
A NEW ACCESS METHOD AND IMPLEMENTATION

OF A TEMPORAL WATER RESOURCE

DATABASE

By

YUN-CHEN DUNN
1/

Bachelor of Business Administration

National Chengchi University

Taiwan, R. 0. C.

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
July, 1991

A NEW ACCESS METHOD AND IMPLEMENTATION

OF A TEMPORAL WATER RESOURCE

DATABASE

Thesis Approved:

JhJ~is Adviser

t~CLv
//!)< £_ &~
f/~OffJ____

Dean of the Graduate College

ii

1398405

ACKNOWLEDGMENTS

I wish to express sincere appreciation to Dr. Huizhu

Lu for her encouragement and advice throughout my graduate

program. I also wish to thank the other members of my

committee, Dr. G. E. Hedrick and Dr. J. Chandler, for

their suggestions and support during the study.

Many thanks go to individuals who helped me during

my staying at Stillwater. Specially, I extend my sincere

thanks to Xiwin Chen and her family for their providing

a place for me at the final stage of my research. In

addition, I would like to thank Mr. Song-shen Yeh for

his providing me the computer and a place to stay during

the final two weeks of my research. Also, I wish to thank Mr.

David Gadi at the Water Research Laboratory, Oklahoma State

University, for his assistance in my collecting water data for

my project.

Special thanks are due to my family, particularly my

father, who encouraged and supported me all the way. My

deepest thanks are extended to my husband Song-bin Wu for

his moral support, consistent encouragement, and

understanding.

iii

Chapter

I.

TABLE OF CONTENTS

INTRODUCTION

Motivation
Literature Review . . .

Temporal Databases
Water Resources Database . .

Motivation for an Implementation of a
Temporal Water Resources Database

Research Objectives
Organization of The Thesis.

II. BACKGROUND CONCEPTS

Basic Concepts.
Models
Architecture . . .
Relational Data Structure.
Operations

Databases Supporting Temporal Information
Snapshot Database
Rollback Database
Historical Database.
Temporal Database

III. A NEW ACCESS METHOD USING A MODIFIED
PERSISTENT B-TREE

Other Access Methods.
Lum's Approach .
Ben-Zvi's Approach
Ahn's Approach .

A modified Persistent B-tree.
Basic Concepts
Definitions.
Algorithms .
Node Format.
Protocols. .

IV. IMPLEMENTATION OF A WATER RESOURCE
DATABASE

Components of the Database.
Database Schema
Sliding Bar Menu (SBM)

iv

Page

1

2
3
3
8

11
12
13

14

14
14
15
17
17
17
18
19
20
21

23

23
23
24
24
26
26
28
29
31
32

38

38
38
39

Chapter

Specification of Queries .
Output Display
Hardware for Display . . .
Database Management System
Storage Subsystem. .
Storage Schema

Input Data.
Output.

(DBMS) .

Page

42
42
44
45
46
46
46
47

V. PERFORMANCE ANALYSES 49

VI.

Time and Space Complexity of The Proposed
Method. 4 9

A Performance Comparison of The Proposed
Approach With Other Approaches. . . 50

Advantage of The Proposal Temporal
Database. 52

Advantages Over the Hydrodata QW &
Water-value Package. 52

A Comparison With Other Database
Management Systems 53

SUMMARY AND CONCLUSIONS . . .

A New Access Method of a Temporal Database
Implementation of a Temporal Water Resources

Database
Contribution

Time Complexity.
Space Complexity
Convenience.
Continuation . . .

55

55

56
57
57
57
57
58

LITERATURE CITED 74

•

v

LIST OF TABLES

Table

I. Time Complexity of Approaches Discussed
in Chapter v

II. The Summary of Comparison with Other DBMSs

III. An Example of a WATERDAT Relation ..

vi

Page

65

66

67

LIST OF FIGURES

Figure

1. A Snapshot Relation .

2. A Rollback Relation

3. A Historical Relation ..

4. A Temporal Relation .

5. Ben-Zvi's Approach ..

6. An Example of the Insertion Operation

7. An Example of the Deletion and Correction
Operations

8. Examples of Nodes

9. The Protocol of a Search.

10. The Protocol of an Insertion ..

11. The Protocol of a Deletion.

12. The Protocol of an Update .

13. A Diagram of Overall Architecture of the
Proposed Temporal Database ...

14. Categories of a Sliding Bar Menu.

15. The Contents of Subwindows.

16. A Component Diagram for Graphic Interface

17. An Example of the Proposed Approach

18. Formats for Input Templates

19. A Geographic Output Format.

vii

Page

19

20

21

22

59

60

60

. . . 31

33

34

36

37

61

62

63

45

72

64

68

Figure Page

20. A Dependent Output Format . . . 69

21. A Bar Chart Output Format. . 70

22. A Line Chart Output Format 71

23. Lum's Approach 72

24. Ahn's Approach 73

viii

CHAPTER I

INTRODUCTION

The database technique has been applied to many

applications. Since a database system employs computers

to manage data, it not only saves manpower but also

provides an efficient way to either retrieve or store data.

Also, a database system can maintain integrity of data,

balance conflicting requirements, and allow data to be shared

by users. In addition, computers can avoid errors which are

made easily by people. Many theories and models of database

systems have been proposed and discussed. According to

different requests, a database system has been added some

other features, such as graphic outputs, except basic

functions in many fields. The request of adding the ability

to record a time factor has been recognized by many

researchers. Many conceptual models have been formulated

to provide the ability of handling temporal data in a database

system. In addition, it is important to keep historical data

in some applications such as decision making systems or water

resource management. Conventional databases only keep the

current content of a database. Historical data, which is

replaced by updating operations, is no longer available

to users. A temporal database is designed to handle

temporal data efficiently. It records retroactive and

1

postactive changes as well as the past information of

objects in a database. However, since a temporal database

requires large amount of storage to store historical data,

it has been considered impractical for a long time. Due to

the cost of storage having been reduced recently, for

instance, optical disks, a temporal database becomes

possible and useful. Moreover, more users require other

output formats besides a traditional tabular format.

Motivation

2

A temporal database, which has the ability to record

and to process concepts varying with time, and which keeps

aged data as well as current data, is employed in many

applications. During the past ten years, four types of

databases (snapshot, rollback, historical and temporal

databases) with differing abilities to support temporal

information have been proposed. Most current approaches

[LUM84, BEN82 and AHN86] for implementation of temporal

databases cannot provide an efficient way to query

historical data. Therefore, those approaches are not

suitable for applications such as water research, which

require both frequent and efficient access to historical data

to analyze then report historical statistics.

Furthermore, the main output format of currently

available database software is a table which displays an

attribute in one column and a record in one row. However,

this tabular format is inadequate for applications which need

graphical outputs.

Literature review

Related work about temporal databases and water

research is provided in the following sections.

Temporal Databases

3

Temporal databases have attracted many researchers'

attention in the past ten years. Snodgrass [SNOD86a,

SNOD85] gave a complete introduction to temporal databases.

Coburn [COBU90] discussed problems such as growing storage

size and time to duplicate data. He also discussed methods

which either change the underlying structure of a database, or

add time attributes into a database. He provided an approach

which adds two attributes into a database, storing only the

modified data. Other related work is summarized in term of

the following five aspects.

Model

Some research extends the relational model to

include the time factor. Clifford [CLIF85, TANS86]

discussed the problems of a temporal database and proposed

an approach for an extended relational algebra, which

includes five new revised operations: pack, unpack, triplet

decomposition, triplet formation, and time slice. He also

presented the concepts of a non-first normal form to reduce

the redundancy of data. Mckenzie and Snodgrass [MCKE87]

proposed another approach to extend the relational algebra

to support transaction time. This approach could apply not

only to support of transaction time, but also of valid time

in a historical model. A combination of these approaches

could yield a temporal algebra. In addition, Ariav

[ARIA86] introduced a model, called the Temporally Oriented

Data Model (TODM) . TODM is a restricted, but consistent,

superset of the relational model. Then, he presented

TOSQL, a SQL-like query language. Gadia and Yeung[GADI88b]

proposed a generalized model of a relational temporal

database. They introduced a Boolean algebra of multi­

dimensional time stamps. As an application, the same idea

could be explained for a two-dimensional model. They also

gave a precise way of classifying errors and updating a

database.

Segev and Shoshani [SEGE87, SHOS86] introduced another

distinct model which both characterized the properties of

temporal data and provided operators over them without

4

using the ideas of the traditional model. They presented

the concepts in terms of time sequence, a sequence of temporal

data for a single entity instance such as the salary history

of an individual. Accordingly, the properties of time

sequences, such as their type (continuous, discrete, etc), are

exploited in order to design efficient physical data

structures and access methods for time sequences.

5

Query Language

A query language extending the relational query language

to handle temporal data has been proposed. Snodgrass [SNOD86,

SNOD87] developed a new query language, TQuel, to query a

temporal database. He provided a tuple relational calculus

for the TQuel statements which differ from the corresponding

Quel (the query language used in INGRES) counterparts.

Finally, he addressed a comparison with other temporal query

languages. In addition, Gadia [GADI85, GADI88a] proposed a

query language for the temporal database of a homogeneous

relational model. Tansel, Arkun, and Orsoyoglu [TANS89]

introduced a Time-By-Example (TBE) query language. TBE is a

"user-friendly" query language designed for historical

relational databases. It uses a graphical structure and the

example query concept of Query-By-Example (QBE), and employs

the hierarchical arrangement of subqueries of Aggregation-By­

Example (ABE) and Summary-Table-By-Example (STBE) . In

addition to supporting time, it is able to manipulate

triplet and set-triplet-valued attributes. TBE adopted an

extended relational data model in which a nonfirst normal form

and an attribute time stamping are used.

Graphical Query Language

The concepts of a graphical query language have attracted

many researchers' attention, since conventional query

languages, such as SQL, are difficult to learn for users who

are not familiar with the semantics of a query language.

6

Briefly, a graphical query language is a language using

graphics to display a query. Angelaccio [ANGE90] introduced

the concepts of QBD*, a graphical query language with

recursion. He proposed a system called Query by Diagram*

(QBD*) which used a conceptual data model, a query language on

this model, together with a graphical user interface to query

databases. Consequently, a graphical interface should be

formed to provide the graphical query language for a database.

Moreover, the ideas of the implementation of a prototype

interface between a relational DBMS and interactive computer

graphics system were discussed by Spooner [SP0084]. Spooner

presented both the database structures used to manage the data

and the techniques used to design the interface and discussed

an approach to make the interface portable.

Implementation

There are numbers of papers concerning theory and models

of temporal databases as have been mentioned previously, but

there are fewer papers that provide approaches to the

implementation of a temporal database. At first, Ben-Zvi

[BEN82] proposed a complete approach of a time relational

model. He introduced five time attributes into this model.

Then, he presented the overall design and architecture of this

model. Ahn [AHN86a, AHN86c] has another approach which

concentrates on the access methods and performance analysis.

He discussed various access methods, such as reverse chaining,

accession lists, indexing, and clustering. He also discussed

7

the problems of a temporal database; namely, (1) the

ever-growing storage size problem and (2) the inefficient

conventional access method problem. He claimed that the use

of optical disks can overcome the first problem. He proposed

an approach of Temporally Partitioned Store (TPS) to solve the

second problem. Moreover, an approach designing a DBMS to

support a temporal dimension was offered by Lum [LUM84].

Lum addressed the structure, strategy and alternative

strategies to support indexing. For instance, he employed

two index trees-one for the current index, the other for the

history index. If the history index became too large, then a

smaller history tree could be created. For example, the

history index tree can be separated into history tree #1,

history tree #2, etc. Furthermore, he added a pointer into

a current data node to point to a future chain to handle

future events. He also provided ways for adding effective

time into entries in order to correct error entries.

Overmyer [OVER82] provided a design and implementation of a

time expert for a relational database system.

Physical Storage Organization

One of the main problems in implementing a temporal

database is the storage size, which has continual growth to

hold old data. Some techniques, such as partition schema of

files, and differential files, to overcome this problem were

provided by Katz and Rotem [KATZ84, ROTE87].

Furthermore, Ahn [AHN 86b] proposed a method to

8

evaluate the performance of a temporal database.

Water Resources Databases

The water industry has applied computer techniques

to manage data for many years. Before employing computer

techniques into the water industry, water resources data

were managed manually. For example, water data was recorded

on paper by hand. Those people who were responsible for

interpreting water data had to work on lots of paper to

generate a report. Therefore, they had less time to analyze

results and making decisions, which were more important than

gathering data. Due to the benefits of employing computer

related concepts and techniques, the water industry has

obtained many improvements in the management of water data.

A committee report [COMP89] outlined the usefulness of

computers in the water industry. This report also presented

how computers affect the water industry in terms of some

current aspects. These aspects are advances in hardware,

advances in commercial software, and modeling and planning

techniques. It also outlines how computers will be used over

the next five years. It gives examples to indicate the

importance of applying proper modeling techniques. One

researcher, Indira [INDI90], introduced water resources

management systems in the environment of Alberta, such as the

Water Resources Management Model (WRMM) -- a water resources

planning tool, and The Real-Time Data Acquisition System

(DACQ) -- an automatic data collection system developed in a

9

minicomputer environment. She also addressed the fact that

the environment of Alberta encounters challenges in managing

its water resources information. Some challenges are the

following: the inventory of water sources and their

characteristics, the large volume and high frequency of data

collection, and the request for graphic data representation.

One of the computer techniques which is applied to

manage water resources is the database technique. A

database is a collection of relations. It provides users

not only efficiency in either retrieving or storing data,

but facilitates the updating of data also. Chow [CHOW87] gave

the usefulness and the requirements of the proper designed

water quality database. He also presented examples of

their applications in the water industry. He provided the

basic design principles: analysis of requirements, conceptual

design, predesign, and design for the proper design of the

water quality database. Another example of applying the

database technique is provided by Mainmone [MAIM89]. This

database is designed for application to ground water

management. Mainmone also addressed functions and overall

resource data included in this system. Actually, this system

is a combination of WordStar 2000, Microsoft Chart, and dBase

III Plus. Besides, Wright [JEFF85] provided the concepts of

rigid format database management systems. He mentioned

that a general purpose package, such as Lotus 1-2-3, is

difficult to use to satisfy specific requirements and in

general, hard to learn. In contrast, custom-made software is

expensive and requires costly maintenance. Therefore, his

approach provides a rigid format database in which all the

files use the same data structure. Kittridge [KITT86]

introduced a water system database for Naples, Florida.

10

This system applies an Intergraph Computer-Aided Design and

Drafting (CADD) system to aid the computer modeling of the

city of Naples water distribution system. He also compared

this database with a traditional manual system. He claimed

that CADD provides a system which both efficiently updates

out-dated maps and avoids errors produced by manual methods.

Furthermore, an example of applying electronic spreadsheets in

water resources analysis is provided by Hancock [HANC87].

Hancock mentioned that applying spreadsheets can speed up the

parameter estimation process in water resource analysis and

provide better control on how these values are chosen. In

addition, the WATSTORE database [WATS81], which is used by

the U. S. Geological Survey to manage water data files, is a

nationwide database. This system consists of several files,

such as Ground-Water Site-Inventory File, Daily Values File,

and Peak Flow File. The water data stored in the system are

grouped into files according to their common characteristics

and data collection frequencies. An index file of sites for

which data are stored in the system is also maintained by the

system.

Motivation for an Implementation of a

Temporal Water Resources Database

11

Because water resources data is usually enormous, many

techniques such as Computer Assisted Design/Computer Automated

Mapping (CAD/CAM), and geographic data base representations

have been employed to manage water resource data [INDI90].

Due to the large volume of water resource data and the need

of graphical data representation, more efficient access

methods and graphic functions must be added into a water

resources database.

Currently, the U. S. Geological Survey (USGS) uses the

WATSTORE database which uses a combination of a station name

and date as a key to a water file to manage water data. A

software package called Hydrodata QW & Water-value [HYDR90] is

designed to retrieve data from water files in the WATSTORE

database, and provides export formats to associate its data

with other packages. However, a new package should be

designed for the following reasons.

1. In the WATSTORE database, water data of a station or a

lake for a period of time are stored together. Therefore,

users cannot obtain water data of a group of stations or

lakes for a time point efficiently.

2. The Hydrodata QW & Water-value package has only a

retrieving function but lacks an updating function.

Therefore, users cannot add a new record into water

files.

3. Hydrodata QW & Water-value package provides some export

12

formats so that their output can be used as an input file

to some packages; however, users prefer to work under one

package and don't want to switch among packages.

4. It needs more memory storage than the proposed database

because associated packages must be resident in the same

environment for users to transmit data among them.

5. It lacks graphical outputs, for instance, geographic

displays or bar charts.

Therefore, a database which combines graphical

outputs, database functions and the abilities of

efficiently handling historical data should be designed.

Research Objectives

Because a temporal database applies non-deletion

policy [AHN86b], the size of a temporal database is larger

than a conventional database. Conventional indexing

structures which are designed to access current data are

not either suitable or efficient for a temporal database.

Although [LUM84, BEN82, AHN86a, b] provide indexing

structures, such as reverse chaining and accession lists to

access historical data, none of them can retrieve all objects

for one time point efficiently. The objectives of this

thesis are:

1. to develop an access method for a temporal database

which can retrieve all objects in each version of a

specific time period efficiently;

2. to analyze access methods in a temporal database;

3. to develop a temporal database for water research with

the following properties.

a. It keeps the historical data of water resources in

Oklahoma for the past ten years efficiently.

b. It provides more features than current packages by

adding graphical outputs.

13

c. It provides users a easier way to operate the data­

base. (i.e. making a query by moving a cursor within a

window(s)).

Organization of The Thesis

This thesis is organized as follows. Chapter I gives

the motivation and related work of this research. Basic

concepts related to relational systems and temporal

databases are provided in chapter II. Chapter III presents

the detailed description of the proposed new access method

which applies a path copying method. The overall design and

structures of the temporal water resources database are

described in chapter IV. Chapter V gives the performance

evaluation of the proposed method and database. The

conclusion and a summary of this thesis are provided in

chapter VI.

CHAPTER II

BACKGROUND CONCEPTS

A database system uses computers to keep records for

people. Generally speaking, a database system is a

computerized record-keeping system. This chapter, first,

gives the basic concepts of database systems, such as

the components and operations of a database. Then, the

concepts of a temporal database which has an ability to

process and record temporal information are presented.

Four databases according to their abilities to support

time dimension are also described in this chapter.

Basic Concepts

Following are the basic concepts of a database

system. These concepts are summarized from Date [DATE86].

Models

A database system applies conceptual models,

hardware, and software to provide operations for users to

access and store data in a database. Three models have

been employed in a database system: a relational model, a

hierarchic model, and a network model. These models are

described briefly as follows.

14

15

Relational

A relational system is a system in which the data is

viewed by users as tables (relations), and the operations of

users (e.g., data retrieval) generate new tables from old

ones.

Hierarchic

A hierarchic database can be viewed as set of trees. A

tree consists of a single "root" record type, together with an

ordered set of zero or more dependent (lower-level) subtree

types. Each child record can only have a single parent.

Network

A network system can be regarded as an extended form of

the hierachic data structure. The difference is that, in a

network structure, a child record may have any number of

parents.

Architecture

Three general levels constitute the architecture of a

database system: internal, conceptual, and external levels.

Internal Level

The internal level is the closest part to physical

storage. It handles the way the data is actually stored. In

this level, a file manager is designed to retrieve or store

data logically. In other words, the file manager ignores all

16

details of physical disk of I/0, but uses terms of (logical)

"page I/0". On the other hand, a disk manager is designed to

handle physical disk I/0. It responds for the request of a

file manager by retrieving or storing data from or into

physical storage, for examples, disks. In addition, some

indexing structures are applied by the database system to

facilitate the speed of retrieving data, i.e. B-trees,

hashing, and pointer chains.

External Level

The external level is the closest part to the users. It

responds to the way the data is viewed by users. There are

two kinds of users in a database system, an application

programmer and an on-line terminal user. An application

programmer can use the data sublanguage, which is embedded

within the corresponding host language, to perform database

operations. An on-line user can use either a structured query

language or a menu-based query language to use operations

provided by the system.

Conceptual Level

The conceptual level is the part of indirection between

the internal level and the external level. It represents the

data differently either to a view of a user or the way the

data is actually stored. Broadly speaking, the conceptual

level is intended to view data "as it really is''.

Relational Data Structure

Most of the current databases are relational. A

relational model is easy to understand and manipulate.

Usually, a relational database can be viewed as a

collection of tables (relations or files) . A relation

consists of a set of tuples (rows of a table) . Each tuple

consists of a set of attributes (columns of a table) .

Each attribute obtains a value from a domain which is a

set of atomic values.

Operations

Users can perform a variety of operations on

17

relations in a database: retrieving data from existing

files, adding new files into the database, inserting new

record into existing files, deleting data from existing

files, updating data in existing files, and deleting existing

files permanently from the database. A data manipulation

language is used to define operations that provide users the

abilities to manipulate data in a database. A data definition

language is used to define the content of a database.

With different designs, different systems (for example,

a temporal database) contain some special features which are

not provided by other systems.

Databases Supporting Temporal Information

Although a database provides many benefits to users,

some abilities, such as an ability to handle temporal data,

18

should be added into current databases for some applications.

One drawback of current databases is they always keep data in

the latest fashion. Operations such as an insertion or a

deletion will change the state of a database. Furthermore, it

cannot provide information for a query about the past status

and retroactive or postactive changes of objects. Since it

doesn't store historical data, no trend analysis can be

performed under this system. A temporal database which keeps

the current data as well as the historical data has been

modeled by many researchers in the past ten years. In order

to describe the properties of databases which can process

temporal data, Snograss [SNOD85, SNOD86a] provided a new

taxonomy of time for use in a database. According to the

abilities of presenting the temporal information, four types

of databases are described as follows.

Snapshot Database

Conventional databases always provide the current

state of a database. Any updating operation, such as

either inserting a new record into a relation or deleting

an existing record from a relation, moves the database to

a new state. Moreover, after each updating, the old data

is lost totally. Users can no longer know what has been

stored in the past. This type of database is termed a

snapshot database. In the relational model, a database is

viewed as a collection of relations (files) . A relation is

usually represented in a two-dimensional table.

Since this kind of database doesn't provide the

ability to keep historical data, users cannot query the

past state of this database. For example, an employee

relation of a time point may look like this.

name salary

Mary 20k

Harry 30k

Figure 1. A Snapshot Relation

The following query cannot be answered under a

snapshot database:

What was Mary's salary last month?

Did Harry earn more money than Mary last year?

19

Users can only get that Mary's salary is 20K and Harry's

salary is 30K, right now. Therefore, a snapshot database

is obviously inadequate in many applications. Without

system support, many applications have to handle historical

data in an ad hoc manner.

Rollback Database

One solution to the above deficiencies is to store

all past states of a database, indexed by the transaction

time. A transaction time is when a record enters the

20

database. It doesn't need to reflect when a record is

valid. The answer to the query about the past state of a

database can be obtained by rolling back the database to a

certain time point. Therefore, this operation is termed

rollback. A database which supports this operation is termed

a rollback database. A rollback relation is shown in Figure

2 .

In the rollback database, we can obtain the answer

to the following query:

What was Mary's salary last month?

But, there is no way to record retroactive or postactive

changes and correct errors in past tuples.

name salary transaction time
(begin) (end)

Mary 15K 01/25/80 07/31/83

Mary 20K 08/01/83 -

Harry 30K 12/07/82 -

Figure 2. A Rollback Relation

Historical Database

While a rollback database stores a sequence of static

states, historical databases record a single historical

state per relation as it is best known. When errors are

21

discovered, the database is modified by moving back to

an expected time point to correct errors. Since previous

states are not retained, there is no way to view the database

as it was in the past. Historical databases use valid time to

be a time axis.

The same relation in Figure 1 may appear as indicated

below in a historical database.

name salary valid time
begin end

Mary 15K 08/01/81 01/15/88

Mary 20K 01/15/88 -

Harry 30K 09/10/82 -

Figure 3. A Historical Relation

A historical database uses valid time as an axis

to a relation. Therefore, it more closely resembles

the real world. However, any error correction for a past

tuple causes the original status of this database to

change.

Temporal Database

A temporal database supports both transaction time and

valid time. While a rollback database views stored records as

22

some moment of time, a historical database views them as being

as valid as some moment of the present. A temporal database

views stored records as being valid in some moment of some

time. A temporal relation may be thought of as a sequence of

historical states, each of which is a complete historical

relation, indexed by the transaction time. The weakness

of a temporal database is its requirement of a large amount of

storage to store the historical data. A temporal relation is

illustrated in Figure 4.

name salary valid time transaction time
begin end begin end

Mary 15K 08/12/82 01/25/88 09/01/82 01/31/88

Mary 20K 01/26/88 - 01/31/88 -

Harry 30K 07/25/82 - 07/20/82 -

Figure 4. A Temporal Relation

CHAPTER III

A NEW ACCESS METHOD USING A

MODIFIED PERSISTENT B-TREE

Other Access Methods

The inefficiency of conventional indexing structures

for databases which support a time dimension have been

recognized by researchers. Approaches which provide indexing

structures for databases to handle the time factor are

discussed below.

Lum's Approach

Lum's approach creates two index trees to manage the

current and the historical data separately. The current index

tree stores all nodes which point to all current tuples. The

history index tree stores nodes which are deleted from the

database. When an object is deleted by request, a node

representing this object is moved from the current index tree

to the history index tree. Historical data of each object

chain together in a time decreasing order. If an object is

alive, a node in the current index tree will point to the head

of the historical data. Otherwise, a node in the history

index tree will point to the first tuple of the historical

data. A query to retrieve a deleted object of a time point

23

24

can be answered by searching the current index tree, first.

If a node cannot be found in the current index tree, searching

is applied to the history index tree. Then, a sequential scan

is performed to obtain the expected tuple. In addition, Lum's

approach stores all tuples together.

Ben-Zvi's Approach

Ben-Zvi's approach applies one index B+ -tree to manage

data. He separates storage into two groups: the current group

and the history group. The current group provides a current

page to store all current tuples. The history group employs

history pages to store history tuples. The historical tuples

of an object are chained together to form the tuple-history

chain. The index B+ - tree keeps TIDs to each current tuple

in the current page. The current tuple maintains a pointer

pointing to the tuple-history chain, which uses the current

tuple as a head in the history pages. Therefore, the current

tuple is kept both in the current page and the history page.

Ben-Zvi further applied a history TID in the index tree

to point to the tuple-history chain directly. Using a history

TID can avoid the deleted current tuples from remaining in the

current page. Figure 5 illustrates Ben-Zvi's approach.

Ahn's Approach

Ahn's approach provides some methods to handle temporal

information. He applies the temporally partitioned storage

structure to separate the current data from the historical

25

data. Then, some mechanisms are provided to manage the

current data and historical data individually. Since the

current data is accessed frequently, any access mechanism used

for the primary store can be applied to handle current data

efficiently. Then, some access techniques are applied to

maintain the historical data. They are described as follows.

Reverse Chaining

A reverse chaining method links all historical data of an

object in a reverse order starting from the current tuple.

When a tuple is replaced, the current tuple is moved to the

history store. Then, a new tuple is inserted in the current

store and keeps a pointer to the predecessor that was moved to

the history store.

Accession Lists

If the historical data of an object keeps growing, the

length of the historical chain grows long. It may be too slow

to traverse the chain in order to retrieve data. One way to

solve this problem is to maintain accession lists between the

current store and the history store. The accession list is a

full index of the historical data of the corresponding object.

Using this mechanism can reduce the time needed to retrieve

data from the history store.

Other mechanisms (Clustering, Stacked Versions, and

Cellular Chaining) provide techniques to group historical

data together. After applying these methods, access time

26

to the history store can be reduced.

A Modified Persistent Search B-tree

This section gives the basic concepts of a persistent

search tree. Then, definitions, algorithms, and protocols

for a modified persistent B-tree are provided in the following

sections.

Basic Concepts

The persistent search tree has been applied to many

fields recently. This structure creates a new version of the

tree after either an insertion or a deletion, but an old

version still can be accessed. There are two ways to make

a search tree persistent: path copying and node copying.

Path copying can work on any kind of tree. Sarnak and

Tarjan provided algorithm for red-black trees [SARN86],

Mayers used AVL trees, Krijnen and Meertens used B-trees,

and Reps, Teitelbaum, and Demers employed 2,3 trees. Node

copying was first addressed by Sarnak and Tarjan to create

space-efficient persistent search trees. Moreover,

Kazerouni-Zand [KAZE88] provided a persistent B-tree algorithm

which is similar to the limit node copying method [SARN86] .

Since the persistent B-tree keeps paths to each time versions,

it is suitable to be the indexing structure in a temporal

database. The main drawbacks of a persistent B-tree which

uses a path copying method are its nonlinear space

requirements [SARN86] and the waste nodes along the path

27

[KAZE89]. Consequently, Sarnak and Tarjan proposed a node

copying method which adds an auxiliary pointer list in a node

to point to the time stamp of each child. This method

overcomes the former problems, but it increases the time

complexity since searching the pointer list to find a proper

pointer is time consuming. Then, they provided one other

method: limit node copying which adds p slots for time

pointers in each node. The brief description of three methods

is as follows.

Path Copying

This method, first, copies nodes in which changes are

made. Then, any node that contains a pointer to a node which

is copied must itself be copied. This means that a path

copying method will copy the entire path from the root to the

node. Any node which is not along path will not be changed.

This method is different from copying an entire tree, since

the new version shares nodes, which are not on path, with the

old version.

No Node Copying

A no node copying method maintains a list of pointers in

a node which point to the time stamp of each child. No node

will be copied by using this method. Since each updating may

cause a pointer to be added into the list of pointers, the

list can grow arbitrarily large. The no node copying method

saves space compared to path copying; however, it increases

28

time complexity for searching for the pointer of each child.

Limit Node Copying

This method keeps p slots for time pointers instead of

the unlimited size of time pointers. A node is copied when

there is no free slot for the coming time pointer.

Definitions

Major definitions used to describe operations for

manipulating a persistent B-tree are defined below.

RETRIEVAL (KEY, t) : A retrieval operation retrieves the

key of an object from the database version with time-point

equal to t. The time point, t, is defined as follows.

If t >= current_time_point then

t = current_time_point

else if t < current_time_point then

t = the available time-point which is the

closest time_point to t

The time point, t, for insertion, deletion, and

updating operations is defined below.

If t > current_time_point then

copyflag = 1

curr_time_point = t

create new time root (t)

else if t < current_time_point then

return (error_message: invalid time point)

29

INSERTION (KEY, t): An insertion operation inserts the

key of an object into a database version with time-point t

using the path copying technique.

DELETION (KEY, t): A deletion operation creates a

version with time-point equal tot. This version excludes the

key of the deleted object.

UPDATING (KEY, t): An updating operation creates a

new time version, t, which consists of the updated data of

the object with the key, KEY.

Algorithms

In this thesis, a new access method for a temporal

database is developed. This new access method applies

Sarnak's path copying algorithm to a B-tree with persistent

concepts [SARN86]. Following are algorithms for searching,

insertion, deletion, and updating operations for a

persistent B-tree.

Searching

A searching operation is used to find a proper location

of the key value, KEY, before insertion, deletion, or

updating operations are applied. In searching, the

"time-stamp-root B-tree" is searched first to find the root

with time-point t. Then, searching the value, KEY, proceeds

through the whole tree which is rooted by the found root. If

the key is found, the position of this key is returned.

Otherwise, the next position of the largest key which is

smaller than KEY is returned.

Insertion

30

At first, a search operation is applied to find the

location for the key being inserted. If the copyflag is on

(i.e. copyflag = 1), the nodes along the path are copied. The

nearest node which has a free slot is marked as a star node

during searching. Then, top-down insertion is performed as

follows. If there is a free slot in the node where the key

is inserted, the key is inserted directly. Otherwise, a split

operation is applied to the node and promoting a key to an

upper level will be performed until the star node is met.

Figure 6 gives an example to illustrate how this insertion

operation proceeds.

Deletion

The deletion operation uses a search operation to find

the location of the key, KEY, which should be deleted. If

copyflag is on, the nodes along the path are copied. The star

node is also marked during searching. Then, the key, KEY, is

removed from the node, if the KEY is found. Otherwise, an

error message is returned. After deletion, if underflow

happens, merge or redistribute operations proceed. An example

of a deletion operation is shown in Figure 7.

31

Update

An update operation is performed with the path copying

technique. Because we need to keep the key, KEY, in the old

node, the same key value is inserted into a new node with new

offset (an offset is a record number) . The new offset keeps

the address of a record where the changed data is stored.

This method is similar to an insertion operation. The only

difference is that the same key value exists in both the old

and the new nodes, but the offset of the key is different.

When values in attributes of a tuple change very often in a

database, an updating operation will be used very often.

Node Format

The sample nodes of a persistent search B-tree and a

"time-stamp-root B-tree" are in formats as shown in figure

8 (a) and (b) . An internal node keeps pointers to its

child (s) (i.e. the "pointer" field of the sample node

stores these pointers) . A leaf node stores an address

where a real record is stored. This address is kept in the

"pointer" field of a leaf node. The KEY field of the

sample node stores the primary key value of a persistent B­

tree.

pointer pointer pointer pointer

Figure 8. Example of Nodes

32

a. A Node Example of a Persistent B-tree

pointer I time I pointer I time I pointer

b. A Node Example of a "Time-Stamp-Root B-tree"

Figure 8. (Continued)

Protocols

Protocols for search, insertion, deletion, and update

operations for a persistent B-tree are based on the B-tree

with persistent concepts. A data structure, PAGE, represents

a node of a persistent B-tree. KEY is the key which is

searched by request. Found RRN represents the record

number of the found PAGE. Found_POS is the position of a

searched key in a node. Promo R child is the record number of

NEW PAGE which is created by a split operation. Promo KEY is

a key which is promoted from the lower level.

struct BT {

int keyct; /* number of keys in the node. */

char key [maxkeys] [maxkeylen + 1]; /*key values. */

long child [maxkeys+l]; /*pointers to each child.*/

long parent_node; /* parent node. */

} PAGE;

current_time_point: Time indicates the last operation.

copyflag: A copyflag indicates if a new version is going

to be created by path copying.

33

root_time_stamp: The root of the "time_stamp_root B-tree".

NEWPAGE: A new page created by a split operation.

read_node(): Reading a specified PAGE.

create_time_root(): Inserting a time stamp into

a "time_stamp_root B-tree".

Search

A search operation calls subsearch to find the

·corresponding time stamp in a "time-stamp-root-B-tree" and

an object with the key value, KEY, in a subtree which is

rooted by the found time stamp. Figure 9 illustrates the

protocol of a search.

SEARCH (KEY, t, found_RRN, found_POS)
begin

end

root = root time stamp /* find a time stamp */
found = subsearch (root, t, found_RRN, found_POS)
if (not found) then

return (error_message: invalid time point)
else

offset = leaflevel (found RRN)
root = read node (offset)- /* get an expected

time stamp */
/* search the KEY */
/* in a PE-tree */

found = subsearch (root, KEY, found_RRN,
found POS)

if (found) then
return found POS

else
return 0

subsearch (RRN, KEY, found_RRN, found_POS)
begin

read the record at RRN into PAGE
if PAGE is in a leaflevel then

Figure 9. The Protocol of a Search

end

found RRN = RRN
search KEY along PAGE
if KEY is not found then

found POS = the POS of a largest key
which is smaller than KEY + 1

return 11 not found 11

else

else

found POS = POS
return found

if there is a free space in PAGE then
set star node = RRN
search along PAGE for KEY
if KEY is found then

else

Insertion

found RRN = RRN
found POS = POS
return 11 found 11

return (subsearch (PAGE.child [POS], KEY,
found_RRN, found_POS))

Figure 9. (Continued)

34

An insertion operation inserts the key value, KEY, of an

object into a B-tree with time stamp t. If a copyflag is on,

a new database version with time stamp equal to t is created.

The protocol of an insertion is provided in figure 10.

INSERTION (KEY, t)
begin

if t > current time point then
create time root (root time stamp, t)
copyflag = -ON -

found = SEARCH (KEY, t, found RRN, found POS)
if (found) then - -

return (error_message: duplicate key)
else

Figure 10. The Protocol of an Insertion

end

if (copyflag) then
copy nodes along the path

read the record at found RRN into PAGE
insert_promotion (found_RRN, found_POS, KEY)

insert promotion (POS_RRN, promo_R_child, promo_key)
begin

end

read the record at POS RRN into PAGE
if there is a space in-PAGE then

insert promo_key, promo_r_child into PAGE
else

P B key = promo key
P-B-RRN = promo-r child
split (P B key,-P-B RRN, PAGE, promo_key,
promo R child, NEWPAGE)
write-PAGE to file at POS RRN
write NEWPAGE to file at prom R child

if PAGE is not the star node then -
insert_promotion (PAGE.parent_node,

promo_R_child, promo_key)

split (KEY, RRN, PAGE, promo_key, promo_R_child,
NEWPAGE)

begin

35

copy all keys and pointers from PAGE into a working
page that can hold extra key and child.

end

insert KEY AND RRN into their proper places in
the working page.

allocate and initialize a new page into the B-tree
file to hold NEWPAGE.

set promo key to value of middle key, which will be
promoted after the split.

set promo R child to RRN OF NEWPAGE.
move keys-and child pointers < promo_key from the

working page to PAGE
move keys and child pointers > promo key

from the working page to NEWPAGE. -

Figure 10. (Continued)

Deletion

A deletion operation deletes the key value of an object

at a time point t. If copyflag is on, a new database version

with time stamp equal to t is created. The protocol of a

deletion is shown in figure 11.

DELETION (KEY, t)
begin

end

if t > current_time_point then
create time root (root time stamp, t)
copyflag = ON -

found = SEARCH (KEY, t, found RRN, found POS)
if (not found) then - -

return (error message: key not exist)
if (copyflag) then

copy nodes along the path
read the record at found RRN into PAGE
if PAGE is in a leafleveT then

delete KEY from PAGE
if keyct < m/2 then /* underflow occurs */

if sibling node (s) has keys > m/2 then
redistribute (PAGE, sibling nodes)

else
merge (PAGE, sibling nodes)

redistribute (PAGE, sibling nodes)
begin

end

keyct = keyct of PAGE + keyct of a sibling PAGE
promo key = key [keyct/2]
if redistribute with right sibling PAGE then

move keys in sibling PAGE < promo key into PAGE
if redistribute with left sibling PAGE then

move keys in sibling PAGE > promo key into PAGE
switch promo_key with parent_key -

merge (PAGE, sibling PAGES)
begin

move parent_key and sibling keys into PAGE
end

Figure 11. The Protocol of a Deletion

Update

36

An update operation updates the data of an object with

·37

the key value, KEY, at time point t. If copyflag is on, a new

time version is created. Figure 12 gives the protocol of an

update.

UPDATE (KEY, t)
begin

end

if t > current time point then
create time root (root time stamp, t)
copyflag = -ON - -

found = SEARCH (KEY, t, found_RRN, found_POS)
if (not found) then

delete path
return-(error message: key not exist)

read the record at found RRN into PAGE
RRN = leaflevel (found POS)
move new record into PAGE
write PAGE into file at RRN

Figure 12. The Protocol of an Update

CHAPTER IV

IMPLEMENTATION OF A TEMPORAL WATER

RESOURCE DATABASE

This chapter gives the detailed description of

an implementation of a temporal water resources database.

This temporal database builds its indexing structure by

applying those concepts which are discussed in the former

chapter. Also, the components of this database system

and their detailed functions are presented. Then, the input

data and output of this system are described at the end of

this chapter. The C programs of implementation of this

database apply algorithms and function libraries from

Stevens A. [STEV87a, b] and Stevens R.T. [STEV89].

Components of the Database

A diagram of the overall architecture of this temporal

database is shown in Figure 13.

Database Schema

A database schema describes the contents of a database

and their definitions. For example, a database schema

provides information such as the data attributes of each

relation in the system and the primary key of each relation.

Since a database schema provides the skeleton of a database,

38

)

39

it is very useful when a database is modified.

Sliding Bar Menu (SBM)

This Sliding Bar Menu located on the top of the screen

contains all categories of services provided by this system.

When a cursor moves into a category, a window will be created

to show a list of functions. The Sliding Bar Menu not only

helps users to select choices more easily but provides an

overview of each category. The detailed description of the

SBM is provided in the following pages. A procedure to

specify a query and a description of the hardware for graphic

display are also presented in this chapter. The contents of

a Sliding Bar Menu is shown in Figure 14. The contents of a

subwindow of each category are illustrated in Figure 15.

Functions of the Sliding Bar Menu are described below

in detail.

Setup/guit

This operation initializes the environment that this

system requires. After applying the setup operation, an empty

database is created. Also, the quit operation provides an

exit function for users to exit from this system.

Create

This category creates a view for users. A view, a

virtual table, can be created and saved through this

operation. There are two functions in this category: save

------ - ----

40

and retrieve. The save function saves the current view for

users. The retrieve function retrieves an existing view for

users.

Manipulate

This category provides on-line retrieval and updating

functions. Users can modify a database through updating

facilities (inserting, deleting, updating) . Therefore, they

can build their own relations by employing those facilities

flexibly.

Retrieve. Users can retrieve data from a database by

specifying a query via this retrieval facility. A query

can be created by moving a cursor within a window. Moreover,

a conditional box is designed for users to specify a query by

setting a boolean predicate.

Inserting. A new entity or object can be inserted into

a relation via an inserting operation.

Deleting. An existing entity or object can be deleted

by way of a deleting operation.

Updating. Modifying data of an object of a relation

is performed by an updating operation.

Op/cls

This function provides users the ability to open or close

a relation or view.

41

Display

Four kinds of display formats are provided by this

system: geography, diagram, table, and bar chart. Each one

has its special properties and advantages for illustration.

These formats make output of a query more meaningful and

comprehensible than those of other database software. The

detailed description of each format is provided later.

Utilities

Four utilities provided by this system are described

below.

Math Functions. Math functions, such as sum, max, min,

mean, and differential, can be applied to all or some

attributes of a relation. For example, a differential

function can be applied to an attribute of a relation of water

quality such as chemical level. Then, if the chemical level

of a station exceeds a standard, this reveals that the water

quality of this station is in danger.

Database Size Calculator. The size of a database can be

calculated and reported via this function.

System Catalogue. A system catalogue stores information

about this system such as attributes of a relation.

File Reorganizer. Water files of the WATSTORE database

can be reorganized to be an input file to this database via

the file reorganizer. Then, data which are collected by local

42

researchers and the U. S. Geological Survey can be both stored

in the proposed database.

Specification of Queries

Some methods have been proposed to specify a query for

a database, for instance, a structured query language, a

QBE query language, a TBE query language, and a menu query.

The proposed database applies the menu query method. This

menu query makes it easier for users to specify a query

without knowing the underlying structure of a database.

However, a structured query language requires users to

learn its semantic structure first before they use it.

Output Display

Four kinds of display formats: geography, diagram,

table, and bar or line chart, are described as follows.

Geography

Geographical output is performed by first displaying the

shape of Oklahoma on screen. Then, results of a query are

illustrated on the map. For example, if users need to know

the silver levels of stations on rivers in Oklahoma in 1985,

the screen first displays the shape of Oklahoma. Then, varied

silver levels are indicated by the different colors of

stations on rivers. Therefore, users can get the whole

situation of silver level of rivers in Oklahoma through

geographical display in less time than that needed by a

43

table display. Some advantages of geographical display are

as follows.

First, it enhances users' geographical concepts: for

example, geographical display gives users geographical

locations of rivers and lakes in Oklahoma.

Second, it directly attracts users' attention: users

can immediately recognize the difference between rivers or

lakes via the graphical display.

Third, it provides clustering information: for

example, the different amount of rainfall can cluster

rivers and lakes into different levels which are indicated

by different colors.

Fourth, it presents a warning function: for example,

when the value of an attribute is compared to a standard,

the alert red color can appear on rivers or lakes to

indicate that values are over the standard.

Fifth, it provides the concepts of coexistence:

coexistence is important when users analyze the

relationship between rivers or lakes.

Diagram

A diagram is a useful tool for expressing relationships

among objects. This system provides a dependency diagram to

illustrate upstreams and downstreams locations of objects.

For instance, a diagram illustrates upstream stations and

downstream stations of a query station.

44

Table

A two-dimensional table is displayed, in which selected

attributes appear on the top of columns. The tabular format

can represent a very large amount of data.

Bar Chart

A bar chart illustrates the variation of values in an

attribute of a relation for an object in a time period.

Line Chart

A line chart format is suitable for a trend analysis,

since it can attractively illustrate the result of a trend

analysis.

Hardware for Display

A graphical interface is designed for performing

graphics outputs. This interface applies the concepts

proposed by Spooner [SP0084]. It consists of two

components which are described below. A component

diagram is shown in Figure 16.

Graphics Interpreter

A graphic interpreter provides two functions:

interpretation and mapping. An interpretive function extracts

the graphic key of each tuple of the result of a query. Then,

a mapping function maps the graphic key to a graphic symbol in

a graphic symbol pool and displays the graphic symbol on the

45

screen. This interpreter creates a semantic relation to store

information about mapping from a graphic key to a graphic

symbol.

Graphics System

A graphics system stores modules for drawing each graphic

symbol.

General Graphics Graphics Graphics
purpose ~interpreter - system r-- display
data model
(DBMS)

I On-line
users

Figure 16. A Component Diagram for the Graphic
Interface

Database Management System (DBMS)

The DBMS is an interface between users and the physical

organization. It collects menu queries which users request.

Then the DBMS, according to the requirements of the query,

performs corresponding actions. The DBMS reorganizes water

files of the WATSOTRE database to produces some separate

relations. The DBMS also modifies the underlying data

structure of a database to handle temporal data instead of

adding some time attributes into a database.

46

Storage Subsystem

In the logical structure, this system provides a data

file manager to handle all accesses to data files and an

index file manager to handle the loading and saving of an

index file. In the physical structure, the data files of

the same time version will be stored in the same page, and

an index of a relation is stored in the same file. The

indexing structure of this database employs the proposed

method: a persistent B-tree is built for each key of a

relation--a primary key and secondary keys. A B-tree is

created to manage time stamps of a persistent B-tree.

Therefore, the access time to each time stamp can be reduced.

Storage Schema

In addition to an efficient indexing structure for a

temporal database, we also must design a storage schema

to store both current data and historical data. In order

to access all objects in a time version efficiently,

storing data of the same time version together can reduce

access time. Moreover, a historical chain can be

achieved by adding a pointer to different time versions of

a tuple. An example of this schema is illustrated in

Figure 17.

Input Data

The input data for this system is either reorganized

47

from water data of the WATSTORE database or entered by

on-line users. Two input templates are provided to help

users enter data into this database. Figure 18 gives these

formats. The entry templates show a "prompt" to ask users to

key in input data. If this transaction is committed, data

will be put into this database. Otherwise, error messages

will be shown on an error message window. Also, two

relations are stored in this system--waterdat and chemical.

Other templates are also provided by this system to help

users make selections, such as a time range box or a

relation listing box.

Output

When a query is specified by a user, the result of

this query is put into a file called view.dat. A user can

save this view for later retrieval by making a selection

under the create category. In addition, those results can

be output through formats which are available in the

system--geography, diagram, table, and chart. Examples of

graphic outputs are provided in figures 19, 20, 21, 22.

Those outputs are hardcopies of the implemented program.

Geography

This format, first, shows a shape of Oklahoma on the

screen. Then, objects are illustrated in the corresponding

places in the screen according to their locations. A small

box, which is colored, is used to represent each object. Those

48

colors indicate levels those objects belong to. This output

format not only provides the location of an object but

attracts users' attention. Figure 19 gives this output

format.

Diagram

Relationships among objects are important in water

resources. Sometimes coexistence can explain the causes of

problems. A dependent diagram is provided by this system.

When a user selects this output format, the stations on the

upstream and the downstream of the requested object are shown

on the screen. An example of this output format is shown in

figure 20.

Table

This is a common output format of a database system.

This format displays the result in a table. In addition

to the tuples of the result, some math information can also

be calculated and reported, such as min, max, and average

values. An example of this output format is shown in Table

3.

Chart

A line chart is used to display variation of an object

in a time period. It is especially useful for a trend

analysis. Figure 21 illustrates an output of a bar

chart. Figure 22 shows an example of a line chart.

CHAPTER V

PERFORMANCE ANALYSES

This chapter, first, discusses the time and space

complexity of a modified persistent B-tree. Then, a

performance comparison with three other approaches is

presented. The advantages over other databases and

comparison with other databases also are addressed.

Time and Space Complexity of

the Proposed Method

The time complexity of an insertion or a deletion in a

persistent search B-tree is O(log rnl k +log rn n), where k is

the number of nodes in a time-stamp-root B-tree, ml is the

order of a time-stamp-root B-tree, m is the order of a B­

tree and n is the number of nodes in a B-tree. Log rnl k

counts the time for finding a corresponding time stamp in a

time-stamp-root-B-tree. Log rn n accounts for finding an

expected object in a subtree which is rooted by the found

time stamp. For each updating operation, the time complexity

is the same as that for an insertion or a deletion.

For retrieving historical data of an object, the

time complexity is O(log rnl k +log rn n +log nl), where n is

the number of nodes in a B-tree, m is the order of a B-tree

and nl is the number of nodes in the Beginning Time Binary

49

50

Tree (BTBT) which is a binary tree used to indicate when an

object first was inserted. At first, it takes O(log nl) time

to find the beginning time stamp. Then, an expected object is

searched for in the subtree rooted by the indicated time

stamp. Therefore, 0 (log ml k + log m n) should be taken into

account. As a result, the total time complexity for

retrieving a historical datum is 0 (log nl+ log ml k + log m n) .

It takes O(log k + n log n) time to retrieve all objects in a

given time version. Because retrieving an object in a time

version takes O(log m n), retrieving n objects will take O(n

log m n) .

Since we apply a path copying technique, it takes 0(

log m n) space per insertion, deletion, or update operation.

A Performance Comparison of The Proposed

Approach with Other Approaches

After analyzing the performance of the proposed

approach, the author compares the proposed approach with

other approaches ([LUM84, BEN82, AHN86a, c]) as follows.

Lum [LUM84] introduced an approach which creates two

indices, one for current data and the other for historical

data (see Figure 23) . This approach achieves the basic

request for an ability to access both current and historical

data. Its performance is worse than the proposed method since

its time complexity increases due to Lum's separate indexing

structure. When a tuple is deleted in Lum's approach, the key

node is removed from the current index tree to the history

51

index tree. Therefore, if a user wants to retrieve this

deleted tuple, searching first proceeds on the current index

tree. Then searching works on the history index tree. As a

result, it takes O(k + log n2 + log n) time to search for an

object with a time stamp, where k is the number of time

stamps, n is the number of nodes in the current index tree and

n2 is the number of nodes in the history index tree.

Moreover, it takes O(n(k +log n2 +log n)) time to retrieve

all objects in one time version. The space complexity of Lum's

approach is 0(1) per insertion and deletion. Figure 23 shows

this approach.

A better approach was proposed by Ben-Zvi. It creates

only one index tree which keeps the current TID (tuple

identification) of a current tuple or object in the current

page. This current tuple keeps a pointer to point to the

beginning of a historical chain in history pages. Therefore,

the time complexity of searching for an object is O(k +log m

n), where k is the number of time stamps, m is the order of

B-tree, n is the number of nodes in a B-tree. Because this

approach applies a sequential scan to find an object in a

historical chain, a O(k) should be taken into account. The

complexity of retrieving all objects in one time version is

O(n(k +log m n)). However, this approach requires more space

for keeping a current tuple, both in the current page and in

history page.

Ahn [AHN86a, c] provided an approach which improved

on Ben-Zvi's method. He provided access mechanisms such as

52

the accession list, to reduce the time for scanning the

historical chain of an object. The accession list mechanism

uses the current tuple as the head of a historical chain of an

object. Then he added a time-stamp list between the current

and historical storage (see Fig. 20). This method uses larger

space than our proposed method, since Ahn's approach requires

a complete and separate record file for each time stamp. In

our proposed method, a path copying technique provides record

sharing if the record (node) does not change with time. A

summary of the time complexity of each approach is listed in

table 2.

Advantages of This Proposed

Temporal Database

This section provides the advantages of this proposed

database over the Hydrodata QW & water-value. Also, a

comparison of the proposed database with other database

management systems (WATSOTRE, INGRES, DB2, dBase III plus,

and Water Data Information System (WDIS)) is presented at

the end this section.

Advantages Over the Hydrodata

~ & Water-value Package

Advantages of the proposed database over the Hydrodata

QW & water-value is summarized below.

First, updating facilities are added into this database

system. Therefore, local water researchers (system users) can

add data they collect into the system.

Second, it provides graphical facilities. Then users

can capture more ideas about water data through those

graphical outputs.

53

Third, it provides a conditional box for users to

retrieve specific data. Therefore users can get more options

for setting a Boolean predicate. For example, a user can

enter some attribute's name or number in a conditional box.

The result of this query contains only those expected

attributes. A simple query can be quickly answered.

A Comparison With Other Database

Management Systems

The proposed database is designed for a single user.

It provides a menu query, graphical outputs, and an ability

to handle temporal data, while other databases don't include

all these features.

The indexing structure of the WATSTORE database, which

uses a composite key with name and date as a primary key to

access a water file, uses a technique similar to the accession

list of Ahn's approach [AHN86a, c]. This structure takes more

time to retrieve all objects in one time version than that of

the proposed database (Detailed analysis is provided in

chapter IV) . Furthermore, since the WATSTORE database stores

all current and historic data together, it will penalize users

who make a query to the current version with longer retrieving

time than that using proposed database. Both INGRES and DB2

54

are designed as multi-user systems. They have abilities to

process large amounts of data. However, they are useful for

the technical users (users who have knowledge of database

languages e.g. SQL), but not for the non-professional users.

On the other hand, dBase III plus is designed for a single

user. It provides a menu query and SQL-like programming

language, but it lacks both graphical outputs and the ability

to handle temporal data. The Water Data Information System

(California Water Database, Mervine & Pallesen Inc. [MERV90])

is designed to promote consistency among local water

districts, state users, and Federal agencies, for instance,

the USGS. The Water Data Information System (WDIS) is built

with the INGRES relational database management system. In

addition, it runs on a distributed network so that state users

or Federal agencies can access or update data in this system

concurrently. Therefore, the WDIS can not only enhance

consistency of water data, but also decreases the isolation

of agencies. However, none of the databases provide both

the graphical outputs and the ability to handle temporal

data. The summary of the comparison is shown in Table 2.

CHAPTER VI

SUMMARY AND CONCLUSIONS

Many applications of databases must keep the old data

as well as the current data. Consequently, according to

the methods of supporting the time dimension, four kinds

of database are developed. However some problems, such as

ever-growing storage, inefficient access methods, and

storage arrangement, arise from the implementation of a

temporal database. Moreover, more users require a database

which is easy to use, requiring less specialized knowledge

and offering more output format than those of current

packages.

This thesis consists of two parts: the development of

a new efficient access method to a temporal database, and

the implementation of a temporal database which combines

graphic outputs, database functions, and an ability to

handle temporal data efficiently.

A New Access Method of a

Temporal Database

This new access method applies the concepts of a

persistent search B-tree with path copying technique.

Since the path copying technique copies nodes along a path

from the root to the node, the persistent B-tree can keep

55

56

paths to each time version so that the old version can

still be accessed. In chapter IV, a detailed performance

analysis of the proposed method is provided. According to

the analysis, the proposed method requires lower time

complexity than those of approaches proposed by several

authors [LUM84, BEN82, AHN86a, c). However, the drawback

of path copying technique is it requires spaces to keep new

nodes which are copied along the path.

Implementation of a Temporal Water

Resource Database

For the implementation of a temporal database, the

indexing structure is enabled by two persistent B-trees,

one for organizing time-stamp roots and the other for

managing nodes which represent records of different time

versions. Besides, a historical chain of an object can

be provided by using pointers to connect tuples of

different time versions. For physical organization, a

sliding bar menu is designed and maintained to provide

window facilities to help users to specify a query. Then,

a graphical interface is designed and implemented to

connect the DBMS and graphic system. Moreover, a graphical

system is designed to store all the modules which implement

the graphical display. Moreover, four graphic outputs are

provided by the proposed database: geography, diagram,

bar chart, line chart. Also, some utilities are available

in this system, such as math functions and file reorganizer.

Contribution

Contributions of this thesis are discussed in four

fields as follows.

Time Complexity

As mentioned before, the proposed method requires

57

O(log rnl k + log rn n) time complexity to retrieve an object in

one time version and O(log ~ k + n log rn n) to get all objects

in one time version. These time complexities are lower than

those needed by other approaches. Retrieving objects in

each time version become more efficient with our proposed

method.

Space Complexity

The proposed temporal database employs a persistent

B-tree. Then, space for keeping embedded time attributes

can be saved.

Convenience

Some conveniences provided by this proposed database

are described as follows.

First, it provides users an easy way to specify a

query. Since this temporal database employs a menu query

method, even a non-professional user who does not know the

structure of the database can specify a query easily.

Second, users can review facilities provided by this

system quickly. As a user moves a cursor into a category,

58

a related window shows a list of functions. Therefore,

users can know what facilities are available in each category.

Third, it provides more features than those of other

database software. For instance, it provides a graphical

display. Since the graphical display functions are provided

by this system, a user can obtain the result of a query with

a graphical format in addition to the traditional tabular

format. The result of a trend analysis can be more meaningful

to a user with graphical output.

Continuation

Since database schema are used to define the

structure of a database, updating this database can be

performed by changing the database schema.

future possibility are these:

1. A geographical extension to other states;

In addition,

Although the proposed database is designed for the state

of Oklahoma, the same concepts can be applied to other states.

By creating a window with all names of all states and

modifying the database schema, the proposed database can

manage water data for all states.

2. An extension to including application-users in addition

to end-users.

In addition to using a menu query, a SQL-like language

may be designed in future for technical users for a batch

system.

SEQ.

SEARCH

RANDOM
SEARCH

CURRENT
TID

CURRENT - GROUP
HISTORY-- GROUP

CURRENT PAGE

CURRENT TUPLE

W /TIME STAMPS

HISTORV PAGES

CURRENT TUPLE
W/TIME STAMPS

PREVIOUS TUPLE TID

W/TIME STAMPS LINK

ALL TUPLE VERSIONS ARE
CHAINED TOGETHER- STORED

BY I NDEPEND I NG

Figure 5. Ben-Zvi's Approach
(Source From [BEN82])

59

\
INDEX
B+
TREE

time 1: C, S, D
time 2: T, A, M
time 3: P, I, B

Figure 6. An Example of the Insertion Operation

time 1: C, 5, D
time 2: T, A, M
Ume 3: (d) 5, (i) P, I, B, W

time4: (u)T

Figure 7. An Example of the Deletion and Update
Operations

60

database
schema

I

I Sliding Bar Menu I
I

I
online database
query utilities

I
a selection a selection

from from
a window a window

I

A query
specified

I
database
management
system

I

storage graphic
subsystem interface

I
data file index file graphic
manager manager system

I I
data files PB-tree index screen

files or
printer

Figure 13. A Diagram of Overall Architecture of the
Proposed Temporal Database

61

62

set/qt create op/cls manipulate display utilities

Water Database

Message

Figure 14. Categories of a Sliding Bar Menu

II
set/qt create op/cls

set I view I open
quit close

manipulate display utilities

retrieve geographic math
inserting diagram size calculator
deleting barchart system catalogue
updating linechart reorganizer

Figure 15. The Contents of Subwindows

ID
NAME

---- WATERDAT ----

DATE -/-/-
DISCHARGE
SPECIFIC
TEMPERATE
OXYGEN
SOLIDS
PH STAN

a. The Input Templates for a WATERDAT Relation

63

II

ID
NAME

---- CHEMICAL ----

DATE -/-/-
CARBON
DALKALINI
BICARBON
CARBONATE
HARDNESS
CALCIUM
SODIUM
MAGNESIUM -------------­
ACHLORIDES-------------­
SULFATE
SILVER
ZINC
LEAD
COPPER
IRON
BORON

b. The Input Templates for a CHEMICAL Relation

Figure 18. Formats for Input Templates

64

TABLE I

TIME COMPLEXITY OF APPROACHES
DISCUSSED IN CHAPTER V

Ben Lum

A 0 (k + log m n) O(k +log n2 +log n))

B 0 (n (k + log m n)) O(n (k + log n2 + log n)

Ahn

1 2

A 0 (k + log m n) 0 (log k + log m n)

B 0 (n (k+log m n)) O(n (log k +log m n))

Proposed Method

A 0 (log ml k + log m n)

B 0 (log ml k + (nlog m n))

A: Retrieve One Object at a Time Stamp
B: Retrieve All objects at a Time Stamp
k: # of Time Stamps
m: The Order of B-tree
n: # of Node in The Tree
n2: # of Node in a History Index Tree
m1: The Order of a Time Stamp B-tree
1: Reverse Chaining in Ahn's Approach
2: Accession list in Ahn's Approach

65

66

TABLE II

THE SUMMARY OF COMPARISON
WITH OTHER DBMSs

INGRES DB2 dBaseiii WDIS Proposed
Plus Database

1 Multi Multi Single Multi Single

2 Quel SQL a Menu and a Menu
SQL-like Query
Language

3 None None None None Yes

4 None None None None Yes

1: Users type
2: A Query Language
3: The Graphic Functions
4: A Special Ability to Handle Time

67

TABLE III

AN EXAMPLE OF A WATERDAT RELATION AT
TIME POINT 75/11

ID NAME DATE

07239000 NORTH CANADIAN RIVER AT CANTON, OK 751118

07242000 NORTH CANADIAN RIVER NR WETUNKA, OK 751105

07239700 NORTH CANADIAN RIVER NR YUKON, OK 751108

07148140 ARKANSAS RIVER, OK 751112

07148120 ARKANSAS RIVER, OK 751116

07165610 ARKANSAS RIVER AT MUKOGEE, OK 751121

07154500 CIMARRON RIVER NR KENTON, OK 751105

07157000 CIMARRON RIVER NR MOCANE I OK 751106

07157950 CIMARRON RIVER, OK 751123

DISCHARG SPECIFIC TEMPERATE OXYGEN SOLIDS PH STAN

19.0000 1500.0000 9.0000 12.0000 345.0000

21.0000 2100.0000 141.0000 11.0000 13.0000 300.0000

10.0000 1800.0000 223.0000 12.0000 21.0000 250.0000

13.0000 1300.0000 321.0000 10.0000 9.0000 230.0000

16.0000 1800.0000 145.0000 12.0000 13.0000 315.0000

17.0000 2500.0000 321.0000 8.0000 275.0000

11.0000 3000.0000 313.0000 16.0000 10.0000

12.0000 2300.0000 212.0000 15.0000 6.1000 312.0000

11.0000 3200.0000 111.0000 13.0000 7.1000 210.0000

.,7151000
; llkl7154500 Rl7157950

··:·· . ··:··:: .. :·:· ... ·: .. ·· :

.,7148120

~7239000

····::::

1117148140
1107239700

·······:::: ::: :::: ... :::: :.

Attribute : DISCHARG
Tillle point : 1511

Unit: Milligrams per Liter (MG/L)
7511: November 1975

Figure 19. A Geographic Output Forma t

aJ7165610

0\
CD

ii on4zooo

······ ········-·····

upper strean station

query station

offstre~ station

07239000: Station ID

Figure 20. A Dependent Output Format

0\
\,()

390

360

330
300 :-:< .

270 +

~ 240 ><:
~

c5 210 ,:;
(I) 180 ,,,
C) ,.,
-to~ 150
.B
·- 120 r.
~90

:-:-:

~ i('o:

60

30
:~;~:

tiM!
···-···· .. II •• 7511 7512 7601

Station 10: 07239700
Unit: (MG/L)
7511: November 1975

Figure 21. A Bar Chart Output Format

--7602

-J
0

I I

I)
....

390

360

330

300

270

240

210

180

150

~ 120
~

:: 90
<C

60

:·:

X

:::

=~

:~

:-:

..

:·:
30 =-, ... ~ ... 7.. •

Unit:
7511:

7512

(HG/L)
November 1975

7601 7602

Station 10: 07239700

Figure 22. A Line Chart Output Format

71

r

[

T

r

r

time 1

PB
B-tree

time 2 time 3

Figure 17. An Example of the Proposed Approach

I I I
r vi I I 10

I

~ a current index tree

I

f'

~ I I
I

"f;;_j I I CJ

a history index tree

Figure 23. Lum's Approach (Source from [LUM84])

72

73

a. Reverse Chaining

b. Accession List

Figure 24. Ahn's approach
(Source from [AHN86a, c])

[AHN86a]

. [AHN86b]

[AHN86c]

[ANGE90]

[ARIA86]

[BAT082]

[BEN82]

[CHOW87]

[CLIF85]

[COBU90]

REFERENCES

Ahn, I. "Performance Modeling and Access Method
for Temporal Database Management Systems," Phd.
diss. Computer Science Department, University
of North Carolina at Chapel Hill, July 1986 .

Ahn, I. & Snodgrass, R. "Performance
Evaluation of a Temporal Database Management
System," in Proc. of ACM--SIGMOD International
Conference on Management of Data, Ed. C.
Zaniolo, Association for Computer Machinery,
Washington, DC: May 1986, pp. 96-107.

Ahn, I. "Towards an Implementation of Database
Management Systems with Temporal Support," in
Proc. of International Conference on Data
Engineering, Feb. 1986, pp. 374-381.

Angelaccio, M., Catarci, T. & Santucci, G.
"QBD*: A Graphical Query Language with
Recursion," IEEE Transactions on Software
Engineering, Vol. 16, No. 10, Oct. 1990, pp.
1150-1163.

Ariav, G. A. "A Temporally Oriented Data
Model," ACM Transactions on Database Systems,
Vol. 11, No. 4, Dec. 1986, pp. 499-527.

Batory, D. & Gottieb, C. "A Unifying Model of
Physical Databases," ACM Transactions on
Database Systems, Vol. 7, No. 4, Dec. 1982,
pp. 509-539.

Ben-zvi, J. "The Time Relational Model," Phd.
dissertation, UCLA, 1982.

Chow, B. M. "Data bases: Getting the most
for your Money, ." Journal of the America Water
Works Association, Vol. 79, No. 6, Jun. 1987, pp.
56-61.

Clifford, J. & Tansel, A. U. " On an Algebra
for Historical Relational Database: Two Views,"
in Proc. of ACM-SIGMOD Conference, 1985, pp.
247-265.

Coburn, E. J. "A Conceptual View of Temporal

74

Databases," IEEE Transaction on Software
Engineering, 1990, pp. 170-172.

[COMP89] Computer Advance Research Committee, "Committee
Report: Computers in the Water Industry,"
Journal of the America Water Works Association,
Feb. 1989, pp. 74-79.

[FOGG84] Fogg, D. "Lessons from A "Living in a
Database" Graphical Query Interface," ACM­
SIGMOD, 1984, pp. 100-106.

[GADI85] Gadia, S. K. & Vaishnav, J. "A Query Language
for a Homogeneous Temporal Database," in Proc.
of Fourth Annual ACM-SIGMOD, 1985, pp. 66-83.

[GADI86] Gadia, S. K. "Toward a Multihomogeneous Model
for a Temporal Database," in Proc. of the
International Conference on Data Engineering,
1986, pp. 390-397.

[GADI88a] Gadia, S. K. "A Homogeneous Relational Model
and Query Languages for Temporal Database,"
ACM Transactions on Database Systems, Vol. 13,
No. 4, Dec. 1988.

[GADI88b] Gadia, S. K. & Yeung, C. S. " A Generalized
Model for a Relational Temporal Database," in
Proc. of ACM-SIGMOD Conference on Management
Data, 1988, pp. 251-259.

[HANC87] Hancock, M. C. & Heaney, J. P. "Water
Resources Analysis Using Electronic
Spreadsheets," Journal of Water Resources
Planning and Management, Vol. 113, No. 5, Sep.
1987, pp. 639-658.

75

[HER080] Herot, C. F. "Spatial Management of Data," ACM
Transactions on Database Systems, Vol. 5, No.
4, Dec. 1980, pp. 493-514.

[HYDR88b] Hydrodata User's Manual, USGS Daily and Peak
Values, U S WEST Optical Publishing, U S
WEST Systems, Inc., 1988.

[HYDR90a] Hydrodata QW User's Manual, Earthinfo, Inc.,
1990.

[INDI90] Indira Singh & Ralf Beyer. "Water Resource
Management System in Alberta Environment: An
Empirical Analysis," in Proc. of the 7th Internal
Engineering System Conference, 1990, pp. 618-625.

[JEFF85] Jeff R. Wright, ASCE A. M. & Kroll Peter. "

76

Rigid Format Database Management Using
Micro Computer Technology," in Proc. of Computing
in Civil Engineering, 1985, pp. 449-458.

[KAZE88] Kazerouni-Zand, M. and Fisher, D. D. "A Space
efficient persistent B-tree," in the Proc. of
Second Oklahoma Applied Computing Workshop,
Tulsa, Oklahoma, March 1988, pp. 290-315.

[KAZE89] Kazerouni-Zand, M. and Fisher, D. D. "Deletion
on Persistent B-tree," in the Proc. of third
Oklahoma Applied Computing Workshop, 1989, pp.
90-96.

[KATZ84] Katz, R. H. & Lehman, T. J. "Database Support
for Versions and Alternatives of Large Design
Files," IEEE Transactions on Software
Engineering, Vol. SE-10, No. 2, March 1984,
pp . 1 91-2 0 0 .

[KITTS 6] Ki ttridge, D. G. & Burkholder, W. F. "Water System
Database for NAPLES, Florida, " Computing in Civil
Engineering, Proc. of the Fourth Conference, Oct.
1986, pp. 27-31.

[LUM84] Lum, V., Dadam, P., Erbe,R. & Guenauer, J. "
Designing DBMS Support for The Temporal
Dimension , " in Proc. of the ACM-SIGMOD Conference,
June 1984, pp. 115-130.

[MCKE87] Mckenzie, E. & Snodgrass, R. "Extending the
Relational Algebra to Support Transaction
Time," in Proc. of ACM-SIGMOD International
Conference on Management of Data, 1987, pp.
467-478.

[MAIM89] Mainmone, Mark, "Developing a database for use
in Groundwater Management," Journal of Water
Resources Planning and Management, Vol. 115, No. 1,
Jan. 1989, pp. 75-93.

[MERV90] "California Water Database," PUBLIC WORKS,
Feb. 1990, pp. 62-63.

[OVER82]

[ROTE87]

Overmyer, R. & Stonebraker, M.
of a Time Expert in a Data Base
SIGMOD Record, Vol. 12, No. 13,
51-59.

"Implementation
System,"
Apr. 1982, pp.

Rotem, D. & Segev, A. "Physical Organization
of Temporal Data," in Proc. of the Third IEEE
International Conference on Data Management,
1987, pp. 547-553.

[SARN86] Sarnak, N. & Tarjan, K. E. "Planar Point
Location Using Persistent Search Tree,"
Communication of the ACM, Vol. 29, No. 7, July
1986, pp. 669-679.

77

[SEGE87] Segev, A. & Shoshani, A. "Logical Modeling of
Temporal Data," in Proc. of ACM-SIGMOD Conference,
1987, pp. 454-466.

[SHOS86]

[SNOD85]

Shoshani, A. & Kawagoe, K. "Temporal Data
Management," in Proc. of VLDB, 1986, pp. 79-
8 8.

Snodgrass, R.
in Database,"
International
May 1985, pp.

& Ahn, I.
in Proc of
Conference
236-246.

"A Taxonomy of Time
ACM-SIGMOD
on Management of Data,

[SNOD86a] Snodgrass, R. & Ahn, I. "Temporal Database,"
IEEE Computer, Vol. 19, No. 9, Sep. 1986, pp.
35-42.

[SNOD86b] Snodgrass, R. "A Temporal Query Language," ACM
Transactions on Database Systems, Sep. 1986,
pp. 35-42.

[SNOD87] Snodgrass, R. "The Temporal Query Language
TQuel," ACM Transactions on Database Systems,
Vol. 12, No. 2, June 1987, pp. 247-298.

[SP0084] Spooner, D. L. "Database Support for
Interactive Computer Graphics," ACM-SIGMOD,
1984, pp.90-99.

[STEV87a] Stevens, A. Turbo C Memory-Resident Utilities,
Screen I/O and Programming Techniques. Oregon:
Management Information Source, Inc., 1987.

[STEV87b] Stevens, A. C Database Development. Oregon:

[STEV8 9]

[TANS89]

[TANS86]

Management Information Source, Inc., 1987.

Stevens, R. T. Graphical Programming in C.
CA: M & T Publishing, Inc., 1989.

Tansel, A. U., Arkun, M. E. & Ozsoyoglu, G.
"Time-by-Example Query Language for Historical
Databases," IEEE Transactions on Software
Engineering, Vol. 15, No. 4, Apr. 1989, pp.
464-478.

Tansel, A. U. "Adding Time Dimension to
Relational Model and Extending Relational
Algebra," Information System, Vol. 13, No. 4,
1986, pp. 343-355.

[VERM87]

[WATS81]

Verma, V. & Lu, H. "A New Approach to Version
Management for Database," National Computer
Conference, 1987, pp. 645-651.

"WATSOTRE: A WATer STOrage and REtrieval
system," U. S. Department of Interior/
Geological Survey, 1981.

78

\
VITA

Yun-chen Dunn

Candidate for the Degree of

Master of Science

Thesis: A NEW ACCESS METHOD AND IMPLEMENTATION OF A
TEMPORAL WATER RESOURCE DATABASE

Major Field: Computer Science

Biographical:

Personal Data: Born in Taiwan, Republic of China,
January 10, 1964, the daughter of Kan Shieh Teng
and Tai Mei Soong.

Education: Graduated from Gi Mei Girls' High School,
Taipei, Taiwan, Republic of China, in June, 1981;
received Bachelor of Science Degree in Business
Administration from National Chengchi University
at Taipei in June, 1986; completed requirements
for the Master of Science degree at Oklahoma State
University in July, 1991.

Professional Experience: System Assistant, ST.
Products Corp., Taipei, June, 1986, to July,
1988.

