
THE DESIGN AND ANAL YSIS OF CAPACITY

EXTENDmLE DISK ARRAY SYSTEM:

THE DIAGONAL MOVE ALGORITHM.

By

CHENG-YUAN TSENG

Bachelor of Science

OkJahoma State University

Stillwater, Oklahoma

1994

Submitted to the Faculty of the
Graduate College of the

OkJahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
May, 1997

THE DESIGN AND ANALYSIS OF CAPACITY

EXTENDffiLE DISK ARRAY SYSTEM:

THE DIAGONAL MOVE ALGORITHM.

Thesis Approved:

Dean of the Graduate College

ii

PREFACE

I wish to express my special appreciation to my thesis advisor, Dr. Kayikkalthop

M. George, for his timely supervising on my research work. I also would like to thank my

thesis committee members Dr. John P. Chandler, Dr. George E. Hedrick, and Dr. Huizhu

Lu, for their administrating of my final oral exam and assistance of my master degree

study.

I give my sincere appreciation to my family who have supported my education and

life. Without steady financial support from my mother - Yen-Hsiang Lin, I would not be

able to finish this degree now.

Finally, I also say thanks to aU my friends in Stillwater Oklahoma for their

company with my study during many years.

III

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION I

1.] . Background]
1.2. Motivation 4
1.3 . Problems 7
1.4. Thesis 10
] .5. Organization J 0

n. LiTERATURE REVIEW 11

2. I Disk Array Mechanism I I
2.2 Disk Array Models 21

Ill . ALGORITHMS 28

3.1 Straight-Forward Algorithm 30
3.2 Diagonal-Move Algorithm 35
3.3 Summary Of Diagonal Move 61

IV. PERFORMANCE ANALySIS 63

4 .1 Prelude 63

4.2 Simulation 64
4.3 Analysis 67

V. CONCLUSION 76

5.1 Summary 76
5.2 Conclusion 76

IV

GLOSSARY 78

BmLIOGRAPHY 80

APPENDIXES 83

RAID in workstations and across networks 83

v

Table

Table 2-1

Table 2-2

LIST OF TABLES

Page

Storage efficiency of parity scheme 15

Comparison of several different disk array designs 27

vi

LIST OF FIGURES

Figure Page

Figure I-I Adding a new disk to RAID level 5 without rearranging data 6

Figure 1-2 Adding a new disk to RAID level 5 with rearranged data 6

Figure 1-3 No recovery ability hot spare unit.. 8

Figure 1-4 Reliable distributed hot spare disk ... 8

Figure 1-5 Before adding a new disk on a Zebra disk array 9

Figure 1-6 After adding a new disk on a Zebra disk array 9

Figure 2-1 A disk array... 13

Figure 2-2 Disk accessing schedule 16

Figure 2-3 Mapping structure of disk array 19

Figure 2-4 Small read and write operations .. 20

Figure 2-5 RAID level 0 as non-redundant disk array 24

Figure 2-6 RAID level 1 as mirrored disk array .. 24

Figure 2-7 RAID level 2 as Hamming Coded disk array 24

Figure 2-8 RAID level 3/level4 as bitlblock interleaved parity disk array 24

Figure 2-9 RAID level 5 as distributed block interleaved parity disk array 24

Figure 2-10 RAID level 6 as distributed block interleaved parity disk array 24

VII

Figure 2-11 HP AutoRAID hjerarchical storage system , 25

Figure 2-12 Traditional RAID with centralized controller 25

Figure 2-13 TickerTAIP disk array with distributed controller 25

Figure 2-14 Zebra striped network file system 26

Figure 3-1 A disk array with six disks 29

Figure 3-2 The Straight Forward Algorithm in RAID level 0 31

Figure 3-3 Before Straight Forward moving on RAID level 4 33

Figure 3-4 After Straight Forward moving on RAID level 4 34

Figure 3-5 Diagonal moving on RAID level 4 with distributed hot spare disk ... 38

Figure 3-6 Failure recovery on distributed hot spare disk 38

Figure 3-7 Impossible failure recovery on a bad hot spare disk 38

Figure 3-8 Diagonal Move on RAID level 0 - diagonal moving 41

Figure 3-9 Diagonal Move on RAID level 0 - compacting I 41

Figure 3- 10 Diagonal Move on RAID level 0 - compacting II 41

Figure 3-11 Diagonal Move on RAID level 0 - read 43

Figure 3- 12 Diagonal Move on RAID level 0 - write 43

Figure 3-13 Diagonal Move on RAID level 1 - diagonal moving 45

Figure 3-14 Diagonal Move on RAID level 1 - distributed hot spare disk 45

Figure 3-15 Diagonal Move on RAID level 1 - read 46

Figure 3-16 Diagonal Move on RAID level 1 - extended disk array capacity 46

viii

-I

Figure 3-17 Diagonal Move on RAID level 2 - diagonal moving 48

Figure 3-18 Diagonal Move on RAID level 2 - distributed hot spare disk 48

Figure 3-19 Diagonal Move on RAID level 2 - read 49

Figure 3-20 Diagonal Move on RAID level 2 - extended disk array capacity 49

Figure 3-21 Diagonal Move on RAID level 3f1evel 4 - diagonal moving 52

Figure 3-22 Diagonal Move on RAID level 3/level4 - distributed hot spare 52

Figure 3-23 Diagonal Move on RAID level 31level4 - diagonal read 53

Figure 3-24 Diagonal Move on RAID level31level4 - write to new disk 53

Figure 3-25 Diagonal Move on RAID level 3/level4 - read 54

Figure 3-26 Diagonal Move on RAID level 31level4 - extended capacity 54

Figure 3-27 Diagonal Move on RAID level 5 - read 56

Figure 3-28 Diagonal Move on RAID level S - extended disk array capacity 56

Figure 3-29 Diagonal Move on RAID levelS - read 57

Figure 3-30 Diagonal Move on RAID level 5 - distributed hot spare disk 57

Figure 3-31 Diagonal Move on RAID level 6 - read ... 59

Figure 3-32 Diagonal Move on RAID level 6 - extended disk array capaci ty 59

Figure 3-33 Diagonal Move on RAID level 6 - read 60

Figure 3-34 Diagonal Move on RAID level 6 - distributed hot spare disk 60

Figure 4-1 Algorithm slowdown 71

Figure 4-2 Probability of hitting locked data 7 L

IX

Figure 4-3 Average disk access time for users - Ph = 0.0 72

Figure 4-4 A verage disk access time for users - Ph = 0.1 72

Figure 4-5 A verage disk access time for users - Ph = 0.2 72

Figure 4-6 Average disk access time for users - Ph = 0.3 73

Figure 4-7 A verage disk access time for users - Ph = 0.4 73

Figure 4-8 A verage disk access time for users - Ph = 0.5 73

Figure 4-9 Average disk access time for users - Ph = 0.6 74

Figure 4-10 Average disk access time for users - Ph = 0.7 74

Figure 4-11 A verage disk access time for users - Ph = 0.8 74

Figure 4-12 Average disk access time for users - Ph = 0.9 75

Figure 4-13 Average disk access time for users - Ph = 1.0 75

x

NOMENCLATURE

Bn Stripe unit for backup disk

C Single disk capacity

H Number disks as Hamming Code disks

N Number of disks in the disk array system

Pn Parity stripe unit

Qn Parity stripe unit in RAID level 6

Ph Probability of hitting locked data

Pi Probability of locking data

S Number of stripes per disk

SI Locking data size

St Total data size of disk systems

Su User's total write reques t size

Ta Average time for user access disk

Tar Algorithm run time (AlgRunTime)

Te Total execution time (ExecutionTime)

Th The time duration that the user can access the disk without waiting

T'miJ Operation for specific RAID level

Xl

Tm Memory operation time

Tr Stripe unit read time

Tur User run time (UserRunTime)

Tuw User wait time (UserWaitTime)

Tw Time duration that the user is locked by the algorithm

Tw Stripe unit write time

xi i

CHAPTER I

INTRODUCTION

1.1 Background

With increased 110 perfonnance and at least one disk failure tolerance, data

redundant disk array as secondary storage system efficiently translate from a conventional

computer storage system to be with better I/O rate, higher data transfer rate, and stronger

reliability than traditional large single-disk systems.

The increased I/O perfonnance in measurement of 110 operating rate and data

transfer rate are mostly gained from simultaneous data retrieval from several disks which

are organized in parallel as shown in Figure 2-1. This parallel disks organization lets us

have better 110 operating rate than the singUlar disk architecture, since it has several disk-

110 operations running concurrently. The I/O operating rate is defined as the number of

I/O operations per second. And the simultaneous data access from disks lets us have

better data transfer rate than any singular disk architecture, since we are retrieving data

from more than one disk at the same time. The data transfer rate is defined as amount of

data transferred through the bus or network per second such as bits per second (BPS).

The disk data access time is the composition of seek time, rotation time, and data transfer

time. Because data transfer speed over the bus or network electronically is much faster

than the slow mechanical disk drives, accessing several disks in parallel can contribute to

the bus or network having better utilization.

The data redundancy schemes using mirroring or parity infonnation contribute to

at least one disk failure recovery in the data redundant disk array systems. Traditional

single disk storage system has absolutely no fault tolerance. If it fails, all data on the disk

were gone. Armed with data redundant schemes, the data redundant disk array systems

have failure recovery ability for one disk failure. With more complicated data redundancy

architecture, we can against more disk failures from happening at the same time. With

such a superior perfonnance and robust reliability, the RAID will likely be the next

generation secondary storage system.

The Redundant Arrays of Inexpensive Disks (RAID) is based on the observation

that the disk 110 bandwidth can be improved by using several inexpensive concurrent disks

instead of a Single Large Expensive Disk (SLED) [Patt88]. Its seven-level (RAID level 0

through RAID level 6) organization defines differences on both redundancy for reliability

and data striping for perfonnance strategies [Lee93]. The RAID-II is derived from RAID

concepts by adding a unique high perfonnance controller to communicate in a high

bandwidth network [l..ee93] which has even faster data transferring speed. There are

some other related researches on the data redundant disk array such as TickerTAIP

parallel RAID [Ca094], HP AutoRAID hierarchical storage system [Wilk96]. Zebra

network file system [Hart95], Large Scale DIY RAID [Asam96]. and Network Of

Workstations [Ande95] .. ,etc.

2

The TickerTAIP aggressively distributed the disk controllers across the storage

system to avoid single point failure on the centralized controller which is used in most

RAID models. The HP Hierarchical AutoRAID employs two level storage hierarchy:

mirrored on the fIrst level to compensate for the second level RAlD-level-5 data retrieval

speed, because the mirrored disk array has better read performance and the RAID level 5

has lower cost with acceptable performance. The Zebra striped network file system

invents a new striping methodology, together with log-structured file system (LFS)

[Rose91] for effectively reducing the overhead from small-write on disk array. Exploring

the best cost/performance disk array system, the Large Scale DIY RAID is a disk array

architecture ranging from ten to thousands off-the-shelf disks with price/performance

SCSI-16 as disk interface .. The combination of off-the-shelf disks and price/performance

SCSI-16 interface lets us fmd a disk array model with sufficient performance at acceptable

price. The term "price/performance" means the SCSI-16 has adequate performance at

acceptable price while others have either a little better performance at high price or poor

performance at a low price such as SCSI-32 and ISA disk interfaces [Asam96]. Although

the goal of the Network of Workstations (NOW) [Ande95] is to make a distributed

computers system to compete with Massive Paranel Processing (MPP) systems. it treatc;

all disks on the connected workstations a<;; serverless network disk array storage system

[Ande95].

3

1.2 Motivation

Many publications have shown that a computer system with fault-tolerant/fail

recovery parallel 110 architecture improves its perfonnance and reliability at lower cost

[patt88]. The parallel I/O systems such as a disk array system provides high data

bandwidth by allowing simultaneous disk data received from disks [Kim86]. The data

redundant disk array designs on the secondary storage systems support reliability of stored

data by implementing mirroring or parity infonnation techniques in the disk

systems[Lee93].

Having a capacity extendible ability on this disk array model will be able to let us

either to create more available disk storage space for users or to equip more robust hot

spare mechanism for fast failure recovery. Furthennore, it will also allow maximum data

access parallelism available on the disk array systems for better disk storage performance.

By increasing data parallelism and adding a new disk, we can project the new disk arrays

to have better perfonnance, more disk driver space, or reliability. For example in the

Figure 1-2, we are increasing the degree of parallelism from four to five. The degree of

parallelism is defmed as maximum possible number of simultaneously running disk 1I0s in

a system. In our case, the greater degree of parallelism, the greater the perfonnance. As

we mentioned before, it increases perfonnance because both the data transfer rate as well

as the I/O operating rate in the disk array systems are improved.

4

Definition 1: A capacity extendible disk array is a disk array model in which we can

enlarge maximum amount of data in the disk array system by adding new

disks without changing the data layout scheme for any existing RAID level.

The capacity extendible disk array is a disk array model which can be extended in

total available storage size by adding new disks without changing the data layout scheme

for any RAID level as shown in the Figure 1-2. Although in the Figure I-I, the disk array

has increased in storage capacity, it doesn't have the same data layout as RAID level 5

should be. We will briefly introduce the seven RAID levels defined by University of

California at Berkeley in Chapter 2. After adding one new disk on the disk array, we

expect to improve read/write perfonnance by increasing parallelism of the disk. We

interpret the capacity as the maximum amount of data that a disk array can hold. And, it

should be a fixed number of bytes. The tenn extendible denotes the disk array systems

should be able to enlarge during the course of time. In this thesis, we discuss a Straight

Forward algorithm and a Diagonal Move algorithm as the methodologies for extending

disk array storage capacity. Any disk array system implemented with either Straight

Forward algorithm or Diagonal Move algorithm could be a capacity extendible disk array

model.

5

I I I I I
Data Parity Data Data Data

Parity Data Data Data Data
Data Data Data Parity Data
Data Data Parity Data Data
Data Parity Data Data Data
Parity Data Data Data Data
Disk I Disk 2 Disk 3 Disk4 New Disk

Figure 1-1 Adding a new disk to the RAID level 5 without rearranging data.

I I I I I
Parity Data Data Data Data
Data Data Data Data Parity
Data Data Data Parity Data
Data Data Parity Data Data
Data Parity Data Data Data

Parity Data Data Data Data
Disk I Disk 2 Disk 3 Disk4 New Disk

Figure 1-2 Adding a new disk to the RAID level 5 with rearranged data.

In this thesis, we propose the Diagonal Move algorithm model which can

universally make disk arrays' size extendible with minOT modification on different disk

array levels and the Straight Forward algorithm model which can give users more

accessibility on disks data. Comparing to the Straight Forward algorithm, the Diagonal

Move algorithm is an improved algorithm with less operation time because of its parallel

disk access method. We will define both the Diagonal Move algorithm and Straight

Forward algorithm in Chapter three later. The simulation, perfonnance analysis and

comparison of different algorithms are discussed in Chapter four.

6

1.3 Problems

We believe the algorithm for capacity extendible disk array model is necessary.

because after we add a new disk into an existing system, both data and its redundant

infonnation must be kept according to the layout scheme for the disk array system as

defined in RAID [Lee93] for maximum perfonnance. While we make the new disk be part

of the system, we not only need to keep the redundant infonnation updated with original

RAID level schemes, but also distribute aU data on all the disks as it would be in the

original RAID level scheme as shown in Figure 1-1 and Figure 1-2. This will also ensure

that we can maintain maximum parallelism in the disk array systems.

Limited and Fixed Storage Capacity:

The current disk array systems are fixed in the nwnber of disks as well as storage

capacity. Since future applications might take more storage space and data transfer

bandwidth, the capacity extendible disk array is an ideal solution for increasing storage

capacity as well as for improving data transfer bandwidth over the bus and network.

Bottleneck of New Disk Without Striping:

It is possible to add a new disk on the array without striping with others as in

Figure I-I, but the data will not be distributed to all disks even though capacity of the

system increased. The data gathering in one disk will neither improve the perfonnance nor

the reliability, so the new data need to be striped as those already existing on the array as

in Figure 1-2.

7

No Guaranteed. Backup:

The idled single hot spare (backup) disk possibly will not guarantee system

reliability if it failed before we need it as illustrated in Figure 1-3. The disk array systems

has absolutely no failure recovery ability, if the installed hot spare disk is not able to

function when we need it. The distributed hot spare is a more reliable protection

mechanism for the system when there is a disk fails. In our proposed algorithm, we have

an option to make the distributed hot spare embedded in the disk array system after adding

a new disk in the system. If we could distribute the backup disk across the disk array

systems as illustrated in Figure 1-4, a backup disk is guaranteed.

I I I I I I
I, Bad

Bad
,

Bad

Bad

Bad
Disk I Disk 2 Disk 3 Disk 4 Parity Disk Hot Spare

Figure 1-3 No recovery ability if the bot spare unit is not reliable when we need it.

I I I 1 I I
HOl Spare

Hot Spare

Hot Spare

Hot Spare

Hot Spare

Disk 1 Disk 2 Disk 3 Disk 4 DiskS Panty DIsk

Figure 14 Reliable distributed hot spare disk.

8

Zebra Strategy Has Wasted Space:

On Zebra flle system [Hart94], with special mechanism. the file manager will let

the new data use all disks as a stripe. but those data which exist before we add a new disk

will not be changed until they are deleted as in Figure 1-5 and Figure 1-6. That is Zebra

flle system can have two different stripe sizes in th.e storage system. Zebra file system uses

a special structure - file manager and stripe cleaner - to let more than one stripe size exist

in disk array. but the mechanism is not implemented on any other disk array yet. And, it is

quite inefficient while we add a new disk after the previous system is already almost full

with few future deletion (cleaning) on old stripe. This wasted space is equal to the

number of previously existing stripe times the size of stripe unit. We need a disk array

model and algorithm which has a little or no wasted space after upgrade.

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

Figure 1-5 Before adding a new disk on a Zebra disk array.

Disk 1 Disk 2 Disk 3 Disk 4 DiskS New Disk

Figure 1-6 After adding a new disk on a Zebra disk array.

9

1.4 Thesis

In this thesis, I propose new disk array capacity extendible algorithms which no

one has discussed yet for those existing disk array models. With our Diagonal Move

algorithm, the disk arrays can easily add a disk for increasing system storage capacity and

I/O system parallelism with possibly better failure recovery based on configuration. And

we solve all the problems that we described above on Section 1.2. Comparing to the

Straight Forward algorithm, theoretical and experimental analysis results show that the

Diagonal Move algorithm will perfonn the same result in less time and in less number of

moving operations, but the Straight Forward algorithm may have better disk array data

availability for users.

In this thesis, we start with introducing several different disk array designs. We

then present the Straight Forward algorithm and the Diagonal Move algorithm a<; capacity

extendible algorithms for disk arrays. At last, we give a simulation and performance

comparison of the two algorithms mentioned above.

1.5 Organization

We have already introduced the problems and limitations in the existing disk array

systems and benefits of our capacity extendible disk array models in the Chapter one.

Next, in Chapter two, we review some disk array terminology from publicly available

10

literature. We will also describe several different disk array models and key comparisons

of these systems. Chapter three presents our capacity extendible disk array algorithms and

shows how it works on different disk array levels. I also provide theoretical analysis of

these algorithms and illustrates operations using figures. Chapter four shows the

algorithm simulation and provides perfonnance comparison. Chapter five provides a

summary of our study.

11

CHAPTER 2

LITERA TURE REVIEW

In this chapter, we explain the disk array mechanism and some previous works.

The basic elements in a disk array are data interleaved parallel disks. With different ways

of data and parity layout, we can have many designs with different read/write perfonnance

and failure recovery ability.

2.1 Disk Array Mechanism

Disk Array

Figure 2-1 shows a disk array system with six disks connecting in parallel. It

organizes a number of physical disks in data interleaved parallel fashion and makes the

disk group appear as a single logical disk to applications [Kim86J. It is essential to solve

the perfonnance gap between CPU and disk I/O, since the perfonnance of microprocessor

technology had more rapid growth than the growth in disk I/O [Patt88}. The parallelism

of the disk for data retrieving contributes the most on improving disk storage system

performance. Since a single disk can only allow one transaction at a time, an application

can't access a disk until the previous application finished accessing it The singular disk's

sequential data access and slow mechanical operation on the disk create a serious

bottleneck for accessing data from disk. Furthermore, it is not a bad idea collecting some

inexpensi ve disks as a RAID to compete with one expensive large disk.

12

I I I I I 1

I Parit IStripe Parity

I

S~ pe

Stripe Unit

Disk 1 Disk 2 Disk 3 Disk 4 DiskS Disk 6

Figure 2-\ A disk array.

Stripe Unit

A stripe unit (also known as a strip) is an interleaved unit of data or parity

infonnation as shown in Figure 2-1. A group of stripe units can be organized as a parity

stripe for failure recovery. A stripe unit which stores data is data stripe unit. A stripe

unit which stores parity infonnation is called parity stripe unit [Lee93]. A stripe unit can

be a block with several kilo-bytes or a unit with only one-bit. That is, the data can be

interleaved either as fine-grained or coarse-grained. The fine-grained disk arrays

interleave data in small units which make all requests to access all disks in the array. The

fme-grained interleaving has higher data transfer rate, since all the I/O are serving one

request in parallel. The coarse-grained disk arrays interleave data in large unit size which

allows many small requests to be served simultaneously [Ng89]. The Bit-Interleaved

Parity (RAID level 3) is the finest grained among all RAID levels (some references may

use Byte-Interleaved instead of Bit-Interleaved). Since the University of California at

Berkeley has the most intensive RAID study, we adopt these RAID technology terms

consistent with their publications through out this thesis [Lee93].

13

Stripe

A stripe is basically a collection of stripe units organized in a row as illustrated in

Figure 2-2. Accessing the disk array in stripe can maximize the parallelism of the disk

array. A disk array is organized as a collection of stripes.

Parity Stripe

When a stripe contains parity information, we can call it a parity stripe. The

parity stripe is a collection of stripe units with common computed parity as shown in

Figure 2-1. In most readings, a stripe can refer to both stripe and parity stripe, but the

parity stripe only represents only the stripe with parity information. The computed parity

information (parity stripe units) as disk redundancy scheme will provide information for

recovering from data failure on the parity stripe.

Parity Scheme - Cost and Performance

The storage efficiency is defined

[
. effective usable data capacity]

storage effclency = as the cost for the disk array
total disk capacity

systems [Chen90]. The Table 2-1 summarizes the storage efficiency of different RAID

levels. The RAID level I has no redundant data, so the storage efficiency is hundred

percent. The RAID level 2 is mirrored where everything is duplicated, so the storage

efficiency is only fifty percent. With H disks as Hamming Code disks, the RAID level 2

14

N-H
has storage efficiency N With exactly one parity disk per parity stripe, we can

N-l
expect the RAID level 3, level 4, and level 5 to have N storage efficiency. Having

N-2
two disks for parity information, the RAID level 6 has storage efficiency.

N

LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVELS LEVEL 6

Efficiency 1 I N-H N-l N-J N-J N-2
- -- -- -- --
2 N N N N N

Table 2-1 Storage efficiency of parity scheme.

After discussion about the cost, we discuss the disk array read/write perfonnance

on different RAID levels. The RAID level 1 has the best read perfonnance, since the disk

set is duplicated for better data availability. We can always get data from one of two

disks. The RAID level 0 has the best write performance, because we don't need to pay

attention to write the parity information back to disks. With about the same read

performance, the RAID levelS is ideal for write among RAID level 2, level 3, level 4,

level 5, and level6, because it distributes the parity infonnation across the disks to avoid

the bottleneck associated to write on the parity disk [Frie96].

Disk Data Access Scheduling for Parallelism

Figure 2-2 shows four different disk data access scheduling examples. This

example has a job with three 3-block fIles. In schedule 1, all files are read sequentially

from one disk which makes the job competition time at T = 9. In schedule 2, the three

15

fIles are interleaved into one disk which still makes the job completion time T = 9 .

Parallel access as shown in schedule 3 and schedule 4 efficiently reduce the job running

time to T = 3. And, schedule 3 is more likely to be used, since it distributes a file to

different disks for maximizing data parallelism as in disk array systems.

Schedule 1 I
1 Disk --+--........ ---:

Schedule 21
1 Disk ---4

&hedule3 D

3Disks R

T=4 T=5

.... _
.... --.

File 1 ,

File 2

. File 3
" .. _

T=6 T=7 T=8

Figure 2-2 Disk Access Scheduling.

Redundancy Schemes

T=9

Basically non-redundant, mirroring. and check disk(s) are three different kinds of

disk array redundancy schemes. The non-redundant disk array systems have absolutely no

redundant data in the systems. The mirrored disk array systems have all data duplicated as

mirroring. The check disk(s) disk array systems have check disk(s) storing parity

infonnation per parity stripe. The RAID level 0 uses the non-redundant scheme, and the

RAID level I uses the mirrored scheme. All the Hamming Coded and parity checked

RAID levels such as level 2, level 3, level 4, level 5 and level 6 are classified as check

16

disk(s) redundant scheme. Usually RAID level 2 and level 6 use more than one check

disk. The RAID levelS and level 6 have their check disk(s) distribute to all disks in the

disk array systems. The RAID level 3, level 4, and level 5 must have exactly one check

disk per parity stripe [Katz89).

Non-Redundant

The non-redundant parity scheme gives us 100% usage of the disk space for

storing data, since there is no parity infonnation on the disks. Because there is no

redundant infonnation need to be kept, the non-redundant scheme has the best

perfonnance on write with no fault tolerance and higher mean time to failure (MTfF) due

to increased number of disks in the system [Schu89]. We don't want to use those high

failing probability systems in our disk array designs. For example, if we have two disks

connect together, the risk a disk failure is double that of a single disk system. It is the

lowest cost and highest risk system. The RAID level 0 is a non-redundant disk array

system [Chen93].

Mirroring

It simply duplicates all disks for reliability. It is the most expensive as well as

simplest redundancy design with good read perfonnance. Since the read operation is

available from one of two disks, the read perfonnance is the best one among all RAID

levels. But, the write performance will be poor because of writing on two disks, and it

can't be done at the same time [Lee93]. The RAID levell is a mirrored disk array

systems.

17

Check Disk

The RAID level 2, level 3, level 4, level 5, and level 6 are redundant by check

disk(s). With one or more than one check disk(s), the different check disk designs can

recover the disk array systems from disk failure. In the RAID level 2 check disks use

Hamming Code method while the RAID level 3 and level 4 has one parity disk for failure

recovery. For improving availability to users on the check disk(s), RAID level 5 and level

6 distribute the check disk(s) infonnation across all disks in the disk array systems. There

is no individual disk responsible for the parity information. Comparing to the mirrored

scheme, the genuine check disk designs are more efficient in utilizing the storage capacity.

The write performance will be better than the mirrored disk array as well, since they only

need to write on one set of disks rather than two sets of disks in the mirrored disk array

systems [Lee93].

Mapping

As a traditional disk, the RAID has analogous hierarchical mapping structure. At

the top is the Stripe Table Allocation Table (STAT). It keeps the information to locate

the Stripe Allocation Table (SAT) which stores the pointer for every (parity) stripe.

Following the SAT, the Stripe Unit Allocation Table (SUA n tells the actual data location.

There is one SAT per disk array, and one SUAT per disk as illustrated in Figure 2-3

[Wilk96]. While we change the disk data allocation, we update the mapping tables as

well.

18

SUAT SUAT SUAT
Disk 1 Disk 2 Disk 3

Figure 2-3 Mapping structure of disk array.

Small ReadlWrite Operations

The small read/write operations is disk array readlwrite operations which access

data size smaller than a (parity) stripe as shown in Figure 2-4. To read a disk array, we

can just read the data stripe units and ignore the parity information. To update a disk

array with a small write, we need to read the old stripe and calculate the new parity

information then write them back to the disks. These operations can be done by read-

modify-write or reconstruct write as illustrated in Figure 2-4 (tenns and figures adopted

and modified from [Lee92]). The disk array use the read-modify-write if majority of the

stripe units in a parity stripe is not changed. It will first read the old data stripe unites)

(those data stripe units that we want to update) and old parity stripe unit, then compute

the new parity stripe unit and write new data stripe unites) with new parity stripe unit back

to the disk array. The reconstruct-write is used if the majority of the stripe units in a

parity stripe need update. It will first read the rest of the old data (those data stripe units

that we are not updating) and old parity stripe unit, then compute the new parity stripe

unit and write the new data stripe units with new parity stripe unit back to disk array.

Frequent read and write access on the parity disk degrade disk array performance in RAID

level 2, level 3 and level 4, since they a11 have dedicated disk(s) for parity infonnation.

19

The distributed parity scheme in RAID level 5 and level 6 are designed for overcoming

these small write problems.

Read t t
parity

Read-Modify-Write

pari.ty

parity

Reconstruct -Write

t W
parity

1 1 1 ~
parity

Figure 2-4 Small read and write operations.

Log-structures fIle systems(LFS)

The LFS appends new information to file system in a sequential buffer - log

[Rose91], and then writes the log buffer to disks at one time. It increases the write

performance with reduced disk seek time by batch writing, since one large write operation

request has better performance than many small write operations. The Zebra file system

successfully borrows this approach for its log-based striping. It is mainly targeted at the

small write operations that degrade the disk array performance. The small writes are those

20

write operations which only involve part of the parity stripe. The problem doesn't happen

on the RAID level O.

2.2 Disk Array Models

RAID prototype

The RAID prototype is defined as RAID level 0 through level 6 with different

tradeoff in data availability, paranel 110 perfonnance, hardware cost and redundancy

overhead [Lee93, Patt88].

• Non-redundant (RAID Level 0)

As shown in Figure 2-5, this model has no redundant data for failure recovery. The

only advantage of this model is easy to write on the array since we neither need to

compute redundant information nor need to store them. It has the best write operation

perfonnance among all RAID levels.

• Mirrored (RAID Levell)

As shown in Figure 2-6, this model is RAID level 0 with duplicated set of disks for

mirroring. It has the best read operation performance and high reliability with the

most expensive hardware cost. Poor write operation performance is another

disadvantage of this RAID level.

21

• Hamming Coded (RAID Level 2)

This model use Hamming Code scheme as redundancy algorithm. Hamming Code are

stored at disk positions 2" where 0 ~ n ~ Llog2 N J and N is the number of disks

in the disk array. For example, in a seven disks disk array, the disk 1, disk 2, and disk

4 are used for storing the Hamming Code and the disk 3, disk 5, disk 6, and disk 7 are

used for storing data as illustrated in Figure 2-7.

• Bit-Interleaved Parity (RAID Level 3)

It is fine-grained data interleaving as we discussed previously. It has exactly only one

parity disk per system. It also has all the parity infonnation placed at one parity disk

which will potentially create a jam while we have several write requests on the disk

array.

• Block Interleaved Parity (RAID Level 4)

This level is similar to the RAID level 3. It has more coarse-grained data interleaving

which we discussed earlier. The parity infonnation are all in one parity disk, and it is

the bottleneck while we write on the disks as shown in Figure 2-8.

• Block Interleaved Distributed Parity (RAID Level 5)

As shown in Figure 2-9, the RAID level 5 has coarse-grained interleaved distributed

parity infonnation stored across the disk array. Unlike the RAID level 3 and level 4, it

perfonns better when writing on the disk because of no single parity disk.

22

• PQ Redundant Parity (RAID Level 6)

Figure 2-10 shows the RAID level 6 model. Instead of just using one interleaved

block per parity stripe, it has two interleaved blocks (stripe units) in a parity stripe.

These two blocks consist of parity infonnation and Reed-Solomon code for recovering

two disks failures.

In the Figure 2-5 to Figure 2-10, we conceptually illustrate the seven RAID levels.

The shaded areas represent the redundant part of the disk array. In this example. with

different number and different types of redundant disks, they all have four disks for storing

data.

23

I
Disk)
Data

Disk I
Hamming

I I I I
Disk 1 Disk 2 Disk 3 Disk 4
Data Data Data Data

Figure 2-5 RAID level 0 as non-redundant disk array.

I I I I I I
Disk 2 Disk 3 Disk 4 Mirror Mirror Mirror
Data Data Data Diskl Disk 2 Disk 3

Figure 2-6 RAID level I as mirrored disk array.

I
Disk 1
Data

Disk 6
Data

Figure 2-7 RAID level 2 as Hamming Coded disk array.

I I I I
Disk 2 Disk 3 Disk 4 Disk 5
Data Data Data Parity

I
Mirror
Disk 4

Figure 2-8 RAlD level 31level4 as bitlblock interleaved parity disk array.

I I I I
Data Parity Data Data

parity Data Data Data

Data Data Data Parity

Data Data Parity Data

Data Parity Data Data

Parity Data Data Data

Figure 2-9 RAID level 5 as distributed block interleaved parity disk array.

I I I 1 I I
Data Data Data Data .Parity Parity

Data Data P!lrity Parity Data Data

Parity Parity Data Data Data Data

Data Data Data Data Parity Parity

Data Data Parity Parity Data Data

Parity ., Parity Data Data Data Data

Figure 2-10 RAID level 6 as distributed block interleaved parity disk array.

24

HP AutoRAID

The HP AutoRAID combines the mirroring perlonnance with RAID level 5 cost

capacity benefit by mirroring active data only and storing inactive data in RAID level 5

[Wilk96]. With faster disk read operation, the HP Auto RAID applied RAID level 1 at

top level of the disk array for active data retrieval. In the lower level, the RAID level 5

has faster disk write operation on inactive data.

Host

RAID Levell ; RAID Level 1 RAID Level I RAID Levell

RAID Level 5 RAID Level 5 RAID Level 5 RAID Level 5

Figure 2-11 HP AutoRAID hierarchical storage system.

TickerTAIP

The TickerT AlP distributes disk controller nodes across the disks instead of using

single central controller to avoid single point failure and for better fault tolerance as shown

in Figure 2-12 and Figure 2-13 [Cao94].

Figure 2-12 Traditional RAID with centralized controller.

Figure 2-13 TickerTAW disk array with distributed controller.

25

Zebra

Zebra file system using its log-based striping distributes all new data across

multiple fIle servers [Hart95]. A big difference from other models is it only writes to the

disk array as a new stripe instead of updating the old stripe. And a 'Cleaner' mechanism

will clean the old stripe later. A big advantage of the Zebra is better write operations

perfonnance in response time because it replaces the read-modify-write and the

reconstruct-write with the log-structure as in Figure 2-14.

data log

J" ./1 ~ I, . I 1 . . 1~

Data Disk Data Disk Data Disk Data Disk Data Disk Parity Disk

Figure 2·14 Zebra striped network file system.

NOW

One of many revolutionary results in NOW (Networks Of Workstations) research

is building the RAID style secondary storage systems in workstations on the network.

The NOW system totally distributes its memory and processing power to workstations in

its network. All the workstation disks in NOW are accessed as a RAID (or Zebra)

strategy. For example, we can imagine that there are fifty workstations connected

together, and all the workstations share their local disks as components of a RAID.

26

After review of several disk array designs, we briefly summari.ze a comparison of

the designs in table 2-2. Notice that the capacity extended algorithm and integrated

distributed hot spare disk study is not on these researches yet.

Characteristics Comparison

Network Based Advantages Striping

RAlD No Simple File based

HP AutoRAID No, SCSI bus Hierarchical architecture Log-structure in RAID level I and
level 5

TickerTAIP SCSI or FDDI Distributed controller File based

Zebra Yes Client striping Log-structure

NOW Yes Distributed computing Log-structure

DIY-RAID No, SCSI-n bus Cost vs. perfonnance N/A

Table 2-2. Comparison of several different disk array designs.

In the next chapter, we introduce our capacity extendible algorithm on any existing

disk array with distributed hot spare option.

27

CHAPTER 3

ALGORITHMS

In this chapter, we present our algorithms - capacity extendible disk array

algorithms - using examples and figures. The algorithm completion time as well as the

number of read/write operations are also discussed and compared. Section 3.1 first

introduces the Straight-Forward Algorithm, and then the Section 3.2 explains the

Diagonal-Move Algorithm for each RAID level. Two configurations, with compaction for

extra disk system capacity and without compaction for guaranteed disks system backup

are described.

Compaction of disks is implemented in our Straight Forward Algorithm and

optional for Diagonal-Move Algorithm. Compacted disk has files stored in contiguous

units and free space is consolidated into one contiguous block. In our model, compaction

will not only free space for new stripe, but also will reduce disk mechanical access time by

rearranging the file fragments.

Since the backup disk can effectively reduce the necessary mean time to repair

(MTfR) [Patt88] for disk arrays, a reliable hot spare disk is important for the disk array

systems. Integrated with distributed hot spare backup disk in disk array, the disk system is

guaranteed with more reliable spare disk embedded which is always ready for recovering

28

failed disks immediately_ The backup disk, spare disk, and hot spare disk are

interchangeable tenns through out this thesis.

Defmition 2: Let A be the disk array. Then A has the following properties.

(a) Number of disks N. It also represents the number of stripe units on a

stripe. That is exactly one stripe unit in a stripe belongs to a disk.

(b) Number of stripes per disk S _ Any disk in the disk array contains S

stripe units.

(c) Single disk capacity C is the capacity (number of bytes) on any single

disk in the disk array.

Example 1: An illustration of a disk array with six disks.

I I I I I I
25 S = 5, s= 5 2') C 29 30

19 s=4 21 22 23 24

13 s=3 N=6 If; J7 18

7 s=2 9 10 II J2

I s = 1 3 4 5 6

n = 1 0=2 n=3 n=4 n==5 n = 6

Figure 3-1 A disk array with 6 disks.

With N = 6 ,and S = 5 , this disk array consists of six disks and each disk is

divided into five stripe units. It has thirty stripe units in total. All stripe units are labeled

using unique identifiers (integers). We use s as a variable to represent stripe units on a

disk. So, s varies from 1 to S. And n is used as a variable to represent a disk in the

29

array. So, n varies from 1 to N. Each stripe unit has its unique sequential number for

identification. With N disks, S stripes in the disks systems, we shall have the disk array

C
capacity C * N bytes. And stripe unit size is S bytes. The total number of stripe units

IS N*S.

3.1 Straight-Forward algorithm

In Figure 3-2, we show stripe moving of Straight Forward algorithm. After we

plug in a new disk, it simply moves the stripe units to the next available space in sequential

order. Depending on the disk array configuration, maximum number of stripe units need

to move in the disk array is N '" S. The upper bound completion time for this moving is

N°S

T'mU = L (Tr+ Tw) where variable Tw is stripe unit write time, and variable Tr IS

stripe unit read time. For instance, in Figure 3-2 only N '" (S -I) stripe units need to

N°(S-I)

move with a completion time of L.(Tr + Tw) ,since we put the new disk next to disk 5

instead of before disk 0 which requires exactly N * S read/write operations.

Theoretically the new disk can be inserted anywhere on the disk array, but we figure out

that the algorithm may perfonn a little bit better if we append to the end. Based on the

RAID level schemes, the stripe unit size can be a bit or a several bytes as a block. In this

algorithm, the assumption is that each moving operation on any single stripe unit requires

exactly one read and one write without overlapping on any two operations. Comparing to

the Diagonal Move algorithm in next section, this algorithm takes more time for disk array

30

rearrangement with smaller read/write units. Due to atomic data access, we need to lock

the data while moving. The Straight Forward algorithm requires minimum number of

locked data units (see Chapter 4). Since it locks only one unit at a time, while the

Diagonal Move algorithm usually locks whole parity stripe. Though it provides maximum

data availability for users, it takes too much read and write operations for data migration.

Algorithm 1: The Straight Forward Algorithm is a capacity extendible algorithm for disk

array. After a new disk is added, the disk array is subject to compaction

where all the stripe units are sequentially moved to its lowest available

addressing space (refer to Figure 3-1 for stripe unit addressing scheme)

continuous across the disks system as illustrated in Figure 3-2.

Disk I Disk 2 Disk 3 Disk 4 Disk 5 New Disk

Figure 3-2 The Straight Forward AJgorithm in RAID level O.

In Straight Forward algorithm, the number of read operations is equal to the

number of data stripe units on the disk (the "data stripe units" doesn't include parity stripe

units). And, number of write operations is the number of stripe units in the disk array

system which is (N * S) at most.

31

Precisely, if we add the new disk as appended, the RAID level ° requires

N * (S -1) reads and writes which is less than the nwnber of reads and writes if the new

disk is inserted between any two existing disks. As shown in Figure 3-2, there is one

stripe at s = 1 not involved in any read/write operations while rearranging the disk.

Since the parity stripe units are only involved when we write to the disk, the RAID level 1

through RAID level 6 may have different number of read and write operations. The RAID

level 1 is mirror of RAID level 0, so it takes N * (S -1) reads and 2(N * (S - 1)) writes

which is twice as many as of RAID level 0. Although all the RAID level 1 disks are

physically parallel connected, we never access both set of disks as a stripe. We can read

from one of the available disk set which only needs one stripe read operation. For the

write, we need to write it twice for both set of disks. The RAID level 2 takes

[(N -log2 N - 1) * S] reads and N * S writes. That is because we have to have

(N -log2 N - 1) data disks or (log2 N + 1) parity disks in the Hamming Code scheme

with S stripes. The RAID level 3, 4, and 5 has (N -1) * S reads and

(N * S) - (N - 1) writes. In these levels Oevel 3, level 4, and level 5), we have one disk

used for the parity information, so have only (N -1) * S data stripe units in total for read

operations. While we write back the data stripe units, we also need to update the parity

information. So, we have (N * S) - (N - 1) writes on these levels. That is, we write

stripe units on all disks except the s = 1 stripe. With two parity disks, the RAID level 6

has (N - 2) * S reads and (N * S) - (N - 2) writes. Similar to RAID level 5, we read

32

these (N - 2) * S data stripe units then take (N * S) - (N - 2) writes for data stripe

units and parity infonnation excluding these on the stripe s = I .

Example 2: A Straight Forward moving on a RAID level 4 disk array after adding a new

disk.

In this example, we have a new disk added on a RAID level 4 disk array system as

shown in Figure 3-3. The Straight Forward moving algorithm sequentially compact the

stripe units to its lowest available addressing space. The Figure 3-4 illustrates the disk

array after completion of the Straight Forward moving algorithm. The stripe units PI

through P5 in the parity disk are parity blocks. With special mechanism, the parity

infonnation is updated after the new stripe has completed its moving. It is that the PI

must be changed to PI' after stripe unit number 5 has been written. In this example. there

are eighteen stripe units read and write operations. And no operation can be

simultaneously done.

I I I I I I
,117 18 P5
I

13 14 15 16 P4

9 10 11 12 P3

5 6 7 8 P2

1 2 3 4 PI

Disk 1 Disk 2 Disk 3 Disk 4 Parity New Disk

Figure 3-3 Before Straight Forward moving on RAID level 4.

33

I I I I I I
,I

16 17 18 P4'

11 12 13 14 P3' 15

6 7 8 9 P2' 10

~ 2 3 4 PI' 5
I'

Disk 1 Disk 2 Disk 3 Disk 4 Parity New Disk

Figure 3-4 After Straight Forv;ard moving on RAID level 4.

Completion time T for Straight Forward Algorithm for a complete disk array is

total time of Tw as disk write time, Tr as disk read time for a stripe unit and time for

updating parity information. Tm represents the time while some operations take place in

memory such as parity computation and stripe units rearrangement if necessary in later

model. Since (N * S) is usually far greater than (N -1) , we ignore the (N - 1)

read/write operations on the first stripe on our formula for simplicity. The Straight

Forward algorithm completion time for different RAID levels are listed below.

N*S N*S

I;mu = LTr+ LTw+Tm
I t

N*S N°S N'S

I;mu = L Tr + L TWdola + L TWmi"or + Tm
I I J

34

N'S 2~S)

= LTr+ LTw+Tm
I I

IN- (Iog l N+I)J*S I N-(log2 N+llJ*S (1082 N+I)

I;~YrU = I Tr + L Tw dllJa + I Tw porif)! + Tm
I

IN-(lo82 N+I)j*S N"S

ITr + LTw+Tm
I

(N-l)*S N*S

LTr+ LTw+Tm

(N-2)'S (N-2)'S 2S

I;mu = LTr + L TWdaJO + LTwparity + Tm
I

(N - 2)'S N*S

ITr+ LTw+Tm

3.2 Diagonal-Move algorithm

In this section, we demonstrate our Diagonal Move algorithm applied in all six

levels of RAID structure. In our proposed algoridun, all the diagonally allocated data

stripe units in the disk array will be moved to the new disk. Then we have an option to

compact the disks for extra space or not compact the disk for guaranteed fast failure

recovery (hot spare) disk.

35

The reason for diagonally moving data stripes to the new disk is that we can avoid

the bottle neck on Straight Forward algorithm which is read/write at one disk at a time by

simultaneously performing read/write on several disks in the disk array. And the reason

for us to choose distributed hot spare disk is because we need to guarantee that the hot

spare disk is always working while we need it

In the Diagonal Move algorithm, we also have options on either compacting the

disk array data or not compacting the disk array data. If we compact the disk, we will

have our extended disk space at the top of the disks. If we choose not to compact, we

distribute stripe units as a guaranteed hot spare disk [Wilk96] with reduced mean time to

repair (MITR) [Patt88].

The hot spare disk for disk array is not used, but physically connected with other

working disks for reduced MITR. Once there is a disk failure, the hot spare disk can

replace the failed disk automatically without waiting for human manually exchanging disk,

if there is a way to recover. Usually the parity information or mirrored disks provide the

recovering information. It effectively reduces the mean time to repair the disk system with

a little more hardware complexity. In our model with this option, we are not increasing

the capacity for the existing disk array storing data after adding a new disk, but we

provide a new guaranteed backup disk for any single disk failure recovery on the disk

array systems except RAID level O.

36

The guaranteed backup option in our model is provided by these diagonally

distributed stripe units. The old fashion passive way to provide a backup disk is manually

replacing the bad one when a working disk fails. An active way is to provide a hot spare

disk which is an additional disk always connected on the systems for immediate failure

recovery [Patt89]. The added independent extra hot spare disk may have gone bad before

one of the working disks failure as in Figure 3-7. In this case, the hot spare disk does not

serve its purpose. The distributed hot spare disk which is embedded in the disk array as in

Figure 3-5 can be a guaranteed way for fast failure recovery. The shaded area, stripe units

B 1 to B5, in Figure 3-5 are these stripe units as distributed hot spare disk for better

MITR. The distributed guaranteed backup disk is not able to apply on the RAID level O.

because there is no redundant information for failure recovery. With this distributed

backup mechanism, the RAID level 2 disk array can tolerate even more disk failures.

Figure 3-5 and 3-6 demonstrate the example of failure recovery of guaranteed

distributed hot spare disk. The parity disk will be responsible for providing infonnation

while the disk array system needs to recover the bad disk. For example, when the disk 4

fails the parity units 2, 3, 1 and PI will calculate the failed part and reproduce it to the hot

spare at disk 1. Stripe units 5, 6. 7 and P2 will recover the fail unit on disk 4 to the disk 2

and so on. We are guaranteed the hot spare disk is always alive while we need it.

37

,

I I I I 1 I
17 18 19 20 B5 P5

13 14 15 B4 16 P4

9 LO B3 12 11 P3

5 B2 7 8 6 P2

BI 2 3 ,4 1 PI

Disk 1 Disk 2 Disk 3 Disk 4 New Disk Parity Disk

Figure 3-5 Diagonal Moving on RAID level 4 with distributed hot spare disk.

17 18

13 14

10

Disk 1 Disk 2 Disk 3 Disk 4 New Disk Parity Disk

Fig1U'e 3-6 Faiture recovery on distributed hot spare disk.

17 18 19

13 14 15

10 1 1

3

Disk 1 Disk 2

Figure 3-7 Impossible failure recovery on a bad hot spare disk.

38

Figures 3-8 to 3-10 show us the concept of the diagonal move algorithm. It moves

the data from old disk array architecture to the new added disk in parallel. Then it

compacts the disks stripe by stripe which requires less read/write time as well as

operations than the Straight Forward algorithm.

S
In this example, we need stripe reads for these diagonally distributed data

N+l

S
stripe units (N stripe units are read in parallel), and N * -- writes for these stripe

N+l

units copying to the new disk. On the compacting operation, we have S - 2 stripe reads

and writes as shown in Figure 3-9, and Figure 3-10. So it will result the total time for

moving operations in
YcN+I) N*YcN+I) S-2 5-2 y~l)
I Tr+ I Tw+ ITr+ ITw+Tm where the LTr IS

I I I

N*7{N+I)

the time for diagonal reads on the disk array, the I Tw is the time for writes on the

5-2

new added disk, the I Tr is the time for stripe reads while disk array compacting, and

S-2

I Tw is the time for stripe writes while disk array compacting. Comparing this to the

N*S N*S

Straight Forward algorithm in RAID level 0 with T,.v.u = I Tr + L Tw + Tm operation
I I

time, we are paying less operations in less time on the reads and writes for the disk array

stripe units rearrangement To prove it, we need to have _S_ + (s - 2) < (N * S) for
N+l

S
the reads, and N * --+ (s - 2) < (N * S) for writes.

N +1

39

S
• For the read operations, we prove --. + (S - 2) < (N'" S) .

N+I

S S
Set -. -+(S-2)<-+S «N*S)

N+l N

S
-+S«N*S)
N

1
-+ 1 < N where N # {O,l}
N

S S S
Since both --+ (S - 2) < - + Sand -+ S < (N * S) are true, the

N+I · N N

S
--+ (S - 2) < (N * S) is true as well. So, we just proved that the Diagonal Move
N +1

algorithm require less reads in less time than the Straight Forward algorithm.

S
• For the write operations, we prove N * N + 1 + (S - 2) < (N '" S).

S N*S
Set N*--+(S-2)<--+S«N*S)

N+l N+l

N*S
--+S«N*S)
N +1

N
--+ 1 < N where N # {O,l}
N+I

S N*S N*S
Becauseboth N*--+(S-2)<-- +S and --+S«N*S) are

N+I N+l N+l

true, the N * _S_ + (S - 2) < (N * S) is true as well. Again, we just proved that the
N+l

Diagonal Move algorithm require less writes in less time than the Straight Forward

algorithm.

40

::11"

Example 3: Concept of Diagonal Move algorithm.

Disk 2 Disk 3 Disk 4 DiskS New Disk

Figure 3-8 Diagonal Move on RAID level O.

29 .,

l:~
.,

19 I~

"
14 l~ ~ . . ,

I' il l ." ~ ,

Disk I Disk 2 Disk 3 Disk 4 DiskS New Disk

Figure 3-9 Diagonal Move on RAID level O.

27

22

16 17

11

2

Disk 1 Disk 2 Disk 3 Disk 4 DiskS New Disk

Figure 3-10 Diagonal Move on RAID level O.

41

3.2.1 Non-Redundant - RAID level-O ..

In Figure 3-11 and Figure 3-12, we show the diagonal move of the stripe units in

the disk array system. It is derived from Figure 3-8 strategy with combined diagonal move

and compaction operations which will come out even better perfonnance. In this model,

we have (S -1) stripes read and write operations (since we don't need to read/write the

(S-I) (S- I)

first stripe s = 1) which results total execution time in 7;mu>* = L Tr + L Tw + Tm. It
I I

is simply about N times less than the Straight Forward algorithm with

N°S N°S

T,.eveU = L Tr + L Tw + Tm ex.ecution time. Because there is no redundant infonnation

for the RAID level 0, the distributed hot spare (backup) disk option is not available on this

RAID level for fast failure recovery.

In Figure 3-11, we read the disk array in stripe. Then we write it back to the disk

array in new fonnat in stripe as shown in Figure 3-12. By this way, we not only compact

the disk array, but we can also find that these diagonally allocated stripe units 6, 12, 18, 24

in Figure 3-11 are reallocated to the new disk in Figure 3-12. Notice there are no two

stripe units from the same stripe accessing on the same disk. That is, all the stripes reads

and stripes writes are in their maximum parallelisms.

42

Disk I Disk 2 Disk 3 Disk 4 Disk S

Figure 3-11 Diagonal Move on RAID level 0 with read operations,

I 1

Disk I Disk 2 Disk 3 Disk 4 DiskS

Figure 3-12 Diagonal Move on RAID level 0 with write operations,

43

New Disk

New Disk

: I ~(
./~
::~

" ;;t
"

"

'.
"

:?l "

"

:l
"'I
" ,1

3.2.2. Mirrored - RAID level-I .

Since all data are duplicated in this level, two new disks need to be installed at the

same time for mirroring. In general, the mirrored disk array can tolerate 1 to N disks

failures. That is when one set of the disks crash, and the mirrored side can take place for

data retrieval. The worst situation is lost access on both the disk and its mirror image

which makes the mirrored disk array can tolerate only 1 disk fail. If we choose guaranteed

backup as our option after adding two new disk.in the mirrored disk array, we will have

even better fault tolerance with fast failure recovery. In other words, the new mirrored

disk array systems can tolerate up to (N + 1) disks failures without replacing disk. That

is because we can tolerate one disk failure from one set of disks, and complete failure of

the mirror image.

The algorithm running time for extended disk system capacity is

S-I 2(S-I) Y~I) 2N(7('N i-I))
T,mU' = L Tr + L Tw + Tm, and T,ei'~/-," = L Tr + L Tw + Tm for distributed hot

I

spare backup disk. On the extended capacity configuration as shown in Figure 3-15 and

Figure 3-16, we have at most (S -1) stripes read operations and at most (S -1) stripes

write operations. And on the distributed backup disk option as in Figure 3-13 and Figure

3-14, we have one stripe read on every (N + 1) stripes (since we diagonally read) which

S
means we have stripes to read. While we write back to the new disk, we are

N+l

44

, ...
.• 1

S
required to have N >I< -- stripe units to write in sequentially on two set of disks. That

N +1

is simply because each stripe that we read needs N writes for all stripe units.

Disk 1 Disk 2 New Disk Mirrored I Mirrored 2 New Disk

Figure 3-13 Diagonal Move on RAID level 1.

11 12

8

6

Disk 1 Disk 2 New Disk Mirrored I Mirrored 2 New Disk

Figure 3-14 Diagonal Move on RAID level I with distributed backup disk.

45

....

Disk 1 Disk 2 New Disk Disk 1 Disk 2 New Disk

Figure 3-15 Diagonal Move on RAID level 1 with extended disk space.

Disk 1 Disk 2 New Disk Mirrored I Mirrored 2 New Disk

Figure 3-16 Diagonal Move on RAlD level I with extended disk space.

46

3.2.2 Hamming Code - RAID level-2.

The Hamming Coded parity scheme use more than one error checking disks on a

stripe based on powers of two positions, so we need to have two disks which there is one

disk for the data and one disk for the Hamming Code error checking added if number of

the disks in the disk array system - N reaches powers of two.

From the Figure 3-17 to Figure 3-18, we show the Diagonal Move algorithm

applied on the RAID level 2 - the Hanuning Code scheme. In disk array, those powers of

two check bits in the Hamming Code are putting together in the check disks as disks 1,

disk 2, and disk 4 in Figure 3-17. There is no necessity to move and read stripe units in

these check disks, since we are going to modified the check bits in these check disks while

we write the stripe units back to the disks. So in the Figure 3-17 we are actually reading

the whole stripe to the memory excluding the check bits, then write it back to the disk

with a new stripe units arrangement which is making a diagonal move layout for

distributed hot spare disk or compaction format.

In this RAID level, we need S stripe reads as well as writes, therefore, we have

s s
the execution time as ~~veU* = L Tr + L Tw + Tm on both distributed hot spare disk

I I

and extended disk capacity options.

47

.. , .,
.(.
I~

17

15

13

lL

Disk 1 Disk 2
Check Disk Check Disk

Disk 3
Data

Disk 4
Check Disk

Disk 5
Data

Figure 3- I7 Diagonal Moving on RAID level 2.

I7

15

84

5

3

Disk 1 Disk 2
Check Disk Check Disk

Disk 3
Data

Disk 4
Check Disk

18

14

12

Disk 5
Data

Figure 3- 18 Diagonal Moving on RAID level 2.

48

New Disk
Data

16

13

86

New Disk
Data

Disk I Disk 2
Check Disk Check Disk

~r""

Disk 3
Data

Disk 4
Check Disk

Disk 5
Data

Figure 3-19 Diagonal Moving on RAID level 2.

Disk 1 Disk 2
Check Disk Check Disk

Disk 3
Data

Disk 4
Check Disk

Disk 5
Data

Figure 3-20 Diagonal Moving on RAID level 2.

49

New Disk
Data

New Disk
Data

'll

3.2.3 Bit-InterleavedlBlock-Interleaved - RAID level-3-4.

In the parity disk levels - RAID level 3 and RAID level 4, as in the RAID level 2,

we need to take care these parity infonnation while stripes require storing them at the

particular place as defined in RAID. In other words, we may need to re-compute the

parity information and write those parity stripe units back to the parity disk while we

moving data stripe units around. The time for completing the algorithm for these levels

with fast failure recovery distributed hot spare disk is

7(N+I) N(%+I)
I;evt' 3* = I;~vd 4. = L Tr + LTw + Tm as illustrated in Figure 3-21 and Figure 3-22.

XN+I) N(%+I) S S
Or T,evd 3. = I;evel 4' = L Tr + L Tw + L Tr + L Tw + Tm for increased disk system

capacity as shown in Figure 3-23 and Figure 3-24.

S
For the distributed hot spare disk configuration, we take stripe read

N+ I

operations for the diagonal reads. Then we need N * (_S_) stripe unit write
N +1

operations for sequential write on the new disk. Because the reads are parallel and wriles

are sequential for each stripe, each diagonal read requires N write operations. So the

time for diagonal hot spare disk in the RAID level 3 and level 4 is

?{N+I) N(%+I)
T,eveU* = '1;evtu. = L Tr + L Tw + Tm. In Figure 3-22, the stripe units B I to B9

represent our distributed hot spare disk units. Since we are just reordering the parity

50

' .,

stripes and there is no new data added in any parity stripe, there is no necessary to update

the parity stripe units as in Figure 3-22.

From Figure 3-23 to Figure 3-26, we are showing the extended disk array capacity

configuration for the RAID level 3 and level 4. Mer diagonal move of the disk array as in

Figure 3-23 and Figure 3-24, we compact the data together for extended disk array

capacity configuration as in Figure 3-25 and Figure 3-26. As before the read requests

access only the data disks, and the write operations access on all data disks including

parity disk. And it is easy for we to find out that S stripe reads and S parity stripe

writes are necessary for the compaction as in Figure 3-25 and Figure 3-26. In Figure 3-25

and Figure 3-26, the stripe units PI' to P8' in the parity disk are updated while the

parity stripe write back to the disk array. Therefore, the compacting operation takes

s s
L Tr + :L Tw + Tm as execution time. Together with run time from diagonal move

I I

YtN+I) N(%+I}
L Tr + :L Tw + Tm, the operation time for the extended disk array capacity

7(N+I) N(%+l) S S

configuration is T,mU* = T,eveU* = I Tr + I Tw + L Tr + L Tw + Tm .

51

:,
-,

" '.,
,J
' ~ .. ,
:r.
· i
,t)

... T
• • • • •

P9

P8

P7

P6

P5

P4

P3

P2

PI

Disk 1 Disk 2 Disk 3 Disk 4 Parity Disk New Disk

Figure 3-21 Diagonal Moving on RAID level 3 and level 4.

34

30

B7

B6 22

17

13

5

BI

Disk 1 Disk 2 Disk 3 Disk 4 Parity Disk New Disk

Figure 3-22 Diagonal Moving on RAID level 3 and level 4 with distributed hot spare disk.

52

~ .

) .,
~. .,
"
, I

P9

P8

P7

P6

P5

P4

P3

P2

PI
I

Disk I Disk 2 Disk 3 Disk 4 Parity Disk New Disk

Figure 3-23 Diagonal Moving on RAID level 3 and level 4.

34

30

22

17 18 19 20

13 14 15

10 12

5 8 P2

PI

Disk 1 Disk 2 Disk 3 Disk 4

Figure 3-24 Diagonal Moving on RAID level 3 and level 4.

53

Disk I Disk 2 Disk 3 Disk 4 Parity Disk New Disk

Figure 3-25 Diagonal Moving on RAID level 3 and level 4 with extended capacity.

Disk 1 Disk 2 Disk 3 Disk 4 Parity Disk New Disk

Figure 3-26 Diagonal Moving on RAID level 3 and level 4 with extended capacity.

54

<
~ . ..
"
I

3.2.4 Block-Interleaved Distributed-Parity - RAID level-5

For the interleaved distributed parity as in RAID level 5 as in Figure 3-27, we read

the old parity stripe units in non-extended fonnat first. Then we write the parity stripes

with updated parity stripe units in extended format to all disks. Since there is no more

than one stripe unit accessing from any disk, all the reads and writes are in parallel as

stripes. The stripe units PI to P7 are those distributed parity for RAID level 5.

(N -1) On the extended disk capacity model, we need to have S * --;:;- reads and

writes. That is, because of the diagonal data stripe units allocation, there are (N - l)

stripe reads for every N stripes in a S stripes disk array as illustrated in Figure 3-27

and Figure 3-28. On the distributed hot spare disk configuration, there are S stripe read

operations as well as write operations as in Figure 3-29 and Figure 3-30. The stripe unitt;

B 1 to B7 organize the distributed hot spare disk for guaranteed backup function. The

S(N-){,) S(N-,Y,v)

required time for completion algorithm in this level is T"v,u. = I Tr + L Tw + Tm
I I

for extended disk capacity configuration with one failed disk tolerance, and

s s
T,e.eU* = ITr + I Tw + Tm for guaranteed distributed hot spare disk configuration.

55

"
i
1

"
:~
:1
")
:.

Disk 1 New Disk

Figure 3-27 Diagonal Move on RAID level 5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5 New Disk

Figure 3-28 Diagonal Move on RAID level 5 with increased disk capacity

56

•
I

"
" . ,
"

:J

J
I

Figure 3-29 Diagonal Move on RAID level 5

Disk I Disk 2 Disk 3 Disk 4 Disk 5 New Disk

Figure 3-30 Diagonal Move on RAID levelS with distributed backup disk

57

•
'~

'\ , ,
t
,1

1

3.2.5 PQ Redundant - RAID level-6

The procedures for RAID level 6 are similar to RAID level-5, but two new disks

need to be added at the same time for keeping RAID level 6 fonnat. In Figure 3-31 to

Figure 3-34, we illustrate the operations on the RAID level 6. The stripe units PI, Ql to

P7, Q7 are parity information for the RAID level 6. The P stores the parity code, and the

Q stores the Reed-Solomom code. The combination of P and Q can recovery two failed

disks. The estimated algorithm run time in the RAID level 6 is

S(N-y,.,) S(N-X,J
T1e>e1_6* = 2, Tr + 2, Tw + Tm for extended disk system capacity option. and

1 I

s(N-Ytv) s
Ttevtl _6• = 2, Tr + I. Tw + Tm for distributed hot spare disk option. Since each old

J=I £=1

(N -2) parity stripe consists --,;;- as partial of new parity stripe on added disk array, we

(N -2) need to have S * --,;;- read operations to read the complete old disk array as in

(N-2) Figure 3-31 and Figure 3-33. Then S * ~ parity stripe write operations are

needed for writing on the extended capacity disk array as in Figure 3-34, and S writes

are needed for the distributed hot spare disk configuration as in Figure 3-32. All parity

infonnation are updated while we write back the stripe to disks. Since the RAID level 6

already has the ability to recovery any two data disk fails, with this distributed hot spare

disk configuration as in Figure 3-34, the RAID level 6 can tolerate up to four disks failure.

In Figure 3-34, the stripe units B 1 to B27 are the distributed hot spare disks.

58

Disk 1 Disk 2 Disk 3 Disk 4 New Disk I New Disk 2

Figure 3-31 Diagonal Move on RAID level 6

Disk 1 Disk 2 Disk 3 Disk 4 New Disk 1 New Disk 2

Figure 3-32 Diagonal Move on RAID level 6 with increased disk capacity.

59

Disk I Disk 2 Disk 3 Disk 4 New Disk I New Disk 2

Figure 3-33 Diagonal Move on RAID level 6

Disk I Disk 2 Disk 3 Disk 4 New Disk I New Disk 2

Figure 3-34 Diagonal Move on RAID level 6 with djstributed backup disk

60

3.3 Summary of Diagonal Move

The diagonal move algorithm running time for both extended storage capacity and

distributed hot spare disk are summarized below.

• Extended storage capacity

5-1 2(5-1)

T"velY = LTr+ LTw+Tm
1 1

s S

T,mU' = LTr+ LTw+ Tm
1 I

S(N-Yr.) S(N-y",)

T,MI_5' = L Tr+ LTw+ Tm

S(N-%) S(N-J1,)

T,tVtU* = L Tr + .L Tw + Tm

• Distributed hot spare disk

1'(N+I) 2N(1'(N+I»)
T,mlY = L Tr + L Tw + Tm

I I

S S

T,evtU* = .L Tr + .L Tw + Tm
I I

61

s S

~eveU. = L,Tr+ L,Tw+Tm
1 J

S(N-%) S

~MU' = L,Tr+ L,Tw+Tm
$=1 s=1

62

CHAPTER 4

PERFORMANCE ANALYSIS

Unexpected write operations to the disks will happen while we are doing disk

array data rearrangement if we don't tenninate all users accessing the disks. Our data

locking with users priority model can allow us running the moving algorithms without

tenninating users accessing the disks with minimum slowdown for users. While read

operation is considered safe, locking data for atomic data write from user and algorithm is

our solution in this experimental model.

4.1 Prelude

In this chapter, we analyze the interaction between the users and the moving

algorithms. OUT "disk data locking with users priority" methodology allows both users

and algorithms operate on the disk array at the same time. It not only lets us effectively

calculate the slowdown ratio, but also minimize the delay for users by giving users higher

priority and allowing users to interrupt the disk array data moving algorithm at almost any

moment In the other words, the disk array data moving algorithm can utilize the users

idle time for the disk data moving operations, and the users can interrupt the data moving

operations unless the data is locked by the algorithm. Since the moving algorithm is

running while users are still online, both moving algorithms and users will slow each other

63

because they share the disks resources. In this chapter. we give a procedure which

implement the "disk data locking with users priority" methodology. The effect of the data

moving algorithm on the perfonnance of user programs is also discussed. Simulation is

used for perfonnance analysis.

4.2 Simulation

Procedure given in the next page calculates the perfonnance degradation for users

versus algorithm. The ExecutionTimer is the overall execution time for the moving

algorithm finishing the data migration operations on the disks system. The UserRunTime

is a summation of UserTimer which is the duration of users' read and write operations on

sharable data. The sharable (unlocked) data is the data which is not locked by the moving

algorithm. By adding AlgorithmTimer, the AlgRunTime represents the actual disk data

moving operation time for the whole disk array systems.

The moving algorithm needs to lock the users from writing data to avoid data

inconsistency. Write on unlocked data and read on all disk data are allowed. To allow

moving algorithm run without forcing users off-line, there are three rules to follow:

• If there is any read request from users on either unlocked or locked data, we simply

delay the disk array data moving algorithm operations and let the users finish reading

on those locked or unlocked data first.

64

• For the write requests from users on unlocked data set, we also simply delay the disk

array data moving algorithm operations and let the user finish writing those unlocked

data to the disk.

• For the write request from users on locked data which is currently used by disk array

data moving algorithm, we are required to block the write access from users until

disk array data moving algorithm completes data reallocation on that locked data.

Procedure to calculate algorithm runtime and users runtime is given below:

PROCEDURE BEGIN;

1* set all timers to zero *1

InitializeTimer(AllTimers);

ExecutionTimer(Start);

REPEAT

1* users can read all disk data without wait *1

IF (UserReadRequest = TRUE) WEN

UserTimer(Start);

{ Users Read Operations; }

UserTimer(Pause);

ENDIF;

1* users can write on unlocked disk data without wait *1

IF (DataLocked = FALSE)&& (UserWriteRequest == TRUE) THEN

UserTimer(Start);

65

{ Users Write Operations; }

UserTimer(Pause);

ENDIF;

1* users have to wait while trying to write on locked disk data *1

IF (DataLocked == TRUE) && (UserWriteRequest == TRUE) THEN

UserWaitTimer(Start);

ENDIF;

1* algorithm run while user is not accessing disk *1

AlgorithmTirner(Start);

{ Moving Algorithm Operations; }

AlgorithmTimer(Pause);

U serWaitTimer(Pause);

1* update all timers *1

UserRunTime = UserRunTime + (UserTimer(Pause) - UserTimer(Start»;

UserWaitTime = UserWaitTime + (UserWaitTimer(Pause) - UserWaitTimer(Start));

AlgRunTime = AlgRunTime + (AlgorithmTimer(Pause) - AlgorithmTimer(Start));

UNTIL (MovingOperationFinished = TRUE);

ExecutionTimer(Stop);

1* get total execution time for rearranging disk array *1

TotalExecTime = ExecutionTimer(Stop) - ExecutionTimer(Start);

ENDPROCEDURE;

66

4.3 Analysis

• Defmition: ExecutionTime Te is the overall execution time for completing the disk

array data moving algorithm reallocating all disk data. It begins when the disk array

data moving algorithm starts running, and ends when the algorithm finished moving

the last disk data set.

ExecutionTime Te = AlgRunTime + UserRunTime

= Tar + Tur

• Defmition: UserWaitTime Tuw is the total waiting time that users are blocked by

accessing locked data.

• Defmition: UserRunTime Tur is the time interval that users were accessing on the

disks. It is also the time that users stole from moving algorithm by interruption.

UserRunTime Tur = ExecutionTime - AlgRunTime

= Te - Tar

• Defmition: AlgRunTime Tar is the moving algorithm running time when the disks

are not used by users.

AlgRunTime Tar = ExecutionTime - UserRunTime

= Te-Tur

67

We define the Slowdown as the ratio of total operation time divided by actual

Total Operation Time
operation time where Slowdown =

Actual Operation Time

• Definition: User Slowdown is the ratio of the request round trip time to the request

run time.

User Slowdown =

=

=

user request round trip time

request running time

UserWaitTime + UserRunTime

UserRunTime

Tuw+Tur

Tur

The perfonnance degradation range is between 1 as the best case in lower bound and

no upper bound for the worst case.

~ User Slowdown -
Tuw+Tur

Tur

• Definition: Algorithm Slowdown is the ratio of the overall execution time for

completion to the actual data moving time.

Algorithm Slowdown =

=

=

time for completion data moving

time for moving data

ExecutionTime

AlgRunTime

UserRunTime + AlgRunTime

AlgRunTime

68

Te
= Tar

Tur+Tar
= Tar

Such that the performance degradation has lower bound 1 as the best case and no

upper bound as the worst case.

I ~ Algorithm Slowdown -
Tur+Tar

Tar

• Definition: Probability of Locking Data PI is the probability of disk data blocks

being locked by moving algorithms. With locking data size SI and total disk systems

SI
data size St, we have PI = - as the probability of disk data blocks being locked by

St

moving algorithms.

• Definition: Probability of Hitting Locked Data Ph is the probability of users' write

request blocks locked by moving algorithm. With users total write request size Su,

total disk systems data size St, and data locked probability Pl . We have

Su Su * Sl
Ph = - * PI or Ph = 2 as the probability of hitting locked data.

S! St

Ph =
Sl

P*-
Sf

Su SI
= -*-

St St

Su*Sl
=

St 2

69

• Definition: Average Time Disk Access Time for User Ta is defined as

Ta = Ph * Tw + Th where the Tw is the time duration which users are locked and

the Th is the time for users' data access.

When the disk size St has larger capacity, there is less chance to lock the data

which users need. The perfonnance of the moving algorithm improves when Sf

increased and Su decreased. It also implies that the Straight Forward algorithm with

less locked data could provide better accessing on the disk data than Diagonal Move

algorithm, since the Su in the rust algorithm is always smaller than the Su in the

second algorithm. The simulation result of algorithms and users slowdown are shown as

below in Figure 4-1. The Figure 4-2 shows the probability of hitting locked data.

Simulated results of the Diagonal Move algorithm under different locking probabilities are

shown in Figure 4-3 through Figure 4-13. In those figures, we can find the Average Time

Disk Access Time for User, Ta. increases when the Tw. or 1h increases. And, Ta

decreases when Ph decreases.

70

0 .. 90

0 .80

0 .70

Ph

10

User Run TIme

Algorithm Run TIme

Figure 4-1 Algorithm slowdown.

0.20

0 .03

. 0 .90-1.00

.0.8()..().90

[J0 .7()..().80

. 0 .60-0.70

. 0 .5()"().60

.0.4()..().50

0 .501 .00 [J0.30-0.40

30 .25 OO.2(),,().30
0 .1 PI

0.06 .0. 1 ()..().20

0.02 . 0 .()().().10

Figure 4-2 Probability of hitting locked data.

71

Ta

1 0 1 Tw

Figure 4-3 Average disk access time for users - Ph = O.

11
10

TB

Figure 4-4 Average disk access time for users - Ph = 0.1 .

12
11
10

Ta

Figure 4-5 Average disk access time for users - Ph = 0.2.

72

01 (}11

B 9-10

B S-9

OH!
B 6-7

1]5-6

.4-5

0 3·4

0 2-3

.1-2

. 1,.,2

o 1(}11

. 9-10

. S·-9

O HI

B 6-7

1 0 5-6
B4-5

03-4

0 2-3

- 9-10

- S-9

07-8

- 6 -7

j1l5-6

-4-5

03-4

0 2-3

-1 -2

· 0-1

Figure 4-6 Average disk access time for users - Ph = 0.3.

TlHb87
65 4

3 210 2 4

14
13
12

1
0

Ta

Figure 4-7 Average disk access time for users - Ph = 0.4_

cr-T-'-"""""",,,,,,,,,,,,,,,,,,,,,,,--,-,,,, 1 5

2

inEEtti ,
-.:r~-I--!. 0

4 6 8 10
Tw

Ta

Figure 4-8 Average disk access time for users - Ph = 0.5.

73

. 12-13

. 11 -12

010-11

· 9-10

. 8-9

°HI

· 6 -7

1 ·5~
· H i
03-4

. ,3-14

. 12-13

. 11 -12

010-11

· 9-10

· 8-9

07-8

· 6 -7

.5~

· H i

. 14-15

. 13-14

· ,2-13

· ,,-,2
010-11

· 9 -10

· 8-9
0 7-8

· 6 -7

2 4

Ta

6 8 10
Tw

Figure 4-9 Average disk access time for users - Ph = 0.6.

2 4

Ta

6 8 10
Tw

Figure 4-10 Average disk access time for users - Ph = 0.7.

Elm!
Ts

2 4 6 B 10
Tw

Figure 4- 11 Average disk access time for users - Ph = 0.8.

74

. '15-16

. ,4-15

· ,3-14

. , 2-13

· ,1-12
ClO-11

· 9-10

· 8-9

C7-8

. S-7

. ,6-17

. ,5-,6

. ,4-,5

. ,3-14

.,2-1 3

. ,1-,2

0,0-,1

. 9-10

. 8-9

07-8

. 17-18

. , 6-17

. , 5·16

. ,4-15

· ' 3-14

· ,2-13

· ,1-1 2

0,0-,1

· 9-10

. 8 -9

Ttt~87
65 4

Ta

3 2 10 2 4

Figure 4-12 Average disk access time for users - Ph = 0.9.

2 4 6 8 10
Tw

Ta

Figure 4-13 Average disk access time for users - Ph = 1.0.

75

018-19

. 17-18

. 16-17

· 15-16

· 14-15

. 13-14

. 12-13

. 11-12

01Q-11

· 9-10

019-20

°1e-1 9

· 17-1a

. 16-17

· 15-16

. 14-15

. 13-14

.1 2-13

. 11-12

010-11

CHAPTER 5

CONCLUSION

5.1 Swnmary

In this study, we build a capacity extendible disk array model with distributed hot

spare disk option for all seven RAID levels. Two algorithms - the Straight Forward

algorithm and the Diagonal Move algorithm - are developed. We also analyze

performance of the algorithms. For different probabilities of hitting locked data,

algorithm/user slowdown, and algorithm/user running time while rearranging the disk

array data are examined.

5.2 Conclusion

Our model has the advantages of making disk array capacity extendible, taking

shorter time for reallocating data to the disks, providing a solution for guaranteed hot

spare disk problem, improving parallel I/O perfonnance and migrating data while users are

still on line. Without any doubt, parallel I/O processing can improve computer system

performance dramatically. Though the straight forward algorithm takes longer time to

complete the data migration task, it has the advantage of locking least number of data.

Less locked disk data will let users use data from disks with less access

restrictions(blocking). Users always have higher priority than moving algorithm to use

76

disk data which will benefit the users because of reduced waiting time. With relatively low

cost, the disk array can provide satisfactory high bandwidth for data transfer with robust

reliability for important data. Our extendible capacity and distributed hot spare disk ideas

can make the disk array even better in perfonnance and reliability. Users have the choice

of using the newly added disk for increase data storage space or using it as a hot spare

(backup) disk.

77

GLOSSARY

Capacity. The maximum amount of data that a disk array can hold measured in bytes.

Capacity Extendible Disk Array. A capacity extendible disk array is a disk array model
in which we can enlarge maximwn amount of data in the disk array system by
adding new disks without changing the data layout scheme for any RAID level.

Disk Array. A set of disks organized as an array for parallel access.

Data Redundancy. Redundant information stored in disks. Some of the schemes used
for redundancy are mirroring. Hamming Code, and parity.

Data Transfer Rate. Amount of data transferred through the bus or network per second
such as bits per second (BPS).

Degree of Parallelism. The maximum possible number of simultaneously running (disk)
IJOs in a system.

Hamming Code. Hamming Code is a error detection and correction model. Hamming

Code information are stored at disk positions 2" where 0 ~ n ~ L log2 N J and

N is the number of disks in the disk array for error detection and error
correction.

Hot Spare Disk. A hot spare disk for a disk array system is a disk physicaUy connected
with other working disks for reduced MITR, and not used. It replaces a failed
disk automatically without manual intervention.

110 Operating Rate. The number of 110 operations per second.

MTTR. Mean Time To Repair.

Read-Modify-Write. The disk array uses the read-modify-write if majority of the stripe
units in a parity stripe is not changed. The old data stripe unites) (those data stripe
units that need to be updated) and old parity stripe unit are read ftrst, then the new
parity stripe unit is computed and new data stripe unites), and the new parity stripe
unit are written back to the disk array.

Reconstruct-Write. The reconstruct-write is used if the majority of the stripe units in a
parity stripe need update. It will ftrst read the rest of the old data (those data
stripe units that we are not updating) and old parity stripe unit, then compute the

78

new parity stripe unit and write the new data stripe units with new parity stripe
unit back to disk array.

RAID. Redundant Arrays of Inexpensive Disks.

SLED. Single Large Expensive Disk.

Straight Forward Algorithm. It is a capacity extendible algorithm for disk array system.
Mter a new disk is added, the disk array system is subject to compaction where all
the stripe units are sequentially moved to its lowest available addressing space
continuously across the disks system.

Stripe Unit. It is the interleaved component of a stripe. A group of stripe units can
organize a parity stripe for failure recovery. A stripe unit which stores data is a
data stripe unit. A stripe unit which stores parity infonnation is called a parity
stripe unit.

Stripe. It is the maximum number of stripe units collection in a row. Accessing the disk
array in a stripe can maximize the parallelism of the disk array.

Parity Stripe. A group of stripe units in a row with common computed parity
information.

79

[Ande94]

[Ande95]

[Arpa95]

[Asam96]

[Cao94]

[Chen93]

[Chen93]

[Chen90]

[Cher9l]

[del94]

BffiLIOGRAPHY

T.E. Anderson, D.E. Culler, D.A. Patterson. A Case for NOW. IEEE
Micro, VoLl5, pages 54-64, February 1995.

T.E. Anderson, M.D. Dahlin, 1.M. Neefe, D.A. Patterson, D.S. Roselli,
R.Y. Wang. Serverless Network File Systems. ACM Transactions on
Computer Systems, Vo1.l4, No.1, pages 41-79, February 1996.

R.H. Arpaci, A.C. Dusseau, A.M. Vahdat, L.T. Liu, T.E. Anderson, D.A.
Patterson. The Interaction of Parallel and Sequential Workloads on a
Network of Workstations. ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems, 1995.

S. Asami, N. Talagala. T. Anderson, K. Lutz, D. Patterson. The Design of
Large Scale, Do It Yourself RAIDs. Technical report, University of
California at Berkeley, pages 1-30, 1996.

P. Cao, S.B. Lim, S. Venkataraman, J.Wilkes. The TickerTAIP Parallel
RAID Architecture. ACM Transactions on Computer Systems, Vol. 12,
No.3, pages 237-269, August 1994.

P.M. Chen, E.K. Lee. Striping in a RAID LevelS Disk Array. Technical
Report CSE-TR- J 81 -93, Computer Science Department, University of
California at Berkeley, 1993.

P.M Chen, E.K. Lee, G.A. Gibson, R.H. Katz, T.E. Anderson. RAID:
Hign-Performance, Reliable Secondary Storage. ACM Computing
Surveys, pages 1-62, 1993.

P.M. Chen, G.A. Gibson, R.H. Katz, D.A. Patterson. An Evaluation of
Redundant Arrays of Disks using an Amdahl 5890. ACM SIGMETRICS
Conference on Measurement and Modeling of Computer Systems, May
1990.

A.L. Chervenak, R.H. Katz. Performance of a Disk Array Prototype.
ACM SIGMETRICS Conference on Measurement and Modeling of
Computer Systems, May 1991.

J.M. del Rosario, A.N. Choudhary. High-Perfonnance 110 for Massively
Parallel Computers. IEEE Computer, pages 58-68, March 1994.

80

[Doug89]

[Feit95]

[Frie96]

[Gray90]

[Hart94]

[Hart92]

[Hart95]

[Katz89]

[Keet93]

[Kiro86]

[Lee92]

F. Douglis, J. Ousterhout. Log-Structures File Systems. IEEE
COMPCON89 34,h IEEE Computer Society International Conference.
Pages 124-l29, February 1989.

D.G. Feitelson, P.P. Corbett, S.l. Baylor, Y. Hsu. ParallellJO Subsystems
in Massively Parallel Supercomputers. IEEE Parallel and Distributed
Technology. Vol.3, No.3, pages 33-45, Fall 1995.

M.B. Friedman. RAID Keeps Going and Going. IEEE Spectrum, pages
73-79, April 1996.

J. Gray, B. Horst, M. Walker. Parity Striping of Disc Arrays: Low-Cost
Reliable Storage with Acceptable Throughput Proc. of 16'" VWB, pages
148-159, 1990.

J.H. Hartman. The Zebra Striped Network File System. Ph.D.
dissertation. Computer Science Department, University of California at
Berkeley, 1994.

1.H. Hartman, 1.K. Ousterhout. Zebra: A Striped Network File System.
USENIX Workshop on File Systems, May 1992.

1.H. Hartman, 1.K. Ousterhout. The Zebra Striped Network File System.
ACM Transactions on Computer Systems, Vol. 13, No.3, pages 274-310,
August 1995.

R.H. Katz, G.A. Gibson, D.A. Patterson. Disk System Architecture for
High Performance Computing. IEEE Computer, pages 1842-1858,
December 1989.

K. Keeton, R.H. Katz. The Evaluation of Video Layout Strategies on a
High-Bandwidth File Server. Proceedings of the 4th International
Workshop on Network and Operating System Supportfor Digital Audio
and Video, November 1993.

M. Y. Kim. Synchronized Disk Interleaving. IEEE Transactions on
Computers, Vo1.35, No. 11 , pages 978-988, November 1986.

E.K. Lee. Software and Perfonnance Issues in the Implementation of a
RAID prototype. Technical Report UCB/CSD 90/573, Computer Science
Department. University of California at Berkeley, March 1992.

81

[Lee93]

[Lee92]

[Lee93]

[Mead89]

[Ng89]

[Patt88]

[Rose91]

[Schu89]

[Skie95]

[Wilk96]

[Wang93]

E.K. Lee. Performance Modeling and Analysis of Disk Arrays. Ph.D.
dissertation, Computer Science Department, University of California at
Berkeley, 1993.

E.K. Lee, P.M. Chen, J.H. Hartman, A.L. Chervenak Drapeau, E.L. Miller,
R.H. Katz, G.A. Gibson, D.A. Patterson. RAID-II: A scaleable Storage
Architecture for High-Bandwidth Network File Service. Proceedings of
21 st International Symposium on Computer Architecture, 1992.

E.K. Lee, R.H. Katz. The Perfonnance of Parity Placement in Disk
Arrays. IEEE Transactions on Computers, Vo1.42, No.6, pages 651-664,
June 1993.

W.E. Meador. Disk Array Systems. IEEE COMPCON89 34th IEEE
Computer Society International Conference. pages 143-146, February
1989.

S. Ng. Some Design Issues of Disk Arrays. IEEE COMPCON89 34th

IEEE Computer Society International Conference. pages 137-142,
February 1989.

D.A. Patterson, G. Gibson, R.H. Katz. A Case for Redundant Arrays of
Inexpensive Disks (RAID). ACM SIGMOD Conference on Management
of Data, pages 109-116, June 1988.

M. Rosenblum, J.K. Outsterhout. The Design and Implementation of a
Log-Structures File System. A CM Transactions on Computer Systems,
VoLlO, No.1, pages 26-52, February 1992.

M. Schulze, G. Gibson, R. Katz, D. Patterson. How Reliable is a RAID?
IEEE COMPCON89 34th IEEE Computer Society International
Conference. Pages 118-123, February 1989.

T.A. Skeie, M.R. Rusnack. HP Disk Array: Mass Storage Fault Tolerance
for PC Servers. Hewlett-Packard Journal, Vo1.46, No.3, pages 71-78,
June 1995.

J. Wilkes, R. Gotding, C. Staelin, T. Sullivan. The HP AutoRAID
Hierarchical Storage System. A CM Transactions on Computer Systems,
Vo1.l4, No.1, pages 108-136, February 1996.

R.Y. Wang, T.E. Anderson. xFS: A Wide Area Mass Storage File System.
ProcAth Workshop on Workstation Operating Systems, pages 71-78,
October 1993.

82

APPENDIX

APPENDIX I

• RAID applied in local workstations and across networks.

,,- .. -. ~ --.... ---.. -..... -.. -.. ---' .. -_ -_ --~ . -.. _. ~ ..
r---------------------------,
I I
I I

l ,. .. I ~~~~~ .. ~ ,----,
I I
I I
I I
I I

,--------------

I
I
I , , , , , ,
I
I
I
I
I
I
I ,
I

Workstation

Workstation

o· B L.W-o-r-k-sta-Ootion

LAN

File Server B B B B B

Mainframe

1 ______ -- ------ - ________ _ ________ _ ______ _

83

VITA

Tseng, Cheng-Yuan

Candidate for the Degree of

Master of Science

Thesis: THE DESIGN AND ANALYSIS OF CAPACITY EXTENDIBLE DISK
ARRAY SYSTEM: THE DIAGONAL-MOVE ALGORITHM

Major Field: Computer Science

Biographical Data:

Personal Data: Born in Taipei, Taiwan on February 23, 1969.

Education: Received Bachelor of Science in Computer Science from the
Oklahoma State University, Stillwater, Oklahoma in 1994. Completed the
requirements for the Master of Science degree in Computer Science at the
Oklahoma State University in May 1997.

Experience: Network System Administrator and Analyst, Oklahoma State
University, Department of Financial Aid, 1996 to present.

