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PREFACE 

A cross-compiler £or ~he Pascal language was 

developed. The compiler development £acilities on the 

Concurrent XF-610 Unix-based system. The output o£ the 

compiler is assembly language code £6r the Commodore 64 

aicrocomputer. The code was then down-loaded to the 

Commodore, and run to veri£y the proper £unctioning o£ the 

compiler. 
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CHAPTER I 

INTRODUCTION 

Definition of the Problem 

The purpose of this project is to explore the design 

and implementation of languages for a 6510 microprocessor on 

the Commodore-64 home computer. At present time there is a 

paucity of good programming language implementations for 

this particular machine; in most cases the programmer must 

choose between Basic and assembly language. Since the former 

tends to be under-powered and inefficient, and the latter 

makes coding exceptionally tedious, it is desirable to have 

a language between these two extremes. 

There are a variety of high-level languages in use 

today including AdaR, (R Ada is a registered trademark of 

the U.S. DOD,Ada Joint Projects Of1ice (AJPO)) Pascal, PL/I, 

Cobol, and Algol68. Any of these would extend the usability 

of this particular machine. Unfortunately, implementation of 

any of these languages is not a trivial programming task. To 

simplify this first effort to address this problem, a 

predefined grammar, outlined by Aho and Ullman1, will be 

used. What is contained in this grammar is a useful subset 

of the Pascal language. The LALR(l) grammar for this subset 

is shown in Figure 1. 
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program: 
prograa IDENTIFIER (id-list); 
declarations 
subprogram-declarations 
compound statement 

id-list: 
IDENTIFIER 
: id-list, IDENTIFIER 

declarations: 
var declaration-list 

declarations-list: 
id-list:type 
: declaration-list id-list:type 

type: 
standard type 
: array type 

standard type: 
integer 

: real 
array-type:. 

arra7 [CONSTANT .. CONSTANT] OF standard-type 
subprogram-declarations: 

subprog~am-declarations 

subprogram-declaration 

subprogram-declaration: 
subprogram-head 
declarations 
compound-statement 

subprogram-head: 
£unction IDENTIFIER arguments: 
result standard type; 
: procedure IDENTIFIER arguments 

arguments: 
(parameter-list) 

parameter-list: 
id-list : type 
: parameter-list; id-list:type 

compound-statement: 
begin 
statement-list 

end 
statement-list: 

statement 
: statement-list ; statement 

Figure 1. LALR(l) Grammar £or a Subset o£ Pascal 
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statement: 
elementary-statement 

if expression then restricted-statement 
else statement 

if expression then statement 
: while expression do 

restricted-statement: 
elementary-statement 

if expression then restricted-statement 
else restricted-statement 

. : wh:lle expression do restricted-statement 
elementary-statement: 

variable ASSIGNOP expression 
procedure-statement 

: compound-statement 
variable: 

IDENTIFIER 
IDENTIFIER expression 

procedure-statement: 
IDENTIFIER 

IDENTIFIER ( expression-list ) 
expression-:- list: 

expression 
: expression-list expression 

expression: 
simple-expression 
: simple-expression RELOP simple-expression 

simple-expression: 
term 

sign term 
: simple-expression ADDOP term 

term: 
factor 

term MULOP factor 
factor 

variable: 
CONSTANT 
( expression ) 
function-reference 
not fact.or 

function-reference: 
IDENTIFIER 

IDENTIFIER expression-list ) 
sign 

Figure 1. (Continued) 
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The Language Subset 

Although the subset violates none of the conventions for 

full Pascal, there are several omissions which simplify the 

subset. The only type declarations possible are integer, 

real and array. Full Pascal has a variety of types. 

including user definable types2. In the subset, records, 

structures and sets are omitted and arrays are limited to 

one dimension. Block structures, with their own variable 

declarations, are also not included. Since many of the 

operations that would be made easier by record, set or 

multi-dimensional array can be done by intellig~nt use of 

one dimensional arrays, and block code is never a necessity, 

these omissions are only minor annoyances. They could be 

included with some restructuring of the compiler mechanisms, 

at the expense of making the compiler larger. The subset 

does cover many of the more interesting features of a high

level language. These include functions and procedures, 

recursion, parameter passing, and conditional loops. The 

subset is upwardly compatible with full Pascal, with the 

revisions noted later. 

This compiler therefore could be useful for bootstrapping a 

more complete Pascal for this machine. 

The Compiler 

The compiler consists of three major parts: first is 

the lexical analyzer, to recognize the tokens of this 

language. For a language of any size, the lexical analyzer 
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usually is a simulation of a finite state automaton. It may 

either be written by the programmer or be engineered with 

the use of a lexical analyzer constructor such as LEX, 

available on UNIX based systems3. Although Kerriighan and 

Pike4, and Waite and Goos5 indicate that the programmer can 

usually write shorter and more efficient analyzers than 

those that are mechanically produced, it is far simpler to 

let LEX do most of the work, so this compiler u~es a LEX 

engineered lexical analyzer. The second part of the compiler 

is the syntactic analyzer. This is where the code is 

analyzed for conformity to the rules of the grammar defined 

for that language. This is another sort of recognizer, a 

pushdown automaton. The grammar of the language provides 

rules for reducing subtrees of related nodes. If the program 

conforms to the grammar, the final reduction is to the root 

of the tree, and a correct program is recognized by the 

automaton. The automaton contains a stack for storing 

incompletely recognized parts of rules. Once a reduction is 

made, part of the stack is replaced by the left hand side of 

the grammar rule, until all that is left on the stack is the 

root, or start symbol of the grammar. For a language of any 

size, this automaton is a sizable piece of code. The 

programmer may choose to write this by hand, but using an 

automatic constructor such as YACC, also available on UNIX 

systems6, is an alternative. Even if the lexical analyzer is 

handwritten to increase efficiency, the the amount of 

programming time consumed by coding this phase manually make 

it much more attractive to automate. 
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It is during the syntactic analysis phase that the 

incoming code is trans£ormed into another representation. 

This transformation is acomplished by semantic actions. In 

YACC, semantic actions may be appended to the grammar rules. 

These actions are executed just prior to reduction and 

produce the transformation o£ the input program some form 

more applicable to the target. The simplest transformation 

is to have the output o£ the syntax analyzer be the output 

o£ the program being translated. In this case, no £urther 

transformation is necessary as the output o£ the program is 

immediately available. Kernighan and Pike4, demonstrating 

the £unction o£ YACC on the UNIX system create a series o£ 

demonstration compilers, and the first o£ these, hocl, does 

this. Unfortunately, this simplistic approach is only 

workable when the value o£ the output can be determined £rom 

the input directly. It is not useful £or languages with 

control-flow constructions such as IF-THEN statements. The 

di££iculty with th~se constructions is that the position of 

the next statement to be executed is not known at the time 

that the IF-THEN statement is being analyzed.One method o£ 

coping with this is to have the syntax analyzer generate 

incomplete code, which can then be "fixed up'' with the 

address o£ the next statement after that statement is 

discovered. 

The code that the syntax analyzer generates may be 

either executable code £or the target machine, or some 

variety o£ intermediate code that can be interpreted to 

produce executable code. There are several other choices, 



including another high level language, and tables for a 

linking loader. The latter, according to Barrett and Couch7 

is the form used by many commercial compilers because it 

allows segments of a large program to be compiled 

separately, which cuts costs fo~ debugging. This technique 

assumes the existance and availability of a linking loader, 

however, and such is not readily available for tha 8510. 

Compiling to another high level language has the 

advantage of simplicity, but it masks the function of the 

actual machine. In addition, program performance would be 

dependent on the compiler £or the target language. Since 

some constructions are difficult to translate from one high 

level language to-another ~he resulting program might 

£unction ine££iciently. 

Machine code has the advantage o£ eliminating one step 

in the compilation process; however, in doing so, the 

possibility o£ rewriting the output code to improve 

e££iciency is sacri£iced. It does allow the program to be 

executed immediately, but makes it more difficult to 

discover and to correct any errors in the code generation 

process without disassembling the instructions to determine 

where and why the error happened. 

7 

Generating intermediate code that may be manipulated in 

the interpretation step is a more generalized approach. Not 

only may the e££iciency o£ the £inal code be improved, but 

it also may be easily changed to run on another machine by 

altering the interpreter?. 

All varieties of intermediate code require further 
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interpretation to produce executable code. There are a 

number of different types of intermediate code ranging from 

fairly elementary to quite detailed. One simple approach is 

to have the syntax analyzer produce modules which consist of 

an operator, up to two operands, and a location for the 

result o£ the operation. These are called three address 

modules, or quadruples, referring to the four fields in the 

module. They have the adv~ntage of being easily 

generalizable, but need a fair amount of reinterpretation to 

produce object code. Other choices include P-code, which is 

quite similiar to Pascal itself8, the table building 

language, TBL, described by Anklam et.aJ.,9, and some 

variety of assembly language or machine code £or the target 

machine. Since the main aim of this project is to produce 

code to be used to bootstrap a more nearly complete 

compiler, the intermediate language is ~uadruples for 

generality. The target language is 6510 assembly code 

because it gives most o£ the speed and power of machine code 

with a degree of readability that makes verification of the 

compiler functions easier. 

6510 Organization and Machine Language 

As discussed above, the third stage of this compiler is 

translation of the generated quadruples into code for the 

target machine. The interpreter is responsible for choosing 

a starting address for the code. Since the 6510, as many 

microprocessors,must support many functions such as screen 



display, buffers for printing end date transfer in e 

relatively smell memory, the program must be placed so that 

it does not interfere with any function that the programmer 

needs at the time that program is to be executed. In 

addition, the interpreter must take care of such issues as 

register management, and code optimization. 

9 

Because the target machine is a microprocessor, it is a 

fairly simple machine. The 6510 has 64K of available RAM, 

some of which is unusable because it is the fixed location 

for the screen, disk end printer utilities. It has an 

accumulator A and two registers: X end Y. All are 8 bits. 

The two registers differ slightly in their use for indirect 

addressing, but otherwise are the same. Having so few 

registers to use limits their usefulness for register 

optimization. The small size of the accumulator forces real 

number calculations to use memory locations as accumulators, 

consequently real number arithmetic is relatively slow. 

The instruction set for this machine is also somewhat 

limited. The only arithmetic functions are addition and 

subtraction of the contents of the accumulator with another 

number. Division, multiplication, mod and all other 

arithmetic functions must be supplied by the code generator. 

One rather interesting feature of this machine, however, is 

the availability of routines in the kernel. The kernel is a 

set of machine language subroutines, primarily I/0 

utilities, that are grouped together. The term kernel refers 

to those routines that may be located in different locations 

in the different varieties of 6502 microprocessor (including 
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the 6510 discussed here), but whose address is guaranteed to 

be in a specified location. These routines provide various 

utilities for Basic when the computer is running under that 

language, and many of these routines may easily be linked 

into Assembly language programs. Some of the kernel routines 

ass~st in data entry from the keyboard or an external 

storage device, in this case, a floppy disk drive. Other 

routines are available in the Basic ROM, and these routines 

do data conversions, It is not the intent of this compiler 

to rewrite Basic, but the availibility of these subroutines 

in ROM certainly simplify much of the translation, and would 

be of great help in adding more features to the Pascal 

subset. 

Summary of the Project 

In summary, the project is to design and to execute a 

cross-compiler £or the subset of Pascal described by Aho and 

Ullmanl. The compiler will use the versions of LEX and YACC 

available on the Concurrent XF-610 research computer to 

construct a parser and to generate quadruples which then 

will be translated, using a code generator wrttten in C, 

also on the Concurrent XF-810. The output of the interpreter 

will be 8510 assembly code, which ~ill then be transferred 

to a Commodore 84 home computer £or verification. 



CHAPTER II 

LITERATURE SEARCH 

As indicated in chapter 1, there are quite a few 

choices the designer must make. The form of grammar to be 

used, how many passes through the code the compiler should 

make, the type of intermediate language, if any, to be 

employed, and the exact formulation of the symbol table are 

just a few of the numerous decisions involved. It seems 

logical, therefore, that before deciding anything, an 

examination of what other compiler writers have used, and 

their justification for using it should be undertaken. 

A description of the construction of a lexical analyzer 

can be found in Aho and Ullman(1), Kernighan and Pike(4), 

and Barrett and Couch(10), but the construction of the 

lexical analyzer is so much simpler than the syntax analyzer 

that there is not much to report. A discussion of the pros 

and cons of automating this rather than hand-coding is found 

in Kernighan and Pike(4) and the Lex manual(3). Probably the 

best support for automation is in Johnson(B). 

The rest of compiler design is not so straightforward. 

Limiting the scope of examination only to Pascal compilers 

still results in a wealth of material written. Waite and 

Goos(5) describe the first Pascal compilers, Pascal-P and 

Pascal-8000, which were completed in 1973-4. Pascal-P 

11 
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produces code for a generalized stack machine, and Pascal-

6000 for the CDC 6000 series computer. These were single 

pass, recursive descent parsers, written in Pascal. There 

was no explicit symbol table; symbols were stored as packed 

character arrays. This symbol table organization slows 

access time, and may require more space for searching than a 

symbol table, thus it does not represent the best choice for 

identifier storage. A discussion of the Pascal-8000 and its 

relation to the standard is found in Jensen and Wirth(10). 

Another Pascal compiler was the IBM 360/370 bootstrap 

described by Russell and Sue(11). They took the original 

Pascal compiler on a CDC 8000, and rewrote the code 

generator to produce object code for the target IBM 360. 

Then they rewrote it in PL.I, a language that already 

existed on the IBM machine. This produced a compiler for 

Pascal that was inefficient, but could be used to translate 

the Pascal code for the original CDC compiler. Once 

translated, the resulting Pascal compiler produced 

translations of an acceptable caliber. This is a good 

example of cross-compilation, which is the basis of the 

project discussed in this paper. 

Further examples of bootstrapping compilers can be 

found in Anklam, et. al. (9), and and Grasse-Lindemann and 

Nagel(12). The latter contains an accounting of just how 

much work a sizable compiler requires; their bootstrap of 

the Pascal-P compiler to a DECsystem-10, and subsequent 

additions to make it a more attractive language for general 

purpose usage took about 2 1/2 man years of effort. The 
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smaller task of writing a compiler for the Aha and Ullman(l) 

subset seems a more reasonable project for a single person. 

The idea of using a relatively small language is 

justi£ied £urther in the so£tware principles outlined by 

Richard and Ledgard(13). They argue that a language should 

be simple, rather than complicated with extra structures; 

and limited in size. 

Although good descriptions of the general principle of 

syntax analysis and the related topic of generating 

intermediate code exist in many texts on compiler writing, 

Aha and Ullman(l) take a generalized theoretical approach to 

the topic that is especially use£ul in bootstrapping to a 

new machine. Several other papers, including Beatty(14), and 

DeRemer and Pennello(15) explore the design, construction, 

and veri£ication of the properties of grammars. 

The design o£ Pascal compiler symbol tables has 

undergone quite a transition since their inception. The 

Pascal-P compiler had no symbol table as such. Knuth's 

analysis(16) of performance indicates that a hash-table 

based system would produce the best lookup-performance, 

although would require more space than other schemes. This 

choice is defended by Barrett and Couch(?), who further 

propose a stack access type storage for ease in exiting the 

different levels. Reiss(17) outlines a method for the 

automatic construction of an appropriate mechanism, based on 

the language specifications. 

For the generation of semantic actions, the theoretical 

approach in Aho and Ullman(l) clearly outlines appropriate 
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actions for most major features of any programming language. 

Other discussions may be found in Waite and Goos(5) and 

Barrett and Couch(?). The former contains a detailed account 

of semantic analysis, or the examination of the input 

program £or conformity to the general semantics o£ the 

language.Their account includes such topics as type and 

level checking, which cannot be included in the grammar 

itself easily. 

Optimization o£ the code to improve performance can 

improve run time significantly. When Russell and Sue(11) ran 

their Pascal front end through the PLIX optimizing compiler, 

rather than the PL/I(F) compiler, its run time was three 

times faster. Optimization is certainly something desirable 

to include in a compiler, even though extra passes are 

required to achieve it. A general description of 

optimization techniques can be found in Aho and Ullmann(1). 

Davidson and Fraser(18) designed a peephole optimizer that 

examines t\JO and three instruction sequences to see if they 

can be replaced by more efficient code. Tannenbaum, et. al. 

(19) demonstrated that this sort of optimization could be 

even more effective when applied to the intermediate code, 

rather than the object code. 

Finally, a description of the architecture of the 

Commodore 84 may be found in the Commodore Reference 

Guide(20). The assembler to be used is described in Bush and 

Holmes.(21) This includes the description o£ the ROM 

routines that may be accessed by kernal jumps. 

The literature on cross compilers outlines many 
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techniques to use in constructing such a compiler. There is 

also documentation on writing machine language for home 

computers, but very little on the construction of compilers 

for small, single-user machines. Indeed, there are few 

sources that fully document the types of decisions involved 

in making a compiler except the texts on compiler writing. 

One of the aims of this project is to address more 

concretely, the design decisions made, and the reasoning 

behind them. 



CHAPTER III 

SYMBOL TABLE ORGANIZATION 

The-organization of the symbol table depends on a 

number of factors. including the amount of space available, 

the specific requirements of the target language and 

conveniences provided by the language and operating system 

of the front~end environment. One of the pecularities of a 

cross-compiler is that the contents of the symbol table are 

not available automatically to the target machine; any 

information necessary for the target code to execute 

properly must be downloaded with the code. This pecularity 

must be considered in choosing the organization and devices 

that create and manipulate the symbol table. 

In the organization of the symbol table for this Pascal 

compiler, there is sufficient memory available to the front 

end of the C1)mpiler that it is possible to create a static 

symbol table entry, keeping all of the information about the 

symbols readily available. This approach has the virtue of 

simplicity of code, for it eliminate~ the necessity £or 

several symbol table manipulation routines, consequently it 

is the approach used here. Because the name will not be 

discarded, it is stored as a field in the structure that 

defines the symbol, rather than in a separate array; 

although this choice was made on the basis of simplicity o£ 

16 
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code rather than efficient use of storage resources. 

Another issue to be addressed in the symbol table 

organization is the possible duplication of names in 

different procedures. Several options exist to ensure that 

the proper entry for a given symbol is accessed. Aho and 

Ullman's description of run-time storage allocation for 

ALGOL suggests that the entries for each procedure level be 

allocated space on a stack, and the stack be searched in 

reverse order of entry until the symbol is located. Since 

later entries will be closer to the top of the stack than 

previous declarations, the correct access is assured. One 

drawback to this approach, however, is that the entries for 

procedures at the same level should occupy essentially the 

same space on the stack. Since it is necessary to keep the 

entries for each procedure available for subsequent passes, 

this requires that all the entries be moved to some 

accessible location; Aho and Ullman suggest that the bottom 

of the stack array be allocated as an inactive area to hold 

these entries. 

This type of approach has several disadvantages. First, 

because the entries are on a stack, a good deal of linear 

searching would be necessary to locate a particular entry. 

Second, the entries must be located in a statically defined 

stack in order to implement the removal of entries when they 

no longer need to be available for reference. Since 

compilers should be able to handle efficiently very small as 

well as ~ery large programs, it is difficult to choose an 

array size that both is sufficient for a large program and 



not wastful for the requirements of a small program. Also, 

the necessity of moving entries from one area to another 

seems unattractive, for it requires several routines to 

maintain this storage stack. The requirements of this 

organization seemed unappealing in an examination of the 

resources of this compilers environment, so a different 

approach was taken to address these concerns. 

18 

Intuitively, the primary disadvantage of Aho and 

Ullman's scheme is the ineffiency of looking up a variable 

by searching the stack from the top down. Other data 

structures have much better overall access statistics than a 

stack. 0£ the choices, a hash table is best. It does 

require a fixed size array be set up, but if the entries in 

the hash table are simply pointers to locations where 

entries actually are found, then the space needed for this 

array is actually fairl~ small. Since the UNIX system has 

excellent facilities for the dynamic allocation of storage, 

only the amount of storage required for a given program 

needs be allocated. To resolve collisions, the entries are 

chained at each hash location, locating the most recent 

entry for each name as the closest to the table to make 

searching as efficient as possible. Although this chain must 

be searched linearly by following the links from one entry 

to the next, this is superior to searching through all the 

entries on a stack before acc~ssing the next level, and 

decreases search time by keeping the number of entries 

accessed before the corre~t entry is found to a minimum. 

Addressing the problem of the need to keep track of all 
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of the declarations for a given procedure added two more 

details to the symbol table. The £irst was an array to point 

to the entries for each procedure. As a procedure is 

entered, it is assigned a unique procedure number, and once 

the. first symbol for that procedure is encountered, the 

array element corresponding to that level number is set to 

point to the address of that particular entry. An extra 

field is in each entry to allow each subsequent entry to be 

chained to the last entry made. This chain can be followed 

easily when the procedure is ended to remove these inactive 

entries from the chains for the hash table while still 

leaving them accessible from the chains in the procedure 

table. This accessibility keeps the symbols available for 

use during the second pass when they may be used to 

calculate storage locations on the target machine. 

In addition to the address of the symbols for the 

procedure, the procedure array entries have a field to 

determine whether that procedure is active at a given time, 

a field to keep track of the total storage requirements for 

that procedure, and an array of procedures that were active 

at the time the procedure was entered. The latter is 

commonly re£erred to as a display. These were added because 

the language being compiled requires dynamic runtime storage 

allocation to support recursion, and these fields will 

supply information to the code generator to enable this 

dynamic allocation to be done. 

The symbol table mechanism defined above functioned 

well except in one area. In Pascal, all variables must be 
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declared, followed by all procedure declarations, followed 

by code. Since the code may be separated £rom the 

declarations by other declarations, the procedure number is 

not accessible when temporary variables and constants £rom 

the code must be installed during compilation o£ the code. 

The remedy £or this difficulty is interposing a level array 

between the procedure number array and the symbol table. The 

entries in the level table are the procedure numbers. As a 

procedure definintion is encountered, it is assigned a 

unique procedure number which is installed in the level 

table at the current level. The procedure table pointers are 

accessed through this level reference. Having this level 

table is advantagous when creating the display at run-time, 

as it is possible to determine and record the surrounding 

procedures for an array during the initial analysis. The 

level can be decremented when the erid of the procedure 

definintion is encountered. 

All the reserved words for the language are installed 

in the symbol table initially, to eliminate the possibility 

of redeclaration of these key words. Other words are 

installed in the symbol table as encountered. 

Having defined the mechanisms, the entry itself must be 

considered. The basic elements of the entry are the name, 

the type and the value. All are installed statically. The 

procedure number is also necessary to ensure correct access 

when searching for a reference to a variable or procedure. 

Because of the mechanism, two pointers were also included, 

one for the chain from the hash table, and the other from 
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the procedure. 

The symbol table, therefore, is as shown in Figure 2. 

The structure of the table addresses the concerns of 

efficiency of symbol look-up, and retention of the 

appropriate information for code generation. It basically 

consists of a hash table whose entries.are pointers to nodes 

holding the informa~ion about the symbols. These nodes are 

also threaded to a procequre counter to allow them to be 

marked as inactive when a procedure is exited. Storage 

requirements for each procedure are kept in a separate 

table. 
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CHAPTER IV 

RUN-TIME STORAGE ADMINISTRATION 

One of the difficulties with a cross-compiler is 

that the symbol table and all other descriptors 

generated during the -lexical and syntactic analysis are 

not readily available to the run-time environment. Since 

the subset of P~scal used by this compiler allows 

recursion and requires a dynamic storaee allocation 

capability, some of the information stored by the front 

end of the compiler must be passed to the target 

machine. Specifically, the table of storage requirements 

for each procedure, along with its display vector, and 

the location of any static variables referenced by the 

procedure should be available. 

The generated code for the microprocessor must 

contain both the information required for this storage 

allocation, and the routines to manipulate it. There are 

several options for providing this. The routines could 

be stored in a separate file accessible to the 

microprocessor, but then the user would be compelled to 

load routines prior to run time, in a linking phase. The 

compiler front end would still have to provide the 

templates for procedure storage requirements and 

addresses for static storage locations. Another option, 
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at the expense o£ slightly more time £or translation, is 

to have the compiler code generator regenerate these 

routines £or each compilation, and include them with the 

code generated £or the program being compiled. This 

option is less demanding o£ user interaction, and thus 

simpler. The storage requirements £or each procedure can 

be computed during the first pass, and be allocated via 

code included in the main body o£ the program. Since the 

routines discussed are small, the second approach is the 

one used £or this compiler. 

Another complexity in storage allocation arises in 

the area o£ addressing. All formal parameters £or this 

compiler are accessed by the call by reference 

technique. During dynamic storage allocation, a quantity 

in a given storage location can either be a temporary 

parameter or the address o£ some other location in the 

environment o£ the procedure. The normal method £or 

dealing with accessing variables in other storage 

locations is to use some sort o£ indirect addressing, by 

putting the base address o£ the routine containing the 

parameter in question into a register. Unfortunately, 

the instruction set of the 6510 has very limited 

indirect addressing capabilities. First, the registers 

on the 6510 are only 8 bits, and addresses are 16 bits, 

so cannot be put in a register. The only option for 

doing an indirect address is to place the address to be 

accessed in so.me location in the zero page of the 

machine memory; load the offset o£ the variable being 
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accessed in the Y register, then use one of the few 

indirect indexed instructions. Zero page is 

approximately 99% full, though. Most of the locations 

are occupied by parameters required by the operating 

system and basic routines. There are a few locations 

available; specifically, locations 251-255 are reserved 

for the user. By using the bottom two locations for the 

current stack pointer, and the second location for the 

address of another block being accessed, indirect 

addressing is possible, though not neat. This is 

recognized as an area where performance could be 

improved by some compiler optimization. 

Storage manipulation is accomplished by the simple 

expedient of storing the current stack pointer in an 

easily accessible location in page zero. When a 

procedure is called, this value is updated via code 

generated from the procedure storage requirements 

calculated in the first pass. The level of the procedure 

is also available from the first pass, and is passed in 

the code to determine which values from the display of 

the calling procedure need to be copied onto the new 

storage block. 
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CHAPTER V 

SEMANTIC ROUTINES 

The first pass o£ the compiler is done via the YACC

generated parser. One o£ the advantages o£ YACC, in addition 

to simplifying construction o£ a parser £rom the grammar, is 

that it provides a built-in stack to hold values that can 

be returned £rom the lexical analyzer. The stack can be 

redefined, but i£ it is not, it is o£ type inte~er. The 

value stack runs concurrently with the token stack and is a 

very convenient place to keep the locations o£ the symbols 

that hold various parts o£ the rule durin~ translation. The 

difficulty is that since the symbols were allocated 

dynamically, they are located via a pointer which cannot be 

stored directly on a stack o£ type inte~er. One remedy £or 

this would be to put the hash location, which is en inte~er, 

on the stack and at the time that the symbol must be 

accessed to find it £rom its hash address. This would 

require a bit o£ searchin~ which could be eliminated i£ the 

address of the symbol node could be directly stored on the 

stack. C provides £or this sort o£ coercion, using a cast to 

specify the type of a value, when it is assigned to a 

variable o£ a different type. By using casts the pointer 

value is stored on an inte~er stack, and can then be 

referenced when needed, and coerced back into an address, i£ 
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necessary. 

The grammar itself provides other instances where the 

stack is useful. Relational operators can be treated in the 

same manner as far as semantic routines, but must be 

distinguishable to generate the appropriate quadruple. This 

is accomplished by returning the same value to the token 

stack for all relational operators and letting the value on 

the value stack hold the particular symbol. This is also 

true of the classes of additive operators and multiplicative 

operators. 

The original grammar required some alteration to 

conform to standard Pascal. The grammar, as written, allows 

algeb.raic combination of arithmetic and Boolean expressions, 

which is not allowable in Pascal. To eliminate the 

possibility of this sort of construction, a flag could be 

set in the semantic routines, but this is messy. At the 

expense of slightly more complexity in the pushdown 

automaton the two classes can be differentiated in the 

grammar rules, and thus eliminate the recognition of 

unallowable constructions. This caused another revision to 

separate the logical operators, and the resulting Boolean 

expressions by their application. 

One other revision was to eliminate the unary plus. 

Since this does not have much use in any language, it was 

removed. The unary minus was included in the arithmetic 

expressions. 

In other cases distinction via grammatical revision 

seemed inappropriate. Declarations of arguments to 
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procedures and £unctions are the same as the declarations in 

the program, but they must generate a different set o£ 

quadruples. To do this, a £lag is set in the grammar when a 

subroutine header is set. The value o£ the £lag determines 

whether a declaration generates a quadruple or a symbol 

table entry. 

In summary, the semantic routines are based on compiler 

writing concepts outlined in several texts in the .field. The 

grammar itself was slightly revised to accomodate the 

conventions o£ standard Pascal. Distinctions not possible 

£rom the grammar as written are resolved by setting flags. 

Output o£ this section is a set o£ quadruples that represent 

the semantic content o£ the translated code. 



CHAPTER VI 

CODE GENERATION 

Writing the code generation phase of a compiler is a 

nebulous task. There is not much written about ~eneralized 

techniques for this task, since each machine has its own 

unique instruction set. It is almost entirely left to the 

designer to use the assets and liabilities of the particular 

machine that is the compiler's target. 

Home microcomputers, in particular, are a rather 

interesting environment for a compiler. A home computer is 

designed by the manufacturer to stand alone, and to contain 

all that is necessary to operate the machine for the averaee 

home user to do wo unassisted. It contains a number of 

resident routines in its ROM to accomplish such tasks as 

input, arithmetic, and output and a basic language 

interpreter, in addition to the operatine system. A table of 

the memory map is shown in fieure 3. 

There are a number of ways of approachine dealing with 

these utilities. All but the necessary operatine system 

routines may be overwritten by resettine the pointers that 

determine what space is available to be used for machine 

language routines. In particular, the basic interpreter may 

be dispens.ed with fair 1 y easily. In e 1 iminating this, the 

code generated by the compiler must supply all the 
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routines that are necessary for language functions. 

Ther~ were enough good routines available in the Basic 

interpreter to sacrifice the space it requires. Preserving 

the Basic interpreter has the added advantage that there are 

many string and function subroutines that could be 

integrated into the compiler with ease, by just setting up 

the proper jumps when generating code from the quadruples. 

These subroutines are not strictly part of standard Pascal, 

but have been included in many modern versions, such as the 

Waterloo Pascal compiler, and would enhance the language. 

The Kernal ROM routines are a collection of utilities 

that are primarily I/0. The philosophy of the Kernel is that 

the location o~ these essential I/0 routines should be left 

up to the manufacturers preference, so the location of the 

subroutine itself is not fixed, but the location of the 

address of the subroutine will always be found in the same 

spot in a jump table. If a manufacturer decides to double 

memory, the I/0 routines can be located to a convenient 

place, and not take up space in the middle of a chunk of the 

work area. When the kernal jump table is used, the code may 

be altered more easily to run on another machine with the 

same microprocessor base. This asset was relatively 

unimportant here, because in deciding to include the 

contents of the Basic interpreter in the generated code, the 

code ~Jill be specific to the Commodore 84 8510 and not 

portable. 

The remaining space, not required by the operating 

system or by the kernal and Basic ROMs is available to hold 
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the contents o£ the compiled code. There is approximaltly 

80% o£ the B4K left, that is managed by the storage 

management techniques in the previous chapter. One aspect of 

storage management that affected the code generation in a 

speci£ic way was the decision to ~hoose a fixed starting 

location £or all the code in the program. This simplified 

calculations during code generation, and is certainly easier 

on a home computer, where there is only one user, so no 

allowances must be made £or anything in memory except the 

requirements of the program currently_running. 

The workspace for programs is memory locations 2K to 

40K which are used by changing the contents o£ the zero page 

memory location that holds the location of the top of 

memory. Normally all of this space is allocated as work 

space for Basic programs, but the actual upper and lower 

limits on the size of this space required by Basic is 

defined by the contents of two memory locations. If the 

contents of the top of memory pointer is altered, the space 

is deallocated from Basic, and available to hold machine 

language programs, so this is a good location for the 

compiled code. 

Other locations are available. The 4K bytes from 

address 49152 are unused, so make a good location to hold 

the storage stack. Choosing the fixed location 49152 as the 

start of the stack allows the front end of the compiler to 

generate addresses more easily, even though all procedure 

calls generate storage space dynamically. A few ot~er 

routines are stored in the cassette buffer at location 828. 
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One of the difficulties in code generation for home 

computers is the lsck of tools usually found on lsrger 

machines, nsmely editors snd linking loaders. The 

orientation of stsnd-slone home computers is thst they need 

to run only programs entered vis the resident monitor, which 

puts bytes of memory, or through the Bssic interpreter, 

which hss some editor functions, but is unsuitable for dsts 

entry for srbitrsry files. This is not usually s problem for 

spplicstions thst execute solely on the 6510, but mskes 

down-loading from another computer difficult. A losder snd s 

dsta entry program must be provided to facilitate these 

functions. The kernsl routines mske it fairly essy to write 

s program thst will input s string of numeric digits from 

either the keyboard, or s disk file, store these digits, snd 

then use the routine st address 48371 in the Bssic ROM to 

convert the string to s floating point number. This csn be 

converted, using the routine at address 48282 to an integer 

value, if this is the necessary form. 

The choice to use the Basic ROM routines slso dictated 

the size of real numbers and integers. The Basic routines 

for numerical manipulation use locations in zero page as two 

floating point sccumulstors, snd the Basic ROM routines mske 

extensive use of these locations. Since the floating point 

representation in the floating point accumulator (referred 

to as the FAC) and the alternate floating point accumulator 

(the AFAC) are 6 bytes, the resl variables and constants in 

the generated code sre also 6 bytes. Likewise, the Basic 

routines assume 2 byte integers,· snd this convention is used 
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in the Pascal compiler. 

The downloading of the code itself presented another 

challenge. When the project was first conceived, it seemed 

that assembly code would be more readable, and generally 

easier to handle that machine code. After further analysis, 

it was determined that it is easier to output machine code, 

which could be downloaded via the terminal program available 

on the microcomputer. Because it is completely numeric, it 

requires no translation and can be easily loaded via a short 

Basic routine. It has the further virtue of being 

immediately executable. 

In summary, then, code generation for this 

microcomputer is not difficult, but the issues in 

transferring the code and required data are complex. The 

home computer is not designed to interface easily with other 

machines ~nd thus has few tools to make this easy. The 

programmer interested in cross-compilers must be concerned 

with loading and running the output of the compiler, and 

this can be difficult. 



CHAPTER VII 

SUMMARY AND CONCLUSIONS 

Conclusions £rom the Project 

The analysis o£ the requirements o£ a cross-compiler 

from a larger time-sharin~ computer to a home computer 

produced different difficulties than originally anticipated. 

In the course o£ this project it became apparent that the 

idea of bootstrapping a Pascal compiler for a home computer 

was not practical. The larger environment is too different 

than the 6510 environment, end the amount o£ effort to cause 

the environment to emulate the 6510 is substantial. Without 

this emulation, the output o£ the front-end will not produce 

usable code for the microcomputer. 

Future Work 

The construction of a compiler using the existin~ ROM on 

the 6510 is an interesting idee. If it were approached as a 

project that executes only on the 6510, it would eliminate 

the difficulties of code transferral encountered in this 

project. The front end could be manually translated from the 

C code that is produced by Yacc, and rewritten in 6510 

machine or assembly code. 

Anouther approach to future work would be to expand the 

compiler created in this project to include a more 
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complete subset of Pascal. This might involve the 

addition of multi-dimensional arrays, user-defined types 

and record types. The subset used in this project allows 

only variable parameters to arrays and functions, thus 

limiting the types of arguments that can be passed to 

subroutines. Adding this would not be trivial, as the 

complexity of code generation from parameter statements 

would be much more difficult than the single type of 

parameter passing allowed in this subset. 

There are features available in the Basic ROM 

routines in the 6510 that could be incorporated in a 

compiler o£ the sort addressed here, th?ugh the 

definition of Pascal does not include them. These come 

from the orientation of the home computer towards 

graphics and simplicity, and provide such utilities as 

graphics design, sound generation, and screen output. 

Basic also has functions to handle string manipulation 

easily. One of the shortcomings o£ standard Pascal is 

the lack of string-handling functions. A compiler 

including string-handling routines borrowed from Basic 

would not be much more di£ficult to write since the 

routines are already available, and would extend the 

usefulness of this compiler. 

More compilers for this microcomputer have become 

available since the inception of this project, so the 

original reason for approaching this project has become 

less important. There is always room for improvement in 

the field of compiler construction, though, and 



certainly the issue of compiler construction £or this 

particular microcomputer is not closed. 
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APPENDIX A 

USER GUIDE FOR THE COMPILER 

The £allowing are directions £or using the compiler 

developed during this project. 

1. Enter the desired Pascal £ile and store as a 

£ile on the Concurrent XF-610 

2. Run the £1le Compascal, using the Pascal program 

£ile as input, and designating an output £ile, to 

store the assembly code output o£ the compiler. 

3. Download the assembly code to a £loppy disk 

drive attached to the Commodore 64 computer. 

4. Load the assembly code £rom the disk £ile in the 

memory of the Commodore 64. 

5. Load the assembler £rom the file LADS, and run 

~he code through the assembler to develop an 

executable program, also stored on disk. 

6. Load and run the executable module. Data can 

either be entered on the keyboard or stored 

separately in a £ile. Output is displayed to the 

video screen attached to the Commodore 64. 
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APPENDIX B 

SAMPLE PROGRAMS USED FOR VERIFICATION 

program one (input, output); 
var 
i: integer 
d:array [1 .. 10] of real; 

begin 
i 1 = 1; 
while i<=10 do 

begin 
read(al:.'ray[i] ); 
write(array[i]; 
end 

end. 

program two (output); 
var 

a: integer; 
procedure reverse (var £:integer); 

begin 

end; 

if f = 0 then 
write( f) 

else 
begin 

f := f-1; 
reverse( f) 

end; 

begin {main ~rogram} 
a : = 10; · 
reverse (a); 

end. 
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program three (output); 
var 

a,b: integer; 
c, d: rea 1; 

begin 
a 
b 
c 

: 

: 
: 

= 
= 
= 

1; 
a; 
3. 2 

d := a+ (b mod a) div 4 + c; 
write (a,b,c,d); 

end. 

program four (output) 
var 

a,b: integer; 
c,d: real; 

begin 
read ( a, b, c, d) ; 
if a < c then 

a := a* c; 
if d <-0.0 then 

while d <= 0.0 do 
d := d + 1.0; 

end. 
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