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ABSTRACT

In the present study, a two-dimensional theoretical model of a flat- 

plate solar collector is developed. By means of this model, it has been 

shown using hourly values of weather data, that the collector configuration 

parameters such as length, tube spacing, plate thickness etc., can be op

timized based on least cost per Btu of energy absorbed.

The performance model obtained in this study is based on a differ

ential formulation as compared to the existing models of Hottel, Whillier, 

and Bliss, which are based on a lumped formulation. An explicit expression 

for the average plate temperature has been obtained. The thermal losses 

from the plate surface have been considered to be a function of the local 

plate temperature and the overall loss coefficient has been assumed to be 

constant for the whole plate.

A Fortran program of the model is developed, whereby, the effects 

of various parameters on the collector performance and on the cost/Btu of 

energy absorbed could be studied in a quantitative manner. The present 

analysis quantitatively verifies the observations made by previous investi

gators regarding the effects of various parameters on the collector per

formance and provides a systematic method of evaluating it under different 

conditions.
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NOMENCLATURE

a constant, defined in equation (3.2.9)

A surface area of the collector

A^,A2 ,Ag constants of integration

AST apparent solar time

a constant, defined in equation (3.2.9)

B tube spacing

constants of integration

nth coefficient of the infinite series in the temperature expressions 

approximation for according to the Kth truncation

c correction coefficient for convection from a tilted surface

cc tenths of sky area covered by clouds (0 = clear sky and 10 = fully
covered)

c^ inequality constraints

Cp specific heat of the collector fluid

C^,C2 ,Cg constants of integration

d nominal diameter of the collector tube

Day day of the year (Jan. 1 = 1  and Dec. 31 = 365)

inside diameter of the collector tube

D outside diameter of the collector tubeo



DST daylight savings time indicator

constants of integration

equality constraints

E constant of integration

Ê squared error, defined in equation (3.2,12)

f ratio of the thermal resistance of the outer plate to that of the
inner plate, defined by equation (4.2.4)

F cost function or objective function

value of the function at the i^^ point of the complex

F mean value of the function

g^ a constant, defined in equation (3.2.14)

G_. lower limit of the constraint

G(x ) a function of x , defined in equation (3.2.9)

Gr arithmetic-mean Grashof's numberm

Gz arithmetic-mean Graetz's numberm

hbase convection heat-transfer coefficient between the bottom of the insu
lation and the surroundings

hj convection heat-transfer coefficient between the tube wall and the
circulating fluid

—  thh. convection heat-transfer coefficient between the i cover plate and1 the cover beneath

h convection heat-transfer coefficient between the top cover and the
^ atmosphere (wind heat-transfer coefficient)

h^ convection heat-transfer coefficient between the collector plate and
the cover directly above it

H hour of the day (24 hour time)

H a constant, defined in equation (3.2.9)

HA hour angle of the sun
vi



upper limit of the constraint

i angle of incidence of the direct radiation striking a surface

k thermal conductivity of the collector tube and plate material

tc points of the initial complex

k pre-assigned number

k^ thermal conductivity of the insulation

L length of collector plate or tube

Î, latitude

m mass flow rate of the collector fluid

M  a constant defined in equation (2,1,7)

a constant defined in equation (2,1,13)

n number of glass covers of the collector

N a constant defined in equation (2,1,7)

Ng a constant defined in equation (2,1,13)

Nu Nusselt number

Nu^ arithmetic mean Nusselt number

P a constant defined in equation (2,1,13)

Prandtl number

Pr arithmetic-mean Prandtl numberm

diffuse solar radiation per unit area on a horizontal surface 

q^^ direct solar radiation per unit area on a horizontal surface

q^^ direct solar radiation per unit area on a tilted surface

q^ energy absorbed per unit area by the collector, after optical losses

vii



heat loss per unit area from the plate surface

q, , downward heat loss per unit area through the insulation^L,base

q ^ heat loss per unit area from the plate surface by convection and
radiation to the glass cover(s) above

q^^ total incident-radiation per unit area on a horizontal surface

q(x) heat flux per unit area in the y-direction

Ô heat flux into element at x
X

4-Ax heat flux out of the element at x+Ax

Q heat flux into element at yy

Q . heat flux out of the element at y+Ay> + A y

r angle of refraction of the incident radiation

r . . pseudo-random numbers

R reflection loss of direct radiation per unit area from a single
surface of glass

Re Reynold's number

R^ reflection loss of diffuse radiation per unit area

R reflection loss of direct radiation per unit area from a system of
n glass surfaces

S standard deviation, defined by equation (6.2.5)

a sum denoted by equation (3.2.11)

t thickness of the collector plate

T a constant defined in equation (3.2.9)

T^vg average plate temperature

fluid temperature

Tf average temperature of the fluid
viii



T. temperature of the glass cover1

inlet temperature of the fluid 

temperature of the nth cover plate

T outlet temperature of the fluidout

Tp plate temperature

Tjjj ambient temperature

U non-dimensional plate temperature distribution

overall loss coefficient of the collector plate given by equation (4.2.7)

U upward overall loss coefficient of the collector plate given by
equation (4.2.5)

U overall loss coefficient between the collector fluid and the ambiento

V wind speed in knots

W width of the collector plate

X spatial coordinate in the rectangular cartesian system, parallel to
the flow direction

*X dimensionless spatial coordinate

*l'*2...*n
independent variables of the objective function 

x^ j coordinates of trial points in a complex

*X a function of x coordinate

y spatial coordinate in the rectangular cartesian system, normal to
the flow direction

★y dimensionless spatial coordinate

Y a function of y* coordinate

a absorbtivity of a black non-selective surface

ê solar elevation above the horizon
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0?^^ a constant defined by equation (3.2.15)

P collector orientation in degrees

y empirical parameter

Ô ratio of plate length to plate width

Ô solar declination

6 ^ emissivity of the collector plate for infrared radiation

emissivity of glass for infrared radiation

^avg non-dimensional average plate temperature

0 g non-dimensional fluid temperature distribution

0 - non-dimensional average fluid temperaturef,avg

0 ^ non-dimensional plate temperature distribution

X defined by equation (3.1.13)

dynamic viscosity of the fluid at the bulk temperature

dynamic viscosity of the fluid at the wall temperature

defined in equation (3.1.15)

defined in equation (3.1.9)

§ dummy variable

density of the plate material

<t'̂ (x*) a function of defined in equation (3.2.9)
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TWO DIMENSIONAL CONFIGURATION ANALYSIS OF A FLAT-PLATE

SOLAR COLLECTOR

CHAPTER 1 

INTRODUCTION

1.1 Purpose of Study 

The present study is concerned with the detailed two dimensional 

analysis of a flat-plate solar collector and the subsequent optimization of 

the collector parameters, viz., the plate thickness, tube spacing and the 

collector length based on least cost/Btu.

Beginning with the classic work of Hottel and Woertz (1942) 

and continuing with the studies made by Whillier (1953) and Bliss (1959), 

many theoretical and experimental investigations have been done to study 

the effects of various parameters on the collector perfoirmance. The theoret

ical model of the flat-plate collector that is presently in use is basically 

the one developed by Hottel and Whillier (1958). This model is essentially 

one dimensional and is based on a lumped formulation. Although numerous 

experiments have been done to study the effects of various parameters on the 

collector performance, a rigorous theoretical analysis is lacking in this 

area. It is the aim of the present study to make up this deficiency.

It has been found by Klein et.al., (1974) that a zero capacitance

model is quite adequate when hourly meteorological data are used, and hence in
1



Figure 1.1 Diagrams showing the collector plate-tube system, dimensions 

and the coordinate axes.
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the present study only a steady-state analysis of the collector is made.

Since a typical collector is made up of several tubes with fins in 

between them, it is sufficient to analyze just a single tube with fins on 

either side. The particular problem under study is illustrated in Figure 1.1. 

In the present analysis, the collector plate and the tube are considered as 

two separate units and an energy balance is made on each of them. Although 

the analysis is carried out for a tube-in-strip type collector, the assump

tions made are not restrictive to the point that they prevent the applica

tion of the analysis to other types of collector construction.

1.2 Method of Analysis

This study consists essentially of two parts. In the first part, 

the collector is idealized and a mathematical model is formulated as a 

classical heat-transfer problem. Energy balances are made on the collector 

plate and tube separately, each considered as a separate unit. Separate 

differential equations describing the temperature distribution of the collec

tor plate and of the fluid inside the tube are obtained. The two coupled 

differential equations are then solved by means of appropriate transforma

tions, separation of variables and integrating-factor techniques.

In the analysis of the plate, assuming the temperature gradient to 

be negligible along the thickness, reduces the problem to e two-dimensional 

one. For the fluiu inside the tube, radial variation of temperature is 

neglected. The assumption of axial-symmetry, renders the problem one-dimen

sional. The solutions to the two differential equations give the temperature 

distributions of the plate and the fluid. The collector efficiency can be 

evaluated when the fluid outlet temperature and mass flow rate are known.



In the second part of this study, be means of the theoretical analysis 

developed in the first part, the collector design parameters (plate thick

ness, tube spacing, and the collector length) are optimized on the basis 

of least cost/Btu. The cost function used in this study is based on the 

current prices of the collector materials available in the open market.

Since the cost function is non-linear, the present problem constitutes a 

non-linear optimization problem having both equality and inequality con

straints. A search of the literature revealed only one method applicable 

uO such a non-linear problem. This was developed by Fiacco and McCormick 

(1568). Unfortunately, this method requires the analytical derivatives of 

the objective function with respect to the parameters that are to be opti

mized. In the present problem it is not possible to obtain such analytical 

derivatives because of the complex nature of the expressions involved. This 

makes the method less efficient, and hence another method due to Box (1965) 

has been utilized. The disadvantage of this method is that it does not 

handle equality constraints. In spite of this drawback, the method is much 

simpler than the Fiacco & McCormick's method and also does not require 

gradients of the objective function. In order to use the method of Box, 

equality constraints of the problem have been approximated by a set of in

equality constraints.

1.3 Review of Related Studies 

Beginning more than two centuries ago with the early French work on 

solar furnaces, many scientists and engineers have endeavored to find ways 

to use the sun's radiation for technological purposes. Solar water heaters 

made their appearance in Arizona, California and Florida early in the 1900's. 

Between World Wars I and II, interest began to rise in the use of solar
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radiation for space heating. Until about 1940 attempts at economical util

ization of solar energy were experimental and had no theoretical basis.

Based on the pioneering work of Hottel and Woertz (1942), Hottel 

and Whillier (1953) developed a one-dimensional model of a flat-plate solar 

collector. Further analytical studies were made by Bliss (1959) using a 

similar model. Most of the research that is being conducted in solar energy 

is based on the steady-state models of Hottel, Whillier, and Bliss. The 

main shortcoming of this early model is that it is basically one-dimensional 

and is based on a lumped formulation. Various efficiency factors used in 

the model to account for the multi-dimensional nature of the problem have 

an implied assumption of infinite conductance in the system. It is not 

possible to determine the temperature distribution of the collector plate 

or the fluid using lumped formulation. Although it is known that the thermal 

losses from the plate surface vary from the inlet to the outlet end of the 

collector, there is no provision for this factor in the model. There is 

no way of determining an average plate temperature (essential for estimating 

an overall heat-loss coefficient) without a knowledge of plate temperature 

distribution. A  value for average plate temperature is generally assumed. 

Although Hottel's model has been very useful and is widely used to this 

day, the analysis is not very rigorous.

During the decade beginning with 1970, there has been an increasing 

interest in the solar energy applications to space heating and cooling. The 

economics of solar energy systems being a major factor in practical applica

tions, a more detailed and rigorous analysis of the collector model is 

essential.

In the present study, a two-dimensional model of the collector is 

formulated and the effects of various parameters on the temperature distri-
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bution and efficiency are studied. By means of this two-dimensional model, 

a method has been developed whereby, for any given set of conditions, one 

can obtain an optimal collector configuration based on least cost per unit 

of energy absorbed.



CHAPTER 2

PROBLEM FORMULATION

2.1 Governing Equations 

A  steady state analysis is made on a portion of a collector con

sisting of a single tube with a fin attached to it on one side. Energy

balances are made on the collector plate and tube separately, and two

coupled differential equations governing the temperature distribution 

of the collector plate and of the fluid are obtained in the following manner.

2.1.1 Collector Plate 

It is assumed that the temperature distribution in the plate is 

two dimensional. Although it is known that the overall heat loss coefficient 

from the plate to the surroundings is a function of the local plate temper

ature, an average value of this coefficient valid for the whole plate is 

used. This average value is estimated iteratively using Hottel's expression 

for thermal losses from a collector surface and the expression for the aver

age plate temperature.

Consider a differential element of dimensions Ax and Ay of the plate, 

as illustrated in Figure 2.1.1. An energy balance on this element yields:

fHeat conducted into"} ["Heat conducted into"} fEnergy absorbed by the 1
Lelement at x J Lelement at y J Lelement after optical lossesJ
fHeat conducted out "j F Heat conducted out 1 ["Total heat loss frornl 

” Lof the element at x+AxJ Lof the element at y+AyJ Lthe element surface J(2.1.1)
+ Qy + = W  + Vy +

The term which represents the heat loss per unit area from the

element AxAy, takes into account both the upward and downward losses. The
7



Figure 2.1.1 Diagram of a plate-tube section referred to in the derivation 

of the plate temperature distribution .
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edge losses are neglected in the present analysis. 

Now we have

or

k(tAy) — Ax + k(tAx) — ^  Ay +  q. AxAy -  U_ (T -T ) AxAy = 0
ôx^ ôy^ ^ P (2 .1 .3 )

2 2 '
Ô T Ô q. U
r-if + :-2*  + Ü  - tE (Tp - T.) = ° (2-1-4)ox oy

where is the absorber plate temperature, T̂ , is the ambient temperature, 

q^ is the incident radiation per unit area on the plate after optical 

losses, kt is the product of thermal conductivity and thickness of the 

plate and is the overall loss coefficient from the plate to the ambient. 

This differential equation is non-dimensionalized by substituting the 

following expressions:

%  - (2-1-5)in “

where T.^ is the fluid inlet temperature to the collector, L is the plate 

length and W is the plate width.

We now obtain

0^0 , 0^0
 ^ + Ô — X? - M 9_ = -N (2 ,1 .6 )
ÔX*" ay*2

where

‘ “ w " ' - k T  " - kt(T. -T.)in “>
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This is the governing differential equation for the collector plate.

2.1.2 Fluid Inside the Tube 

It is assumed that the temperature distribution of the fluid inside 

the tube varies only along the axis of the tube. For the flow rates that 

are generally used, axial conduction in the fluid can be ignored. Neglecting 

the thermal resistance of the tube and making an energy balance on an dif

ferential element Ax of the fluid, as shown in Figure 2.1.2,we have:
fEnergy convected intol conducted -, .Energy absorbed by the
Lelement at x j +  [_from the plate to j + j^upper surface of the tube

1
I

the fluid element Ax" "element after optical losses

_ [Energy convected out ofl j”Energy lost from the surface]
Lthe element at x+Ax J L of the tube element Ax J  .

dT, TTD -
mCpTj + q(x)(2tAx) +  q.D^Ax = mC^T^ + mCp Ax +  U^(-^j(T^-T,)Ax

(2.1.9)
dT. TTD t

aCp dk- + U^VI^jCTf-T^) = q(x)(2t) + q.D^ (2.1.10)

where m is the mass flow rate of the fluid, is the fluid specific heat, 

is the heat loss coefficient from the fluid to the environment and q(x) 

is the amount of heat conducted from the plate to the fluid, per unit area.

This differential equation is non-dimensionalized by substituting 

the following:
(If - w

6 - =

We now have

de
= Nf q(x ) +  p (2.1.12)



Figure 2.1.2 Diagram of the collector tube referred to in the derivation 

of the fluid temperature distribution.



q(x)
x= 0 x = L

INLET



where 12

U TTD L o o
f ~ 2ftCP

jj =.-.15:-------  (2.1.13)
f me (T _Tjo in OJp in 

ac_(T;_-TL)'p'“in

This is the governing differential equation for the fluid.

2.2 Boundary Conditions 

In an actual collector with the sides well insulated, we can assume 

that the heat loss at the boundaries x=0 and x=L of the plate is negligibly 

small. And, since the boundary y=0 is the midpoint of plate between two 

adjacent tubes, symmetry requires that the slope of the temperature be 

zero at this boundary. At y=W, which is the boundary between the plate and 

the tube carrying the fluid, it is assumed that all the heat conducted from 

the plate is convected away by the fluid. These boundary conditions can 

now be expressed as:
ST

(3 X = 0 = 0 (2.2.1)

ÔT
(3 X = L = 0 (2.2.2)

ÔT
(3 y = 0 giy^ ~ ̂  (2.2.3)

_ TTD.Ax.
@ y = W  q(x)tAx = hg - Tfj (2.2.4)

Since the governing differential equation for the fluid is only of 

first order, it requires only one boundary condition. This condition is 

that, the temperature of the fluid entering the collector at the boundary 

x=0 is known. That is



And for the fluid
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(a X = 0 T. = T. (2.2.5)X in

Non-diTnenslonallzing the variables using equations (2.1.11), we have

* 88
(3 X = 0 — ^ = 0  (2 .2 .6)

ÔX

. 09
@ X = 1 — ^ = 0  (2.2.7)

ÔX

. 38
@ y = 0  — ^ = 0 (2 .2 .8)

3y

* * _  TT D AX\
^ y = 1 q(x )t6x = hg \--§--j(Gp-*f)(Tin-T.) (2-2.9)

@ X* = 0 ®f = 1- (2.2.10)



CHAPTER 3

ANALYTICAL SOLUTIONS

3.1 Temperature Distribution of the Collector Plate

The non-dimensionalized differential equation obtained in equation

(2 .1 .6) is:

— :^ + & - MB = -N (2.1.6)

By substituting U(x ) “ ®p ~ ^  (3.1.1)

the above differential equation is made homogeneous, that is.

ÔX dy

Assuming a product solution of the form

*  *  / O  -I -3 \U(x ,y ) = X(x )Y(y ) (3.1.3)

and substituting into equation (3.1.2), we obtain

IP  + «2 Ï: - M  . 0 (3.1.4)

or

—  = M- 6^ —  = a constant (3 .1.5)

14
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where the separation constant is negative, zero or positive.
2Case (i) Separation constant = -X

From equation (3.1.5) we obtain

X" + = 0
2 (3.1.6)

Y" - = 0
0

The general solutions to these two ordinary differential equations are

X(x*) = sinXx* +  cosXx*

Y(y*) = sinh Vy* + cosh vy*

where ,
v2 '

(3.1.7)

Case (ii) Separation constant = 0 

Equation (3.1.4) now becomes

X" = 0 

Y" - i-^Iy  = 0

And the general solutions are

X(x*) = AgX* + §2 

Y(y*) = C2 sinh v^y* +  Dg cosh v^y*

(3.1.8)

(3.1.9)

where
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2Case (iil) Separation constant = +K

In this case we have

X(x*) = Aj sinh \x* + 3^ cosh \x*

This solution cannot satisfy the homogeneous boundary (3.1.10)
«itconditions in the x direction and hence cannot be used.

Case (i)

The form of the solution assumed in equation (3.1.3) will now

become
U(x*,y*) = (A^ sin Ix* + cos Xx*) (C^ sinh vy* +  cosh vy*)

(3,1.11)

The first boundary condition given by equation (2,2.6) will now be used:

ae
(3 X* = 0 — 2  = 0  or —  = 0

8 x* 3x

or

AiX(Ci sinh vy* +  cosh vy*) = 0

A^ = 0 since X # 0

The second boundary condition given by equation (2.2.7) is

09 _ J
ÔX ÔX

(3.1.12)

(3 X* = 1 — ^  = 0  or — ^ = 0

or

(-B^X sin X)(C^ sinh vy* + cosh Vy*) = 0 

A trivial solution will result if B^ is zero. Since X 0
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sin \ = 0
(3.1.13)

or X = nTT, where n = 1,2,3,...“

The third boundary condition given by equation (2.2.8) is

38 3
(3 y* = 0 — ^ = 0  or — ^ = 0

3y 3y

(B^ cos nrrx*)(Cj^v) = 0

Since and v ^ 0, we should have = 0. (3.1.14)

Now the expression for u becomes
CO

U(x*,y*) = / B cos mrx* cosh v y* (3.1.15)
ifel " n .

where
2 I n^TT^ +

Later on B^'s will be determined using the fourth boundary condition.

Case (ii)

The general solution for this case will be

U(x*,y*) = (AgX* + B 2X C 2 sinh v^y* +  D2 cosh v^y*) (3.1.16)

@ X* = 0 — ^ = 0  or A_ = 0 (3.1.17)
dx* ^

0 Y* = 0 — * = 0 or C. = 0 since ^ 0 (3.1.18)
ay* : :

Thus we have

U(y*) = B^ cosh v^y* (3.1.19)

where the two constants Bg and D2 have been combined into a single constant

Bo*
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Observe that, for this case, the solution U is a function of y*

alone.

Case (iii)

The separation constant in this case is positive and when the

boundary conditions are applied to the general solution, it will result in

a trivial solution.

Hence, the most general solution will be a sum of the two solutions

given by equations (3.1.15) and (3.1.19), that is.

y  B cos nTT X* cosh v y* (3.1.20)U(x*,y*) = B cosh v y* + ) B cos nTT x* cosh v y*' ' o o^ n nn=l

or

0 (X'f,y*) = —  -i- B cosh V y* + Y  B cos htt x* cosh v y* (3.1.21)cr / M  o o^ n n"'n=l

In this expression, B and B 's are still unknown and have to be determined’ o n
using the fourth boundary condition.

The fourth boundary condition as given by equation (2.2.9) is:

TTD.\ *
y* = 1 q(x*)t 6x = (6 ^(x » <T^^-T^) ̂ 2 .2 .9)

or

i.e.
-k(T.^-T ) I phJTELin °°  £

“ ■ L 2 t J'-p

08
Substituting for 9 and — ^ from equation (3.1.21) we obtain 

P By
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r~ ^  B V sinh v + V  B v sinh v cos rrrrx*] = 1~ vj ^  cosh v L ML _ 0 o o Zj, n n  n J L 2 t  -ILM 0 cn=l

r  *1 r^f^^il
Zi ^n '̂ti nnx*j - — 2F~J® 
n=I

h ^ D -̂1 (3.1.22)
f

An expression for 0f» which is the temperature distribution of the fluid

has to be substituted before B 's can be evaluated.n
It will be seen later on that, since it was not possible to evaluate 

the B^'s analytically, a colocation scheme had to be utilized.

The plate temperature distribution is now given by;

T (x*,y*) = 9 (x*,y*)(T.^-T^) + (3.1.23)

3.2 Temperature Distribution of the Fluid Inside the Tube

The non-dimensional differential equation as obtained in equation

(2 .1 .12) is:

d6
— I + m 3  = Nf q(x*) + P (2 .1.12)
dx ^ ^ ^

The solution to this differential equation using the method of integrating 

factors is;

- M ^  -1 m 3  - M ^ ^
e (X*) = e  ̂ I Nf q(5) +  Pje = d§ + E e ^ (3.2.1)

where E is the constant of integration.

Applying the boundary condition
@ X* =» 0 6 ^ = 1

We obtain E = 1 (3.2.2)
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Thus, we have

-M-x* p [-  -1
e^(x*) = e J L^f q(§) +  PJe d§ + e (3.2.3)

In order to carry out the integration of the first term on the right hand 

side of the above equation an appropriate expression for q(|) has to be 

substituted first. Recall that q(§) is the flux conducted per unit area 

from the plate evaluated at the boundary y* = 1. This is given by:

^  vLi
(3.2.4)

= L —  sinh \  \  '̂ n
n— 1

This expression is now substituted into the integral of equation (3.2.3). 

Thus,
X*-MfX* -Mjc'f p p -k(T. -T„) 

e^Cxc) . e +  a 1  [\- w----} ^'o''o
(3.2.5)

V  ^f^ -MjX*
/ B V sinh v cos tm §} le d§ + e i->. n n n Jn=l

Carrying out the two integrations, we obtain

P a eg

-M ^ x *  p - M - x *  ,Nfk(T. -T )- /B v sinh v -M ^ x *

(3.2.6)

V  / \ r ujT
+  /  ( —Ô— — )b  V s in h  V I c o s  n r rx *  +  i — j s i n  n r r x *  -  e  fV+n^iT^ / nn A. \k^  JJ

'f

The fluid temperature distribution is given by:
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On Determination of B^, B^, ...B^

Equation (3.1.22) together with (3.2.5) can be recast as
CO

^  B^ *!’̂ (x*) = G(x*) (3.2.8)
n=0

X*
where <J> (x*) = a cos nrrx* +  b en n e ^  cos mrÇdl 

0
pX*

G(X*) = -H - e-Mf^ - e - M f ^  T P e ^^ d§]UM Jq

a = V sinh v + H cosh v n n n n

b = H T sinh v (3.2.9)n n n

J .  V = > i  w
2t k

P

The problem is to choose the B^'s so that equation (3.2.8) is satis

fied identically. Because the functions“i’̂ (x*) are not orthogonal, the B^'s 

cannot be obtained by a Fourier series analysis.

In the dissertation an approximation is made by means of colocation, 

that is, solving the K+1 equations

K *

Bn = G(x%), M  = 1,2,...K+1 (3.2.10)
i6 o

It is necessary to assume here that

i) ^  B^ *jj(x*) converges for all x* between 0 and 1
n=0
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ii) ^  B * (x*) converges to G(x*) for all x* 
n=0

In the present study, using colocation scheme with (K+1) = 21, 51 

and 81 no significant changes in the fluid outlet temperature were found. 

The changes were only in the second decimal place and hence in all the 

theoretical experiments the infinite series was truncated at 21 terms.

The computation time (on IBM 370) using 21 and 51 terms of the series is 

about 14 and 42 seconds respectively.

It is interesting to note the following alternative means of deter

mining the B^'s, Let S^(x*) denote the sum

K
S^(X*^ = y  <t> (X*) (3.2.11)
^ a:o * *

where B^^^ is the approximation for according to the Kth truncation.

Then the squared error between G(x*) and S (x*) can be represented by

1 2 Lg (x *) - S (x*)] dx* (3.2.12)
0 ^

The least squared error is determined by

= 0, m = 0,1,2,...K (3.2.13)
SB^ ) m

This yields
,(K1r  b '' ''a7 n nm 

m =0
G(x*) 4>^(x*)dx*, m =  0,1,2...K

(3.2.14)
= g , m = 0,1,2...K
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where a = nm <t> (x*) 4" (x*) dx* oy ' m' ' (3.2.15)

This amounts to K+1 equations for ... B^. Here we must prove, or

assume.

i) Sj^(x*) converges as K “ for 0 ^ x* ^ 1

ii) -  0 as K

In the least squares sense, the B^'s determined by this method are

better than those determined by colocation, that is.

( K^least (^K^colocation
squares

(3.2.16)

Now note that r G dx* + 4 (3.2.17)

GS dx* = y  G 4 dx* = V B^^^ g
0 n^O " Jo " n^b

(3.2.18)

nl
S T  4» (x*) dx* = y  B^^^ f S„4 dx*

ir B(c) B*)
ifeo “ m=0 “

 ̂ 4 dx* m n

K K
]T ]r B<% B(C) a
i=Oifeo " “

I g_ (3.2.19)
n=0
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Hence

J
1 2 'G dx*

n=0 

K

0

I

E ^ +  y  s(K) g = r G^dx* (3.2.20)
n=0

2This is true for all K. Since G dx* is finite, it follows that

/ B g converges (or diverges negatively)

(oo)
where B = B n T?

3.3 Average Collector-Plate Temperature

In the formulation of the problem, a single value of the overall 

loss coefficient was used for the whole plate, in order to account for the 

thermal losses from the plate. In order to estimate an average value of 

this coefficient, an average plate temperature is required. An expression 

for the average plate temperature can be obtained by integrating the plate 

temperature distribution over the whole area of the plate.

The temperature distribution of the collector plate as given by 

equation (3.1.21) is

00

0(x'f,y*) = ^  + B cosh V  y* + / B cos nrrx* coshv y*M o  o Z-i, n nn=l
(3.1.21)
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Integrating this expression over the whole area of the plate gives

1 1  1 1  

6 (x*,y*)dx*dy* =
'<1̂

n + B cosh V y* + > B cos tiTTx*cosh v 
LM ° ° n=l "

or
B sinh Ve = N + _o------- o

avg M V

^y*Jdx*dy*

(3.3.1)

(3.3.2)

The average plate temperature is now given by

(3.3.3)



CHAPTER 4

OPTICAL &  THERMAL LOSSES

4.1 Calculation of Solar Flux on the Collector Plate Surface

The intensity of direct solar radiation on a collector surface 

depends on the orientation of the collector and the position of the sun.

The sun's position in the sky depends on three independent variables;
A

the latitude L, the solar declination $ , which is a function of the date 

and the time. The earth's tilted axis results in a day-by-day variation 

of the angle between the earth sun line and the equatorial plane. This 

angle varies continuously in accordance with the date and is called the 

declination, 6. Numerical values of Ô for any particular date can be 

obtained from tables listed in ASHRAE guide and product directory (1974).

In order to facilitate calculations on a computer, it is more convenient 

to have the expression for declination in a functional form. The following 

expression has been used in the present analysis;

Ô = .302 + cos(|^Q* Day)(-22.93) - (0.229)cos(^ q *Day)

+  (-0.243) cos(^Q"Day) + (3.851) sin(|^Q^Day)

+ (0.002) sin (§o*Day) - (0.055) sin(^g"Day) (4.1.1)

26
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An approximate but much simpler expression for à has been suggested by 

Duffie and Bechman [l973], and is given by

Ô = 23.45 sin[360 (4.1.2)

4.1.1 Solar Elevation Angle

In order to calculate the diffuse component of the incident solar

radiation, the solar altitude angle is required.

Solar time generally differs from Local Standard or Daylight Savings 

Time and the difference can be significant, particularly when the DST is 

in effect.

LOCAL STANDARD TIME = LOCAL TIME +  DAYLIGHT SAVINGS TIME INDICTOR
(4.1.3)

where DST = -1 for summer and +1 for winter. Because the sun appears to 

move at the rate of 360 degrees per 24 hours, its apparent motion is 4 min.

per degree of longitude. The Apparent Solar Time is given by the expression

AST = LOCAL STANDARD TIME + EQN. OF TIME

+  4 * (No. of Minutes East) or (4.1.4)

- 4 * (No. of Minutes West) of the Local Standard Time Meridians

The longitudes of the six standard time meridians which affect the U.S. are:

Eastern ST, 75 deg; Central ST, 90 deg; Mountain ST, 105 deg; pacific ST,

120 deg; Yukon ST, 135 deg; Alaska-Hawaii ST, 150 deg.

The equation of Time is the measure, in minutes, of the extent by 

which solar time, as told by a sun dial, runs faster or slower than Civil 

or Mean Time, as determined by a clock running at a uniform rate.
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Equation of Time = (-0.0002) +  cos('|^Q*Day)(0.4197) - cos(^Q*Day)(3.2265)

+  cos ('1^ ' Day) (-0.0903) + s i n ( ^ ^  • Day) (-7.351)

(4.1.5)
+  sin(|2^.Day)(-9.3912) + sin (||q *Day)(-0.3361)

No. of minutes from solar noon = 60.0 * (12.0-AST)

Solar elevation angle o', is given by:

sin O' = sin L sin S + cos L cos 8 cos HA (4.1.6)

where L is the latitude, Ô is the declination and H a  the hour angle 

which is given by the relation:

Hour Angle = 0.25(No. of Minutes from solar noon) (4.1.7)

4.1.2 The Incident Angle, i

One additional angle which is very important in solar calculations 

is the incident angle, i, between the direct solar radiation and a line 

normal to the irradiated surface. The importance of the incident angle lies 

in the fact that it determines both the intensity of the direct radiation 

component striking the surface and the ability of the surface to reflect, 

transmit, or absorb the sun's rays.

For a surface tilted at an angle P (neasured upwards from horizontal), 

the angle of incidence of solar radiation is given by

cos i = cos 15(H-12) cos 6 cos(L-P) +  sin S sin(L-P) ^

where H is the hour of the day (twenty-four hour time) ; 6 is the declination 

angle of the sun; L is the latitude of the place, and 8 is the collector 

orientation.
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4.1.3 Diffuse Solar Radiation on a Horizontal Surface

The diffuse component of solar radiation is difficult to estimate 

because of its non-directional nature and its wide variations. Diffuse 

radiation comes from all parts of the sky, and hence we can assume it 

to be nearly independent of the collector slope. Since only the data on 

total radiation on a horizontal surface are generally available, a relation

ship between total and diffusion radiation was given by Lof and Tybout 

(1972) using both normal incidence (direct) and total horizontal solar data 

for 3 stations over several thousand hours. Using a multiple regression 

analysis they have shown that the diffuse component could be satisfactorily 

represented by

o,, = 0.78 + 1.07(5 + 6.17CC (4.1.9)an

whereq,, is the diffuse solar radiation on a horizontal surface; & is the dn
solar elevation above the horizon as given by equation (4.1.6) and cc is 

tenths of sky area covered by clouds: 0 = clear and 10 = fully covered.

The direct solar radiation on a horizontal surface is given by:

i)h = - Sdh

where , is the total incident radiation on a horizontal surface.

4.1.4 Direct Solar Radiation on a Tilted Surface & the Optical Losses

Direct radiation on the tilted surface of the collector, q^^, is

then
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Reflection loss of direct radiation from a single surface of glass 

is given by the Fresnel equation:

E = 0.5 (4 .1 .12)
sin (i-HT ) tan (i+r)

The relationship between the angle of refraction, r, and the angle of inci

dence i, for window glass is:

= 1.526 (4.1.13)sin r

Each glass cover plate on the collector has two surfaces, and two or more 

glass cover plates may be used. The reflection from a system of n trans

parent plates is:

( l - V  = k ^ E

Reflection loss of diffuse radiation was calculated by Lof and Tybout (1972) 

as a function of the number of glass plates by graphical integration over a 

uniform hemispheric sky, with the following results:

n 1 2 3

Rr 0.16 0.24 0.29

The absorptivity of a good, black, nonselective surface of the collector 

is a function of solar incidence angle, as represented by the following.

i(Deg) 0-30 30-40 40-50 50-60 60-70 70-80 80-90

O' 0.96 0.95 0.93 0,91 0.88 0.81 0.66

A single value of a = 0.90 for diffuse radiation was found by 

(Lof 6c Tybout (1972)) by integrating over a hemispheric sky. Subtracting 

the reflection and absorption losses from the solar radiation terms, we
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get the amount of solar energy incident on the tilted collector surface, 

q. after optical losses.

4.2 Calculation of Thermal Losses from Collector

The thermal losses from the collector depend upon a) the average 

temperature of the collector surface, b) the emissivity of the ab

sorbing plate, e^; c) the ambient conditions namely air temperature, , 

and wind speed, v; d) the number of transparent cover plates, n, and to a 

lesser extent - their spacing; e) the transmittance of the transparent 

cover plates for long-wave radiation; f) the base and edge insulation.

The average temperature of the collector plate T^^^ further depends 

upon a number of factors; g) the fluid flow rate through the collector, 

m; h) the type of fluid, which is reflected in the specific heat 0^ of 

the fluid; i) the temperature, T^^, at which the heat removal fluid enters 

the collector, j) heat-transfer coefficient between the heat-removal fluid 

and the flat absorbing plate,h^; k) the distance between the fluid-conveying 

tubes, B ; and 1) the product of the thermal conductivity times the thick

ness of the collector plate, kt.

The heat-transfer losses in the collector occur upwards through 

the transparent cover plates, sideways through the edge insulation and down

wards through the rear insulation.

4.2.1 Upward Heat Loss Through the Transparent Cover Plates

The thermal loss upwards from the collector plate is made up of
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radiative and convective components. Neglecting the absorption of solar 

radiation by the glass covers, Hottel and Woertz [1942] have shown the 

energy loss upwards through the glass cover system can be found by solving 

the non-linear system of nfl equations, where n is the number of glass 

covers. Their equations may now be written as

1
c g

where is the temperature of the n^^ cover plate and the wind heat 

transfer coefficient h^ is given by,

h = 1 + 0.35 V Btu/hr-ft^-°F where v is in knots, w

The cover to cover heat transfer coefficients, h^, are given in Tabor (1955),

The foregoing (n+1) simultaneous equations can be solved iteratively to

determine q , if the collector plate temperature, T and the ambient ^L,up' avg
A

temperature T^, are given. Since the solution to the (n+1) simultaneous 

equations is very tedius, Hottel has suggested a single expression which 

replaces the (n+1) equations given above.
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4ff— ^  +  r  r  +  — — "c / avg °° w c g
y n+f

Although this relation appears rather complicated, Hottel & Woertz 

have found that for this approximate equation, when tested over normal 

range of variables involved, the maximum error was 1.8%, with an average 

value of 1%. When (emissivity of a well blackened surface) is changed 

from 0.95 to 0.48, the error due to use of equation 4.2.2 instead of 4.2.1 

may increase only by about 5%.

The correction coefficient for convection from a titled surface, 

c, used in equation 4.2.2 is given by,

c = 0.19 - 0.000788 P (4.2.3)

where P is the collector tilt in degrees. The ratio of thermal resistance

Or the outer cover plate to that of the inner plate, f, is a function of the wind

speed and is given by;

f = 0.76 X 10"°'°^74v V ^ 8.7
(4.2.4)

f = 0.36 X i o"°*0202(v -8.7) 8.7 < v  ^ 17.4

f = 0.24 X io-0.01132(v-17'4) I?'* < v

where v is in knots.

Using equation 4.2.2, we can now estimate the upward overall heat 

transfer coefficient, nL,up
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Observe that although there is an explicit expression for as

given by equation (3,3.3), it is in turn a function of U . HenceL,up
an iterative procedure is required in order to estimate the correct value 

of nL,up

4.2.2 Downward Heat Loss Through the Insulation

The downward heat losses through the insulation of the collector 

can be expressed as:

\,.ase = ^  )

where t^ is the thickness of the insulation, is the thermal conductivity

of the insulation and h, is the convection coefficient between the bottombase
of the collector insulation and the ambient. Tabor (1955) recommends a 

value of 2-4 (Btu/hr-ft^-°F) for Whillier (1967) suggests that, if

the thermal insulation beneath the collector absorbing plate comprised of a 

reflective layer of aluminum foil on top of 2" to 4" mineral wool insulation, 

then the downward losses would only be about 10% of the upward losses. 

According to his suggestion, the base losses can be accounted for by increas

ing the value of U obtained iteratively by 10%. Thus, the overall heat-
L i,U p

transfer coefficient required to evaluate the thermal losses from the collector 

surface will now be,

"l  = “l . up (4 .2 -7 )

4.3 Heat-Transfer Coefficient, hg. Between the Tubewall and Collector Fluid 

Whillier (1967) notes that the flow of water through solar heaters
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is so slow that in most cases it is laminar. Furthermore, the tube length 

is usually short enough for the flow not to become fully developed. And he 

suggests an expression,

where Nu is the Nusselt number. Re is the Reynold's number, Pr is the 

Prandtl number, d is the nominal diameter and L is the length of the tube.

Based on experimental work, Oliver (1962) suggested the correlations

Nu = (̂ i./p 1,75 [Gz + 0.0083(Gr Pr (4.3.2)m o w  m m m

for tubes with L/d > 70 and

Nu = ôi,/̂i )°'14 1.75 [g z + 0.00056(Gr Pr L)0*70]l/3 (4.3.3)m  D w tn ni m Q

for tubes with L/d <  70, provided Gz ^ ttnu .m m

Oliver's equations assume that the tube is horizontal and has uniform 

wall temperature.

Another correlation suggested by Brown and Thomas (1965) is;

Nu = (^./p )°'14 1.75 [gz + 0.012(Gz Gr l/3)4/3]l/3 (4.3.4)m o w  m m m

where is the dynamic viscosity of fluid at bulk temperature

|X is the dynamic viscosity of fluid at wall temperature w

Gr is the arithmetic-mean Grashof number m

Gz is the arithmetic-mean Graetz number m

Nu is the arithmetic-mean Nusselt number m

Pr is the arithmetic-mean Prandtl number m
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This correlation is also based on an assumption of uniform wall temperature.

Baker (1967) from his experimental investigations found that 

100 Btu/hr-ft“-''F was a justifiable value for the film heat-transfer 

coefficient.

Thus we find that all the values of film heat-transfer coefficients 

cited in the literature (for apparently similar situations) vary from about 

20 to 100 Btu/hr-ft^-°F and are based either on a constant wall temperature 

or on a constant wall flux.

From the present analysis it is clear that neither the wall tempera

ture nor the wall flux is constant. But for lack of a more accurate expres

sion for h^, as suggested by Baker, a ^alue of 100 Btu/hr-ft^-°F was used 

in the analysis. However, values of h^ ranging from 25 to 100 Btu/hr-ft^-°F 

were tried and no significant variations in the fluid outlet temperatures 

or the efficiencies were found.



CHAPTER 5

DISCUSSION OF THE EFFECT OF VARIOUS COLLECTOR 

PARAMETERS ON THE TEMPERATURE DISTRIBUTIONS AND 

COLLECTOR PERFORMANCE

5.1 Effect of Collector Parameters on the Temperature 

Distribution of the Absorber Plate

In this chapter, the effects of various collector parameters on the 

temperature distributions and collector efficiencies are discussed in a 

quantitative manner. All the theoretical experiments were conducted on a 

typical winter day (Jan. 15th) at a latitude of 35° (Oklahoma City), 50%
2cloud cover, at 1300 hours and with an incident radiation of 200 Btu/hr-ft . 

Plate Temperature Distribution Normal to the Tube

Consider a tube-in-strip type collector configuration as shown in 

Figure 1.1. The temperature distribution of one half the plate between two 

tubes has been derived in Chapter 3 and is given by the equation (3.1.23).

The width of the plate between two tubes is W, the tube diameter is D^ and 

the plate thickness is t. Some of the solar energy absorbed by the plate 

must be conducted across the plate to the region of the tubes. Thus the 

temperature midway between the tubes will be higher than the temperature near 

the vicinity of the tubes, as illustrated in Figure 5.1.1. This temperature 

distribution is highly dependent on the mass flow rate and the inlet temperature

37



Figure 5.1.1 Plot of plate temperature normal to the tube versus normalized

plate width, for B/D^ = 8, kt = 0.391 Btu/hr-°F, = 200

Btu/hr-ft^, T = 50°F, T. = 85°F and n=l.^  in
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Figure 5.1.2 Plot of plate temperature parallel to the tube versus

normalized plate length, for b /D = 8, kt = 0,391 Btu/hr-°F,

4 . = 200 Btu/hr-ft^, = 50°F, T. = 85°F and n=lith "in
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of the collector fluid. In Figure 5.1.1, observe that the difference between 

the center line temperature and the root temperature of the absorber plate 

is greater at the inlet end than at the outlet of the collector. With increase 

in mass flow rates, this difference in temperature becomes smaller. Also 

observe that higher mass flow rates result in lower plate temperatures and 

gradients and vice-versa.

Plate Temperature Distribution Parallel to the Tube

The energy transferred to the fluid will gradually heat up the fluid 

causing a temperature gradient to exist in the direction of flow. Since in 

any region of the plate, the temperature distribution is governed by the 

local temperature level of the fluid, a situation as shown in Figure 5.1.2 

exists. The figure illustrates the strong influence of mass flow rate on the 

temperature profiles. For extremely low mass flow rates, the plate temper

atures are high and the temperature distribution is exponential. For higher 

mass flow rates, the plate temperature is lower and the temperature profiles 

become almost linear. Observe that the temperature of the plate midway be

tween the tubes (i.e., @ y=0) is higher than at the root (i.e. @y=W) of the 

plate.

Isotherms of the Collector Plate

Since the temperature distribution of the collector plate obtained in 

this analysis is two-dimensional, it can be best illustrated by drawing the 

isotherms. Figures 5.1.3 (a,b,c) show the isotherms of an absorber plate for 

three different values of mass flow rate. It is interesting to note that 

for high mass flow rates the isotherms tend to be parallel to the fluid



Figure 5.1.3a Plot of Isotherms of the collector plate for a flow rate of 

50 Ibs/hr-ft^, B/D^ = 8, kt = 0.391 Btu/hr-°F, = 200 

Btu/hr-ft^, T = 50°F, T. = 85°F and n=l’ CO i n
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Figure 5.1.3b plot of isotherms of the collector plate for a flow rate of

10 Ibs/hr-ft^, b/D^ = 8 , kt = 0.391 Btu/hr-°F, = 200

Btu/hr-ft^, T = 50°F, T. = 85°F and n=l » 00 in
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Figure 5.1.3c Plot of isotherms of the collector plate for a flow rate of

2 Ibs/hr-ft , b/D^ = 8 , kt = 0.391 Btu/hr- F, = 200

Btu/hr-ft , = 50 F, = 85 F and n=l
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5.1.4a Effect of the product of plate thickness and thermal conductivity

on the plate temperature profiles normal to the tube, for a mass
2 2 flow rate of 11 Ibs/hr-ft , B/D^ = 8 , = 200 Btu/hr-ft ,

T = 50°F, T. = 85°F, and n=l.CO in
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Figure 5.1.4b Effect of the product of plate thickness and thermal conductivity

on the plate temperature profiles parallel to the tube, for
2 2 a mass flow rate of 11 Ibs/hr-ft , B/D^ = 8 , = 200 Btu/hr-ft ,

T = 50°F, T. = 85°F and n=l. xn
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direction and gradually become normal to the fluid direction for very low 

flow rates.

Effect of the Product of Plate Thickness and Thermal Conductivity

Figures 5.1.4 (a,b) illustrate the effect of plate thickness on the 

plate temperature distribution. As should be expected, thinner plates re

sult in higher temperatures and gradients. And an increase in thickness 

results in lower plate temperatures and gradients. Such a behavior is due 

to the fact that an increase in thickness results in a decrease in the 

thermal resistance and aids heat transfer. Observe that as far as the longi

tudinal temperature profiles are concerned, plate thickness seems to have 

very little effect on the temperature gradients, but actual temperatures tend 

to be much lower for thicker plates, due to an increase in heat transfer.

Effect of the Ratio of Tube Spacing to Tube Diameter

Figures 5.1.5(a,b) illustrate the effect of the ratio of B/D^ on the 

plate temperature distribution. Observe that wider tube spacing results in 

higher plate temperatures and higher gradients. The former effect is due to 

an increase in the total amount of energy absorbed by the plate and the latter 

effect is due to an increase in the thermal resistance of the plate.

Comparing Figures 5.1.4(a,b) and 5.1.5(a,b) it is interesting to note 

that an increase in tube spacing has the same effect as a decrease in plate 

thickness. However, the difference between the two cases is in the magnitudes 

of temperature and gradients.



Figure 5.1.5a Effect of the ratio of tube spacing to tube diameter on the

plate temperature profiles normal to the tube, for a mass
2 2 flow rate of 11 Ibs/hr-ft , = 200 Btu/hr-ft , kt = 0.391

Btu/hr-°F, = 50°F, = 85°F and n=l
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Figure 5.1.5b Effect of the ratio of tube spacing to tube diameter on the 

plate temperature profiles parallel to the tube, for a mass 

flow rate of 11 Ibs/hr-ft^, = 200 Btu/hr-ft^, kt = 0.391 

Btu/hr-°F, Tg, = 50°F, = 85°F and n=l
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Figure 5.2.1 Effect of mass flow rate on the fluid temperature distribution
2

along the tube for B/D^ = 8 , 4^^ = 200 Btu/hr-ft , kt = 0.391 

Btu/hr-°F, Tjj, = SO°F, = 85°F and n=l
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Figure 5.2.2 Plots of fluid outlet temperature, average plate temperature

and collector efficiency versus mass flow rate for L = 10 ft,

B/D^ = 8 , = 200 Btu/hr-ft^, kt = 0.194 Btu/hr°F, = 50°F,

T. = S5°F and n=l in
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Effect of Collector Length

By plotting the temperature as a function of mass flow rate per unit 

area of the collector, we obtain the effect of changing the collector length. 

For a given mass flow rate as the length is increased, the temperature dis

tribution becomes exponential. And, as the length is decreased the tempera

ture distribution becomes almost linear.

5.2 Effect of Collector Parameters on the Temperature 

Distribution of the Fluid

Effect of Tube Length

The temperature distribution of the fluid inside the tube is given 

by the equation (3.2.7).

The effect of tube length on the fluid temperature distribution is 

illustrated in Figure 5.2.1. Observe that for very low mass flow rates, the 

temperature profile is exponential and it tends to become linear for higher 

mass flow rates. For a given length of tube an increase in mass flow rate 

results in a decrease in fluid temperatures. This effect is illustrated in 

Figure 5.2.2.

Effect of Tube Spacing

Figures 5.2.3(a,b) illustrate the effect of changing the tube spacing 

on the fluid outlet temperature. For any given mass flow rate, an increase 

in tube spacing results in an increase in the fluid outlet temperature. Note 

that for extremely large flow rates, the tube spacing does not seem to have 

any effect on the outlet temperature.



Figure 5.2.3a Effect of the ratio of tube spacing to tube diameter on the
2

fluid outlet temperature for L = 10 ft, = 200 Btu/hr-ft , 

kt = 0.391 Btu/hr-°F, = 50°F, T.^ = 85°F and n=l
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Figure 5.2.3b Effect of the ratio of tube spacing to tube diameter on the

non-dimensional fluid outlet temperature for L  = 10 ft

= 200 Btu/hr-ft^, kt = 0,391 Btu/hr-°F, = 50°F,

T. = 85°F and n=l in
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Figure 5.2.4 Effect of the product of plate thickness and thermal conduc

tivity on the fluid outlet temperature for L = 10 ft, B/D^ = 3, 

= 200 Btu/hr-ft^, = 50°F, = 85°F and n=l.



ü.o
UJ(H3

CC

z|Ü
h-!fjH3O
O
3_j
U.

2 0 0

FLUID OUTLET TEMPERATURE 
VERSUS MASS FLOW RATE FOR 
DIFFERENT VALUES OF k t .
L=  lOft  , B/Do = 8 ,  Tco = 50*F
n= I ,  Qmr 200BTU/hr-ft2, =85®

I 8 0

160

140
Ln

kt = 0.779 BTU/hr-®F
120

kt = 0 .1 9 4

100

8 0
806 04 020

MASS FLOW RATE ( Ib s /h r )



Figure 5.2.5 Effect of B/D^ ratio and kt cri the non-dimensional fluid outlet 

temperature for = 200 Btu/hr-ft , = 50 F, = 85 F

and n=l.
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Effect of Plate Thickness and Thermal Conductivity

Figure 5.2.4 illustrates the effect of changing the plate thickness 

and thermal conductivity on the fluid outlet temperature. An increase in the 

product kt results in a slight increase in the fluid temperature due to in

creased heat transfer from the plate. However, it should be noted that a 

four-fold increase in the value of kt results in only about 3°F increase in 

the fluid temperature. Hence, a cost analysis is very essential in order to 

determine how thick the plate should really be.

In Figure 5.2.5 non-dimensional fluid temperature is plotted against 

mass flow rate per unit area for different B/D^ ratios and kt values. Observe 

that an increase in the value of kt causes the curve for B/D^ = 12 to approach

the curve of B/D = 4 .0

5.3 Effect of Collector Parameters on the Short Term 

Collector Performance

This section is concerned with the prediction of instantaneous 

collector performance and the effects of various parameters on the collector 

efficiency. It has been found that basically four parameters dictate the 

collector performance: mass flow rate, tube spacing, inlet fluid temperature

and the overall heat transfer coefficient.

Effect of Mass Flow Rate

As should be expected, the present analysis verifies that the mass 

flow rate or the mass flow rate per unit area has the greatest influence on 

the collector performance.Keeping all other parameters constant as the mass 

flow rate is increased the collector performance rapidly increases at first



Figure 5.3.1 Effect of mass flow rate and B/D^ ratio on the collector

efficiency for = 200 Btu/hr-ft , kt = 0,194 Btu/hr- F,

T = 50°F, T. = 85°F and n=l “ in
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Figure 5.3.2 Effect of the ratio of tube spacing to tube diameter and mass
2flow rate on the collector efficiency for = 200 Btu/hr-ft ,

T = 50°F, T. = 85°F and n=l.“ in
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Figure 5.3.3 Effect of increasing the value of kt from 0.194 to 0.779
2on the collector efficiency for = 200 Btu/hr-ft , 

kt = 0.779 Btu/hr-°F, = 50°F, = 85°F and n=l
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and then levels off and approaches a maximum value asymptotically. This 

effect is illustrated in Figure 5.3.1. Note that efficiency is plotted as 

a function of mass flow rate per unit area rather than the total mass flow 

rate. This eliminates specifying the length of the collector. From the
2figure it can be seen that around a mass flow rate of about 10 lbs/hr-ft 

a collector attains most of its efficiency and further increase in mass flow 

rate does not help much.

Effect of Tube Spacing

An interesting result of the analysis is the effect of the ratio 

of tube spacing to tube diameter on the efficiency. It was found that for 

every value of B/D^ ratio, there is a maximum possible efficiency that can 

be achieved. Figure 5.3.2 illustrates another interesting result. Observe 

that for each value of mass flow rate, there seems to be an optimum B/D^ 

ratio that will give maximum efficiency. With increase in mass flow rate, 

this optimum B/D^ ratio seems to shift to smaller values.

Effect of Plate Thickness and Thermal Conductivity

The effect of plate thickness and thermal conductivity can be observed 

by comparing Figure 5.3.1 and 5.3.3. Note that the product of kt has very 

little effect when the B/D^ ratio is small and has greater effect for larger 

B/D^ ratios. From the heat transfer point of view, this is logical because 

for wider tube spacings an increase in plate thickness (i.e. an increase in 

kt) results in a decrease in thermal resistance and helps to increase effi

ciency.



Figure 5.3.4 Effect of increasing the inlet temperature from 85°F to 135°F
2on the collector efficiency for = 200 Btu/hr-ft , kt = 0.194 

Btu/hr-°F, = 50°F, = 85°F and n=l
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Figure 5.3.5 Effect of fluid inlet temperature and the number of glass
2

covers on the collector efficiency for = 200 Btu/hr-ft ,

kt = 0.391 Btu/hr-°F, = 50°F, m/A = 11 Ibs/hr-ft^ and

B/D = 8 o
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Effect of Fluid Inlet Temperature

Figures 5.3.1 & 5.3.4 illustrate the effect of increasing the fluid 

inlet temperature from 85°F to 135°F. The collector efficiency drops appre

ciably as the fluid inlet temperature is increased. High fluid inlet temper

atures result in high plate temperatures, giving rise to increased losses and 

lower efficiencies.

In Figure 5.3.5 collector efficiency is plotted as a function of 

fluid inlet temperatures. Observe that \^en the inlet temperature is equal 

to the equilibrium plate temperature, efficiency goes to zero. That is, 

there is no heat gain by the fluid.

Effect of Ambient Temperature

Figures 5.3.1 and 5.3.6 illustrate the effect of decreasing the 

ambient temperature from 50°F to 0°F. Lower ambient temperatures cause 

increased collector losses and hence lower efficiencies.

Effect of Glass Covers

Figure 5.3.7 shows an interesting result of the effect of increasing 

the number of glass covers for an inlet temperature of 85°F. Observe that 

as the number of covers is increased from 1 to 2 , there is a slight increase 

in efficiency. When the number is further increased to 3, there is a slight 

drop in efficiency, but is still slightly more efficient than a single cover. 

Note that for very low mass flow rates, three covers are most efficient. In 

Figure 5.3.5 collector efficiency is plotted as a function of the fluid inlet 

temperature. Observe that for temperatures below 80°F, three covers are the 

least efficient and for temperatures above 100°F, three covers are the most

efficient.



Figure 5.3.6 Effect of decreasing the ambient temperature from 50°F to
2

0°F on the collector efficiency for = 200 Btu/hr-ft , 

kt = 0.194 Btu/hr-°F, = 0°F, = 85°F and n=l
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Figure 5.3.7 Effect of the number of glass covers on the collector effi

ciency for = 200 Btu/hr-ft^, kt = 0.391 Btu/hr-°F, = 50°F,

T. = 85 F and B/D = 8 xn o
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Effect of Incident Radiation

Figure 5.3.8 illustrates the effect of decreasing the incident radi

ation by 50%. As should be expected, there is an appreciable decrease in 

efficiency.



Figure 5.3.8 Effect of decreasing the incident radiation on the collector 

efficiency for T = 30°F, T. = 85°F, kt = 0.194 Btu/hr-°FCO in
and n=l
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CHAPTER 6

OPTIMIZATION OF COLLECTOR CONFIGURATION

6.1 Introduction

This chapter describes a method for optimal selection of the collec

tor configuration parameters, viz., the plate thickness, tube spacing and 

the collector length, based on least-cost per unit of energy collected. The 

two-dimensional performance model that was developed in the first part of 

this study is utilized in the optimization process.

In the past, although there have been many studies (Speyer (1958), 

Buchberg & Roulet (1968), Lof & Tybout (1972)) in which the total collector 

area is cost optimized, hardly any work has been done in the optimization 

of the collector configuration itself. Presently, in any collector design, 

the values of the configuration parameters are arbitrarily chosen, based on 

experimental observations and general recommendations of Hottel and Whillier 

(1958). Most investigators consider the collector configuration as a design 

option, left to the choice of a designer. Due to an increase in the energy 

awareness and a need for minimal cost solar collector systems, it is felt 

that the collector configuration is not just a design option; and that, for 

any given locality and a complete system consisting of a building, storage 

and a collector unit, there should be an optimum configuration. Such an 

optimized configuration of the collector should be more economical and efficient.
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It should also result in considerable savings, especially when the collectors 

are mass produced by a manufacturing concern. The reason that there has 

not been much work in this area is probably due to the fact that the collec

tor model which is currently in use is based on slumped formulation and 

hence is not useful for this type of an optimization procedure-.

In the present study, using a hypothetical cost model based on retail 

prices of collector materials, it has been successfully shown that any 

particular collector design can be cost optimized, depending upon the operat

ing conditions. In this study, even though the collector is optimized as 

a separate unit, by using a similar procedure it can be optimized as a part 

of a complete system. Since the computation time required for such an op

timization scheme is extremely large, this part of the study has not been 

carried out.

6.2 Formulation of the Optimization Problem

In the present optimization scheme, the objective function - which 

is the cost of collector per unit of energy abosrbed, is minimized subject 

to inequality constraints on length, tube spacing and plate thickness; and 

equality constraint on the outlet fluid temperature. That is, a combination 

of length, tube spacing and plate thickness based on minimum cost/Btu that 

will give a desired outlet temperature is obtained.

Mathematically, the problem may be stated as follows:

minimize F(x^,X2,...x^) (6 .2 .1)

Subject to m inequality constraints

c\(x^,X2 ,...x^) ^ 0 for i = 1 ,2 ,...m (6 .2 .2)
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and s equality constraints

..x^) = 0 for j = 1,2,...s (6.2.3)

In the general literature associated with optimization schemes (Box, 

M.J., (1969))the problem as stated in equations 6.2.1 through 6.2.3 is known 

as a complete optimization problem. Methods such as those due to Fiacco & 

McCormick (1968) are available to solve this type of problem. Unfortunately, 

this method cannot be used in the present study, because it requires analyt

ical derivatives of the objective function. In the present problem it is 

not possible to obtain such analytical derivatives. Hence, another method 

known as the "complex" method of Box (Box, M.J., (1969)), has been used. The 

main shortcoming of this method is th»t it cannot handle equality constraints. 

In order to use the method of Box, the equality constraint of the problem 

was approximated by a set of closely spaced inequality constraints.

6.3 Complex Method of Box

The "complex" method of Box is a sequential search technique which 

has proven effective in solving problems with nonlinear objective functions 

and subject to nonlinear inequality constraints. The main advantage of using 

this method in the present problem is that the analytical derivatives of the 

objective function are not required.

In this method, an original "complex" of ft ^ tn-1 points are generated 

consisting of a feasible starting point and (&-1) additional points. The 

constraints should be of the form as shown in equation (6.2.2). The upper 

and lower limits of the constraints are either constants or functions of the 

independent variables of the problem.
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The additional (&-1) points required to set up the initial config

uration are found as follows. A tentative trial point is generated with 

the coordinates

where the "random numbers" r. . are pseudo-random rectangularly distributed) J
deviates in the interval (0,1). This point will necessarily satisfy the 

explicit constraints, but may not satisfy one or more of the implicit con

straints. If this is the case, the trial point is moved halfway toward the 

centroid of those points already selected (of which there is at least one, 

the initial point), this process being repeated as necessary. Ultimately

a permissible point will be found (certainly if the feasible region is convex),

and in this way all the ic points or the vertices of the initial configuration 

can be constructed.

The objective function is evaluated at each of these points, and 

the vertex of greatest function value determined. The worst point is re

placed by its over-reflection in the centroid of the remaining vertices; 

where, by over-reflection is meant the point on the produced line joining the 

rejected point and this centroid, but y times as far from the centroid as 

the reflection of the rejected point, y being an empirical parameter.

Various cases calling for different treatments, ^.<se as follows;

(i) If this trial point satisfies all the constraints, the function

is evaluated there, and the whole process repeated. Unless,

(ii) the trial point happens to be the worst point in the new 

configuration, in which case a move halfway towards the cen

troid is made instead of the basic iteration of over-reflection.
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(iii) If the trial point does not satisfy some explicit constraint, 

that variable is reset just inside the appropriate boundary 

(for example by an amount 0 ,0001) to give a further trial point,

(iv) If some implicit constraint is violated, a further trial 

point is constructed by a move halfway back towards the cen

troid, this process being repeated as necessary. These 

moves could prove unsuccessful if the region were not convex, 

or if curved valleys were encountered.

Suitable empirically determined values for y and are y = 1.3 and 

t = 2n, although this value of k  is too large when n is as large as ten.

Ic > iH-1 points have been found necessary in order to prevent the configuration 

from collapsing prematurely into a subspace. The use of the over-reflection 

factor y > 1 enables the complex to expand whenever possible, while the moves 

toward the centroid allow the complex to contract when necessary.

In general, any iterative minimization technique may converge to a 

local minimum instead of the required global minimum. With unconstrained 

problems, a rough check that the global minimum has in fact been found is 

usually performed by restarting the method from different points, and 

inferring that if these all lead to the same solution, then this indeed is 

the global minimum. For constrained optimization, it is not an easy matter 

to find alternative starting points which satisfy all the constraints, and 

which differ substantially from each other. With the complex method, this 

type of check can readily be performed using the same initial point, but 

different pseudo-random numbers to set up the initial configuration, and the 

ease with which this can be done is considered to be an advantage of the 

method. It is also considered that as the initial configuration is generated 

so as to roughly span the feasible region, the first few iterations will be



Figure 6.3.1 Box (Complex Algorithm) Logic Diagram.
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even more likely to span the whole of this region. Consequently it seems 

reasonable to suppose that if several local mimima exist, and one of these 

corresponds to a very much smaller function value than the rest, then this 

best local mimimum (the global minimum), will be found. Conversely, if the 

global minimum is not found, then there would seem to be a high probability 

that it would not represent much improvement over the minimum actually lo

cated.

To test for convergence, the standard deviation

-V-}1=1

of the function values at the (nfl) vertices of the current complex is com

pared with some specified value. A possible improvement on this test would 

involve the calculation of S after every k evaluation^ k being pre-assigned. 

The requirement would then be that two successive values of S were less than 

the specified value, and that the corresponding mean values F did not differ 

by some specified amount. This criterion would insure that the search con

tinued until the complex had virtually collapsed onto the indicated minimum.

Figure 6.3.1 shows that logic diagram used in the complex algorithm, 

which has been reproduced from Kuester and Mize (1973). Further details of 

the algorithm can be found in this reference.

6.4 Formulation of the Cost-Function

The total cost of the collector per unit of energy absorbed may be 

expressed in terms of the parameters that describe its configuration and 

performance. These include collector type, manufacturing process, cost of 

materials, installation, etc. The actual cost of a flat plate collector can
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be broadly divided into four groups:

(i) Fixed cost - Includes framing, insulation, supports,painting,

manufacturing process, etc.

(ii) Sheet metal cost - Expressed in dollars per pound of the sheet

metal used.

(iii) Cost of tubing - Expressed in dollars per foot length of the

tube.

(iv) Cost of glass covers - Expressed in dollars per square foot

of the glass used.

The cost function that was developed for the analysis is based on 

the prices quoted by local hardware suppliers. The total cost per tube of 

the collector and the associated fin may now be expressed as,

(Total cost of collector/tube) = Fixed cost +  sheet metal cost + Tube cost

+  cost of glass covers (6.3.1)

2Lof and Tybout (1973) have estimated that glass covers cost about $0.40/ft
2of the collector area. An estimate of $2.70/ft as fixed cost of the collec

tor was obtained from the construction details of C.S.Ü. solar house. Thus,

(Total cost of collector/tube) = ($2.70 * Area/tube) +  ($/lb of plate material)

irea/Tubi
(6.3.2)

2
(Weight of the plate/tube) + ($ 1.00/ft) (Tube length) + ($0.40/ft ) (Area/Tube) *n

where n is the number of glass covers used.

The cost function is now defined as the ratio of the total cost per 

tube and the associated fin, to the amount of useful energy absorbed per 

tube. This will be the objective function of the optimization scheme.
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Total cost per tube and the associated fins 
cost -.unction (F) - useful energy absorbed per tube

F(B,L,t,n,Tg^^) = {($2^70*BL) + Pp(2.0 WLt)($2.00/lb of plate material)

+ ($1.0O/ft)*L+ ($0.40*BL)*n}/(*
(6.3.3)

where is the density of the plate material.

Inequality constraints are:

^ L ^ G2 ^ B ^ G3 ^ t ^ H3 (6.3.4)

and the equality constraint is

"out = “4

This is converted into an inequality constraint

<=4 ̂   ̂»4 (S-3-S)
where G^ and i =  1,2,3 & 4 are the lower and upper limits of the constraints 

respectively. In the present problem G^ = 90°F and = 95°F. The exact 

values of the upper and lower limits for L, B and t do not really matter as 

long as they are within practical limits.

6.5 Some Results of the Optimization Scheme

The following data is used as input to the optimization program:

Locality: Oklahoma City Latitude: 35° Longitude: 97°

Date: January 15th Time: 1300 hrs Solar radiation on
2a horizontal surface: 200 Btu/hr-ft Wind speed: 5 knots
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TABLE 6.5

PLATE
THICKNESS

t
(inches)

TUBE
SPACING

B
(inches)

COLLECTOR
LENGTH

L
(feet)

COLLECTOR 
OUTLET TEMP.

^out
(°F)

COST/BTU
($/BTU)

2.0 14.922 90.001 0.0591
3.0 10.047 90.05 0.0473

0.0107 6.0 5.322 90.03 0.0380
9.0 4.000 90.008 0.0383

12.0 3.521 90.07 0.0416
15.0 3.282 90.05 0.0467

2.0 14.927 90.01 0.0648
3.0 9.908 90.01 0.0499

0.0215 6.0 5.457 90.34 0.0426
9.0 3.871 90.32 0.0413

15.0 2.849 90.34 0.0463

2.0 14.920 90.01 0.0764
3.0 9.866 90.01 0.0642
6.0 5.016 90.01 0.0535

0.0429 9.0 3.521 90.07 0.0516
12.0 2.876 90.23 0.0523
15.0 2.360 90.02 0.0545
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Cloud cover: 0.5 Ambient temperature: 50°F Collector

material: copper Collector fluid: water No. glass covers: 1

Assuming a collector inlet temperature of 85°F and a mass flow rate

of 85 lbs/hr. Table 6.5 gives the optimum collector lengths for obtaining 

an outlet temperature between 90°F and 95°F. Observe that the results of 

cost optimization shown in Table 6.5 are based on hourly weather data.

The aim of the present optimization study has been to show that a cost op

timized collector configuration can be obtained for any particular appli

cation. In order to obtain a truly cost optimized system, optimization pro

cedure has to be carried out over a whole year using hourly weather data.

The cost function has to be converted into annual cost, and an amortization 

period has to be assumed. Hopefully this will be the subject of future work.

Since the complex method of Box does not handle equality constraints, 

a more efficient optimization method should be found to take care of the 

equality constraints of the problem.



CHAPTER 7 

CONCLUDING REMARKS

The present study has sought to develop a method to optimize the 

configuration of a flat plate collector, based on least cost per unit of 

energy absorbed. Since the objective function of the optimization scheme 

is dependent on the collector performance, a theoretical model of the col

lector that would be suitable to an optimization scheme had to be first 

developed.

A rational and systematic two dimensional analysis of a flat plate 

collector is developed, whereby, for any given set of conditions its per

formance can be evaluated without having to assume any collector parameter, 

such as the average collector temperature etc.

The nature of the present formulation makes it possible to explicit

ly study the collector behavior just by inputing hourly weather data and 

configuration details. Although the present analysis is more complex than 

the existing one, it is systematic, accurate and more versatile.

Using the two-dimensional performance model of the collector, an 

optimization scheme is suggested whereby the configuration of a flat plate 

collector can be cost optimized based on hourly weather data, in the pre

sent study it has been shown in principle that it is possible to optimize 

collector configuration parameters based on least cost per Btu of energy

absorbed. In order to obtain a truly optimal collector configuration for a
79
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given locality and operating conditions, the optimization scheme has to be 

carried out using a whole year's weather data. This part of the problem 

has not been done and needs further investigation. Such an optimization 

program should be very interesting and useful in order to study the effects 

of various parameters such as manufacturing costs, variation in material 

costs, etc.

Although the cost figures presented in Table 6.5 are highly depen

dent on the exact nature of the cost function used in the optimization scheme, 

the trends shown are correct. The absolute values of these optimized cost 

figures need to be made more realistic using more accurate cost data.
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APPENDIX A

TEMPERATURE DISTRIBUTION OF THE COLLECTOR FLUID FOR 

THE LIMITING CASE OF TUBES SIDE BY SIDE

Consider an element Ax of a tube containing fluid as illustrated in 

the Figure A.I. Neglect the thermal resistance of the tube and assume the 

fluid temperature to vary only along the axis of the tube. Making an 

energy balance on the element Ax, we have,

dT_ ttd V
m Cp dk- + “o \— J - V o  = 0

where U is the overall loss coefficient from the fluid to the ambient, o
This equation is non-dimensionalized by substituting

\ , * X
in

We now have

d8 _U ttd In rq.D Lf
   .  _______dx p p in

or
d9
- - i +  MgGg = P (A.4)
dx
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F ig u r e  A.l D ia g r a m  s h o w in g  t h e  l i m i t i n g  c a s e  o f  tu b e s  s i d e  b y  s i d e  a n d  t h e  

e le m e n t  o f  t h e  c o l l e c t o r  t u b e  r e f e r r e d  t o  i n  t h e  d e r i v a t i o n  o f  

t h e  f l u i d  t e m p e r a tu r e  d i s t r i b u t i o n .
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pUJTD^In
Where = L z S c H

P

P r 5 i y _  1

T h e  s o l u t i o n  t o  t h i s  d i f f e r e n t i a l  e q u a t io n  i s

w h e re  E i s  t h e  c o n s t a n t  o f  i n t e g r a t i o n .  

U s in g  t h e  b o u n d a ry  c o n d i t i o n .

@ X* = 0 0 ^ = 1

we obtain E = 1

«£,.vg = f

(A. 5)

*  *
9j(E) = J *  P + E e'“f* (A.6)

(A. 7)

T h u s ,

® (1 - (A.8)

T h e  f l u i d  t e m p e r a tu r e  d i s t r i b u t i o n  i s  n o w  g i v e n  b y

T(x*) = 6  (X*)(T.^-T„) + T„ (A.9)

A v e ra g e  F l u i d  T e m p e ra tu re

* (A. 10)
I lu ;-

Jq «-«f -f
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Thus, the average fluid temperature is

Tf.avg = Gf.avs(Ti.-T.) + 'L
This average value of fluid temperature is used for evaluating an average 

value of the overall loss coefficient (U^)» from the fluid to the ambient.



Figure B.l Diagram showing the experimental set-up used for taking 

thermograms of the collector panel



APPENDIX B

EXPERIMENTAL DETERMINATION OF THE ISOTHERMS OF THE 

ABSORBER PLATE USING SCANNING INFRARED CAMERA

An experiment was conducted to verify the analytical results for a 

single fin attached to the side of a copper tube. The plate-tube segment 

used in the experiment (Figure 2.1.1) was fabricated from a copper tubing 

and 0.02" steel sheet metal. The overall dimensions of the fabricated 

collector panel was 22" X This was insulated on all edges and at the

bottom using 2" thick styrofoam. The absorbing surface of the panel was 

covered with a sheet of saran wrap to reduce upward losses. A spacing 

of 3/4" was provided between the transparent cover and the absorber plate.

The absorber and tube surfaces were painted black using commerically avail

able black paint.

The experiment was conducted on a winter day, late in the afternoon, 

with clear skies and gusty winds of about 10-15 mph. The collector surface 

was oriented normal to the direction of sun using visual alignment.

The temperature distribution over the collector surface was moni

tored with a scanning infrared camera manufactured by Texas Instruments Co.

The arrangement of the equipment used in the experiment is shown in Figure B.l. 

The equilibrium temperature of the plate was beyond the range of the camera 

and hence extremely hiigh mass flow rate of water had to be used to lower the 

plate temperature to within the range of the camera. The inlet end of the
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collector panel was connected to a city water supply. The inlet water 

temperature was 67.5°F, and mass flow rate was 42 Ibs/min.

In Figure B.2, thermograms of the collector panel with zero mass

flow rate and with a flow rate of 42 Ibs/min are shown. In the thermograms 

white is hotter and black is cooler with shades of gray representing inter

mediate temperatures. The scale on the side of the thermogram is intended 

by the manufacturer to indicate temperatures, however, no correction has 

been made to account for the effect of the plastic cover sheet. Therefore, 

the readings only depict relative temperatures and the absolute temperatures 

indicated are not really accurate.

As predicted by the theoretical analysis, the inlet end of the plate 

is cooler than the outlet end. The cool areas which are visible at the edges 

of the plate are due to edge losses. Observe that the areas near the inlet 

and the outlet end are cooler than they should be. This is due to the heat

loss along the pipe by conduction.

Microdensitometer traces were taken of the thermogram negatives.

The isodensity lines obtained from the densitometer traces correspond to 

the isotherms. Figure B.3 shows the isotherms obtained from the densitometer 

traces. It is interesting to note that the general trend of the isotherms 

compare favorably with the analytical predictions. The analysis indicates 

that for large flow rates the isotherms would be almost parallel to the 

fluid flow direction. This is verified in the present experiment. The 

main reason that the isotherms in Figure B.3 are not smooth curves is due 

to unequal plate thickness caused by improper welding of the plate and the 

tube during fabrication.

The present experiment quantitatively verifies the general pattern 

of the isotherms for large flow rates of the collector fluid. Although



Figure B.2 Thermograms of the collector panel with zero mass flow

rate and with a flow rate of 42 Ibs/min. = 67.5°F and

T. = 72°F



90

THERMOGRAM OF THE ABSORBER PLATE 
FOR ZERO MASS FLOW RATE
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Figure B.3 Plot of isotherms of the collector plate obtained from the 

Thermogram for a mass flow rate of 42 Ibs/min, = 67.5°F 

and Tgg = 72°F. The temperatures indicated on the isotherms 

are approximate.
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the magnitudes of the temperatures may not be accurate, the trends indicated 

definitely verify the analytical predictions. Further work needs to be 

done under more accurately controlled conditions in order to obtain better 

agreement with the analysis.


