
AN APPROACH TO LANGUAGE IMPLEMENTATION

AND CODE GENERATION

FOR MICROCOMPUTERS

By

ANNE MARIE BUTLER
II

Bachelor o£ Arts

Harvard University

Cambridge, Massachusetts

1978

Submitted to the Faculty of the
Graduate College o£ the

Oklahoma State University
in partial £ul£illment o£

the requirements £or
the Degree o£

MASTER OF SCIENCE
May, 1987

~e-s\s.
\qB1
"P:>~ 8So._
c.Op.'~

AN

AND CODE GENERATION

FOR MICROCOMPUTERS

Thesis Approved:

Thesis Adviser <

Dean o£ the Graduate College

ii

1275592 1

PREFACE

A cross-compiler £or ~he Pascal language was

developed. The compiler development £acilities on the

Concurrent XF-610 Unix-based system. The output o£ the

compiler is assembly language code £6r the Commodore 64

aicrocomputer. The code was then down-loaded to the

Commodore, and run to veri£y the proper £unctioning o£ the

compiler.

I have depended on a great number o£ people £or

support durin~ the duration of this project. I especially

want to thank my major adviser, Dr. G. E. Hedrick£or his

support, advice and input to the project. I also appreciate

the kindness o£ my two other committee members, Dr. D. W.

Grace, and Dr. K. M. George, £or £illing in £or the two

committee members who were unable to participate in my

thesis de£ense. I also would like to thank my £riends,

Terry Johnson and Judy Edgmand, £or listening to me, and

the moral and £inancial support o£ the computer science

department at Oklahoma State University.

Special thanks are due to my £amily, especially my

parents, Dr. and Mrs. W. G. McKechnie and my parents-in

law, Mr. and Mrs. L. W. Butler, Jr. £or their invaluable

help in taking care o£ my two sons, Thomas and James, and

giving me the £reedom to pursue this project. I also thank

iii

my small sons for their patience when I had to work. And,

finally, my deepest appreciation to my husband, Lindsay W ..

Butler III, for putting up with the separation and

difficulties that livin~ apart has caused.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

Definition of the Problem................... 1
The Language Subset 4
The Compiler. 4
6510 Organization and Machine Language 8
Summary of the Project 10

II. LITERATURE SEARCH 11

III. SYMBOL TABLE ORGANIZATION 16

IV. RUN-TIME STORAGE ADMINISTRATION 23

V. SEMANTIC ROUTINES ... ·- 26

VI. CODE GENERATION. 29

VII. SUMMARY AND CONCLUSIONS 35

Conclusions from the Project 35
Future Work...... 35

BIBLIOGRAPHY. 38

APPENDICES. 40

APPENDIX A•........................ 40
APPENDIX B ·~ . 41

v

LIST OF FIGURES

Figure Page

1. LALR(l) Grammar £or a Subset o£ Pascal 2

2. Symbol Table Organization 22

3. Memory Map £or the Commodore 64 30

vi

CHAPTER I

INTRODUCTION

Definition of the Problem

The purpose of this project is to explore the design

and implementation of languages for a 6510 microprocessor on

the Commodore-64 home computer. At present time there is a

paucity of good programming language implementations for

this particular machine; in most cases the programmer must

choose between Basic and assembly language. Since the former

tends to be under-powered and inefficient, and the latter

makes coding exceptionally tedious, it is desirable to have

a language between these two extremes.

There are a variety of high-level languages in use

today including AdaR, (R Ada is a registered trademark of

the U.S. DOD,Ada Joint Projects Of1ice (AJPO)) Pascal, PL/I,

Cobol, and Algol68. Any of these would extend the usability

of this particular machine. Unfortunately, implementation of

any of these languages is not a trivial programming task. To

simplify this first effort to address this problem, a

predefined grammar, outlined by Aho and Ullman1, will be

used. What is contained in this grammar is a useful subset

of the Pascal language. The LALR(l) grammar for this subset

is shown in Figure 1.

1

program:
prograa IDENTIFIER (id-list);
declarations
subprogram-declarations
compound statement

id-list:
IDENTIFIER
: id-list, IDENTIFIER

declarations:
var declaration-list

declarations-list:
id-list:type
: declaration-list id-list:type

type:
standard type
: array type

standard type:
integer

: real
array-type:.

arra7 [CONSTANT .. CONSTANT] OF standard-type
subprogram-declarations:

subprog~am-declarations

subprogram-declaration

subprogram-declaration:
subprogram-head
declarations
compound-statement

subprogram-head:
£unction IDENTIFIER arguments:
result standard type;
: procedure IDENTIFIER arguments

arguments:
(parameter-list)

parameter-list:
id-list : type
: parameter-list; id-list:type

compound-statement:
begin
statement-list

end
statement-list:

statement
: statement-list ; statement

Figure 1. LALR(l) Grammar £or a Subset o£ Pascal

2

statement:
elementary-statement

if expression then restricted-statement
else statement

if expression then statement
: while expression do

restricted-statement:
elementary-statement

if expression then restricted-statement
else restricted-statement

. : wh:lle expression do restricted-statement
elementary-statement:

variable ASSIGNOP expression
procedure-statement

: compound-statement
variable:

IDENTIFIER
IDENTIFIER expression

procedure-statement:
IDENTIFIER

IDENTIFIER (expression-list)
expression-:- list:

expression
: expression-list expression

expression:
simple-expression
: simple-expression RELOP simple-expression

simple-expression:
term

sign term
: simple-expression ADDOP term

term:
factor

term MULOP factor
factor

variable:
CONSTANT
(expression)
function-reference
not fact.or

function-reference:
IDENTIFIER

IDENTIFIER expression-list)
sign

Figure 1. (Continued)

3

4

The Language Subset

Although the subset violates none of the conventions for

full Pascal, there are several omissions which simplify the

subset. The only type declarations possible are integer,

real and array. Full Pascal has a variety of types.

including user definable types2. In the subset, records,

structures and sets are omitted and arrays are limited to

one dimension. Block structures, with their own variable

declarations, are also not included. Since many of the

operations that would be made easier by record, set or

multi-dimensional array can be done by intellig~nt use of

one dimensional arrays, and block code is never a necessity,

these omissions are only minor annoyances. They could be

included with some restructuring of the compiler mechanisms,

at the expense of making the compiler larger. The subset

does cover many of the more interesting features of a high

level language. These include functions and procedures,

recursion, parameter passing, and conditional loops. The

subset is upwardly compatible with full Pascal, with the

revisions noted later.

This compiler therefore could be useful for bootstrapping a

more complete Pascal for this machine.

The Compiler

The compiler consists of three major parts: first is

the lexical analyzer, to recognize the tokens of this

language. For a language of any size, the lexical analyzer

5

usually is a simulation of a finite state automaton. It may

either be written by the programmer or be engineered with

the use of a lexical analyzer constructor such as LEX,

available on UNIX based systems3. Although Kerriighan and

Pike4, and Waite and Goos5 indicate that the programmer can

usually write shorter and more efficient analyzers than

those that are mechanically produced, it is far simpler to

let LEX do most of the work, so this compiler u~es a LEX

engineered lexical analyzer. The second part of the compiler

is the syntactic analyzer. This is where the code is

analyzed for conformity to the rules of the grammar defined

for that language. This is another sort of recognizer, a

pushdown automaton. The grammar of the language provides

rules for reducing subtrees of related nodes. If the program

conforms to the grammar, the final reduction is to the root

of the tree, and a correct program is recognized by the

automaton. The automaton contains a stack for storing

incompletely recognized parts of rules. Once a reduction is

made, part of the stack is replaced by the left hand side of

the grammar rule, until all that is left on the stack is the

root, or start symbol of the grammar. For a language of any

size, this automaton is a sizable piece of code. The

programmer may choose to write this by hand, but using an

automatic constructor such as YACC, also available on UNIX

systems6, is an alternative. Even if the lexical analyzer is

handwritten to increase efficiency, the the amount of

programming time consumed by coding this phase manually make

it much more attractive to automate.

6

It is during the syntactic analysis phase that the

incoming code is trans£ormed into another representation.

This transformation is acomplished by semantic actions. In

YACC, semantic actions may be appended to the grammar rules.

These actions are executed just prior to reduction and

produce the transformation o£ the input program some form

more applicable to the target. The simplest transformation

is to have the output o£ the syntax analyzer be the output

o£ the program being translated. In this case, no £urther

transformation is necessary as the output o£ the program is

immediately available. Kernighan and Pike4, demonstrating

the £unction o£ YACC on the UNIX system create a series o£

demonstration compilers, and the first o£ these, hocl, does

this. Unfortunately, this simplistic approach is only

workable when the value o£ the output can be determined £rom

the input directly. It is not useful £or languages with

control-flow constructions such as IF-THEN statements. The

di££iculty with th~se constructions is that the position of

the next statement to be executed is not known at the time

that the IF-THEN statement is being analyzed.One method o£

coping with this is to have the syntax analyzer generate

incomplete code, which can then be "fixed up'' with the

address o£ the next statement after that statement is

discovered.

The code that the syntax analyzer generates may be

either executable code £or the target machine, or some

variety o£ intermediate code that can be interpreted to

produce executable code. There are several other choices,

including another high level language, and tables for a

linking loader. The latter, according to Barrett and Couch7

is the form used by many commercial compilers because it

allows segments of a large program to be compiled

separately, which cuts costs fo~ debugging. This technique

assumes the existance and availability of a linking loader,

however, and such is not readily available for tha 8510.

Compiling to another high level language has the

advantage of simplicity, but it masks the function of the

actual machine. In addition, program performance would be

dependent on the compiler £or the target language. Since

some constructions are difficult to translate from one high

level language to-another ~he resulting program might

£unction ine££iciently.

Machine code has the advantage o£ eliminating one step

in the compilation process; however, in doing so, the

possibility o£ rewriting the output code to improve

e££iciency is sacri£iced. It does allow the program to be

executed immediately, but makes it more difficult to

discover and to correct any errors in the code generation

process without disassembling the instructions to determine

where and why the error happened.

7

Generating intermediate code that may be manipulated in

the interpretation step is a more generalized approach. Not

only may the e££iciency o£ the £inal code be improved, but

it also may be easily changed to run on another machine by

altering the interpreter?.

All varieties of intermediate code require further

8

interpretation to produce executable code. There are a

number of different types of intermediate code ranging from

fairly elementary to quite detailed. One simple approach is

to have the syntax analyzer produce modules which consist of

an operator, up to two operands, and a location for the

result o£ the operation. These are called three address

modules, or quadruples, referring to the four fields in the

module. They have the adv~ntage of being easily

generalizable, but need a fair amount of reinterpretation to

produce object code. Other choices include P-code, which is

quite similiar to Pascal itself8, the table building

language, TBL, described by Anklam et.aJ.,9, and some

variety of assembly language or machine code £or the target

machine. Since the main aim of this project is to produce

code to be used to bootstrap a more nearly complete

compiler, the intermediate language is ~uadruples for

generality. The target language is 6510 assembly code

because it gives most o£ the speed and power of machine code

with a degree of readability that makes verification of the

compiler functions easier.

6510 Organization and Machine Language

As discussed above, the third stage of this compiler is

translation of the generated quadruples into code for the

target machine. The interpreter is responsible for choosing

a starting address for the code. Since the 6510, as many

microprocessors,must support many functions such as screen

display, buffers for printing end date transfer in e

relatively smell memory, the program must be placed so that

it does not interfere with any function that the programmer

needs at the time that program is to be executed. In

addition, the interpreter must take care of such issues as

register management, and code optimization.

9

Because the target machine is a microprocessor, it is a

fairly simple machine. The 6510 has 64K of available RAM,

some of which is unusable because it is the fixed location

for the screen, disk end printer utilities. It has an

accumulator A and two registers: X end Y. All are 8 bits.

The two registers differ slightly in their use for indirect

addressing, but otherwise are the same. Having so few

registers to use limits their usefulness for register

optimization. The small size of the accumulator forces real

number calculations to use memory locations as accumulators,

consequently real number arithmetic is relatively slow.

The instruction set for this machine is also somewhat

limited. The only arithmetic functions are addition and

subtraction of the contents of the accumulator with another

number. Division, multiplication, mod and all other

arithmetic functions must be supplied by the code generator.

One rather interesting feature of this machine, however, is

the availability of routines in the kernel. The kernel is a

set of machine language subroutines, primarily I/0

utilities, that are grouped together. The term kernel refers

to those routines that may be located in different locations

in the different varieties of 6502 microprocessor (including

10

the 6510 discussed here), but whose address is guaranteed to

be in a specified location. These routines provide various

utilities for Basic when the computer is running under that

language, and many of these routines may easily be linked

into Assembly language programs. Some of the kernel routines

ass~st in data entry from the keyboard or an external

storage device, in this case, a floppy disk drive. Other

routines are available in the Basic ROM, and these routines

do data conversions, It is not the intent of this compiler

to rewrite Basic, but the availibility of these subroutines

in ROM certainly simplify much of the translation, and would

be of great help in adding more features to the Pascal

subset.

Summary of the Project

In summary, the project is to design and to execute a

cross-compiler £or the subset of Pascal described by Aho and

Ullmanl. The compiler will use the versions of LEX and YACC

available on the Concurrent XF-610 research computer to

construct a parser and to generate quadruples which then

will be translated, using a code generator wrttten in C,

also on the Concurrent XF-810. The output of the interpreter

will be 8510 assembly code, which ~ill then be transferred

to a Commodore 84 home computer £or verification.

CHAPTER II

LITERATURE SEARCH

As indicated in chapter 1, there are quite a few

choices the designer must make. The form of grammar to be

used, how many passes through the code the compiler should

make, the type of intermediate language, if any, to be

employed, and the exact formulation of the symbol table are

just a few of the numerous decisions involved. It seems

logical, therefore, that before deciding anything, an

examination of what other compiler writers have used, and

their justification for using it should be undertaken.

A description of the construction of a lexical analyzer

can be found in Aho and Ullman(1), Kernighan and Pike(4),

and Barrett and Couch(10), but the construction of the

lexical analyzer is so much simpler than the syntax analyzer

that there is not much to report. A discussion of the pros

and cons of automating this rather than hand-coding is found

in Kernighan and Pike(4) and the Lex manual(3). Probably the

best support for automation is in Johnson(B).

The rest of compiler design is not so straightforward.

Limiting the scope of examination only to Pascal compilers

still results in a wealth of material written. Waite and

Goos(5) describe the first Pascal compilers, Pascal-P and

Pascal-8000, which were completed in 1973-4. Pascal-P

11

12

produces code for a generalized stack machine, and Pascal-

6000 for the CDC 6000 series computer. These were single

pass, recursive descent parsers, written in Pascal. There

was no explicit symbol table; symbols were stored as packed

character arrays. This symbol table organization slows

access time, and may require more space for searching than a

symbol table, thus it does not represent the best choice for

identifier storage. A discussion of the Pascal-8000 and its

relation to the standard is found in Jensen and Wirth(10).

Another Pascal compiler was the IBM 360/370 bootstrap

described by Russell and Sue(11). They took the original

Pascal compiler on a CDC 8000, and rewrote the code

generator to produce object code for the target IBM 360.

Then they rewrote it in PL.I, a language that already

existed on the IBM machine. This produced a compiler for

Pascal that was inefficient, but could be used to translate

the Pascal code for the original CDC compiler. Once

translated, the resulting Pascal compiler produced

translations of an acceptable caliber. This is a good

example of cross-compilation, which is the basis of the

project discussed in this paper.

Further examples of bootstrapping compilers can be

found in Anklam, et. al. (9), and and Grasse-Lindemann and

Nagel(12). The latter contains an accounting of just how

much work a sizable compiler requires; their bootstrap of

the Pascal-P compiler to a DECsystem-10, and subsequent

additions to make it a more attractive language for general

purpose usage took about 2 1/2 man years of effort. The

13

smaller task of writing a compiler for the Aha and Ullman(l)

subset seems a more reasonable project for a single person.

The idea of using a relatively small language is

justi£ied £urther in the so£tware principles outlined by

Richard and Ledgard(13). They argue that a language should

be simple, rather than complicated with extra structures;

and limited in size.

Although good descriptions of the general principle of

syntax analysis and the related topic of generating

intermediate code exist in many texts on compiler writing,

Aha and Ullman(l) take a generalized theoretical approach to

the topic that is especially use£ul in bootstrapping to a

new machine. Several other papers, including Beatty(14), and

DeRemer and Pennello(15) explore the design, construction,

and veri£ication of the properties of grammars.

The design o£ Pascal compiler symbol tables has

undergone quite a transition since their inception. The

Pascal-P compiler had no symbol table as such. Knuth's

analysis(16) of performance indicates that a hash-table

based system would produce the best lookup-performance,

although would require more space than other schemes. This

choice is defended by Barrett and Couch(?), who further

propose a stack access type storage for ease in exiting the

different levels. Reiss(17) outlines a method for the

automatic construction of an appropriate mechanism, based on

the language specifications.

For the generation of semantic actions, the theoretical

approach in Aho and Ullman(l) clearly outlines appropriate

14

actions for most major features of any programming language.

Other discussions may be found in Waite and Goos(5) and

Barrett and Couch(?). The former contains a detailed account

of semantic analysis, or the examination of the input

program £or conformity to the general semantics o£ the

language.Their account includes such topics as type and

level checking, which cannot be included in the grammar

itself easily.

Optimization o£ the code to improve performance can

improve run time significantly. When Russell and Sue(11) ran

their Pascal front end through the PLIX optimizing compiler,

rather than the PL/I(F) compiler, its run time was three

times faster. Optimization is certainly something desirable

to include in a compiler, even though extra passes are

required to achieve it. A general description of

optimization techniques can be found in Aho and Ullmann(1).

Davidson and Fraser(18) designed a peephole optimizer that

examines t\JO and three instruction sequences to see if they

can be replaced by more efficient code. Tannenbaum, et. al.

(19) demonstrated that this sort of optimization could be

even more effective when applied to the intermediate code,

rather than the object code.

Finally, a description of the architecture of the

Commodore 84 may be found in the Commodore Reference

Guide(20). The assembler to be used is described in Bush and

Holmes.(21) This includes the description o£ the ROM

routines that may be accessed by kernal jumps.

The literature on cross compilers outlines many

15

techniques to use in constructing such a compiler. There is

also documentation on writing machine language for home

computers, but very little on the construction of compilers

for small, single-user machines. Indeed, there are few

sources that fully document the types of decisions involved

in making a compiler except the texts on compiler writing.

One of the aims of this project is to address more

concretely, the design decisions made, and the reasoning

behind them.

CHAPTER III

SYMBOL TABLE ORGANIZATION

The-organization of the symbol table depends on a

number of factors. including the amount of space available,

the specific requirements of the target language and

conveniences provided by the language and operating system

of the front~end environment. One of the pecularities of a

cross-compiler is that the contents of the symbol table are

not available automatically to the target machine; any

information necessary for the target code to execute

properly must be downloaded with the code. This pecularity

must be considered in choosing the organization and devices

that create and manipulate the symbol table.

In the organization of the symbol table for this Pascal

compiler, there is sufficient memory available to the front

end of the C1)mpiler that it is possible to create a static

symbol table entry, keeping all of the information about the

symbols readily available. This approach has the virtue of

simplicity of code, for it eliminate~ the necessity £or

several symbol table manipulation routines, consequently it

is the approach used here. Because the name will not be

discarded, it is stored as a field in the structure that

defines the symbol, rather than in a separate array;

although this choice was made on the basis of simplicity o£

16

17

code rather than efficient use of storage resources.

Another issue to be addressed in the symbol table

organization is the possible duplication of names in

different procedures. Several options exist to ensure that

the proper entry for a given symbol is accessed. Aho and

Ullman's description of run-time storage allocation for

ALGOL suggests that the entries for each procedure level be

allocated space on a stack, and the stack be searched in

reverse order of entry until the symbol is located. Since

later entries will be closer to the top of the stack than

previous declarations, the correct access is assured. One

drawback to this approach, however, is that the entries for

procedures at the same level should occupy essentially the

same space on the stack. Since it is necessary to keep the

entries for each procedure available for subsequent passes,

this requires that all the entries be moved to some

accessible location; Aho and Ullman suggest that the bottom

of the stack array be allocated as an inactive area to hold

these entries.

This type of approach has several disadvantages. First,

because the entries are on a stack, a good deal of linear

searching would be necessary to locate a particular entry.

Second, the entries must be located in a statically defined

stack in order to implement the removal of entries when they

no longer need to be available for reference. Since

compilers should be able to handle efficiently very small as

well as ~ery large programs, it is difficult to choose an

array size that both is sufficient for a large program and

not wastful for the requirements of a small program. Also,

the necessity of moving entries from one area to another

seems unattractive, for it requires several routines to

maintain this storage stack. The requirements of this

organization seemed unappealing in an examination of the

resources of this compilers environment, so a different

approach was taken to address these concerns.

18

Intuitively, the primary disadvantage of Aho and

Ullman's scheme is the ineffiency of looking up a variable

by searching the stack from the top down. Other data

structures have much better overall access statistics than a

stack. 0£ the choices, a hash table is best. It does

require a fixed size array be set up, but if the entries in

the hash table are simply pointers to locations where

entries actually are found, then the space needed for this

array is actually fairl~ small. Since the UNIX system has

excellent facilities for the dynamic allocation of storage,

only the amount of storage required for a given program

needs be allocated. To resolve collisions, the entries are

chained at each hash location, locating the most recent

entry for each name as the closest to the table to make

searching as efficient as possible. Although this chain must

be searched linearly by following the links from one entry

to the next, this is superior to searching through all the

entries on a stack before acc~ssing the next level, and

decreases search time by keeping the number of entries

accessed before the corre~t entry is found to a minimum.

Addressing the problem of the need to keep track of all

19

of the declarations for a given procedure added two more

details to the symbol table. The £irst was an array to point

to the entries for each procedure. As a procedure is

entered, it is assigned a unique procedure number, and once

the. first symbol for that procedure is encountered, the

array element corresponding to that level number is set to

point to the address of that particular entry. An extra

field is in each entry to allow each subsequent entry to be

chained to the last entry made. This chain can be followed

easily when the procedure is ended to remove these inactive

entries from the chains for the hash table while still

leaving them accessible from the chains in the procedure

table. This accessibility keeps the symbols available for

use during the second pass when they may be used to

calculate storage locations on the target machine.

In addition to the address of the symbols for the

procedure, the procedure array entries have a field to

determine whether that procedure is active at a given time,

a field to keep track of the total storage requirements for

that procedure, and an array of procedures that were active

at the time the procedure was entered. The latter is

commonly re£erred to as a display. These were added because

the language being compiled requires dynamic runtime storage

allocation to support recursion, and these fields will

supply information to the code generator to enable this

dynamic allocation to be done.

The symbol table mechanism defined above functioned

well except in one area. In Pascal, all variables must be

20

declared, followed by all procedure declarations, followed

by code. Since the code may be separated £rom the

declarations by other declarations, the procedure number is

not accessible when temporary variables and constants £rom

the code must be installed during compilation o£ the code.

The remedy £or this difficulty is interposing a level array

between the procedure number array and the symbol table. The

entries in the level table are the procedure numbers. As a

procedure definintion is encountered, it is assigned a

unique procedure number which is installed in the level

table at the current level. The procedure table pointers are

accessed through this level reference. Having this level

table is advantagous when creating the display at run-time,

as it is possible to determine and record the surrounding

procedures for an array during the initial analysis. The

level can be decremented when the erid of the procedure

definintion is encountered.

All the reserved words for the language are installed

in the symbol table initially, to eliminate the possibility

of redeclaration of these key words. Other words are

installed in the symbol table as encountered.

Having defined the mechanisms, the entry itself must be

considered. The basic elements of the entry are the name,

the type and the value. All are installed statically. The

procedure number is also necessary to ensure correct access

when searching for a reference to a variable or procedure.

Because of the mechanism, two pointers were also included,

one for the chain from the hash table, and the other from

21

the procedure.

The symbol table, therefore, is as shown in Figure 2.

The structure of the table addresses the concerns of

efficiency of symbol look-up, and retention of the

appropriate information for code generation. It basically

consists of a hash table whose entries.are pointers to nodes

holding the informa~ion about the symbols. These nodes are

also threaded to a procequre counter to allow them to be

marked as inactive when a procedure is exited. Storage

requirements for each procedure are kept in a separate

table.

33

U01~BZ1UB~~0 61qB~ 10q~hS ·:::; e~n111.:1

[---1

---J
318V .L 3;:.Hl03;)0Cid

[~~~~~~~~~]~-[~~~~~~~~~]~~ rrrrrrrrr rrrrrrrrr --------- ---------

r---------,
r ,- r ,- r ,- r r r ·
,.- ,- ,- ,- r ,""" r r r
rrrr,·rrrr
rrrrrrrrr
rrrrrrrrr
rrrrrrrrr

[---------] lrrrrrrrrr rrrrrrrrr ~- rrrrrrrrr
rrrrrrrrr rrrrrrrrr --------- ---------. ,,-,,-,-r,-rr

I ,-rrrrrrrr
I ,-rrrr,-rrr

[~~~~~~~~~J~-r~~~~~~~;.;l~-r~~~;~~??~ ccccccccc Lccccccccc:J [ccccccccc
[---------] ,-,,-,,-,-,,,
rrrrrrrrr ~- rrrrrrrrr
rrrrrrrrr rrrrrrrrr --------- ---------

1 r-,·,--r,-rrrr
I rrrr-rrrrr
Lccccccccc r ,- ,- ,-, {- r r rr
I r ,- ,- r ,- ,- ,- r ,- I
I rrrr,-,-,,,..,

r---------] !;.;:;:~;:~;.~~
l rrrrrrrrr ~-lrrrrrrrrr
rrrrrrrrr ~rrr·,-rrrlr L--------- ---------

,-{{(/-{{({ lrt- r ,-,-rrrr
ccccccccc

[---------] ,,-,-,,,,,,,
rrrrrrrrr ~-~''''''''' ,,,,,,,,, ((({{{({{ ---------· ---------,,,..,-,,,,,

t- ,- ,- ,- ',-'' r ,-,,-,,-,,-,,

''''''''' ~- ''''''''' ~- ({((((({{ r---------] [---------, l ~- ,- {-,-{-{{{{
Lccccccccc ccccc.ccccJ Lcc.ccccccc

S3GON
3l8V~

HSVH

CHAPTER IV

RUN-TIME STORAGE ADMINISTRATION

One of the difficulties with a cross-compiler is

that the symbol table and all other descriptors

generated during the -lexical and syntactic analysis are

not readily available to the run-time environment. Since

the subset of P~scal used by this compiler allows

recursion and requires a dynamic storaee allocation

capability, some of the information stored by the front

end of the compiler must be passed to the target

machine. Specifically, the table of storage requirements

for each procedure, along with its display vector, and

the location of any static variables referenced by the

procedure should be available.

The generated code for the microprocessor must

contain both the information required for this storage

allocation, and the routines to manipulate it. There are

several options for providing this. The routines could

be stored in a separate file accessible to the

microprocessor, but then the user would be compelled to

load routines prior to run time, in a linking phase. The

compiler front end would still have to provide the

templates for procedure storage requirements and

addresses for static storage locations. Another option,

23

at the expense o£ slightly more time £or translation, is

to have the compiler code generator regenerate these

routines £or each compilation, and include them with the

code generated £or the program being compiled. This

option is less demanding o£ user interaction, and thus

simpler. The storage requirements £or each procedure can

be computed during the first pass, and be allocated via

code included in the main body o£ the program. Since the

routines discussed are small, the second approach is the

one used £or this compiler.

Another complexity in storage allocation arises in

the area o£ addressing. All formal parameters £or this

compiler are accessed by the call by reference

technique. During dynamic storage allocation, a quantity

in a given storage location can either be a temporary

parameter or the address o£ some other location in the

environment o£ the procedure. The normal method £or

dealing with accessing variables in other storage

locations is to use some sort o£ indirect addressing, by

putting the base address o£ the routine containing the

parameter in question into a register. Unfortunately,

the instruction set of the 6510 has very limited

indirect addressing capabilities. First, the registers

on the 6510 are only 8 bits, and addresses are 16 bits,

so cannot be put in a register. The only option for

doing an indirect address is to place the address to be

accessed in so.me location in the zero page of the

machine memory; load the offset o£ the variable being

24

accessed in the Y register, then use one of the few

indirect indexed instructions. Zero page is

approximately 99% full, though. Most of the locations

are occupied by parameters required by the operating

system and basic routines. There are a few locations

available; specifically, locations 251-255 are reserved

for the user. By using the bottom two locations for the

current stack pointer, and the second location for the

address of another block being accessed, indirect

addressing is possible, though not neat. This is

recognized as an area where performance could be

improved by some compiler optimization.

Storage manipulation is accomplished by the simple

expedient of storing the current stack pointer in an

easily accessible location in page zero. When a

procedure is called, this value is updated via code

generated from the procedure storage requirements

calculated in the first pass. The level of the procedure

is also available from the first pass, and is passed in

the code to determine which values from the display of

the calling procedure need to be copied onto the new

storage block.

25

CHAPTER V

SEMANTIC ROUTINES

The first pass o£ the compiler is done via the YACC

generated parser. One o£ the advantages o£ YACC, in addition

to simplifying construction o£ a parser £rom the grammar, is

that it provides a built-in stack to hold values that can

be returned £rom the lexical analyzer. The stack can be

redefined, but i£ it is not, it is o£ type inte~er. The

value stack runs concurrently with the token stack and is a

very convenient place to keep the locations o£ the symbols

that hold various parts o£ the rule durin~ translation. The

difficulty is that since the symbols were allocated

dynamically, they are located via a pointer which cannot be

stored directly on a stack o£ type inte~er. One remedy £or

this would be to put the hash location, which is en inte~er,

on the stack and at the time that the symbol must be

accessed to find it £rom its hash address. This would

require a bit o£ searchin~ which could be eliminated i£ the

address of the symbol node could be directly stored on the

stack. C provides £or this sort o£ coercion, using a cast to

specify the type of a value, when it is assigned to a

variable o£ a different type. By using casts the pointer

value is stored on an inte~er stack, and can then be

referenced when needed, and coerced back into an address, i£

26

27

necessary.

The grammar itself provides other instances where the

stack is useful. Relational operators can be treated in the

same manner as far as semantic routines, but must be

distinguishable to generate the appropriate quadruple. This

is accomplished by returning the same value to the token

stack for all relational operators and letting the value on

the value stack hold the particular symbol. This is also

true of the classes of additive operators and multiplicative

operators.

The original grammar required some alteration to

conform to standard Pascal. The grammar, as written, allows

algeb.raic combination of arithmetic and Boolean expressions,

which is not allowable in Pascal. To eliminate the

possibility of this sort of construction, a flag could be

set in the semantic routines, but this is messy. At the

expense of slightly more complexity in the pushdown

automaton the two classes can be differentiated in the

grammar rules, and thus eliminate the recognition of

unallowable constructions. This caused another revision to

separate the logical operators, and the resulting Boolean

expressions by their application.

One other revision was to eliminate the unary plus.

Since this does not have much use in any language, it was

removed. The unary minus was included in the arithmetic

expressions.

In other cases distinction via grammatical revision

seemed inappropriate. Declarations of arguments to

28

procedures and £unctions are the same as the declarations in

the program, but they must generate a different set o£

quadruples. To do this, a £lag is set in the grammar when a

subroutine header is set. The value o£ the £lag determines

whether a declaration generates a quadruple or a symbol

table entry.

In summary, the semantic routines are based on compiler

writing concepts outlined in several texts in the .field. The

grammar itself was slightly revised to accomodate the

conventions o£ standard Pascal. Distinctions not possible

£rom the grammar as written are resolved by setting flags.

Output o£ this section is a set o£ quadruples that represent

the semantic content o£ the translated code.

CHAPTER VI

CODE GENERATION

Writing the code generation phase of a compiler is a

nebulous task. There is not much written about ~eneralized

techniques for this task, since each machine has its own

unique instruction set. It is almost entirely left to the

designer to use the assets and liabilities of the particular

machine that is the compiler's target.

Home microcomputers, in particular, are a rather

interesting environment for a compiler. A home computer is

designed by the manufacturer to stand alone, and to contain

all that is necessary to operate the machine for the averaee

home user to do wo unassisted. It contains a number of

resident routines in its ROM to accomplish such tasks as

input, arithmetic, and output and a basic language

interpreter, in addition to the operatine system. A table of

the memory map is shown in fieure 3.

There are a number of ways of approachine dealing with

these utilities. All but the necessary operatine system

routines may be overwritten by resettine the pointers that

determine what space is available to be used for machine

language routines. In particular, the basic interpreter may

be dispens.ed with fair 1 y easily. In e 1 iminating this, the

code generated by the compiler must supply all the

29

r-----------------------------------,

lK Kernel ROM

~-----------------------------------1
I EOOO

I
I

4K I/0

~-----------------------------------1
DOOO I

4K RAM BUFFER

I I
~-----------------------------------1

cooo

8K BASIC ROM

I

~-----------------------------------1
AOOO I

8K RAM

~-----------------------------------1
I 8000 I

I..J

I

16K RAM

~-----------------------------------1
I 4000

16K RAM

L-~---------------------------------J

Figure 3. Memory Organization of the C-64

30

31

routines that are necessary for language functions.

Ther~ were enough good routines available in the Basic

interpreter to sacrifice the space it requires. Preserving

the Basic interpreter has the added advantage that there are

many string and function subroutines that could be

integrated into the compiler with ease, by just setting up

the proper jumps when generating code from the quadruples.

These subroutines are not strictly part of standard Pascal,

but have been included in many modern versions, such as the

Waterloo Pascal compiler, and would enhance the language.

The Kernal ROM routines are a collection of utilities

that are primarily I/0. The philosophy of the Kernel is that

the location o~ these essential I/0 routines should be left

up to the manufacturers preference, so the location of the

subroutine itself is not fixed, but the location of the

address of the subroutine will always be found in the same

spot in a jump table. If a manufacturer decides to double

memory, the I/0 routines can be located to a convenient

place, and not take up space in the middle of a chunk of the

work area. When the kernal jump table is used, the code may

be altered more easily to run on another machine with the

same microprocessor base. This asset was relatively

unimportant here, because in deciding to include the

contents of the Basic interpreter in the generated code, the

code ~Jill be specific to the Commodore 84 8510 and not

portable.

The remaining space, not required by the operating

system or by the kernal and Basic ROMs is available to hold

32

the contents o£ the compiled code. There is approximaltly

80% o£ the B4K left, that is managed by the storage

management techniques in the previous chapter. One aspect of

storage management that affected the code generation in a

speci£ic way was the decision to ~hoose a fixed starting

location £or all the code in the program. This simplified

calculations during code generation, and is certainly easier

on a home computer, where there is only one user, so no

allowances must be made £or anything in memory except the

requirements of the program currently_running.

The workspace for programs is memory locations 2K to

40K which are used by changing the contents o£ the zero page

memory location that holds the location of the top of

memory. Normally all of this space is allocated as work

space for Basic programs, but the actual upper and lower

limits on the size of this space required by Basic is

defined by the contents of two memory locations. If the

contents of the top of memory pointer is altered, the space

is deallocated from Basic, and available to hold machine

language programs, so this is a good location for the

compiled code.

Other locations are available. The 4K bytes from

address 49152 are unused, so make a good location to hold

the storage stack. Choosing the fixed location 49152 as the

start of the stack allows the front end of the compiler to

generate addresses more easily, even though all procedure

calls generate storage space dynamically. A few ot~er

routines are stored in the cassette buffer at location 828.

33

One of the difficulties in code generation for home

computers is the lsck of tools usually found on lsrger

machines, nsmely editors snd linking loaders. The

orientation of stsnd-slone home computers is thst they need

to run only programs entered vis the resident monitor, which

puts bytes of memory, or through the Bssic interpreter,

which hss some editor functions, but is unsuitable for dsts

entry for srbitrsry files. This is not usually s problem for

spplicstions thst execute solely on the 6510, but mskes

down-loading from another computer difficult. A losder snd s

dsta entry program must be provided to facilitate these

functions. The kernsl routines mske it fairly essy to write

s program thst will input s string of numeric digits from

either the keyboard, or s disk file, store these digits, snd

then use the routine st address 48371 in the Bssic ROM to

convert the string to s floating point number. This csn be

converted, using the routine at address 48282 to an integer

value, if this is the necessary form.

The choice to use the Basic ROM routines slso dictated

the size of real numbers and integers. The Basic routines

for numerical manipulation use locations in zero page as two

floating point sccumulstors, snd the Basic ROM routines mske

extensive use of these locations. Since the floating point

representation in the floating point accumulator (referred

to as the FAC) and the alternate floating point accumulator

(the AFAC) are 6 bytes, the resl variables and constants in

the generated code sre also 6 bytes. Likewise, the Basic

routines assume 2 byte integers,· snd this convention is used

34

in the Pascal compiler.

The downloading of the code itself presented another

challenge. When the project was first conceived, it seemed

that assembly code would be more readable, and generally

easier to handle that machine code. After further analysis,

it was determined that it is easier to output machine code,

which could be downloaded via the terminal program available

on the microcomputer. Because it is completely numeric, it

requires no translation and can be easily loaded via a short

Basic routine. It has the further virtue of being

immediately executable.

In summary, then, code generation for this

microcomputer is not difficult, but the issues in

transferring the code and required data are complex. The

home computer is not designed to interface easily with other

machines ~nd thus has few tools to make this easy. The

programmer interested in cross-compilers must be concerned

with loading and running the output of the compiler, and

this can be difficult.

CHAPTER VII

SUMMARY AND CONCLUSIONS

Conclusions £rom the Project

The analysis o£ the requirements o£ a cross-compiler

from a larger time-sharin~ computer to a home computer

produced different difficulties than originally anticipated.

In the course o£ this project it became apparent that the

idea of bootstrapping a Pascal compiler for a home computer

was not practical. The larger environment is too different

than the 6510 environment, end the amount o£ effort to cause

the environment to emulate the 6510 is substantial. Without

this emulation, the output o£ the front-end will not produce

usable code for the microcomputer.

Future Work

The construction of a compiler using the existin~ ROM on

the 6510 is an interesting idee. If it were approached as a

project that executes only on the 6510, it would eliminate

the difficulties of code transferral encountered in this

project. The front end could be manually translated from the

C code that is produced by Yacc, and rewritten in 6510

machine or assembly code.

Anouther approach to future work would be to expand the

compiler created in this project to include a more

35

38

complete subset of Pascal. This might involve the

addition of multi-dimensional arrays, user-defined types

and record types. The subset used in this project allows

only variable parameters to arrays and functions, thus

limiting the types of arguments that can be passed to

subroutines. Adding this would not be trivial, as the

complexity of code generation from parameter statements

would be much more difficult than the single type of

parameter passing allowed in this subset.

There are features available in the Basic ROM

routines in the 6510 that could be incorporated in a

compiler o£ the sort addressed here, th?ugh the

definition of Pascal does not include them. These come

from the orientation of the home computer towards

graphics and simplicity, and provide such utilities as

graphics design, sound generation, and screen output.

Basic also has functions to handle string manipulation

easily. One of the shortcomings o£ standard Pascal is

the lack of string-handling functions. A compiler

including string-handling routines borrowed from Basic

would not be much more di£ficult to write since the

routines are already available, and would extend the

usefulness of this compiler.

More compilers for this microcomputer have become

available since the inception of this project, so the

original reason for approaching this project has become

less important. There is always room for improvement in

the field of compiler construction, though, and

certainly the issue of compiler construction £or this

particular microcomputer is not closed.

37

REFERENCES

1.Aho,Al£red and Ullmann, Je££rey,(1979) Principles
o£ Compiler Design, Addison-Wesley Publishing Co.,_
Reading, Mass., pp.563-567.

2.Wirth,N.(1971) "The Design o£ a Pascal Compiler",
So£tware Practice and Experience 1 309-333.

3.Lesk, M.E. and Schmidt, E.(1982), Lex- A Lexical
Analyzer Generator, Technical Report, Bell Laboratories,
Murray Hill, N.J.

4. Kernighan, Brian, and Pike, Rob,(1978)The UNIX
Programming Environment, Prentice-Hall,Inc, Englewood
Cli££s, N.J.

5. Waite, W. and Goos, G.(1984), Compiler
Construction, Springer-Verlag.

6. Johnson, S.C.(1978), YACC: Yet Another Compiler
Compiler, Technical Report, Bell Laboratories, Murray
Hill, N.J.

7. Barrett, W. and Couch, J.(1979), Compiler
Construction:Theory and Practice, SRA, Inc., Chicago.

8. Amman,U. "On Code Generation in a Pascal
Compiler", So£tware- Practice and Experience 7, 1977.

9. Anklam, P., Cutler, D. Heinen, R. Jr., MacLaren,
M. (1982), Engineering a Compiler, Addison Wesley,
Reading, Mass.

10. Jensen, Kathleen and Wirth, Niklaus, Pascal
User Manual and Report, Springer-Verlag, New York 1974.

11::Russell, David L. and Sue, Je££rey Y.,
"Implementation o£ Pascal Compiler £or the IBM 360", in
Software- Practice and Experience 6, 1976.

12. 'Grasse-Lindemann, C. 0., and Nagel, H. H.
"Postlude to a Pascal-Compiler Bootstrap on a DECSystem-
10", in Software- Practice and Experience 6 1976.

13. Richard, Frederic, and Ledgard, Henry, "A
Reminder £or Language Designers", in Lecture Notes 54-
Design and Implementation o£ Programming Languages, ed.
G. Goos and J. Hartmans, Springer-Verlag, N.Y. ,1977.

14. Beatty, John, "On.the Relationship Between the
LL(1) and the LR(1), in Journal of the ACM, Vol. 29, No.
4, October 1982.

38

15. DeRemer, Frank, and Pennella, Thomas,
"Efficient Comput.ation of LALR (1) Look-Ahead Sets", in
ACM Transactions on Programming Languages and Systems,
Vol. 4, No. 4, October 1982.

16. Knuth, D. E., The Art of Computer Programming,
Vol. 3: Sorting and Searching, Addison-Wesley, Reading,
Mass., 1973.

17. Reiss, Steven, "Generation.of Symbol Table
Mechanisms from Specifications", in ACM Transactions on
Programming Languages, Vol. 5, No.2, April 1983.

18. Davidson, Jack W., and Fraser, Christopher W.,
"The Design and Application of a Retargetable Peephole
Optimizer", in ACM Transactions on Programming
Languages, Vol. 2, No. 2, April 1980.

19. Tannenbaum, AndrewS., vanStaveren, Hans, and
Stevenson, Johan I;J., "Using Peephole Optimization on
Intermediate Code", in ACM Transactions on Programming
Languages and Systems, Vol. 4, No. 1, January, 1982.

20. Commodore Business Machines, Commodore 64
Programmer's Reference Guide, Howard and Sons, Inc.,
1983.

21. Bush, Derek and Holmes, Peter, Commodore 64
Assembly Language Programming, Hayden Press, N.J., 1984.

39

APPENDIX A

USER GUIDE FOR THE COMPILER

The £allowing are directions £or using the compiler

developed during this project.

1. Enter the desired Pascal £ile and store as a

£ile on the Concurrent XF-610

2. Run the £1le Compascal, using the Pascal program

£ile as input, and designating an output £ile, to

store the assembly code output o£ the compiler.

3. Download the assembly code to a £loppy disk

drive attached to the Commodore 64 computer.

4. Load the assembly code £rom the disk £ile in the

memory of the Commodore 64.

5. Load the assembler £rom the file LADS, and run

~he code through the assembler to develop an

executable program, also stored on disk.

6. Load and run the executable module. Data can

either be entered on the keyboard or stored

separately in a £ile. Output is displayed to the

video screen attached to the Commodore 64.

40

APPENDIX B

SAMPLE PROGRAMS USED FOR VERIFICATION

program one (input, output);
var
i: integer
d:array [1 .. 10] of real;

begin
i 1 = 1;
while i<=10 do

begin
read(al:.'ray[i]);
write(array[i];
end

end.

program two (output);
var

a: integer;
procedure reverse (var £:integer);

begin

end;

if f = 0 then
write(f)

else
begin

f := f-1;
reverse(f)

end;

begin {main ~rogram}
a : = 10; ·
reverse (a);

end.

41

program three (output);
var

a,b: integer;
c, d: rea 1;

begin
a
b
c

:

:
:

=
=
=

1;
a;
3. 2

d := a+ (b mod a) div 4 + c;
write (a,b,c,d);

end.

program four (output)
var

a,b: integer;
c,d: real;

begin
read (a, b, c, d) ;
if a < c then

a := a* c;
if d <-0.0 then

while d <= 0.0 do
d := d + 1.0;

end.

42

\
VITA

Anne Marie Butler

Candidate £or the Degree o£

Master o£ Science

Thesis: AN APPROACH TO LANGUAGE IMPLEMENTATION AND CODE
GENERATION FOR MICROCOMPUTERS

Major Field; Computin~ and Information Sciences

Biographical:

Personal Data: Born in Baltimore, Maryland, December 29,
195S, the daughter o£ Dr. William and Mary McKechnie.
Married to Lindsay W. Butler III August 15, 1981.Sons
Thomas, born September 7, 1983 and James, born
February 7, 198S.

Education: Graduated £rom Binghamton Central High School,
Binghamton, N.Y. in June 1974; received Bachelor o£
Arts in Applied Math £rom Harvard University in June,
1978; attended University o£ Southern Cali£ornia;
completed requirements £or the Master o£ Science
degree at Oklahoma State University in December,
198S.

Pro£essional Experience: Lecturer, University o£ Maryland
FED, August 1978, to January 1981; Teaching
Assistant, Departments o£ Mathematics and Computing
and In£ormation Sciences, Oklahoma State University,
September 1981 to 198S; Lecturer, Phillips
University, Enid, Oklahoma, Department o£ Mathematics
and Computer Science, August 1981, to August 1983.

