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PREFACE 

The number of equations to be solved in modeling a 

multicomponent multistage separation process could be in 

the thousands. These equations are complex and nonlinear. 

A robust, and computationally efficient method to solve 

these equations is presented in this study. 

Conventionally, matrix solving algorithms are written in 

row-major order. Whereas A.N.S.I standard Fortran stores 

arrays in column-major order. This aspect is considered 

in this study and algorithms are developed in column-major 

order. An equation of state is used to estimate the 

thermodynamic properties. The thermodynamic property 

derivatives are derived analytically. Homotopy, or path 

following method is used to solve difficult problems. An 

algorithm, based on the above model, has been developed 

and tested on a number of problems. 

The study shows that, in a virtual storage machine, 

column oriented algorithms are computationally efficient 

and produce a reduction in the number of page faults. 

Column oriented algorithms are recommended for all matrix 

operations; including multiplication, addition, and 

subtraction. Homotopy, or path following methods are 

effective in solving problems which are otherwise 
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difficult to converge. This difficulty may be due to the 

specifications being a very nonlinear function of the 

independent variables and/or the phase behavior of the 

mixture being highly nonideal. The algorithms developed 

in this study are computationally efficient and robust. 
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CHAPTER I 

INTRODUCTION 

Scope and Objectives 

The objective of this work was to develop a 

computationally efficient and robust numerical model to 

simulate multistage, multicomponent separation processes. 

Four basic sets of equations are used to describe these 

processes. They are Material balance equations, 

~quilibrium relationships, ~ummation equations for mole 

fractions, and Heat balance equations. These equations 

are often ref erred to as the MESH equations after Wang and 

Henke (1966). In addition to these equations, 

correlations are needed to estimate thermodynamic 

equilibrium constants and liquid and vapor enthalpies. 

since these correlations are complex and nonlinear, it is 

not possible to solve the MESH equations analytically or 

directly. Iterative, numerical methods are used and 

convergence of such methods is not always guaranteed. 

The literature survey is presented in Chapter II, and 

the mathematical model is discussed in Chapter III. As 

discussed in Chapter II, so that a wide range of problems, 

distillation, absorption, etc., can be solved by the same 
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model, the MESH equations are solved simultaneously. To 

account for nonideality in phase equilibria, composition 

is included as an independent variable in the model. The 

model is formulated in Ns(Nc+2) independent variables. 

The Ne component mole fractions in liquid, Ns total vapor 

flow rates, and Ns stage temperatures are used as the 

independent variables. The equations are linearized and 

solved by the Newton's method. The approach of Ishii and 

Otto (1973) is used to manipulate the matrices. 

A cubic equation of state is used to estimate 

thermodynamic properties. The equation is solved for 

liquid and vapor compressibility factors, which in turn 

are used to calculate the fugacity coefficients and 

enthalpy departure functions. The equilibrium constants 

are obtained as the ratio of the fugacity coefficients. 

The equations for the derivative properties for both the 

phases are derived analytically. These are discussed in 

Chapter IV. In solving the cubic equation of state, 

convergence to trivial roots and spurious derivatives must 

be avoided. The procedures outlined by Poling et al. 

(1980), Gundersen (1982), and Aftab (1987) are used to 

avoid convergence to 'wrong' roots. 

Depending on the number of stages and/or components, 

the number of equations to be solved could be in the 

thousands. These equations are solved iteratively, until 

a convergence is obtained. The computational efficiency 
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of such large problems, when programmed in A.N.S.I. 

standard Fortran in a virtual storage machine, is improved 

by using what are known as column oriented algorithms. In 

these methods the matrix equations are solved column-by­

column instead of the more conventional row-by-row 

approach. These modifications result in a savings in 

computation time and also a reduction in the number of 

page faults. This is because, as discussed in Chapter v, 

Fortran stores arrays in column-major order. 

The Newton's method needs initial estimates for the 

independent variables. The convergence characteristics of 

the problem depend on these initial estimates. A "good" 

initial estimate is required for the success of this 

method. Otherwise, there could be difficulties in 

obtaining a converged solution. These difficulties may be 

due to the specifications being a very nonlinear function 

of the independent variables and/or the phase behavior of 

the mixture being highly non-ideal. 

For "difficult" to solve problems, a path, or 

homotopy, is defined from ideal to non-ideal thermodynamic 

properties. Such methods have been successfully used in 

other fields (Garcia and Zangwill, 1981) and recently in 

chemical engineering by Salgovic et al. (1981), Bhargava 

et al. (1984), Seader et al. (1984), and Vickery et al. 

(1986). 



Significance 

The numerical model developed in this work can be 

used to solve a wide range of separation problems, 

including distillation, absorption, and reboiled 

absorption. The matrix equations are solved using 

computationally efficient column oriented algorithms. 

4 

This approach has produced a modest to significant savings 

in computation time. In estimating the thermodynamic 

properties from a cubic equation of state, convergence to 

trivial roots and spurious derivatives has been avoided. 

For difficult to solve problems, a homotopy, or path has 

been defined for thermodynamic properties. Using this 

method, convergence has been obtained to problems which 

were otherwise difficult to converge, and also convergence 

has been accelerated for some problems. 



CHAPTER II 

LITERATURE SURVEY 

Multistage, multicomponent separation processes such 

as distillation and absorption are among the most 

important unit operations in the chemical and 

petrochemical industries. Until the 1950's, distillation 

calculations were mostly done by short-cut approximate 

methods. In the 1930's, Lewis and Matheson (1932) and 

Thiele and Geddes (1933) proposed a rigorous method but it 

was too tedious for hand calculations. A rigorous 

simulation of separation processes could be done only 

after digital computers became readily available. 

In general, a separation process is formulated as an 

equilibrium stage model in Ns(2Nc+3) equations in as many 

independent variables, where Ns is the number of stages, 

and Ne is the number of components. The equations are 

Material balance equations, Equilibrium relationships, 

~ummation equations for mole fractions, and Heat balance 

equations. These equations are often referred to as the 

MESH equations after Wang and Henke (1966). Rigorous 

simulation of multistage multicomponent separation 

processes involves solving these equations. A number of 



solution methods have been proposed in the literature to 

solve them. These can be classified into relaxation, 

equation-decoupling, and simultaneous-solution methods. 

Relaxation Methods 

In these methods, the MESH equations are solved in 

unsteady state form. The material balance equations are 

written in unsteady state form as the rate of change of 

component ion stage j (King, 1981). A set of 

compositions, temperatures, and liquid and vapor flow 

rates are assumed at time t. The material balance 

equations are then solved for compositions at time t+At. 

New temperatures and flow rates are calculated from 

summation and heat balance equations. This procedure is 

repeated until changes in compositions do not exceed a 

preset tolerance. 

6 

The convergence is usually much slower, of the order 

of one, with this method. However there are procedures 

available to accelerate this class of methods (Chandler, 

1988). Recently this method is gaining some attention for 

generating initial estimates for highly nonideal mixtures 

(King, 1981). 

Equation Decoupling Methods 

If the equilibrium constants are not composition 

dependent, then the model is formulated in terms of 2Ns 
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independent variables. This is the basis of equation­

decoupling methods, and the equations are grouped either 

by stages or by types of equations. Initial estimates are 

needed for the independent variables and these are updated 

later. The groups of equations are solved in a prescribed 

order, one group at a time, for certain sets of variables 

while holding the other variables fixed. 

Lewis and Matheson (1932) and Thiele-Geddes (1933) 

grouped the equations by stage and solved them stage-by­

stage from both ends of the column. These methods are 

prone to a buildup of truncation errors and are seldom 

used. 

Amundson and Pontinen (1958) were the first to group 

the equations by their type instead of stages. They chose 

stage temperatures and total vapor flow rates as the 

independent variables. They proposed to solve the 

summation equations for temperatures and the heat balance 

equations for flow rates. This is commonly known as the 

bubble point (BP) method. 

The BP method is better suited to distillation of 

close boiling mixtures that are not far removed from ideal 

behavior. Then the latent heat differences determine the 

total vapor and liquid flow rates through heat balances, 

and the compositions determine the stage temperatures 

through summation equations. If the feed con~ains 

components of widely different volatility then the BP 



method fails. This is because the sensible heat effects 

dominate the heat balances, and the temperatures are 

determined more by heat balances than by compositions. 

The total flow rates are determined more by compositions 

than by heat balances. Gas absorbers and strippers 

exhibit such characteristics. For such problems Sujata 

(1961) proposed to solve the heat balance equations for 

temperatures and the summation equations for flow rates. 

He used the Newton's method to solve the heat balance 

equations. This is commonly known as the sum-of-rates 

(SR) method. 

8 

Friday and Smith (1964) analyzed different solution 

methods for convergence characteristics. They discussed 

the capabilities and limitations of the BP and SR methods. 

Wang and Henke (1966) used the efficient Thomas algorithm 

to solve the material balance equations in tridiagonal 

form and developed the BP method in detail. 

Tierney and Janosik (1969), and Tomich (1970) 

proposed to solve the heat balance and summation equations 

simultaneously for temperatures and vapor flow rates. 

Hence their methods were not as restricted as BP and SR 

methods. Tomich also recommended the use of Broyden 

procedure (1956) for matrix solution as this was helpful 

in accelerating the convergence. 

For problems where the equilibrium constants are 

composition dependent, the equation decoupling method 



will fail to converge or converge slowly. Compositions 

must be included as independent variables for such 

problems, and the common practice is to solve the MESH 

equations simultaneously. 

Simultaneous-Solution Methods 

9 

Naphthali and Sandholm (1971) proposed a 

simultaneous-solution procedure employing Ns(2Nc+l) 

independent variables. They used Ne component vapor flow 

rates, Ne component liquid flow rates and Ns stage 

temperatures as the independent variables. Their method 

involves a large number of calculations and is 

computationally expensive to use, particularly when 

composition dependent enthalpies and equilibrium constants 

are used. 

Goldstein and Stanfield (1970) proposed a sectioning 

technique in which the equations were written for sections 

instead of stages. Each section could contain one or more 

stages. So long as average values of flow rates, etc. can 

be used, the section concept gives a good approximation of 

the stages in the section. 

Bruno et al. (1972) proposed a method in Ns(Nc+l) 

independent variables. They used Nc-1 component mole 

fractions in liquid, Ns total vapor flow rates, and Ns 

stage temperatures as the independent variables. Their 

matrix solution technique proved to be inefficient, as 



they did not order the functions and variables 

effectively. 

10 

Ishii and Otto (1973) proposed a method employing 

Ns(Nc+2) independent variables. They used Ne component 

mole fractions in liquid, Ns total vapor flow rates, and 

Ns stage temperatures as the independent variables. They 

used Chao and Seader (1961) correlation to estimate the 

thermodynamic properties. In calculating the Jacobian 

matrix, they assumed that the thermodynamic equilibrium 

constants were independent of the vapor phase 

compositions. They proposed an efficient matrix 

manipulation technique to solve the MESH equations. 

Gallun (1975) modified the method of Bruno et al. 

(1972) by rearranging the functions and variables. But 

still, a large number of calculations need to be done in 

Gallun's method. He recommends the method for problems 

involving only a few components when complex thermodynamic 

functions are to be used. 

Naphthali and Sandholm (1971) and Gallun (1975) 

consider all the thermodynamic derivative properties in 

their formulation. Still, for "difficult" to solve 

problems, convergence could not be obtained without a 

forcing technique (Gallun, 1979). To obtain convergence 

on a difficult problem, Gallun (1979) solved a series of 

easier problems until the original system was solved. The 

method is suited to the particular problem solved by 
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Gallun, and can not be generalized. 

Initial Estimates 

The Newton's method, or one of its relatives, is 

commonly used to solve the linearized set of MESH 

equations. The method requires initial estimates for the 

independent variables, and the convergence characteristics 

of the problem depend on these initial estimates. For the 

success of this method, "good" initial estimates are 

required. In the past, different techniques have been 

used to improve the domain of convergence (Powell,1970; 

Ketchum, 1979). The domain of convergence is defined as 

the set of initial estimates from which a solution is 

achieved. 

The techniques most recently used to solve 

"difficult" problems are the homotopy, or path following, 

methods. This method has been popular in other fields for 

some time (Garcia and Zangwill, 1981). In the field of 

chemical engineering there have been but a few 

applications of this method by Salgovic et al. (1981), 

Bhargava et al. (1984), Seader et al. (1984), and Vickery 

et al. (1986). 

Summary 

The number of equations required to simulate 

multicomponent multistage separation processes could be in 
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the thousands. Generally, these equations are nonlinear 

and complex. So that a wide range of separation problems 

can be solved by the same method, these equations are 

solved simultaneously. 

Computationally efficient iterative algorithms must 

be developed to solve these equations. In addition, the 

model must be robust so that a converged solution is 

obtained to 'difficult' problems. 

The methods to improve computational efficiency and 

robustness are the main features of this work. 



CHAPTER III 

MATHEMATICAL MODEL 

A generalized countercurrent, multistage, 

multicomponent separation process with Ns number of stages 

is shown in Figure 1. The stages are numbered down from 

the top. A condenser, if any, is the stage 1 and 

reboiler, if any, is the stage Ns. Heat can be 

transferred to or from each stage, and also side streams 

can be withdrawn from each stage. The nomenclature is 

defined in Figure 1. The subscript i refers to component 

number and subscript j refers to stage number. It is 

assumed that phase equilibrium is achieved at each stage 

and that no chemical reactions occur. 

Number of Variables 

The total number of variables in the process is 

Ns(3Nc+9)+1; where Ns is the number of stages, and Ne is 

the number of components. These variables are listed in 

Table I. The first nine, for a total of Ns(Nc+6)+1 

variables, can be conveniently specified. This leaves 

Ns(2Nc+3) variables to be determined. These are the 

component mole fractions in the liquid and vapor phases, 
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Multicomponent Separation Process 
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TABLE I 

NUMBER OF VARIABLES IN A MULTICOMPONENT 
MULTISTAGE SEPARATION PROCESS 

15 

Type of variable Number of variables 

Number of stages, Ns 1 

Feed flow rate, Fj Ns 

Feed composition, zi,j Ns(Nc-1) 

Feed pressure, PF,j Ns 

Feed temperature, TF,j Ns 

Stage pressure, Pj Ns 

Liquid side stream, Uj Ns 

Vapor side stream, Wj Ns 

Heat in each stage, Qj Ns 

Component mole fraction Ns(Nc} 

in liquid, xi,j 

Component mole fraction 

in vapor, Y· . 1,J 

Liquid flow rate, Lj 

Vapor flow rate, Vj 

Stage Temperature, Tj 

Ns(Nc) 

Ns 

Ns 

Ns 

Total = Ns(3Nc+9}+1 
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total liquid and vapor flow rates, and stage temperatures. 

MESH Equations 

The.Ns(2Nc+3) equations used to describe the process 

are Ns(Nc) Material balance equations, Ns(Nc) ~quilibrium 

relationships, 2Ns ~ummation equations for mole fractions, 

and Ns Heat balance equations. These equations are the 

MESH equations (Wang and Henke, 1966), which can be 

written as follows. 

Material Balance Eguations 

Fjzi,j + Lj-lxi,j-l + Vj+lYi,j+l - (Lj+Uj)xi,j -

(Vj+Wj)Yi,j = 0 = Mi,j l~i~Nc, l~j~Ns 

Eguilibrium Relationships 

Y· I = K· ·X· • l.,J l.,J l.,J 

summation Eguations 

iExi,j - 1 = o = sx,j 

·EY· · - 1 l. l.,J = o = sy,j 

( 3 .1) 

(3.2) 

( 3. 3a) 

(3.3b) 
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Heat Balance Equations 

FjHF,j + Qj + Lj-lhj-l + Vj+lHj+l - (Lj+Uj)hj -

(Vj+Wj)Hj = 0 = Hj l~j~Ns (3.4) 

Where h and H are liquid and vapor enthalpies, and K is 

the thermodynamic equilibrium constant. A solution to the 

MESH equations is obtained by determining the 

compositions, temperatures and flow rates so that the 

error terms are all forced to zero. 

Independent Variables 

The unknowns in Equations 3.1 through 3.4 are 

component mole fractions in liquid and vapor, xi,j and 

Yi,ji total liquid and vapor flow rates, Lj and Vj; and 

stage temperatures, Tj. After a set of manipulations, 

discussed below, the mathematical model is formulated in 

Ns(Nc+2) independent variables. The independent variables 

used are Ns(Nc) component mole fractions in liquid, Ns 

stage temperatures, and Ns vapor flow rates. 

The component mole fractions in vapor, Yi,j' are 

eliminated from Equations 3.1 and 3.3b by combination with 

Equation 3.2. A total material balance equation is 

derived and used in place of Equation 3.3b. The equation 

is derived by summing Equation 3.1 over the Ne components 

and stages 1 to j, with Equations 3.3a, 3.3b, and 
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iEzi,j = 1.0, where zi,j is the component mole fraction in 

feed. This yields the following expression. 

j j 
Lj - Vj+l - k=lE(Fk-Uk-Wk) + Vl = 0 = k=lEMk 

l~j~Ns (3.5) 

For the selected independent variables, Equation 3.5 

is explicit in total liquid flow rates, Lj. Hence from 

Equations 3.1 and 3.4, the total liquid flow rates, Lj, 

are eliminated by combination with Equation 3.5. This 

yields Ns(Nc+2) equations to be solved in as many 

independent variables. The equations are written as 

follows: 

Material Balance Equations 

F·Z· · + L· 1x· · l + V·+iK· ·+iX· ·+l - (L·+U·)X· · -J 1,J J- 1,J- J 1,J 1,J J J 1,J 

(Vj+Wj)Ki,jxi,j = 0 = Mi,j l~i~Nc, l~j~Ns (3.6) 

Summation Equations 

·EX· · - 1 = 0 = 1 1,J (3.7) 
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Heat Balance Equations 

FjHF,j + Qj + Lj-lhj-l + Vj+lHj+l - (Lj+Uj)hj -

(Vj+Wj)Hj = 0 = Hj l~j~Ns (3.8) 

where the liquid flow rates, Lj, are given by Equation 

3.5. Equations 3.6 through 3.8 are linearized and solved 

by a Newton's method. When specifications other than 

reboiler and condenser duties are made, these can be 

handled by a slight modification of the equations for 

these stages. A brief description of the Newton's method 

is given below. 

Newton's Method 

If w is a vector of independent variables, then 

Equations 3.6 through 3.8 can be expressed in a matrix 

form as, 

f (w) = o (3.9) 

Using a first order Taylor series expansion, Equation 3.9 

is written as 

at 
aw 

(aw) = - f (w) ( 3. 10) 
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From an initial estimate for w, Equation 3.10 is 

solved for the vector increments Aw. New values for w are 

then obtained from 

k+l k k = W + "/\AW (3.11) w 

where k is the iteration number, and "/\ is the relaxation 

factor. This procedure is repeated until convergence is 

obtained. 

Linearization 

The equilibrium constants, K, and enthalpies, h and 

H, in Equations 3.6 through 3.8 are estimated from the 

Soave-Redlich-Kwong (Soave, 1972) equation of state. 

These properties are a function of pressure, temperature, 

and phase compositions and are calculated at each 

iteration. The details of these calculations are given in 

Chapter IV. For the purpose of linearization only, the 

following relations are assumed. 

K = K(P,T,x,y) ( 3. 12) 

H = H(P,T) (3.13) 

h = h(P,T) (3.14) 
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Equation 3.5 is linearized by setting the error term 

from the material balance equation, Mj, to zero. This 

yields the following expression. 

AL· = 
J 

( 3. 15) 

Using Equation 3.15, Equations 3.6 through 3.8 are 

linearized as follows: 

Material Balance Equations 

AX· · 1 L· l + l.,J- J-

BK· · 
Ax· · [- { (L · +U ·) + (V · +W ·) (K · · + x · · 1 ' J) }] + i,J J J J J i,J i,J Bxi,j 

BKi,j+l)] + 
BX· '+l l.' J 

AV1 [ (-x1·, J' -l + x · ·)] + AV· [ (x · · l - K · · x · ·) ] + l.,J J l.,J- l.,J l.,J 

AVj+1[(Ki,j+lxi,j+l - xi,j)] = - Mi,j 

1~ i~Nc, 1~ j ~Ns (3.16) 



Heat Balance Eguations 

summation Eguations 

·E.1x· · 1 1,) 

The details of the calculation of the thermodynamic 
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(3.17) 

(3.18) 

derivative properties, BKi/Bxi, BKi/BT, Bh/BT, and BH/BT, 

in Equations 3.16 and 3.17, are given in Chapter IV. 

Matrix Form of Linearized Equations 

The linearized material balance equation, Equation 

3.16, is rearranged in a matrix form. This is shown in 

Equation 3.19 for the ith component over the Ns stages. 

In this, and all the other equations, subscript j refers 

to stage number and subscript i refers to component 

number. 
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Material Balance Equations 

a2· 1 l. I 
a3· 1 l. I AX• l l. I 

al· 2 l. I 
a2· 2 l. I 

a3· 2 l. I 
AX· 2 l. I 

al· · l. I J a2 · · l. I J a3 · · l. I J AX• · 
l. I J + 

ali,Ns-1 a 2i,Ns-l a 3i,Ns-l Axi,Ns-1 

ali Ns 
I a 2i,Ns Axi,Ns 

bl· 1 l. I b2· 1 l. I ATl 

bl· 2 l. I b2· 2 l. I AT2 

bl· . 
l. I J 

b2 .. 
l. I J AT· 

J 
+ 

bl· N 1 l. I S- b 2i,Ns-l ATNs-1 

bli,Ns ATNs 

C3• l+Cl• 1 l., l., c2· 1 l. I 
AV1 d· 1 l. I 

C3· 2 l. I 
Cl• 2 l. I 

C2· 2 l. I AV2 d· 2 l. I 

c3 · · Cl• · c2 · · AV· = d· . 
l. I J l. I J l. I J J l. I J 

c 3i,Ns-l cli,Ns-1 c 2i,Ns-l AVNs-1 di,Ns-1 

c 3 i,Ns cli Ns 
I 

AVNs di Ns 
I 

l~i~Nc ( 3 . 19) 
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where, 

al· · = L· l 1,J J- (3.20) 

a2· . = - {<L +U) + (V +w >(K + x BKi,j)} 1,J j j j j i,j i,j Bx· . 1,J 
(3.21) 

BK· '+l 
a3 · · = V · (K · · + x. . 1 ' J ) 1 1 ] ]+l 1 1 ]+1 1 1 ]+1 BX· '+l 1,J 

(3.22) 

(3.23) 

BK· ·+l 
b2 ' ' = (v ' X ' ' 1 

I J ) 1,J J+l 1,J+l BTj+l (3.24) 

(3.25) 

(3.26) 

(3.27) 

(3.28) 

In a similar manner, the linearized heat balance 

equation, Equation 3.17, is rearranged in a matrix form as 



follows: 

Heat Balance Equations 

e2 1 e3 1 

e12 e2 2 e3 2 

el· 
J e2· J e3· 

J 

elNs-1 e 2Ns'""l e 3Ns-l 

f31+fl1 

f32 

f3· 
J 

f 3Ns-l 

f 3Ns 

where, 

el· 
J 

f21 

f 12 

elNs e2Ns 

f22 

fl· 
J 

f2· 
J 

f lNs-1 f 2Ns-l 

f lNs 
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AT1 

AT2 

AT· 
J 

+ 

ATNs-1 

ATNs 

AV1 gl 

AV2 g2 

AV· = g· J J 

AVNs-1 gNs-1 

AVNs gNs 

(3.29) 

(3.30) 



e2· J 

e3· 
J 

fl· = (h · l - H ·) ]· J- J 

f2· 
J 

f3· J 

g· = - E· J J 

Solution to Matrix Equations 
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(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

Using a generalized matrix notation, Equations 3.19 

and 3.29 are written as 

l~i~Nc (3.37) 

and 

E t:..T + F av = G (3.38) 

where Ai, Bi, Ci, Di, E, F, and G are the corresponding 
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sub-matrices; and axi, aT, and av are the corresponding 

vectors. Equations 3.18, 3.37, and 3.38 are the Ns(Nc+2) 

equations in the Ns(Nc+2) unknowns; axi, aT, and av. 

The matrix manipulation technique by Ishii and Otto (1973) 

is used to solve the Equations 3.37 and 3.38. 

The sub-matrices in Equation 3.37 are pre-multiplied 

by the inverse of Ai, yielding, 

-1 

= A· l. D· l. 

l~i~Nc 

The sub-matrix A· l. is a tridiagonal matrix. The 

the inversion are given in Chapter v. Equation 

summed over all the Ne components to yield, 

-1 -1 -1 

I ·Eax· + ·EA· B· aT + ·EA· C· av = ·EA· D· l. l. l. l. l. l. l. l. l. l. l. 

(3.39) 

details of 

3.39 is 

(3.40) 

In Equation 3.18, the error term sx,j is set to zero. 

This yields, ·Eax· · = O or 1·Eax1• = O. Hence, Equation 
l. l.,J 

3.40 reduces to, 

P aT + Q av = R (3.41) 

where 
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-1 
p = ·EA· B· 1 1 1 

-1 

Q = ·EA· C· (3.42) 1 1 1 

and 

-1 

R = ·EA· D· 1 1 1 

The actual inversion of matrices is usually considered 

inefficient, but in this model the actual inversion is 

efficient in avoiding the block band matrices. 

Equations 3.38 and 3.41 constitute 2Ns equations in 

unknowns AT and AV. These two equations are combined 

to yield a square matrix, as shown below. 

= [] (3.43) 

This equation is solved for AT and AV. Equation 3.39 is 

then solved for Axi. The details of the solution of these 

matrices are given in Chapter V. 

New values for xi,j' Vj, and Tj are then calculated 

from 

k+l 
X• • 1,J 

k k 
= X· • + ;\AX· • 1,J 1,J (3.44) 
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k+l k k 
V· = V· + AaV· (3.45) J J J 

and 

k+l k k 
T· = T· + AaTj (3.46) J J 

where k is the iteration number, and A is the relaxation 

factor. The component mole fractions in vapor, Yi,j' and 

the liquid flow rates, Lj, are then updated from Equations 

3.2 and 3.15. In Equations 3.44-3.46, the relaxation 

factor, A, varies from O to 1. The original Newton's 

method is obtained for A equal to one. 

A line search is made for a local minimum, and the 

relaxation factor, A, in Equations 3.44-3.46 is chosen so 

that the error is reduced from iteration to iteration. 

The error to be reduced, ERROR, is computed as follows. 

ERROR = 

(3.47) 

This equation is a measure of the sum-of-errors from 

Equations 3.1-3.4. In the vicinity of the solution, after 

a few iterations, Newton's method has a order of 
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convergence of two. 

The error term Mj is set to zero when the liquid flow 

rates, Lj, are updated from Equation 3.15. The error 

term, Hj, is normalized in Equation 3.47 by dividing by 

the heat input to the stage. This makes each error term 

in Equation 3.47 the same order of magnitude. The 

calculation procedure is repeated until a specified 

convergence criterion is satisfied. The criterion used is 

ERROR 
Ns < e (3.48) 

where e is a convergence tolerance. A value of 10-6 was 

used for e in this work. 



CHAPTER IV 

THERMODYNAMIC PROPERTIES 

AND ITS DERIVATIVES 

An estimate of thermodynamic equilibrium constants, 

liquid and vapor enthalpies, and derivative properties are 

needed to solve the MESH equations discussed in Chapter 

III. These are obtained from the Soave-Redlich-Kwong 

(Soave, 1972) equation of state. This equation is often 

ref erred to as the SRK equation of state and is 

p = RT a(T) 
v-b - v(v+b) (4.1} 

where v is the molar volume, P is the pressure, T is the 

temperature, and R is the universal gas constant. The 

parameter a and constant b are defined by Soave. Equation 

4.1 is cubic in volume and can be written in terms of 

compressibility factor, Z, as 

z3 - z2 + Z(A-B-B2 ) - AB = 0 (4.2} 

where, 



Pv z = RT 

A= 

B = ~ RT 
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( 4. 3) 

(4.4) 

( 4. 5) 

The procedure to estimate the thermodynamic equilibrium 

constants, enthalpies, and the derivative properties are 

discussed in this chapter. 

Equilibrium Constants 

The cubic equation of state, Equation 4.2, is solved 

for liquid and vapor roots. Convergence to "wrong" roots 

(liquid or vapor) is avoided by using the procedures 

outlined by Poling et al. (1980), Gundersen (1982), and 

Aftab (1987). The corresponding roots are then used to 

calculate the fugacity coefficients, ¢i, defined as 

v 
ln¢i = RTl J [ RT - ( BP ) ]dv - lnZ 

00 v ani T,V,nj 
( 4. 6) 

where V is the total volume, and ni is the number of moles 

of component i. Using Equations 4.1 and 4.6, an 
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expression is derived for ln~i from the SRK equation of 

state. This is given in the Appendix. 

The thermodynamic equilibrium constants, Ki, are then 

calculated from 

K· l. {4.7) 

where the superscripts L and V ref er to the liquid and 

vapor phases, respectively. 

Enthalpies 

The liquid and vapor enthalpies, h and H, per mole of 

mixture are calculated from 

{ 4. 8) 

{4.9) 

In Equations 4.8 and 4.9, H~ is the molar enthalpy of 

component i in the ideal gas state at the temperature T 

and a pressure of one atm. The function n is the 

isothermal enthalpy departure per mole of mixture for the 

corresponding phases. The ideal gas state enthalpies, H~, 



are obtained from 

T 

Hi= Jcp,i dT 
To 
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(4.10) 

In Equation 4.10, cp,i is the molal specific heat of 

component i in the ideal gas state, and T0 is the 

reference temperature. The molal specific heat, cp,i' is 

evaluated from a polynomial 

cp,1' = a· + b·T + C·T2 + d·T3 
l l l l (4.11) 

where ai, bi, ci, and di are empirical constants and are 

obtained from Reid et al. (1977). 

The isothermal enthalpy departure, n, for both the 

liquid and vapor phases is calculated from 

v 

n = J T[(:~)v - P]dv + RT(Z-1) 
co 

(4.12) 

The corresponding Z and v for the liquid and vapor phases 

are used in this equation. Using Equations 4.1 and 4.12, 

an expression is derived for n, from the SRK equation of 

state. This is given in the Appendix. 
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Derivative Properties 

The derivative properties; BKi/BT, BKi/Bxi, Bh/BT, 

and BH/BT, are evaluated analytically in this work. There 

are other techniques available to evaluate the 

derivatives: finite difference, quasi-newton, symbolic 

differentiation etc., but analytical procedure is the most 

efficient of all these techniques (Macchietto et al., 

1988) . 

The analytical expressions are obtained by 

differentiating Equations 4.7, 4.8, and 4.9 with respect 

to the independent variables. This yields, 

BK· 1 

BT 

BK· 1 

Bx· 1 
- K· 1 

L 
Bln<f>i Bln<f>Y 

- K· BX· 1 Byi 1 

[i + 
a ln<f>Y] 

Yi Byi 

( 4. 13) 

(4.14) 

( 4. 15) 
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(4.16) 

These derivative properties for the SRK equation of state 

are given in the Appendix. As discussed in the Appendix, 

the number of mathematical operations to calculate these 

properties are minimized by efficient algebraic 

manipulations. 



CHAPTER V 

MATRIX SOLVING ALGORITHMS 

Simulating multistage multicomponent separation 

processes is translated to solving the large number of 

simultaneous equations discussed in Chapter III. Due to 

the large size of problems encountered and iterative 

calculations involved, the efficiency of matrix solving 

algorithms becomes a major factor. The algorithms used to 

solve the matrices are discussed in this chapter. 

Column and Row Oriented Algorithms 

Fortran stores an array in a linear string, even when 

it has several dimensions. Given an array A of dimension 

nxn, Fortran stores the elements in column-major order so 

that the left-most dimension varies most rapidly and the 

right-most dimension varies least rapidly. This is 

illustrated by an example. 

Let the dimension of array A be 4x4. Denoting the 

elements by a, the array is shown below. 
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al 1 
' 

al,2 al 3 
' 

al 4 
' 

A = a2,l a2,2 a2 3 
' 

a2,4 (5.1) 

a3 1 
' 

a3,2 a3 3 
' 

a3 4 
' 

a4 1 
' 

a4,2 a4 3 
' 

a4,4 

Fortran uses 16 positions to store this array in a linear 

string. Table II illustrates how array elements 

correspond to storage positions. The elements in the 

first column of array A are stored in the first four 

positions. The elements in the second column of array A 

are stored in the second four positions, and so on. This 

is what is referred to as storage in column-major order. 

Conventionally, matrix solving algorithms are written 

in row-major order. That is, the right-most variable is 

varied most rapidly and the left-most variable is varied 

least rapidly in these algorithms. The successive array 

elements referenced by these algorithms are separated by a 

large increment, which depends upon the declared dimension 

of the array. 

Modern operating systems, in virtual storage 

machines, partition and store the arrays in a number of 

separate pages. The user has no control over this 

operation. When row-major order matrix solving algorithms 

are used for large problems, the number of page faults may 

be very large. This considerably decreases the efficiency 
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TABLE II 

STORAGE OF ARRAY ELEMENTS BY FORTRAN 

Position Array Element Name 

1 al 1 , 
2 a2 1 , 
3 a3 1 , 
4 a4,l 

5 al 2 , 
6 a2 2 , 
7 a3 2 , 
8 a4 2 , 
9 al,3 

10 a2,3 

11 a3,3 

12 a4,3 

13 al,4 

14 a2,4 

15 a3,4 

16 a4 4 , 



40 

of computation (Moler, 1972, Digital, 1984). 

The large number of page faults is avoided by re-

writing the matrix solving algorithms in column-major 

order. Successive array elements accessed by these 

algorithms are along a column, and this is the order in 

which Fortran stores arrays. Both the row oriented and 

column oriented algorithms are illustrated below. 

Let A be a matrix of dimension nxn and b be a vector 

of dimension n. An algorithm for matrix-vector 

multiplication, A b = c, using conventional row-major order 

is written as follows. 

Algorithm 5.1 Row Oriented Algorithm for 

Matrix-Vector Multiplication 

For i = 1,n 

C• = 0. 
1 

end i 

For j = 1,n 

C• = C• + a• ·b· 1 1 1,J J 

end j 

It is the inner loop which varies most rapidly in 

such algorithms. Hence, the order in which array elements 

are successively accessed by the algorithm depends on how 
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the inner loop is varied. In Algorithm 5.1, the inner 

loop is on j and is varied so that the array elements are 

successively accessed in row order. As discussed earlier, 

this is not the way Fortran stores array elements and such 

algorithms are computationally inefficient. 

The matrix-vector multiplication is re-written in 

column-major order as shown below. 

Algorithm 5.2 Column Oriented Algorithm for 

Matrix-Vector Multiplication 

For k = 1,n 

ck = o. 

end k 

For j = 

t = b· 
J 

For 

1,n 

i = 1,n 

C 1· = c 1· + a• •t l,J 

end i 

end j 

In this algorithm the inner loop is on i instead of j, and 

is varied so that the array elements are successively 

accessed in column order. As discussed earlier, this is 

the way Fortran stores array elements and such algorithms 

are computationally efficient. 
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Column oriented algorithms are used in this work for 

all matrix operations; including multiplication, addition, 

and subtraction. When compared to row oriented 

algorithms, these algorithms produce a savings in 

computation time and a reduction in the number of page 

faults. A comparison of the two approaches is presented 

in Chapter VII. 

Matrix Inversion 

In Chapter III, Equation 3.39 is pre-multiplied by 

the inverse of Ai, summed over all the components, and 

reduced to Equation 3.41. Sub-matrix Ai is a tri-diagonal 

matrix, and advantage of this structure is taken in 

calculating the inverse. 

Let E be a tri-diagonal matrix, of dimension NsxNs, 

with el, e2, and e3 as the elements. The matrix is shown 

below. 

E = el· J e2· J e3· J 

(5.2) 
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This is inverted using Gaussian elimination, with partial 

pivoting and scaling. The elements of E are stored in 

3Ns storage spaces and the algorithm needs only 2Ns 

additional storage spaces to invert the matrix. 

The algorithm, scaling excluded, is given below. In 

this algorithm; dl and d2, each of size Ns, refer to the 

additional vectors needed to invert the matrix, and 

'einv' refers to the elements in the inverted matrix . 

Algorithm 5.3 Algorithm for Inverting g 

Tridiagonal Matrix 

Find the Lower and Upper factors 

Set dli = o., (for i=l,Ns) 

Set pk = k (for k = 1,Ns) 

nm = Ns-1 

For k = 1,nm 

Set pk= k+l, If 1alk+ll > 1a2k1 

If Pk• NE. k, Then (swap the elements) 

t = alk+l 

alk+l = a2k 

a2k = t 

t = a2k+l 

a2k+l = a3k 

a3k = t 



t = a3k+l 

a3k+l = dlk 

dlk = t 

Endif 

alk+l = -alk+l/a2k 

a2k+l = a2k+l + alk+la3k 

a3k+l = a3k+l + alk+ldlk 

end k 

Solve for the Inverse 

For jc = 1,Ns 

Set d2i = o. (for i = 1,Ns) 

d2jc = 1. 

For k = 1,nm (forward elimination) 

kp = k+l 

m = Pk 

t = d2m 

d2m = d2k 

d2k = t 

d2kp = d2kp + alkpt 

end k 
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For kb = 1,nm-1 (backward substitution) 

km = ns-kb 

k = km + 1 

d2k = d2k/a2k 

t = -d2k 



end jc 

d2km = d2km + a3kmt 

d 2km-1 = d 2km-1 + dlkm-lt 

end kb 

d2 2 = d2 2 /a2 2 

d2 1 = d2 1 - a3 1d2 2 

d2 1 = d2 1 /a2 1 

For i = 1,Ns 

einv· · = d2 · 1 1 JC 1 

end i 

Solve For aT And av 

45 

In Chapter III, Equation 3.43 is to be solved for the 

vectors aT and av. The equation is 

[: ] [] = [:] (3.43) 

As discussed in Chapter III, sub-matrices P and Q result 

after a set of operations on the linearized material 

balance equations, Equation 3.16. Sub-matrices E and F 

are obtained directly from linearized heat balance 

equations, Equation 3.17. 

In Equation 3.43, sub-matrices E and F are sparse 
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whereas P and Q are not sparse. Hence, instead of solving 

this equation, a modified form of the equation is solved. 

Equation 3.43 is pre-multiplied by the inverse of E. 

This yields, 

-1 -1 

I aT + E F av = E G (5.3) 

-1 -1 

Setting H = E F, and S = E G, this is written as, 

r aT + H av = s (5.4) 

Sub-matrix E is a tri-diagonal matrix and as 

discussed in section 5.2, advantage of this structure is 

taken in calculating the inverse. In Equation 5.3, I is 

an identity matrix and matrices H and s are not sparse. 

Equations 5.3 and 3.41 are combined to yield, 

[ : ~] [] - [] (5.5) 

This equation is solved by Gaussian elimination, with 

scaling and partial pivoting. The top left quadrant of 

this matrix is an identity sub-matrix and this structure 

is considered in the solution. The algorithm, scaling • 
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excluded, is given below. 

Let A be a square matrix of dimension 2Nsx2Ns with an 

identity sub-matrix in the top left quadrant, and let b be 

a vector of dimension 2Ns. The algorithm solves for 

vector x which satisfies A x = b. 

Algorithm 5.4 Column Oriented Algorithm for 

Solving A Square Matrix Having an Identity 

Sub-matrix in the Top Left Quadrant 

Find the Lower and Upper Factors 

nn = 2Ns 

Set pk = k (for k = 1,nn) 

Take Advantage of the Identity Matrix 

kp = Ns + 1 

For k = 1,Ns 

Set a· k = -a· k (for i=l,nn) l., l., 

For j = kp,nn 

t = ak · ,] 

If t. EQ. O then 

quit 

else 

For i = kp,nn 

a· · = a· · + a· kt l.,J l.,J l., 

end i 
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End if 

end j 

end k 

Find the Pivot and perform elimination 

nm = nn - 1 

For k = kp, nm 

kpl = k + 1 

Find m so 1am,kl = max1ai,kl 

(for i=kpl, nn) 

Pk = m 

t = a k m, 

= ak,k 

= t 

For i = kpl,nn 

ai,k = -ai,k/t 

end i 

For j = kpl,nn 

t = am,j 

am,j = ak . ,J 

ak . = t ,J 
If t .EQ. 0 then 

quit 

else 

For i = kpl,nn 

a· · = a· · + a· kt i.,J 1,J i, 



end i 

End if 

end j 

end k 

Solve for the Vectors 

For k = 1,nm (forward elimination) 

kp = k+l 

m = Pk 

t = bm 

bm = bk 

bk t 

For i = kp,nn 

b· = b· + a· kt l l l, 

end i 

end k 
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For kb = 1,nm (backward substitution) 

km = nn-kb 

k = km + 1 

bk = bk/ak,k 

t = -bk 

For i = 1,km 

b· = b· + a· kt l l l, 

end i 

end kb 



The solution vector x is stored in the vector b, and no 

additional storage space is used. 
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Once AT and AV are known, Equation 3.39 is solved for 

Axi. As outlined in Chapter 3, the procedure is repeated 

until convergence is obtained. Other major mathematical 

operations involving matrices are Equations 3.39, 3.40, 

and 5.5. Column oriented algorithms are used to solve 

these equations. 



CHAPTER VI 

INITIAL ESTIMATES AND HOMOTOPIES 

In Chapter III, a mathematical model is formulated in 

Ns(Nc+2) independent variables to simulate multicomponent, 

multistage separation processes. The independent 

variables are Ns(Nc) component mole fractions in liquid, 

xi,j' Ns total vapor flow rates, Vj, and Ns stage 

temperatures, Tj. Initial estimates of these variables 

are needed to initiate the calculation procedure discussed 

in Chapter III. The procedure to obtain these initial 

estimates is discussed in this chapter. For 'difficult' 

to solve problems a homotopy, or path is defined from 

ideal to nonideal thermodynamic properties. 

Initial Estimates 

Temperatures and Flow Rates 

Initial estimates for top and bottom stage 

temperatures, T1 and TNs' are obtained by calculating the 

bubble, or dew, point temperatures of estimated top and 

bottom product composition. The temperatures of 

intermediate stages are assumed to vary linearly as 

follows. 
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(6.1) 

The liquid and vapor flow rates, Lj and Vj, are estimated 

by assuming constant molal overflow (King, 1981). 

Thermodynamic Eguilibrium Constants 

and Compositions 

Initial estimates for thermodynamic equilibrium 

constants are obtained by assuming ideal liquid and vapor 

phases. Raoult's law is used to calculate these values as 

p~ 
1 =r 

where P! is the saturation, or vapor, pressure. In 

Equation 6.2, the superscript id refers to ideal 

( 6 • 2 ) 

conditions. The thermodynamic equilibrium constants from 

Equation 6.2 are independent of phase composition, vary 

inversely with pressure, and exponentially with 

temperature. 

The estimated flow rates, and composition-independent 

thermodynamic equilibrium constants are substituted into 

the material balance equation, Equation 3.7. These set of 

algebraic equations are then solved for component mole 



fractions in liquid, xi,j' by Thomas algorithm (Wang and 

Henke, 1966). 

The computed xi,j values are normalized by the 

relation 

X• • 
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(x. . ) 1,J norm. = 
1,J 

·EX• · 1 1,J 
(6.3) 

A new set of stage temperatures, Tj, are calculated by 

computing bubble point temperatures from the normalized 

xi, j values. 

Enthalpies 

The liquid and vapor enthalpies, h and H, are 

estimated by assuming the liquid and vapor phases to 

behave ideally. The relations used are 

0 v 
· Ex· (H · - AH· ) 1 1 1 1 

0 ·Ey·H· 1 1 1 

(6.4) 

(6.5) 

where H~ is the molar enthalpy of component i at the ideal 

gas state at temperature T and pressure of one atm. The 

procedure to calculate this term is discussed in Chapter 

IV, Equation 4.10. 



The term my is the molar heat of vaporization of 

component i at one atm. This is calculated from 
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dlnPi 

dT (6.6) 

The vapor pressure, PI, is obtained from the Antoine 

equation 

s lnP· l 

where A1 , A2 , and A3 are Antoine coefficients and are 

obtained from Reid et al. (1977). 

Equation 6.7 is differentiated with respect to 

temperature and substituted into Equation 6.6. This 

yields 

(6.7) 

(6.8) 

These estimates, based on the assumption of ideal 

behavior of liquid and vapor phases, are used to initiate 

the iteration procedure discussed in Chapter III. The 

nonideal thermodynamic properties from the Soave-Redlich-

Kwong (Soave, 1972) equation of state, discussed in 



Chapter IV, are then used in subsequent iterations. The 

iterative procedure is carried out until a specified 

convergence is obtained. 
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Using this procedure, for some problems it becomes 

difficult or impossible to obtain convergence from certain 

initial estimates. That is, the domain of convergence 

becomes limited, where the domain of convergence is 

defined as the set of initial values from which 

convergence is obtained •. The iteration procedure is 

modified for such problems by defining a homotopy, or 

path, from ideal to nonideal thermodynamic properties. 

Homotopies 

Given a system of n nonlinear equations in n 

variables, the goal is to find the n points that satisfy 

the system. Using a homotopy approach, the solution is 

found by following a path from a simple, obvious point to 

the desired point. The concept is described below. 

Let F(x) represent a system of n nonlinear equations 

in n variables. The goal is to solve 

F1 (x1 ,x2 , ...•••..•• ,xn) = o 

F2 (x1 ,x2 , .•••.•.••. ,xn) = o 

(6.9) 
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for This is the desired 

solution. 

First set up a simple, obvious, system E(x) = o. Let 

x 0 be a solution which solves 

(6.10) 

The system E(x) is set up in such a way that the points 

x 0 = (x~,x~, ••...••••••.. ,x~) are already known, or they 

are easy to find. This is the starting point. 

A special function H(x,t), which has the original n 

variables plus an extra one, t, is defined as 

H(x,t) = (1-t)E(x) + tF(x) ( 6 .11) 

This is referred to as an homotopy function, and from 

Equation 6.11, 

H(x,O) = E(x) 

and (6.12) 

H(x,1) = F(x) 



57 

It follows that at t = o, 

H(x,O) = E(x) = 0 (6.13) 

has a solution x 0 which is already known, or is easy to 

find. At t = 1, 

H(x,1) = F(x) = o 

and this has to be solved for * x . 

(6.14) 

The parameter t is known as an homotopy parameter. 

This serves to 'bend' a simple system, E(x), to the 

original system, F(x). In this process a simple solution, 

x 0 , is 'bent' to the desired solution, x*, and the 

original system is solved. For an arbitrary t, x(t) is a 

solution of 

H(x(t),t) = 0 (6.15) 

The idea is to start at x(O) = x0 and then increase t 

until x(l) = x* is reached. Generally, x(t) generates a 

path that can be followed from t = O to t = 1, thereby 

solving the original system. A path must exist from t = O 

to t = 1 for the success of this method. The existence of 

a path is assured if H(x,t) is continuously differentiable 
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I 
and the function Hx(x,t) is invertible (Garcia and 

Zangwill, 1981, Bhargava et al., 1984). 

In Equation 6.11, if E(x) = (F(X)-F(x0 )) then it is 

referred to as Newton homotopy, and if E(X) = (x-x0 ) then 

it is referred to as fixed point homotopy. Bhargava et 

al. (1984) and Wayburn et al. (1984) used Newton homotopy 

to solve difficult problems. Recently Kunc et al. (1988) 

have used fixed point homotopy to find all real roots of 

nonlinear equations. In this work, Equation 6.11 is used 

to define a path from ideal to nonideal thermodynamic 

properties by a linear combination of functions E(x) and 

F(x) (Garcia and Zangwill, 1981). The nonidealities are 

now imposed step-by-step as t varies from zero to one, 

and this is the advantage of such methods over the other 

homotopies (Vickery et al., 1986). 

Application to Separation Problems 

As discussed in Section 6.1, initial estimates for 

independent variables are obtained by assuming the liquid 

and vapor phases to be ideal. This is the starting point. 

The desired point is a solution for independent variables 

which accounts for nonidealities in the liquid and vapor 

phases. In this work, the nonidealities are accounted for 

by the SRK equation of state. 

The common approach is to impose nonideal conditions 

into Equations 3.6 through 3.8, right after the initial 
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estimates are obtained. Using this approach, it may be 

difficult or impossible to obtain convergence for some 

problems. To overcome this difficulty a homotopy, or 

path, is defined from ideal to nonideal conditions. 

Homotopies for equilibrium constants and enthalpies 

are defined as follows. 

ln K· l ( 6. 16) 

The homotopy parameter, t, varies from o to 1. At 

t = o, Equations 6.16 through 6.18 reduce to 

p~ 
l 

ln Ki = ln P or 
p~ 

l 
K· = l p (6.19) 

(6.20) 

(6.21) 



As discussed in Section 6.1, initial estimates for the 

independent variables are obtained by substituting these 

expressions into Equations 3.6 through 3.8. This is the 

starting point. 

At t = 1, Equations 6.16 through 6.18 reduce to 
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ln K· 1 or K· = 1 (6.22) 

(6.23) 

(6.24) 

As discussed in Chapter IV, these expressions are to be 

substituted into Equations 3.6 through 3.8 to solve for 

the independent variables. This is the desired point. 

Equations 6.16 through 6.18 define a path from ideal 

to nonideal conditions as t varies from O to 1. The 

thermodynamic equilibrium constants and enthalpies range 

from ideal values, at t = o, to nonideal values, at t = 1. 

The solutions for independent variables obtained also 

follow the path and vary from initial estimates, at t = o, 

to the desired solution, at t = 1. 

Following Equations 6.16 through 6.18, thermodynamic 
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derivative properties, 8Ki/8xi, 8Ki/8T, 8h/8T, and 8H/8T, 

are modified as follows. 

8K· 1 

8T 

( 
q,1:i l-1 

= tK· --1 -

1 "'y 

( ¢1:i l-1 
= tK· --1 -

1 "'y 

a 
8X· 1 ( :i) 

dlnPi 
+ (1-t)K1· dT 

where lnPI is given by Equation 6.7 and 

dlnPi 

dT = 

ah= (1-t) 'x·( aHi - aMii) + t( 'xi· aHi + 
8T iL. 1 8T 8T iL. 8T 

anL) 
8T 

(6.25) 

(6.26) 

(6.27) 

(6.28) 

(6.29) 

At t=l, the desired point, Equations 6.25 through 6.29 

reduce to the expressions derived in Chapter IV. 

The homotopy parameter, t, ranges from O to 1. 



Increment by which t is increased depends on the 

difficulty of the problem. Convergence criteria are 

relaxed at intermediate iterations. One iteration was 

performed at t = o, and at other values of t the 

convergence tolerance e, in Equation 3.48, was set to 

eo/t7. 

The method used in this work to define a path is 
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referred to as continuation by iteration. A path can also 

be generated by a method described below. 

Differentiating Equation 6.15 with respect to t 

yields 

(6.30) 

From x(O) = x0 , Equation 6.30 can be integrated to obtain 

x(l) * = x (Bhargava et al., 1984; Vickery et al., 1986). 

This method is referred to as continuation by integration. 

Using the matrix manipulation technique presented in this 

work, it is difficult to use continuation by integration. 



CHAPTER VII 

RESULTS AND DISCUSSION 

Column oriented algorithms have been developed to 

simulate multistage multicomponent separation processes. 

The homotopy, or path following, method has been used to 

solve difficult problems. Using this procedure, 

convergence has been obtained to problems which were 

otherwise difficult to converge, and in some cases the 

convergence has been accelerated. A number of test 

problems have been solved, and the results to a few of 

these problems are discussed in this chapter. 

Column Oriented Algorithms 

The storage structure of Fortran, and the advantages 

of column oriented algorithms over row oriented algorithms 

are discussed in Chapter V. These two algorithms are 

compared on a VAX 11/780 computer, at Oklahoma state 

University, to solve a 40x40 linear system. 

Table III shows the computation times (CPU times), 

and page faults to solve a 40x40 linear system by Gaussian 

elimination method (Golub and Van Loan, 1985). The 

results show that the column oriented algorithms run 



Run no. 

1 

3 

5 

7 

9 

Average 

TABLE III 

A COMPARISON OF CPU TIMES (SEC.), AND 
PAGE FAULTS TO SOLVE A 40x40 LINEAR 

SYSTEM BY GAUSSIAN ELIMINATION, 
ON A VAX 11/780 

Row Oriented Run no. Column Oriented 
Algorithm Algorithm 
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Time Page Faults Time Page Faults 

4.17 492 2 4.09 474 

4.18 496 4 4.08 472 

4 .12 492 6 4.08 472 

4 .12 494 8 4.05 472 

4.17 497 10 4.07 475 

4.15 495 Average 4.07 473 



faster than the row oriented algorithms, and produce a 

reduction in the number of page faults. These results 

support the discussion in Chapter v. 
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The savings in computation time is about 2 percent, 

and the reduction in page faults is about 5 percent, for 

solving a 40x40 linear system by Gaussian elimination. 

Moler (1972) has reported a savings in computation time of 

about 7 percent, and a reduction in elapsed time, 

primarily due to decrease in page faults, of about 32 

percent for solving a 200x200 linear system, by Gaussian 

elimination, on a IBM 360/67. These savings will increase 

as the number of matrix operations increases, and in 

particular the savings in page faults will increase 

rapidly. 

Moler (1972) has reported that William Jones at NASA 

Ames Laboratory has obtained a higher savings in 

computation time by using column oriented algorithms, but 

has not reported how much higher. Dongarra (1986) has 

reported that at Argonne National Laboratory they have 

increased the efficiency of their programs by using column 

oriented algorithms. He has not quantified their results. 

Given a matrix of size NsxNs, the number of flops 

needed to perform Gaussian elimination is approximately 

Ns3/3. A flop is defined as the effort of doing a 

floating point add, a floating point multiply, and a 

little subscripting (Golub and Van Loan, 1985). 
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A large number of matrix equations are to be solved 

in simulating a multistage multicomponent separation 

process, and the procedure to solve these equations are 

discussed in Chapters 3 and 5. The major calculation 

steps, involving matrices, are Equations 3.39, 3.40, 5.3, 

and 5.5. In these equations, there are NsxNs matrix 

elements in the inverse matrices Ai and Ei, and about 2Ns 

matrix elements in the matrices Bi, Ci, and F. In 

Equation 5.5, the matrix to be solved is of size 2NSx2NS. 

The number of flops needed to solve these equations 

are: (5Ns2)Nc for Equation 3.39, (2Ns2+Ns)Nc for Equation 

3.40, 3Ns2 for Equation 5.3, about 3Ns3 for Equation 5.5, 

and (3Ns2 )Nc to calculate Axi from Equation 3.39. In 

these equations Ns is the number of stages, and Ne is the 

number of components. The total number of flops needed 

are about (10Ns2Nc + 3Ns3 + NS(NC) + 3NS2). It is 

important to note that these many flops are needed for 

each iteration. 

A computer program has been developed to simulate 

multicomponent multistage separation processes, using the 

procedure discussed in Chapters 3-6. The program is 

written so that there are no limitations on the number of 

stages, and the number of components that can be handled. 

The program has been tested on a VAX 11/780 computer, at 

Oklahoma State University, on a number of problems. Out 

of these, a few of them are discussed in this chapter. As 
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discussed in Chapter 4, the SRK equation of state is used 

to estimate the thermodynamic properties. However, the 

program is not tied to this equation of state and another 

thermodynamic solving routine can be easily substituted. 

The computation times from this work are compared to 

that of Shah and Bishnoi (1978). They took the program 

developed by Ishii and Otto (1973) and modified it to be 

able to use an equation of state to estimate the 

thermodynamic properties. The matrix manipulation 

technique suggested by Ishii and Otto (1973) is efficient, 

and the technique is applied in this work. 

Test Problem 1 

The feed component flow rates for Test Problem 1 is 

given in Table IV. This is an absorption problem from 

Shah et al. (1978). The column consists of 20 stages; 

there are a total of 14 components, and the operating 

pressure is 55.16 atm. Feed and lean oil are supplied at 

55.16 atm., and at a temperature of 255.2 Kand 256.8 K, 

respectively. Initial estimates for the independent 

variables that were used in this work are given in Table 

v. 

The computation times (CPU times) to obtain a 

converged solution to this problem are shown in Figure 2. 

The homotopy method, discussed in Chapter VI, was not used 

for Test Problem 1. Using the present procedure, a 



Components 

co2 

N2 

cl 

C2 

C3 

ic4 

nc4 

ic5 

nc5 

c6 

C7 

Cg 

Cg 

C10 

Feed flow rate 

TABLE IV 

FEED COMPONENT FLOW RATES FOR 
TEST PROBLEM 1 (MOLES/HR.) 

Feed 

0.4703 

0.1822 

88.7000 

6.6747 

2.7786 

0.6375 

0.3655 

0.1158 

0.0505 

0.0146 

0.0081 

0.0020 

0.0000 

0.0000 

= 100 moles/hr. 

Lean oil flow rate = 6.3092 moles/hr. 
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Lean Oil 

0.0000 

0.0000 

0.0000 

0.0000 

0.0015 

0.0006 

0.0013 

0.0067 

0.0061 

0.1495 

0.5736 

1.8214 

1. 6866 

2.0619 



Stage 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

TABLE V 

INITIAL ESTIMATES OF INDEPENDENT 
VARIABLES FOR TEST PROBLEM 1 

Temperature Liquid 
(K) Flow Rate 

256.8 6.3092 

256.9 6.3092 

257.0 6.3092 

257.1 6.3092 

257.2 6.3092 

257.3 6.3092 

257.4 6.3092 

257.5 6.3092 

257.6 6.3092 

257.7 6.3092 

257.8 6.3092 

257.9 6.3092 

258.0 6.3092 

258.1 6.3092 

258.2 6.3092 

258.3 6.3092 

258.4 6.3092 

258.5 6.3092 

258.6 6.3092 

258.7 6.3092 
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Vapor 
Flow Rate 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 

100 
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computation time of about 19 sec is needed to obtain a 

converged solution to this problem, in 6 iterations. 
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Shah et al. (1978) have reported a computation time of 26 

sec (VAX 11/780 equivalent) (Dongarra, 1987; Nelson, 1987) 

to solve this problem, in 6 iterations. 

The converged top and bottom product compositions are 

given in Table VI, along with those of Shah et al. The N2 

composition reported by Shah et al., in the bottom 

product, is in error. Most likely this is a typographical 

error. Otherwise the results are in good agreement, and 

the present model is computationally efficient. 

Temperature Profile 

In absorbers, the temperature increases downward in 

the column due to the release of heat of absorption by the 

phase change of components in passing from gas to liquid. 

The heat release increases the sensible heat of the liquid 

stream. If there is a competiting cooling effect by the 

transfer of components from liquid to gas, then the 

temperature decreases downward in the column after 

producing a maximum. 

The converged temperature profile for Test Problem 1 

is shown in Figure 3. Proceeding from top to bottom, the 

profile shows an increase in temperature and then a 

decrease. The decrease is sharpest in the middle of the 

column. The temperature profile is in accordance with the 



Component 

co2 

N2 

Cl 

C2 

C3 

ic4 

nc4 

ic5 

nc5 

c6 

C7 

Ca 

Cg 

Clo 

TABLE VI 

TOP AND BOTTOM PRODUCT FLOW RATES 
FOR TEST PROBLEM 1 (MOLES/HR.) 

Top Product Bottom Product 
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This Work Shah et al. This Work Shah et al. 

0.4039 0.3981 0.0664 0.0722 

0.1786 0.1784 0.0036 0.0638 

83.0400 82.8760 5.6600 5.8240 

4.5210 4.4802 2.1535 2.1945 

0.3861 0.3361 2.3939 2.4140 

0.0004 0.0004 0.6376 0.6377 

0.0006 0.0006 0.3661 0.3662 

0.0014 0.0015 0.1210 0.1210 

0.0010 0.0010 0.0556 0.0556 

0.0078 0.0083 0.1562 0.1558 

0.0094 0.0111 0.5722 0.5706 

0.0100 0.0122 1.8128 1.8113 

0.0030 0.0041 1.6836 1.6825 

0.0012 0.0018 2.0607 2.0601 
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converged composition profiles shown in Figures 4-8. 

Composition Profiles 

Figures 4-6 show converged c 1 , c 2 , and c 3 flow rate 

profiles in vapor. These are the three components whose 

mass transfer takes place only from gas to liquid. 
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Whereas the mass transfer of c 8 , c 9 , and c 10 takes place 

only from liquid to gas. Figures 4-5 show that the 

absorption of c 1 and c 2 takes place exclusively at the top 

stage. This is where the lean oil comes in contact with 

the feed for the first time. Figure 6 shows that c 3 is 

absorbed throughout the column, but mainly at the two 

terminal stages. 

The mass transfer of ic4 , nc4 , ic5 , nc5 , c 6 , and c 7 

takes place in both directions, gas to liquid and liquid 

to gas. Figure 7 shows converged ic5 and nc5 flow rate 

profiles in liquid. These components are absorbed from 

gas to liquid in the bottom three stages, when the feed 

first comes in contact with the lean oil. In stages 

sixteen and above, a small percentage of these components 

are transferred from liquid to gas. This is due to the 

changes in temperature and compositions in the column. 

The equilibrium concentration of a component in 

liquid is given by xi =Yi/Ki. Going up in the column, 

the temperature is increasing which tends to make Ki 

higher. When the feed first comes in contact with the 
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lean oil, the concentration of ic5 and nc5 are high in 

vapor to favor the mass transfer from gas to liquid. As 

the gas flows upward, the concentration of ic5 and nc5 in 

vapor are decreasing and coupled with the increasing Ki, 

the mass transfer is favored from liquid to gas after 3 

stages from the bottom. 

The mass transfer of ic4 takes place from gas to 

liquid on stages five through twenty, and from liquid to 

gas on stages one through four. The mass transfer of nc4 

takes place from gas to liquid on stages eleven through 

twenty, and from liquid to gas on stages one through ten. 

The mass transfer of c 6 and c 7 takes place from gas 

to liquid on the bottom stage. This is when the feed 

first comes in contact with the lean oil. In the rest of 

the stages, the mass transfer takes place from liquid to 

gas. 

The Ca flow rate profile in liquid is shown in Figure 

a. The feed has negligible amount of Ca, and none of Cg 

and c 10 • Hence the mass transfer of these components 

takes place in only one direction, liquid to gas. The 

mass transfer of Cg and c 10 takes place exclusively on the 

bottom stage. 

From the results it is evident that Test Problem 1 is 

not a simple absorber problem. Due to the presence of 

close boiling components, the column combines the 

characteristics of both distillation and simple 
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absorption. 

Test Problem 2 

The feed component flow rates for Test Problem 2 are 

given in Table VII. This is a distillation problem from 

Shah et al. (1978). The column is used as a deethaniser 

in an ethane recovery plant. The column consists of 18 

stages, operates at 31.72 atm., and there are a total of 

10 components. A bubble point feed at 31.72 atm. is fed 

to the 7th stage. Almost 95% of the feed is composed of 

ethane and propane. The column operates at a reflux ratio 

of 1.6 and the top product contains about 1.0% vapor. 

The initial temperatures are assumed to be linear between 

283 K and 368 K. This is same as that of Shah et al. The 

initial estimates for the independent variables that were 

used in this work is given in Table VIII. 

The computation times to obtain a converged solution 

to this problem are shown in Figure 2. The homotopy 

method, discussed in Chapter VI, was not used for Test 

Problem 2. Using the present procedure, a computation 

time of about 21 sec is needed to obtain a converged 

solution to this problem, in 10 iterations. Shah et al. 

have reported a computation time of 31 sec (VAX 11/780 

equivalent) (Dongarra, 1987; Nelson, 1987) to solve this 

problem, in 9 iterations. 

The converged top and bottom product compositions and 



TABLE VII 

FEED COMPONENT FLOW RATES FOR TEST 
PROBLEMS 2 AND 2A (MOLES/HR.) 

Components Flow Rate 

co2 1.759 

N2 6.74E-06 

C1 1.266 

C2 80.350 

C3 13.580 

ic4 0.719 

nc4 1.168 

ic5 0.290 

nc5 0.310 

C7 0.539 

Feed flow rate: 100 moles/hr. 
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stage 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

TABLE VIII 

INITIAL ESTIMATES OF INDEPENDENT 
VARIABLES FOR TEST PROBLEMS 

Temperature 
(K) 

283 

288 

293 

298 

303 

308 

313 

318 

323 

328 

333 

338 

343 

348 

353 

358 

363 

368 

2 AND 2A 

Liquid 
Flow Rate 

140 

140 

140 

140 

140 

140 

240 

240 

240 

240 

240 

240 

240 

240 

240 

240 

240 

17.918 
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Vapor 
Flow Rate 

0.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

222.082 

22.082 



heat loads from this work are given in Table IX, along 

with those of Shah et al (1978). The results from this 

work are in good agreement, and the present model is 

computationally efficient. 

Composition Profiles 

The converged composition profiles in liquid and 

vapor are shown ih Figures 9 and 10. The separation is 

being achieved primarily between ethane and propane, as 

shown in Table IX. These are the light and heavy keys 

respectively. Components heavier than propane, butane 

through heptane, are heavy nonkeys. Components lighter 

than ethane, nitrogen, carbondioxide, and methane, are 

light nonkeys. 
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The mole fraction of ethane increases upward and the 

mole fraction of propane increases downward. This 

reflects the separation between the two keys. In addition 

separation is also taking place between keys and nonkeys. 

Heavy nonkeys, ic4 etc., have relatively constant 

mole fractions in the liquid and vapor below the feed 

stage until three or four stages from the bottom of the 

column. This is because the separation takes place 

between the heavy nonkeys and the two keys on the bottom 

few stages. 

The heavy nonkeys increase on the bottom few stages 

at the expense of the light and heavy keys, c 2 and c 3 , and 



Components 

TABLE IX 

TOP AND BOTTOM PRODUCT FLOW RATES 
FOR TEST PROBLEM 2 

Top Product Bottom Product 
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This Work Shah et al. This Work Shah et al. 

co2 1. 7590 1. 7590 

N2 6.74E-06 6.70E-06 

cl 1. 2660 1. 2660 

C2 79.8380 78.9380 

C3 0.6497 0.5298 

ic4 8.530E-04 6.740E-04 

nc4 3.911E-04 4.493E-04 

ic5 

nc5 

C7 

Condenser Load: 
(Kcal/hr.) 

Reboiler Duty: 
(Kcal/hr.) 

This Work 

4.05E+05 

4.50E+05 

0.5167 1.4146 

12.9370 13.0580 

0.7181 0.7183 

1.1676 1.1679 

0.2920 0.2920 

0.3140 0.3140 

0.5392 0.5392 

Shah et al. 

3.94E+05 

4.23E+05 
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especially the plentiful heavy key. This is the cause of 

maximum in propane mole fraction towards the bottom of the 

column. 

At the very top of the column separation takes place 

between light nonkeys and keys. The light nonkeys 

increase on the top few stages at the expense of the 

light and heavy keys, c2 and c3 , and especially the 

plentiful light key. This is the cause of maximum in 

ethane concentration towards the top of the column. 

Temperature Profile 

The converged temperature profile is shown in Figure 

11. This shows that the temperature change is rapid at 

the very bottom of the column, and in the vicinity of the 

feed stage. These are the regions where the compositions 

are changing rapidly, for nonkeys in particular. 

At the top, and below the feed in particular the 

light nonkeys are reduced rapidly in liquid. At the 

bottom, in particular, and also above the feed, the heavy 

nonkeys are reduced rapidly in vapor. Due to a very high 

concentration of ethane in the stages above the feed, 

there is only a 10 K change in temperature between the top 

and feed stage. 

Sensitivity to Temperature Profile 

Shah et al. (1978) have reported that the convergence 
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of this problem is sensitive to temperature profiles. In 

the present study, the operating conditions of Problem 2 

were perturbed by changing only the condenser load. This 

is referred to as Test Problem 2A. When the condenser 

load was reduced to 4.0E+05 Kcal/hr., convergence 

characteristics of the problem changed and divergence was 

observed. Henley and Seader (1981) have reported such 

sensitivity to distillate temperatures in some of their 

test problems. 

Homotopy Method 

The homotopy method, discussed in Chapter VI, has a 

stabilizing effect on Test Problem 2A, and it suppresses 

the divergent behavior. The function H(x,t) is used on 

this problem, with an increment At = 0.5. Such 

stabilizing effects have been reported by Bhargava et al. 

(1984) on some of their test problems. They also report 

that an increment of At = 0.5 is satisfactory in producing 

stabilizing effects. If a At of 0.5 does not produce 

stabilizing effects, then smaller increments must be 

tried. The computation time could increase in such cases, 

but obtaining a converged solution becomes the major 

concern at this point. 

It is seen from this example that the incorporation 

of homotopy, or path following method, makes the algorithm 

robust. As discussed in Chapter VI, there will be no path 



and this method will fail if the Jacobian matrix becomes 

singular (Garcia and Zangwill, 1981; Bhargava et al., 

1984, Wayburn and Seader, 1984). These are the turning 

points and can be overcome by perturbing the Jacobian 

matrix (Bhargava et al., 1984). 
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The converged temperature profile for Test Problem 2A 

is shown in Figure 12. The temperatures along the column 

are much higher and are reflected in the composition 

profiles shown in Figures 13-14. When compared with 

Figures 9-10, these show higher concentrations of propane, 

and heavier components in the vapor and liquid. 

Test Problem 3 

Feed component flow rates for Test Problem 3 are 

shown in Table X. This is a distillation problem from 

Poling et al. (1981). The column consists of 16 stages 

and operates at 30 atm. The feed enters as 30% vapor on 

the 5th stage. The column has a partial condenser and the 

top product rate is 37.5 moles/hr. 

This problem is an example of the separation of 

narrow boiling mixtures. It is for this problem that 

Poling et al. (1981) have reported a number of mixture 

adjustments, to avoid trivial roots in evaluating the 

thermodynamic properties. They have reported that this 

problem proved their most severe test for convergence. 

The initial estimates for the independent variables that 
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TABLE X 

FEED COMPONENT FLOW RATES FOR 
TEST PROBLEM 3 (MOLES/HR.) 

Component Flow Rate 

CH4 36.2 

C2H4 37.4 

C2H6 9.0 

C3H6 15.7 

C3Hs 1.7 
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were used in this work are given in Table XI. 

Temperature and Composition 

Profiles 
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The converged temperature profile is shown in Figure 

15. There are three stages below the feed stage over 

which the temperature change is minimal. The converged 

composition profiles are shown in Figures 16 and 17. The 

change in composition over these three stages is minimal. 

This is due to the presence of narrow boiling components, 

and the location of feed stage has no effect on the nature 

of the profiles. 

The converged top and bottom product compositions are 

shown in Table XII. As can be seen from the table, all 

the components are present to some extent in both the top 

and bottom products. Poling et al. have not reported the 

product compositions for their computations. 

Homotopy Method 

A converged solution is obtained to this problem in 

about 20.7 sec, when the homotopy method is not used. 

Using the homotopy method, convergence is obtained in 

about 16.3 sec of computation time. The function H{x,t) 

is used, with an increment At of 0.5. The reduction in 

computation time is because there is no need to make the 

large number of mixture adjustments to avoid trivial roots 



stage 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

TABLE XI 

INITIAL ESTIMATES OF INDEPENDENT 
VARIABLES FOR TEST PROBLEM 3 

Temperature 
(K) 

200 

210 

215 

220 

230 

240 

250 

255 

260 

265 

270 

280 

285 

290 

295 

300 

Liquid 
Flow Rate 

33 

33 

33 

33 

103 

103 

103 

103 

103 

103 

103 

103 

103 

103 

103 

62.5 
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Vapor 
Flow Rate 

7.5 

70.5 

70.5 

70.5 

70.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 

40.5 
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TABLE XII 

TOP AND BOTTOM PRODUCT FLOW RATES 
FOR TEST PROBLEM 3 

101 

Components Top Product Bottom Product 

CH4 32.9130 3.2974 

C2H4 4.4640 32.9360 

C2H6 0.2769 8.7227 

C3H6 0.0035 15.6960 

C3H0 0.00017 1.6998 



(Poling et al., 1981) in evaluating the thermodynamic 

properties. Poling et al. have not reported the 

computation time for this problem. 

This example illustrates how the homotopy, or path 

following, method can be used to accelerate the 

convergence on difficult problems. 
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CHAPTER VIII 

CONCLUSIONS AND RECOMMENDATIONS 

Simulation of multicomponent multistage separation 

processes involve solving a large number of nonlinear 

equations. These equations are solved by an iterative 

procedure and initial estimates of independent variables 

are needed. For a lack of any better information, these 

estimates are obtained by assuming ideal phase behavior. 

The major concerns in modeling these processes are 

computational efficiency and robustness. 

Column oriented algorithms are used in this work for 

all matrix operations. In these methods, the matrix 

equations are solved column-by-column, instead of the more 

conventional row-by-row approach. These algorithms 

produce a savings in computation time and page faults in a 

virtual storage machine. Column oriented algorithms are 

recommended for all matrix operations, including addition, 

multiplication, and subtraction. 

Convergence characteristics of problems depend on 

initial estimates of independent variables, and for some 

problems the domain of convergence becomes limited. This 

can be due to the specifications being a nonlinear 
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function of the independent variables, and/or the phase 

behavior of the mixture being highly nonideal. The domain 

of convergence of such problems is increased in this work 

by defining a homotopy, or path. In this method, the 

initial estimates are 'walked' to the final solution by 

following a path from ideal to nonideal thermodynamic 

properties. 

Using the homotopy method, convergence has been 

obtained to difficult problems, and for some problems the 

convergence has been accelerated. Incorporation of 

homotopy has made the model robust. These classes of 

methods are relatively new to chemical engineering; and as 

more and more problems are solved, these methods will find 

a wider application. 

As a next step, this work can be used as a basis to 

simulate linked columns and separation processes with 

chemical reactions. Extending this work to simulating 

linked columns involves incorporating the interconnecting 

streams in the material and heat balance equations. The 

matrix operations involved in simulating linked columns 

are much greater than for a single column. The 

computational efficiency, and reduction in page faults 

obtained by using column oriented algorithms will be 

greatly appreciated in these simulations. 

Extending this work to separation processes with 

chemical reactions involves incorporating the generation 



terms in the material and heat balance equations. A 

knowledge of reaction rates are needed to solve these 

problems. 
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The model developed in this work is computationally 

efficient, and the efficiency is obtained without 

sacrificing the robustness. The model is made robust by 

incorporating an homotopy for thermodynamic properties. 

The work done forms a sound basis for future work. 
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APPENDIX 

THERMODYNAMIC PROPERTIES AND DERIVATIVES 

FROM SRK EQUATION OF STATE 

As discussed in Chapter IV, the thermodynamic 

properties and their derivatives are obtained from the SRK 

equation of state in this study. These derivatives are 

obtained analytically and the resulting equations are 

complex. 

The number of mathematical operations needed to 

calculate these properties are reduced by efficient 

algebraic manipulations. The final form of the equations 

are given below. Some of the repeating terms are 

identified by a separate variable name in these equations. 

Fugacity Coefficient 

From Equations 4.1 and 4.6, the following expression 

is obtained for the fugacity coefficient. 

ln¢1 = [-ln(Z-B) + :i(Z-1) - ln( Z~B) (FACl)l (A.1) 

where 

1 1 1 



FA Cl 

The corresponding parameters for the liquid and vapor 

phases are used in these equations. The equilibrium 

constant, Ki, is then given by Equation 4.7. 

Isothermal Enthalpy Departure 
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(A. 2) 

From Equations 4.1 and 4.12, the following expression 

is obtained for the isothermal enthalpy departure. 

where 

FAC2 = 

T0.5 
mi r,i 

2 0.5 
Ol • ]. 

T0.5 
+ mj r, j ) 

2 0.5 
Olj 

The corresponding parameters for the liquid and vapor 

(A. 3) 

(A. 4) 

phases are used in these equations. The liquid and vapor 

enthalpies are then obtained from Equations 4.8 and 4.9. 
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Derivative Properties 

The derivative properties, Bln¢i/BT, Bln¢i/axi, 

Bln¢i/ayi and an/BT, are needed in Equations 4.13 through 

4.16. These are obtained by differentiating Equations A.1 

and A.3 with respect to temperature and composition. 

From Equation A.1, differentiating with respect to 

temperature, T 

Bln¢i 
BT 

where 

FAC3 

= z~-B~ Bi , [ [(ZB~-BZ~)] (FAi3> /B l 
B-Z + B ZT - (FACl) . z (Z+B) + 

= in(z;s) 
T 0.5) mj r,j 

+ 0.5 + 
20!. 

J 

(A. 5) 

B· l 8 1 (FAC2) 

(A. 6) 

From Equation A.1, differentiating with respect to 

composition 



z~,i-Bi Bi , (B·)2 
= B-Z + B Zx,i - (Z-l) Bi 

+ 2 ln(Z~B)(cFAC1) :i -:i)] 
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ZB·-BZ · i x,i [ 

I 

(FACl) ( Z(Z+B) ) 

(A. 7) 

From Equation A.2, differentiating with respect to 

temperature, T 

I I 

0 = R(Z-1) + RT z (FAC2) + ln +z -B(FAC4) ~n 1 RT [(ZBT-BZT)l (z B)R 
BT T - ~ Z(Z+B) 

where 

FAC4 = 

+ 4 
T0.5 

mi r i 
' 

2 0.5 
Ol • i 

T0.5 
mi r,i 

2 0.5 
Oli 

+ 

(A. 8) 

T0.5 
mj r,j 

2 0.5 
Ol. 

J 

(A. 9) 

The corresponding parameters. for the liquid and vapor 

phases are used in these equations. 

• I In Equations A.5 and A.8, ZT is given by 



where 

where 

I I , 

AT(B-Z) + BT(A+Z+2BZ) 

3Z2 - 2Z + (A-B-B2 ) 

and 

I 

BT = - B/T 

I 
In Equation A.7, Zx i is given by , 

I 

Zx,i = 

I I 

Ax,i<B-Z) + Bx,i<A+Z+2BZ) 

3Z2 - 2Z + (A-B-B2 ) 

and 
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(A. 10) 

(A.11) 

(A. 12) 

(A.13) 

(A.14) 



I 

Bx i = , B· l 
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(A.15) 

The derivative 8H~/8T is needed in Equations 4.15 and 

4.16. These are obtained from Equations 4.10 and 4.11 as 

(A.16) 

The thermodynamic properties and their derivatives, 

discussed in Chapter IV, are obtained by using the 

corresponding parameters for the liquid and vapor phases 

in Equations A.1 through A.16. 
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