31) Overmars, M.H. and van Leeuwen, J. "Dynamic Multi dimen­

sional Data Structures based on Q.uad- and k-d trees."

Acta Inf. 17, (1982), 267-285.

(32) Peterson, J.L., and Norman T.A. "Buddy systems." CACN, 20,

6(June 1977), 42i-431.

(33) Papadimitriou, C. H., and Kanellakis, P.C. "On concurrency

control by multiple versions." ACM Trans. Database

Syst., 9, l(Mar. 1984), 89-99.

(34) Robinson,J.T. "The k-d-B-tree: a search structure for large

multidimensional dynamic indexes." In Proc. SIGMOD

Conf., ACM, New York, (1981), 10-18.

(35) Rosenkrantz, D.J., Stearns, R.E., and Lewis II, P.M.

"Consistency and serializability in concurrent

database systems." SIAM J. Comput. 13, 3(Aug. 1984),

508-530.

(36) Samet, H. "The quadtree and related hierarchical data

structures." Computing Surveys, 16, 2(~Tune, 1984),

81

187- 260.

(37) Saritepe, H.N.A. "An analytical comparison of grid file and

k-d-B-tree structures." l".!S Thesis, Oklahoma State

University, (Dec. 1987).

(38) Scheuermann, P., and Ouksel, M. "Multidimensional B-trees

for associative searching in database systems." Inf.

Syst. 7, 2(1982), 123-137.

(39) Tamminen, M. "The extendible cell method for closest point

problems." BIT 22(1982), 27-41.

(40) Vidyasankar, K. "Generalized theory of serializability."

Acta Inf. 24, (1985), 105-119.

APPENDIX A

ADDRESS COMPUTATION FOR DIRECTORY ACCESS

We have implemented a directory as a k-dimensional array.

The directory is so large that we keep it in secondary memory.

With the k index values obtained by INDEX() on k scales which

define the directory, we can read a directory block corresponding

to a bucket in one disk access. Giv~n the address of the

beginning of the directory, we can compute the relative address

of a block.

directory: array[Do] [Dk-1] of drelem.
drelem : a directory entry.
addr(x) : address of x.
sizeof(x) : size of x in byte.

The implementation of multidimensional arrays can be derived

from that of one dimensional arrays. We see this for a two-

dimensional array, and then generalize it to k dimensions.

In case of k = 2, Do = n and D1 = m, we may consider

directory [Do][Dl] as an array A[l], ... ,A[n] in which each A[i]

is in turn an array of m elements consisting the i-th row of the

array(assume row major order). The address of A[i] is the sum of

addr(A[l]) and the offset to i-th row. Then,

sizeof(a row of A) = m * sizeof(drelem)
addr(A[i]) = addr(A[l]) + (i- 1) * sizeof(a row of A)

= addr(A[l]) + (i- 1) * m * sizeof(drelem).

The address of directory[i,j] is the sum of addr(A[i]) and the

offset to j-th column. Therefore,

82

83

addr(directory[i,j]) = addr(A[i]) + (j - 1) * sizeof(drelem)
= addr(A[1]) + [(i- 1) * m + (j - 1)] * sizeof(drelem)
= addr(directory[l,l]) +

[(i - 1) * m + (j - 1)] * sizeof(drelem)

In a k-dimensional directory, we consider it as an array

A[al :b1] ... [ak:bk]. Let sr = sizeof(a row of A) and se =
sizeof (drelem).

When k = 1,
addr(A[i]) = addr(A[a1]) + (i - a1) * se.

We may consider A to be an (k-1)-dimensional array,

Ak-1 [al :b1] [ak-1 :bk-1] of one dimensional array,

A [il , .. , ik - 1 , j] , ak < = j < = bk . Then, by (1) ,

Then,

addr(A[il, ... ,ik]) = addr(Ak-1 [il, ... ,ik-1])
+ (ik - ak) * se.

addr (Ak- 1 [i1 , ... , ik- 1]) = addr (Ak- 2 [i1 , ... , ik- 2])
+ (ik- 1 - ak -1) * sr

where sr = (bk - ak + 1) * se. Therefore,

addr (A [i1 , , ik]) = addr (Ak- 2 [il , ... , ik- 2])

(1)

(2)

+ (ik - 1 - ak - 1) (bk - ak + 1) * s e + (ik - ak) * s e .

If we apply (2) repeatedly, we get

addr (A [i1 , ... , ik]) = addr (A1 [i1])

'
+ se * t ((ij - aj) I1

j = 2
(bm - am + 1) j .

By (1),
addr (Al [i1]) = addr (A1 [a1]) + (i1 - a1) * st,

where addr(Al [a1]) means the beginning address of the entire

array, and st is the total size of an array of A1.

st = se IIm=2(bm- am+ 1). Finally, we get

addr(directory[il, ... ,ik]) = addr(A[il, ... ,ik])
= addr(directory[a1, ... ,ak])

+ se * ~ ((ij - aj) TI (bm - am + 1) '[.
j4-1 J

For k = 2, (3) shows as follow:
addr(directory[il ,iz]) = addr(directory[al ,a2])

+ [(il-a1)(bz-az+1) + (iz-az)] * se.

(3)

84

If we substitute as follows:

i1 = i, iz = j, a1 = az = 1, bz-az+l = m, we get

addr(directory[i,j]) = addr(directory[l,l])
+ [(i -1) * m + (j - 1)] * se.

This is exactly the same as we have derived directly at the

beginning. In the C-implementation of array arithmetic, indexes

start with zero, se is a unit of a array, and array name has a

address value. So, the address computation function is

simplified as follow:

addr address of a block with index values, i and j. Then,

addr = directory+ i * b + j,

when we declare a directory as directory[a][b] of drelem.

For k = 3, we can derive the following formula following the

procedures used above.

addr = directory + b * c * i + c * j + k,

when we declare a directory as directory[a][b][c] and the index

values in each dimension are i,j,k respectively.

APPENDIX B

A SIMPLE EXAMPLE OF GRID FILE OPERATIONS

A simple example of insertion and deletion accompanied by

splitting and merging operations is presented in this appendix.

ko
kl
k2

age, boundary value
salary,
department no.

16 - 76.
8 - 128, unit:$1000.
000 - 800.

data bucket capacity = 2 records.
upper threshold for merging data bucket = 1 record.
directory bucket capacity = 4 blocks of a directory.
upper threshold for merging directory bucket = 2 blocks.
lower threshold for merging directory bucket = 1 block.

sequence of arriving of data record:

~ ko kl k2
insert a 29 35 110

b 70 110 200
c 34 50 310
d 60 92 700
e 47 40 210
f 45 70 510
g 50 75 150
h. 55 73 450
i 75 120 250
j 65 35 750

delete b, g, i, h, e, a, j' c.

step 1. Initial state and a data bucket full.

128
I

I
I
I
I

8 I

800

16 1-------t

resident directory

128

-~---- Zoo
16t------- 76

block directory

85

800

1

I I I ______ ,

1' _____ _

=>

data bucket

: a :
: __ b __ :

step 2. When record c arrives, find data bucket full.
Split directory along first dimension.
Split data bucket.
Insert c and d.

I

1--------1

resident dir.

1 2
a b I

I
: __ c ___ : ________ :

data buckets

I

1-----1----t

block dir.

2'
b

: __ d_
I
I
I

--1

step 3. When record e arrives, find data bucket(#2) full.
Split directory along second dimension.
Split the data bucket and insert e.

I

1--------1

resident dir.

1 ______ 2 _______ 3 _______ _
: a : b : e :
: ___ c ____ : __ d ___ : ______ :

1- - - - -1- - - - --1

block dir.

data buckets

step 4. When record f arrives, find data bucket(#1) full.
Split data bucket. Insert f and adjust mapping.

86

I

1 3
t--------1

I- - - - -1- - - - -t

resident dir. block dir.

1 ________ 2 ________ 3 ________ 4 _______ _
: a : b : e : f : data buckets
: ___ c ____ : ___ d ____ : ________ : ________ :

step 5. When record g arrives, find data bucket(#2) full.
Split resident directory along first dimension.
Split directory bucket along the split boundary of
resident directory.

I II

I--- --1---- -t

~----t t-----t

resident dir. block dir.

1 ________ 2 ________ 3 ________ 4 _______ _
: a : b : e : f :
: ___ c ____ : ___ d ____ : ________ : ________ : data bucket

step 6. Split directory in dir bucket II.
Split data bucket(#2) and insert record g.
Insert h.

87

1 _______ 2 _______ 3 _______ 4 _______ 5 -------
: a : b : e : f : d :
: ___ c ___ : ___ g ___ : _______ : _______ : ___ h ___ :

data bucket

t-----1

blocl';: dir.

step 7. When record i arrives, find data bucket full.

I

Split resident directory along second dimension.
Split directory bucket along the split boundary of
resident directory.

resident directory.

L I III

1-- -- - -1----- -1

II III

2 3

1------1 r------'

block directory.

step 8. Split block directory II. Split data bucket(#2).
Insert record i and j.

1 _____ 2 _____ 3 -----4 _____ 5 -----6------
II : a : b : e : f : d : g :

: __ c __ : __ i __ : __ j __ : _____ : __ h __ : _____ :

data buckets
1-- _,_- -1

block dir.

step 9. Delete b. 2
I I
I I
I i I
1- -1

step 10. Delete g. Underflow occurred in data bucket(#6).

88

Find candidate #2 and merge it to #6(current bucket).
Merge directory II.

f-----1

block dir.

1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 ____ _

: a ://///: e : f : d : i :
: __ c __ :/1///: __ j __ : _____ : __ h __ : _____ :

data buckets. /Ill : in avail list.

Delete i. No merge candidate.

89

step 11.
step 12. Delete h. Underflow occurred in bucket #5 and found

candidate bucket #6. Merge #6 to #5.
Merge block directory II.

resident directory.

1- ____ , ____ _.,.

I

r-----i 1-----1

>-----1

block directory.

1 _____ 2~ _____ 3 ______ 4 _______ 5 ______ 6 _____ _
: a ://////: e : f : d ://////:
: __ c __ ://////: __ j ___ : ______ : ______ ://///1:

data bucket

step 13. Underflow in directory bucket II. Found merge candidate
directory bucket III. Merge them and adjust mapping in
resident directory.

1----------1

=>

r-----1-----1

resident directory.

90

I II

f-----< f-----t

block directory.

step 14. Delete e, a and j. Underflow in data bucket #3. Find
merge candidate #5. Merge block directory. Underflow in
directory bucket II, but no candidate directory bucket.

I II

t-----1----4 1----4

resident dir. block directory.

1 _____ 2 _____ 3 _____ 4 _____ 5 ______ 6 ____ _

: c :;;;;;: d : f :11111:111/1:
: _____ ://///: _____ : _____ ://///://///:

data bucket

step 15. Delete c. Underflow in data bucket #1. Find merge
candidate bucket #4. Merge them into #1. Underflow in
directory bucket I. Find candidate bucket II. Merge
them and adjust mappin~ in resident directory. Merge
resident directory.

=>

1-----1-----1 1----------f

resident directory.

91

I I

=>
---- ---l
1 3
____ j ____ i

1-----;
..._ ___ 1-----·-----;

block directory

1 _____ 2 _____ 3 _____ 4 _____ 5 _____ 6 ____ _
: f :;;;;;: d :;;;;;:;;;;;:;;;;;:
: _____ ://///: _____ :;;;;;:;;;;;:;;;;;:

data bucket. /1111 bucket in avail-list.

APPENDIX C

A DISCUSSION ON THE STRATEGIES OF CHOOSING

SPLIT AND MERGE DIMENSIONS

AND BOUNDARY VALUES

We discuss here the strategies of choosing a dimension to

be split and a boundary value(split position) to be inserted

in the dimension in some informal way. In choosing the split

dimension, if we are given the characteristics of data set such

as its distribution and some necessity to refine in a certain

dimension, we can adapt our policy to that characteristics.

Otherwise, we must establish a determinable sequence.

The simplest is a 'cyclic' method which selects one

dimension in turn among all dimensions. This method works well

in a single level grid file[27]. However, we can expect

undesirable state in a double level grid file as discussed

below.

A grid file is a multikey access structure which treats

all keys symmetrically. Without any specific information of

attributes of each dimension, we do not need to make them more

refined in some dimension. We keep the refined-level as

uniform as possible in all dimensions. The local levels

discussed in main chapters define the refined-level in each

dimension. We compute the levels with procedures on each

92

93

scale. Our algorithm for choosing a dimension to be split is

as follow:

get_split_dim:

I* subscripts denote dimensions *I

do for each dimension i I* 1 <= i <= k *I
leveli <- get_level(); I* by Algorithm 1 *I

od

find the smallest leveli ;
if found several dimensions of the same smallest value

then

fi

numberj <- numbers of entries in a scale defining
the dimensions;

find the smallest numberj ;
if found several dimensions of same numberj then

return(1);1*first dimension to get a unique dim *I
fi
return(j);

return(i);
end get_split_dim

We may meet the same state of directory like State 1 in

both the cycle method and level method(we call the method of

the algorithm above hereafter) when we start splitting t.he

directory at vertical dimension. The numbers in blocks of the

directory are pointers to data buckets. Assuming that data

bucket #1 is to be split and followed by directory splitting,

each state is as State 2.

Comparing the two states, we see that local levels vary

from one to three in the state by cycle method and from one to

two in the state by level method. Using the same data set, we

get different refinement among dimensions. We expect more

fluctuation in query reponse time when levels spread more

widely. In view of the neighborhood property, we prefer to the

state 1:

1 2 3
I
I

I I I I

1---~---~-------1
I I I I
I I I I

: 4 5 6
, ___ , ___ • _______ !

I I I I

7 8 9
I I I I l ___ l ___ l _______ l

By cycle method

3 1
I I

---~---1-------
1 I
I I
I I
I I

1 2

I I l ___ l __ _

I I
I I

4 5

3

I

-------1
6

I
I
I
I

l ___ l ___ l _______ l

I I I I

7 8 : 9
I I I I
I --- I--- I ------- I

By level method

__ : ___ : ___ : _______ : ___ 2
I I I I
I I I I

split sequence in
both cases.

--:---:---:-------:--- 4
I I I I
I--- I--- I------ I

I I
I I

state 2:

5
I

-~-------------1 I
I I

2 3 1 2 3 : 1: 1

10: --'---'---'-------·--
I I I
1-1-1---
1 I I
I I I

:4:4: 5

I _______ I

6 I
I l_l_l ___ l _______ l

I I I I 1

:7:7: 8 : 9
I I I I I
I- I -1 -- 1 ------- 1

I
1

By cycle method

1 I I I

:1o : 2 3 :
I I I I

1---~---~-------1
I I I I
I I I I

: 4 5 : 6 , ___ , ___ , _______ 1

I I I I

: 7 : 8 9 :
I I 1 I
I--- I---I------ I

By level method

5

94

95

state by level method. Moreover, the simplicity of cycle method

in choosing the dimension to be split can not be obtained in a

double level grid file. We have to maintain the cycle sequence

separately in grid directory and each block directory.

Otherwise, the variance of level value becomes greater. We may

meet state 3 when data bucket #9 is split and directory

splitting follows in State 2.

state 3:

I
I

1: 2
10

4 4 5
- - ---
1 1 8
7 7 8 - -

By cycle

3

6

11 6

9 --- --
method

6
I

--------~---1 I I
I I I

1 : 2 : 3 : 3 ___ l ___ l ___ l __ _

I • I

10 : 2 3 : 3
I

- -1--
I
I

4 : 5 6 6 ___ I __ _

I

7 : 8 9 11
I

--·1--

By level method

Assume that we split the directory bucket containing the

block directory of state 3 along vertical dimension. We choose

the split boundary which separate blocks corresponding to data

bucket #2 and #3 in each block directory to keep the binary

split constraints. In case of cycle method, one of new

directory buckets contains four blocks and the other contains

12 blocks. In contrast, each new directory bucket has 8 blocks

in level method. This implies that level method makes more

'adaptable' structure which is one of characteristics of grid

96

file. We expect more uniform response time in user interface

insertions and deletions.

In choosing a boundary value for splitting and merging

operations in grid file, we can adopt directly the splitting

and merging policies of buddy systems on which recently many

papers Have appeared in literature[7,24,32]. These discribe

the dynamic memory allocation mechanisms and their performance

from the stand point of operating systems. There are three

standard buddy systems: binary, Fibonacci and weighted buddy

systems. We digress from our discussion to summarize their

work. The average internal fragmentation of the binary buddy

system is larger than that of the Fibonacci buddy system which

is larger than that of weighted buddy system. The external

fragmentation of binary buddy system is less than that of

Fibonacci buddy system which is less than that of weighted

buddy system. The total fragmentation of the three buddy

system are almost the same showing around thirty percent value.

With systems, they conclude there is a reasonable assurance

that no better buddy system can be chosen without knowledge of

the actual memory request distribution.

In a grid file, we split a data bucket into two and

maintain a correspondence between the bucket and its embedded

space location in a directory. In maintaining the directory

dynamically, we can adopt the address computation methods of

buddy systems for splitting and merging operations.

In binary buddy system, the entire memory space consists

of 2m words, which means the address space is [0,2m). This

97

method splits its memory spaces by bisecting them. So the

address of a block of size 2k is a multiple of 2k. Memory

sizes allowed are 1, 2, 4, 8, 16, In Fibonacci buddy

system, the initial entire address space is size Fn and blocks

size Fi are split into blocks of size Fi-1 and Fi-2(Fi is the

i'-th Fibonacci number). So the allowed memory sizes are 1. 2,

3, 5, 8, 13, ... In a weighted buddy system blocks may be of

sizes 2k, 0<= k <= m, and 3*2k,0 <= k <= m-2 when initial total

memory size is 2m. So the allowed block sizes are 1, 2, 3, 4,

6, 8, 12, ...

In binary buddy system, we can easily compute the address

of a buddy of a block given the block's address and its size as

follows:

A : a block of size 2k,
addr(A) : address of A.

if addr(A) mod 2k+l = 0 then
addr(buddy(A)) = addr(A) + 2k;

else if addr(A). mod 2k+l = 2k then
addr(buddy(A)) = addr(A) - 2k;

fi

This address computation method is applied to our buddy

system algorithms shown in Chapter V. The address computation

in binary and weighted buddy systems are somewhat straight-

forward. But that of Fibonacci buddy system was not efficient

until Cranston et al.[8] designed the method. We expect more

complexity in choosing split boundary when a directory bucket

is split. We can not find any reason to choose other than

binary buddy system since the bucket occupancy and directory

size are not to be affected by any of these three methods.

APPENDIX D

PDL DESCRIPTION OF A GRID FILE PROGRAM

The grid file program we have implemented for k - 0 - w

dimensions is described in this appendix using program design

language(PDL). We believe that this can be easily extended to

higher dimension cases with slight modification. We have

sometimes followed C-like statements in the descriptions. We

denote variables with upper case letters in procedures. The

global variables are explained at the beginning. But we have not

declared every local variable in every procedure trying to make

them self-explainable with their pseudo names. Indices of arrays

begin with zero value. In most cases, ARRAY[O] is related with

the first dimension and ARRAY[l] with the second dimension.

The global variables declared:

File descriptors and pointers:

rs_scfd - resident scale file.
rs_drfd - resident directory file.
drfd - directory bucket file.
bkfd - data bucket file.
datafp - batch input data file.
outfp - output file.

File pointers acting in primary memory:

rescale[k]

res_drf
scale[k]
directory

- array of pointers to resident scales of k
dimensions.

- resident directory.
- array of pointers to block scales of k dimensions.
- block directory.

98

Structured variables:

structure { short level[k], -region level.
short shared; - show sharing dimension.
short cnt; - record count.
long RBN; - pointer to bucket.

} drelem; - entry of each directory.
structure { long key[k] - key values.

char info[INFOLEN] - non key information.
} record, bucket[NO_REC];

structure { long bkcnt;
long availhead;
long availcnt;

} bkhead, drbkhead; - head of each bucket file.

Flags and Others:

- array of entry numbers of resident scale.

99

reschead[k]
rs_idx[k]
schead[k]
idx[k]
rsaddr
addr
curr_RBN

- array of current index in each resident scale.

. currDR_RBN
*_changed
* init

- array entry numbers of block scale.
- array of current index in each block scale.

pointer to current cell in resident directory.
- pointer to current cell in block directory.
- pointer to currently acting data bucket.
- pointer to currently acting directory bucket .
show if *_file is modified or not.
show if *_file is for created one or not.

Major defined variables:

NO SHARE = -1 : This means that current cell in directory is not
a bucket region, e.g. a single block.

X SHARE = 0 : This means that current cell forms a bucket
regin with its neighbor(s) to the direction of
first dimension.

YSHAR.E = 1 This means that current cell forms a bucket
region with its neighbor(s) to the direction of
second dimension.

XYSHARE = 2 This means that current cell forms a bucket
region with its neighbor(s) to both directions
of first and second dimensions.

These values are to be kept in the field 'shared' of the

structured variable 'drelem' which is an entry of directory.

The values are used extensively to distinguish the cases of

merging and splitting discussed in Chapter IV. We have some more

defined-variables that are explainable by themselves.

main:proc(argument);
I* get arguments from OIS *I

if argument number < 2 then
message and exit; fi

initialize flags;
clear BUCKET with -1 in each key;

if argument number is two then
open files and assign file descriptors;
load their headers calling load*(fd,case);

else if argument number is three then

fi

creat files and assign file descriptors;
initialize their headers calling load*(fd,case);
initialize *_INIT flags with TRUE;

if data file opened then I* batch operation *I
call build_gridfile(datafp); fi

if DO_INIT = TRUE then I* for just created grid file *I
call statitstics(gridfile); fi

I* user interface procedure *I
call menu();
do while(opcode < NO_FUNCT)

od

when(opcode)
0: get keys and call find(gridfile,RECORD);
1: get RECORD and call insert(gridfile,RECORD);
2: get keys and call delete(gridfile,RECORD).;
3: call update(gridfile);
4: call range_query(gridfile);

call menu();

if DO_INIT or RSDR_CHANGED then

100

I* gridfile is created or resident directory changed *I
write RESCHEAD[k] and RESCALE[K] to file RS_SCFD;
write RES_DRF to RS_DRFD;

fi

if DR_CHANGED then I* directory is changed *I
seek the beginning of DRFD;

fi

write DRBKHEAD;
seek the position of current resident directory bucket.
write SCHEAD[K], SCALE[K], and DIRECTORY to file DRFD;

if BK_CHANGED then I* bucket is modified *I
seek the beginning of file BKFD;

fi

write BKHEAD;
seek the position of current data bucket;
write BUCKET;

close files;
end main

The following procedures are to load files into primary
memory.

101

loadrescale(): this is to load resident scale file from RS_SCFD.
loadresdrf(): This is to load resident directory from RS_DRFD.
loaddrf() : This is to load current directory from DRFD.
loadbkf() : This is to load current data bucket from BKFD.

loadrescale:proc(fd,case)
I* This is to load resident scale file *I

if CASE is for existing gridfile then
seek the beginning of file RS_SCFD;
read RESCHEAD[k];
allocate RESCALE[k] with each size of RESCHEAD[k];
read RESCALE[k];

else I* for a new created grid file *I

fi

initialize RESCHEAD[k] with each 2;
allocate RESCALE[k] WITH each size of 2;
initialize RESCALE[k] with MINBOUND[k] and MAXBOUND[K];

end loadrescale

loadresdrf:proc(fd,case)
I* This is to load resident directory file *I

allocate RES_DRF with size of multiply of RESCHEAD[k]-1;
if CASE is for a created gridfile then

initialize entries of RES_DRF with 0 and NOSHARE each;
else I* for existing gridfile *I

seek the beginning of RS_DRFD;

fi

read RES_DRF from the file RS_DRFD;
currDR_RBN = -1 I* means that current directory not

loaded yet *I

end loadresdrf

loaddrf:proc(fd,case)
I* This is to load current directory *I

if CASE is for a created grid file then
initialize DRBKHEAD and SCHEAD[k];
allocate SCALE[k] and DIRECTORY with initial sizes;
initialize SCALE[k] and DIRECTORY with init values;
curr_RBN = 0 I* point to first data bucket *I
write DRBKHEAD to DRFD;

else if CASE is for a opened gridfile then
read DRBKHEAD from the opened file;
curr_RBN = -1; I* There is no current data bucket *I

else I* replacement of directory bucket *I
if DR_CHANGED then /* directory was modified */

seek currDR_RBN position of fd;
write SCHEAD[k], SCALE[k] and DIRECTORY;

fi
seek new position for new directory;
read new SCHEAD[KJ;
allocate SCALE[k], DIRECTORY with SCHEAD[k] values;

fi

read SCALE[k], DIRECTORY from fd;
DR_CHANGED = FALSE;

end loaddrf

102

loadbkf:proc(fd,case) I* case shows a new bucket position *I
if CASE is for a created gridfile then

initialize BKHEAD with inti values;
write BKHEADinto file BKFD;
curr_RBN = 0 I* point first databucket *I

else if CASE is for a opened gridfile then
read BKHEAD from file BKFD;

else I* replacement of current BUCKET *I
if current bucket was changed then

fi

fi

seek current data bucket position in BKFD;
write current BUCKET;

clear current BUCKET;
seek and read BUCKET from the new bucket position in BKFD;
BK_CHANGED = FALSE;

end loadbkf

build_gridfile: proc(datafp)
do while get_record(datafp) not EOF

if RECORD.KEY[O] < 0 then
negate RECORD.KEY[O];
call delete(BKFD,RECORD);

else
call insert(BKFD,RECORD);

fi
od
close data file;

end build_gridfile

insert: proc(fd,RECORD)
if record keys are not valid then

message and return; fi
if find(fd,RECORD) < 0 then I* find() is a function *I

if ADDR-> CNT < MAX_NO_REC then I* bucket not full */
insert RECORD in current BUCKET;
increment ADDR->CNT;
arrange mapping of directory;
DR_CHANGED = BK_CHANGED = TRUE;

else I* bucket full *I
call split(gridfile);
call insert(fd,RECORD);

fi
else

message 'record found'
fi

end inBert

delete: proc(fd,RECORD)
if record keys are not valid then

message and return; fi

if (i = find(fd,RECORD)) >= 0 then

103

I* i stands for the record position in bucket *I
clear record BUCKET[i];

else

fi

decrement ADDR->CNT;
arrange mapping of directory;
DR_CHANGED = BK_CHANGED = TRUE;
if ADDR->CNT < LOW_THRESHOLD then

call merge(gridfile); fi

message 'record not exist';

end delete

find:function(fd,RECORD)
do for all k

RS_IDX[k] = index(RESCALE[k],RECORD.KEY[k],RESCHEAD[k]);
od

I* following computation is for the case: k = 2 *I
RSADDR = RES_DRF + RS_IDX[1] * (RESCHEAD[0]-1) + RS_IDX[O];
if RSADDR->RBN != currDR_RBN then

fi

POS = new directory bucket position ;
call loaddrf(DRFD,POS); I* replacement of directory *I
currDR_RBN = RSADDR->RBN;

do for all k
IDX[k] = index(SCALE[k],RECORD.KEY[k],SCHEAD[k]);

od
I* following computation is for the case: k = 2 *I

ADDR =DIRECTORY+ IDX[1] * (SCHEAD[O] - 1) + IDX[O];
if ADDR->RBN != curr_RBN then

fi

POS = new data bucket position;
call loadbkf(BKFD,POS); I* replacement of bucket *I
curr_RBN = ADDR->RBN';

search RECORD in current BUCKET;
if found then return the record position in BUCKET;
else return (-1);
fi

end find

split: proc()
if ADDR->SHARED > NOSHARED then/* curr dir is a bucket region*/

call split_bucket(new_RBN,ADDR->SHARED);
else

DIM= get_split_dimension();
if current directory will be overflowed then

call split_resident();
else

104

call split_scale(SCALE[dim],IDX[dim],SCHEAD[dim],O);
increment SCHEAD[DIM];

fi
fi

call split_dr(DIRECTORY,IDX[k],DIM,ISRES= 0);
DR_CHANGED = TRUE;

end split

split_resident:proc
if RSADDR->SHARED > NOSHARE then/* directory bucket region *I

split_dr_bucket(DRFD,RSADDR->SHARED);
else

fi

DIM= get_split_dim();
call split_scale(RESCALE[dim],RE_IDX[dim],RESCHEAD[dim],l);
increment SCHEAD[DIM];
call split_dr(RES_DRF,RE_IDX[k],DIM,isres = 1);
RSDR_CHANGED = TRUE;

end split_resident

split_scale:proc(scl[i], INDEX[i], no_of_boundary,ISRES)
get LOW_ and UP_BOUND of interval IDX in the SCL[i];
NEW_BOUND = (LOW_BOUND + UP_BOUND) I 2;
allocate NEW_SCALE the size of which is increased by 1;
1, j = 0;
do while 1 < no_of_boundary

od

1-th entry of NEW_SCALE = j-th entry of SCL[i];
if 1 = INDEX[i] then

increment 1;
1-th entry of NEW_SCALE = NEW_BOUND;

fi
increment l,j;

free SCL[i];
if ISRES = 0 then I* this is for block scale *I

SCALE[i] = NEW_SCALE;
else I* this ia for resident scale *I

RESCALE[i] = NEW_SCALE;
fi

end split_scale

merge_scale:proc(scl[i], index[i], no_of_boundary,isres)
allocate NEW_SCALE the size of which is decreased by 1;
l,j = 0;
do while 1 < NO_OF_BOUNDARY

if 1 != INDEX[i] then

od

fi

j-th entry of NEW_SCALE = 1-th entry of SCL[i];
increment j ;

increment 1;

free SCL;

if ISRES = 0 then I* for block scale *I
SCALE[i] = NEW_SCALE;

else
RESCALE[i] = NEW_SCALE;

end merge_scale

split_dr:proc(curr_dr,idx[k],dim,sch[k],isres)

NEWSIZE = (SCH[O] - 1) * (SCH[1] - 1);
allocate NEW~DR with size of NEWSIZE;
if DIM = 0 then

CURR_SIZE = (SCH[O] - 2) * (SCH[1] - 1);
i,j = 0;

105

I* traverse current DIR to copy entries to new DIR *I
do while i < CURR_SIZE

od

if i mod (SCH[O] - 2)) = idx[O] then
if current SHARED < XSHARE then

current SHARED = XSHARE;

fi

else if current SHARED = YSHARE then
current SHARED = XYSHARE;

fi
j-th entry of NEW_DR = i-th entry of CURR_DR;
j = j + 1;

j-th entry of NEW_DR = i-th entry of CURR_DR;
i = i + 1;

else if DIM = 1 then

fi

CURR_SIZE = (SCH[O] - 1) * (SCH[1] - 2);
i,j = 0;
do while i < CURR_SIZE
if i < (SCH[O] - 1) * IDX[1] then

i-th entry of NEW_DR = i-th entry of CURR_DR;
j"= j + 1;

else if (SCH[0]-1) * IDX[l] <= i < (SCH[0]-1) *(IDX[1]+1)
if current SHARED < XSHARE then

current SHARED = YSHARE;
else if current SHARED = XSHARE then

current SHARED = XYSHARE;
fi
i-th entry of NEW_DR = i-th entry of CURR_DR;
(i+SCH[0]-1)th entry of NEW_DR= i-th entry of CURR_DR;
j = j + 2;

else

fi

j-th entry of NEW_DR = i-th entry of CURR_DR;
j = j + 1;

increment i;
od

free CURR_DR;
if ISRES then

RES_DRF = NEW_DR;
else

DIRECTORY = NEW_DR;
fi

end split_dr

split_bucket:proc(new_RBN,shared)
if SHARED = XYSHARE then

fi

if ADDR->LEVEL[O] > ADDR->LEVEL[1] then
SHARED = YSHARE;

else
SHARED = XSHARE;

fi

if SHARED = XSHARE then

106

call region() to get LOW and UP region boundary in SCALE[O];
SPLIT_BOUND = (LOW + UP) I 2;
get region LOW_ and UP_INDEX in each dimension;

if UP <= SPLIT_BOUND then
i,j = 0;
do while i < NO_REC in BUCKET

od

if BUCKET[i].KEY[O] >= SPLIT_BOUND then
move BUCKET[i] to NEW_BUCKET[j];
j = j + 1; fi
increment i;

I* adjust mapping of DR to buckets *I
i =region LOW_INDEX[O];
k =region LOW_INDEX[1];
do while i <= region UP_INDEX[O]

do while k <= region UP_INDEX[1]
PTR = DIRECTORY+ i * (SCHEAD[OJ - 1) + k;
if k-th boundary in SCALE[O] < SPLIT_BOUND then

PTR->CNT = PTR->CNT - j;
else

PTR->CNT = j;
PTR->RBN = BKHEAD.AVAI~HEAD; I* new bucket pos *I

fi
increment PTR->LEVEL[O];

I* adjust SHARED value *I
get local level with SCALE[O];
I* get split level by adding one to region level *I

SPLIT_LEVEL = ADDR->LEVEL[O] + 1;
if LOCAL_LEVEL > SPLIT_LEVEL then

do nothing;
else if LOCAL_LEVEL = SPLIT_LEVEL then

if LOW_INDEX[l] = UP_INDEX[l]
PTR->SHARED = NOSHARED;

else
PTR->SHARED = YSHARE;

fi
fi
increment k;

od
increment i;

od
else if LOW >= SPLIT_BOUND then

fi

perform the same algoritm as above with appropriate
SCALE and SHARED dimension;

else if SHARED = YSHARE then

fi

perform the same algorithm as above with appropriate
SCALE and SHARED dimension;

if UP <= SPLIT_BOUND then
perform same algorithm as XSHARE case;

else if LOW > SPLIT_BOUND then
perform same algorithm;

fi

DR_CHANGED = BK_CHANGED = TRUE;
if BKHEAD.AVAILCNT > 0 then

else

POS = BKHEAD.AVAILHEAD * BKSIZE + sizeof(BKHEAD);
BKHEAD.AVAILHEAD = the next avail bucket RBN at POS;
write NEW_BUCKET at POS of BKFD;
decrement BKHEAD.AVAILCNT;

if BK_INIT then

107

write the very first BUCKET at the next of BKHEAD;
else

fi

seek the end of BKFD;
fi
write NEW_BUCKET;
increment BKHEAD.AVAILHEAD;
increment BKHEAD.BKCNT;

end split_bucket

split_dr_bucket: proc(shared)
if SHARED = XYSHARE then

fi

if RSADDR-> LEVEL[O] > RSADDR->LEVEL[1] then
SHARED = YSHARE;

else
SHARED = XSHARE;

fi

CURR_SIZE = (SCHEAD[O] - 1) * (SCHEAD[1] - 1);

if SHARED = XSHARE then
REGION_LEVEL = RSADDR->LEVEL[O];
call region() to get region LOW_ AND UP BOUND in RESCALE[O];
SPLIT_BOUND = (LOW_BOUND + UP_BOUND) I 2;
get SPLIT_IDX in SCALE[O];
get region LOW_ and UP_INDEX in each dimension;
TO_SCALE[1] = T1_SCALE[1] = SCALE[1];
TO_SCHEAD[l] = Tl_SCHEAD[l] = SCHEAD[1];

108

if UP_BOUND <= SPLIT_BOUND then
allocate TO_SCALE[O] with size of (SPLIT_IDX + 1);
allocate T1_SCALE[O] with size of (SCHEAD[O]-SPLIT_IDX);
divide SCALE[O] into two at boundary SPLIT_IDX;
copy lower region of SCALE[O] to TO_SCALE[O];
copy upper region of SCALE[O] to T1_SCALE[O];
TO_SCHEAD[O] = SPLIT_IDX + 1;
T1_SCHEAD[O] = SCHEAD[O] - SPLIT_IDX;
SIZEO = (TO_SCHEAD[O] - 1) * (TO_SCHEAD[1] - 1);
SIZE1 = (Tl_SCHEAD[O] - 1) * (Tl_SCHEAD[l] - 1);
allocate TO_DR with size of SIZEO;
allocate Tl_DR with size of SIZE1;
i,j,k = 0;

I* divide DIRECTORY along SPLIT_IDX *I
do while i < CURR_SIZE

if i mod (SCHEAD[O] - 1) < SPLIT_IDX
copy i-th entry of DIRECTORY to j-th entry of TO_DR;
j = j + 1;

else

fi

copy i-th entry of DIRECTORY to k-th entry of T1_DR;
k = k + 1;

i = i + 1;
od

I* adjust mapping of RES_DRF to directory bucket *I
j =region LOW_IDX[1]; i =region LOW_IDX[O];
do while j <= UP_IDX[1]

od

do while i <= UP_IDX[O]

od

PTR = RES_DRF + j * (RSCHEAD[0]-1) + i;
increment ~TR->LEVEL[O];
get LOCAL_LEVEL of i-th interval of RESCALE[O];
SPLIT_LEVEL = REGION_LEVEL + 1;
if LOCAL_LEVEL > SPLIT_LEVEL then

do nothing;
else if LOCAL_LEVEL = SPLIT_LEVEL then

if LOW_IDX[l] = UP_IDX[l] then
PTR->SHARED = NOSHARE;

else
PTR->SHARED = YSHARE;

fi
fi
if i-th boundary in RESCALE[O] >= SPLIT_BOUND then

PTR->RBN = DRBKHEAD.AVAILHEAD; fi
increment i;

increment j;

else if LOW_BOUND >= SPLIT_BOUND then

fi

do same alogrithm but reversing upper and lower
region of split boundary;

else if SHARED = YSHARE then
REGION_LEVEL = RSADDR->LEVEL[l];
call region() to get region LOW_ and UP_BOUND in RESCALE[1];

SPLIT_BOUND = (LOW_BOUND + UP_BOUND) I 2;
get SPLIT_IDX in SCALE[1] with SPLIT_BOUND;
get region LOW_ and UP_IDX in each dimension;
TO_SCALE[O] = T1_SCALE[O] = SCALE[O];
TO_SCHEAD[O] = Tl_SCHEAD[O] = SCHEAD[O];

if UP_BOUND <= SPLIT_BOUND then
TO_SCHEAD[l] = SPLIT_IDX + 1;
T1_SCHEAD[1] = SCHEAD[l] - SPLIT_IDX;
allocate tO_SCALE[l] with size of TO_SCHEAD[l];
allocate Tl_SCALE[l] with size of Tl_SCHEAD[l];
divide SCALE[l] into two at boundary SPLIT_IDX;
copy the lower region to TO_SCALE[l];
copy the upper region to T1_SCALE[l];
SIZED= (TO_SCHEAD[O] - 1) * (TO_SCHEAD(1] - 1);
SIZEl = (Tl_SCHEAD[O] - 1) * (T1_SCHEAD[1] - 1);
allocate TO_DR with size of SIZEO;
allocate T1_DR with size of SIZE1;
i,j,k = 0;

I* divide DIRECTORY *I
do while i < CURR_SIZE

if i < (SCHEAD[0]-1) * SPLIT_IDX then

109

copy i-th entry of DIRECTORY to j-th entry of TO_DR;
j = j + 1;

od

else

fi

copy i-th entry of DIRECTORY to k-th entry of Tl_DR;
k = k + 1;

i = i + 1;

I* adjust mapping of RES_DRF to directory bucket *I
i =region LOW_IDX[1]; j =region LOW_IDX[O];
do while i <= UP_IDX[1]

od

do while j <= UP_IDX[O]

od

PTR = RES_DRF + i * {RESCHEAD[0]-1) + j;
increment PTR->LEVEL[l];
get LOCAL_LEVEL of i-th interval in RESCALE[l];
SPLIT_LEVEL = REGION_LEVEL + 1;
if LOCAL_LEVEL > SPLIT_LEVEL then

do nothing;
else if LOCAL_LEVEL= SPLIT_LEVEL then

if LOW_IDX[O] = UP_IDX[O] then
PTR->SHARED = NOSHARE;

else
PTR->SHARED = XSHARE;

fi
fi
if i-th boundary in RESCALE[l] >= SPLIT_BOUND then

PTR->RBN = DRBKHEAD.AVAILHEAD; fi
increment j;

increment i;

else if LOW_BOUND >= SPLIT_BOUND then

110

I* do same algorithm but reversing lower and upper
region of split boundary *I

fi
fi

RSDR_CHANGED = DR_CHANGED = TRUE;
if DRBK_INIT is TRUE then

seek DRFD the very next to DRBKHEAD;
write TO_SCHEAD,TO_SCALE,TO_DR;
clear the remainder of the directory bucket;
DRBK_INIT = DRBK_CHANGED = FALSE; fi

if DRBKHEAD.AVAILGNT > 0 then
seek DRFD the position of availhead;
read the next avail directory bucket;
update the DRBKHEAD.AVAILHEAD with next availhead;
decrement DRBKHEAD.AVAILCNT;

else

fi

seek DRFD the end of the file;
increment DRBKHEAD.AVAILHEAD;
increment DRBKHEAD.BKCNT;

I* write new directory bucket *I
write DRFD with Tl_SCHEAD,Tl_SCALE,Tl_DR;
clear the remainder of the directory bucket;

free Tl_SCALE and Tl_DR;
I* substitute current dirctory *I

SCHEAD = TO_SCHEAD;
DIRECTORY = TO_DR;
SCALE = TO_SCALE;

end split_drbk

merge:proc(bucket, scale, directory)
I* call function candidate() to find candidate bucket to be

merged and the dimensioin for merging. The function returns
TRUE if there is valid candidate and FALSE, otherwise *I

if candidate(cand_bucket,cand_dim) is not TRUE then
message 'no candidate ';
return;

fi

call merge_bucket(cand_bucket,cand_dim)
if ADDR->SHARED = XYSHARE then

get full range level F_LEVELk[] in each SCALE[k];
if ADDR->LEVEL[O] = F_LEVEL[O] and

ADDR->LEVEL[l] = F_LEVEL[l] then
call merge_dr(DIRECTORY,IDX[k],XYSHARE);

else if ADDR->LEVEL[O] = F_LEVEL[O] then
compute MERGED_SIZE to be after merge;
if MERGED_SIZE < LOW_THRESHOLD of DRBKSIZE then

call merge_scale(SCALE[l],IDX[l],SCHEAD[l]);
call merge_dr(DIRECTORY,IDX[k],YSHARE);

fi
else if ADDR->LEVEL[l] = F_LEVEL[l] then

111

compute MERGED_SIZE to be after merge;
if MERGED_SIZE < LOW_THRESHOLD of DHBKSIZE t.hen

call merge_scale(SCALE[O],IDX[O],SCHEAD[O]);
call merge_dr(DIRECTORY,IDX[k],XSHARE);

fi
fi

fi
end merge

candidate: function(cand_bucket,cand_dim)
I* search the first dimension *I

get lower and upper bound of interval IDX in SCALE[O];
call region() and get region LOW and UP of the interval;
REG_BUD_LOW[O] = get_buddy(SCALE[O],LOW,UP,MAXBOUND[O]);
i = 0;
do while i < SCHEAD[O]

od

if i-th boundary in SCALE[O] = REG_BUD_LOW[O] then
PTR = DIRECTORY + YIDX * (SCHEAD[0]-1) + i;

fi

if (ADDR->CNT + PTR->CNT) < UPPER_THRESHOLD and
ADDR->LEVEL[k] = PTR->LEVEL[k] in each k then
TO_BE_MERGED[O] = PTR->RBN; fi
break;

increment i;

search the second dimension with the same algorithm as above;

if both TO_BE_MERGED[K] is available then
if ADDR->LEVEL[O] > ADDR->LEVEL[l] then

CAND_BUCKET = TO_BE_MERGED[O];
CAND_DIM = 0; I* first dimension *I

else if ADDR->LEVEL[O] < ADDR->LEVEL[l] then
CAND_BUCKET = TO_BE_MERGED[l];
CAND_DIM = 1; I* second dimension *I

else if SCHEAD[O] < SCHEAD[l] then

else

fi

CAND_BUCKET = TO_BE_MERGED[l];
CAND_DIM = 1;

CAND_BUCKET = TO_BE_MERGED[O];
CAND_DIM = 0;

else if TO_BE_MERGED[O] is available then
CAND_BUCKET = TO_BE_MERGED[O];
CAND_DIM = 0;

else if TO_BE_MERGED[l] is available then
CAND_BUCKET = TO_BE_MERGED[l];
CAND_DIM = 1;

fi

if there is valid CAND_BUCKET then
return TRUE;

else
return FALSE;

fi
end candidate

merge_bucket:proc(cand_bucket,cand_dim)
seek BKFD for the position of CAND_BUCKET;
read the bucket into TEMP_BK[NO_REC];
i, j, k = 0 ;
do while all i,j,k < NO_REC

od

do while BUCKET[j].KEY[O] > 0 I* skip record exist *I
j = j + 1;

od
do while TEMP_BK[k].KEY[O] < 0 and k < NO_REC

k = k + 1;
od
if k >= NO_REC then

break; fi
BUCKET[j] = TEMP_BK[k];
increment all i,j,k;

I* collect merged bucket at avail list *I
get total record count, MERGED_CNT;
clear TEMP_BK[];
TEMP_BK[O].KEY[O] = BKHEAD.AVAILHEAD;
write back TEMP_BK at CAND_BUCKET position;
BKHEAD.AVAILHEAD = RBN of CAND_BUCKET;
increment BKHEAD.AVAILCNT;
DR_CHANGED = BK_CHANGED = TRUE;

I* adjust mapping of directory *I
if CAND_DIM = 1 then

112

get low and up boundary of interval IDX[l] in SCALE[l];
call region() with the values and decremented

ADDR->LEVEL[l] to get region LOW_ and UP_BOUND in
SCALE[1];

get low and up boundary of interval IDX[O] in SCALE[O];
call region() with the values to get region LOW_ and

region UP_BOUND in SCALE[O];
get region index LOW_IDX[k] and UP_IDX[k] with above values
i = LOW_IDX[l]; j = LOW_IDX[O];
do while i <= UP_IDX[1]

od

do while j <= UP_IDX[O]

od

PTR = DIRECTORY + i * (SCHEAD[0]-1) + j;
decrement PTR->LEVEL[l];
PTR->CNT = MERGEC_CNT;
PTR->RBN = ADDR->RBN;
if PTR->SHARED < XSHARE then

PTR->SHARED = YSHARE;
else if PTR->SHARED = XSHARE then

PTR->SHARED = XYSHARE;
fi
increment j;

increment i;

else if CAND_DIM = 0 then

113

perform the same algorithm as above base on SCALE[O];
fi

end merge_bucket

merge_dr: proc(directory,idx[k],merge_dim)
if MERGE_DIM = XSHARE then

PRE_MIDX=index(SCALE[O],IDX[O],ADDR->LEVEL[O],MAXBOUND[O]);
MIDX = PRE_IDX + 1;
allocate MERGED_DR with decreased size by one column;

I* copy old directory to new one *I
i,j,k,l = 0;
do while i < SCHEAD[1]-1

od

do while j < schead[0]-1

od

if j != P_MIDX then
copy 1-th entry of DIRECTORY to k-th entry of
MERGED_DR;
increment k,l;

else

fi

1-th entry of DR.SHARED = YSHARE;
copy 1-th entry to k-th entry of MERGED_DR;
increment j,k;
1 = 1 + 2;

increment j;

increment i;

decrement SCHEAD[O];
free DIRECTORY;
DIRCTORY = MERGED_DR;

else if MERGE_DIM = YSHARE then
PRE_MIDX = index(SCALE[1],IDX[1],ADDR->LEVEL[1],MAXBOUND[l]);
MIDX = PRE_MIDX + 1;
allocate MERGED_DR with decresed size by one row;
i,j,k,l = 0;
do while i < SCHEAD[1]-1

od

do while j < SCHEAD[0]-1

od

if i < PRE_MIDX or i > MIDX then
copy 1-th entry of DR to k-th entry of MERGED_DR;
increment l,k;

else if i = PRE_MIDX then
1 = 1 + SCHEAD[O] - 1;
break;

else if i = MIDX then

fi

1-th entry of DR.SHARED = XSHARE;
copy 1-th entry of DR to k-th entry of MERGED_DR;
increment l,k;

increment j ;

increment i;

decrement SCHEAD[l];
free DR;

DR = MERGED_DR;
else if MERGE_DIM = XYSHARE then

allocate MERGED_DR with size of one;
entry of MERGED_DR = entry of ADDR;
MIN= lowest boundary of SCALE[O];
MAX= highest boundary of SCALE[O];
free SCALE[O];

fi

allocate SCALE[O] with size of two;
assign MIN to thefirst entry of SCALE[O];
assign MAX to the second entry of SCALE[O];
MIN= lowest boundary of SCALE[1];
MAX= highest boundary of SCALE[l];
free SCALE[l];
allocate SCALE[l] with size of two;
assign MIN to the first entry of SCALE[l];
assign MAX to the second entry of SCALE[l];
SCHEAD[O] = SCHEAD[l] = 2;
free DR;
DR = MERGED_DR;

end merge_dr

update: proc(gridfile)
I* update records interactively *I

CONTINUE = TRUE;
do while CONTINUE = TRUE

get RECORD from terminal;

od

if (i = find(BKFD,RECORD)) >= 0 then
get NEW_INFO from terminal;
BUCKET[i].INFO = NEW_INFO;
BK_CHANGED = TRUE;

else
message 'requested record not exist';

fi
get a value for and assign to CONTINUE from terminal;

end update

range_query: proc(gridfile)
I* get range in each dimension I*

114

get range bounds BEGIN[k] and END[k] from terminal;
BEG_RS_IDX[k] = index(RESCALE[k],BEGIN[k],RESCHEAD[k]);
END_RS_IDX[k] = index(RESCHEAD[k],END[k],RESCHEAD[k]);
allocate RS_QUEUE; I* for keeping serched directory bucket *I

i = BEG_RS_IDX[O]; j = BEG_RS_IDX[l];
do while i <= END_RS_IDX[O]

do while j <= END_RS_IDX[l]
RSADDR = RES_DRF + j * (RESCHEAD[O] - 1) + i;
if RSADDR->RBN is in RS_QUEUE

break;
else

insert RSADDR->RBN into RS_QUEUE;

od

od

115

fi
if RSADDR->RBN != currDR_RBN then

POS = RSADDR->RBN * DRBKSIZE + sizeof(DRBKHEAD);
call loaddrf(DRFD,POS); I* replace directory *I
currDR_RBN = RSADDR->RBN;

fi
I* do for both of k *I

if first boundary in SCALE[k] < BEGIN[k] then
BEG_IDX[k] - index(SCALE[k],BEGIN[k],SCHEAD[k]);

else
BEG_IDX[k] = 0;

fi
if last boundary in SCALE[k] > END[k] then

END_IDX[k] = index(SCALE[k],END[k],SCHEAD[k]);
else

END_IDX[k] = SCHEAD[k] - 1;
fi

allocate QUEUE; I* for keeping serched data bucket *I
k = BEG_IDX[O]; 1 = BEG_IDX[1];
do while k <= END_IDX[O]

od

do while 1 <= END_IDX[1]

od

ADDR = DIRECTORY + 1 * (SCHEAD[O] - 1) + k;
if ADDR->RBN is in QUEUE then

break;
else

insert ADDR->RBN into QUEUE;
fi
if ADDR->RBN != curr_RBN then

fi

POS = ADDR->RBN * BKSIZE + sizeof(BKHEAD);
call loadbkf(BKFD.POS);
curr_RBN = ADDR->RBN;

sort records in current BUCKET;
report records in the RANGE;
1 = 1 + 1;

k = k + 1;

free QUEUE;
j = j + 1;

i = i + 1;

free RS_QUEUE;
end range_query

VITA 2
Chang Chun Han

Candidate for the Degree of

Master of Science

Thesis: A GRID FILE APPROACH TO LARGE MULTIDIMENSIONAL DYNAMIC
DATA STRUCTURES

Major field: Computing and Information Sciences

Biographical:

Personal Data: Born in Seoul, Korea, February, 1949, the
son of Mr. Young Foong Han and Young Shin Song.

Education: Graduated from Pai Chai High School, Seoul,
Korea, in February, 1967; received Bachelor of
Science degree in Textile Engineering from Seoul
National University in February, 1975; completed
requirements for the Master of Science degree at
Oklahoma State University in May, 1988.

Professional Experience: Sales Engineer in Textile Export
Dept., Hyosung Corp., Seoul, Korea, 1975-1978; Sales
Engineer in Oversees Plants Project Dept., Hyundai
Int'l Corp., Seoul, Korea, 1978-1980; Technical
Project Appraiser in Technical Appraisal Office,
Korea Long Term Credit Bank, Seoul, Korea, 1980 to
present.

