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Abstract:  

 

This dissertation presents three statistical models based on data mining and 

nonlinear time-series analysis techniques as an alternative method for the diagnosis and 

treatment of obstructive sleep apnea disease (OSA). From a diagnosis perspective, our 

method reduces the time and cost associated with the conventional method by first 

screening a non-OSA subject from the population, then individually determining the 

OSA’s severity by utilizing the data from a single-lead electrocardiogram (ECG) device 

that is worn overnight at the subject’s location. Our OSA forecasting model can be used to 

activate an OSA therapy device such as a continuous positive airway pressure (CPAP) 

machine or a hypoglossal nerve stimulator (HNS) as needed or before an OSA episode so 

that the latter can be averted in real time. 

In particular, our contributions are:  

1) Detect the existence of OSA in an individual based on the pattern of biological 

physiology and simple clinical data with a low false negative rate and reasonable accuracy 

(FNR: 5.3%, Accuracy: 84.47%). People with some degree of probability of having OSA 

will be confirmed by the next model. 

2) Determine the OSA severity by classifying the OSA episode (event) from one-

lead ECG data collected overnight (accuracy: 92.26% with 10,052 equally sampled events 

from 24 subjects). The advantage of our model is that the variations (i.e., different body 

build, age, gender, activity, health conditions, and race) have very little effect on the 

prediction because the neighboring patterns in the reconstructed phase spaces have very 

little or no correlation to those variations. This benefit can be seen from our model’s 

performance compared to two other models that exist in the literature.   

3) Forecast an incoming OSA episode in real time using the one-lead ECG data 

(accuracy: 92%, 88%, and 87% for 1, 5, and 10 minutes ahead). This forecasting model 

with any appropriate OSA episode prevention device (i.e., HNS, and just-in-time CPAP) 

will allow for an effective OSA treatment method for CPAP nonadherence OSA sufferers. 

4) Develop a wearable device that can collect the biological data via a single-lead 

ECG as a home sleep test (HST) device. 
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CHAPTER I 
 

 

 

INTRODUCTION 

 

 

1.1 Research motivation 

Sleep is a crucial part of life. The human body becomes fatigued during the day because of numerous 

activities and rejuvenates itself during the night while sleeping, creating a daily life cycle of degradation and 

renewal. In general, during the resting or sleep state, the body constantly executes many involuntary actions 

dealing with recovery, regeneration, and realignment functions. Except for the degradation from the normal 

aging process, sleeping is like a machine in a maintenance state. Good sleep fosters a good working state for 

the body. Conversely, a disturbed sleep will not restore the body to its normal working state. Because 

activities need to be performed during the day, lack of sleep induces more fatigue in the body. Sleep disorders 

prevent the body from rejuvenating. One form of sleep disorders is sleep apnea, a common disorder marked 

by frequent pauses in breathing or shallow breaths during sleep. The most prevalent form of apnea, called 

obstructive sleep apnea (OSA), is due to a partly or completely obstructed airway. Clinically, OSA is 

identified as a major risk factor for hypertension, arrhythmias, stroke, myocardial infarction, congestive heart 

failure, and death [3-8]. Approximately 1 in 15 adults, or about 18 million Americans, have moderate or 

severe OSA [9] and more than half of them remain undiagnosed. An estimated 50 to 70 million Americans 

suffer from chronic sleep apnea [10], and hundreds of billions of dollars are spent each year in direct medical 

costs for screening and treatment [11].   
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OSA has subtle observable symptoms during the day and, more importantly, it is almost impossible 

for the person with OSA to realize that he or she has the disease because it occurs when the person is asleep. 

A vast majority of OSA patients seek treatment and/or receive the diagnosis after their condition becomes 

moderate or severe. Unlike standard hypertension or diabetes, in which a test is performed routinely during 

an annual physical exam, a sleep apnea diagnosis is made only after a patient expresses sleep discomfort or 

upon a doctor’s recommendation. The gold standard for OSA screening and diagnosis involves administering 

polysomnography (PSG) or a sleep study. PSG involves the patient spending the entire night in a sleep clinic 

with many sensors attached to several parts of the body for recording several biological signals. To complete 

the study, sleep apnea episodes (i.e., impeded or difficult breathing events) are marked manually by a sleep 

specialist or a sleep doctor by looking for specific patterns in the multiple bio-signal time-series collected 

overnight.  The purpose of a PSG is to determine the severity of the sleep apnea condition by noting how 

often a subject stops breathing (apnea) on average in each hour of sleep. Sleep clinics are known to 

collectively perform 1.17 million screening tests per year in the U.S. [11], a very low number compared to 

the number of individuals with OSA, estimated at 70 million. The waiting time for diagnosis and screening 

of suspected patients ranges from 2 to 10 months [11]. Baseline estimates of 5-year diagnosis and treatment 

charges for a patient with OSA are about $4,210 [12]. The OSA diagnosis process mentioned above has two 

key problems. 1) Because of the limited equipment and number of facilities for PSG, a relatively small 

percentage of the OSA population can be tested. 2) Each apnea episode must be manually and individually 

marked by a sleep technician or sleep doctor, a laborious task that requires a significant amount of time to 

complete. There is a clear need to expedite the diagnosis process to reduce the overall medical costs and the 

adverse impact on an individual’s health.  

Currently, with the advancement of the microelectromechanical systems (MEMs) and information 

technology, acquisition of the signals used in a sleep study no longer need to be confined to the sleep 

laboratory or hospital. We have designed a wearable sensor with just a one-lead electrocardiogram (ECG) 

that patients can wear during the night in their normal environment to collect the signals needed for a PSG. 
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Also, the availability of the OSA’s clinical diagnosis data is more and more accessible. This opens up the 

opportunity to develop a precise offline and online diagnosis tool. 

 

1.2 Research objective 

The objective of this research is to develop predictive models to detect OSA, determine its severity, 

and forecast obstructive sleep apnea episodes in real time.  

 Detecting OSA: develop a simple OSA screening rule with considerable accuracy by uncovering 

the pattern of biological physiology and simple clinical data. 

 Determine OSA severity: develop an automatic OSA episode prediction method by tracking 

nonlinear dynamic cardio-respiratory coupling using mainly a one-lead ECG signal for a home 

sleep test (HST) device.  

 Forecast OSA episodes in real time: develop an effective forecasting model using nonlinear 

dynamic cardio-respiratory coupling features to predict a forthcoming OSA episode for 

improving OSA treatment efficiency.  

Another objective of this research is to develop a wireless wearable sensor to collect the data required 

for the objective above. 
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CHAPTER II 
 

 

 

BACKGROUND 

 

 

 This chapter, describes the basic background concerning the sleep process, a pathology of the upper 

airways as it relates to OSA, symptoms and effects of OSA, and a standard for OSA diagnosis. The purpose 

of this chapter is to provide a basic background about OSA for those who are not familiar with the disease. 

 

2.1 Sleep process 

 

Sleep is an essential part of life. The fatigue due to any active activity that has accumulated during 

the day is eliminated during the night by a sleep process. In general, throughout this resting stage, in order 

to maintain good health, many important involuntary mechanisms of the body automatically deal with the 

recovery, regeneration, and realignment functions unhampered by interference from any voluntary 

mechanism [13].  

In the past, most people believed that sleep was a passive process. Actually, it was found in the 1950s that 

sleep is a dynamic activity in which our brains are very active during the process [14]. Sleep can be divided 

into two major states, rapid eye movement (REM) sleep and non-rapid eye movement (NREM) sleep [15-

17]. As the name suggests, one of the main differences between these states is the movement activity of the 

eyes. The NREM sleep can be further divided into four stages depth of sleep increases [15]. In some 

literature, stages 3 and 4 are grouped together and called slow wave sleep or deep sleep.  The characteristics 

of each sleep stage are described by different combinations of Electroenchalograph (EEG), 

Electrooculograph (EOG), and Electromyelograph (EMG) as shown in Table 1 [16, 18].  
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 In normal adults, NREM sleep stages predominate during the first third of the night, accounting for 

75-80% of normal sleep time (1-5% in stage 1, 45-50% in stage 2, 12% in stage 3, and 13-15% in stage 4); 

then REM sleep predominates in the last half of the night, accounting for 20-25% of normal sleep time [16]. 

The length of a normal cycle of sleep starts with NREM sleep stages 1 to 4. REM sleep is about 90-110 

minutes [14]. However, this pattern can vary with factors such as age, medical history, physiology, and 

sleep disorders [15]. The plot of sleep stages versus sleep time is called a hypnogram. The hypnogram of a 

typical healthy sleep in adults is shown in Figure 2.1.  

Table 2.1: EEG, EOG, and EMG characteristics during awake and different sleep stages [16] 

Stage EEG EOG EMG 

Awake Predominant alpha (8-13 Hz) activity (more than 50% of epoch) 

mixed with EEG beta (>13 Hz) 

Slow and  

rapid 

High 

NREM 1 Theta (4-7 Hz) activity, sometimes with vertex sharp waves Slow Decreased from 

awake 

NREM 2 Theta (4-7 Hz) activity and sleep spindles or K complexes None Decreased from 

awake 

NREM 3 High-voltage (>75 uV) delta (<3.5 Hz) activity accounting 20-50% 

of the EEG activity 

None Decreased from 

awake 

NREM 4 High-voltage (>75 uV) delta (<3.5 Hz) activity accounting more 

than 50% of the EEG activity 

None Decreased from 

awake 

REM Low-voltage, mixed-frequency activity Rapid Almost absent 

 

 
Figure 2.1: Stages of healthy sleep  

(Reproduced from [19]) 

 

Sleep does not mandatorily follow each stage in sequence. However, in normal cases, after the 

transition from wakefulness, sleep begins in NREM 1, developing to deeper stages later, NREM stages 2, 

3, and 4. After NREM 4, the sleep stage returns to repeat NREM 2 before reverting to REM sleep. Once 

REM sleep is complete, the sleep stage normally goes back to NREM 2. It is believed that the first two 
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cycles of NREM sleep in the beginning of the night and the REM sleep cycles at the end of the night are 

the most important sleep stages. As seen from Figure 2.1, deep sleep occurs mostly in the first two cycles 

of sleep. REM sleep dominates in the later parts of the night by prolonging REM sleep and shortening 

NREM sleep. During NREM sleep, cell division, protein synthesis, and astrocyte maturation are maximal 

and many of the anabolic drives including the secretion of growth hormone peak during deep NREM sleep 

(stages 3 and 4) [15]. These activities contribute to the overall physical rest and reinforcement of the 

immune system. Additionally, the metabolic rate, sympathetic nervous system activity, heart rate, cardiac 

output, and systemic vascular resistance fall during NREM sleep; that is, NREM sleep is a state of 

cardiovascular relaxation [20]. It has been suggested by [16, 21] that the most negative impact on daytime 

wakefulness and performance is due to sleep disturbance during the NREM sleep stages. However, this 

does not mean that the REM sleep is not important. It was found that rats whose lifespans are normally 2-

3 years survive only about 5 weeks on average if they are deprived of REM sleep [14]. In contrast to NREM 

sleep, the characteristics of REM sleep are closer to the wakefulness state in terms of the variability of the 

control systems’ outputs [15]. As in deep NREM sleep, protein production increases in REM sleep. The 

REM sleep process relates to several regions of the brain such as cerebral cortex, which is responsible for 

learning, thinking, and organizing information, and the pons, which disables the neurons in the spinal cord 

resulting in limb muscle paralysis [14].  REM sleep contributes more to psychological rest and long-term 

emotional well-being and may also maintain memory function [18].  

 

2.2 Obstructive sleep apnea (OSA) 

Sleep disturbances are very common and occur in several forms such as insomnia (difficulty of 

sleep initiation or maintenance), circadian rhythm disorders, and sleep-related disorders. However, one 

disorder that differs from the others, in that patients are not be able to see the symptoms themselves, is sleep 

apnea. Sleep apnea is a common and chronic disorder marked by frequent pauses in breathing or shallow 

breaths during sleep. These pauses in breathing cause arousals which alter the changes in the normal sleep 

stage in such a way that the sleep stage reverts to a shallower stage instead of moving to a deeper stage. In 
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severe cases, sleep apnea creates arousals that hinder the normal sleep process, on average, more than 50 

times per hour of sleep. The most prevalent form of sleep apnea is called obstructive sleep apnea (OSA), 

because it is caused by a partly or completely obstructed airway. An apnea episode is characterized by at 

least a 10-second cessation of respiratory air flow (apnea) or a severely reduced flow with a 4% drop in 

blood oxygen level (hypopnea) [22]. An OSA episode may last a few seconds or minutes and episodes can 

recur up to one hundred times in an hour. Technically, OSA severity is commonly defined by the number 

of apnea and hypopnea episodes per hour of sleep (apnea-hypopnea index, AHI) [23]. Clinically, OSA is 

identified as a major risk factor for hypertension, arrhythmias, stroke, myocardial infarction, congestive 

heart failure, and death [3-8].  

 

2.2.1 Pathophysiology of the upper airway (UA) in OSA patients 

Two main factors predispose a person to OSA episodes, the anatomy of the upper airway (UA) and 

the control mechanism of related muscles from the brain. In this study, we focus only on OSA disorders in 

the adult population, which is the largest group of OSA patients. Unlike other animals, the human body has 

a very unique upper airway, which is collapsible to accommodate respiration, speech, and deglutition 

functions [24].  

Shown in Figure 2.2, the pharyngeal airway has very complex structures containing many muscles 

and bones which range from the nasal choanae to the epiglottis. The air enters the airway mainly from the 

nasal passages through four pharyngeal sub-sections: the Nasopharynx (NP), the Velopharynx (Retropalatal 

oropharynx), the Oropharynx (Retroglossal oropharynx), and the Hypopharynx [24-26]. Four muscle 

groups interactively control the patency of the upper airway lumen: 1. the muscles regulating the position 

of the soft palate (alai nasi, tensor palatini, levator palatine), 2. the tongue (genioglossus, geniohyoid, 

hyoglossus, styloglossus) 3. the hyoid apparatus (hyoglossus, ginioglossus, digastric, geniohyoid, 

sternohyoid) and 4. the posterolateral pharyngeal walls (palatoglossus, pharyngeal constrictors) (see Figure 

2.2 A and B) [27]. 
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The most confined region that potentially contributes to the collapse of the airway is the retropalatal 

in the Oropharynx region (OPRP) as shown in Figure 2.3 A.  The main points of interest in this area are the 

extrinsic tongue muscle (genioglossus muscle), soft palate, and lingual tonsils where there is no bony 

structure for these muscles to attach to. During the wakefulness state, these muscles receive activation 

signals from several parts of the brain in order to stabilize their contractions and stiffness to be ready to 

serve their functions properly. The largest dilator muscle here is the genioglossus (GG) muscle, which is 

the back part of the tongue and contributes to the collapse of the airway.  

The GG contraction is controlled by action potential or nerve impulses from the widening of the 

hypoglossal nerve shown in Figure 2.3 B. This contraction causes the anterior movement of the tongue and 

pharyngeal airway [28]. The control system’s inputs in this case are from the respiratory pattern generator, 

negative pressure receptors within the upper airway, chemical receptors (O2 and CO2), and the neurons 

that regulate the wakeful or sleep state [25]. During inspiration, the intraluminal pressure in the upper 

airway becomes relatively negative, which induces the collapsible muscles to loosen, resulting in a narrower 

airway. The human respiratory control system counters that problem by stiffening and contracting most 

upper airway muscles to enlarge the airway. Several studies show near-maximal action potential burst 

activity (muscle tone) from the hypoglossal nerve to the GG muscle during inspiration, which moves the 

back part of the tongue forward to open up the airway [24-26, 28]. This behavior also applies to most upper 

airway muscles such as the alae nasi (the expanded outer wall of cartilage on each side of the nose), the 

tensor palatini, the stylopharyngeus, and the styloglossus (see Figure 2.2) but with different timing, 

preceding the beginning of inspiration [29]. However, this ability to react to the threat of a collapsible 

airway tends to be absent after the body state has shifted from wakefulness to sleep onset, NREM and REM 

sleep [24, 25, 30]. 
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(A)                                                                     (B) 

Figure 2.2: (A) Anatomy of the upper airway showing the main pharyngeal segments (reproduced from [27])  

(B) Anatomy of the upper airway muscles (reproduced from [26]) 

  
(A)                                                                   (B) 

Figure 2.3: (A) Midsagittal magnetic resonance image (MRI) of the head of an adult 

(reproduced from [24]) 

(B) Origin and distribution of the hypoglossal nerve (cranial nerve XII) with its innervation of the muscle of 

the tongue (reproduced from [31]) 

 

In OSA, the sleep stages affect the upper airway’s ability to maintain the patency in various ways 

due to mechanical and chemical stimuli. Several studies [24, 30, 32] found that OSA typically occurs in 

NREM sleep stages 1 and 2 and in REM sleep. The results of the investigations also suggest that during 

NREM sleep, the GG muscle activation is modulated mainly by a combination of hypercapnia (a condition 

of abnormally elevated carbon dioxide (CO2) levels in the blood) and inspiratory resistive loading. In other 

words, unlike in the wakefulness state, the GG muscle is relatively insensitive to either chemical (O2, CO2 
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levels in the blood) or mechanical (UA resistive loading) stimuli alone during NREM sleep [32]. However, 

mild OSA patients or heavy snorers seem to be able to regain airway patency when they are in NREM sleep 

stages 3 and 4 [30]. Many researchers have suggested that OSA occurring during NREM stages 1 and 2 is 

most likely from the instability of the respiratory control mechanisms due to the transition from wakefulness 

to sleep [33, 34]. When the sleep stage shifts into REM sleep, with the change in the body control 

mechanism, the brain shuts off the body’s muscles, including the GG muscle and other UA muscles [30]. 

The lack of the muscle contraction mechanism caused by the paralysis, also leads to the airway obstruction 

in the case of people whose UA is small. The review above covers the main pathophysiology of OSA in the 

adult population; however, other, less common factors, could cause a collapse of the airway containing the 

pharyngeal anatomy, the ventilation control stability, the respiratory arousal threshold, and the lung volume 

[25].  

 

2.2.2 Obstructive sleep apnea cycle 

 Obstructive sleep apnea (OSA) episodes can recur throughout the sleep cycle. The severity depends 

on how well the body maintains the patency of the airway with the changes in body control mechanisms 

during each sleep stage. Summarized from [35], the OSA cycle is explained by the diagram in Figure 2.4.   

 

 

Figure 2.4: State transitions between sleep cycles and OSA 
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 The sleep process starts from a wakefulness state and moves to sleep onset which is a group of 

NREM stages 1 and 2. As mentioned earlier, these two stages have shown instability in the respiratory 

control system, especially the contraction control of GG muscles, which becomes less sensitive to resistive 

loading and chemical stimuli (CO2 and O2). In other words, to activate the GG muscles to maintain patency, 

the airway resistance and chemical stimuli (CO2 and O2) detected must be higher than the normal threshold 

during the wakefulness state. This results in an increase in the airway resistance compared to a wakefulness 

state, which predisposes the airway to collapse if the breathing effort pressure is less than the critical 

pressure, the cut-off pressure before OSA takes place.  

Two scenarios are possible when the airway is partially or fully collapsed: 1) If the person gains 

control of the UA muscle before reaching the body’s arousal thresholds (too low O2 or too high CO2 levels 

in the blood), there will not be any impact on the sleep stage, 2) but if the person cannot regain the control 

before the arousal thresholds are reached, the brain will try to terminate the apnea by creating arousal. 

Arousal is a sleep interruption that lasts from 3 – 15 seconds [36]. It is believed to be a protective mechanism 

against asphyxia (a condition arising when the body is deprived of oxygen) during sleep. However, the 

result of the arousal is the lightening of sleep, shifting from a deeper sleep stage to a lighter sleep stage 

[37]. These repeated arousals in OSA patients lead to sleep fragmentation, poor sleep quality, and 

importantly, diminished amounts of slow wave (NREM 3, 4) and REM sleep. 

 

2.2.3 Obstructive sleep apnea symptoms and consequences 

 It is commonly known that most cardiovascular diseases are the product of prolonged hypertension 

[38]. The underlying mechanisms inducing the hypertension in OSA patients are not well understood, and 

many theories are found in the literature. First, a prolonged sympathetic activity as a consequence of the 

recurrence of oxygen desaturation during apneas alters vascular function and structure, resulting in 

hypertension development over time [38]. This theory is supported by evidence that elevated sympathetic 

nerve activity is also found in OSA patients during the daytime and especially during the onset of apnea 
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[39]. Another well-known theory is that the elevated blood pressure during apneas causes endothelial 

dysfunctions, resulting in increased peripheral vascular resistance. In other words, the heart needs to pump 

harder to overcome the increased resistance in the blood vessels, resulting in permanent hypertension [40]. 

The most substantial medical consequences of prolonged hypertension are cardiovascular diseases which 

link directly to increased cardiovascular mortality [38-40]. Moreover, sleep impairment due to apneas 

causes a metabolic syndrome. That results in obesity and diabetes, which also induce cardio vascular 

complications [40]. The daytime effects of untreated OSA are excessive daytime sleepiness, cognitive 

impairment, decreased work productivity, and increased risk of accidents [41].  

 

2.2.4 Classification of obstructive sleep apnea severity 

One of the challenges associated with the diagnosis of OSA is that the OSA suspect is not able to 

see or investigate the direct symptoms himself; someone else must share the same room to observe the 

symptoms. In most cases, a spouse is the one who identifies the symptoms, such as snoring accompanied 

by breathing stoppage, then a gasp when breathing starts. The by-symptoms such as excessive daytime 

sleepiness and fatigue may be noticeable but they show up only when the OSA has already progressed to 

moderate or severe phases. To diagnose the disease, patients are normally screened with a set of 

questionnaires. If the results of the questionnaires indicate that the patient is in an OSA high risk group, he 

or she is referred for a polysomnography (PSG) or sleep study. PSG is the gold standard for classifying the 

severity of the sleep apnea, but the cost is quite high, estimated at $1,000 - $3,000 nationwide. The study 

is so expensive because a sleep technician needs to cooperate with an OSA suspect overnight to monitor 

and collect the required bio-rhythm signals: cardiac activity (via electrocardiogram (ECG)), brain activity 

(via electroencephalography (EEG)), visual (eye) movement (via electrooculogram (EOG)), muscle activity 

(via electromyography (EMG)), airflow rate, oxygenation, respiratory movement, and body position [42]. 

After collecting all needed data, a sleep technician or sleep doctor manually marks the OSA episodes 

(impeded or difficulty in breathing; by definition, either obstructive apnea or hypopnea) by looking for 

specific patterns in the multivariate signals, i.e., complete loss of respiratory activity for at least 10 seconds 
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followed by a decrease in blood oxidation or brain and muscle arousal activity. To complete the study, the 

number of apnea and hypopnea events per hour of sleep or an apnea-hypopnea index (AHI) is calculated to 

quantify the severity of OSA. The steps for an AHI calculation [17] are as follows: (1) add the total number 

of apnea and hypopnea events, (2) divide that number by the total number of minutes of actual sleep time, 

and (3) multiply the result by 60. The severity of sleep apnea is classified as follows: AHI < 5 - no sleep 

apnea, 5 ≤ AHI ≤15 – mild sleep apnea, 15 ≤ AHI ≤ 30 – moderate sleep apnea, and AHI > 30 - severe 

sleep apnea. With labor-intensive procedures, the PSG can be administrated to only about 5 cases a night 

in a normal-to-big sleep laboratory. The waiting time for diagnosis and screening of suspected patients 

ranges from 2 to 10 months [11]. Baseline estimates of 5-year diagnosis and treatment charges for a patient 

with OSA are $4,210 [12]. With its high cost and complexity, PSG is not accessible and affordable to 

everyone. This wide gap between current methods for sleep studies, and the need means that balancing the 

complexity and cost with a practical, rational alternative will offer more opportunities to everyone to be 

able to have a diagnosis in periodically basis. There is a clear need to expedite the diagnosis process to 

reduce the overall medical costs and the adverse impact on an individual’s health. Following are feasible 

several feasible solutions: 1) using other sleep-monitoring devices for out-of-center (OOC) testing, 2) 

implementing an automatic OSA episode classification method instead of manual classification by a sleep 

technician in both a conventional sleep study (PSG) and an out-of-center (OOC) or home sleep test, or 3) 

establishing a protocol to periodically diagnose people who are at risk of having OSA as a preventive 

measure. 
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CHAPTER III 
 

 

 

REVIEW OF LITERATURE 

 

 

 

The history of the sleep apnea disorder started around the 19th century, when the term “pickwickian” 

was used to describe an obese somnolent patient [43]. At that time, the research concentrated only on the 

patient’s obesity rather than on the breathing disorder during sleep. Gastaut et al. [44] were the first 

scientific investigators who, in 1966, showed evidence of recurrent sleep apnea episodes in pickwickian 

patients using a polygraphic or what we call polysomnography. Today, although we know more about the 

sleep apnea disorder, a vast number of people with the disease remain undiagnosed. One of the main reasons 

is that the diagnosis process is quite complex. Traditionally, sleep apnea suspects not only need to go 

through a normal clinical examination during the day but also need to spend an entire night at a sleep clinic 

to be completely diagnosed. This chapter provides a review of the sleep apnea literature as follows: sleep 

apnea screening, sleep apnea severity diagnosis processes, forecasting of sleep apnea episodes, and the 

wearable devices for detecting a sleep apnea episode.  
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3.1 Sleep apnea screening processes 

Screening is the first step in the sleep apnea diagnosis process. The purpose is to filter high 

probability sleep apnea suspects from the normal population and recommend them for further diagnosis, 

usually, a PSG. The screening is most often initiated in one of two ways, with the direct complaint of a 

subject who demonstrates sleep apnea’s symptoms such as an excessive daytime sleepiness and 

hypertension, or with a subjective impression from a doctor. In this section, the literature is divided into 

three categories: 3.1.1 screening questionnaires, 3.1.2 clinical diagnostic models, and 3.1.3 screening 

devices. All study results were compared to PSG at the end to validate the accuracy. Each type of screening 

has advantages and disadvantages. Screening devices are the most accurate but require a data collection 

(mostly overnight) and interpretation process. Clinical diagnostic models tend to give reasonable accuracy 

but the complications of real-life implementation have made them not as popular. Questionnaires give the 

least overall accuracy and the results are quite inconsistent. However, because of its simplicity and low 

cost, this screening method is always the first choice for physicians [42].  

 

3.1.1 Screening questionnaires 

In the screening questionnaire category, in general, the questionnaires were developed with regard 

to symptoms that patients with sleep apnea are most likely to have. Then, a scoring method was derived 

from the results of modeling techniques such as logistic regression and multivariate regression used for 

investigating risk factors. Finally, a simple set of rules to best screen people with a high risk of having sleep 

apnea was developed from the screening method. The first popular set of questionnaires was the Wisconsin 

sleep questionnaires. Originally, in 1993, Young et al. [45] used a logistic regression method to analyze 

data from the Wisconsin Sleep Cohort to estimate the prevalence of undiagnosed sleep-disordered breathing 

among adults. A random sample from a general population (no history of sleep disorders) of 602 subjects 

was studied by an overnight PSG. The study came up with a simple set of questions asking about snoring 

habits and evidence of sleep apnea. This set of questionnaires is popularly called the Wisconsin sleep 

questionnaires. The performance of the questionnaires in the general population for screening of OSA 
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(AHI≥5) is 79% sensitivity and 46% specificity (28% positive predictive value (PPV) and 89% negative 

predictive value (NPV)) and for screening of moderate OSA (AHI≥15) is 87% sensitivity and 40% 

specificity (11% PPV and 97% NPV) [46].  

In 2006, Sharma et al. [47] studied the prevalence and risk factors of OSA in an Indian population 

in Delhi, India. They used a modified version of the Wisconsin sleep questionnaires which also included 

questions about demographics, sleep symptoms, medical history, and medications. Of 2,150 respondents, 

554 were classified as habitual snorers with a high risk of OSA and 1,596 were classified as non-habitual 

snorers with a low risk of OSA. To validate the performance of the questionnaires, 77 OSA suspects 

underwent a PSG and 36 subjects were identified as having OSA. Among the non-OSA suspected cases, 

74 subjects underwent a PSG and 2 subjects were identified as having OSA. The performance of the 

modified Wisconsin sleep questionnaire in the general population for screening of OSA (AHI≥5) is 95% 

sensitivity and 64% specificity (46% PPV and 97% NPV).  

The Berlin questionnaire, an outcome of the Conference on Sleep in Primary Care held in April 

1996 in Berlin, Germany, became another popular tool to screen the general population to identify patients 

with sleep apnea. Besides height, weight, age, and gender, the questions asked about snoring history, 

daytime sleepiness, sleep apnea, and high blood pressure history. In 1999, Netzer et al. [48] recruited 100 

subjects of 744 who responded, to undergo a PSG in order to validate the accuracy of the questionnaire. A 

logistic regression model was used to examine the relative effects of age, gender, BMI, blood pressure 

(high/low), and neck circumference. The performance of the questionnaires in the general population for 

screening for OSA (RDI≥5) is 86% sensitivity and 77% specificity (88% positive predictive value (PPV) 

and 72% negative predictive value (NPV)) and for screening of moderate OSA (RDI≥15) is 54% sensitivity 

and 97% specificity (97% PPV and 48% NPV).  

From the reported results, the Berlin sleep questionnaire seem to perform better in classifying the 

sleep apnea suspect group than the Wisconsin questionnaire. However, in 2006 and 2008, studies were 

performed by Chung et al. [49] (211 subjects) and Sharma et al. [50] (104 subjects) to validate the 

performance of the Berlin questionnaire in subjects without a history of sleep disorders (general 
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population). The results from both studies are as follows: in Chung’s study, screening of OSA (AHI≥5) is 

69% sensitivity and 56% specificity (77% positive predictive value (PPV) and 44% negative predictive 

value (NPV)) and for screening for moderate OSA (AHI≥15) is 79% sensitivity and 50% specificity (50% 

PPV and 78% NPV) [46, 51] and in Sharma’s study screening of OSA (AHI≥5) is 85% sensitivity and 95% 

specificity (96% positive predictive value (PPV) and 81% negative predictive value (NPV)). Comparing 

the three studies, the results are quite inconsistent.  

In a perioperative period, patients with a sleep apnea disorder have different characteristics such as 

sensitivity to anesthetic agents, and adverse postoperative events. For these reasons, in 2006, Gross et al. 

[52], in the name of the American Society of Anesthesiologists (ASA), developed a checklist composed of 

a set of questionnaires for anesthesiologists to evaluate patients with OSA. The checklist’s question 

categories were not so different from those in the Berlin questionnaire but the questions were more detailed. 

Validated by Chung et al. [51], using AHI≥15 as a cut-off value for OSA, the sensitivity and specificity 

were 79% and 37% respectively (45% PPV and 73% NPV).  

In 2008, Chung et al. developed two sets of questionnaires [49] called the STOP and the STOP-

Bang questionnaires (S-snore, T-tired, O-apnea observed, P-high blood pressure, B-body mass index 

(BMI), A-age, N-neck circumference, and G-gender). The STOP questionnaire was developed to be self-

administered by patients but the STOP-Bang was clinician-administered. Using AHI≥15 as a cut-off value 

for OSA, the sensitivity and specificity of the STOP were 74% and 53% respectively (51% PPV and 76% 

NPV), and the sensitivity and specificity of the STOP-Bang were 93% and 43% respectively (52% PPV 

and 90% NPV). 

 Shown in Tables 3.1 and 3.2, the average performance of each questionnaire popularly used for 

OSA screening is depicted in terms of sensitivity, specificity, PPV, and NPV. All questionnaires except the 

Berlin, tend to focus on capturing true negative cases more than true positive case (specificity > sensitivity). 

This makes sense in clinical testing because in reality, we do not want to have high false negative rates 

(people who are diagnosed as not having OSA but actually have it). However, economically, high false 

positive rates (people who are diagnosed as having OSA but do not have it) generate more cost and a longer 
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waiting time for patients. Also, some studies [53-55] have found that clinical symptoms such as snoring, a 

history of sleep apnea, and daytime sleepiness are not good predictors of OSA in children. In [56], in 

particular, the results suggested that there is no statistical difference in age, gender, and OSA symptoms 

between children with OSA and normal children. Thus, by fixing the model performance to have low false 

negative rates which already makes sense, there is still a need to improve the accuracy in term of true 

positive cases in order to reduce the cost associated with doing a PSG on people who actually do not have 

OSA. Also, OSA in children seems to have different characteristics than OSA in adults so there is still a 

need to create a suitable prediction rule to be used exclusively for children. 

Table 3.1: Questionnaire performance for screening OSA patients using ≥5 as a cut-off value 

Questionnaires Total N. Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

Wisconsin (average from [45], [47] ) 753 87 55 37 93 

Berlin (average from [48], [50], [51]) 415* 80 76 87 65.67 

ASA [51] 211* 72 38 72 38 

STOP [49] 177* 66 60 78 44 

STOP-Bang [49] 177* 84 56 81 61 

Total 1345**     

All average  77.8 57 71 60.33 

*Some studies ([51], [49]) validated several questionnaires performance at the same time.  

** include only non-intersected subjects. 

 

 

Table 3.2: Questionnaire performance for screening OSA patients using ≥15 as a cut-off value 

Questionnaires Total N. Sensitivity (%avg.) Specificity (%avg.) PPV (%avg.) NPV (%avg.) 

Wisconsin [45] 602 87 40 11 97 

Berlin [48], [51] 311* 66.5 73.5 73.5 63 

ASA [51] 211* 79 50 50 78 

STOP [49] 177* 74 53 51 76 

STOP-Bang [49] 177* 93 43 51 90 

Total 1090**     

All average  79.9 51.9 47.3 80.8 

*Some studies ([51], [49]) validated several questionnaires performance at the same time.  

** include only non-intersected subjects. 
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3.1.2 OSA screening models 

Because the performance of the screening questionnaires is not satisfactory, many prediction 

models for OSA screening have been developed by researchers and engineers. Most of the research has 

been in develop OSA screening models using popular clinical predictors and demographic data such as 

weight, height, wrist circumference, age, and gender to predict the prevalence of obstructive sleep apnea in 

each individual. With the same idea as screening questionnaires, if the results indicate that the subjects are 

likely to have OSA, they are referred to be diagnosed using PSG. In addition, some groups have developed 

methods to classify OSA patients using a signal collected directly from the individual. This approach 

definitely yields better results because the individual’s dynamics are directly quantified. However, the 

overnight data collection process is still needed. This make no difference to the OSA severity measure 

process from PSG.  

Various types of data have been used in attempting to develop simple prediction rules to quickly 

screen people with OSA. For medical research groups, clinical data such as the body mass index (BMI), 

age, gender, waist and neck circumference, coexisting medical conditions, and life styles are important 

variables [5-13]. Linear multivariate methods are commonly used for modeling. Kwiatkowska et al. [57] 

generated at obstructive sleep apnea prediction rule by combining the knowledge of a physician and the 

data driven analysis. The BMI, gender, age, and hypertension are fed into decision trees for prediction. The 

best model performances in term of overall accuracy reported were 69.81% accurate, 82.5% sensitivity and 

50% specificity. In their next research [58], they integrated a Semio-fuzzy framework to automatically 

develop OSA prediction rules by creating a self-learning algorithm. However, the performance of the 

developed model was not reported. In addition to the basic demography and clinical data, Dixon et al. [59] 

used two biomedical factors, fasting insulin, and glycosylate to their multivariate linear and logistic 

analysis. They concluded that neck circumference could replace BMI and gender in the analysis. 

Ramachandran et al. [60] derived their prediction rules from 10 clinical variables using a logistic regression. 

Then, from the weight of each variable based on its importance in the model, a scale called the perioperative 
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sleep apnea prediction (P-SAP) was established for its ease of use. The reported performances showed a 

very good sensitivity, 93.9 %, but very poor specificity, 32.3%. 

Some supervised machine learning methods for OSA classification were used in this task. Chen et 

al. [61] applied a support vector machine (SVM) for classification of normal and different stages of 

obstructive sleep apnea severity. From the PSG data collected overnight, they found that the oxygen 

desaturation index (ODI) alone was the best predictor of severe obstructive sleep apnea. Their method and 

model of classifying people with OSA yielded 42.86% sensitivity, 94% specificity, and 87.72% accuracy 

(high accuracy but very low sensitivity might come from unbalanced targets, OSA < non-OSA). Some 

researchers have used artificial neural networks for obstructive sleep apnea prediction. Kirby et al. [62] 

came up with a generalized regression neural network (GRNN) to classify and predict patients with 

obstructive sleep apnea using 23 variables from demographic data, clinical features, medical history, 

daytime sleepiness history, and bed partner observations. The performance of their model was quite 

remarkable, with an accuracy of 91.3%, sensitivity of 89.9%, and specificity of 80% (the number of subjects 

with OSA was more than twice the number of normal subjects (281 vs 124)). 

Although, these studies showed good results in predicting obstructive sleep apnea from basic 

clinical data, some of them did not consider prior probabilities in a model training process. Using an 

unbalanced target dataset to train a binary classifier, the model will tend to fit itself to the target with a 

majority number of observations. As is well known in the data mining community, such models are 

impracticable. Also, these methods still lack practical accuracy and the ability for early detection of 

obstructive sleep apnea. The current approaches for prediction and prognosis of sleep apnea are based on 

the population’s statistics and not on individual dynamics.  

 

3.2 OSA episode classification models 

OSA episode monitoring and detection research has also received considerable attention in the 

literature. Several OSA detection approaches based on correlating the statistical patterns of heart rate, 

respiration rate, and oxygen saturation (SpO2) signals during OSA episodes have been reported [63-65]. 
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As mentioned in the previous chapter, normally sleep apnea episodes are detected by means of capturing 

specific patterns, loss of respiratory air flow which results in loss of blood oxygen desaturation, with 

arousals at the apnea episode termination. To do so, the multichannel bio-signals recording such as PSG is 

required. However, because of the limited equipment and number of facilities for PSG, a relatively small 

percentage of the OSA population can be tested. To solve this problem, an OSA episode testing device 

should be very simple and easy to use (i.e., fewer recording channels needed and mobile) to enable the 

subject to self-administrator the test at home. Methods of OSA episode prediction along with those devices 

are also needed. Thus, in this section, the review of literature focuses on the literatures that proposes sleep 

apnea episode prediction methods using a single channel bio-signal recording. In most of the literature, a 

single ECG signal was used because the ECG gives so much information, not only from the cardiovascular 

system but also the respiratory and autonomic nervous control system. In brief, the workflow found in the 

OSA episode prediction methods utilizing an ECG signal is as follows: 

 One-lead ECG (time-series) 

o Transformation applied 

 R-R interval time-series.  

 Detection of ECG’s QRS complex. 

 ECG derived respiration (EDR) time-series. 

 R peak magnitude cubic spline interpolation 

 Wavelet transformation 

o Features extraction (quantification of segmented time-series) 

 Heart rate variability (HRV) 

 Wavelet transformation 

 Basic statistics of the signal of interest 

o Prediction (classification) model development 

 Regression models (multiple regression, and logistic regression) 
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 Artificial neural network 

 Support vector machine 

 K-nearest neighborhood 

 Manual thresholding of the developed predictor(s) 

o Validation method 

 K-fold cross validation 

 Leave one out 

o Performance measurements 

 Percent event classification accuracy 

 Misclassification rate 

 Area under receiver characteristics curve (AUC) 

 True positive, and true negative rate (sensitivity and specificity) 

The rise in the popularity of minute-by-minute sleep apnea episode prediction was due to the release 

of an apnea dataset from the Physionet database in 2000. This dataset was released by a collaboration of 

Penzel et al. [66, 67] in a part of a challenge to develop a method to detect OSA episodes from the given 

dataset. One approach to using the hidden information is to decompose a signal to different levels based on 

the instantaneous frequency and choose only the pieces that directly relate to an OSA episode. 

One popular choice found in the literature is wavelet transformation.  Based on the one-lead ECG 

data provided, one of the participant groups, Raymond et al. [68] combined information from an ECG-

derived respiration (EDR) signal using a wavelet decomposition method and R-R interval time-series. The 

EDR signal was then decomposed using discrete harmonic wavelet decomposition (DHWT). The authors 

captured the arousal after the termination of the apnea episode from a tachy/bradycardia cycle in the heart 

rate using median powers of EDR DHWT levels 11 and 12. To classify an apnea episode, the sum of these 

two powers was calculated, then compared with the median signal power during minute k. If these powers 

are larger than twenty percent of the median, the minute k and the first half of minute k+1 will be considered 

as having evidence of arousal from an apnea episode. Using this criterion, the accuracy of the OSA episode 
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classification was 81 %. This research showed that the decomposition of EDR signal to several levels based 

on the instantaneous frequency could be used as a predictor to differentiate OSA episodes from normal 

breathing.  

Using a single lead ECG for deriving an instantaneous heart rate (IHR), then decomposing the 

signal using another type of wavelet transformation, Delibasoglu et al. [69] discovered that the variance of 

the 5th, 6th, and 7th detail components decomposed by a wavelet decomposition method were good predictors 

for OSA episode detection. Eight levels of Daubechies order 3 were used in the wavelet transformation. 

The decomposition was applied to each data segment with a length of 6 minutes. They found that the 4th 

minute was the deciding minute for an OSA episode. A nonlinear autoregressive (NARX) type artificial 

neural network (ANN) was then trained for classification of OSA episodes. The reported ANN architecture 

is 6, 3, and 1 neurons for input, hidden, and output layers respectively. Levenberg-Matquardt error back 

propagation is used as a training optimization algorithm. The best accuracy achieved in their method was 

82.58 % for minute-based OSA episode classification without reporting the true positive and false positive 

rates. With the same idea, Roche et al. [70] extracted features from heart rate fluctuations using wavelet 

decomposition. Then, they used classification and regression trees for obstructive sleep apnea prediction. 

The results show that the sensitivity and specificity of this method are higher than 90%.   

Using another type of transformation method, not a wavelet transformation, to extract features that 

correlate with the OSA episode, Mietus et al. [71] applied a Hilbert transform to the filtered normal sinus 

to normal sinus (NN) time-series that derived from the R-R interval. The signal results from a 

transformation data window of 5 minutes were analyzed. The average, standard deviation, and time fraction 

of the amplitudes and frequencies were extracted. The thresholds for detection of sleep apnea episodes were 

developed from those features, yielding 82.1% accuracy of OSA episode classification.  

Rather than using transformation techniques to extract useful information from an ECG signal as 

described above, some groups have found that statistical quantifications calculated from the R-R interval 

are also good predictors of OSA episodes. Laiali et al. [72] developed a prediction model to detect the OSA 

episode from one-lead ECG using standard heart rate variability (HRV) features such as mean, standard 
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deviation, and inter quartile range of partitioned R-R time-series as inputs for the classification technique. 

A support vector machine (SVM) classifier, a supervised machine learning method that finds the optimal 

separating plane to separate each target class in the feature space, was trained and tested on sleep apnea 

recordings. Their best results were reported as 96.5% accuracy for detection of OSA episodes from 15-

second data partition.  

However, this reported performance is questionable. The authors did not clearly report the number 

of data points and the ratio of the two targets used in the training and testing processes. Generally, the 

performance of the model is heavily affected by these two factors. If not enough data is selected for training 

and testing the model, the trained model may not be generalized enough to be used in other data. Because 

it does not capture all possible patterns of the OSA episodes. Also, if the ratio of target variables (apnea 

and non-apnea episodes) is not equal, without any weight correction, the classifier will focus on capturing 

the events with the majority ratio because this will lead to better results (i.e., event classification accuracy) 

which are not practically true. For example, if there are 4000 non-apnea and 1000 apnea events, the model 

training process will focus on classifying a true positive non-apnea event rate with a weight of four times 

more than capturing a true positive apnea event rate, leaving a higher false positive apnea event rate because 

it gives a better overall classification performance which is actually deceptive.  

Mendez et al. [73] selected three sets of features used for OSA episode prediction based on 

physiological evidence. R-R interval time-series and the area under QRS were used as starting signals. A 

bivariate time-varying autoregressive model was applied to each R-R interval and QRS area time-series to 

get a power spectral density (PSD) and coherence in three frequency bands: very low frequency (VLF: 0 – 

0.04 Hz), low frequency (LF: 0.04 – 0.15 Hz), and high frequency (HF: 0.15 – 0.4 Hz). Module and phase 

were defined by relationships between the R-R interval and QRS area time-series. The other features 

described by the authors, mean, variance, kurtosis, and skewness, were calculated from the R-R interval 

and QRS area time-series minute by minute. Two methods for feature selection were used in this case: a 

wrapper approach through a leave-one-out (LOO) and k-nearest neighbor (KNN)-Model selection. Overall, 

ten features, mostly power spectrum density (PSD) in different frequency ranges, were selected based on 
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their contribution in the OSA classification model. The most important feature is the ratio of a very low 

frequency (VLF) power to the total power of the R-R interval time-series. Two modeling methods, an 

artificial neural network (ANN) with 3-30 neurons and KNN, were trained by splitting the data into three 

groups, training, validating, and testing, with percentages of 60, 20, and 20 of the total data respectively. 

The performance of each model was evaluated by its accuracy, sensitivity, and specificity in the testing data 

group. The KNN model obtained its best results by using all ten feature inputs: accuracy, sensitivity, and 

specificity are 88, 85, and 90 percent respectively. The performance of the ANN model was comparable 

with accuracy, sensitivity, and specificity of 88, 85, and 90 percent correspondingly.  

One of the challenges in applications for detection and prediction of OSA episode is that the 

dynamics of human physiology control systems change in different sleep stages. Based on that assumption, 

Noviyanto et al. [74] not only developed a method to predict OSA episodes but also to determine sleep 

quality by predicting sleep stages using information embedded in ECG signals. Overall, of thirty-nine sleep 

stages, correlated features were extracted from R-R intervals, ECG-derived respiration (EDR), and raw 

ECG signals using 18 records from the MIT-BIH polysomnographic database, Physionet. Four classifiers 

were used in this study: a Bayesian network, a multilayer perceptron artificial neural network, a k-nearest 

neighbor, and a random forest. The thirty nine features proposed, four feature sets were selected based on 

the degree of dependence or predictability of one variable on another. Based on  Noviyanto et al.’s [74] 

experiment, the features derived from the raw ECG signal were better predictors than those from the R-R 

interval or the EDR. The best combination of features and classifier to predict sleep stages in this study 

were the full set of features extracted from the raw ECG (without using feature selection) and a random 

forest method. This combination yielded an accuracy of 80.95 % on average percent correct classification. 

Because of the high correlation between cardio-respiratory control and neural control systems, 

Yilmaz et al. [75] developed a new feature set extracted from R-R interval time-series called a mean 

absolute deviation (MAD) to predict sleep stages and sleep apnea episodes. Three classification methods, 

k-nearest neighbor (kNN), support vector machine (SVM), and quadratic discriminant analysis (QDA), 

were trained using the MAD features based on PSG data collected from seventeen subjects. The authors 
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concluded that these features could be used in sleep stage prediction in both healthy and OSA groups. 

However, the performance for classification of some sleep stages is still questionable.  

Rather than using single lead ECG as the main signal to detect sleep apnea episodes,  Tagluk and 

Sezgin [76] used the electroencephalogram (EEG) in this application. A bispectrum analysis was used to 

identify phase relationships between each EEG subband, namely, delta, theta, alpha, beta, and gamma, 

resulting in quantifications of the quadratic phase coupling (QPC). For OSA episode classification, an 

artificial neural network (ANN) model was trained with the architecture of 5x300 input layers, 10 hidden 

layers, and 2x1 output layers. The accuracy of OSA episode classification reported in the literature was 

96.15 %. Although the performance of this method showed significant accuracy in detecting the OSA 

episode, the implementation of EEG signal acquisition required much more complicated hardware than that 

used for obtaining the ECG signal. Also, because several sensors must be mounted directly on the user’s 

scalp and temple, the reliability of data collected at home by a user is questionable. For these reasons, the 

ECG signal is still more suitable in practice.  

Because OSA symptoms can be observed directly by a sound produced from the upper airway 

system, based on breathing sounds, Doukas et al. [77] attempted to develop a preliminary tool for detection 

of sleep breath disorders. In their experiment, three microphones were installed over the bed in order to 

capture subjects’ breathing and snoring sounds. The breathing and snoring events were then classified by 

computing the likelihood of their presence based on Laplacian and Gaussian distributions of snore and 

breathing signals. To classify an OSA event, an appropriate threshold is applied to the probability of OSA 

the calculated by a state diagram of sleep breath disorder detection from each data segment. However, the 

authors reported only the detection of snore events from the recorded sounds, and concluded that this system 

could be used as a preliminary remote assessment method in case patients present both OSA and snoring 

because the snoring events are closely related to OSA episodes.  

With the same assumption, Mikami [78] analyzed the nonlinear dynamic of snoring sounds. 

Although the results cannot predict obstructive sleep apnea, he concluded that the sounds from a simple 

snorer have higher nonlinearities than those of obstructive sleep apnea patients. Focusing on the direct 
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breathing evidence for apnea and hypopnea prediction using empirical mode decomposition and Hamming 

distance on the airflow signal, Robinson and Conway [79] achieved 94.53% sensitivity and 100% 

specificity for their prediction model. However, the airflow signal is one of the hardest signals to obtain 

because in order to directly measure the in and out airflow from the nostrils, which is one direct evidence 

of OSA, the sensor must be clipped directly onto the user’s nose. Thus, this sensor type is not a popular 

choice in the literature. 

Most of the reported studies were done solely on apnea episode detection in adults. However, a 

sleep apnea disorder can develop in humans of every age. Williamson et al. [80] focused on developing an 

on-line method to predict OSA in infants. In their study, three physiology signals, namely a respiratory 

signal from an abdominal effort belt, a one-lead ECG, and the oxygen saturation percentage from a pulse 

oximeter, were collected and used for manually marking OSA episodes by sleep doctors. The authors 

computed thirteen features from the R-R interval (RRI) from the ECG signal and inter-breath intervals 

(IBIs) from the respiratory signal. These features were also extracted from RRI and IBIs from several time 

delay steps to be used for detection of OSA episodes in current time (i.e., features of IBIs and RRI in time 

k-5, k-4, …, k were used for prediction of an OSA episode in time k). Because the total number of extracted 

features was high and many features were highly correlated, a principle component analysis (PCA) was 

applied to all features mainly in order to reduce the feature dimensionality. Six principle components (PC) 

were used for training an equal-prior quadratic classifier (QC) to classify the apnea state. By varying the 

detection cutoff probability of each subject, the area under the receiver operating characteristic curve (AUC) 

was generated and used as a prediction performance indicator. The best model trained by all features 

mentioned earlier performed with an overall AUC of 73%. However, in this study, the prediction time 

window resolution is 5.5 minutes, whereas other studies always used a one-minute time window. Another 

limitation of this method is that the OSA episode could be predicted only after recording data for three 

minutes and ten and a half minutes after the previous apnea detection. Focusing on the online detection of 

abnormal breathing patterns in adults, Varady et al. [81] developed an online pattern recognition method 

capable of classifying three different breathing patterns: normal breathing, hypopnea, and apnea. In their 
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study, two forms of respiration signals, a nasal airflow (NAF) and a thoracic or  abdominal respiratory 

effort (RIP), captured by a thermistor and inductance plethysmography were used for deriving the 

instantaneous respiration amplitude (IRA) and instantaneous respiration interval (IRI). Four different feed-

forward artificial neural network (ANN) models were developed to coordinate four feature sets, 25 features 

from NAF, 50 features from NAF and RIP, 50 features from IRA and IRI, and 100 features from IRA and 

IRI, respectively. The reported results showed that the features extracted from IRA and IRI were good 

predictors for OSA episode classification. 

Rather than detection of OSA episodes, Maier and Dickhaus [82] developed a method to detect 

apnea episodes specifically resulting from the compromised regulation of the central respiratory drive, 

called central sleep apnea (CSA). The EDR signal was extracted from a one-lead ECG signal using the 

QRS area method explained in [83]. With the assumption that the modulation of the respiratory signal in 

ECG is absent during CSA episodes, the recurrence analysis was then applied to the EDR signal to analyze 

the respiratory dynamics. A phase space reconstruction of the respiratory dynamics was carried out with 

both dimension (D) and time delay (Tau) of 3. Then, to obtain the recurrence plot, the phase space was 

projected onto a 2-dimensional plot by thresholding the distance between each point to every point in the 

phase space. The only points within a threshold that remain in the plot are regarded as true neighbors. The 

literature reports that the pattern of points influenced by a CSA episode was best detected when fixing 

thresholds that gave a recurrence rate of 20 percent. To classify the CSA episodes, a vertical line pattern in 

the recurrence plot called the trapping time (TT), was constantly calculated for each minute epoch. Each 

CSA episode was detected when the value of the TT exceeded the threshold set by the author. The best 

detection performance reported in this case using a one-lead ECG signal had a sensitivity of 82.8 % and a 

positive predictive value (PPV) of 41%. Babaeizadeh et al. [84] derived the respiratory signal from the ECG 

signal and used it to classify obstructive sleep apnea based on the length of time that the individual stops 

breathing. 

Although there have been many significant advancements in this field of research as seen from the 

results reported above, the credibility of some of the results is questionable because the reported validation 
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process is not clear. For example, many studies did not pay attention to the stratification of the proportion 

of a target used for training their models. In an unbalanced sample of the target situation (the sample number 

of target 0, non-apnea event, is not equal to that of target 1, apnea event), without any decision cost (weight) 

associated with each target to balance the model decision, the trained model will automatically be biased 

toward the target that has a larger percentage in the total sample.  

Also, the accuracy of some OSA episode detection methods is hampered by the challenges 

associated with capturing and quantifying the nonlinear dynamics of the physiological process underlying 

the measured signals. These detection methods use information from each signal in isolation (i.e., features 

are extracted from one signal); they do not attempt to capture the dynamic coupling and interrelationships 

of the signals that can be used to improve OSA detection accuracy. There is a need for further research to 

study deeply the changes in individual dynamics that cause obstructive sleep apnea. Then, with a good 

understanding of the interactions and the ways in which the system evolves to develop obstructive sleep 

apnea, based on that knowledge, it may be possible to individually predict the risk of before the person’s 

dynamics advance into matured obstructive sleep apnea. Finally, to enable preventive measures to intervene 

in the recurrence of OSA episodes, a real-time OSA episode detection method is needed. In the literature, 

only one OSA online prediction method [80] was found. There is still a clear need to develop a method that 

optimizes the information collected in real time to detect and forecast OSA episodes. 

 

3.3 OSA episode forecasting models 

 To prepare a counter process to prevent an OSA episode from happening, it is crucial to be able to 

systematically forecast the future OSA state in order to minimize the intervention measures that could also 

wake the person up during the OSA prevention process. The very first group found in the literature who 

attempted to forecast sleep apnea was Bock and Gough in 1998 [85]. However, their perspective was not 

to forecast the sleep apnea episode but the time-series of respiratory signals that may show sleep apnea 

episode patterns. In their study, the time-series of heart rate, respiration, and oxygen saturation were used 

as predictor signals. An Elman recurrent neural network was trained with the followed parameters: 
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momentum, 0.001; learning rate, 0.40; and one hidden layer with eighteen neurons. The maximum 

prediction step reported was 32 data samples of the respiration signal, which was equal to 16 seconds. The 

authors quantified the performance of their forecasting model by comparing the largest Lyapunov exponent 

and correlation dimension of the actual respiratory signal and the predicted respiratory signal during apnea 

events. The reported Lyapunov exponent error and correlation dimension were thirteen and nine percent 

respectively. However, in our opinion, the performance error quantification used in this research would be 

very hard to use in a real application.  

In 2010, Waxman et al. [86] developed a forecasting method to predict OSA episodes for thirty 

seconds to two minutes into the future by utilizing EEG, ECG (by means of the heart rate variability 

(HRV)), nasal airflow pressure, oronasal temperature, submental EMG, and EOG from PSG. The 

assumption in this study was that the pattern of the PSG before sleep apnea onset could be used to predict 

sleep apnea episodes. After segmenting the data into several durations, 30, 60, 90, and 120 seconds, all 

signal segments were demeaned. A discrete wavelet transform was then applied, resulting in new sets of 

signals. The authors did not report which wavelet transformation method was used to transform the data 

and which levels of signals were used for training the model. The features used for training the artificial 

neural network were the amplitude and timing of each of the three minima and three maxima, the ratio 

between the mean of the three maximal amplitudes and the mean of the three minimal amplitudes, the root-

mean-square (RMS) value, and the RMS value relative to that of the original signal. Large-scale memory 

storage and retrieval (LAMSTAR) was used in training the classifier. The best performance reported was 

as follows: 30-seconds apnea forecasting achieving sensitivity and specificity up to 80.6 ± 5.6 and 72.8 ± 

6.6 percent during NREM sleep, and 74.4 ± 5.9 and 68.8 ± 7.0 percent during REM sleep. However, the 

performance of forecasting OSA episodes further into the future was less accurate, with sensitivity and 

specificity around 50 percent in two-minute forecasting of an episode during REM sleep. 

To the best of our knowledge, little research has thoroughly investigated the area of forecasting 

sleep apnea episodes. Also, the forecasting of sleep apnea episodes utilizing a single signal was not found 

in the literature.  
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3.4 Wireless wearable sensory systems for monitoring of sleep apnea episodes 

In this section, prior research on wearable wireless systems for monitoring respiratory and/or heart 

related signals that can be used for out-of-center (OOC) OSA testing are reviewed. The first,  is a tight, full-

body suit referred to as WEALTHY that uses a conductive fabric to collect five ECG signals and a 

piezoresistive fabric to capture respiration and movements [87]. The second device, from the MyHeart 

project, is a wearable sensor device that emphasizes heart condition monitoring [88]. This device embeds 

conductive fabric as an electrode to sense the ECG signals in five positions. Similar to the WEALTHY 

system, piezoresistive fabric is implemented to detect respiration signals. The MagIC [89] combines 

conductive fabric and piezoresistive fabric into a vest. Textile electrodes and strain-gauge fabric are used 

for obtaining two-lead ECG and respiratory signals. The research in [87-89] used the new technology of 

conductive fabric as ECG electrodes. However, the quality of the signals obtained by the conductive fabric 

is far inferior to the quality from conventional electrodes because of a very high sensitivity to noise from 

movements and the pressure needed at measurement points for a quality signal. For more serious 

applications such as classification of OSA episodes, detection of myocardial infarction, and ambulatory 

heart monitoring, the reliable electrodes used in a clinical procedure are more suitable.  

Another group of researchers has developed a miniaturized wearable device to monitor both heart 

and respiratory activities. A wrist device called AMON is a monitoring and alert system designed for 

cardiac/respiratory patients [90]. The device can monitor a one-lead ECG, SPO2, blood pressure, and one 

body position. Another wireless wrist device, HealthGear [91], is an SPO2 sensor developed for  sleep apnea 

event detection and heart rate monitoring. In this case, the performance of AMON is not satisfactory 

because the sensing points are only around the wrist, not at appropriate points (i.e. chest ECG signals). The 

HealthGear [91] simultaneously measures oxygen saturation level and heart rate. These signals, while 

useful, are not adequate to monitor the entire cardiovascular system. Another group of devices is those 

equipped with a multi-sensor array. A wearable device, LifeShirt system from Vivometrics [92], is 

composed of a fit-type jacket, two inductive respiratory bands, standard electrodes for a one-lead ECG, 

pulse oximeter, and recorder unit. Another multi-sensor device, Bioharness [93], is a chest belt for real-
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time monitoring of ECG, respiration, heart rate, skin temperature, posture, and activity. These systems show 

high quality signals in the literature, but both are limited to a one-lead ECG, which is restricted to extracting 

only heart rate variability. To this point, the devices outlined in are the only wearable systems that have the 

ability to collect bio-signals during sleep. Still, to the best of our knowledge, the ability to process the 

collected signals in real time to predict the sleep apnea episode has yet to be found in the literature.  
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CHAPTER IV 
 

 

 

RESEARCH METHODOLOGIES 

 

 

 

 This chapter provides a background and reviews the methodologies used in all the analysis reported 

in this study.  

 

4.1 Decision trees 

A decision tree (DT) is a non-parametric supervised machine learning technique that is simple, yet 

very powerful because the concept is easy to understand and it is effectiveness in modeling. A decision tree 

is a set of rules that is optimized for directed data mining [94]. The goal of the decision tree is to assign a 

class to the target field based on the majority values of the input variables. The tree is built by splitting the 

records at each node according to the best cut-off value of an input variable. Starting from the first node, 

the tree determines which of the input fields make the best split. The algorithm is as follows [95]: 

 

Given: A training sample of N observations on class variable C that takes values [1, 2, …, k] and p 

predictor variables, X1, …, Xp  

 

Goal: Find a model for predicting values of Y from new X values.  
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4.1.1 Algorithm: 

1. Start at the root node 

2. Do a split search. If X is an interval variable, each unique value of X could serve as a potential split 

point. If X is a categorical variable, the average value of the target is taken within each categorical 

input level. This average value serves as a potential split point.  

3. For each split point, two groups are generated. Cases with input values less than the split point are 

put in the left branch. The ones with input values equal to or greater than the split point are classified 

into the right branch. Compute the purity measure of the split branches (left and right) from each 

split point. Choose X and the corresponding split point that maximizes the purity measure. 

4. Compute the purity measure of the split branches (left and right) from each split point. Choose X 

and the corresponding split point that maximize the purity measure. 

5. If the stopping criterion is reached, go to step 6. Otherwise, apply step 2 to each branch.  

6. Prune the tree by comparing the average square error in the training and validation datasets. 

For binary dependent (target) variable (Y ϵ [0 ,1]) , in this study, the probability Chi-square is used 

as a purity measure. At the splitting point, the number of cases in the left and right branches is counted, 

forming a 2x2 contingency table with the column specifying the branch direction (left or right) and the row 

specifying the target value (0 or 1). A Pearson Chi-square statistic is used to quantify the independence of 

the counts in each table’s column. 

 

𝜒2 = ∑∑
(𝑂𝑖𝑗 − 𝐸𝑖𝑗)

𝐸𝑖𝑗

2𝑁

𝑗=1

𝑁

𝑖=1

 (4.1) 

Where 𝑂𝑖𝑗= Observed frequency of row i and column j in the contingency table 

 𝐸𝑖𝑗= Expected frequency of row i and column j in the contingency table 

     = 
(𝑅𝑖𝑥𝐶𝑗)

𝑁
 

 N = Total number of observations 

 RI = Row ith marginal total 
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 Cj = Column jth marginal total 

 The chi-square (𝜒2) value indicates a difference in the proportion of counts in the left and right 

branches. A large 𝜒2 suggests that the proportions of 0 and 1 in the left and right branches are different, 

which is a good split. It is also used as a criterion for stopping the splitting. By converting to a p-value 

(df=1), assuming identical target (0, 1) proportions in each branch, the p-value indicates the likelihood of 

obtaining the observed value of the statistic [94]. Suggested by [94], for the split to occur, this p-value must 

exceed a threshold of 0.2. However, for a large dataset, these p-values can be very small so that the quality 

of the split will be reported by: 

 Logworth = - log(p-value) (4.2) 

 (Corresponding to the p-value of 0.2, a logworth is approximated 0.7) 

 For a binary target, as in our case (non-apnea = 0, apnea = 1), some other impurity indexes are 

widely used, such as [96]:  

 Gini Impurity index; i(p) = 1-p1
2-p0

2
 = 2p1(1-p1) (4.3) 

Where p0 is the proportion of subjects without apnea disorder  

 p1 is the proportion of subjects with apnea disorder 

The theory behind the Gini impurity index is that when two cases are chosen at random with replacement 

from a node, the probability that both cases are subjects without apnea disorder is p0
2 and that both are 

subjects with apnea disorder is p1
2. Thus, 1-p1

2-p0
2 reflects to the probability that the two cases chosen at 

random with replacement are different. The Gini index can take a minimum value of zero when the node is 

pure and maximum value of 0.5 when both targets are equal in the node. Another impurity index is: 

 Entropy; i(p) = −∑ 𝑝𝑖𝑙𝑜𝑔2(𝑝𝑖)
1
𝑖=0  (4.4) 

The rarity of an event is measured as – log2(pi). A large rarity measure means the event is rare. To 

interpret this equation, suppose the probability of subjects with apnea in the node is 0.01 so that conversely, 

the probability of subjects without apnea in the node is then 0.99. Then, the entropy is i(p) = -

[0.01*log2(0.01) + 0.09*log2(0.09)] = 0.0808. Compared to a case where the probabilities of subjects with 
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and without apnea are equal, the entropy of this case is i(p) = -[0.5*log2(0.5) + 0.5*log2(0.5)] = 1. These 

results show that, when the proportion of the targets is most impure (equal number of subject with and 

without apnea in the same node), the entropy will take the value of 1 but when the node purity approaches 

to maximum (only one case in the node) the entropy will approach the value of zero. 

 

4.1.2 Stopping rules and the pruning process 

 As suggested in the Chi-square splitting rule, the DT will stop the splitting process when the 

logworth of the split is less than the threshold. However, a significant level from the logworth is not the 

only option for limiting the tree’s size. Some other stopping criteria are the number of observations needed 

to split the nodes, the maximum depth size that the lead can grow, and the maximum number of splitting 

nodes.  

These stopping criteria are just the initial mechanisms to prevent an over-fitting problem. The last 

process for the DT is called “pruning”. After the last splitting node, the tree is called a “maximal tree” (see 

Figure 4.1). The pruning process removes the splits in the tree that are not relatively significant. The pruning 

algorithm is as follows [96]: 

 
Figure 4.1: Maximal tree from an apnea/non-apnea classification 

 



37 

 

1. From the maximal tree with M leaves shown in Figure 4.1 (M=4), if we remove one split at the 

end of the tree, we will get a sub-tree size M-1. For example, removing splitting point age_s1 

leaves a sub-tree size 4-1 = 3 which are nodes 2, 6, and 7. This sub-tree is called sub-tree_3.1 

(the first 3-node sub-tree). Next, removing the splitting point waist also leaves a sub-tree size 

3 called sub-tree_3.2 (the second 3-node sub-tree) with nodes 4, 5, and 3. Thus, from the 

maximal tree in this case, we have two cases of sub-tree sized 3. 

2. We continue the process until reaching a sub-tree size 1. Next we look for the nodes that leave 

sub-trees size 2. By removing, the splitting point age_s1 and waist, there is a sub-tree size 2, 

called sub-tree_2.1 with nodes 2 and 3 which is the only sub-tree size 2. 

3. The process corresponding to Figure 4.1 reaches a sub-tree size 1 by removing the splitting 

point NECK20. What is left is only node 1, or the root node. 

4. We calculate the assessment criteria from each sub-tree and choose the sub-tree that gives the 

best validation assessment criteria with the smallest sub-tree. 

From the algorithm explained above, we will have 2 three-node sub-trees, 1 two-node sub-tree, and 

1 one-node sub-tree. The assessment criterion used in this application is the misclassification rate. The 

validation misclassification rate is calculated for each sub-tree as shown in Table 4.1 below. 

Table 4.1: Summary of validation misclassification of each sub-tree from Figure 4.1 

Tree Number of leaves Validation Misclassification 

Root node 1 1-0.501 = 49.90% 

Sub-tree_2.1 (node 2,3) 2 1-[0.643x504+0.643x515]/1019 = 35.7% 

Sub-tree_3.1 (node 2,6,7) 3 1-[0.643x504+0.554x224+0.711x291]/1019 = 35.71% 

Sub-tree_3.2 (node 3,4,5) 3 1-[0.785x214+0.538x290+0.643x515]/1019 = 35.71% 

Sub-tree_4.1 (node 4,5,6,7) 4  

  

From the validation misclassification rate calculated in Table 4.1, sub-tree_4.1, sub-tree_3.1, and 

sub-tree_3.2 should be pruned because there is no gain in accuracy by going beyond subtree_2.1. Thus, the 

optimal tree in this case is the tree with nodes 1, 2, and 3. 
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4.1.3 Variable importance 

 One advantage of a DT is that the relative importance of input variables is also calculated after the 

maximal tree is constructed. The relative importance of input variable v in sub-tree T is computed by the 

square root of the summation of a product between the agreement of node 𝜏 in sub-tree T and a reduction 

of the sum square error from the predicted values as shown below [97]: 

 
𝐼(𝑣; 𝑇) = √∑𝑎(𝑠𝑣, 𝜏) △ 𝑆𝑆𝐸(𝜏)

𝜏𝜖𝑇

 (4.5) 

 Where 𝑠𝑣 indicates the primary or surrogate splitting rule using variable v. 

𝑎(𝑠𝑣 , 𝜏) is an agreement measurement for the rule using variable v in node 𝜏.  

𝑎(𝑠𝑣 , 𝜏)  = 1 if 𝑠𝑣is the primary splitting rule 

   = agreement measurement if 𝑠𝑣 is a surrogate rule 

   = 0 otherwise 

The agreement measurement is the proportion of the training samples assigned to the same 

branch after the split results from the primary splitting variable and the surrogate splitting variable 

at a particular 𝜏 node.  

△ 𝑆𝑆𝐸(𝜏) is the reduction in the sum of square errors from the predicted values. 

△ 𝑆𝑆𝐸(𝜏) = 𝑆𝑆𝐸(𝜏) − ∑ 𝑆𝑆𝐸(𝜏𝑏) 𝑏∈𝐵(𝜏)    

In our case where the target variable is binary, SSE is computed by  

 

 𝑆𝑆𝐸(𝜏) = 𝑁 (1 − ∑(𝑝̂𝑗
2)

𝐽

𝑗=1

)    𝑓𝑜𝑟 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎 (4.6) 

 𝑆𝑆𝐸(𝜏) = 𝑁 (1 − ∑(2𝑝𝑗 − 𝑝̂𝑗)

𝐽

𝑗=1

𝑝̂𝑗)    𝑓𝑜𝑟 𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝑑𝑎𝑡𝑎 (4.7) 

Where 𝑝𝑗 is the proportion of the validation data with target value j and N (𝑝𝑗  𝑎𝑛𝑑 𝑝̂𝑗are 

evaluated at node 𝜏). 



39 

 

𝐵(𝜏) = set of branches from 𝜏 

 𝜏𝑏 = child node of 𝜏 in branch b 

 𝑁(𝜏) = number of observations in 𝜏 

 𝛿𝑖𝑗 = 1 if 𝑌𝑖 = j, 0 otherwise 

 𝑝𝑗̂(𝜏) = average 𝛿𝑖𝑗 in the training data in 𝜏 

 The intuitive idea for this formula is to evaluate the effects of a variable that reduces the prediction’s 

sum square error in the tree. The variable that contributes greatly in correctly predicting the target variable 

will have a relatively high importance in the model compared to other variables, as reflected by the 

decreased sum square error. Another popular method of evaluating the variable importance is the Gini 

variable importance (GVI) [98]. The idea is almost similar to the previous case, but the GVI evaluates the 

variable importance by looking at the Gini impurity measurement reduced by the particular splitting 

variable over the tree. The average of the Gini variable importance in tree T when the target is a categorical 

variable can be computed as follows [98]: 

 

𝐺𝑉𝐼̂ (𝑋𝑖) =
1

𝑇
∑(∑𝑑𝑖𝑗

𝐽

𝐼𝑖𝑗)

𝑇

𝑡=1

 (4.8) 

 𝑑𝑖𝑗 = 𝐺 − (
𝑁𝐿

𝑁
𝐺𝐿 +

𝑁𝑅

𝑁
𝐺𝑅) (4.9) 

 𝐺 = 2𝑝̂(1 − 𝑝̂) (4.10) 

Where 𝑑𝑖𝑗 = the decrease in impurity produced by variable 𝑋𝑖 at jth node of the tth tree 

N = the number of observations at node j 

 𝑁𝑅, 𝑁𝐿 = the number of observations of the right and left nodes after splitting 

 𝐺𝐿, 𝐺𝑅 = the Gini indexes of the left and right node 

𝐼𝑖𝑗 = 1 if 𝑠𝑣is the primary splitting rule 

= agreement measurement if 𝑠𝑣 is a surrogate rule 

   = 0 otherwise 
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4.1.4 Surrogate splitting rule and imputation 

 One of the advantages of a decision tree is that, unlike a regression model that needs a complete 

case (no missing data) to do an analysis, a DT can handle missing values in the dataset by using a surrogate 

splitting rule when records in the primary splitting process are missing. To choose which variables could 

be used as surrogate variables, the rank of agreement is evaluated at each splitting point. The first surrogate 

variable is the variable that has the highest agreement with the primary variable. The agreement measure 

between a main splitting variable and a surrogate variable is the proportion of observations in the training 

samples that are assigned to the same branches [97]. Cases with missing or unseen values that were not 

used in the primary splitting rule but are used in the surrogate rule at the same node are also counted as 

observations not assigned to the same branch. If there are also missing cases in the best or first surrogate 

variable, the next or second surrogate variable is then used instead, and so on. If all surrogate variables 

assigned to the nodes cannot be used because of missing cases, these cases will be assigned to the node that 

has a bigger proportion (the majority of the cases).  

 Imputation is a process for statistically filling in the incomplete cases in the dataset. Although this 

process is not needed for a DT modeling technique as mentioned earlier, to use other techniques such as a 

regression, artificial neural network, and k-nearest neighbor, complete case data with no missing values in 

the dataset is needed. With listwise deletion, where all cases with missing data are deleted, if there are many 

missing cases in the dataset, much information will be eliminated uselessly. In this case, a DT can be used 

for statistically predicting the missing values.  

 The process is described as follows [99, 100]: 

1. Suppose we have n x p data matrix Y. Arrange Y such that Y=(YP,YC), where the columns in YP 

are the cases where one or some observations are missing and the columns in YC are the complete 

cases observed from Y. 

2. Given i = 1, 2, …, p and Yi = ith column of YP, build a DT using YC as a training sample. With the 

DT constructed, apply each Yi to the model. Draw a sample from the node to which each missing 
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value of Yi is assigned, with predictive distribution conditioned on YC. Use each sample to impute 

each missing value in Yi.  

3. Given i = 1, 2, …, p and Y-i = matrix Y that was imputed in the previous step with its ith column 

removed, build a DT using Y-i (previously imputed). With the DT constructed, apply Yi to the 

model. Draw a sample from the node to which each missing value of Yi is assigned, with selection 

probabilities generated by the Bayesian bootstrap [101] within each leaf of Y-i. 

4. Repeat step 3 for I times to check for a convergence. Recommended by [99] to use l = 10. 

5. Repeat steps 1-4 m times, yielding m imputed sets. 

Because this approach assumes a large sample size, it should be applied with caution. In our case, 

the student t test is used to statistically test whether there is a difference between the mean along with the 

F test for the equality of variances. A key advantage of this method is that it does not depend on the missing-

data mechanism because of the non-parametric process [102]. However, the main disadvantage is a 

computational cost from many repetitions of the process. 

 

4.2 Logistics regression 

 One limitation of a linear regression is that it cannot deal effectively with a categorical dependent 

variable. Because in our case, the dependent variable is binary or dichotomous (i.e., 0 = no apnea, 1 = 

apnea), a logistics regression which is designed especially for a model with a binary dependent variable is 

one of the most suitable modeling methods. Although logistic regression is one of the generalized regression 

models, some assumptions are quite different from those in a simple linear regression. The assumptions of 

a logistic regression are as follows [103]: 

- A linear relationship is not required between the dependent and independent variables. 

- The dependent variable must be binary. 

- The independent variables can be interval and categorical. They do not need to be normally 

distributed, linearly related, nor of equal variance within each group. 
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- For categorical, independent variables, the groups must be mutually exclusive and exhaustive. 

A case can only be a member of only one group. 

The intuitive background of a logistic regression is a simple regression with a non-linear 

transformation. In other words, the logistics regression is a linear regression having a dependent variable 

as an S-curve or non-linear transformation of a probability ranging from 0 to 1. A logistics regression model 

is shown below [103-106]: 

Logistic regression equation: 

 𝑙𝑜𝑔𝑖𝑡[𝑝(𝑥)] = ln [
𝑝(𝑥)

1 − 𝑝(𝑥)
] =  𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯+ 𝛽𝑘𝑥𝑘 (4.11) 

Predicted probability: 

 𝑝(𝑥) =
𝑒𝑥𝑝(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘)

1 + 𝑒𝑥𝑝(𝛽0+𝛽1𝑥1+𝛽2𝑥2+⋯+𝛽𝑘𝑥𝑘)
=

1

1 + 𝑒𝑥𝑝−𝑙𝑜𝑔𝑖𝑡[𝑝(𝑥)]
 (4.12) 

 

Where 𝑝(𝑥)  = the probability that a case is in a particular category (i.e., success vs not success) 

  𝛽0 = the constant of the equation 

  𝛽1, 𝛽2, … , 𝛽𝑘𝑥𝑘 = the coefficients of the predictor variables 

 In order to transform a probability, p(x), having a range of 0 to 1 to −∞ 𝑡𝑜 ∞, the logit or logistic 

function 𝑙𝑜𝑔𝑖𝑡[𝑝(𝑥)] = ln [
𝑝(𝑥)

1−𝑝(𝑥)
] is used. As seen from Figure 4.2, a logit function stretches a bounded 

probability, p(x), to an S curve that can take any number. Note that at a probability of 0.5, the logit of p(x) 

is zero. After the regression model is obtained, to be able to do a discriminant analysis, the logit is then 

transformed back to a probability by using equation 4.12. Then, a cut-off probability value needs to be 

assigned to differentiate between the range of probability that is 0 or 1 (i.e., non-apnea (0) or apnea (1)). 

The underlying distribution of the model is a binomial distribution so that a parameter estimation using the 

least squares technique cannot be used in this case. A maximum likelihood estimation which is described 

in the next section is used for that task. 
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Figure 4.2: Logistic or logit transformation function 

 

4.2.1 Parameter estimation 

 From equation 4.11, we can rewrite the equation in matrix form as [106]:  

 log [
𝑝𝑖

1 − 𝑝𝑖
] = ∑ 𝑥𝑖𝑘𝛽𝑘

𝐾

𝑘=0

     𝑖 = 1,2,… . . , 𝑁 (4.13) 

Where p = a column vector with length N elements and 𝑝𝑖 is the probability that a case is 

in a particular category for any given observation in the ith population. Assuming p is the 

probability of success (1) in this case, 

 x = the independent variable(s) with N rows and K+1 columns. The first element, 

𝑥𝑖0 = 1. 

 K = the number of independent variables specified in the model 

 𝛽 = the parameter vector as a column vector of length K+1 

The goal in this section is to estimate K+1 unknown parameters 𝛽 such that the model best describes 

all observations. Let Y be a length N column vector as a random variable representing the number of 
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successes in population i, where i = 1,2,…,N and y is a column vector that contains elements 𝑦𝑖 representing 

the observed counts of the number of successes for each population. Because each 𝑦𝑖 is binary, the joint 

probability density function of Y is [106]: 

 𝑓(𝑦|𝛽) = ∏
𝑛𝑖!

𝑦𝑖! (𝑛𝑖 − 𝑦𝑖)!
𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
𝑛𝑖−𝑦𝑖

𝑁

𝑖=1

 (4.14) 

To estimate the parameters, the maximum likelihood estimation is used. Having the same form as the joint 

probability density function above but switching known and fixed variables y and 𝛽, the likelihood function 

is: 

 𝑓(𝛽|𝑦) = ∏
𝑛𝑖!

𝑦𝑖! (𝑛𝑖 − 𝑦𝑖)!
𝜋𝑖

𝑦𝑖(1 − 𝜋𝑖)
𝑛𝑖−𝑦𝑖

𝑁

𝑖=1

 (4.15) 

 From the equation above, the maxima and minima can be calculated by differentiating the equation 

with respect to each 𝛽𝑖 and evaluating the first derivative that is set equal to zero. Then, using the values 

obtained from solving the first derivative previously to evaluate the second derivative, the maxima point is 

found when the second derivative at that point is negative. Note that the variance-covariance matrix is also 

formed by the second derivative equation. Simplified first and second derivatives of the log likelihood 

function are shown below [106]: 

 First derivative: 
𝜕𝑙(𝛽)

𝜕𝛽𝑘
= ∑ 𝑦𝑖𝑥𝑖𝑘 − 𝑛𝑖𝜋𝑖𝑥𝑖𝑘

𝑁
𝑖=1  

(4.16) 

 Second derivative: 
𝜕𝑙(𝛽)

𝜕𝛽𝑘𝜕𝛽𝑘′
= −∑ 𝑛𝑖𝑥𝑖𝑘𝜋𝑖(1 − 𝜋𝑖)𝑥𝑖𝑘′

𝑁
𝑖=1  

(4.17) 

  

4.2.2 Test of significance for a model and the model’s parameters 

 Wald 𝜒2 statistics are normally used to test the significance of each parameter in the model. The 

Wald calculation for the 𝛽𝑘 parameter is [105]: 

 
𝑊𝑎𝑙𝑑 =

𝛽𝑘

𝑆𝐸𝛽𝑘

  
(4.18) 
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 Each Wald statistic is then compared with a 𝜒2 distribution with a degree of freedom = 1 against 

the null hypothesis 𝐻0:  𝛽𝑘 = 0. Note that for a dataset with a small sample size, there may be a bias such 

that it produces a large estimation of the coefficient and an inflated standard error resulting in a lower Wald 

statistic, inaccurately underestimating the significance of some parameter in the model. 

 For a model test of significance, a log likelihood (LL) ratio test can be used to compare the 

likelihood of the data under the full model (e.g., with all parameters) and another model, normally an 

intercept-only model. The test statistic is: 

𝐺 = −2[(𝐿𝑜𝑔 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 − 𝑜𝑛𝑙𝑦 𝑚𝑜𝑑𝑒𝑙) − (Log 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑜𝑓 𝑎 𝑓𝑢𝑙𝑙 𝑚𝑜𝑑𝑒𝑙)] 

 G has a 𝜒2 with degrees of freedom equal to the number of parameters used in the full model. The 

significance is assessed by a 𝜒2test with the null hypothesis 𝐻0: 𝛽1 = 𝛽2 =. . . = 𝛽𝑘. The significance level 

of 0.05 is normally used in both Wald and LL tests.  

 

4.2.3 Model performance testing 

 In our case, where the modeling focus is on creating a mathematical tool to distinguish between 

people with sleep apnea (target = 1) and people without sleep apnea (target = 0), the end result of the logistic 

regression, which is the probability of having a sleep apnea, is not a sufficient criterion to differentiate 

between these two groups. The probability cut-off to divide the people into two group (i.e., classified as 

non-apnea if p < 0.5 and as apnea if p ≥ 0.5) must be chosen carefully based on the user’s objective (e.g., 

minimizing the false negative rate). Thus, the method for assessing the performance of the logistic model 

is discussed in the receiver operating curve (ROC) section (4.4) below. 

 

4.3 Artificial neural network 

 An artificial neural network (ANN) is a parametric machine learning technique developed with 

inspiration from the structure and function of biological neurons. An ANN model basically maps inputs 
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into outputs using mathematical functions. To introduce the basic idea of ANNs, Figure 4.3 is a diagram of 

a single-input with one neuron ANN. 

 
 

Figure 4.3: Artificial neural network architecture of a single-input with one neuron (reproduced from [107]) 

 

 Scalar input p is multiplied by scalar weight w. Then, the product of w x p is summed at a summer 

with bias b. The summation output is called net input n, which is then passed on to transfer function f. The 

final product from the transfer function is output a. In mathematical notation, the neuron output is: 

 𝑎 = 𝑓(𝑤𝑝 + 𝑏) (4.19) 

 The neuron output depends on which transfer function is used in the equation. The choice of criteria 

for choosing a transfer function depends on several factors. One of those factors is the task for the ANN. In 

our case, because the probability of an event is a desirable measurement for the ANN output, the log-

sigmoid transfer function is chosen because it will bound the output into the range 0 to 1 which corresponds 

to the objective. Another reason to use the log-sigmoid transfer function that it is differentiable, which is a 

requirement for using a backpropagation algorithm for training a multilayer network [107].The log-sigmoid 

function used is: 

 
𝑎 =

1

1 + 𝑒−𝑛
 

(4.20) 

The basic idea in using the ANN is to find a combination of parameters w, p, and b, and a transfer 

function that gives the desired output given the inputs. As commonly known, a single layer ANN can only 

solve a problem that is linearly separable. However, the architecture of an ANN can be adjusted to 
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accommodate the complexity of the problem. Solving more complex problem will require more inputs, 

neurons, and layers. The architecture in an ANN shown in Figure 4.4 is much more complex. 

 
Figure 4.4: Three-layer multilayer perceptron network (reproduced from [107]) 

 This ANN consists of three layers with neurons as needed. This particular network architecture is 

called a multi-layer perceptron network (MLP). Each layer can have any number of neurons (S), which is 

a set of weight, bias, summer, and transfer functions. The inputs of this ANN are composed of R inputs 

expressed in terms of a matrix as p. Each layer includes the weight matrix Wi with the dimension of Si x R, 

the summers, the bias vector bi with the dimension of Si, a net input vector ni with the dimension of Si, and 

an output vector ai with the dimension of Si, where Si
 indicates the number of neurons used in the layer, and 

a super subscript i which indicates which layer those parameters belong to. The last layer, whose output is 

the output of the entire network, is called the output layer and the other layers are called hidden layers. 

Also, the output of the previous layer becomes an input in the next layer. Thus, the equation for the output 

of each layer is: 

 𝑎𝑚+1 = 𝑓(𝑊𝑚+1𝑎𝑚 + 𝑏𝑚+1)     𝑓𝑜𝑟 𝑚 = 0,1,… ,𝑀 (4.21) 

 Where m = the number of layers in the network 

 

4.3.1 Training the multilayer perceptron (MLP) network with the backpropagation algorithm 

 This section describes how to estimate the parameters, weights, and biases that will best estimate 

the proper output (i.e., the probability of having apnea given the inputs). In this section, the reasoning and 

mathematical background for training the MLP network are provided, in particular, the backpropagation 

algorithm, which is a supervised learning technique used in such a task. The intuition in this process is that 
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we provide the inputs to the network, including independent and dependent variables. In each case, the 

value of the independent variables is passed through the network. Then, after the output generated by the 

network is determined, the performance measurement is computed and sent back into the network to adjust 

the parameters. This process continues until some criteria are met (i.e., after the mean square error is less 

than the threshold value, or after the number of iterations is reached). Assume we have a set of data with 

known output: 

 {𝒑1, 𝒕1}, {𝒑2, 𝒕2},… , {𝒑𝑁, 𝒕𝑁} (4.22) 

 Where p = an input vector to the network 

  t = the corresponding output vector  

  N = the number of cases (data points) 

 To train, each input set is fed into the network with randomized parameters as an initial condition 

(only in the first iteration). The outputs are then compared to the desired targets. To assess the performance 

of the network, the mean square error is calculated using the following equation [107]: 

 

𝐹(𝒙) =  
1

𝑁
∑(𝒕𝑛 − 𝒂𝑛)𝑇(𝒕𝑛 − 𝒂𝑛)

𝑁

𝑛=1

= 𝐸[(𝒕𝑛 − 𝒂𝑛)𝑇(𝒕𝑛 − 𝒂𝑛)] 
(4.23) 

 Where  x = a vector containing all network weights and biases 

  a = an output vector of the network 

 Intuitively, a small mean square error is desirable because it means that there is a small difference 

between the network’s generated outputs and the actual targets. Thus, in general, the training algorithm 

should minimize the mean square error, called a performance index. If we consider the mean square error 

as a performance surface where the global minima point is the combination of parameters that gives the 

minimal mean square error, by this means, the training process actually is a searching algorithm that 

iteratively looks for the steepest descent direction to the minima point. One such method is the least mean 

square (LMS) [107]. In each iteration, the mean square error function is approximated using a Taylor series 

expansion with a limited number of expansion terms. The algorithm will look for the steepest path to the 

local minima of the approximation. The searching direction is determined by the negative gradient of the 
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direction vector of the parameters. With a sufficient number of iterations, the algorithm will eventually 

reach the global minima, where the parameters give the lowest mean square error. Assume that the current 

searching point is at iteration k, and the estimated mean square error is: 

 𝐹̂(𝒙) = [𝒕(𝑘) − 𝒂(𝑘)]𝑇[𝒕(𝑘) − 𝒂(𝑘)] = 𝒆𝑇(𝑘)𝒆(𝑘) (4.24) 

Using the steepest descent algorithm [107], we can approximate new weights and biases for the next 

iteration k+1: 

 
𝑤𝑖,𝑗

𝑚(𝑘 + 1) = 𝑤𝑖,𝑗
𝑚(𝑘) − 𝛼

𝜕𝐹̂

𝜕𝑤𝑖,𝑗
𝑚 

(4.25) 

 
𝑏𝑖

𝑚(𝑘 + 1) = 𝑏𝑖
𝑚(𝑘) − 𝛼

𝜕𝐹̂

𝜕𝑏𝑖
𝑚 

(4.26) 

 Where 𝛼 = learning rate; 𝛼 <
2

𝜆𝑚𝑎𝑥
 for a stable search  

𝜆𝑚𝑎𝑥 = maximum eigenvalue of the Hessian matrix of the performance index 

  𝑤𝑖,𝑗
𝑚 = weight at ith neuron, jth input, and mth layer 

  𝑏𝑖
𝑚 = bias at ith neuron and mth layer 

 To implement these equations, in our case, the output of the MLP network depends not only on the 

weights and biases of the output layer but also on the outputs of previous layers, so the derivative terms 

cannot be directly computed. The chain rule is then applied to those equations: 

 𝜕𝐹̂

𝜕𝑤𝑖,𝑗
𝑚 =

𝜕𝐹̂

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑤𝑖,𝑗
𝑚 

(4.27) 

 𝜕𝐹̂

𝜕𝑏𝑖
𝑚 =

𝜕𝐹̂

𝜕𝑛𝑖
𝑚 ×

𝜕𝑛𝑖
𝑚

𝜕𝑏𝑖
𝑚 

(4.28) 

 Where 𝑛𝑖
𝑚 = the net input of layer m in ith neuron. 

   = ∑ 𝑤𝑖,𝑗
𝑚𝑎𝑗

𝑚−1𝑆𝑚−1

𝑗=1 + 𝑏𝑖
𝑚 
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So that  
𝜕𝑛𝑖

𝑚

𝜕𝑤𝑖,𝑗
𝑚 = 𝑎𝑗

𝑚−1 𝑎𝑛𝑑 
𝜕𝑛𝑖

𝑚

𝜕𝑏𝑖
𝑚 = 1. Hagan et al. [107] defined 𝑠𝑚 =

𝜕𝐹̂

𝜕𝑛𝑖
𝑚 as the sensitivity of 𝐹̂ to changes 

in the ith element of the net input at layer m, and used a Jacobian matrix, 
𝜕𝑛𝑚+1

𝜕𝑛𝑚 , to derive the recurrence 

relationship for the sensitivities. The final form of 𝑠𝑚 is as follows: 

 𝒔𝑀 = −2𝑭̇𝑀(𝒏𝑀)(𝒕 − 𝒂)𝑇  (4.29) 

 𝒔𝑚 = 𝑭̇𝑚(𝒏𝑚)(𝑾𝑚+1)𝑇𝑠𝑚+1  (4.30) 

 Where m = 𝑀 − 1,𝑀 − 2,… ,1  

  M = the last layer of the network 

  𝐹̇𝑚(𝑛𝑚)= 

[
 
 
 
𝑓̇𝑚(𝑛1

𝑚) 0 . . 0

0 𝑓̇𝑚(𝑛2
𝑚) . . 0

:
0

:
0

 
:

𝑓̇𝑚(𝑛𝑆𝑚
𝑚 )]

 
 
 

 

Because 𝑠𝑚 can only be computed backwards (from last layer back to the first layer), this 

algorithm is commonly known as backpropagation. Finally, with the steepest descent and back 

propagation algorithms, the equations used to minimize the square error iteratively are: 

 𝑾𝑚(𝑘 + 1) = 𝑾𝑚(𝑘) − 𝛼𝒔𝑚(𝒂𝑚−1)𝑇 (4.31) 

  
 

 𝒃𝑚(𝑘 + 1) = 𝒃𝑚(𝑘) − 𝛼𝒔𝑚 (4.32) 

 

4.3.2 Considerations for training MLP networks 

 Some limitations for training the ANN must be considered. First, the architecture of the network 

needs to be adjusted to suit the complexity of the problem. To the best of our knowledge, there is still no 

scientific method for estimating the number of layers, and neurons, including the weights, or biases that 

best fit the problem. As recommended by [108], these constraints cannot be known before training the initial 

network. If too many parameters are used, the network will most likely introduce the over-fitting problem. 

If there are too few parameters in the network, they will not be enough to fit the underlying process of the 

problem.  
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Second, depending on the transfer function used, data preprocessing may be needed before training 

the network. The data points and associated target should range between the boundaries of the transfer 

functions used in the network to prevent a saturation problem. For example, if the tangent-sigmoid is used 

as a transfer function, the input data should be normalized to the range of [-1, 1]. Furthermore, some authors 

[108] recommend setting the target to be less than the range of the transfer function (i.e., [-0.76,0.76] in 

this case) to avoid the saturation problem. 

Third, the stopping criteria for training the network should be carefully chosen. An ANN is very 

prone to an overfitting problem. One recommended way to avoid this problem, is to at least partition the 

dataset into two sets, training and validation, and stop the training when the performance index on the 

validation dataset increases. Another stopping criterion is the norm of the gradient of the performance index. 

It might be possible for a single layer network for a perfectly linear separable problem to have a zero 

gradient at the minimum. However, in MLP networks with more complex problems, it is not likely to be 

the case. Normally, a mean square error (as a performance index) is set at 10-6 as a training stopping criterion 

[108].  

 

4.4 Receiver operating characteristic (ROC) curves 

 In classification applications, many models such as artificial neuron networks, and logistics 

regression, mostly predict a success percentage rate as their output. However, real-world applications such 

as medical diagnosis, direct marketing, and pattern recognition, focus on the discrimination power of the 

model (i.e., potential buyer or not, having a disease or not, and having the same pattern or not). The last 

step before a model can do such task is to define the probability cut-off value that best separates the two 

target groups (binary targets in our case). Some models use 50 percent as a default threshold (i.e., y < 50: 

does not have the disease, y ≥ 50: have the disease). However, this value does not guarantee good 

discrimination between two target groups (in cases where the target is binary). In practical situations, when 

considering two populations, one with disease, the other without a disease, we rarely find a perfect 

separation between the two groups. For example, a laboratory test of an enzyme level in the blood could be 
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used to diagnose a disease. A high or low enzyme level can indicate whether the person has the disease or 

not. However, practically, it is almost impossible to have a clear-cut border line to distinguish between the 

groups. As shown in Figure 4.5, the criterion or cut-off value must be selected to discriminate between the 

two populations. 

 
Figure 4.5: Binomial distribution of populations with and without disease 

 

 Corresponding to each cut-off value, will be some cases correctly and incorrectly classified by the 

tool (i.e., a laboratory test result, classification models). There are four possibilities; cases with a disease 

and correctly classified as having the disease (TP = true positive fraction), cases without a disease and 

correctly classified as not having the disease (TN = true negative fraction), cases without a disease but 

incorrectly classified as having the disease (FP = false positive fraction), and cases with a disease but 

incorrectly classified as not having the disease (FN = false negative fraction). In these four cases, tool 

correctly classified two, TP and TN, and incorrectly classified two cases, FP and FN. The performance 

indexes widely used in the literature with their equations are included in Table 4.2: 

In an ideal situation, we would definitely want our tool to discriminate among the cases such that 

sensitivity or TPR and specificity or TNR are 100%. However, that is usually not the case because of the 

variations between people (in cases of a diagnostic test). There is always a trade-off between TPR and TNR. 

Referring to Figure 4.5, when the cut-off criterion is set to a lower probability (the cut-off point is shifted 
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to the left of the graph), the tool will likely be sensitive to classifying the cases into the group with the 

disease, which most likely also increases the FP fraction and decreases the FN fraction. In this case, we will 

have a tool that has high sensitivity or TPR and low specificity or TNR. Inversely, if the cut-off point is set 

to the higher threshold (to the right of the graph), the tool will tend to be less sensitive but more specific to 

the disease, resulting in lower sensitivity or TPR and higher specificity or TNR.  

Table 4.2: Derivation of performance indexes [109] 

Performance index Derivations 

Sensitivity or true positive rate (TPR) TP/(TP+FN) 

Specificity or true negative rate (TNR) TN/(FP+TN) 

Positive predictive value (PPV) TP/(TP+FP) 

Negative predictive value (NPV) TN/(TN+FN) 

False positive rate (FPR) FP/(FP+TN) = 1 – TNR 

False negative rate (FNR) FN/(FN+TP) = 1 – TPR 

 

The tool that helps visualize these trade-offs between sensitivity and specificity when adjusting the 

cut-off threshold is called a receiver operating characteristic (ROC) [110-113]. (To clarify, the ROC curve 

idea and background are totally different from the operating characteristic (OC) curve which is widely used 

in the quality control discipline. The ROC curve (see Figure 4.6) is empirically derived from the confusion 

matrix.). To construct the ROC in this study, the procedure is as follows [112]: 

1. Decide a discrete period for a cut-off value for evaluating the confusion matrix. A finer 

period will give a smooth ROC curve but require more computational cost. In this study, 

the period of 0.01 or 1% is used. 

2. Vary the cut-off threshold with the period set in 1). For each threshold, feed each classifier 

with the test dataset. From the result of each classifier in each cut-off threshold, build the 

confusion matrix. 

3. Calculate sensitivity or TPR and specificity or TNR from each confusion matrix. 



54 

 

4. Plot each coordinate obtained in 3) on the graph. The sensitivity or TPR is plotted against 

the Y-axis and the FPR or (1-specificity) is plot against the X-axis.  

 

Figure 4.6: Example of ROC curves constructed from confusion matrixes of several modeling methods in 

training and validation datasets 

In a decision tree (DT) classifier which is designed to produce only a class decision at each end 

point, the algorithm above is not applicable for such model type [112], but, we can approximately construct 

the ROC curve by evaluating the confusion matrixes obtained from each final leaf of the DT [94]. However, 

some authors [111, 112] have concluded that discrete classifiers such as DTs produces only a single point 

in the ROC space derived from the final confusion matrix.  

Again, the operating cut-off value depends on the user’s objective. Popular choices of objectives 

are: minimizing misclassification rate, minimizing the FPR, minimizing the FPR, maximum TPR, 

maximum TPR, maximizing profit, minimizing cost, and so on. Furthermore, the ROC curve is not only 

used for visualization and evaluation of the model’s performance. Once projected on the same scale (same 

cut-off unit. e.g., probability), it can be used for comparing the performances of several models. By plotting 

the ROC curves from different models on the same graph, for example, if accuracy is the objective, the 
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most northwest point closest to the (0,1) coordinate on the ROC graph gives the most accurate model and 

cut-off threshold point.  

Another criterion commonly used for choosing the best model is to calculate the area under the 

ROC curve (AUC). The AUC is equal to the probability that the classifier will correctly identify positive 

cases when randomly presented with a pair of positive and negative cases [114]. In other words, the AUC 

is the average sensitivity over the entire range of specificity or vice versa [115]. Hanley and McNeil [114] 

showed that the AUC is equivalent to the Wilcoxon test of ranks. To use the AUC as a ranking tool for 

choosing the best model is simple. After plotting the ROC curve, the AUC is the area under the ROC curve 

with the maximum value of 1. The tool or model that gives a maximum AUC will have a maximum average 

performance over every cut-off threshold. However, because the AUC reflects the average performance of 

the model, the model that produces the maximum AUC may not produce the minimum classification error.  

An example of ROC curves is shown in Figure 4.6. Generally, the ROC shows the trade-off 

between TPR and FPR when varying the cut-off threshold (each point on the ROC plot corresponds to each 

cut-off probability). Referring to Figure 4.5, when the cut-off probability moves to the left, not only does 

the TPR increase but the FPR also increases. This behavior is also shown in the ROC, so we can choose 

which cut-off value corresponds to the desired performance. In Figure 4.6, the plots in the left or TRAIN 

column, are results from the confusion matrixes built from the training dataset. Likewise, the plots in the 

right or VALIDATE column, are the results from the validation dataset. The ROC chart always includes a 

diagonal line that refers to the confusion matrix derived from the probability that the target was randomly 

chosen with equal probability. The AUC may be the best choice visually, in order to tell which model is 

the best on average. Starting from the ROC curves of the training dataset, it is clear that the neural network 

(ANN) model is the best. Because it gives the largest area under the ROC curve (spotted by the line that is 

the furthest northwest at almost every point). However, for the ROC curves on the VALIDATE dataset, the 

ANN model does not provide the largest AUC, most likely because of the overfitting problem, so the ANN 

model may not be the best choice globally. Thus, we may say, virtually, that the decision tree (DT) gives 

the average best performance in both training and validation datasets. However, as mentioned earlier, it 
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solely depends on the objective function of the modeler. The largest AUC does not guarantee the best model 

at every cut-off point. It is the modeler’s task to carefully choose the cut-off value that agrees with the 

modeler’s objective function. 
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CHAPTER V 
 

 

 

OSA SCREENING RULES BASED ON THE PATTERNS OF PHYSIOLOGICAL DATA 

 

 

 

 This chapter depicts the process of developing an OSA screening model. All procedures for 

processing the raw data for analysis are also explained here. At the end of this chapter, the result (screening 

rule) and the performance of the data analysis based on the data mining method are thoroughly described. 

The objective for developing an OSA screening rule in this chapter is to confidently identify people 

who do not have OSA disease from the population using easily obtained variables such as weight, height, 

sleep habits, and other anthropological variables. Then, the people that the model cannot confidently 

classify as not having OSA will use the diagnosis method in the next chapter for a more precise 

identification. Technically, we want to build a classification model such that it can classify non-OSA people 

with a low false negative rate (using a 5% threshold in this chapter).  
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5.1 Database information 

In this chapter, we used demographic, anthropological, and sleep-related data of patients from the 

Sleep Heart Health Study (SHHS) to build the OSA screening rules for differentiating between people with 

and without OSA. The main objective for developing these rules is to confidently separate people without 

OSA from the population. In the other words, statistically, the model is developed with the objective of 

minimizing the false negative fraction (positive = with OSA, negative = without OSA). Then, people who 

do not show strong evidences of not having OSA will be conveniently diagnosed by their own biorhythms 

collected overnight using a mobile and lightweight device explained in chapter 6. The rules developed in 

this chapter help more efficiently and economically prioritize people who need to go through an OSA 

diagnosis process.  

 

5.1.1 Sleep Heart Health Study (SHHS) 

The SHHS is a multi-center cohort study implemented by the National Heart Lung & Blood 

Institute [116, 117]. The purpose of the SHHS is to determine whether sleep-related breathing problems are 

associated with an increased risk of hypertension and other cardiovascular diseases. Because this set of data 

was collected from human subjects, the data were obtained by formal registration with the related approval 

from the Oklahoma State University Institutional Review Board (IRB). The data collected in the SHHS 

study focused on early middle-aged men and women who had not reported or experienced cardiovascular 

disease events (heart attack, surgery, or medications). After assessment of the responses from the pre-

screening questionnaire sent to about 20,000 people, 6,441 men and women aged 40 years and older were 

enrolled in this study. These subjects were selectively recruited from many ongoing cohort studies including 

Atherosclerosis Risk in Communities (ARIC) Study sites in Washington County, Maryland, and 

Minneapolis, Minnesota; the Cardiovascular Health Study (CHS) sites in Sacramento, California, 

Washington County, Maryland, and Pittsburgh, Pennsylvania; the Framingham Offspring and Omni cohorts 

in Tucson, Arizona; the Strong Heart Study sites in Arizona, Oklahoma, and South Dakota; and New York 

City Populations assessed in studies of hypertension.  
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 Participants younger than 65 years old were selected into the study only if they had a history of 

snoring or any indicators of sleep-disordered breathing. For patients aged 65 years or more, snoring is no 

longer a good predictor of the presence of sleep-disorder breathing; thus, they were selected for the study 

even without a snoring history.  According to SHHS protocol [116, 117], three types of data were collected; 

sleep data, covariate data, and outcomes data. 

 Sleep data collection was composed of two procedures, a sleep habits questionnaire and a PSG 

study. The sleep habits questionnaire was designed to assess baseline sleep habits and any problems, history 

or treatment of sleep-disordered breathing. This data was also used in our analysis to build the OSA 

screening rules. A PSG study was done by EEG-based polysomnography (PSG) in the subject’s home. 

Twelve channels of data were recorded as follows: Oximetry, Heart Rate, Chest wall and abdomen 

movement, Nasal/oral airflow, Body position, Electroencephalogram (EEG) (2 central; one for redundancy 

in case of failure/loss), Electrooculogram (EOG) (bilateral), Electromyogram – chine (EMG), and 

Electrocardiogram (ECG). The PSG data length ranges from 4-8 hours for each subject. Along with the 

PSG data, the target variable (0=no apnea, and 1=apnea) evaluated by a certified sleep technician or doctor 

is also provided. In this study, we use the ECG as a primary signal for classification of a sleep apnea episode, 

as explained later in the chapter.  

Covariate data is the data collected regarding demography, health history, cardiovascular risk 

factors, and cardiovascular events. However, the variables in this data were ranked by three priorities; 

critical, important, and useful data. Only critical variables were present in all data records. Because the 

SHHS was carried out on top of other studies which may have collected totally different data variables, 

variables were considered important or useful and that had already been collected from those cohorts was 

also added to the SHHS. Thus, some data variables may exist in only some records. For examples of the 

variables in this data collection are the prevalence of cardiovascular disease (CVD) in the last 3 months, 

blood pressure, neck circumference, weight, medications taken in the past two weeks, self-reported 

hypertension, gender, age, usual caffeine and alcohol intake, and cholesterol level. Next, the outcome data 

collection focused on events relating to cardiovascular diseases, stroke, hypertension (higher than the 
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threshold level), and mortality. Finally, overall, 1,242 variables were collected in the SHHS study. 

However, not all variables were related to OSA disease. Before these data could be used in an analysis, 

only those that relate to OSA disease must be statistically selected. This process is explained in the next 

section. 

 

5.2 Data preprocessing process 

The raw data from most data sources usually cannot be analyzed directly for several reasons: 

incomplete or missing data, spurious extreme data or outliers, and non-conformance with a normality 

assumption used in linear modeling techniques. In this section, details of the data preparation are explained. 

 

5.2.1 Data cleansing 

From the raw demographic, anthropology, and sleep-related data obtained from the SHHS, 5,804 

records with 1,242 variables are contained in a dataset. A binary variable named “apnea” was created from 

thresholding an apnea-hypopnea index (AHI) (AHI<5, then apnea = 0; AHI≥5, then apnea=1). This variable 

was used to identify a person as having or not having an apnea disorder. This variable is the target variable 

in this section. Next, before statistical analysis can be done to create OSA screening rules, all the data must 

be clean. In the other words, extreme values or outliers, missing values, and the skewness in distribution of 

each variable should be taken care of. The overall workflow used in this section is shown in Figure 5.1. 

 The process started by manually rejecting variables not correlated with OSA disease. All 

administrative variables such as a flag of the availability of some data (e.g., has a PSG record or not, has a 

sleep-habit form or not), the data collection date, hospital visiting id, and all PSG measurement variables 

were excluded because they are not related to the screening process. After these two data categories were 

excluded, there are 297 variables left in the dataset. These variables are classified as CVD outcomes, 

demographics, anthropometry, clinical measurements, medical history, medications, self-administrated 

questionnaire, health interview on life quality, and sleep habits.  



61 

 

 
Figure 5.1: OSA screening model development workflow 

Because most of the data was obtained from questionnaires with Likert scale answers and non-

ranking answers, all “don’t know” answers were treated as missing values. Descriptive statistics were used 

to examine the data characteristics of each variable. Of the 297 variables, only 3 did not contain any missing 

values. The percentage of missing values in this dataset ranges from less than 1% to 98%. The variables 

with missing value percentages more than 20% were dropped from the analysis because the results from 

analyzing these data will likely be bias, as suggested by experts in [118]. Suspicious values (e.g., too high 

or too low values such as triglycerides of more than 1000 mg/dL, or age equal to 0) were also manually 

filtered out. In binary variables, the variables with a majority response (either “yes” or “no”) of more than 

90% with no differentiation of OSA group found, were also dropped from the analysis because they gave 

very little information on identifying OSA.  

Rather than dropping the unrelated variables, we combined some redundant variables to safely 

impute missing values. Some variables could be used as substitutes for each other. For example, the 

variables “weight” and “weight20” both refer to the weight of the subjects but at different times. The 

variable “weight” was measured at the body check-up in the hospital while “weight20” was measured on 

the same day that the blood pressure was measured, which was the day before the PSG. These two dates 

were 2-4 weeks apart so that the change in weight should not be significantly different. Thus, the new 
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variable “weightim” (weight imputed) was created by averaging those two variables if they were both 

present, or using only one if the other was missing. 

We also created new meaningful variables from variables that were hard to interpret. For example, 

sleep time and wake up time were used to calculate the total sleep duration. Those who smoke pipe, cigar, 

or cigarette before bed were grouped into one variable indicating whether the subject smokes before going 

to bed or not. The ordinal variables with too many levels were converted to a binary level, low or high only. 

At this point, 201 variables are left for analysis. 

 

5.2.2 Treatment of missing values 

As shown in Figure 5.1, we managed the missing values in two ways, listwise deletion or complete 

case analysis, and imputation. In complete case analysis, all missing values were filtered. Only the 

observations with complete responses remain in the dataset. The advantages of this method are simplicity 

and comparability across analyses [119]. This method is a default method used for dealing with missing 

values in many statistical analysis tools. The obvious drawback of this method is that, with a significantly 

lower number of data point N, the statistical power is reduced because we did not use all available 

information. Also, if the missing data were not missing completely at random (i.e., the respondents tended 

not to respond to the sensitive questions), this method will likely introduce bias into the dataset. After 

implementing this method, there are 952 complete cases for analysis.  

For the imputation of missing values, we used a decision tree with surrogate method (see topic 

4.1.4 in Chapter 4). After the imputation, to make sure that the imputed values do not introduce bias into 

the dataset, in the other words, that there is no statistical difference between the original and the imputed 

datasets, we used a student’s t-test for testing whether the mean of each interval variable is statistically 

different in the case of the interval variables. For most of the interval variables, because the sample size is 

large (N=5104), from the central limit theorem, the data distribution could be approximated as normal. 

However, for the variables that are heavily skewed, the Wilcoxon rank sum test is used for testing whether 

two distributions (imputed vs non-imputed) are statistically different. The null hypothesis is that the two 
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distributions are identical and the alternative hypothesis is that the two distributions differ only with respect 

to the median [120]. The test showed that most variables were not significantly different. Some of the 

variables did have a sign for a significant change in mean, median, or mode between non-imputed and 

imputed datasets. However, we use these variables in the dataset because they may reflect the real 

underlying process of the meaningfulness of the data. The statistical differences between the imputed and 

non-imputed groups may occur because an underlying process of the missingness is not completely random 

(i.e., the respondents intended not to answer some sensitive questions) which makes some sense in our case. 

As mentioned earlier, this dataset was the product of data collected from several cohorts. Some cohorts may 

not have collected some data variables that others did.  

To make sure that the tree imputation did not introduce bias into the dataset, we introduced one 

more imputation dataset obtained by using the conventional imputation method for comparison. For interval 

variables, if the distribution of a variable was normal or close to normal, the overall mean of the variable 

was used to replace the missing value. If the distribution of the variable was not normal or skewed, we 

replaced the missing value with the median of the variable. For the categorical variables, the mode for each 

variable was used for the imputation. The advantage of this method is that no bias is introduced into the 

distribution of the imputed data. The other, non-missing value fields for the observation are not wasted as 

in the listwise method. However, the disadvantages are that this method inflates the significance of any 

statistical tests and deflates the variance [121]. However, for supervised classification applications, this 

method has been confirmed to perform well [121-123]. We use these three datasets for training the 

screening models and then compare their performances in the end. The assumption is that if the tree 

imputation really captures the underlying process for the missingness, the modeling performance from the 

dataset should perform better than that of the other groups. Otherwise, its performance should be worse. 
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Figure 5.2: Decision tree’s variable importance obtained from tree imputed data 
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Figure 5.4: Decision tree’s variable importance obtained from conventional imputed data 
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Figure 5.3: Decision tree’s variable importance obtained from complete case data 
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Table 5.1: Selected variables from DT’s variable Importance in different datasets 

Importance ranking Tree imputation Conventional imputation Listwise 

1 NECK20 NECK20 NECK20 

2 age_s1 age_s1 bmi_s1 

3 waist bmi_s1 age_s1 

4 bmi_s1 weightim LoudSn02 

5 weightim waist AvgSYSTBP 

6 HDL FVC HOSnr02 

7 Hip HDL ESS_s1 

8 Trig Trig HTNDerv_s1 

9 HWLGALL Chol CgPkYr 

10 FVC ACE1 HDL 

11 ACE1 AvgSYSTBP race 

12 vt_s1 ESS_s1 Chol 

13 LIPID1 STRESS15 Mi2Slp02 

14 AvgSYSTBP NTCA1 CALM25 

15 MINFA10 HB02 NGES02 

16 STRESS15 race height 

17 gender Naps02 WRFACE10 

18 FEV1 LOOP1 FVC 

19 pcs_s1 pcs_s1 Hip 

20 MI15 AvgDiasBP Alcoh 

21 TkPill02 HCTZ1 TEA15 

22 ESS_s1 HrsWD02  

23 EXCLNT25 LIPID1  

24 SODA10   

25 AvgDiasBP   

26 Mi2Slp02   

27 height   

28 mcs_s1   

29 LyDwn02   

30 RAWVT_s1   

31 HWWELL10   

32 SMKB4BED   

33 WORN25   

34 RAWGH_s1   
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5.2.3 Variable selection based on a variable importance derived from decision tree 

Now, we have three datasets: listwise, tree imputation, and conventional imputation. It is 

impractical to input all 201 variables into an OSA screening rule. Only the variables that give the most 

information or are closely relate to OSA disease should be used. In our case, we use the variable importance 

from a decision tree (DT) to pre-select the potential variables to be included in the screening model. Because 

the DT algorithm does not rely on the assumption of linearity, the selected variables can have either a linear 

or non-linear relationship with the target variable. The DT algorithm determines the importance of the 

variable by selecting a variable that contributes to correctly predicting the target variable. In other words, 

if using a Gini impurity measurement as a criterion (see section 4.1.1 and 4.1.3 in Chapter 4), the most 

important variable is the one that decreases the overall Gini impurity throughout the tree the most. The 

number of selected variables depends on the variables used in creating splitting rules (primary and surrogate 

variables). The criteria for variables to be selected is to have a p-value at the splitting point exceeding 0.2. 

The plots of variable importance obtained from a DT algorithm in different datasets are shown in Figures 

5.2, 5.3, and 5.4.  

 In Figures 5.2, 5.3, and 5.4, the variable importance is ranked by the relative importance ranging 

from 1 to 0. The most important variable has an importance value of 1. The least important variable has an 

importance value close to 0. Table 5.1 shows all the variables selected from the DT’s variable importance 

in the different datasets: tree imputation, conventional imputation, and listwise datasets. The variables that 

were chosen from all three datasets were highlighted in red text and those from two datasets are highlighted 

in green text. Interestingly, three variables, NECK20, age_s1, and bmi_s1, were at the very top of the three 

datasets. These variables are neck circumference in centimeters, age, and body mass index (BMI). In the 

literature, these variables are some of the important predictors for determining OSA. Some other interesting 

variables that were chosen and that are also mentioned in the literature [124] are triglycerides (Trig), HDL 

cholesterol (HDL), lipid (LIPID), hip and waist size (Hip, waist), blood pressure (AvgDiasBP, 

AvgSYSTBP), and Epworth sleep score (ESS_s1).  
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 The model methodologies used are 1) logistics regression, 2) decision tree (DT), and 3) artificial 

neural network (ANN). These three modeling methodologies do not require the assumption that the data 

are in a specific distribution pattern. Also, a linear relationship is not a requirement in these cases. However, 

for a logistic regression, the independent variables must be statistically independent to prevent 

multicollinearity [104], the situation in which two or more independent variables in a regression model are 

highly and linearly correlated. The problem arises because we estimate the partial coefficient by holding 

other variables at a constant and then measure the change in the dependent variable while varying the 

focused independent variable. If two or more variables are highly correlated, it is difficult to vary one while 

fixing the others at a constant, so the obtained partial coefficient does not truly exhibit the underlying nature 

of the data [104]. Some common causes for multicollinearity are 1) using variables that are derived from 

other variables (e.g., bmi = weight (kg) / [height (m)]2), 2) using almost the same variables in the model 

(e.g., weights measured in the same week) and 3) coincidental correlated variables. Thus, it is best to 

perform a diagnostic test for multicollinearity before using all the variables in any regression model. 

 

5.2.4 Variance-inflation factors 

 Although it may be possible to use pairwise correlations between the independent variables for 

detecting multicollinearity, the small correlation values do not guarantee the absence of multicollinearity, 

so the pairwise correlation is not widely used in this task [104]. The more suitable statistics in this case are 

variance-inflation factors (VIFs). For each independent variable, the VIF indicates how much larger the 

variance of the estimated coefficient would be if it did not correlate with other independent variables. The 

VIF for any independent variable (xj) can be computed as in [98]: 

 𝑉𝐼𝐹(𝑥𝑗) =
1

(1 − 𝑅𝑗
2)

 (5.1) 

Where 𝑅𝑗
2= the coefficient of determination of the regression of 𝑥𝑗on all other independent 

variables 
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 In other words, practically, 𝑅𝑗
2is the coefficient of determination when fitting a multiple regression 

model using 𝑥𝑗 as a dependent variable and the other independent variables in the original model as 

independent variables. Thus, if  𝑅𝑗
2 is close to zero, it means that the other independent variables in the 

original model cannot be used to explain 𝑥𝑗. Therefore, 𝑥𝑗 in this case is not involved in any 

multicollinearity. However, if 𝑅𝑗
2 is non-zero, the closer the value of 𝑅𝑗

2 to 1, the closer the VIF to infinity. 

This means that 𝑥𝑗 can be well explained by other independent variables in the original model, which 

indicates serious multicollinearity. It has been suggested that a VIF value higher than 10 suggests serious 

multicollinearity [104].  

 To check for multicollinearity in our datasets, because the VIF is calculated based on a linear 

multiple regression, the normality assumption is needed. Each variable is checked for normality and 

transformed such that its distribution is as close as possible to a normal distribution using a power 

transformation by Box and Cox [125]. The variance-inflation factor for each variable was then calculated 

as shown in Table 5.2. 
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Table 5.2: Variance-inflation factor calculated from the tree imputed dataset 

Parameter Estimates 

Variable DF Parameter 

Estimate 

Standard 

Error 

t Value Pr > |t| Variance 

Inflation 

Intercept 1 -0.7263 0.2401 -3.0200 0.0025 0.00 

SQRT_IMP_NECK20 1 1.0486 0.1381 7.6000 <.0001 3.68 

age_s1 1 0.0088 0.0008 10.6300 <.0001 2.11 

IMP_waist 1 0.0038 0.0009 4.0500 <.0001 3.95 

SQRT_IMP_bmi_s1 1 0.2011 0.0845 2.3800 0.0173 3.64 

LOG_IMP_HDL 1 0.0958 0.1027 0.9300 0.3513 1.60 

LOG_IMP_Hip 1 -0.0058 0.3609 -0.0200 0.9872 2.05 

LOG_IMP_Trig 1 0.3709 0.1748 2.1200 0.0339 1.30 

SQR_HWLGALL 1 0.0359 0.0510 0.7000 0.4825 1.23 

SQRT_IMP_FVC 1 -1.0120 0.1931 -5.2400 <.0001 11.32 

IMP_ACED1 1 0.0249 0.0761 0.3300 0.7433 1.01 

EXP_IMP_vt_s1 1 -0.0932 0.0930 -1.0000 0.3162 27.69 

EXP_IMP_gh_s1 1 0.1216 0.1131 1.0700 0.2825 44.19 

IMP_LIPID1 1 -0.0166 0.0202 -0.8200 0.4128 1.08 

AvgSYSTBP 1 -0.0001 0.0004 -0.1700 0.8648 1.84 

LOG_IMP_MINFA10 1 0.1549 0.1015 1.5300 0.127 1.36 

IMP_STRESS15 1 0.0043 0.0089 0.4900 0.6266 1.05 

gender 1 -0.1177 0.0244 -4.8200 <.0001 3.70 

SQRT_IMP_FEV1 1 1.0780 0.1699 6.3500 <.0001 9.92 

PWR_IMP_pcs_s1 1 -0.0640 0.0702 -0.9100 0.3626 2.97 

IMP_MI15 1 -0.0145 0.0275 -0.5300 0.5986 1.11 

IMP_TkPill02 1 -0.0139 0.0062 -2.2300 0.0257 1.11 

SQRT_IMP_ESS_s1 1 0.1615 0.0468 3.4500 0.0006 1.61 

IMP_EXCLNT25 1 0.0078 0.0113 0.6900 0.4908 3.38 

SQRT_IMP_SODA10 1 0.0597 0.0475 1.2600 0.2088 1.04 

AvgDiasBP 1 0.0007 0.0007 0.9800 0.3254 1.81 

LOG_IMP_Mi2Slp02 1 0.1808 0.1740 1.0400 0.2986 1.24 

IMP_height 1 -0.0029 0.0012 -2.3800 0.0171 3.42 

PWR_IMP_mcs_s1 1 0.0721 0.0689 1.0500 0.2958 2.37 

IMP_LyDwn02 1 -0.0053 0.0078 -0.6900 0.493 1.57 

EXP_IMP_RAWVT_s1 1 0.0642 0.0915 0.7000 0.4833 32.79 

IMP_HWWELL10 1 -0.0025 0.0083 -0.3000 0.7664 1.15 

LOG_SMKB4BED 1 -0.2875 0.1149 -2.5000 0.0124 1.05 

IMP_WORN25 1 -0.0097 0.0102 -0.9500 0.3437 2.83 

EXP_IMP_RAWGH_s1 1 -0.0832 0.1101 -0.7600 0.45 55.18 

 

 The variables SQRT_IMP_FVC, EXP_IMP_vt_s1, EXP_IMP_gh_s1, EXP_IMP_RAWVT_s1, 

and EXP_IMP_RAWGH_s1 have a VIF > 10 and the VIF of variable SQRT_IMP_FEV1 is close to 10. 

This indicates serious multicollinearity. In this case, before blindly removing all variables, we should make 

sure which of the variables are most likely to have high correlations. We found that FVC (forced vital 
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capacity) and FEV1 (forced expiratory volume in one second) are closely related. Also, the variables gh_s1 

and vt_s1 are the standardized versions of the variables RAWGH_s1 and RAWVT_s1 respectively. We 

start removing the variable with the highest VIF and then recalculate the VIFs to see whether the other 

variable VIFs decrease. After removing the variable EXP_IMP_RAWGH_s1 and recalculating the new 

VIFs, the highest VIF is from the variable SQRT_IMP_FVC. Then, SQRT_IMP_FVC is removed and the 

VIFs are reevaluated. Now, although there is no variable with VIF more than 10, we know that the variables 

EXP_IMP_vt_s1, EXP_IMP_gh_s1, EXP_IMP_RAWVT_s1, and EXP_IMP_RAWGH_s1 are redundant. 

After each pair is removed, the R2 values of the two multiple regression models are compared. Removing 

the unstandardized variables, EXP_IMP_RAWVT_s1 and EXP_IMP_RAWGH_s1, gave a slightly better 

R2. Thus, we choose to remove the unstandardized variables and recalculate the VIFs. The new VIF is 

calculated as shown in Table 5.3. This procedure was also carried out in the other two datasets. The final 

results are shown in Tables 5.4, and 5.5. 

 The datasets obtained from this procedure are used for the three modeling techniques, decision tree 

(DT), logistic regression, and artificial neural network (ANN). Although, multicollinearity might be good 

for a DT technique because the redundant or highly correlated variables will help in the case of missing 

data as a surrogate split, in this application, we would like to create a screening rule that will be easy to use 

with the fewest variables possible (a parsimonious rule). We also assume that the person who uses this rule 

or model has all the data variables required.  
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Table 5.3: Variance-inflation factors recalculated from the tree imputed dataset after removing high VIF (>10) 

and redundant variables 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Variance 
Inflation 

Intercept 1 -0.7010 0.2404 -2.9200 0.0036 0.00 

SQRT_IMP_NECK20 1 1.0843 0.1382 7.8500 <.0001 3.67 

age_s1 1 0.0089 0.0008 10.7600 <.0001 2.11 

IMP_waist 1 0.0038 0.0009 4.0800 <.0001 3.95 

SQRT_IMP_bmi_s1 1 0.2004 0.0846 2.3700 0.0179 3.64 

LOG_IMP_HDL 1 0.0816 0.1029 0.7900 0.4276 1.59 

LOG_IMP_Hip 1 0.0967 0.3612 0.2700 0.789 2.04 

LOG_IMP_Trig 1 0.3866 0.1752 2.2100 0.0274 1.30 

SQR_HWLGALL 1 0.0400 0.0512 0.7800 0.4344 1.23 

IMP_ACED1 1 0.0251 0.0763 0.3300 0.7419 1.01 

EXP_IMP_vt_s1 1 -0.0374 0.0378 -0.9900 0.3225 4.54 

EXP_IMP_gh_s1 1 0.0418 0.0352 1.1900 0.2342 4.25 

IMP_LIPID1 1 -0.0185 0.0202 -0.9100 0.3617 1.08 

AvgSYSTBP 1 0.0000 0.0004 0.0700 0.9439 1.83 

LOG_IMP_MINFA10 1 0.1572 0.1017 1.5500 0.1221 1.36 

IMP_STRESS15 1 0.0039 0.0089 0.4300 0.6656 1.05 

gender 1 -0.1000 0.0242 -4.1200 <.0001 3.63 

SQRT_IMP_FEV1 1 0.3119 0.0868 3.5900 0.0003 2.58 

PWR_IMP_pcs_s1 1 -0.0581 0.0679 -0.8600 0.3916 2.75 

IMP_MI15 1 -0.0120 0.0276 -0.4400 0.6623 1.10 

IMP_TkPill02 1 -0.0138 0.0062 -2.2200 0.0265 1.10 

SQRT_IMP_ESS_s1 1 0.1660 0.0469 3.5400 0.0004 1.60 

IMP_EXCLNT25 1 0.0080 0.0113 0.7100 0.4803 3.38 

SQRT_IMP_SODA10 1 0.0570 0.0475 1.2000 0.2306 1.04 

AvgDiasBP 1 0.0007 0.0007 0.9800 0.3271 1.81 

LOG_IMP_Mi2Slp02 1 0.1880 0.1744 1.0800 0.281 1.24 

IMP_height 1 -0.0047 0.0012 -3.9400 <.0001 3.17 

PWR_IMP_mcs_s1 1 0.0700 0.0678 1.0300 0.3015 2.27 

IMP_LyDwn02 1 -0.0066 0.0078 -0.8400 0.3982 1.57 

IMP_HWWELL10 1 -0.0015 0.0083 -0.1800 0.8549 1.15 

LOG_SMKB4BED 1 -0.3338 0.1149 -2.9100 0.0037 1.05 

IMP_WORN25 1 -0.0084 0.0101 -0.8300 0.405 2.75 
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Table 5.4: Variance-inflation factors recalculated from the conventional imputed dataset after removing high VIF 

(>10) and redundant variables 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Variance 
Inflation 

Intercept 1 -1.6933 0.1374 -12.3300 <.0001 0.00 

SQRT_IMP_NECK20 1 1.1835 0.1183 10.0000 <.0001 2.67 

age_s1 1 0.0092 0.0008 11.2600 <.0001 2.02 

SQRT_IMP_bmi_s1 1 0.1132 0.0997 1.1400 0.2563 5.00 

Weightism 1 0.0018 0.0011 1.6800 0.0923 7.71 

IMP_waist 1 0.0028 0.0009 3.1900 0.0014 3.44 

SQRT_IMP_FVC 1 0.0746 0.0901 0.8300 0.408 2.43 

LOG_IMP_HDL 1 -0.0666 0.1034 -0.6400 0.5194 1.60 

LOG_IMP_Trig 1 0.1824 0.1867 0.9800 0.3286 1.47 

SQRT_IMP_Chol 1 0.2778 0.1031 2.6900 0.0071 1.24 

IMP_ACE1 1 -0.0023 0.0201 -0.1200 0.9082 1.08 

AvgSYSTBP 1 -0.0001 0.0004 -0.2900 0.7714 1.84 

SQRT_IMP_ESS_s1 1 0.1396 0.0406 3.4300 0.0006 1.20 

IMP_NTCA1 1 -0.0307 0.0301 -1.0200 0.3082 1.02 

IMP_HB02 1 0.0136 0.0067 2.0300 0.042 1.07 

Race 1 0.0194 0.0126 1.5500 0.1215 1.18 

LOG_IMP_Naps02 1 0.0389 0.1141 0.3400 0.7331 1.23 

IMP_LOOP1 1 0.0393 0.0328 1.2000 0.2313 1.11 

PWR_IMP_pcs_s1 1 -0.0287 0.0461 -0.6200 0.533 1.26 

AvgDiasBP 1 0.0007 0.0007 0.9600 0.3393 1.82 

IMP_HCTZ1 1 -0.0203 0.0282 -0.7200 0.4715 1.04 

IMP_HrsWD02 1 0.0009 0.0055 0.1600 0.8698 1.03 

IMP_LIPID1 1 -0.0189 0.0202 -0.9300 0.3508 1.07 
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5.3 OSA screening rule construction 

 In this section, the three datasets prepared in the previous sections are used for constructing the 

classification models. The target or independent variable in our case is the indicator that the person currently 

has OSA disease (AHI≥5, then apnea=1) or does not have OSA disease (AHI<5, then apnea=0).  

 As shown in Figure 5.1, at the beginning of the workflow, the raw dataset is partitioned into thirds, 

for training, validation, and testing. The model training process will initially involve the training and 

validation data partitions. The testing data partition is left out of the modeling process and will be use in 

the end for evaluating the performance of the developed models. The training partition, the main part of the 

dataset, is used for finding patterns and creating initial models. The validation partition is used for 

Table 5.5: Variance-inflation factors recalculated from the listwise dataset after removing high VIF (>10) and 

redundant variables 

Parameter Estimates 

Variable DF Parameter 
Estimate 

Standard 
Error 

t Value Pr > |t| Variance 
Inflation 

Intercept 1 -1.7556 0.4472 -3.9300 <.0001 0.00 

NECK20 1 0.0237 0.0066 3.6100 0.0003 3.26 

bmi_s1 1 0.0128 0.0071 1.7900 0.0731 5.15 

age_s1 1 0.0097 0.0021 4.6000 <.0001 1.66 

LoudSn02 1 0.0413 0.0198 2.0800 0.0374 1.60 

AvgSYSTBP 1 -0.0008 0.0009 -0.8800 0.3779 1.25 

HOSnr02 1 0.0482 0.0169 2.8600 0.0043 1.59 

ESS_s1 1 -0.0070 0.0037 -1.8800 0.0599 1.14 

HTNDerv_s1 1 0.0699 0.0333 2.1000 0.0358 1.20 

CgPkYr 1 -0.0026 0.0009 -3.0200 0.0026 1.22 

HDL 1 -0.0004 0.0011 -0.3800 0.7039 1.31 

race 1 0.1223 0.0507 2.4200 0.0159 1.07 

Chol 1 0.0006 0.0004 1.4500 0.1461 1.07 

Mi2Slp02 1 0.0000 0.0009 0.0100 0.995 1.08 

CALM25 1 0.0160 0.0153 1.0400 0.2981 1.13 

NGES02 1 0.0223 0.0167 1.3400 0.1811 1.24 

height 1 0.0009 0.0030 0.3000 0.7619 3.62 

WRFACE10 1 0.0330 0.0188 1.7500 0.0799 1.05 

FVC 1 -0.0126 0.0249 -0.5100 0.6125 2.90 

Hip 1 -0.0014 0.0030 -0.4500 0.6529 3.60 

Alcoh 1 0.0049 0.0024 2.0500 0.0405 1.18 

TEA15 1 -0.0129 0.0149 -0.8600 0.3882 1.03 
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evaluating the performance of the models developed from the training data partition. One of the main 

reasons for using the validation dataset is to prevent overfitting. As is commonly known, adding more 

complexity to the model improves the classification performance in the training dataset. However, an overly 

complex model will fit itself to the noise in the data. This over-complexity can be seen if the model is 

applied to the validation dataset and each training iteration is checked and the model performances used in 

both training and validation datasets are comparable. The training is stopped if the validation MSE increases 

which reflects the point where the overfitting occurs. Finally, the model is revalidated with the testing 

dataset, which is not involved in the training process, to see how the model performs in the real situation. 

 

5.3.1 OSA screening rule derived from the logistic regression method 

 As the normality assumption is not required for the logistic regression, we use the variables in the 

datasets directly in modeling process without any transformation. Doing so more convenient for the end 

user, as the implementation will not require any calculation in variable transformation. As a standard 

procedure, the logistic regression starts by determining which variables to be included in the regression. In 

this research, we use the stepwise method, which is explained as the process develops.  

 Intuitively, the stepwise variable selection method comprises of two steps in one iteration: 

determining which variable is significant enough to enter the model and determining the significance level 

of each parameter in the model. In this study, a significance level of 0.05 is used for both entering and 

staying in the model. Before the selection process starts, the algorithm builds the baseline model with only 

the intercept term. This model predicts the overall average target values for all cases. Then, the variable 

selection starts. First, every variable is used for fitting the one-variable model. The first variable selected 

into the model is the one that most improves it over the baseline model (the highest Chi-square). Then, the 

algorithm reevaluates the statistical significance of all included inputs. If any included input is not 

significant enough, it is removed. The process terminates when there is no variable significant enough to 

be included in the model and the inputs already in the model are all significant. Then, the performance of 

the model in each iteration is evaluated and the one with the best performance is chosen as the final model. 



76 

 

Figure 5.6 summarizes the steps of the stepwise algorithm. In the first step, the interaction of 

variables age_s1 and NECK20 enters the model. After the parameter is estimated by a maximum likelihood 

algorithm, the overall model’s significance is tested as shown in Figure 5.7. Because the overall model is 

significant at level 0.05, we conclude that this variable is significant enough to enter the model. Also, the 

significant of each variable in the model is reevaluated by the Wald Chi-square statistics as shown in Figure 

5.7. All variables are significant at the 0.05 level. This process progresses iteratively as shown in Figure 

5.6. At step 8 with the entry of the interaction between age_s1 and bmi_s1, after every variable is 

reevaluated, the variables age_s1 and weightim became insignificant so they were removed from the model. 

The stepwise algorithm terminated at step 14. The performance (misclassification rate in this case) of the 

models obtained in every step is evaluated using the validation dataset. In this case, the model in step 3 with 

the variables Intercept, IMP_NECK20, IMP_waist*age_s1, age_s1*weightim, was chosen to be the final 

model because it has the lowest misclassification rate. For the other two datasets, listwise and DT 

imputation, the results for fitting the logistic regression are shown in Figures 5.8 and 5.9. 

 

 
Figure 5.6: Summary of the stepwise selection algorithm used in the logistic regression from the 

conventionally imputed dataset  
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Figure 5.7: Global null hypothesis test in the first iteration in the logistic regression from the conventionally 

imputed dataset 

 

 
Figure 5.8: Summary of the stepwise selection algorithm used in the logistic regression from the Tree imputed 

dataset  

 

 
Figure 5.9: Summary of the stepwise selection algorithm used in the logistic regression from the listwise dataset  

Likelihood Ratio Test for Global Null Hypothesis: BETA=0 

 

-2 Log Likelihood          Likelihood 

Intercept     Intercept &          Ratio 

Only      Covariates     Chi-Square       DF     Pr > ChiSq 

 

4949.016        4471.421       477.5947        1         <.0001 

 

Analysis of Maximum Likelihood Estimates 

 

Standard          Wald                  Standardized 

Parameter                      DF    Estimate       Error    Chi-Square    Pr > ChiSq        Estimate    Exp(Est) 

 

Intercept                          1     -3.2548      0.1670        379.91        <.0001                       0.039 

age_s1*weightim            1    0.000660    0.000033        397.52        <.0001                       1.001 
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 Shown in Table 5.6, the important OSA predictors appear that in all three models are the 

interactions between NECK20 (neck circumference in centimeters), Epworth sleep scale (ESS), age, waist 

size in inches, forced expiratory volume in one second (FEV1), triglycerides, and weight. The other 

interesting OSA predictors are interactions between age and the indicator for smoking before going to bed 

(SMKB4BED), and the Physical Component Scale Standardized Score (pcs_s1). The initial performance 

evaluated from the validation misclassification rates are 32.16% in model I, 31.51% in model II, and 

36.79% in model III. These initial performances suggest that the listwise (complete) dataset is not a very 

good choice, as seen in the higher misclassification rates compared to the other two models. Again, to find 

the best model here, the final performance must be evaluated by selecting the appropriate cut-off value for 

each model such that the false negative rate (FNR) is below the threshold (5% in this study). That topic is 

discussed later in this chapter. 

Table 5.6: Effects selected in the final logistic regression models from different datasets 

Effects in the final model 

Model I: Conventional imputation Model II: Tree imputation Model III: Listwise 

NECK20 ESS_s1*Trig NECK20*age_s1 

waist*age_s1 ESS_s1*bmi_s1  

age_s1*weightim FEV1*Trig  

 NECK20*pcs_s1  

 NECK20*waist  

 NECK20*age_s1  

 height*pcs_s1  

 SMKB4BED*age_s1  

 

5.3.2 OSA screening rule derived from the decision tree method 

 The decision tree (DT) is a non-parametric method that does not have any equation or coefficient. 

The tree is built based on the patterns found from the training data. As explained in the methodology section, 

tree construction starts with the root node, which is where the best split occurs. The objective function of 

each split is to minimize the impurity measurement computed from the ratio of the target group (apnea vs. 

non-apnea). The algorithm will search for the variable and its value where the impurity measurement is 
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minimized. In this study, a Gini impurity index is used. The other criteria (splitting and stoppage) used in 

this study are shown in Table 5.7.  

 We applied the DT algorithm to our three datasets: tree imputation, conventional imputation, and 

listwise datasets. The same data partitions used in the logistic regression model are also used in this 

modeling section. The tree construction from the tree imputation dataset is used to demonstrate. The final 

tree obtained from this dataset is shown in Figure 5.10.
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Figure 5.10: Decision tree constructed from a tree imputed dataset 
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 Shown in Figure 5.10, the root node starts from variable NECK20, which is the neck size, then it 

spits into two leaves. This process kept going until one of the stoppage criteria shown in Table 5.7 has been 

reached. The relative variable importance is the reflection of how well the variables perform in the 

classification. In this model, the neck circumference is the most important variable. However, there is no 

guarantee that the construction of the tree stopped at the criteria will be optimal. This is where the pruning 

process and validation dataset are used. The pruning process removes the splits that are not relatively 

significant in the tree (see the methodology chapter for more details). Furthermore, the plot of the initial 

performance indexes (in our case, training and validation misclassification rates) obtained from both 

training and validation data partitions is used for comparison (see Figure 5.11). The plot suggests that the 

optimal number of leaves is twelve. As the tree grows larger, it is expected that the classification 

performance will be better, just as when we add more variables to the regression model. However, growing 

too many leaves also introduces the overfitting problem, where the tree starts to fit the noise in the data 

rather than capturing the true patterns for distinguishing between the target groups. The best point to stop 

Table 5.8: Variable importance calculated from every splitting in the DT constructed from the tree imputed 

dataset 

Obs NAME NRULES NSURROGATES IMPORTANCE 

     

1 IMP_NECK20 3 4 1 

2 IMP_waist 2 4 0.91696 

5 IMP_Trig 1 5 0.84861 

12 age_s1 3 2 0.63831 

13 IMP_pcs_s1 1 6 0.57035 

18 IMP_ESS_s1 1 2 0.24228 
 

Table 5.7: Criteria used for constructing decision trees in this study 

Impurity measurement Gini impurity index 

Splitting significance level 0.2 

Maximum split branch at each split 2 (binary tree) 

Maximum tree depth 10 

Number of cases required at each leaf 50 

Initial performance measurement Validation misclassification rate 
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the tree’s growth is the first point before the performance index of the validation partition starts to get worse 

(an increased validation misclassification rate in this case).  

Shown in Figure 5.11, the misclassification rates in both training and validating partitions decrease 

quickly after the very first leaf then steadily decrease until saturate at 12 leaves. The validation 

misclassification rate started to increase when the tree had around 23 leaves, so it is better to keep the tree 

simple and avoid the overfitting problem. Only 12 leaves are used in the final classification tree. The 

procedure explained above is also used in constructing trees from the other two datasets. The tree models 

are shown in Figures 5.11 and 5.12. The importance of the variables in each model are included in Table 

5.9. 

 

 

 

 

 
Figure 5.11: Misclassification rates plotted from performances of decision tree models built from training 

and validation data partitions of the tree imputed dataset 
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Table 5.9: Important variables in the final tree models from different datasets 

Variables used for building tree models 

Model I: Conventional imputation Model II: Tree imputation Model III: Listwise 

IMP_NECK20 IMP_NECK20 bmi_s1 

IMP_waist IMP_waist age_s1 

IMP_Trig IMP_Trig  

IMP_bmi_s1 age_s1  

IMP_ESS_s1 IMP_pcs_s1  

age_s1 IMP_ESS_s1  

IMP_pcs_s1   

IMP_HB02   

 

 The variables used for building the classification trees listed in Table 5.9 are mostly in accordance 

not only for the tree models but also the logistic regression models developed in the previous section. The 

neck circumference is still the best predictor for differentiating people with and without OSA. The other 

important predictors are waist size, triglyceride level, body mass index (BMI), age, Epworth sleep score 

(ESS), Physical Component Scale Standardized Score (pcs_s1), and frequency of being awakened with 

heartburn or indigestion (HB02). The initial performance of the tree models evaluated by the validation 

misclassification rate are 33.65% for model I, 33.00% for model II, and 39.37% for model III. These initial 

performance indexes agree with the results obtained from the logistic regression models. This confirms that 

the modeling using the listwise (complete) dataset does not give a very good result compared to the imputed 

one because a lot of useful information is meaninglessly discarded. One of the advantages of using a tree 

model is that it is very easy to understand and implement. For example, from the tree model in Figure 5.10, 

we can write out all the splitting rules as English rules as follows: 
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Table 5.10: English rules created from the tree constructed from the tree imputed data 

 

*------------------------------------------------------------* 

 Node = 4 

*------------------------------------------------------------* 

if age_s1 < 59.5 

AND Imputed NECK20 < 37.65 

then  

 Tree Node Identifier   = 4 

 Number of Observations = 737 

 Predicted: apnea=1  = 0.21 

 Predicted: apnea=0  = 0.79 

  

*------------------------------------------------------------* 

 Node = 7 

*------------------------------------------------------------* 

if Imputed waist >= 99.3 or MISSING 

AND Imputed NECK20 >= 37.65 or MISSING 

then  

 Tree Node Identifier   = 7 

 Number of Observations = 1087 

 Predicted: apnea=1  = 0.73 

 Predicted: apnea=0  = 0.27 

  

*------------------------------------------------------------* 

 Node = 13 

*------------------------------------------------------------* 

if age_s1 >= 54.5 or MISSING 
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AND Imputed waist < 99.3 

AND Imputed NECK20 >= 37.65 or MISSING 

then  

 Tree Node Identifier   = 13 

 Number of Observations = 526 

 Predicted: apnea=1  = 0.59 

 Predicted: apnea=0  = 0.41 

  

*------------------------------------------------------------* 

 Node = 20 

*------------------------------------------------------------* 

if age_s1 < 75.5 AND age_s1 >= 59.5 or MISSING 

AND Imputed waist < 111.88 or MISSING 

AND Imputed NECK20 < 37.65 

then  

 Tree Node Identifier   = 20 

 Number of Observations = 701 

 Predicted: apnea=1  = 0.39 

 Predicted: apnea=0  = 0.61 

  

*------------------------------------------------------------* 

 Node = 21 

*------------------------------------------------------------* 

if age_s1 < 75.5 AND age_s1 >= 59.5 or MISSING 

AND Imputed waist >= 111.88 

AND Imputed NECK20 < 37.65 

then  

 Tree Node Identifier   = 21 
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 Number of Observations = 54 

 Predicted: apnea=1  = 0.65 

 Predicted: apnea=0  = 0.35 

  

*------------------------------------------------------------* 

 Node = 23 

*------------------------------------------------------------* 

if age_s1 >= 75.5 

AND Imputed NECK20 < 37.65 AND Imputed NECK20 >= 35.9 

then  

 Tree Node Identifier   = 23 

 Number of Observations = 95 

 Predicted: apnea=1  = 0.68 

 Predicted: apnea=0  = 0.32 

  

*------------------------------------------------------------* 

 Node = 24 

*------------------------------------------------------------* 

if age_s1 < 54.5 

AND Imputed waist < 99.3 

AND Imputed Trig < 105 

AND Imputed NECK20 >= 37.65 or MISSING 

then  

 Tree Node Identifier   = 24 

 Number of Observations = 55 

 Predicted: apnea=1  = 0.22 

 Predicted: apnea=0  = 0.78 
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*------------------------------------------------------------* 

 Node = 41 

*------------------------------------------------------------* 

if age_s1 >= 75.5 

AND Imputed pcs_s1 >= 48.3904 

AND Imputed NECK20 < 35.9 or MISSING 

then  

 Tree Node Identifier   = 41 

 Number of Observations = 75 

 Predicted: apnea=1  = 0.37 

 Predicted: apnea=0  = 0.63 

  

*------------------------------------------------------------* 

 Node = 42 

*------------------------------------------------------------* 

if age_s1 < 54.5 

AND Imputed waist < 99.3 

AND Imputed Trig >= 105 or MISSING 

AND Imputed NECK20 < 39.65 AND Imputed NECK20 >= 37.65 

then  

 Tree Node Identifier   = 42 

 Number of Observations = 58 

 Predicted: apnea=1  = 0.34 

 Predicted: apnea=0  = 0.66 

  

*------------------------------------------------------------* 

 Node = 43 

*------------------------------------------------------------* 
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if age_s1 < 54.5 

AND Imputed waist < 99.3 

AND Imputed Trig >= 105 or MISSING 

AND Imputed NECK20 >= 39.65 or MISSING 

then  

 Tree Node Identifier   = 43 

 Number of Observations = 70 

 Predicted: apnea=1  = 0.54 

 Predicted: apnea=0  = 0.46 

  

*------------------------------------------------------------* 

 Node = 56 

*------------------------------------------------------------* 

if age_s1 >= 75.5 

AND Imputed pcs_s1 < 48.3904 or MISSING 

AND Imputed NECK20 < 35.9 or MISSING 

AND Imputed ESS_s1 < 6.02451 or MISSING 

then  

 Tree Node Identifier   = 56 

 Number of Observations = 60 

 Predicted: apnea=1  = 0.48 

 Predicted: apnea=0  = 0.52 

  

*------------------------------------------------------------* 

 Node = 57 

*------------------------------------------------------------* 

if age_s1 >= 75.5 

AND Imputed pcs_s1 < 48.3904 or MISSING 
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AND Imputed NECK20 < 35.9 or MISSING 

AND Imputed ESS_s1 >= 6.02451 

then  

 Tree Node Identifier   = 57 

 Number of Observations = 52 

 Predicted: apnea=1  = 0.71 

 Predicted: apnea=0  = 0.29 

 

 To use these rules for classification of OSA, the user will have to match the data to the case. For 

example, for the model developed by the tree imputed data, 6 variables are required as inputs: NECK20, 

waist, Trig, age_s1, pcs_s1, and ESS_s1. We pick one data record from the dataset as follows: 

Table 5.11: Attributes required for using the tree model derived from tree imputed data from an observation 

number 29 

IMP_NECK20 43 

IMP_waist 108 

IMP_Trig 145 

age_s1 57 

IMP_pcs_s1 57.26 

IMP_ESS_s1 10 

 

 Applying these data to the tree in Figure 5.10 and English rules in Table 5.10, this case will end at 

node 7. At node 7, the prediction of the case uses a default cut-off value at 50%, or the majority rule so 

because 72.6% of the people have OSA (target = 1), we will group the person in this case as having OSA. 

Again, before using any of the tree models developed in this section, the cut-off value must be appropriately 

defined so that the model behaves according to our objective, to identify people without OSA (negative 

case) with the lowest the false negative rate (<5%). The method to select the cut-off value is is discussed 

later in this chapter. 
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Figure 5.12: Decision tree constructed from a conventionally imputed dataset 
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Figure 5.13: Decision tree constructed from a listwise dataset 
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5.3.3 OSA screening rule derived from an artificial neural network method 

An artificial neural network (ANN) is a mathematical network that has many interconnections, 

imitating the structure of biological neural networks. As introduced in the methodology section, the main 

idea of the ANN is to map the input to the corresponding output via the pattern recognized from the inputs. 

The architecture of the ANN depends mainly on the complexity of the problem. In this section, we chose 

to use one hidden-layer perception network. The log-sigmoid function is used as a transfer function, which 

is appropriated to be used with a binary target, such as our case. The architecture of the ANN is shown in 

Figure 5.14 below: 

 

Figure 5.14: Multilayer perceptron (MLP) network (reproduced from [108]) 

 The training process for an ANN is to estimate parameters, bias, and weights that are associated 

with each input and which will be summed and translated to the output by the log-sigmoid function as a 

transfer function. As mentioned in the methodology section, the output of the network is the probability 

that the person will have OSA. In this study, the training algorithm used is a backpropagation algorithm. 

Intuitively, backpropagation is actually a searching algorithm that searches for the minimum of the mean 

square error as a performance surface. Iteratively, the search direction is determined by the negative 

gradient of the direction vector of the parameters. For detailed information, see the artificial neural network 

section in the methodology chapter.  
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 In practical training, as is commonly known, the ANN does not have any algorithm to select the 

independent variables that truly correlate to the dependent variable. It is computational-intensive and using 

all the inputs to train the ANN model may introduce the risk of overfitting. In this case, we use variables 

selected from the decision trees in the previous sections as inputs for training the ANN models. The 

variables used are shown in Table 5.12 below: 

Table 5.12: Selected variables from DT and logistic regression models 

Variables used for training ANN using dataset from: 

Conventional imputation: Variable 

selected by DT 

Tree imputation: Variable 

selected by DT 

Listwise: Variable 

selected by DT 

IMP_NECK20 IMP_NECK20 NECK20 

IMP_waist age_s1 age_s1 

IMP_Trig IMP_waist bmi_s1 

IMP_bmi_s1 IMP_FVC  

IMP_ESS_s1 IMP_HDL  

age_s1 AvgSYSTBP  

IMP_pcs_s1 IMP_pcs_s1  

IMP_HB02 IMP_RAWMH_s1  

 IMP_RAWPF_s1  

 

 Because most of the variables in the same group are selected by both tree and logistic regression 

models, all variables are used as inputs for the ANN training. Regarding the ANN architecture used (one 

hidden layer), we can write the equation for the hidden units in our case as: 

 𝐻1 = 𝑓1(𝑤01 + 𝑤11𝑥1 + 𝑤21𝑥2 + ⋯+ 𝑤𝑘1𝑥𝑘) 

𝐻2 = 𝑓2(𝑤02 + 𝑤12𝑥1 + 𝑤22𝑥2 + ⋯+ 𝑤𝑘2𝑥𝑘) 

𝐻𝑖 = 𝑓𝑖(𝑤0𝑖 + 𝑤1𝑖𝑥1 + 𝑤2𝑖𝑥2 + ⋯+ 𝑤𝑘𝑖𝑥𝑘) 

(5.2) 

 Where k = the number of input variables used in ANN model 

  i = the number of hidden units used in ANN model 

  f = any chosen transfer function 

Thus, the final model of the general ANN in our case is: 

 𝑦 = (𝑤0 + 𝑤1𝐻1 + 𝑤2𝐻2 + ⋯+ 𝑤𝑘𝐻𝑘) (5.3) 



94 

 

𝑜𝑟 𝑙𝑜𝑔
𝑝

(1 − 𝑝)
= (𝑤0 + 𝑤1𝐻1 + 𝑤2𝐻2 + ⋯+ 𝑤𝑘𝐻𝑘) 

 Where y = a summation of the output from every hidden unit 

  p = posterior probability that the person will have OSA  

 As suggested by [108], for the pattern recognition application, a hyperbolic tangent function, h =

 (e 𝑥 − e−𝑥)/(e 𝑥 + e−𝑥), is one of the most appropriate transfer functions in the hidden layer. To the best 

of our knowledge, there is no scientific method for estimating the optimal number of parameters or hidden 

units used in an ANN model. We first tried the number of hidden units equal to the number of input 

variables. Then, we increased the number of hidden units. If the performance of the model increases 

(without overfitting), we keep increasing the number of hidden units until the performance does not 

improve. However, if the performance of the model does not increase, we decrease the number of hidden 

units until the performance decreases. Then, use the last number of hidden units before the performance 

decreased. This way, we will not use too many hidden units, which will help prevent the overfitting problem 

and also save the computational cost of so many terms in the model.  

Using a back propagation as a training algorithm to train the ANN model from the tree imputation 

dataset, we started with 9 hidden units, which equals the number of input variables. Then, we increased the 

number to 10, 20, and 30 hidden units to see whether the model improves in terms of the average square 

error. Finally, we iteratively decreased the number of hidden units to one. The results in terms of validation 

average square error is shown in Table 5.13. 

Table 5.13: Model selection based on an average square error of validation data partition in the tree 

imputation dataset 

Model Number of hidden units Validation: average square error Validation: misclassification rate 

1 7 0.20733 0.31181 

2 4 0.20771 0.31181 

3 30 0.2078 0.30724 

4 1 0.20827 0.31442 

5 20 0.20885 0.31507 
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Table 5.13 shows only the top 5 models based on the average square error (ASE) of the validation 

data partition in the tree imputation dataset (the lower the better). It is common to see that increasing the 

number of parameters improves the performance of a model (lower ASE). However, the tradeoff of having 

many parameters is the model complexity and the risk of model overfitting. We found that in our case, the 

optimal number of hidden units is one, because there is no significant improvement in the model with more 

hidden units, as seen from the ASE and misclassification rates (MISC). It is better to keep a model simple 

if the performance is comparable. The estimated parameters for the model are shown in Table 5.14. From 

these estimated parameters, we can implement the ANN model according to the previously mentioned 

architecture by using a pseudo code shown in Table 5.15. The prefix “S_” in front of each parameter name 

refers to a standardized version of that parameter. This procedure transforms the data to a zero mean and a 

unit variance in order to avoid saturation at the transfer function nodes (tanh, and logistic function) which 

transform the output to (-1, 1) and (0, 1). 

 

Table 5.14: Parameters estimated for an ANN model from the tree imputed dataset (Model 1) 

LABEL FROM TO WEIGHT 

AvgSYSTBP -> H11 AvgSYSTBP H11 0.0284 

BIAS -> H11 BIAS H11 0.0859 

IMP_FVC -> H11 IMP_FVC H11 -0.0774 

IMP_HDL -> H11 IMP_HDL H11 0.0133 

IMP_NECK20 -> H11 IMP_NECK20 H11 0.6979 

IMP_RAWMH_s1 -> H11 IMP_RAWMH_s1 H11 0.0245 

IMP_RAWPF_s1 -> H11 IMP_RAWPF_s1 H11 -0.0277 

IMP_pcs_s1 -> H11 IMP_pcs_s1 H11 -0.0187 

IMP_waist -> H11 IMP_waist H11 0.3576 

age_s1 -> H11 age_s1 H11 0.3705 

BIAS -> apnea1 BIAS apnea1 -0.0759 

H11 -> apnea1 H11 apnea1 1.8355 
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Table 5.16: Estimated ANN parameters from the conventional imputed dataset (Model 2) 

LABEL  FROM  TO  WEIGHT 

AvgSYSTBP -> H11  AvgSYSTBP  H11 -0.0116 

BIAS -> H11  BIAS  H11 0.2649 

HWLGALL -> H11  HWLGALL  H11 -0.0395 

IMP_FVC -> H11  IMP_FVC  H11 0.0424 

IMP_HDL -> H11  IMP_HDL  H11 0.0695 

IMP_HrsWD02 -> H11  IMP_HrsWD02  H11 -0.0316 

IMP_HrsWE02 -> H11  IMP_HrsWE02  H11 0.0256 

IMP_NECK20 -> H11  IMP_NECK20  H11 0.5358 

IMP_RAWMH_s1 -> H11  IMP_RAWMH_s1  H11 0.0902 

IMP_RAWPF_s1 -> H11  IMP_RAWPF_s1  H11 -0.0612 

IMP_SODA15 -> H11  IMP_SODA15  H11 0.1157 

IMP_STRESS151 -> H11  IMP_STRESS151  H11 -0.0309 

IMP_STRESS152 -> H11  IMP_STRESS152  H11 -0.0283 

IMP_Trig -> H11  IMP_Trig  H11 0.0998 

IMP_bmi_s1 -> H11  IMP_bmi_s1  H11 0.2570 

IMP_height -> H11  IMP_height  H11 0.0126 

IMP_mcs_s1 -> H11  IMP_mcs_s1  H11 -0.0632 

IMP_waist -> H11  IMP_waist  H11 0.0845 

age_s1 -> H11  age_s1  H11 0.4493 

race1 -> H11  race1  H11 -0.0803 

race2 -> H11  race2  H11 -0.1681 

BIAS -> apnea1  BIAS  apnea1 -0.2141 

H11 -> apnea1  H11  apnea1 2.0299 

 

Table 5.15: Pseudo-code for implementing the ANN model from the estimated parameters in 

Table 5.14 

 

   H11  =      0.0284029085087 * S_AvgSYSTBP  +    -0.07736196891919 * 

                    S_IMP_FVC  +   0.01326096899979 * S_IMP_HDL 

                    +     0.69788460732452 * S_IMP_NECK20  +     0.02452487611675 * 

                    S_IMP_RAWMH_s1  +     -0.0277362803885 * S_IMP_RAWPF_s1 

                    +     -0.0186558726798 * S_IMP_pcs_s1  +     0.35755807366539 * 

                    S_IMP_waist  +     0.37051793731458 * S_age_s1 ; 

 

   H11  =      0.08592866364664 + H11 ; 

   H11  =      TANH(H11 ); 

 

   P_apnea1  =     1.83548737907284 * H11 ; 

   P_apnea1  =    -0.07588404449354 + P_apnea1 ; 

   P_apnea1  =     1.0 / (1.0 + EXP(- P_apnea1)); 
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 The result of the pseudo-code in Table 5.15 is variable P_apnea1, which is the probability of the 

person is having sleep apnea. By default, the person will have a positive result when having P_apnea1 more 

than or equal to 0.5. However, the cut-off probability at 0.5 is not always optimal. The method used for 

choosing a cut-off probability value is discussed in the next section. Using the same process mentioned 

previously, we also constructed the ANN models from the other two datasets as shown in Table 5.16 and 

Table 5.17. 

 

Table 5.17: Estimated ANN parameters from the listwise dataset (Model3) 

LABEL  FROM  TO  WEIGHT 

BIAS -> H11 BIAS H11 -0.0681 

BIAS -> H12 BIAS H12 4.0603 

BIAS -> H13 BIAS H13 -2.7317 

BIAS -> H14 BIAS H14 -2.4503 

BIAS -> apnea1 BIAS apnea1 0.7937 

H11 -> apnea1 H11 apnea1 1.3904 

H12 -> apnea1 H12 apnea1 4.6940 

H13 -> apnea1 H13 apnea1 4.8610 

H14 -> apnea1 H14 apnea1 0.9326 

NECK20 -> H11 NECK20 H11 0.0394 

NECK20 -> H12 NECK20 H12 1.9683 

NECK20 -> H13 NECK20 H13 -1.0289 

NECK20 -> H14 NECK20 H14 2.8934 

age_s1 -> H11 age_s1 H11 -0.0776 

age_s1 -> H12 age_s1 H12 4.2579 

age_s1 -> H13 age_s1 H13 -2.8372 

age_s1 -> H14 age_s1 H14 3.2981 

bmi_s1 -> H11 bmi_s1 H11 1.6384 

bmi_s1 -> H12 bmi_s1 H12 -2.1128 

bmi_s1 -> H13 bmi_s1 H13 1.3514 

bmi_s1 -> H14 bmi_s1 H14 -5.8023 

 

 Again, to prevent the overfitting problem, we used the same process by monitoring the initial 

performance of the models from the validation dataset. The final model performances (validation 

misclassification rates) are 31.44% for model I, 31.05% for model II, and 35.23% for model III. Comparing 

these initial performances, we see that the ANN models constructed from the tree imputed dataset and 
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conventionally imputed dataset have almost the same validation misclassification rates. However, the 

number of parameters from the tree imputed dataset that are required in the ANN model is significantly 

smaller (12 vs. 23 parameters). Also, as expected, the ANN model derived from the listwise dataset 

performed poorly compared to the other two ANN models. Still, we need to fine tune every model 

developed so far to achieve the objective of minimizing the false negative rates of the classification of 

people with OSA. 

 

5.4 Performance comparison of OSA screening rules 

To choose which model is the best for an OSA screening task, we select the model that gives the 

highest predictive accuracy in the testing data partition while keeping the false negative rate within the 

threshold. In this study, we choose two thresholds, 5% and 10% false negative rates. To maintain these 

thresholds, the ROC curve is used as a tool to monitor each model’s performance while varying the model’s 

percentage cut-off threshold (i.e., y < 50: does not have the disease, y ≥ 50: have the disease). The procedure 

is as follows: 

1. From each final model, vary the cut-off percentage with the resolution of 1%. 

2. Search for the cut-off percentages that give false negative rates lower than the defined 

thresholds in both training and validation datasets. 

3. Apply the cut-off percentages to the testing dataset. 

Because the testing dataset was separated out before the training procedure started, we can use the 

results obtained from this dataset to directly compare the performance of each model trained from all three 

data preparation scenarios. The results are shown in Tables 5.18 – 5.23 below: 

 

Table 5.18: Performance of models trained from the tree imputed dataset with 5% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.26 0.9455 0.2314 0.7686 0.0545 0.5898 

REGMI 0.23 0.9339 0.2078 0.7922 0.0661 0.5723 

DT N/A N/A N/A N/A N/A N/A 

ANN 0.23 0.9494 0.2000 0.8000 0.0506 0.5762 
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Table 5.19: Performance of models trained from the conventional imputed dataset with 5% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.28 0.9518 0.4007 0.5993 0.0482 0.7068 

REGMI 0.20 0.9518 0.3615 0.6385 0.0482 0.6894 

DT 0.17 0.9662 0.3344 0.6656 0.0338 0.6854 

ANN 0.01 0.9542 0.6597 0.3403 0.0458 0.8233 

 

Table 5.20: Performance of models trained from the listwise dataset with 5% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.27 0.9689 0.1294 0.8706 0.0311 0.5508 

REGMI 0.26 0.9728 0.1843 0.8157 0.0272 0.5801 

DT N/A N/A N/A N/A N/A N/A 

ANN 0.14 0.9922 0.0314 0.9686 0.0078 0.5137 

 

Table 5.21: Performance of models trained from the tree imputed dataset with 10% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.32 0.9105 0.3451 0.6549 0.0895 0.6289 

REGMI 0.31 0.8872 0.3255 0.6745 0.1128 0.6074 

DT 0.33 0.8833 0.3176 0.6824 0.1167 0.6016 

ANN 0.23 0.9144 0.3333 0.6667 0.0856 0.6250 

 

Table 5.22: Performance of models trained from the conventional imputed dataset with 10% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.38 0.9012 0.5241 0.4759 0.0988 0.7336 

REGMI 0.34 0.9012 0.5000 0.5000 0.0988 0.7229 

DT 0.33 0.9036 0.5031 0.4969 0.0964 0.7256 

ANN 0.79 0.9470 0.7169 0.2831 0.0530 0.8447 

 

Table 5.23: Performance of models trained from the listwise dataset with 10% FNR threshold  

Model Cut-off TPR TNR FPR FNR Accuracy 

REGM 0.36 0.9222 0.3373 0.6627 0.0778 0.6309 

REGMI 0.36 0.8949 0.3176 0.6824 0.1051 0.6074 

DT 0.33 0.7899 0.4431 0.5569 0.2101 0.6172 

ANN 0.22 0.9066 0.1255 0.8745 0.0934 0.5176 

 

 Tables 5.18 – 5.20 show the performance of the models from the three datasets with the threshold 

of 5% FNR. The models trained from the conventional imputed dataset perform, on average, better than the 



100 

 

models trained from the other two datasets in terms of predictive accuracy. Some points needed to be 

considered in choosing which model is best. First, the cut-off criteria should limit the FNR to under the 

predefined thresholds. Also, it is expected that the performance of the model may change slightly when it 

is applied to the different datasets. However, the performance variations obtained when applying the models 

to the three data partitions (training, validation, and testing) are low. Moreover, the performances of the 

models in the testing dataset should already reflect the real-world performances (leave-one-out method). 

Second, if a model satisfies all the point mentioned above, then the higher prediction accuracy is preferable. 

Third, if two or more models satisfy the first point and have the same prediction accuracy, the least complex 

model should be chosen as determined by the number of variables in the model. In other words, the model 

should be easy to use because of the fewer variables and parameters.  

 With the considerations explained, and a 5% FNR threshold, the artificial neural network model 

with 2-hidden layers and 80 neurons, trained from the conventional imputed dataset fits the predefined 

criteria the best. At the cutoff 0.01, the model performs with 4.58% FNR, 95.42% TPR, and prediction 

accuracy of 82.33%. The same criteria are used for selecting the best model for limiting the FNR to 10%. 

The best model is the same model selected in the previous case with a different cut-off value. At a cutoff 

of 0.79, the model performs with 5.31% FNR, 94.70% TPR, and prediction accuracy of 84.47%. 

Now, we have a model that can confidently screen people without OSA out of the population with 

a FNR of less than 5% and 10% (more than 95% and 90% TPR respectively). This means that people whom 

the model classifies as non-OSA can be assured that they do not have OSA (with less than 5% or 10% 

chance of incorrect rejection). At the same time, we have a high false positive rate, meaning that if the 

person has some degree of probability of having OSA, the model will sensitively identify that person as 

having OSA. This is exactly our intention. For people identified as having OSA, we will use the model 

developed in Chapter VII and the ECG of a subject collected overnight using our wireless-wearable device 

introduced in Chapter VIII to confirm the existence of OSA and to determine its severity.
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CHAPTER VI 
 

 

 

OSA EPISODE PREDICTION BASED ON THE PATTERNS OF RECURRENCE 

QUANTIFICATION ANALYSIS FEATURES 

 

 

 

  Chapter 5 described the model to predict the existence of OSA disorder in an individual. In 

standard clinical procedure, a polysomnography (PSG), or a sleep study is required for the sleep physician 

not only confirm the OSA symptoms but also determine the feasible treatment options for OSA patients. 

The PSG is basically the recording of a patient’s multiple biosignals while sleeping. The number of signals 

required depends on the diagnostic purpose according to the standard set by the American Academy of 

Sleep Medicine [126, 127]. In our case, the PSG data obtained from the SHHS study consists of twelve 

channels of biosignals as follows: oximetry (blood oxygen percentage), heart rate, chest wall and abdomen 

movement, nasal/oral airflow, body position, electroencephalogram (EEG) (2 central; one for redundancy 

in case of failure/loss), electrooculogram (EOG) (bilateral), electromyogram – chine (EMG), and 

electrocardiogram (ECG). Figure 6.1 shows a patient wearing most of the sensors and electrodes during the 

sleep study. In addition to needing to wear so many sensors and electrodes during PSG, patients also need 

to sleep in a sleep laboratory or hospital. An attended PSG requires at least one sleep technician on site to 

constantly monitor the patient. At the end of the sleep study, a certified sleep technician or sleep doctor 

manually looks at the time-series of the biosignals recorded overnight for evidences of the symptoms of 

OSA. The evidence for the OSA episode reflected from biosignals can be any or a combination of abrupt 
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changes in heart rate, lower or no amplitude of respiratory signals (airflow, and abdomen and ribcage 

respiratory efforts), and lower blood oxygen level.  The OSA episode is then confirmed by the arousals that 

can be noticed by any or a combination of muscle movement (EMG), lighter sleep stage, changes in heart 

rate, and ventilatory overshoots.  

 

 

 
Figure 6.1: Patient wearing sensors and electrodes during a sleep study 

(reproduced from [1]) 
    

   

 

 
 

Figure 6.2: Multiple time-series of biosignals from PSG 
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 After manually identifying such evidence, the certified sleep technician or sleep physician 

calculates the number of sleep apnea episodes per hour, which is called the apnea-hypopnea index (AHI). 

The AHI number is a sleep apnea severity indicator. The calculation can be done using the following 

equation: 

 
𝐴𝐻𝐼 =  

(𝐴𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠 + 𝐻𝑦𝑝𝑜𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠) × 60

𝐴𝑐𝑡𝑢𝑎𝑙 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 (𝑚𝑖𝑛𝑠)
 

(6.1) 

The severity of sleep apnea is classified as follows: AHI < 5 - no sleep apnea, 5 ≤ AHI ≤15 – mild sleep 

apnea, 15 ≤ AHI ≤ 30 – moderate sleep apnea, and AHI > 30 - severe sleep apnea. 

 As mentioned in Chapter 2, because of the labor-intensive process and the limited number of sleep 

laboratories, a high number of suspected OSA patients remain undiagnosed. Although a smaller, 

multisensory PSG device such that the sleep study could be done at a patient’s home has been developed, 

a sleep technician is still required to place the sensors and electrodes on the patient due to the complexity 

of the sensor and electrode placement. Later in Chapter 8, we report the development of a wireless, wearable 

device that can be used for a home sleep study. Even though the wearable device was designed with ease 

of use in mind, when implemented with its full function, a proneness for a bad quality signal still exists 

because of the multiple sensors and electrodes. For these reasons, in this chapter, we introduce several 

aspects of digital signal processing, non-linear time-series analysis, and data mining techniques that can be 

used to transform only one-lead ECG data into other meaningful signals that more correlate to OSA 

symptoms and then extract meaningful quantifications using a nonlinear time-series analysis technique 

called a recurrence quantification analysis (RQA). By studying the patterns of these quantifications, the 

status of the OSA episode can be classified. The AHI is calculated from the status of the OSA episodes 

overnight. It is used to determine OSA severity, which is important for determining the treatment options. 

 The organization of this chapter is as follows. First, we explained about the digital signal processing 

(DSP) methods to obtain the signals that are significant predictors of an OSA episode from a one-lead ECG 

signal. Then, we describe the non-linear time-series analysis methods that are used for unfolding the 

nonlinearity and nonstationarity of the signals previously extracted from the ECG signal. Next, the 
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recurrence quantification analysis (RQA) is portrayed as it is used for extracting the meaningful 

quantifications that will be used as patterns for the data mining methods for learning to classify an OSA 

state. 

 

6.1 Extracting OSA predictors from one-lead electrocardiogram (ECG) 

 

Figure 6.3: ECG plot with classified regions of apnea (shaded) vs non-apnea minute 

 Although we know from the literature that there is much information embedded in the ECG signal, 

visually, regarding the classification of OSA episodes, the ECG itself does not give much information. 

Shown in Figure 6.3 is the ECG signal with a length of 120 seconds or 2 minutes. Visually, there is no 

significant difference between the first minute, marked by the sleep physician as an OSA episode minute, 

and the second minute, marked as a non-OSA episode minute. However, with the right pieces of information 

(features) and using appropriate extraction methods, we can obtain the signal or information that will be 

more useful or related to the problem. Feature extraction is a process for extracting a new set of features or 

information from the original feature through some functional mapping [128]. The feature extraction 

techniques used in this study are explained in a subsection of this section. 
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6.1.1 ECG and R-R interval time-series 

 In this section, the basic idea of the electrical signal from the heart is intuitively explained. A 

knowledge of several markers from the ECG signal, such as P, Q, R, S, and T waves, is required in the 

digital analysis step to extract the useful information related to the classification of OSA. Furthermore, the 

methods to derive each signal required in further statistical analysis are also explained within each 

subsection. The derivation of time-series or signals that are covered in this section are the R-R interval 

(HRV), ECG-derived respiration, and the slow waves that represent a respiratory sinus arrhythmia (RSA).  

 

6.1.1.1 ECG origin 

 

Figure 6.4: Heart chambers and pacemaker points (reproduced from [129] ) 

The heart is a vital organ that pumps oxygenated blood from the lungs throughout the body and 

also drives the deoxygenated blood from the body back to the lungs. As shown in Figure 6.4, there are four 

chambers in the heart and each one has its own responsibility. In brief, the deoxygenated blood from a body 
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enters the right atrium, which acts as a buffer for the deoxygenated blood; then it is pumped into the right 

ventricle. The right ventricle pumps this deoxygenated blood to the lungs where the blood receives oxygen 

from the alveoli in exchange for the carbon dioxide. Then, the oxygenated blood comes back to the heart 

via the left atrium. The left atrium pumps this blood to the left ventricle, where the oxygenated blood is 

then pumped throughout the body.  

The coordination of the pumping process in the heart is controlled by pacemaker cells [130]. The 

dominant group of pacemaker cells in the heart is called the sinoatrial (SA) node or sinus node, located in 

the right atrium as shown in Figure 6.4. The SA node initiates atrial depolarization. This depolarization is 

propagated to an atrioventricular (AV) node located in the lower part of right atrium. From the AV node, 

the depolarization impulse is propagated to the ventricles via the special conductor tissue connected to the 

AV node. The pumping processes (contraction and relaxation) result from the depolarization (contraction) 

and repolarization (relaxation) of the myocardial cells [129]. An electrocardiogram (ECG) is the result of 

those electrical changes picked up via electrodes placed on the chest and limb surface [129].  

 

6.1.1.2 PQRST Signal 

In general, a PQRST signal is typically a result of cardiac contraction and relaxation cycle as 

explained in the last section. Specifically, starting from the SA node in the right atrium, the depolarization 

generated here results in the P wave of the ECG. The repolarization period of the atrium (after the 

depolarization) occurs during the PR interval as shown in Figure 6.5. Next, after the depolarization impulse 

travels to the AV node, the impulse is transmitted to the ventricles via the AV left and right bundle branches 

(see Figure 6.4), resulting in the contraction of the ventricles. The electrical signal from the depolarization 

of the ventricles that can be picked up at the chest surface is the QRS complex in the ECG. Finally, the 

repolarization of the ventricles results in the T wave. 
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Figure 6.5: PQRST signal in one cycle of a cardiac contraction and relaxation  

(reproduced from [130] ) 

 

6.1.1.3 One-lead ECG system 

As described in the previous section, the ECG is the recording of the cardiac electrical activity from 

the chest and limb surfaces. The different locations of the recordings results in the different angles of view 

for looking at the heart’s electrical activities. An ECG lead is composed of two electrodes, positive and 

negative, called a bipolar lead [131]. Since the heart is a three-dimensional organ, the electrical activities 

from one point to another are traveling in three dimensions as well. The electrode placement of each lead 

defines the recording direction from the negative to the positive electrode. As a result, the ECG signal 

corresponding to the electrode placement is shown as the difference in magnitude between positive and 

negative electrodes with time in 2-dimensional space.  

The one-lead ECG is the non-standard definition used in the ECG handheld recorders or other 

exercise equipment referred to lead I or II in a standard 12-lead ECG [132]. This one-lead ECG focuses on 

detecting the R-R interval to obtain a heart rate. With a simple bipolar limb lead which uses only two or 

three electrodes, the left arm and right arm if using lead I, and the right arm and left leg if using lead II, and 

one can use either lead I or II to obtain a heart rate easily, because the R wave is dominant in lead I and II. 
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By tracking the R-R interval, we can see the sinus arrhythmia, which is the variation in the heart rate that 

occurs during inspiration and expiration, a higher heart rate during inspiration and a lower heart rate during 

expiration [129]. Moreover, we can also extract the respiratory signal using a technique called ECG-derived 

respiration (EDR) from the ECG signal collected from a one-lead ECG. To clarify, in our case, the wearable 

device reported in Chapter VIII is modified to record only a one-lead ECG, lead I.  

 

6.1.1.4 R-R interval time-series (HRV) 

 
Figure 6.6 R-R interval (reproduced from [133]) 

 The R-R interval is the time between two adjacent R peaks in the ECG signal. The physical meaning 

of the R-R interval is the beat-to-beat time of the heart’s left ventricle. This quantity tells how fast the heart 

pumps the blood to the body via blood vessels. The heart rate, which is, the more familiar term, is the 

average of the R-R intervals within one period of time. The popular unit for the heart rate is beats per minute 

(bpm), which tells how many R-R intervals in a one-minute period.  

 The heart rate is controlled by the brain with the perturbation from a respiratory sinus arrhythmia 

(RSA), baroreflex, and thermoregulation [134]. In our study, because the heart rate related to sleep 

environments such as air pressure and temperature does not significantly change during the night, the main 

factor that significantly affects the fluctuation in heart rate is the RSA. The RSA is the phenomenon that 

the heart rate increases during inspiration and decreases during expiration. This normal fluctuation should 
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be steady in all sleep stages at a steady state. Because of the effects of an OSA episode, it is expected that 

after the closure of the airway occurs, the blood oxygen level is constantly decreased. This causes the heart 

to pump more blood through the lungs trying to increase the amount of blood going through the oxygen 

and carbon dioxide exchange process to compensate for the decreased blood oxygen, which abruptly 

increases the heart rate. After the blood oxygen decreases below a threshold, the brain shifts the sleep stage 

back to a lighter stage to gain back control over the muscles around the constricted airway. This behavior 

is called an arousal. It opens up the airways, which terminates the OSA episode. Sometimes, this arousal 

process induces ventilatory overshoots, which may cause an instability in the respiratory control system 

which eventually induces the OSA episode to recur [135, 136]. We believe that these processes explained 

earlier are captured by the patterns of the R-R interval time-series that change over time. For this reason, 

the R-R interval time-series is extracted from the ECG signal for further analysis. 

 The process for obtaining the R-R interval time-series, is explained as follows: 

1. Filter the ECG signal with a band pass (0.04 - 150 Hz) to remove the baseline wandering and other 

artifacts. The baseline wandering is the phenomenon where the ECG signal is highly modulated 

with the low frequency signal. Figure 6.7 shows a baseline-wandering affected ECG in the solid 

line and the band pass filtered signal in the dashed line.  

2. Normalize the filtered ECG signal to range (-1, 1). Search for the R-peaks where the derivative of 

the signal is zero (maximum point) with the threshold of the amplitude higher than the T-wave 

peaks. However, in this step, in many cases, the amplitudes of R-peaks and T-peaks are not 

different. To solve this problem, we selectively filter the T-wave using a coiflet wavelet 

decomposition. From our experiment, with the ECG sampled at 100 Hz, to filter the T-wave, the 

ECG signal is decomposed using the coiflet5 wavelet at level 8. Then remove all levels from levels 

5 to 8, which correspond to the T-wave and synthesize the signal back. The result is shown in 

Figure 6.8. The T-wave amplitude of the wavelet-denoising-ECG signal in the dashed line is 

substantially lower compared to the original signal, in the solid line. After the T-wave parts are 
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smaller, we can search for all R-peak amplitudes, and their corresponding locations as shown with 

the ‘o’. 

3. Calculate the distance between the consecutive R-R peaks and convert into time units. In our study, 

we use seconds as the time unit for the R-R intervals. The time-series is then formed from these 

distance time points. An example of an R-R interval time-series is shown in Figure 6.9. 

 

 

 
Figure 6.7: ECG plot showing baseline wandering effect in solid plot and band-pass filtered signal in dash line 
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 The R-R interval time-series shown in Figure 6.9 has a duration of 500 seconds (the signal was 

resampled to a sampling rate of 10 Hz). From the mean wandering and non-uniform variation, we can 

roughly see the nonstationary and nonlinear pattern of the data which hinder the ability to predict or forecast 

 
Figure 6.8: The plots of the ECG signal with high amplitude T-waves in solid plot and the ECG with T-wave 

selectively removed by a denoising technique using a coiflet wavelet 
    

   

 

 
Figure 6.9: An example of an R-R interval time-series 
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using some traditional methods such as linear regression. We will discuss how we manage the nonstationary 

and nonlinearity of these time-series later in this chapter. 

 

6.1.2 ECG derived respiration (EDR) 

 Some of the most important information for detecting sleep-disordered breathing (SDB) such as 

OSA is the respiratory signal. Two main types of respiratory signals are used in a sleep study, respiratory 

effort and nasal respiration. The respiratory effort captures the effort from the lung to inhale or exhale air. 

This reflects that the control signal from the brain may be absent, as in the central sleep apnea (CSA) which 

is excluded from this study. The nasal respiration is used as evidence of whether the person stops breathing 

or not. These two signals are used in PSG to help classify the type of sleep apnea, whether it is OSA or 

CSA. In our study, which focuses mainly on OSA, the respiratory effort is sufficient to represent the 

evidence of breathing activity. 

To physically capture the respiratory effort, two respiratory effort belts measure the changes in 

thoracic or abdominal circumference during the respiration periods, inhaling and exhaling, as shown in 

Figure 6.1. The drawback of this method is that the belt itself is an elastic band. The user must properly 

adjust the belt such that it fits snugly to the point of measurement, which tends to introduce an uneasy 

feeling leading to less efficient sleep. The nasal respiratory signal is detected by a nasal thermistor (Figure 

6.1). The problem with this sensor type is that the thermistor may fail to detect minor changes in the airflow. 

Moreover, due to the sensitivity problem, the recorded signal tends to be delayed (lag) compared to other 

signals (120 to 720 msec) [137]. The air tube that hangs from the nostrils to the ears with some parts of the 

sensor inside the nose causes irritation and may fall off during the night when the user changes sleep 

positions. In order to use the most information from the ECG signal so that the additional sensor can be 

omitted, we derive the respiratory signal from the amplitude variability of the ECG’s R-peaks, using a 

method modified from [138-140]. This method based on the fact that the impedance across the thoracic 

cavity changes during inspiration and expiration (the chest surface moves closer or further away relative to 

the heart position) causing the variation in the transthoracic impedance. The impedance is higher during 
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inspiration (more distance between the heart and chest surface), and lower during expiration (less distance 

between the heart and chest surface). If we neglect the very small variation in the amplitude of the ECG 

itself, the amplitude of the ECG’s QRS complex, especially the R wave amplitude, changes [138-140] 

accordingly to the respiratory activity. Specifically, the EDR can be derived from the changes in R-wave 

amplitude from the suitable lead ECG (normally, leads I and II). We modified the methods explained in 

[138-140] because their methods do not work with an ECG signal in which the T-wave amplitude is too 

large compared to the amplitude of the R-wave. Our process to derive the respiratory signal from the single 

lead ECG is briefly explained as follows: 

 

1. Use steps 1-2 in deriving the R-R interval time-series section to get the amplitudes and locations 

of every R-peak from the ECG signal. 

2. Interpolate the R-peak amplitudes and locations obtained from the previous step with a cubic 

spline method. The resulting signal is the ECG-derived respiration (EDR) signal. An example of 

the result is shown in Figure 6.10. 

 

 
Figure 6.10: The plots of abdominal respiratory in marker ‘x’, ribcage respiratory in marker ‘o’, and ECG-

derived respiration (EDR) in solid line 
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Figure 6.10 shows the plots of the respiratory efforts measured from respiratory bands at abdominal 

(x) and ribcage (o) positions and the EDR. Although the EDR seems to be a little slower (lag) than the other 

two signals, when we quantify the features in the resolution of one minute, this minor difference is not 

significant in the analysis. Also, the respiratory rate calculated from the zero crossing rate of both signals 

is not statistically different. More detail is provided in the analysis sections. 

 

6.1.3 Slow wave signal derived from wavelet decomposed ECG (SWS) 

 In the previous section, we derived an EDR signal that very well resembles the real respiratory 

signal (in terms of waveform and zero crossing rate). It is used as a representative to reflect the state of the 

respiratory system. As mentioned in the background section, there is much information embedded in the 

heart rate variability (HRV). One more piece of information that is as important as the respiratory activity 

is the coupling of the cardiovascular and the respiratory systems. This coupling can be captured by the 

behavior of the respiratory sinus arrhythmia (RSA), which is mostly embedded as a high frequency band 

(HF, 0.15-0.4 Hz) of the HRV or R-R interval time-series [141, 142]. In this section, we explain how we 

extract this signal from the R-R interval time-series using wavelet decomposition. 

Wavelet decomposition is a modified short-time Fourier transform that represents the decomposed 

signals in both time and frequency domains through a time windowing function or a mother wavelet 

function [143]. Traditionally, the Fourier transform is used for analyzing the signal in the frequency domain. 

However, when transforming  a nonlinear time-series that contains short transients in the time domain to 

the frequency domain, the result is damped and long-duration vibrations [141]. In other words, they cannot 

be detected in the frequency domain after the Fourier transformation. In contrast to the Fourier transform, 

which assumes the signal to be stationary, wavelet analysis does not have such a limitation so it works well 

with a nonstationary time-series. This time-frequency localization advantage is a well-known characteristic 

of a wavelet decomposition.  

The wavelet transformation process comprises two main phases, analysis or decomposition and 

synthesis or reconstruction phases. If certain conditions are met, the signal can be perfectly reconstructed 
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from the coefficients obtained from the analysis or decomposition phase. For this reason, wavelet 

decomposition is very popular in signal denoising applications. The user can selectively delete the 

decomposed coefficients corresponding to the noise and reconstruct the denoised signal. However, in our 

research, the main idea is the opposite. Using an ECG signal as a base signal, we selectively choose the 

coefficients that most correlate to the occurrence of sleep apnea events, delete other unrelated coefficients, 

and reconstruct the signal. 

The basis of the mother wavelet or the type of windowing technique used depends on the window 

length. Since this study does not focus on how to develop a wavelet function, we will briefly explain how 

the wavelet decomposition works intuitively. The main method for wavelet decomposition in this study is 

the multiresolution analysis (MRA) developed by Mallat in 1989 [144]. In general discrete wavelet 

transformation (DWT), the signal is passed through a series of high pass filters and low pass filters as shown 

in Figure 6.11: 

 

 The DWT procedure starts with feeding the time-series x[n] to the half band low pass filter with an 

impulse response g[n] and a high pass filter with an impulse response h[n]. In mathematical expression, the 

filtering process is the convolution of the signal with the impulse response of the filter: 

 𝑥[𝑛] ∗ ℎ[𝑛] = ∑ 𝑥[𝑘] ∙ ℎ[𝑛 − 𝑘]

∞

𝑘=−∞

 (6.2) 

 Regarding the Nyquist theory, after passing the signal through either a half band low pass filter or 

a half band high pass filter, half of the samples can be eliminated. This is denoted by the symbol ↓2 in 

 
Figure 6.11: Discrete wavelet transform using multiresolution analysis (MRA) with 3 level filter banks 

(reproduced from [2]) 
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Figure 6.11. The result of the first high pass filter is level 1 detail coefficients. Likewise, the result of the 

first low pass filter is level 1 approximation coefficients. To perform further analysis, the level 1 

approximation coefficients are used as a signal to be passed through another set of half band low pass and 

high pass filters. In theory, the decomposition can be done for n levels. However, in practice, the analysis 

levels depend on the number of samples in the original signal. It should be noted that because the 

decomposition process involves downsampling by a factor of two, the number of samples required in 

wavelet analysis must be to the power of two. 

 In the synthesis phase, to be able to perfectly reconstruct the signal back from the wavelet 

coefficients in every decomposed level, the pair of low pass and high pass filters must form orthonormal 

bases. To satisfy that constraint, the relationship between them is [145]: 

 ℎ[𝐿 − 1 − 𝑛] = (−1)𝑛 ∙ 𝑔[𝑛] (6.3) 

Where h[n] is the impulse response of a high pass filter 

  g[n] is the impulse response of a low pass filter 

  L is the filter length in number of samples 

When a filter pair that satisfies equation 6.3 is used, the reconstruction process is exactly the reverse 

of the analysis process. The coefficients at every level are upsampling by a factor of two, then passed 

through the synthesis filter pairs. The relationship between the analysis and synthesis filters is that they are 

identical to each other but time reversed. There are many choices of low pass and high pass filter pairs in 

wavelet analysis. In our case, we choose to use a coiflet wavelet family because of its nearly linear phase 

filter property [146]. This results in minimal phase distortion in the outcome signal, which is desirable in 

most digital signal analysis applications. Moreover, the coiflets have a maximum number of vanishing 

moments meaning that complex functions can be represented with a sparser set of wavelet coefficients. For 

further information, reference [145] provides very good information on the theory and application of 

wavelet decomposition.  

To derive the slow wave signal using wavelet analysis, we looked for the combination of 

coefficients in the higher levels which corresponds to the low frequency signals. At the beginning of the 
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analysis, the frequency band that we looked for from the extracted signal was between 0.1 – 0.6 Hz which 

corresponds to the dominant frequency of the human respiratory signal [142]. In particular, after we 

narrowed down the analysis levels to the frequency band mentioned above (approximately level 7 and 

above), we tried several combinations of coefficients that give the synthesis signal with the frequency 

response closest to the HF component. We found that the synthesized wavelet signal from the ECG that is 

significantly correlated with the state of an OSA episode is a result of the coefficients obtained from levels 

8 and 9 of DWT decompositions using the coiflet5 wavelet. The impulse responses of the analysis and 

synthesis filter pairs for the coiflet5 wavelet are shown in Figure 6.12.  

 

The process to derive the slow wave signal is summarized as follows:  

1. Filter the ECG signal with a band pass (0.04 - 150 Hz) to remove the baseline wandering and 

other artifacts. The baseline wandering is the phenomenon where the ECG signal is highly 

modulated with the low frequency signal.  

2. Decompose the ECG signal from step 1 into 9 levels using the coiflet5 wavelet. To clarify, the 

ECG signal is passed through the analysis filter pairs (see Figure 6.12) and downsampled by a 

factor of two 9 times (see Figure 6.11). 

 
Figure 6.12: Impulse responses of the analysis and synthesis filter pairs for coiflet5 wavelet  
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3. Reconstruct the signal with the coefficients from levels 8 and 9 by setting the coefficients in 

every decomposed level (except levels 8 and 9) to zero. Exactly reverse what was done in step 

2, but use synthesis filter pairs (see Figure 6.12) and upsample by a factor of two. 

 

6.2 Unfolding nonlinearity of the signals using phase space reconstruction analysis 

 In section 6.1, we explained how three important signals, R-R intervals, EDR, and slow waves, 

were extracted from the one-lead ECG signal. However, as commonly known, nonlinear or irregular 

behaviors embedded in the data always impede the predictability in both time-series and pattern recognition 

applications. This problem happens in many aspects. One of them is that most of the time, we can only 

observe, at most, one of the process activities, not all the influences that compose to the process. If we 

assume that all influences composing to the process are independent and we can directly observe their 

activities, most likely, the process can be approximately represented by a linear mathematical model which 

is built by a linear combination of the effects from all influences. However, most of the time, we can only 

observe, at most, one effect which may not directly relate to the problem (i.e., ECG and the OSA state). 

Still, the observed data is most likely contain a lot of information including what is directly related to the 

problem because of its nonlinearity (i.e., coupling and interaction between the effects). 

 Introduced by Takens in 1981 [147], the higher dimensional phase (state) space reconstruction can 

be used to rebuild the topology of all the states represented in the system. This theorem allows us to map 

the observed data back to estimated numbers of variables that compose to the dynamics of the system (i.e., 

the observed one dimensional ECG signal to a three-dimensional ECG signal). Then, we can use all the 

unfolded information to infer the solution to our original problem (i.e., classification of the OSA episode 

state) using statistical modeling methods explained in Chapter 4. 

 The organization of this section is as follows: First, the state space representation (roughly 

interchangeable with the phase space) is introduced. Then, we depict the method to derive the important 

parameters, embedding dimension and time delay, which are required for reconstructing our time-series to 

their suitable state space dimension. Finally, we explain the method to quantify the data patterns in the 
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higher state space in order to better distinguish the data patterns between apnea and non-apnea states. The 

idea of unfolding the nonlinearity of the signals using phase space reconstruction in this section is partially 

from the works of our research group [148-151]. 

 

6.2.1 State space representation  

 Anything that evolves over time can be thought of as a dynamic system. Normally, the variables 

used in explaining an instantaneous dynamic system are called state variables. The set of all possible values 

of state variables is called the state space. Another analogy used to refer to the continuous and finite-

dimensional state space is called the phase space [152-154]. To create a mathematical dynamic system, two 

parts needed to be considered:  

1) The part of the system that evolves over time or a state vector. The state vectors give a complete 

description of the system at any particular time. Thus, in d-dimensional space or phase space at time t, we 

can describe the state of a system by a state vector 𝑦⃗(𝑡) formed by its state variables [147, 155]: 

 𝑦⃗(𝑡) = 𝑦1(𝑡), 𝑦2(𝑡),… , 𝑦𝐷(𝑡) (6.4) 

The superscript is used for referring to the index of the state vectors. 

2) A function or rule that describes how the state vector evolves over time. Basically, when all state 

vectors with all collected state variables are represented in successively for enough time, the movement of 

the state will reveal a phase space trajectory or orbit. This movement behavior explains the dynamics of the 

system. The movement of the state vector 𝑦⃗(𝑡) can be represented by its velocity vector, 𝑦̇(𝑡) [155]: 

 𝑦̇(𝑡) = 𝜕𝑡𝑦⃗(𝑡) (6.5) 

With these two quantities, the dynamical system is actually a model that explains the temporal 

evolution of the system [152-154]. For example, considering an object moving in 3-dimensional space, the 

set of variables that can completely explain the system includes 3 positions in each dimensional space (Px, 

Py, Pz in a Cartesian coordinate system) and 3 velocities in each dimensional space (Vx, Vy, Vz) over time. 

If their velocity vector is known, the state of the system at any time can be determined.  
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Figure 6.13: State space representation of vectorcardiogram (VCG) 

 Figure 6.13 shows a state space representation of a vectorcardiogram (VCG). This representation 

is obtained by using a 3-lead vectorcardiogram to capture the heart electrical activity. It clearly shows the 

path in which the heart electrical activity travels around the heart in 3-dimensional space. Not only do we 

gain advantages in term of the ability to visually inspect the system’s time evolution but also the ability to 

statistically track the evolution in order to predict and forecast the state of the system. This comes back to 

our original problem statement that in most cases, we cannot collect all the state variables in the state space 

which are required to represent the dynamic system. However, we can use only one collected state variable 

to reconstruct the topology of the state space representation. The related theories and methods are described 

in the next section. 

 

6.2.2 Phase space reconstruction 

 In 1981, Floris Taken introduced the method to reconstruct the phase space or state variables of 

dynamic systems with one observable using a time delay method [147]: 

 

 𝑦⃗𝑖 = 𝑥𝑖, 𝑥𝑖+𝜏, 𝑥𝑖+2𝜏, … , 𝑥𝑖+(𝑚−1)𝜏 (6.6) 
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 Where  𝑦⃗𝑖 is the reconstructed phase space vector 

   𝑥𝑖 is the observable at time step i 

   𝜏 is the time delay (in time step) 

   𝑚 is the embedding dimension 

It should be noted that because the observable is usually collected in equally-spaced, discrete time-

series, the index in the equation above refers to the time step index not the actual time. Intuitively, the main 

idea is to look for the time delay at which the specific number of state variables (m dimensions) becomes 

the most independent. Doing so requires that the observable have a nonlinear relationship or coupling with 

the other state variables in the dynamic system [155-157]. Also, equation 6.6 below guarantees that the 

topological structures of the original phase space will be reserved if [147]: 

 𝑚 ≥ 2𝑑 + 1 (6.7) 

 Where  𝑚 is the embedding dimension 

   𝑑 is the real dimension of the original phase space 

It should be noted that [158] and [159] suggested that a value of 𝑚 that satisfies 𝑚 > 𝑑 can be 

sufficient. This idea has been extended by several researchers but the topic is still open for research because 

of some limitations. For example, autocorrelation is one of the methods that can be used to determine a 

suitable time delay but only if the underlying dynamics of the system is linear.  

Before this equation can be effectively implemented to reconstruct the phase space of any system, 

two parameters need to be estimated: embedding dimension, m, and time delay, 𝜏. After thoroughly 

reviewing several studies in the domain [147, 152, 155-157, 159-161], the suitable methods for our 

application are mutual information [162, 163] and false nearest neighbors [161, 164].  

 

6.2.2.1 Mutual information 

The mutual information procedure requires that the time delay be determined first because it is a 

parameter needed to correctly determine the embedding dimension. The mutual information is derived from 
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information theory which, given that x has been observed, tells us how much information is gained about 

y. In addition to linear dependency, it also measures the generalized correlation, which is sensitive to any 

relationship, including nonlinear relationships [163]. The formula below is used to compute the mutual 

information of the time-series in order to determine a suitable time lag for reconstruction of the system’s 

dynamic topology [162, 163, 165]: 

 𝐼(𝜏) = −∑𝑝𝑥,𝑦(𝜏)log 
𝑝𝑥,𝑦(𝜏)

𝑝𝑥𝑝𝑦
𝑥,𝑦

 (6.8) 

Where             𝐼(𝜏) is the mutual information of the original time-series, 𝑥𝑖, with its time lag 

version for 𝜏 time step time-series, 𝑦𝑖. 

   𝑥𝑖 is the observable at time step i 

   𝜏 is the time delay (in time step) 

   𝑚 is the embedding dimension 

The average information gained in equation 6.8 is based on the entropy calculation, which measures 

the disorder in the system. A straightforward way to calculate the mutual information is as follows: The 

time-series is partitioned into equal size bins used to construct a histogram, then the probability of the 

particular point in the time-series falling into a particular bin of the histogram is calculated. Then, the 

entropies of 1) the binned version of the original time-series, (x), 2) the binned version of the 𝜏 time lag 

version of the original time-series, y, and 3) the joint distribution of x and y, are calculated. Finally, the 

mutual information is the summation of the x entropy and y entropy subtracted from the entropy of the joint 

probability distribution of x and y. Although the entropy is sensitive to the number of bins used, the mutual 

information is not heavily affected by it [163]. However, to be on the safe side, because using too small a 

bin number could decrease the sensitivity and too large a bin number could cause a loss of generality, we 

use the Freedman-Diaconis rule [166] to select the optimal size of the bins to be used in the histogram. This 

rule is related to the interquartile range and number of data points of the time-series regardless of the 

distribution of the data. In our application, the mutual information of the original time-series with its varying 

time lag is calculated. We vary the time lag (𝜏) from 1 to 100 and calculate the mutual information in every 
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time lag. The ideal case would be that there is a time lag that provides zero mutual information meaning 

that the two variables are independent. However, in real applications, several time lags could yield 

approximately the same minimum mutual information. It has been suggested that the first local minimum 

of the mutual information is the suitable choice [155, 156]. An example of the plot of the mutual information 

against the time lag of the heart rate variability is shown in Figure 6.14. 

 
Figure 6.14: The plot of mutual information vs. time lag (step) of the subject a01’s heart rate variability 

 Figure 6.14 shows the typical behavior of the plot of the mutual information of the heart rate 

variability (subject a01) against a one-hundred-time lag (𝜏). As mentioned above, we look for the first local 

minimum of the mutual information, which is at time lag 59 with the mutual information of 0.1092 in this 

case. This time lag indicates the time that makes the additional state variables the least dependent and will 

be used in the next procedure to find the minimal embedding dimension (m). 

 

6.2.2.2 False nearest neighbors (FNNs) 

 The main idea for the false nearest neighbor method is that in the phase space representation, the 

states or points that are close to each other are considered to be true neighbors. In particular, in the same 

evolution, the states of the closest neighbors to the focused state should not be too different [159, 161]. 

Now, if we take one state variable off the phase space, from d to (d-1) state variables, and represent the 

same data in the phase space, the projection of the points in the (d-1) dimension will never be the same as 
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in the original dimension and the points that are closest to each other in this representation may not be true 

neighbors because of the lack of one axis in the state space (folding). The points that are not true neighbors 

in the phase space representation but are neighbors in the lower dimensions are false neighbors [159, 161]. 

As we may imagine, if we further take more state variables off the state space representation, the number 

of false nearest neighbors will significantly increase. 

 Using this idea in reverse, when we reconstruct the phase space from only one time-series by 

increasing the number of embedding dimensions by one and examine whether the closest neighbors in the 

lower dimension are still the neighbors in the higher dimension, the minimum embedding dimension 

required to unfold the attractors is the dimension that gives the first minimum false nearest neighbors [159, 

161]. We use equations 6.9 and 6.10 below from [161] and [159] to implement the FNNs idea. The square 

of the Euclidian distance between point 𝑥(𝑛) and its neighbor is [161]: 

 𝑅𝑑
2(𝑛, 𝑟) = ∑[𝑥(𝑛 + 𝑘𝜏) − 𝑥(𝑟)(𝑛 + 𝑘𝜏)]2

𝑑−1

𝑘=0

 (6.9) 

The criterion for the neighbor point to be a false neighbor is [161]: 

 [
𝑅𝑑+1

2 (𝑛, 𝑟) − 𝑅𝑑
2(𝑛, 𝑟)

𝑅𝑑
2(𝑛, 𝑟)

]

1/2

=
|𝑥(𝑛 + 𝜏𝑑) − 𝑥(𝑟)(𝑛 + 𝜏𝑑)|

𝑅𝑑(𝑛, 𝑟)
> 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (6.10) 

Where            𝑅𝑑(𝑛, 𝑟) is the Euclidian distance between point 𝑥(𝑛) and its rth neighbor in 

dimension 𝑑 

   𝑑 is the starting dimension or state variable 

𝑛 is the index number of a point in time-series x 

   𝜏 is the time delay (in time step) 

 As seen in equations 6.9 and 6.10, the process for calculating the FNNs starts from choosing a 

number of nearest neighbors (r), the starting dimension (d), and the distance threshold (𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) to be 

used in the equations. It is suggested from [161] that only one neighbor (r=1) is sufficient when considering 

all the points in the dataset. Kennel et al. also suggested that the 𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≥ 10 is enough to clearly 

identify the false neighbors. In our case, the starting dimension is d=1. Then, after all required parameters 



125 

 

are determined, starting at d=1, the Euclidian distance between each point and its neighbor is calculated. 

Then, the phase space is reconstructed with the dimension d+1 and the Euclidian distance between the point 

and its previously assigned neighbor. If the ratio between the increase in distance from dimension d to d+1 

to the distance in the d dimension is larger than the threshold (𝑅𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 10 in this case), we flag that 

index as a false neighbor. The percentage between false and true neighbors in this d dimension is calculated. 

Next, we move to the next starting dimension, which is d=2, and repeat the same process. We repeat the 

procedure until the number of d dimensions is very high (10 dimensions were used in our case). The 

percentages of false neighbors in every embedded dimension are then plotted against the corresponding 

dimension. The minimal embedding dimension required to unfold the phase space is the dimension that 

gives the first minimum in the plot (zero false neighbors or close to zero). An example of the results from 

our heart rate variability data is shown in Figure 6.15 below: 

 
Figure 6.15: The plot of false nearest neighborhood fraction vs. dimension of the subject a01’s heart rate 

variability 

 

 As seen from the plot above, the FNNs percentage declines with the increasing number of 

embedding dimensions and approaches to zero after the 7th dimension. It should be noted that sometimes, 

the algorithm overestimates the FNNs percentage, resulting in too many dimensions used for reconstructing 

a phase space. Also, depending on the noise level in the data, in our case, a very low FNN rate (≤0.05) is 
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acceptable in the phase space reconstructing process. We discuss the limitations when using too many and 

too few dimensions in the process in the results section.  

 

6.2.2.3 Phase space reconstruction on simulation data 

 In order to fully demonstrate the effectiveness of the reported algorithms, we choose to reconstruct 

the phase space of the Lorenz system [167], which is one of the most well-known studies on chaos 

dynamics. Lorenz system is famous for the simplicity of the three coupling nonlinear differential equations 

that display chaos behavior. It was originally developed by Ed Lorenz in 1963 to be a simplified version of 

the equations used for describing the atmospheric convection system. It basically depicts the movement of 

two different air temperatures in the earth’s atmosphere (hot air rises then cool air sinks) that creates a 

convection that never crosses the same path. Lorenz is able to simplify an original 12 state variable system 

[168] to the equations below: 

 

𝑥̇ = 𝜎(𝑦 − 𝑥) 

𝑦̇ = −𝑥𝑧 + 𝑟𝑥 − 𝑦 

𝑧̇ = 𝑥𝑦 − 𝑏𝑧 

(6.11) 

 

 There are three parameters in the system: the Prandtl number (𝜎), the Rayleigh number (r), and the 

aspect ratio of the convection cylinders (b) (for more information please see [167, 169]). The original value 

of these parameters set by Lorenz is 𝜎=10, r=28, and b=8/3. We simulated this equation for 5,000 points 

with 0.01 distance in each time step. The plot of these simulated equations is shown in Figure 6.16. 
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Figure 6.16: The Lorenz attractor plot in 3 dimensional space with parameters 𝝈=10, r=28, and b=8/3 

 

 
Figure 6.17: The plot of mutual information vs. time lag (step) of the simulated Lorenz system 
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Figure 6.18: The plot of FNNs vs. dimension of the simulated Lorenz system 

 We reconstruct the phase space of the Lorenz attractor shown in Figure 6.16 from the data from 

only one time-series generated from one of the equations in equation 6.11. We choose the data point from 

the 𝑦̇ or dy equation. The first step is to determine the time delay by using mutual information. Suggested 

from the mutual information plot in Figure 6.17, a suitable time delay determined from the first local 

minimum is at time lag 15.  

 Using the time lag of 15, the calculated FNN percentage of the corresponding embedding 

dimension is shown in Figure 6.18. As seen from the plot, the FNN approaches to zero at dimension 3 

(FNN<0.5%). This result suggests the use of embedding dimension 3, which is the same as the true number 

of the true state variables. Finally, using equation 6.6, a time-series dy, time delay (𝜏) = 15, and embedding 

dimension (m) = 3, the reconstructed Lorenz attractor phase space is shown below: 
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Figure 6.19: The reconstructed Lorenz attractor from only 𝒚̇ or dy time-series in equation 6.11 

 The reconstructed phase space of the Lorenz system shown in Figure 6.19 above preserves the same 

dynamic structure or topology of the original phase space as seen from the same number of attractors and 

the patterns of the dynamics that evolve over time. We will use this method to reconstruct the phase space 

from the three time-series data that we extracted from the ECG signal to better observe the different 

neighboring patterns which can be used to differentiate the state of a sleep apnea episode. The 

implementation details and statistical results are described in the next chapter. 

 

6.3 Recurrence plot (RP)  

 Although the reconstructed phase space can unfold the dynamic structure of the focused system, 

we still need to quantify the different patterns of the states in the phase space so that we can use them in 

our statistical modeling methods in order to differentiate between the apnea and non-apnea states. 

Moreover, one of the limitations in phase space reconstruction is that in higher dimensions (>3), we lose 

the visualization ability which is crucial for tracking the evolution of the dynamics. Realizing this problem, 

Eckmann et al. [170] introduced a method to statistically project a multidimensional system into a two-

dimensional representation such that we can distinguish many state patterns regardless of the number of 
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state variables. By considering every point in the phase space and its neighbors, we can choose to represent 

only the states that are close together or within distance threshold 𝜀𝑖 using the following equation [156]: 

 𝑹𝑖,𝑗
𝑚,𝜀𝑖 = Θ(𝜀𝑖 − ‖𝒙𝒊 − 𝒙𝒋‖, 𝒙𝒊 ∈ ℝ𝑚, 𝑖, 𝑗 = 1,2, … ,𝑁 (6.12) 

 Where 𝑹 is the two dimensional squared matrix 

  𝒙 is the state vector in the phase space 

  m is the embedding dimension used for constructing the phase space 

  N is the number of states 

  𝜀  is the distance threshold between state 𝑖 and 𝑗 

 Equation 6.12 results in a two-dimensional square matrix showing all the states that appear within 

the distance of 𝜀. In particular, when considering state 𝒙𝒊, all the states 𝒙𝒋 that occur within a close distance 

of 𝜀 are considered to be neighbors in the phase space. Using the Heaviside function, the close states 

(neighbors) are then denoted by one, otherwise zero (black dot and white dot on the plot respectively). After 

considering all states in the phase space, we can plot this information using time or the consecutive state 

number (which is actually the time with the equally-spaced distance in the sampling period) and this plot is 

called a recurrence plot. An example of recurrence plots using the information from the Lorenz system is 

shown in Figures 6.20, and 6.21. 
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Figure 6.20: The unthresholded recurrence plot of Lorenz attractor using information from Figure 6.15 

 

 
Figure 6.21: The threshold recurrence plot of Lorenz attractor using information from Figure 6.18 
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 In the recurrence plot constructing process, all the Euclidian distances between states 𝒙𝒊 and 𝒙𝒋 

where 𝑖, 𝑗 = 1,2,… ,𝑁 have to be calculated. The recurrence plot using these distances as color-coded points 

(without any threshold) are called a non-threshold or global recurrence plot (see Figure 6.20). A cool color 

tone (cyan to dark blue) represents a closer distance between the two states and a hot color tone (cyan to 

red) represents a further distance between the two states. It should be noted that without thresholding the 

distance between the two states, the recurrence patterns can be visually spotted from this global recurrence 

plot very well. Now, after applying equation 6.12 to the distance between all the states in the phase space, 

we can plot all the states that are close together as a black dot, shown in Figure 6.21. However, we need to 

consider choosing a value for the threshold before the recurrence plot can be built. Many studies [159, 160, 

165, 171, 172], provide  recommendations for selecting such a threshold: 1) few to ten percent of the 

maximum phase space diameter (distance between the farthest two states in the phase space), 2) 20-40 

percent of the signal’s standard deviation, and 3) choose the threshold such that the recurrence rate 

(discussed in the next section) is fixed at 10%. The main idea is that if the threshold value is too large, all 

states in the phase space will be neighbors, so we cannot distinguish the patterns in the recurrence plot, and 

if the threshold value is too small, there will be too few points showing up on the recurrence plot so the 

recurrence patterns will be hard to spot. However, no underlying dynamics are alike. Several experiments 

may be required until the results fit the user’s requirements.  

 

6.4 Recurrence quantification analysis (RQA) 

 The recurrence plot was developed mainly for visual analysis of the recurrence patterns of the 

dynamic system. To avoid subjective justification from users and to enable statistical analysis  of the 

discovered patterns, Zbilut and Webber [173, 174] originally developed statistical measures to quantify the 

recurrence patterns especially on the threshold recurrence plot (features 1-5). Later, several researchers 

further extended the measures from the recurrence plot based on the development of the complex network 

concept on reconstructed phase space (features 6-12) [155, 156, 175-178]. The statistical measures 

(features) used in this research are as follows: 
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1) Recurrence rate or percent recurrence (REC or RR). This measurement is simply the density of the 

recurrence points (black dots in the recurrence plot) in the specified threshold (𝜀). 

 𝑅𝑅 =
1

𝑁2
∑ 𝑹𝑖,𝑗

𝑚,𝜀

𝑁

𝑖,𝑗=1

 (6.13) 

 

2) Determinism (DET) is a percentage of the points in the diagonal lines (excluding where i=j) and 

total the recurrence points within the threshold (𝜀). This feature reflects the determinism structure 

of the system. In the recurrence plot, long diagonal lines are found in periodic systems, whereas 

short diagonal lines are found in chaotic systems and there will be no diagonal line in a stochastic 

or random system. The DET can be calculated by: 

 𝐷𝐸𝑇 =
100(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑖𝑛𝑡𝑠 𝑖𝑛 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑙𝑖𝑛𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑝𝑜𝑖𝑛𝑡𝑠)
 (6.14) 

Webber and Marwan [165] suggested the calculation method by first grouping all the diagonal lines 

that have the same length into a histogram: 

 𝐻𝐷(𝑙) = ∑ (1 − 𝑅𝑖−1,𝑗−1)(

𝑁

𝑖,𝑗=1

1 − 𝑅𝑖+𝑙,𝑗+𝑙)∏𝑅𝑖+𝑘,𝑗+𝑘

𝑙−1

𝑘=0

 (6.15) 

Then, we can calculate the DET by [165]: 

 𝐷𝐸𝑇 =
∑ 𝑙𝐻𝐷(𝑙)𝑁

𝑙=𝑑𝑚𝑖𝑛

∑ 𝑅𝑖,𝑗
𝑁
𝑖,𝑗=1

 (6.16) 

In equation 6.16, 𝑑𝑚𝑖𝑛specifies the minimum shortest length for the diagonal lines. It is suggested 

by [165] that 𝑑𝑚𝑖𝑛 = 2 for typical systems.  

3) Average diagonal line length.  

 〈𝐷〉 =
∑ 𝑙𝐻𝐷(𝑙)𝑁

𝑙=𝑑𝑚𝑖𝑛

∑ 𝐻𝐷(𝑙)𝑁
𝑙=𝑑𝑚𝑖𝑛

 (6.17) 
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In the recurrence plot, this measurement can be interpreted as the average time that two segments 

of the trajectory are close to each other, so it can be used for predicting the occurrence of the next 

segment of the same trajectory. 

4) Maximal diagonal line length (𝐷𝑚𝑎𝑥) is the longest length of the diagonal line in the considered 

recurrence plot. This measurement has an inverse correlation with the highest positive Lyapunov 

exponent [157]. Thus, the system will be less stable (chaotic) if it has a short 𝐷𝑚𝑎𝑥 (higher 

possibility that the trajectories will diverge). 

 𝐷𝑚𝑎𝑥 = argmax𝐻𝐷(𝑙) (6.18) 

5) Shannon information entropy (ENT) of all diagonal line lengths. The entropy measures the signal 

complexity from the probability of various diagonal line lengths, which are binned into a histogram. 

Equation 6.15 is also used to calculate this measurement. : 

 𝐸𝑁𝑇 = − ∑ 𝑝(𝑙) ln 𝑝(𝑙)

𝑁

𝑙=𝑑𝑚𝑖𝑛

 (6.19) 

 𝑤ℎ𝑒𝑟𝑒 𝑝(𝑙) =
𝐻𝐷(𝑙)

∑ 𝐻𝐷(𝑙)𝑁
𝑙=𝑑𝑚𝑖𝑛

  

Entropy has a unit of bit/bin. Very low entropy indicates low complexity in the system, 

which happens when most or all of the diagonal lines are the same length (periodic system) or there 

are no diagonal lines (a stochastic or random system). 

 

Feature 6.8 are based on the structure of the vertical lines in the recurrence plot (as opposed 

to the diagonal lines in the previous features). With the same procedure for calculating the diagonal 

features, all the vertical lines with the same length in the recurrence plot are grouped into the 

histogram [165]: 

 𝐻𝑉(𝑙) = ∑ (1 − 𝑅𝑖,𝑗−1)(

𝑁

𝑖,𝑗=1

1 − 𝑅𝑖,𝑗+𝑙)∏𝑅𝑖,𝑗+𝑘

𝑙−1

𝑘=0

 (6.20) 
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6) Laminarity (LAM) is a percentage of the points in the vertical lines which reflects the laminar states 

within the system (the state does not change or changes very slowly). 

 𝐿𝐴𝑀 =
∑ 𝑙𝐻𝑉(𝑙)𝑁

𝑙=𝑣𝑚𝑖𝑛

∑ 𝑅𝑖,𝑗
𝑁
𝑖,𝑗=1

 (6.21) 

The same concept as with the diagonal features is applied in the vertical features. The minimum 

vertical line length (𝑣𝑚𝑖𝑛) must be chosen. Marwan and Webber [165] suggested a typical value 

of 𝑣𝑚𝑖𝑛 = 2. 

7) Trapping time (TT) is the average vertical line length in the recurrence plot. As the vertical line 

structure of the recurrence reflects the time before one state changes to another state, the average 

vertical line length or TT is the average time that the system stays in one state (trapping). 

 𝑇𝑇 =
∑ 𝑙𝐻𝑉(𝑙)𝑁

𝑙=𝑣𝑚𝑖𝑛

∑ 𝐻𝑉
𝜀(𝑙)𝑁

𝑙=𝑣𝑚𝑖𝑛

 (6.22) 

8) Maximal vertical line length (𝑉𝑚𝑎𝑥) is the longest vertical line that appears in the recurrence plot. 

Although it is still not clear how the 𝑉𝑚𝑎𝑥 influences the system, it can tell what state the system 

stays in the longest in the recurrence plot.  

 𝑉𝑚𝑎𝑥 = argmax𝐻𝑉(𝑙) (6.23) 

9) Mean of the recurrence times of the first type (𝑇̅1) [179] is the time average between the consecutive 

states in the state space with neighbor threshold 𝜀. This time is actually the length of the vertical 

line in the recurrence plot from one state to the next consecutive state within the considered 

threshold 𝜀. First, consider the reference point (state) 𝑥0within threshold 𝜀. 

 𝐵𝜀(𝑥0) = {𝑥: ‖𝑥 − 𝑥0‖ ≤ 𝜀} (6.24) 

From the phase space trajectory of length N, denote the consecutive states that belong to 𝐵𝜀(𝑥0). 

 𝑆 = {𝑥𝑡1
, 𝑥𝑡2

, … , 𝑥𝑡𝑖
} (6.25) 

Then, consider all the time differences in all consecutive states of the trajectory in 𝑆. 

 𝑇1(𝑘) = {𝑡𝑘+1 − 𝑡𝑘}, 𝑘 = 1,2, … , (𝑖 − 1) (6.26) 
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Finally, the mean of the recurrence times of the first type (𝑇̅1) is an average of all time 

differences. 

 𝑇̅1 =
1

(𝑖 − 1)
∑ 𝑇1(𝑘)

(𝑖−1)

𝑘=1

 (6.27) 

 

10) Mean of the recurrence times of the second type (𝑇̅2) [179]. When the considered neighborhood, 

𝜀, is big or dense, there might be several revolutions of states in the same trajectory that pass 

through the considered neighborhood, 𝜀, (𝑆1, 𝑆2, … , 𝑆𝑝). After removing the sojourn points (the 

points in each revolution except the first point that entered the neighborhood), the remaining points 

are called the recurrence points of the second type (see Figure 6.22).  

 
Figure 6.22: Recurrence points of the second type (solid circles) and the sojourn points (open circles) in 

𝐵𝜀(𝑥0) (reproduced from [179]) 

 

 𝑆′ = {𝑥𝑡1

′ , 𝑥𝑡2

′ , … , 𝑥𝑡𝑖

′ } (6.28) 

Then, we calculate the average time between the consecutive evolutions of the recurrence points of 

the second type in 𝑆′. 

 𝑇2(𝑘) = {𝑡𝑘+1
′ − 𝑡𝑘

′ }, 𝑘 = 1,2,… , (𝑖 − 1) (6.29) 

Finally, the mean of the recurrence times of the second type (𝑇̅2) is an average of all time 

differences without the sojourn points. 

 𝑇̅2 =
1

(𝑖 − 1)
∑ 𝑇2(𝑘)

(𝑖−1)

𝑘=1

 (6.30) 

𝑥0 

𝜀 

𝑆1 

𝑆2 

𝑆3 

𝑥𝑡1

′  𝑥𝑡2

′  
𝑥𝑡3

′  
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11) Recurrence time entropy (RTE) is an analogous entropy measurement of the diagonal line lengths 

in feature 5 but referring to the entropy of the vertical line instead. This measurement quantifies 

the complexity of the vertical line lengths in the RP and the range of the recurrences [176]. 

 𝑅𝑇𝐸 = −
1

ln𝑉𝑚𝑎𝑥
∑ 𝐻𝑉(𝑙) ln𝐻𝑉(𝑙)

𝑉𝑚𝑎𝑥

𝑙=1

 (6.31) 

 

6.5 Power spectrum density (PSD) 

 The power spectrum density is the method for explaining how the variance of the data or time-

series is distributed in the frequency domain. To be specific, it quantifies the variance of the data at all 

frequencies (for more information please see [180] and [181]). In our application, this quantification can be 

used for classification of the sleep apnea states (apnea vs. non-apnea). The two main assumptions are the 

following: 1) the variation of the heart rate variability is high shortly after the occurrence of an OSA episode 

because of the burst in the heart rate. This happens as the brain tries to force the heart to supply more oxygen 

to the body (the concentration of oxygen is lower during the apneic state) to compensate for the decreased 

oxygen in the blood. And 2) the variation of the respiratory signal is also high shortly after the termination 

of the OSA episode, as the body tries to get the blood oxygenated as fast as possible so that the amplitude 

of the respiratory signal will be higher with a slower breathing rate. There are several ways to calculate the 

PSD, such as by calculating the summation of the covariance function of the signal, using a band-pass filter 

to filter only each frequency, then calculating the magnitude of the variation in each frequency range, and 

so on. The method used in this study is a short-time Fourier transform, which is a discrete Fourier transform 

with a windowing technique. First, the segmented time-series is transformed to the Fourier domain using a 

discrete-time Fourier transform: 

 𝑋(𝑘) = ∑ 𝑥[𝑛]𝑒−𝑗
2𝜋
𝑁

𝑘𝑛

𝑁−1

𝑛=0

 (6.32) 

 Where 𝑘 is the number of sinusoid cycles per N sample 

  N is the number of data samples 
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 The equation 6.32 transforms any sequence of N numbers in a time domain (time-series 𝑥[𝑛]) into 

𝑋(𝑘), which is a combination of the sinusoidal components (amplitude and phase) of function 𝑥[𝑛]. The 

amplitude and phase are: 

 |𝑋(𝑘)| =
√𝑅𝑒(𝑋(𝑘))2 + 𝐼𝑚(𝑋(𝑘))2

𝑁
 (6.33) 

 arg (𝑋(𝑘)) = 𝑎𝑡𝑎𝑛2(𝐼𝑚(𝑋(𝑘), 𝑅𝑒(𝑋(𝑘))) (6.34) 

Because the Fourier transformation assumes signal 𝑥[𝑛] to be periodic and uses the combination 

of different amplitudes and phases of sinusoidal signals as fundamental signals in representing 𝑥[𝑛] in the 

frequency domain, the error introduced when this technique is applied to the non-periodic signal is high 

between the discontinuity between the last sample and the repeated first sample. This type of error is known 

as a spectral leakage, where the actual narrow energy band was represented as a wide energy range. One 

effective remedy is to use a window technique to convert signal 𝑥[𝑛] to fit the periodic requirement, 

amplitude zero at the beginning, rising to the maximum, and decaying to zero again in the end (for more 

information, please see [180]). The windowing technique used in this study is a Hanning window known 

as one of the versatile windowing techniques that gives good frequency resolution and amplitude accuracy, 

and less spectral leakage [180]: 

 𝑤(𝑛) = 0.5 [1 − 𝑐𝑜𝑠 (2𝜋
𝑛

𝑁
)] , 0 ≤ 𝑛 ≤ 𝑁 (6.35) 

 𝑣(𝑛) = 𝑥[𝑛] ∙ 𝑤(𝑛) (6.36) 

 Where 𝑤(𝑛) is the Hanning window function with the length of 𝐿 = 𝑁 + 1. 

  𝑁 is the number of data samples to be transformed, and 

  𝑣(𝑛) is the windowed signal 
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Figure 6.23: Overlap and window processing before DFT process for better frequency resolution (reproduced 

from [182]) 

 

 This windowing method is often used with the overlapping technique to gain better resolution of 

the transformation to compensate for the loss of data at the beginning and the end of the actual signal. An 

example of this application is shown in Figure 6.23. The overlapping parts are where the amplitudes were 

attenuated by the window effect. So far, to recapitulate the process, in order to calculate the power spectrum 

of random signal 𝑥[𝑛], we first apply the window 𝑤(𝑛) to each segmented part of 𝑥[𝑛]. The length of the 

window and the overlap part depends on the user’s need. If the larger window size (many data points) is 

used, the corresponding DFT will have good resolution in the frequency domain but poor localization in 
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the time domain. Vice versa, if the smaller window size (fewer data points) is used, the corresponding DFT 

will have poor resolution in the frequency domain but good localization in the time domain. Finally, the 

power spectral density (PSD) can be calculated by: 

 𝑃𝑆𝐷(𝑘) =
1

𝑁
|𝑉(𝑘)| (6.37) 

 Where 𝑉(𝑘)  is the DFT of 𝑣(𝑛) 

  𝑃𝑆𝐷(𝑘) is the power spectral density (𝑉2/𝐻𝑧) 

 

To conclude this chapter, we explained how three important time-series can be extracted from only 

a one-lead ECG: the heart rate variability (HRV), the ECG respiratory derived (EDR), and the slow wave 

signal derived from the wavelet decomposed ECG. Then, we reconstructed the dynamic topologies from 

each of the time-series, in order to unfold the evolutions of the state’s trajectory. This is done based on 

nonlinear dynamics and chaos theories by embedding the points in the time-series to the higher dimension. 

Finally, recurrence quantification analysis is used to quantify the neighbor patterns of the state in the 

recurrence plot such that we can use the data mining methods explained in Chapter 4 to explore the 

significant patterns that can be used to classify the OSA state. The implementation process and results are 

thoroughly explained in the next chapter. 
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CHAPTER VII 
 

 

 

OSA EPISODE CLASSIFICATION AND FORECASTING MODELS BASED ON 

RECURRENCE QUANTIFICATION ANALYSIS (RQA) 

 

 

 

 In Chapter 6, we explained all methods to process the one-lead ECG time-series to the 

quantifications that can be further used in any statistical modeling method. In this chapter, we will 

implement the modeling methods explained in Chapter 4 to the quantification outcomes explained in 

Chapter 6. The objective are 1) to build OSA episode classification models and 2) to build OSA episode 

forecasting (look ahead to the future) models. The goal is to improve the OSA diagnosis process by reducing 

the number of sensors required to only a one-lead ECG signal and reduce the labor of the registered sleep 

technician and sleep doctor in manually marking the OSA episode by the automatic OSA episode 

classification model. The ideas and contributions of this chapter are partially from the works of our research 

group [148-151]. The organization of this chapter is as follows. First, the description of the database is 

clarified. The criteria for choosing the data records used in the analysis are also explained. Next, we will 

explain the data preprocessing procedure to be done before the analysis can be carried out. Then, the 

analysis results are reported and discussed. Finally, we conclude this chapter with the findings from the 

analysis and the future work that may further improve this application.



142 

 

7.1 CINC data Polysomnography database information 

 The data used for the analysis in this chapter is made available by Dr. Thomas Penzel of Philipps-

University, Marburg, Germany [63]. It is available for a public download at www.physionet.org in the 

section that has a challenge from Physionet and computers in cardiology 2000. The database consists of 35 

recordings of a single lead ECG signal with a sampling rate of 100 Hz and the non-overlapping-minute-by-

minute sleep apnea episode condition annotations (apnea and non-apnea states). These annotations were 

made by the human experts from a standard procedure to indicate the absence or presence of apnea. All 

apnea events are obstructive and mixed. The hypopnea events are considered apnea events. The criteria for 

the hypopnea are defined as a combination of a drop in respiratory flow below 50%, a drop in oxygen 

saturation of at least 4%, and hyperventilation at the apnea termination. Pure central sleep apnea (CSA) and 

Cheyne-Stokes respiration are excluded in this analysis. Each record contains data with a length of six to 

ten hours. There are three groups of subjects: apnea, borderline, and control groups. The criteria for 

differentiating among the groups is the apnea-hypopnea index (AHI). The subjects with AHI equal to or 

greater than 10 are classified in the apnea group (group a), between 5 and 10 are classified in the borderline 

group (group b), and less than 5 are classified in the control group (group c). The subjects are men and 

women between ages 27 and 63. Their weight and BMI are between 53 and 135 kg, and 20.3 and 42.1 

respectively. The AHI ranges from 0 to 93.5. Some records are excluded from the analysis due to the inferior 

quality of the signals (undetectable R-peaks, loss of ECG signal in some areas, and so on). Finally, 24 

subjects are included in the analysis. We will discuss the preprocessing procedure in the next section. 

 

7.2 Data preprocessing and feature extraction 

 In this section, we explain the workflow of the process to construct the OSA episode classification 

and forecasting models from the overnight one-lead ECG. The detailed explanation of every algorithm used 

is in Chapter 6. The overall procedure beginning with the data preprocessing and analysis is shown in Figure 

7.1. Each individual’s ECG time-series was prepared separately. The ECG signal was visually inspected to 

see if there is any degradation or loss in any part of the signal. If the quality was bad (most part of the ECG 

http://www.physionet.org/
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is too noisy or the R-peaks are absent), we excluded the entire ECG signal from the analysis is because we 

compare the actual AHI and the calculated AHI from the model, for which we need the entire ECG signal 

as the primary signal. To extract the ECG-derived respiration (EDR) and heart rate variability (HRV) 

signals from the ECG signal, we detected all R-peaks from the ECG signal (see Chapter 6 for all algorithm 

details). For the slow wave signal (SWS), wavelet analysis and synthesis with the thresholding process were 

performed. These processes were carried out on every chosen ECG signal, so for each individual, we have 

the overnight three time-series (EDR, HRV, and SWS) needed for further analysis. 

 

Figure 7.1: OSA episode classification and forecasting model development workflow  

 

7.2.1 Phase space reconstruction parameters 

 Because of the variations in the underlying dynamics of each person, the phase space reconstruction 

parameters are individually calculated. Each time-series is then used for the calculation of the embedding 

time delay (mutual information) and embedding dimension (false nearest neighbor (FNN) rate). The 

embedding parameters for a phase space reconstruction of the three time-series (HRV, EDR, SWS) 

extracted from each subject’s overnight one-lead ECG are shown in Table 7.1. 
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Table 7.1: The embedding parameters for the phase space reconstruction of the three time-series (HRV, 

EDR, and SWS) extracted from one-lead ECG in each subject 

Subject HRV EDR SWS 

Time delay Dimension Time delay Dimension Time delay Dimension 

a1 49 6 12 7 12 7 

a2 54 8 8 2 10 2 

a3 66 6 11 7 20 6 

a4 89 6 11 7 14 7 

a5 91 6 15 7 24 8 

a7 46 7 10 7 20 7 

a8 72 6 15 7 23 7 

a9 51 6 11 7 22 7 

a12 80 6 18 7 19 6 

a13 62 5 9 7 21 7 

a15 72 5 15 7 21 7 

a18 52 6 12 7 21 7 

a19 51 6 16 7 30 8 

a20 39 6 15 7 21 7 

Group a 

average 

62.43 6.07 12.71 6.64 12.71 6.64 

b1 27 6 16 7 19 7 

b2 67 6 16 7 8 6 

b3 66 5 15 7 9 6 

b4 28 6 17 6 20 7 

Group b 

average 

47 5.75 16 6.75 16 6.75 

c1 14 6 14 6 22 6 

c3 26 6 18 7 20 7 

c4 10 7 13 7 20 7 

c7 31 6 14 7 23 7 

c8 26 7 16 7 8 6 

c10 12 6 17 7 21 7 

Group c 

average 

19.83 6.33 15.33 6.83 15.33 6.83 

  

Noticeably, in the HRV, and EDR time-series, the embedding delays of the subjects in group a 

(apnea) are quite different from those of the subjects in group c (normal). A quick student T-test also 

indicated the statistical difference between them (HRV: p = 9.83E-7, and EDR: p=3.51E-2). These results 

suggest that the underlying dynamics of the HRV and EDR time-series between apnea and normal groups 

are different. Although we expect the same result for the SWS, it is not the case. 

 The embedding dimensions suggested from the false nearest neighbor (FNN) rate for all time-series 

are approximately the same in all groups. This suggests that the number of variables that influence the 



145 

 

dynamics of each time-series is the same. The embedding dimensions shown in Table 7.1 are the dimensions 

where the FNN rate is less than 5% or equal to approximately zero.  

 

7.3 Phase space reconstruction and recurrence plot (RP) of OSA episode predictors 

 After the required parameters are known, we can use equation 6.6 to reconstruct the phase space. 

However, in order to visualize the reconstructed phase space, the maximum dimension is limited to 3 

(instead of 6 or 7). We choose to use ECG data from subject a05 because of the almost equal ratio of overall 

apnea and non-apnea minutes so we can choose only the consecutive apnea and non-apnea minutes to 

reconstruct the phase space. Also, we use the data from the same subject in order to eliminate the inter-

personal variation and to maximize the different features influenced exclusively by apnea and non-apnea 

dynamics. Figures 7.2, 7.3, and 7.4 show the reconstructed phase spaces of 10 consecutive non-apnea and 

apnea minutes from HRV, EDR, and SWS time-series respectively. 

 
Figure 7.2: The phase space reconstruction of the HRV time-series (non-apnea: left, apnea: right) 
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Figure 7.3: The phase space reconstruction of the EDR time-series (non-apnea: left, apnea: right) 

 

 
Figure 7.4: The phase space reconstruction of the SWS time-series (non-apnea: left, apnea: right) 

 

Comparing the two phase spaces constructed from 10 consecutive non-apnea and apnea minutes, 

we can see some differences between them. In HRV phase spaces, it seems that the one from the non-apnea 
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minutes expresses more variation of the trajectory in the Z direction but less variation in the X direction 

compared to the one from the apnea minutes. In EDR phase spaces, the one constructed from non-apnea 

minutes seems to have approximately equal variations in every direction (almost sphere like), whereas the 

variations of the one from the apnea minutes are more constricted in the X and Y directions. Lastly, the 

phase spaces reconstructed from the SWS time-series express themselves almost as an X-Y plane with 

almost no variation in the Z direction. However, it seems that the one reconstructed with non-apnea minutes 

has a more confined trajectory (very dense) in the center whereas the trajectory of the one from the apnea 

minutes evolves more outside. 

Although there are some differences between the two subjects (apnea vs. non-apnea), it might be 

too subjective to use the phase space plots to directly distinguish between apnea and non-apnea state 

subjects because there might be some person-to-person variations. The quantitative approach is more 

suitable and will be discussed later. Also, using half of the suggested dimension (3 < 7) to reconstruct the 

phase spaces may not fully reveal all the folded patterns of the underlying dynamics of all three time-series.  

Once the phase spaces are reconstructed, we now can project these points on the phase spaces onto 

the two-dimensional plots, which is a recurrence plot. This time we reconstruct all phase spaces using the 

recommended dimensions and then create the recurrence plots using equation 7.12.  

 
Figure 7.5: The unthresholded recurrence plots of the HRV time-series (non-apnea-left, apnea-right) 



148 

 

 
Figure 7.6: The thresholded recurrence plots of the HRV time-series (non-apnea-left, apnea-right) 

 

 
Figure 7.7: The unthresholded recurrence plots of the EDR time-series (non-apnea-left, apnea-right) 
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Figure 7.8: The thresholded recurrence plots of the EDR time-series (non-apnea-left, apnea-right) 

 

 
Figure 7.9: The unthresholded recurrence plots of the SWS time-series (non-apnea-left, apnea-right) 
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Figure 7.10: The thresholded recurrence plots of the SWS time-series (non-apnea-left, apnea-right) 

 

Figures 7.5, 7.7, and 7.9 are the unthresholded recurrence plots (RP) of HRV, EDR, and SWS 

respectively. The color coding represents the distance between one state and all other states in the phase 

space. The cooler colors (blue) represent shorter distances between the pair of states and the hotter colors 

(red) represent the farther distances. We defined a true neighbor threshold using a recommended value, 𝜀 =

10 percent of the maximum phase space diameter. Then, if the distance between the two states is less than 

𝜀 (meaning that they are true neighbors), we represent the relationship by a black point (recurrence point) 

on the RP, otherwise a white point (not a true neighbor). This type of plot seen in Figures 7.6, 7.8, and 7.10 

is called a thresholded recurrence plot (RP).  

Focusing on the threshold RPs, the patterns between the apnea and non-apnea states are obvious. 

For the HRV thresholded RP from the apnea minutes, we can see more diagonal structures with some of 

the vertical and horizontal lines. In contrast, the one from the non-apnea minutes expresses more vertical 

and horizontal structures creating box-like structures all over the plot. For the RPs from the EDR time-

series, the obviously different patterns make it easier to differentiate between apnea and non-apnea states. 

The EDR RP from the non-apnea minutes shows a very sparse diagonal structure all over, whereas the one 

from the apnea minutes expresses very dense diagonal structures which form an obvious box-like structure. 
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Note that the sampling rate for the EDR time-series is 10 Hz, so the 600 time-indexes corresponds to one 

minute. Thus, we can see that the box-like structure in the EDR RP corresponds to the OSA episode and a 

very short time period of the white band that corresponds to the apnea termination of the episode. These 

behaviors can also be seen in the SWS RPs with slight differences. The SWS RP from the non-apnea 

minutes forms dense diagonal structures all over. However, when compared to the one from the apnea 

minutes, the vertical structures are denser and form more obviously box-like structures. The RP structures 

mentioned above are not only used in a qualitative classification of the OSA states but they are also used 

in the quantitative measure by converting those structures into the measurement. The implementation and 

results will be discussed in the next section. 

 

7.4 Implementation of recurrence quantification analysis (RQA) on the recurrence plot (RP) of 

OSA episode predictors 

 So far, we have explained how the RP can be used to discriminate visually between apnea and non-

apnea states. In this section, we explain in detail how we implement the methods explained in section 6.4. 

However, we also encountered some limitations when trying to use them. Coming back to our original 

problem, how we can maximize the information embedded in the one-lead ECG to predict the OSA state, 

we are bound by the one-minute resolution annotation given by human experts. In the other words, we need 

to be able to interpret all information embedded in a one-minute ECG for the OSA state. After the HRV, 

EDR, and SWS time-series were extracted from the ECG time-series, each signal was resampled to a 

suitable sampling rate. In our study, the HRV was sampled at 4 Hz which is 4 samples per second. The 

EDR and SWS, were resampled at 10 Hz (10 samples per second). Recall that the time delay used for 

reconstructing the HRV phase space for subject a05 is 91 samples (see Table 7.1). Referring to the equation 

6.6, for the subject a05, the time delay used for reconstructing the phase space is 91 samples with the 

dimension of 6. This means that to reconstruct one point in the phase space, we need at least 𝑥𝑖+(𝑚+1)𝜏 data 

points, which is equal to 547 points in this case. Thus, if we used the suggested time delay and dimension, 

we cannot reconstruct even one point in the HRV phase space for subject a05. Recall that equation 7.7, 
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𝑚 ≥ 2𝑑 + 1, originally guarantees that the topology of the reconstructed phase space will resemble the real 

topology if 𝑚 ≥ 2𝑑 + 1. However, since we cannot reconstruct the phase space using the suggested 

dimension (𝑚), we decrease the number of 𝑚 until we can see the neighbor patterns which seem to work 

well in our case. Also, because the OSA symptoms are present not only in the apneic minute but some 

significant symptoms also appear before and after the apneic minute (i.e., increased heart rate and overshot 

respiratoration), we also included the three time-series of minutes before and after the apneic minute. With 

the limitations previously mentioned, the different data partition schemes and the smaller numbers of 

dimensions are used for RQA calculations. 

 
Figure 7.11: The data segmentation scheme 

 

 In Figure 7.11, if we focus on predicting the OSA state at 𝑡 minute, rather than considering the 

information only in 𝑡 minute, we can extend the boundary to the consecutive minutes (i.e., from (𝑡 − 1) to 

(𝑡 + 1) or from (𝑡 − 2) to (𝑡 + 1)). For convenience, we will call the minutes after the focus minute, or 𝑡, 

advance minutes (a#) and the ones before the focus minutes as lagged minutes (l#). There are seven data 

partition schemes, l0a0, l1a0, l1a1, l1a2, l2a0, l2a1, l2a2. As mentioned above, the reason behind these data 

partitioning schemes work in this case is that there are significant apnea symptoms before apnea happens 

(i.e., increased heart rate or lower respiratory amplitude) and after apnea termination (i.e., respiration 
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overshooting or lower heart rate). This way we not only alleviate the data shortage problem but also improve 

the prediction accuracy.  

 To prepare each time-series for the RQA process, after all time-series are clean (apply band-pass 

filter, and remove outliers and spurious data points), we deleted the parts of the signals that do not have 

apnea annotations. Then, we partitioned the data corresponding to each partition scheme. After that, we 

reconstructed the phase space from each data partition using the time delay information in Table 7.1. For 

the dimension number, the maximum we can use is 4 dimensions, so we reconstructed the phase space 

using 3 and 4 dimensions because more data points may more clearly reveal apnea and non-apnea patterns. 

After the phase space of each data partition was reconstructed, we projected all the points in each phase 

space to the RP. All points in the RP are considered the neighbors because the distance threshold is 

automatically applied when we constrict the signal to only 1 – 5 minutes depending on which data partition 

scheme is used. Finally, all eleven RQA features were calculated from each RP using a Matlab toolbox 

available from [183]. In addition to the RQA features, the PSD and normalized PSD were also used for 

building classification and forecasting models. The results of the different data segmentation schemes are 

discussed in the next sections. 

 

7.5 OSA episode classification model based on RQA features 

 From the total of 10,052 data points (equally sampled), we partitioned data into three portions, 

training, validation, and testing, with the data ratios of 50, 35, and 15 percent respectively. With the total 

of 39 features (RQAs and PSDs) extracted from each data partition of HRV, EDR, and SWS signals, we 

applied the three modeling techniques explained in Chapter 4 namely, a decision tree (DT), logistic 

regression (LR), and an artificial neural network (ANN), to capture the different patterns of OSA states. 

We also varied factors such as the number of dimensions and the data partition schemes used for 

reconstructing the phase spaces of HRV, EDR, and SWS. Because the dominant frequencies of EDR and 

SWS are not significantly different, we chose to use the same dimension when reconstructing their phase 
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spaces. The results for the best model of each data partition scheme and the different choices of dimensions 

are shown in Table 7.2. 

Table 7.2: The model performance of the best modeling method used in each data partition and embedding 

dimension scheme 

Model 

 

Embedding dimension Period used Best modeling 

method 

Misclassification rate (%) 

HRV EDR SWS 𝒕 − 𝒙𝟏 𝒕 − 𝒙𝟐 Training Validation Testing 

                    

d3d3l0a0 3 3 3 0 0 ANN-MLP40 8.03 11.74 10.92 

d3d3l1a0 3 3 3 1 0 ANN-MLP45 6.4 10.03 9.47 

d3d3l1a1 3 3 3 1 1 ANN-MLP64 4.21 8.64 9.33 

d3d3l1a2 3 3 3 1 2 ANN-MLP35 5.11 8.5 9 

d3d3l2a0 3 3 3 2 0 ANN-MLP60 3.58 8.98 9.2 

d3d3l2a1 3 3 3 2 1 ANN-MLP61 4.55 8.01 8.54 

d3d3l2a2 3 3 3 2 2 ANN-MLP64 4.99 7.33 7.94 

                    

d3d4l0a0 3 4 4 0 0 ANN-MLP30 9.67 11.88 11.05 

d3d4l1a0 3 4 4 1 0 ANN-MLP3 9.63 10.86 9.33 

d3d4l1a1 3 4 4 1 1 ANN-MLP64 5.31 8.81 8.87 

d3d4l1a2 3 4 4 1 2 ANN-MLP60 5.79 8.3 8.8 

d3d4l2a0 3 4 4 2 0 ANN-MLP25 6.5 9.69 9.4 

d3d4l2a1 3 4 4 2 1 ANN-MLP30 3.52 8.55 7.88 

d3d4l2a2 3 4 4 2 2 ANN-MLP60 5.27 8.01 7.74 

                    

d4d4l0a0 4 4 4 0 0 

Cannot calculate –  

Not enough points       

d4d4l1a0 4 4 4 1 0 ANN-MLP64 7.06 10.63 9.27 

d4d4l1a1 4 4 4 1 1 ANN-MLP64 5.79 9.15 9.8 

d4d4l1a2 4 4 4 1 2 ANN-MLP60 5.45 8.55 8.87 

d4d4l2a0 4 4 4 2 0 ANN-MLP50 6.52 9.61 9.66 

d4d4l2a1 4 4 4 2 1 ANN-MLP60 4.11 8.33 9 

d4d4l2a2 4 4 4 2 2 ANN-MLP55 2.2 7.76 8.01 

 

Shown in Table 7.2, using the results from the testing data partition as a benchmark, the best model, 

an ANN with a data partitioning scheme that includes 2 minutes before and after the analyzed minute, has 

a 7.74% misclassification rate or 92.26% accuracy. This result suggests that expanding the phase space data 

points to the adjacent minutes helps improve the classification accuracy. In the best case, extending the 

time to 2 minutes before and after the focus minute improves the classification accuracy almost 4 percent. 

As to the influence of the number of dimensions, although we see the overall best model when embedding 
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the HRV, EDR, and SWS with 3, 4, and 4 dimensions respectively, there seems to be no significant 

improvement between 3 and 4 embedding dimensions, as seen from their misclassification rates. Again, of 

the three modeling methods, the multilayer perceptron ANN provides the best results in every variation. In 

addition, we cannot calculate the RQA in is one case because there are not enough points in the 

reconstructed phase space because of the high dimensional embedding parameters (4-4-4) and no adjacency 

minutes considered. Table 7.3 reports the summary of the best parameters for model construction and the 

model performances based on the testing (left out) data partition. Furthermore, we also apply this model to 

each subject’s ECG data to see how it performs individually. The results are reported in Table 7.4. 

 

Table 7.3: Summary of the best model parameters and performances based on the results from the testing 

data partition 

Parameter Value 

Data partitioning scheme 2 lag and 2 advance minutes (5 minutes total) 

Embedding time delay Individually calculated (based on the subject) 

Embedding dimension HRV: 3, EDR: 3, and SWS: 4 

Modeling method ANN-MLP60 

Features 39 features from RQAs and PSDs 

Accuracy 92.26% 

True positive rate (TPR) 93.72% 

True negative rate (TNR) 90.87% 

False positive rate (FPR) 9.13% 

False negative rate (FNR) 6.28% 
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Table 7.4: Summary of the best classification model performance on each individual ECG data 

Apnea 

group 
Accuracy 

Total sleep 

min 

Actual 

Apnea 

min 

Predicted 

Apnea 

min 

Actual 

non-apnea 

min 

Predicted 

non-apnea 

min 

Actual 

AHI 

Predicted 

AHI 

a01 98.76 484 467 471 17 13 57.89 58.39 

a02 95.03 523 417 419 106 104 47.84 48.07 

a03 91.25 514 243 262 271 252 28.37 30.58 

a04 99.18 487 450 452 37 35 55.44 55.69 

a05 91.31 449 274 301 175 148 36.61 40.22 

a07 88.93 506 319 343 187 163 37.83 40.67 

a08 87.5 496 189 195 307 301 22.86 23.59 

a09 91.83 490 378 374 112 116 46.29 45.80 

a12 96.15 572 531 545 41 27 55.70 57.17 

a13 92.04 490 241 242 249 248 29.51 29.63 

a15 91.09 505 368 379 137 126 43.72 45.03 

a18 98.14 484 435 438 49 46 53.93 54.30 

a19 96.38 497 201 201 296 296 24.27 24.27 

a20 94.85 505 315 315 190 190 37.43 37.43 

Borderline 

group 
Accuracy 

Total sleep 

min 

Actual 

Apnea 

min 

Predicted 

Apnea 

min 

Actual 

non-apnea 

min 

Predicted 

non-apnea 

min 

Actual 

AHI 

Predicted 

AHI 

b01 96.05 482 19 26 463 456 2.37 3.24 

b02 96.29 512 93 94 419 418 10.90 11.02 

b03 97.94 436 71 76 365 360 9.77 10.46 

b04 98.52 406 10 12 396 394 1.48 1.77 

Control 

group 
Accuracy 

Total sleep 

min 

Actual 

Apnea 

min 

Predicted 

Apnea 

min 

Actual 

non-apnea 

min 

Predicted 

non-apnea 

min 

Actual 

AHI 

Predicted 

AHI 

c01 99.13 457 0 4 457 453 0.00 0.53 

c03 99.56 449 0 2 449 447 0.00 0.27 

c04 99.77 435 0 1 435 434 0.00 0.14 

c07 97.17 424 4 8 420 416 0.57 1.13 

c08 100 508 0 0 508 508 0.00 0.00 

c10 99.76 402 1 0 401 402 0.15 0.00 

 

 Considering the classification accuracy based on OSA severity, the accuracy range in the Apnea 

group (a##) is the widest compared to the ones in the borderline (b##) and control (c##) groups. The best 

prediction accuracy is 99.18% with subject a04 and the worst prediction accuracy is 87.5% with subject 

a08. The reason for the difference seems to be related to the complexity of the OSA state, which can be 

determined by the number of OSA state changed for each subject’s entire night’s sleep. To clarify, we 

counted the number of events when the state changed from non-apnea to apnea and from apnea to a non-
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apnea state. A higher number of state changes indicates more complexity in the OSA pattern, so it is harder 

to accurately predict. Conversely, it is easier to predict if the apnea pattern does not change much. For 

subject a04, there are only 4 state changes, but for subject a08, the OSA state changes 64 times the most of 

all the subjects. For the borderline group, the prediction accuracy is good, averaging at 97.2%. This result 

is also because the OSA pattern is not very complex, with the maximum number of the OSA state changes 

at 26 times. Finally, for the subjects in the control group, our model does not have any problem predicting 

the OSA events in this group with an average accuracy of 99.23%. Again, the results in Table 7.3 confirm 

those in Table 7.2, that our best model tends to make more false positive events as seen from more predicted 

apnea minutes than the actual apnea minutes in almost every case. 

 Now, the most important output needed from the OSA classification process is the apnea-hypopnea 

index (AHI). This number classifies the subjects into categories based on the severity of OSA. The 

calculation is as follows [184]:  

 𝐴𝐻𝐼 =
𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑝𝑛𝑒𝑎 𝑎𝑛𝑑 ℎ𝑦𝑝𝑜𝑝𝑛𝑒𝑎 𝑒𝑣𝑒𝑛𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑙𝑒𝑒𝑝 𝑡𝑖𝑚𝑒 𝑖𝑛 𝑚𝑖𝑛𝑢𝑡𝑒
∙ 60 (7.1) 

Shown in Table 7.3, the differences between the actual AHI and the predicted AHI in every case is 

very small. The biggest difference is only 3 AHI. However, it should be noted that the AHI calculation is 

based on averaging OSA events; since the predicted outcome is a binary (0: non-apnea or 1: apnea), wrong 

predictions may contribute to better or worse AHI results. In our case, because our model tends to create 

more false positive events, the predicted AHIs are slightly overestimated in almost every case. 

 

7.6 Importance predictors for OSA episode classification models based on RQA features 

 Although the DT algorithm is always not the best modeling method based on the accuracy or 

misclassification rate, its straightforward algorithm makes the results very interpretable, unlike the ANN 

algorithm. To fully understand each predictor’s role in the apnea state, based on the overall Gini reduction 

from the DT model, we can determine how each variable contributes in the model (see Chapter 4 for more 
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information). The plot of the average Gini impurity reduction of the top 20 variables from the best 

classification model is shown in Figure 7.12. 

 

Table 7.5: Full description of each variable name in Figure 7.12 (see Chapter 6 for more information) 

Variable name Full description 

Entropy_EDR Shannon information entropy of all diagonal line lengths of EDR signal 

longdiag_EDR Maximal diagonal line length of EDR signal 

RTE_EDR Recurrence time entropy of EDR signal 

PSD_SWS Power spectrum density of SWS signal 

PSD_RR Power spectrum density of RR signal 

Rect1st_EDR Mean of the recurrence times of the first type of EDR signal 

Rect2nd_EDR Mean of the recurrence times of the second type of EDR signal 

NPSD_EDR Normalized power spectrum density of EDR signal 

Entropy_RR Shannon information entropy of all diagonal line lengths of RR signal 

PSD_EDR Power spectrum density of EDR signal 

longvert_EDR Maximal vertical line length of EDR signal 

RR_EDR Recurrence rate or percent recurrence of EDR signal 

Avediag_EDR Average diagonal line length of EDR signal 

RR_SWS Recurrence rate or percent recurrence of SWS signal 

NPSD_RR Normalized power spectrum density of RR signal 

Rect2nd_RR Mean of the recurrence times of the second type of RR signal 

Trap_EDR Trapping time of EDR signal 

longdiag_SWS Maximal diagonal line length of SWS signal 

NPSD_SWS Normalized power spectrum density of SWS signal 

RTE_SWS Recurrence time entropy of RTE signal 
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Figure 7.12: Variable importance based on the average Gini impurity reduction for the DT OSA episode 

classification model (see full description of each variable name in Table 7.5) 

 

 
 

Figure 7.13: The histogram of EDR’s Shannon entropy grouped by OSA episode state  
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Figure 7.14: The EDR’s longest diagonal line grouped by OSA episode state (left) and the EDR’s recurrence time 

entropy grouped by OSA episode state (right) 

 

 The three most important features are from the EDR signal. The Shannon information entropy and 

the longest diagonal line contributes to about one third of the overall Gini impurity reduction (32.44%). 

This result is also supported by Figure 7.13. Clearly, the Shannon information entropy for the non-apnea 

states tends to have a lower value than for the apnea states. Recall that lower entropy indicates lower 

complexity in the system, represented by the sparse diagonal lines shown in Figure 7.8 for the non-apnea 

state RP. On the other hand, many diagonal lines with various lengths, which contributes to higher entropy, 

can be spotted easily in the RP plot for apnea states in Figure 7.8. Evidently, many continuous diagonal 

lines of EDR are most likely to show up in the RP of the apnea states (see Figures 7.8 and 7.13). Because 

the diagonal line structure related to the time between segments of the trajectory is close, the longest 

diagonal line suggests the stability of the system. With shorter longest diagonal lines in the RP, the system 

will tend to change its state (the next closest trajectory to the current state will tend to diverge). 
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Figure 7.15: The unthresholded recurrence plots of the EDR time-series (10 consecutive apnea minutes) 

 

 The next important variable is the recurrence time entropy of the EDR time-series. This feature is 

actually the entropy of the vertical lines in the RP. It might be quite hard to see those vertical lines in Figure 

7.8 (right) because of the high density of the RP points. However, it is quite easy to see many vertical lines 

in the unthresholded RP in Figure 7.15 that are potentially neighbors, indicated by the dark blue color (short 

distances to each other). Moreover, we can distinguish most apnea states from the mid-range and the non-

apnea states from the low and high range of the recurrence time entropy as shown in Figure 7.14. According 

to [177], this measurement is used to determine the repetitiveness of the trajectory in the phase space. To 

be specific, the purely periodic signals will have RTE value equal to one, and as the complexity (chaos) 
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increases, the RTE also increases. The maximum RTE value is equal to one in a purely random white-noise 

case. 

 
Figure 7.16: The RR’s time-series plots: Non-apnea minutes (left), Apnea minutes (right) 

 

 

 
Figure 7.17: The RR’s spectrogram: Non-apnea minutes (left), Apnea minutes (right) 

 

 

 
Figure 7.18: The SWS’s time-series plots: Non-apnea minutes (left), Apnea minutes (right) 
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Figure 7.19: The SWS’s spectrogram: Non-apnea minutes (left), Apnea minutes (right) 

 

 The next two important variables are the power spectrum densities (PSDs) of the SWS and RR 

time-series. Again, the PSD explains how the variation in the time-series is distributed over the frequency 

domain. In the feature extraction process, we calculated the PSD value for each minute. The results tell us 

all the power in every frequency up to half of the sampling frequency. Then, we can combine the total 

power of the frequency range of interest as used in one of our features. Considering the RR time-series from 

the same person between the apnea and non-apnea minutes, shown in Figure 7.16, the difference between 

the RR time-series of the apnea and non-apnea minutes can be spotted from the overall mean shift. The 

mean value of the apnea RR time-series is much smaller than the value from the non-apnea RR time-series. 

Moreover, they are also different in shapes and peak sizes. One of the reasons is that the heart rate becomes 

higher during a sleep apnea episode, so the HRV interval becomes shorter. Although it is quite clear that 

the mean values of the RR time-series are different between the two states, when it comes to the 

comparisons across persons, these mean values cannot be used as a features to differentiate between the 

two states due to heart rate variations between persons. However, if we consider this signal in the frequency 

domain, the active frequency ranges between the two states are quite different as shown in the spectrogram 

in Figure 7.17. We can see that in the non-apnea state, the HRV’s variation is most active in the frequency 

range of about 0 – 0.35 Hz, indicated by the  shades of red (see Figure 7.17). For the apnea minutes, the 

active frequency range is from 0 – 1 Hz.  
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active periods become longer, leaking into what is supposed to be a non-active period. These patterns are 

captured very well in the PSD shown in the spectrograms in Figure 7.19. Also, note that in the apnea 

minutes, the power in the frequency range 0-0.1 is highly active compared to the non-apnea minutes. Also, 

in the apnea minutes, the increase in active frequency regions can be clearly seen in Figure 7.19.  

These features show very prominent patterns for us to easily differentiate differences between 

apnea and non-apnea states. However, for the remaining features shown in Figure 7.12, we could not find 

explicit patterns that can be explained visually. However, because of their Gini impurity reduction values, 

we believe that these features can be useful when used altogether with other reported features.  

 

7.7 Performance comparison of OSA episode classification models 

 As reported in Chapter 3, we are not the first research group to come up with the idea to use 

information from an ECG signal to classify the OSA states. Several groups who use other methods and 

achieved very good OSA classification results. To compare our classification method to the others, we 

implement two methods from the two other respectable groups, [73] and [69], with the same data used in 

our study.  

 

7.7.1 Brief explanation of comparison methods 

 In short, Mendez et al. [73] extracted two signals from the ECG signal, HRV (RR intervals) and 

QRS area time-series. The QRS area is estimated by a summation of the amplitude before and after the R-

peak for 100 milliseconds. From there, the best 10 features based on these two signals are further extracted 

and quantified to each corresponding one-minute window. Roughly, all of Mendez et al.’s [73] features are 

power spectrum density (PSD) and magnitude squared coherence in different frequency bands, namely very 

low frequency (VLF: 0 – 0.04 Hz), low frequency (LF: 0.04 – 0.15 Hz), and high frequency (HF: 0.15 – 

0.4 Hz). In digital signal processing, the coherence indicates the causal correlation between input x and 

output y at each frequency with a value between 0 and 1. The magnitude squared coherence can be 

calculated from: 
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 𝐶𝑥𝑦 =
|𝑃𝑥𝑦|

𝑃𝑥𝑥𝑃𝑦𝑦

2

 (7.2) 

 Where 𝑃𝑥𝑦 is the cross power spectral density (PSD) of x and y 

  𝑃𝑥𝑥 is the power spectral density (PSD) of x 

  𝑃𝑦𝑦 is the power spectral density (PSD) of y 

They define two additional quantities, module (Mod) and phase (Pha) [73]: 

 𝑀𝑜𝑑 (𝑛) = √𝑄𝑅𝑆𝑎𝑟𝑒𝑎(𝑛)2 + 𝑅𝑅(𝑛)2 (7.3) 

 𝑃ℎ𝑎(𝑛) = 𝑡𝑎𝑛−1 (
𝑄𝑅𝑆𝑎𝑟𝑒𝑎(𝑛)

𝑅𝑅(𝑛)
) (7.4) 

 Where 𝑛 is the heart beat number 

Thus, all 10 features using Mendez et al.’s [73] method are summarized in Table 7.6. 

Table 7.6: Ten most important variable in order of importance extracted using Mendez et al. [73] method 

Feature number Feature name 

1 VLF power of RR intervals normalized to total power 

2 Coherence at VLF between RR intervals and QRS area 

3 LF/HF Ratio power of QRS area 

4 VLF power of module normalized to total power 

5 VLF power of QRS normalized to total power 

6 HF Power of Phase norm to total power 

7 LF Power of Phase norm to total power 

8 Coherence at HF between RR intervals and QRS area 

9 LF power of module normalized to total power 

10 LF power of QRS normalized to total power 

 

 In the modeling process, Mendez et al. used a multilayer perceptron ANN with 3-30 neurons in the 

hidden layer to train their classifier. We replicated all these processes and discuss their model performance 

in detail at the end of this section. 

 Another method used for comparing the performance of our OSA classification model is from 

Delibasoglu et al. [69]. In brief, Delibasoglu and the group extracted the instantaneous heart rate (IHR) 

from the ECG signal. The IHR is almost analogous to the RR interval. The RR interval tells how long (in 
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seconds) from one R peak to another, whereas the IHR tells how fast the heart is beating on average (beats 

per minute) between one R peak and another. They also consider the data partitioning scheme as the data 

from three minutes before the analysis minute, the analysis minute, and two minutes after the analysis 

minute, which is 6 minutes in total. Then, the wavelet decomposition using Daubechies order 3 with 8 levels 

is performed on each data partition so that there are 16 detail and approximation components equally. 

Further, they quantify these components by calculating the mean variance of each detail component and 

use these eight quantities as deciding values for OSA state classification. Delibasoglu et al. train the 

classification model using a three-layer nonlinear autoregressive network with exogenous variables 

(NARX). It has an input layer with 6 neurons, a hidden layer with 3 neurons, and an output layer with one 

neuron. We also replicate their processes to build an OSA state classifier.  

 

7.7.2 Performance comparison 

 To the best of our knowledge, we have replicated and implemented the other two OSA classification 

methods. Then, we scored all the performance indexes (accuracy, TPR, TNR, FPR, and FNR) using the 

same testing data partition used with our method. The OSA classification results from the testing data 

partition are shown in Figure 7.20 as follows: 

 

Figure 7.20: Performances comparison of OSA episode classification models  
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 As shown in the Figure 7.20, our classification model outperforms the other two models in every 

model performance index. Again, these performances are from the pool of apnea and non-apnea events that 

only tell the model performances on average. Now, to further see if the models are suitable for use in real-

life applications, we apply the three models to the subjects across the groups: apnea, borderline, and control 

groups. The subjects chosen from apnea groups are subject a03, a08, and a13 based on the complexity of 

their OSA patterns. The number of OSA state changes is 21, 64, and 39 times respectively. For the 

borderline group, we chose the two subjects with the most complex OSA patterns, b02, and b03, with the 

number of OSA state changes of 26 and 21 times respectively. For the control group, we chose two subjects 

with OSA events, c07, and c10. The results are shown in the figures as follows: 
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Figure 7.21: Comparison of OSA classification results for subject a03  
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Figure 7.22: Comparison of OSA classification results for subject a08 
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Figure 7.23: Comparison of OSA classification results for subject a13 
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Figure 7.24: Comparison of OSA classification results for subject b02 
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Figure 7.25: Comparison of OSA classification results for subject b03 
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Figure 7.26: Comparison of OSA classification results for subject c07 
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Figure 7.27: Comparison of OSA classification results for subject c10 
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 Figures 7.21 – 7.27 show the OSA classification results from all three models for each subject 

individually. The subjects in the apnea group, have a larger number of OSA episodes than the subjects in 

the other groups. What we should look for is the consistency of the prediction not only in the model’s 

accuracy but also in high TPR and TNR, which means lower FPR and FNR.  

For subject a03, although it is quite hard to tell visually which model performs the best, it is quite 

easy to see which model performs the worst. In this case, we can see that Mendez’s model performs the 

worst from high predictions of both FP and FN events. Surprisingly, for Delibasoglu’s model, although it 

seems the model accuracy is acceptable from Figure 7.21, the FPR is shockingly high, at 48.52%. For 

overall classification performance (accuracy, TPR, TNR, FPR, and FNR) in this case, our model performs 

the best in every performance index. In terms of AHI, our model prediction is very close to the AHI 

calculated from the actual events. However, with lower accuracy, high FPR and FNR, their prediction of 

AHI is good. Again, because the AHI is calculated from the average number of OSA episodes overnight, 

wrong predictions can contribute to better or worse results. To tell which model is suitable for the OSA 

classification application, we should focus on the consistency of the model performances and AHI. 

 For subject a08 with the most complex OSA episode patterns, our model still performs the best.  In 

addition, our model can follow the complex state-change-patterns very well. The other two models seem to 

have a problem with the difficult OSA episode patterns, especially, Mendez’s model scores with a very 

high FPR at 63.84%. Finally, our model performs the best with less than one AHI different from the actual 

AHI. Again, we still can see how consistently each model performs on the data from the apnea group from 

the results of subject a13. 

 Moving to the subjects in the borderline group, who have less OSA episodes per night compared 

to the apnea group, starting from the subject b02, we can see that the models from Delibasoglu and Mendez 

do not distinctively differentiate the OSA states very well visually. These low performances are also 

reflected in the very high FPR of Delibasoglu’s model (27.68%) and the very high FNR of Mendez’s model 

at (38.71%). Visually and statistically, our model does not have a problem tracking the OSA episode pattern 

from this subject. Again, for subject b03, the high FPRs in both Delibasoglu and Mendez’s models confirm 
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how these models perform in the borderline group. Next, for the control group, Delibasoglu’s model suffers 

from a high FNR, especially when predicting OSA events in subject c10. However, Mendez’s and our 

models can differentiate the non-apnea group very well visually and statistically.  

 To conclude, in our opinion, Delibasoglu’s model is acceptable for classifying OSA events in the 

apnea group. However, their model suffers when predicting subjects with less sever OSA (few OSA events) 

as seen from very high FPRs in the borderline and control groups. Mendez’s model, seems to perform well 

in the control group but not in the apnea and borderline groups. Their high FPRs and FNRs make the model 

performances very inconsistent. In our opinion, human inter-variations cause this inconsistency. For 

example, an exact baseline heart rate cannot be used to identify a heart’s health because each person’s build, 

activity, and other factors are different. We believe that if the normalization process to compensate for these 

differences is done correctly, these two models will perform better. Finally, the results in all three groups 

reflect the consistency of our model’s performances. This also confirms that the neighboring patterns in the 

reconstructed phase space of HRV, EDR, and SWS signals can be used to detect OSA events very well and 

consistently.  

 

7.8 OSA episode forecasting model based on RQA features 

 In this section, we explain the process for building a model to forecast apnea states in the future 

time (i.e., at current time 𝑡, predict the apnea state at time (𝑡 + 1) and so on). Our assumption is that there 

should be significant signs that can be observed at times before 𝑡 (i.e., (𝑡 − 2), (𝑡 − 1)) and at time 𝑡 that 

tell whether an apnea episode will happen. Thus, our approach is almost the same as for the classification 

model in the previous sections. The difference is that we shift the target variable (non-apnea = 0, and apnea 

= 1) of the (𝑡 + 𝑖) minute (where 𝑖 = 1,2,… ,10) to time 𝑡. Then, we use the modeling methods explained 

in Chapter 4 to look for importance features that can be used for classifying the apnea state in that (𝑡 + 𝑖) 

minute. Again, out of the three modeling methods, all the best models are from the artificial neural network 

modeling methods. We also test the effect of the number of past minutes (𝑡 − 𝑖) that should be included in 

the phase space reconstruction for the feature extraction process. From the experiments, we found that the 
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best data partitioning scenario is to include the data from (𝑡 − 2), (𝑡 − 1), and 𝑡. Including more past 

minutes (i.e., (𝑡 − 3), (𝑡 − 4)) or using less data does not improve and also hinders the forecasting 

accuracy. To emphasize the real-world performance of each forecasting model, in the model training 

process, we left out a testing partition and used only the training and validation data partitions to train the 

model (partitioning percentage: 50:35:15). The performances of 10 models for forecasting apnea states at 

time (𝑡 + 𝑖) minute(s) (where 𝑖 = 1,2, … ,10) in the testing data partition are shown in Figure 7.28 below: 

 
Figure 7.28: The performances of 10 models for forecasting apnea states at time (𝒕 + 𝒊) minute(s)  

(where 𝒊 = 𝟏, 𝟐, … , 𝟏𝟎)  
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low. The forecasting accuracy decays slowly with longer forecasting horizons, starting at about 92% at 1 

minute ahead and converges to about 86% at 8, 9, and 10 minutes ahead. The true positive rates produced 

by the model are higher than the true negative rates. This means that the model makes more correct 

predictions when the targets are equal to one, or the apnea state than when the targets are equal to zero, or 

the non-apnea state. This result can also be interpreted as the model tending to create more false positive 

predictions (predicts one but is actually zero) than false negative predictions (predicts zero but is actually 

one), as seen from about 3% difference, on average. Still, this behavior can be adjusted by changing the 

model cutoff values as explained in Chapter 4 to fit the application’s requirements. 

 

7.9 Important predictors for the OSA episode forecasting model based on RQA features 

 The top 11 important variables based on the Gini impurity reduction obtained from fitting the DT 

models with RQA features are shown in Figure 7.29. In this plot, the first column (X-axis) corresponds to 

the most important variables (left) and less important variables (right) respectively for predicting a one-

minute ahead OSA episode (first row of the Y-axis). The next rows (Y-axis) show the trend of the changing 

patterns of the Gini impurity reduction. The first two variables, which are Shannon entropy and the longest 

diagonal line of the EDR signal, remain the most important variables (compared to the classification model 

in the previous section) for deciding whether there will be an OSA episode one to ten minutes ahead. 

However, what makes these models different from the previously discussed classification model is the 

patterns of the rest of the features. The recurrence time entropy (RTE) of the EDR signal is not the third 

important variable; this feature does not have as much influence in forecasting as in the OSA episode 

classification application. Interestingly, the RR (HRV) entropy has less power to detect an OSA episode 

with longer forecasting horizons (2 – 10 minutes) and its importance drops to last at the 10-minute 

forecasting horizon.  
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Figure 7.29: Variable importance based on the average Gini impurity reduction for DT OSA episode forecasting 

models (see full description of each variable name in Table 7.7) 
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Table 7.7: Full description of each variable name in Figure 7.29 (see Chapter 6 for more information) 

Variable name Full description 

Entropy_EDR Shannon information entropy of all diagonal line lengths of EDR signal 

longdiag_EDR Maximal diagonal line length of EDR signal 

Entropy_RR Shannon information entropy of all diagonal line lengths of RR signal 

PSD_SWS Power spectrum density of SWS signal 

Rect1st_EDR Mean of the recurrence times of the first  type of EDR signal 

RTE_EDR Recurrence time entropy of EDR signal 

PSD_RR Power spectrum density of RR signal 

Rect2nd_EDR Mean of the recurrence times of the second type of EDR signal 

NPSD_EDR Normalized power spectrum density of EDR signal 

Avediag_EDR Average diagonal line length of EDR signal 

PSD_EDR Power spectrum density of EDR signal 

 

 Another interesting pattern is from the power spectrum density (PSD) of the SWS signal. With the 

approximately the same Gini impurity reduction as the HRV entropy, this feature’s detection power has 

noticeably increased with the longer forecasting time horizons. The other features that have the same 

increasing pattern are the EDR signal’s normalized power spectrum density (NPSD), and PSD. The 

remaining features which are the HRV entropy, EDR mean of the recurrence time of the first type (Rec1st), 

EDR RTE, HRV PSD, EDR mean of the recurrence time of the second type Rec2nd, and EDR average 

diagonal line length, behave differently with the decreasing trend in the Gini impurity reduction.   
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CHAPTER VIII 
 

 

 

WIRELESS WEARABLE MULTI-SENSORY SYSTEM FOR MONITORING OF SLEEP 

APNEA AND OTHER CARDIORESPIRATORY DISORDERS 

 

 

 

This chapter reports the development of a wireless, wearable, multi-sensor suite for diagnosis of 

point-of-care cardiorespiratory disorders with a particular focus on sleep apnea screening [150, 151]. The 

original suite is designed to synchronously gather 3-lead vectorcardiogram signals sampled at 250 Hz from 

a custom-designed system, heart sound signals gathered at 250 Hz from a MEMs sound sensor (model MT-

201 from AD-instrument), digitized oxygen saturation (SPO2) signals at 250 Hz (model PC-60B from St. 

Alban Medical), and respiratory signals. The signals are transmitted to a near-by processing and visual 

graphics unit via a Bluetooth module (model RN-800S-CB from Roving Network). Extensive tests suggest 

that the quality of the signals is comparable to that of commercial and standard recording systems. While 

this unit offers enhanced functionality in terms of simultaneous echo and phono-cardiorespiratory analysis, 

the power consumption rates are comparable to those of commercial point-of-care wireless medical devices 

for cardiorespiratory diagnosis. The system can serve as an out-of-center Type III sleep apnea screening 

device. This device is highly customizable such that the unneeded sensors could be removed to satisfy the 

desired application. The ideas and contributions of this chapter are partially from the works of our research 

group [150, 151]. In this study, we only use the one-lead ECG sensor to corporate with our statistical models 

reported in Chapter 6 and 7.  
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Figure 8.1 shows an overview of the hardware module. The arrows capture both power and signal 

transmissions. All components are powered using two 9 V batteries. The appropriate voltage levels for each 

component are prepared by the power supply circuit and a voltage regulator. The signals from MEMs 

sensors are sensed in the form of voltage differences. Normally these signals are confounded with noise 

such as electrical signals from muscles or electromyography (EMG), movement noise, and even the 

electromagnetic field from a cell phone. In most cases, the natural frequencies of such noises are not in the 

same range as those of the target signals. For example, for monitoring purposes, it is acceptable to have 

ECG’s in the frequency range of 0.05 – 40 Hz. In this case, if power line noise at 60 Hz is contaminating 

our ECG signal, we can use a low pass filter to clean the ECG signal at 40 Hz. Therefore, the signal 

conditioning circuits are required for eliminating the noises by filtering the signals to their bandwidths and 

amplifying the signal to achieve a full resolution of the quantization range of an analog-to-digital converter 

(ADC). Finally, the digitized vital signals are transmitted via a Bluetooth module to a designated receiver 

that extracts, displays, and stores meaningful data and features. The details of each working block in Figure 

8.1 are explained in the following sub-sections. 

 

 

Figure 8.1: Hardware design overview 
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8.1 Hardware design 

8.1.1 Power supply circuits 

To determine the power needed for the complete system, the power specification of each 

component must be evaluated. Commonly,  the highest voltage rate needed among the components is 

determined first in order to specify the power rating of a power supply or a battery, and then the voltage 

regulator can be used to supply  components in the system that require smaller voltages. In this system, the 

component that requires the highest voltage is the Bluetooth module, requiring 6-12 V. A widely used 9 V 

battery was chosen. Also, as the specification of an analog-to-digital converter (ADC) in the Bluetooth 

module requires the input signal to be varied from 0 – 5 V, the signals from the sensors must be amplified 

to the required range to get the full resolution of the digitizing process. Since the main amplification 

component is a dual-supply operational amplifier, a virtual ground circuit is created by a power supply 

circuit (see Figure 1) using an op-amp for dividing the supply voltage from 0 to 9 V to -4.5 to 4.5 V, having 

a virtual ground at zero as a reference. For a pulse oximeter (SPO2) and its data acquisition circuit, the 

standard 3.3 V is required. This task is accomplished by implementing a voltage regulator, LM317T, 

adjusted to supply at 3.3 V. 

 

8.1.2 MEMs-based sensors and conditioning circuits 

Primarily, we use a 3-lead VCG sensor, a phonocardiogram transducer, and a pulse oximeter. The 

VCG sensor is composed of disposable electrodes, leads, and conditional circuits. The type of electrode 

used depends on the length of time required for each monitoring epoch; the disposable electrode from 

BIOPAC model EL503 is suitable for short-term general signal monitoring; and for  long term VCG data 

acquisition, a long-term electrode, EL502, and a foam electrode, EL501, are appropriate. These electrodes 

act as conductors to measure the potential differences according to Frank XYZ leads vectorcardiogram 

(VCG) at the different positions of the body surface. Compared to the standard 12-lead electrocardiogram 

(ECG), this system requires only 7 leads for a 3-lead VCG to get the same set of signals by transforming 

them using a novel method described in [185]. The signals from these leads are fed to the conditional 



184 

 

circuits composed of the filter and amplifier circuits. The frequency range of the VCG signal is about 0.05-

100 Hz. However, for monitoring purposes, it is acceptable to use the frequency range of 0.05-40 Hz. An 

active band pass filter is implemented at 0.05-40 Hz. The signals are also amplified before being fed to the 

ADC and transmitter circuit.  

A second sensor is a phonocardiography (PCG) transducer. This sensor acts as a microphone for 

converting cardiac-related sounds to an electrical signal. It also captures respiratory, and more specifically 

snoring sounds, which appear to be one of the major indicators of obstructive sleep apnea. We use an MLT-

201 Cardio microphone from ADinstrument. This transducer is designed exclusively to   capture heart 

sounds at frequency 10 – 600 Hz. However, the transducer is very sensitive to low frequency noise (less 

than 20 Hz) such as that from body movements and breathing. Also, to capture the first (S1) and second 

(S2) components of the heart sounds, it is sufficient to capture the signal in the range of 20 – 120 Hz. Thus, 

a low pass filter with a cut-off frequency at 20 Hz is employed to eliminate the low frequency noise captured 

by the transducer. Since we sample the data at 250 Hz, a high pass filter with a cut off frequency at 120 Hz 

is used to prevent the aliasing in the signal due to under-sampling. Then, this signal is amplified to an 

appropriate level to feed to the next module. The pulse oximeter used in this system is a commercial unit, 

PC-60B. We designed the circuit to acquire the percentage of arterial oxyhemoglobin saturation (SPO2) 

directly. The digital signal from the sensor (blood oxygen level) is converted back to an analog signal and 

conditioned to the fixed ranges of interpretable levels. All signals are shifted above ground level to comply 

with the Bluetooth module’s specifications. Then, we feed the conditioned VCG, heart sound, and SPO2 

signals to the ASD83344, which is an analog-to-digital converter (ADC), which converts them into a serial 

format and transmits them using a Bluetooth protocol. 

 

8.1.3 Analog-to-digital converter and Bluetooth transmitter/receiver 

We chose a Bluetooth protocol because of its high throughput (3 Mbps Maximum), security 

features, and universal standard. Most people are familiar with Bluetooth protocol and possess devices that 

are equipped with the Bluetooth technology.  For this unit, the commercial platform BlueSentry Bluetooth 
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wireless transmission module RN-800S-CB fits our requirements for converting the analog signals to digital 

signals and wirelessly transmitting the data using a protocol with programmable features. The core 

component in the module that deals with this task is Texas Instruments ADS8344. With its configurable 8 

channels single-ended or 4 channels differential input, this module is capable of digitizing the analog signals 

at 16 bit resolution with overall sampling rate of 3 kHz. The input voltage range is set to be 0-5 V as an 

industrial standard. After the input signals have been digitized, they are transmitted to the Bluetooth 

transceiver, RN-41 Class 1 Bluetooth module, using a universal asynchronous receiver/transmitter (UART) 

protocol.  

The controller for the whole module, PIC16F73-1, stores  firmware and a command list for a user 

to be able to program  features such as  transmission power, transmission speed,  sampling rate, and a power 

consumption scheme. This module supports Bluetooth specifications up to version 2.1 + Enhanced Data 

Rate (EDR) with full backward compatibility with previous versions, 2.0, 1.2, and 1.1. We can program 

this module for suitable baud rate speeds varying from 1,200 bps to 921 Kbps. With a class 1 radio, ideally, 

the communication range is up to 100 m, using maximum output power over the air at 15 dBm with -80 

dBm receiver sensitivity. However, the maximum output is rarely used since the communication range is 

limited by the application. For monitoring purposes, the range is only within a 10-meter radius at most. 

This range should be initially determined for the optimal configuration of the output power for two main 

reasons: to conserve the battery and to limit the communication range for security reasons. Other power 

management techniques such as Sniff mode and Deep sleep are also available. Basically, they are methods 

to adjust the optimal active time and shut-down time of the radio to be suitable to the applications.  

 

8.1.4 Default performance of the multi-sensor platform  

Power consumption: A power supply and a known value resistor are used to form a circuit to 

measure the power consumption of the entire system. Since the circuit is connected in series, the current (I) 

passes through a known value resistor (Rt) and the system is the same regarding Ohm’s law. The magnitude 

of the current depends on the maximum resistance of the components in a circuit. In this case, the 
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measurement resistor (Rt) used is 0.7 ohm, which is smaller than the resistance of the system, so the 

measured current is contributed solely from the system. A high-precision Fluke multimeter and oscilloscope 

is used to measure the voltage drop across Rt (Vt); then the current consumption of the system in different 

working stages is calculated by Vt and Rt (see Table 8.1). As indicated in Table 8.1, with all sensors powered 

(system on) and continuous data transmission, the current used by the overall system is around 169 mA. In 

the current setup, we use two 9 V lithium batteries rated at 1200 mAh each. This system can work 

continuously for approximately 14 hours (more than adequate for a normal 8-9 hours of sleep).  

 

Communication interfacing and transmission test: The module is ready for a connection about 

ten seconds after it is turned on. In our case, we use Matlab both for initiating communication and real time 

analysis. Theoretically, the communication range for a class 1 Bluetooth module is up to 100 m. However, 

we found that the range also depends on the stage of communication. For the discovery mode, the module 

could be discovered within a range of 10 m, but that range will not work for the pairing mode. The pairing 

mode requires a maximum range of 2 m. Also, after the pairing procedure is done, 1 m is the maximum 

range for opening the communication port to initiate a connection. Once the port is opened, this range can 

be increased up to about 10 m for effective data transmitting/receiving. The additional characteristics of our 

system are summarized in Table 8.2. 

Table 8.1: Power consumption of the system in different working stages 

 

System Bluetooth status Current 

drawn (mA) 

On Discovery mode  

(not connected) 

100 

On Connected to a computer 149 

On Connected and continuous 
transmission 

169 

 



187 

 

 

8.2 Hardware integration to a garment 

From an engineering standpoint, the design of our wearable unit consists of two pieces: first, an 

inner garment provides housings for MEMs sensors that will be in contact with the user’s skin, and second, 

an outer garment contains all circuit board housings and the electrical connections from all sensors to the 

circuit boards (see Figures 8.2 and 8.3). The detailed design and tailoring of the garment was carried out by 

a team of researchers [22] from human sciences and health sciences departments in addition to the authors. 

 

 

8.2.1 Inner garment electronics 

Since the VCG electrodes need to be attached to the user’s skin, we created sockets at the positions 

corresponding to the orthogonal 3-lead VCG as shown in Figure 8.2. Users who do not have a background 

in VCG systems can put electrodes in the correct positions every time. Next, two stripes, shown in Figure 

Table 8.2: Default hardware performance 

Performance Maximum 

Overall sampling rate 3000 Hz 

Communication range 10 m 

Initiation time 10 – 15 seconds 

Operation time (continuously) 14 hours 

 

 

         (a) Front side                                                                  (b) Back side 
Figure 8.2: Inner garment configuration 
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8.2, are housings for respiratory bands. Reusable respiratory inductance plethysmography (RIP) bands from 

Embla are inserted into these housings. The electronic circuits for this sensor are currently under 

development and should be ready for the next generation of the garment to precisely collect the respirations 

from the abdomen and rib-cage. However, the respiratory signal is available in the current system using the 

electrocardiogram derived respiratory (EDR) method. The upper band also serves another purpose: 

immediately under the band, around the tricuspid region (near the left lower sternum and opposite the fourth 

and fifth costal cartilages), is a small pocket to hold the PCG transducer. Pressure from the band will keep 

the PCG transducer attached to the skin to ensure sufficient signal quality from the transducer. 

 

8.2.2 Outer garment electronics and conductive ribbons 

Signals are transmitted mostly through multiple three-channel conductive ribbons. They are made 

from a conventional fabric strip sewed with conductive thread, creating an electrical conducting channel 

from one end to the other. In our case, the ribbon contains three conductive channels. These conductive 

ribbons are sewed onto the inner layer (inside) of an outer garment and lead to the circuit board area at the 

user’s chest. We use only the middle channel to transmit the signal and ground the other two to suppress 

the noise that these conductive threads might pick up from the air. Both ends of each ribbon are fused to 

the connectors. Twelve-pin and three-pin Molex connectors are used at the circuit board end. In some areas, 

the ribbons are covered by fabric to prevent them from touching each other. At the sensor end, snap buttons 

       
                         (a) Front side                                      (b) Back side 

Figure 8.3: Outer garment configuration 
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(male) are sewed onto the inner garment and the female buttons are fused with the middle channel of the 

conductive ribbons. The positions of the snap button pairs (male and female) of both inner and outer 

garments are aligned exactly to ensure the correct connections when the garment is put on. Thus, each line 

leads from each sensor to the corresponding connector at the main circuit board. 

A twelve-line ribbon cable (multi-wide planar cable) is used for transmitting each signal to its 

matching circuit board for an SPO2 sensor. The line runs from a circuit board located at the chest area 

through a fabric channel on the left sleeve to an SPO2 sensor at a user’s left index finger. 

 

8.2.3 Wireless-wearable one-lead ECG collecting device 

 One important feature of our device is that it is highly customizable. Depending on the user’s 

objective, he/she can choose to use only the sensors that fit the applications appropriately. For this study, 

because the signal of interest is the ECG, we modify our device to collect only one-lead ECG to fit the 

objective. This further reduces the power consumption and the device’s footprint such that it can be encased 

in any soft-shell material that is suitable to wear, as shown in Figure 8.4. The device is worn using 

stretchable material for the arm-band so that the user can adjust the tightness as needed. We have also tested 

this device on ourselves and external subjects, and found that it was an appropriate location for the sensor 

to be worn overnight as it has little or no effect on the normal sleep process. 
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Figure 8.4: Wireless-wearable one-lead ECG collecting device 

 

8.3 Overall performance  

To validate the results of our system, we used a LifeShirt system from Vivometrics [18] to obtain 

VCG signals and respiratory signals as benchmarks for evaluation from 20 subjects. As for the Lifeshirt 

system, it is equipped with only a 1-lead ECG, and hence does not comprehensively capture the underlying 

cardiorespiratory dynamics. Also, in order to validate our system, the Lifeshirt system needs to collect each 

lead individually, corresponding to the X, Y, and Z leads of our system. For heart sounds, the commercial 

device ds32a+ stethoscope from Thinklabs was used. Comparisons of results are shown in Figures 8.5 

through 8.9.  
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Figure 8.5: Verification of VCG lead X 

  

 

VCG lead X from Life shirt system 

  VCG lead X from our system 
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Figure 8.6: Verification of VCG lead Y 

  

 

VCG lead X from Life shirt system 

  VCG lead X from our system 
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Figure 8.7: Verification of VCG lead Z 

  

 

VCG lead X from Life shirt system 

  VCG lead X from our system 
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As shown in Figures 8.5, 8.6, and 8.7, the VCG (ECG) signals from both systems closely resemble 

each other. The slight differences in the signals may come from the different designs in the analog front 

end circuits of the systems. Also, the electrodes’ positions are slightly different since we have to use two 

sets at the same measuring positions. The important reference points in the time domain, the Q, R, and S 

complex, are perfectly aligned. The average Pearson correlation coefficient for VCG lead X, Y, and Z 

signals (acquired for a duration of 5 minutes) between the two systems were 0.7684, 0.743, and 0.6969, 

respectively. More prominently, the signals from the wearable multi-sensor suite portray the various 

waveform features more vividly than those from the commercial device. 

 
Figure 8.8: Verification of respiratory signal 

  

 

Respiratory signal from LifeShirt system 

  EDR signal from our system 
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Figure 8.9: Verification of heart sound (HS) signal 

  

 

HS from ds32a+ Stethoscope 

  HS from our system 
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For the validation of respiratory signals, we compared the signals obtained from on RIP band from 

a LifeShirt system at the abdomen position with the ECG-derived respiratory signal from our system. As 

shown in Figure 8.8, the two respiratory signals are almost the same. The inhale-exhale patterns are clear. 

The Pearson correlation coefficient between them averaged 0.6915 (length of 5 minutes). 

Next, we used a commercial digital stethoscope model ds32a+ from Thinklabs as a benchmark 

medium for the heart sound signal. As seen in Figure 8.9, the amplitudes of the two signals are slightly 

different. The precise position of the transducer is critical for measuring the heart sounds. With the large 

surface area of both the stethoscope and transducer, positioning them at the same measuring spot could 

cause a difference in signal quality. However, S1 and S2 heart sounds from both sensors are perfectly 

aligned. The average Pearson correlation coefficient between them is 0.4031. For the pulse oximeter used 

in our system, as reported in the previous section, we used a "reverse engineering" approach based on 

“tapping” the blood oxygen level shown on the pulse oximeter’s screen and feeding the signal directly to 

the Bluetooth module. The blood oxygen level from our system monitor and the one on the device’s screen 

are similar. 

This chapter presents the design and testing of a novel wireless, multi-sensor, wearable, device that 

can serve as a type III OSA screening platform to be used for OOC testing. The device has the ability to 

measure, display, and store 3-lead vectorcardiogram (VCG), 12-lead electrocardiogram (ECG), heart rate 

(HR), respiration signal, heart sound, and blood oxygen saturation level (SPO2) simultaneously and 

synchronously. All the salient patterns of signals received from the system are comparable to those from a 

commercial product, Lifeshirt [92]. Experimental investigations also suggest substantial correlations 

(Pearson correlation coefficient > 0.7) between the waveforms from the device and those from the Lifeshirt 

system. The standout feature of the device is that it combines (a) the capability to wirelessly acquire good 

quality multi-channel signals vital for analysis of sleep disorders and cardiovascular diseases at a high 

sampling rates, (b) ease of integration into a garment, and (c) long battery life and data capacity that allow 

the device to operate through  an entire night. These features make this wireless wearable system highly 

suitable to be used as an OSA device for OOC testing and cardiovascular system monitoring applications.  
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To conclude this chapter, we have thoroughly explained the detail of developing a wearable 

wireless sensor which is designed to collect important biology signals overnight. Our device is also highly 

customizable. This means that we can pick and choose the sensors to be used in different applications 

appropriately. For this particular study, we customized our device to collect only the one-lead ECG data 

(see Figure 8.9) which we show that it can be used for diagnosis of an OSA. With the low cost of 

development, wearability, and self-enabling operation, if used with an automatic OSA episode prediction 

tool such as the statistical models that we proposed in this study, it can be a self-OSA diagnosis tool that 

might be widely be available on the shelf for anyone to easily obtain.  
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CHAPTER IX 
 

 

 

CONCLUSION AND FUTURE WORK 

 

 

 

9.1 Contributions 

This dissertation presents three statistical models based on data mining and nonlinear time-series 

analysis techniques as an alternative method for the diagnosis and treatment of obstructive sleep apnea 

(OSA) disease. In general, our contribution from an application perspective is that our new method 

substantially reduces the time and cost associated with the conventional method by first screening non-OSA 

subjects out of the population with a low false negative rate and reasonable accuracy (FNR: 5.3%, and 

accuracy 84.47%), then individually determining the OSA severity by utilizing the data from a single-lead 

electrocardiogram (ECG) device that is worn overnight at the subject’s location with an accuracy 

comparable to the sleep study or PSG (accuracy: 92.26%). Our method for forecasting the OSA episode 

can be used to activate an OSA therapy device such as a continuous positive airway pressure (CPAP) 

machine or a hypoglossal nerve stimulator as needed or before an OSA episode so that the latter can be 

averted in real time. In particular, we list the contributions of this research as follows:  

1) Detect the existence of OSA in an individual based on the pattern of biological, physiological, 

and simple clinical data with a low false negative rate (FNR: 5.31%, and accuracy: 84.47%). People with 

some degree of probability of having OSA are confirmed by the next model.  

2) Determine the OSA severity by classifying the OSA episode (event) from only one-lead ECG 

data collected overnight (accuracy: 92.26% with total of 10,052 equally sampled events from 24 subjects). 
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The advantage of our model is that the variations (i.e., different body build, age, gender, activity, 

health conditions, and race) have very little effect on the model because the neighboring patterns in the 

reconstructed phase spaces have very little or no correlation to those variations. This benefit can be seen 

from our model’s performance compared to two other models that exist in the literature. 

3) Forecast the incoming OSA episode in real time using the one-lead ECG data (accuracy: 92%, 

88%, and 87% for 1, 5, and 10 minutes ahead). This forecasting model with any appropriate OSA episode 

prevention device (i.e., HNS, and just-in-time CPAP) will allow for an effective OSA treatment method for 

CPAP nonadherence OSA sufferers. 

4) Develop a wearable device that can collect the biological data via a single-lead ECG as a home 

sleep test (HST) device. This device is intended to be used with the models mentioned in contributions 2 

and 3. 

The research methodologies include machine learning techniques (decision tree, logistics 

regression, and artificial neural network), wavelet decomposition, nonlinear time-series analysis based on 

the recurrence plot (RP) of the phase space reconstruction, and recurrence quantification analysis (RQA). 

The development of the first model (screening model) especially emphasizes the solutions for dealing with 

missing values and their effects in the classifier accuracy, the method for selecting the significant variables, 

the performance and advantage of the machine learning techniques, and the method for fine-tuning the 

classifier for the desired model performance (i.e., low FNR or FPR). The advantage of this model is the 

power to confidently reject (screen) subjects without OSA disease out of the focus group with a low false 

rejection rate (FNR<5%). People with some degree of probability of having OSA will be confirmed by the 

next model, which requires the collection of the ECG signal overnight. 

In the development of the second model (OSA episode prediction), we highlight the nonlinear 

decomposition technique (wavelet transformation) and other digital processing processes to maximize the 

information of the OSA symptoms from the one-lead ECG (comparing to more than 20 signals from PSG), 

resulting in three predictor signals; heart rate variability (HRV), ECG derived respiration (EDR), and slow 

wave signal from wavelet decomposition (SWS). Then, to unfold the nonlinear patterns from those signals, 
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we use phase space reconstruction and RP. The advance statistical quantification technique called 

recurrence quantification analysis (RQA) is used to translate the important patterns of the RP to numbers 

such that the machine learning techniques can differentiate the OSA states. The advantage of using this 

combination method is already mentioned in the contribution 2 above. Moreover, aside from the 

contribution in the statistical perspective, the combination of our OSA screening model, OSA episode 

prediction model, and one-lead wearable sensor, enable the out-of-center OSA diagnosis that is economical, 

and convenient (easy to self-operate, and at home), with a comparable performance with the sleep study 

(PSG).  

In the third (OSA forecasting) model, we track the changing patterns of RQAs from HRV, EDR, 

and SWS over time and show that they are good predictors of an incoming OSA episode for 𝑖 minute(s) 

ahead (𝑖 = 1,2,… ,10). This forecasting model with any appropriate OSA episode prevention device (i.e., 

hypoglossal nerve stimulator, just-in-time CPAP) will allow for an effective OSA treatment method for 

CPAP nonadherence OSA sufferers. 

 

9.2 Conclusion 

 In this research, we developed an automated OSA diagnosis system that can help develop new 

treatment systems. This diagnosis system consists of three elements, an OSA screening model, an OSA’s 

episode classification model, and a wireless wearable sensor for collecting one-lead ECG data. We applied 

several data mining techniques introduced in Chapter 4 to develop a screening model in Chapter 5 that 

eliminates people without moderate to severe OSA from the population so that we can focus exclusively 

on people who have moderate or severe OSA. This is different from the traditional approach where a sleep 

doctor will use a set of questions to screen people who may have OSA out of the population for a PSG. The 

reasons behind our approach are as follows. 1) The traditional screening questionnaires were developed 

from a very small sample in a specific demographic region. It may not be appropriate to use them as the 

main tool to screen people with OSA from the entire population because of human physiological 

differences. Unless the person shows strong evidence of having OSA, he or she will not be referred to a 
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sleep doctor to do a PSG for further diagnosis. This traditional approach is not suitable for early OSA 

detection. 2) The individual and direct evidence, which is the number of OSA episodes occurring overnight, 

should be the main piece of information to be used as a tool to diagnose OSA. In the traditional approach, 

because the PSG requires extensive time and labor, the ability to diagnose a sufficiently large number of 

people who may have OSA for early detection of the disease is difficult. With the use of the device 

explained in Chapter 8 and the model to predict OSA episodes from the signal collected from it, the ability 

to self-diagnose the existence of OSA for a much larger population can be achieved.  

 In Chapter 7, we have thoroughly explained all methods used for 1) constructing an OSA episode 

classification model, and 2) constructing an OSA episode forecasting model (predicting an incoming 

episode). The theory and methods required to achieve such tasks are clearly reported in Chapter 7. We first 

explain how we extract three more time-series that correlated to OSA symptoms from the ECG signal, 

namely heart rate variability (HRV), ECG-derived respiration (EDR), and slow wave signal (SWS). These 

three extracted signals correspond to the cardiovascular system, respiratory system, and autonomic nervous 

system (ANS), which are directly and indirectly influenced by OSA state variations or breathing and non-

breathing patterns during sleep.  

The basic idea for building these two models is based on the reconstructed phase space of these 

signals. Because these signals are highly nonlinear in nature, the observed patterns from the original time-

series are influenced by not only the OSA state but also many other systems. Reconstructing the phase 

spaces of these signals onto the higher (sufficient) dimensions reveals the trajectories that correspond to the 

changing patterns in the state space. In the other words, having enough state variables to explain how the 

state of each signal changes over time reveals the true and less complex trajectories compared to each 

original time-series. Once each signal pattern is completely unfolded and revealed, we can use the machine 

learning technique to distinguish the patterns which relate to the apnea or non-apnea state. 

However, because of variations in age, gender, body build, health conditions, and race, the 

quantities calculated directly from each time-series such as heart rate and respiratory rate may not be 

appropriate for use in the general population. The quantities calculated from the neighboring patterns from 



199 

 

the states or points in the reconstructed state space of each time-series prove to be firm measures that are 

not influenced by the previously mentioned variations. To test our assumption and the OSA episode 

classification model performance, we compared our model results with two those of other methods in the 

literature. The results suggest that our method is accurate and suitable to be used in people with different 

apnea conditions.  

Finally, our classification model, along with the wearable wireless sensor device introduced in 

Chapter 6, can be further refined to develop an economical and reasonably accurate device for a home sleep 

test (HST) which can help undiagnosed and suspected OSA patients and health enthusiasts. In addition, 

pairing our forecasting model with the device allows for automatic intervention so that an impending OSA 

episode can be averted without waking the patient up. The potential use of this forecasting model is not 

limited to this application. For example, it may also be used to improve the continuous positive airway 

pressure (CPAP) therapy such that the pressure build-up in the system can be maintained on a low level 

while there is no apnea. Then, if the incoming apnea episode is forecasted, the device activates itself to 

build up the pressure to prevent the apnea episode from happening. This will improve the user’s comfort 

leading to more adherence to the therapy. 

 

9.3 Future work 

 In our approach to uncover the underlying dynamics of the time-series, we have currently 

reconstructed the phase space, then quantified each windowed signal using recurrence quantification 

analysis (RQA). Then, we apply the machine learning techniques to learn the patterns to differentiate 

between the two states, apnea or non-apnea. However, using all 39 features from a combination of the RQA 

and PSD features from three time-series requires a substantial calculation power to compute these features 

and train the model. For the RQA calculation, with 16 threads of the OSU HPCC Cowboy supercomputing 

node (dual Intel Xeon E5-2620 “Sandy Bridge” hex core 2.0 GHz CPUs, with 32 GB of 1333 MHz RAM), 

it took about an hour to process each person nightlong HRV, EDR, and SWS time-series to the 

corresponding RQAs. Furthermore, this processing took a normal computer (AMD Phenom II X6 1045T 
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hex core 2.7 GHz CPU, with 8 GB of 1333 MHz RAM) more than 12 hours to do the same task. One way 

to address this problem is to use a dimension reduction technique to reduce the number of variables used in 

the model training process. We have already tried to use some techniques such as a principle component 

analysis (PCA) and forward and backward variable selection, but the results are not satisfactory. This can 

be one of the directions for future study. 

 Furthermore, rather than calculating the RQA from each signal’s recurrence plot (RP) individually, 

a cross recurrence plot (CRP), which simultaneously shows the states in the trajectory of one dynamic 

system that visits roughly the same space of another dynamic system, could reveal more interactions 

between the two systems (e.g., HRV and EDR). This may help improve not only the classification and 

forecasting accuracy but also reduce the computation time (calculation of only one CRP rather than two 

RPs). 

 Next, although we have successfully shown the ability to classify and forecast the OSA episodes 

using only one-lead ECG, there are still gaps that can be further improved, especially in the introduced 

methods and models. Because of current capability and limitations, we are currently building models that 

can classify and forecast the OSA episode in one minute. By definition, an OSA event is counted when the 

symptoms last at least 10 seconds. This is one of the reasons why our classification model tends to 

overestimate the AHI. Thus, a shorter predicting resolution may be the next goal for us to improve our 

models to be more accurate and realistic. 

 Finally, with the real-time data collection and processing capability of our device and using the 

OSA episode forecasting model, intervention measures can be deployed so that an OSA episode does not 

occur. However, these intervention measures will need to be closely investigated because they will have to 

be implemented and tested on real subjects. A partnership with the sleep doctors is required.  



201 

 

REFERENCES 

 

1. National Heart Lung and Blood Institute. What to Expect During a Sleep Study. 2012  [cited 

2015; Available from: http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/during. 

2. Johnteslade. Wavelet Filter Bank. 2005; Available from: 

https://en.wikipedia.org/wiki/File:Wavelets_-_Filter_Bank.png. 

3. Malhotra, A. and Loscalzo, J., Sleep and Cardiovascular Disease: An Overview. Progress in 

Cardiovascular Diseases, 2009. 51(4): p. 279. 

4. Leung, R.S.T. and Bradley, T.D., Sleep Apnea and Cardiovascular Disease. American Journal of 

Respiratory and Critical Care Medicine, 2001. 164(12): p. 2147-2165. 

5. Ip, M.S.M., Lam, B., Ng, M.M.T., Lam, W., Tsang, K.W.T., and Lam, K.S.L., Obstructive Sleep 

Apnea Is Independently Associated with Insulin Resistance. American Journal of Respiratory and 

Critical Care Medicine, 2002. 165(5): p. 670-676. 

6. Marin, J.M., Carrizo, S.J., Vicente, E., and Agusti, A.G., Long-Term Cardiovascular Outcomes in 

Men with Obstructive Sleep Apnoea—Hypopnoea with or without Treatment with Continuous 

Positive Airway Pressure: An Observational Study. The Lancet, 2005. 365(9464): p. 1046-1053. 

7. Shahar, E., Whitney, C., Redline, S., Lee, E., Newman, A., Javiernieto, F., O'connor, G., Boland, 

L., Schwartz, J., and Samet, J., Sleep-Disordered Breathing and Cardiovascular Disease: Cross-

Sectional Results of the Sleep Heart Health Study. American Journal of Respiratory and Critical 

Care Medicine, 2001. 163(1): p. 19-25. 

8. Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Borden, W.B., Bravata, 

D.M., Dai, S., Ford, E.S., Fox, C.S., Franco, S., Fullerton, H.J., Gillespie, C., Hailpern, S.M., 

Heit, J.A., Howard, V.J., Huffman, M.D., Kissela, B.M., Kittner, S.J., Lackland, D.T., Lichtman, 

J.H., Lisabeth, L.D., Magid, D., Marcus, G.M., Marelli, A., Matchar, D.B., Mcguire, D.K., 

Mohler, E.R., Moy, C.S., Mussolino, M.E., Nichol, G., Paynter, N.P., Schreiner, P.J., Sorlie, 

P.D., Stein, J., Turan, T.N., Virani, S.S., Wong, N.D., Woo, D., and Turner, M.B., Heart Disease 

and Stroke Statistics—2013 Update: A Report from the American Heart Association. Circulation, 

2013. 127(1): p. e6-e245. 

9. Young, T., Skatrud, J., and Peppard, P.E., Risk Factors for Obstructive Sleep Apnea in Adults. 

Journal of the American Medical Association, 2004. 291(16): p. 2013-2016. 

10. Altevogt, B.M. and Colten, H.R., Sleep Disorders and Sleep Deprivation: An Unmet Public 

Health Problem. 2006, Washington, DC: National Academies Press. 

11. Flemons, W.W., Douglas, N.J., Kuna, S.T., Rodenstein, D.O., and Wheatley, J., Access to 

Diagnosis and Treatment of Patients with Suspected Sleep Apnea. American Journal of 

Respiratory and Critical Care Medicine, 2004. 169(6): p. 668-672. 

12. Chervin, R.D., Murman, D.L., Malow, B.A., and Totten, V., Cost-Utility of Three Approaches to 

the Diagnosis of Sleep Apnea: Polysomnography, Home Testing, and Empirical Therapy. Annals 

of Internal Medicine, 1999. 130(6): p. 496-505.

http://www.nhlbi.nih.gov/health/health-topics/topics/slpst/during
https://en.wikipedia.org/wiki/File:Wavelets_-_Filter_Bank.png


202 

 

13. Eidelman, D., What Is the Purpose of Sleep? Medical Hypotheses, 2002. 58(2): p. 120-122. 

14. Aittokallio, T., Gyllenberg, M., and Polo, O., A Model of a Snorer's Upper Airway. Mathematical 

Biosciences, 2001. 170(1): p. 79-90. 

15. Dodds, C., The Physiology of Sleep. Current Anaesthesia & Critical Care, 2002. 13(1): p. 2-5. 

16. Stanley, N., The Physiology of Sleep and the Impact of Ageing. European Urology Supplements, 

2005. 3(6): p. 17-23. 

17. Sejnowski, T.J. and Destexhe, A., Why Do We Sleep? Brain Research, 2000. 886(1): p. 208-223. 

18. Carskadon, M.A. and Dement, W.C., Normal Human Sleep: An Overview. Principles and Practice 

of Sleep Medicine, 2000. 4: p. 13-23. 

19. Heo, J., Yeo, J., and Kim, Y., Novel Focus Monitoring Using Diffraction Image of Forbidden 

Pitch Patterns. Microelectronic Engineering, 2012. 98(0): p. 595-598. 

20. Bradley, T.D. and Floras, J.S., Sleep Apnea and Heart Failure Part I: Obstructive Sleep Apnea. 

Circulation, 2003. 107(12): p. 1671-1678. 

21. Åkerstedt, T., Billiard, M., Bonnet, M., Ficca, G., Garma, L., Mariotti, M., Salzarulo, P., and 

Schulz, H., Awakening from Sleep. Sleep Medicine Reviews, 2002. 6(4): p. 267-286. 

22. Collop, N.A., Tracy, S.L., Kapur, V., Mehra, R., Kuhlmann, D., Fleishman, S.A., and Ojile, J.M., 

Obstructive Sleep Apnea Devices for out-of-Center (Ooc) Testing: Technology Evaluation. 

Journal of clinical sleep medicine: JCSM: official publication of the American Academy of Sleep 

Medicine, 2011. 7(5): p. 531. 

23. Young, T., Peppard, P.E., and Gottlieb, D.J., Epidemiology of Obstructive Sleep Apnea: A 

Population Health Perspective. American Journal of Respiratory and Critical Care Medicine, 

2002. 165(9): p. 1217-1239. 

24. Arens, R. and Marcus, C.L., Pathophysiology of Upper Airway Obstruction: A Developmental 

Perspective. Sleep, 2004. 27(5): p. 997-1019. 

25. Jordan, A.S. and White, D.P., Pharyngeal Motor Control and the Pathogenesis of Obstructive 

Sleep Apnea. Respiratory Physiology & Neurobiology, 2008. 160(1): p. 1-7. 

26. Sériès, F., Upper Airway Muscles Awake and Asleep. Sleep Medicine Reviews, 2002. 6(3): p. 

229-242. 

27. Ayappa, I. and Rapoport, D.M., The Upper Airway in Sleep: Physiology of the Pharynx. Sleep 

Medicine Reviews, 2003. 7(1): p. 9-33. 

28. Kobayashi, I., Perry, A., Rhymer, J., Wuyam, B., Hughes, P., Murphy, K., Innes, J., Mcivor, J., 

Cheesman, A., and Guz, A., Inspiratory Coactivation of the Genioglossus Enlarges Retroglossal 

Space in Laryngectomized Humans. Journal of Applied Physiology, 1996. 80(5): p. 1595-1604. 

29. Strohl, K.P., Hensley, M.J., Hallett, M., Saunders, N.A., and Ingram, R., Activation of Upper 

Airway Muscles before Onset of Inspiration in Normal Humans. Journal of Applied Physiology, 

1980. 49(4): p. 638-642. 

30. Issa, F.G. and Sullivan, C.E., Upper Airway Closing Pressures in Obstructive Sleep Apnea. J 

Appl Physiol, 1984. 57(2): p. 520-527. 

31. Figure 14-4 Diagram Illustrates the Origin and Distribution of the Hypoglossal Nerve (Cranial 

Nerve Xii [General Somatic Efferent]) with Its Innervation of the Muscles of the Tongue. 2014; 

Available from: http://what-when-how.com/wp-content/uploads/2012/04/tmp15F31.jpg. 

32. Stanchina, M.L., Malhotra, A., Fogel, R.B., Ayas, N., Edwards, J.K., Schory, K., and White, 

D.P., Genioglossus Muscle Responsiveness to Chemical and Mechanical Stimuli During Non–

http://what-when-how.com/wp-content/uploads/2012/04/tmp15F31.jpg


203 

 

Rapid Eye Movement Sleep. American Journal of Respiratory and Critical Care Medicine, 2002. 

165(7): p. 945-949. 

33. Onal, E. and Lopata, M., Periodic Breathing and the Pathogenesis of Occlusive Sleep Apneas. 

The American review of respiratory disease, 1982. 126(4): p. 676-680. 

34. Weiner, D., Mitra, J., Salamone, J., and Cherniack, N.S., Effect of Chemical Stimuli on Nerves 

Supplying Upper Airway Muscles. Journal of Applied Physiology, 1982. 52(3): p. 530-536. 

35. Dempsey, J.A., Veasey, S.C., Morgan, B.J., and O'donnell, C.P., Pathophysiology of Sleep 

Apnea. Physiological Reviews, 2010. 90(1): p. 47-112. 

36. American Sleep Apnea Association. Arousals and Awakenings. 2014  [cited 2014 August 28]; 

Available from: http://www.sleepapnea.org/treat/diagnosis/sleep-study-details.html. 

37. Mcnicholas, W., Arousal in the Sleep Apnoea Syndrome: A Mixed Blessing? European 

Respiratory Journal, 1998. 12(6): p. 1239-1241. 

38. Dopp, J.M., Reichmuth, K.J., and Morgan, B.J., Obstructive Sleep Apnea and Hypertension: 

Mechanisms, Evaluation, and Management. Current Hypertension Reports, 2007. 9(6): p. 529-34. 

39. Parish, J.M. and Somers, V.K., Obstructive Sleep Apnea and Cardiovascular Disease. Mayo 

Clinic Proceedings, 2004. 79(8): p. 1036-1046. 

40. Butt, M., Dwivedi, G., Khair, O., and Lip, G.Y.H., Obstructive Sleep Apnea and Cardiovascular 

Disease. International Journal of Cardiology, 2010. 139(1): p. 7-16. 

41. Hiestand, D.M., Britz, P., Goldman, M., and Phillips, B., Prevalence of Symptoms and Risk of 

Sleep Apnea in the Us Population: Results from the National Sleep Foundation Sleep in America 

2005 Poll. CHEST Journal, 2006. 130(3): p. 780-786. 

42. The Institute for Clinical and Economic Review An Action Guide for Obstructive Sleep Apnea: 

Next Step for Patients, Clinicians, and Insurers. 2013.http://www.icer-review.org/wp-

content/uploads/2014/01/Action-Guide_OSA_Final_Jan2013.pdf 

43. Lavie, P., Nothing New under the Moon. Historical Accounts of Sleep Apnea Syndrome. Archives 

of Internal Medicine, 1984. 144(10): p. 2025-2028. 

44. Gastaut, H. and Villeneuve, A., The Startle Disease or Hyperekplexia: Pathological Surprise 

Reaction. Journal of the Neurological Sciences, 1967. 5(3): p. 523-542. 

45. Young, T., Palta, M., Dempsey, J., Skatrud, J., Weber, S., and Badr, S., The Occurrence of Sleep-

Disordered Breathing among Middle-Aged Adults. New England Journal of Medicine, 1993. 

328(17): p. 1230-1235. 

46. Abrishami, A., Khajehdehi, A., and Chung, F., A Systematic Review of Screening Questionnaires 

for Obstructive Sleep Apnea. Canadian Journal of Anesthesia, 2010. 57(5): p. 423-438. 

47. Sharma, S.K., Kumpawat, S., Banga, A., and Goel, A., Prevalence and Risk Factors of 

Obstructive Sleep Apnea Syndrome in a Population of Delhi, India. CHEST Journal, 2006. 

130(1): p. 149-156. 

48. Netzer, N.C., Stoohs, R.A., Netzer, C.M., Clark, K., and Strohl, K.P., Using the Berlin 

Questionnaire to Identify Patients at Risk for the Sleep Apnea Syndrome. Annals of Internal 

Medicine, 1999. 131(7): p. 485-491. 

49. Chung, F., Yegneswaran, B., Liao, P., Chung, S.A., Vairavanathan, S., Islam, S., Khajehdehi, A., 

and Shapiro, C.M., Validation of the Berlin Questionnaire and American Society of 

Anesthesiologists Checklist as Screening Tools for Obstructive Sleep Apnea in Surgical Patients. 

Anesthesiology, 2008. 108(5): p. 822-830. 

http://www.sleepapnea.org/treat/diagnosis/sleep-study-details.html
http://www.icer-review.org/wp-content/uploads/2014/01/Action-Guide_OSA_Final_Jan2013.pdf
http://www.icer-review.org/wp-content/uploads/2014/01/Action-Guide_OSA_Final_Jan2013.pdf


204 

 

50. Sharma, S., Vasudev, C., Sinha, S., Banga, A., Pandey, R., and Hande, K., Validation of the 

Modified Berlin Questionnaire to Identify Patients at Risk for the Obstructive Sleep Apnoea 

Syndrome. Indian Journal of Medical Research, 2006. 124(3): p. 281-290. 

51. Chung, F., Yegneswaran, B., Liao, P., Chung, S.A., Vairavanathan, S., Islam, S., Khajehdehi, A., 

and Shapiro, C.M., Validation of the Berlin Questionnaire and American Society of 

Anesthesiologists Checklist as Screening Tools for Obstructive Sleep Apnea in Surgical Patients. 

Anesthesiology, 2008. 108(5): p. 822-830 10.1097/ALN.0b013e31816d91b5. 

52. Gross, J., Bachenberg, K., Benumof, J., Caplan, R., Connis, R., Cote, C., Nickinovich, D., 

Prachand, V., Ward, D., and Weaver, E., Practice Guidelines for the Perioperative Management 

of Patients with Obstructive Sleep Apnea: An Updated Report by the American Society of 

Anesthesiologists Task Force on Perioperative Management of Patients with Obstructive Sleep 

Apnea. Anesthesiology, 2006. 104(5): p. 1081. 

53. Wang, R.C., Elkins, T.P., Keech, D., Wauquier, A., and Hubbard, D., Accuracy of Clinical 

Evaluation in Pediatric Obstructive Sleep Apnea. Otolaryngology-Head and Neck Surgery, 1998. 

118(1): p. 69-73. 

54. Suen, J.S., Arnold, J.E., and Brooks, L.J., Adenotonsillectomy for Treatment of Obstructive Sleep 

Apnea in Children. Archives of Otolaryngology–Head & Neck Surgery, 1995. 121(5): p. 525-

530. 

55. Goldstein, N.A., Sculerati, N., Walsleben, J.A., Bhatia, N., Friedman, D.M., and Rapoport, D.M., 

Clinical Diagnosis of Pediatric Obstructive Sleep Apnea Validated by Polysomnography. 

Otolaryngology-Head and Neck Surgery, 1994. 111(5): p. 611-617. 

56. Leach, J., Olson, J., Hermann, J., and Manning, S., Polysomnographic and Clinical Findings in 

Children with Obstructive Sleep Apnea. Archives of Otolaryngology–Head & Neck Surgery, 

1992. 118(7): p. 741-744. 

57. Kwiatkowska, M. and Atkins, A.S. Integrating Knowledge-Driven and Data-Driven Approaches 

for the Derivation of Clinical Prediction Rules. in Machine Learning and Applications, 2005. 

Proceedings. Fourth International Conference on. 2005. Los Angeles, CA. 

58. Kwiatkowska, M., Atkins, M.S., Ayas, N.T., and Ryan, C.F., Knowledge-Based Data Analysis: 

First Step toward the Creation of Clinical Prediction Rules Using a New Typicality Measure. 

Information Technology in Biomedicine, IEEE Transactions on, 2007. 11(6): p. 651-660. 

59. Dixon, J.B., Schachter, L.M., and O’brien, P.E., Predicting Sleep Apnea and Excessive Day 

Sleepiness in the Severely Obese. CHEST Journal, 2003. 123(4): p. 1134-1141. 

60. Ramachandran, S.K., Kheterpal, S., Consens, F., Shanks, A., Doherty, T.M., Morris, M., and 

Tremper, K.K., Derivation and Validation of a Simple Perioperative Sleep Apnea Prediction 

Score. Anesthesia & Analgesia, 2010. 110(4): p. 1007-1015. 

61. Yung-Fu, C., Jen-Ho, C., Liang-Wen, H., Yen-Ju, L., and Chih-Jaan, T. Diagnosis and Prediction 

of Patients with Severe Obstructive Apneas Using Support Vector Machine. in Machine Learning 

and Cybernetics, 2008 International Conference on. 2008. San Diego, CA. 

62. Kirby, S.D., Eng, P., Danter, W., George, C.F.P., Francovic, T., Ruby, R.R.F., and Ferguson, 

K.A., Neural Network Prediction of Obstructive Sleep Apnea from Clinical Criteria. CHEST 

Journal, 1999. 116(2): p. 409-415. 

63. Penzel, T., Mcnames, J., Chazal, P., Raymond, B., Murray, A., and Moody, G., Systematic 

Comparison of Different Algorithms for Apnoea Detection Based on Electrocardiogram 

Recordings. Medical and Biological Engineering and Computing, 2002. 40(4): p. 402-407. 



205 

 

64. Lavie, L., Obstructive Sleep Apnoea Syndrome – an Oxidative Stress Disorder. Sleep Medicine 

Reviews, 2003. 7(1): p. 35-51. 

65. M. O. Mendez, J. Corthout, S. Van Huffel, M. Matteucci, T Penzel, S. Cerutti, and Bianchi, A.M., 

Automatic Screening of Obstructive Sleep Apnea from the Ecg Based on Empirical Mode 

Decomposition and Wavelet Analysis. Physiological Measurement, 2010. 31: p. 273-289. 

66. Goldberger, A.L., Amaral, L.a.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, 

J.E., Moody, G.B., Peng, C.-K., and Stanley, H.E., Physiobank, Physiotoolkit, and Physionet: 

Components of a New Research Resource for Complex Physiologic Signals. Circulation, 2000. 

101(23): p. e215-e220. 

67. Penzel, T., Moody, G., Mark, R., Goldberger, A., and Peter, J. The Apnea-Ecg Database. in 

Computers in Cardiology 2000. 2000. Cambridge, MA: IEEE. 

68. Raymond, B., Cayton, R., Bates, R., and Chappell, M. Screening for Obstructive Sleep Apnoea 

Based on the Electrocardiogram - the Computers in Cardiology Challenge. in Computers in 

Cardiology 2000. 2000. Cambridge, MA: IEEE. 

69. Delibaşoǧlu, I., Avci, C., and Akbaş, A. Ecg Based Sleep Apnea Detection Using Wavelet 

Analysis of Instantaneous Heart Rates. in Proceedings of the 4th International Symposium on 

Applied Sciences in Biomedical and Communication Technologies. 2011. Barcelona, Spain: 

ACM. 

70. Roche, F., Pichot, V., Sforza, E., Court-Fortune, I., Duverney, D., Costes, F., Garet, M., and 

Barthélémy, J.-C., Predicting Sleep Apnoea Syndrome from Heart Period: A Time-Frequency 

Wavelet Analysis. European Respiratory Journal, 2003. 22(6): p. 937-942. 

71. Mietus, J., Peng, C., Ivanov, P.C., and Goldberger, A. Detection of Obstructive Sleep Apnea from 

Cardiac Interbeat Interval Time Series. in Computers in Cardiology 2000. 2000. Cambridge, 

MA: IEEE. 

72. Almazaydeh, L., Elleithy, K., and Faezipour, M. Detection of Obstructive Sleep Apnea through 

Ecg Signal Features. in Electro/Information Technology (EIT), 2012 IEEE International 

Conference on. 2012. IEEE. 

73. Mendez, M.O., Bianchi, A.M., Matteucci, M., Cerutti, S., and Penzel, T., Sleep Apnea Screening 

by Autoregressive Models from a Single Ecg Lead. Biomedical Engineering, IEEE Transactions 

on, 2009. 56(12): p. 2838-2850. 

74. Noviyanto, A., Isa, S.M., Wasito, I., and Arymurthy, A.M., Selecting Features of Single Lead Ecg 

Signal for Automatic Sleep Stages Classification Using Correlation-Based Feature Subset 

Selection. International Journal of Computer Science Issues (IJCSI), 2011. 8(5). 

75. Yιlmaz, B., Asyalι, M.H., Arιkan, E., Yetkin, S., and Özgen, F., Sleep Stage and Obstructive 

Apneaic Epoch Classification Using Single-Lead Ecg. BioMedical Engineering OnLine, 2010. 9: 

p. 39. 

76. Emin Tagluk, M. and Sezgin, N., A New Approach for Estimation of Obstructive Sleep Apnea 

Syndrome. Expert Systems with Applications, 2011. 38(5): p. 5346-5351. 

77. Doukas, C., Petsatodis, T., Boukis, C., and Maglogiannis, I., Automated Sleep Breath Disorders 

Detection Utilizing Patient Sound Analysis. Biomedical Signal Processing and Control, 2012. 

7(3): p. 256-264. 

78. Mikami, T. Detecting Nonlinearity in Prediction Residuals of Snoring Sounds. in 2009 ICROS-

SICE International Joint Conference. 2009. Fukuoka, Japan. 



206 

 

79. Robertson, H.J., Soraghan, J.J., Idzikowski, C., and Conway, B.A. Emd and Pca for the 

Prediction of Sleep Apnoea: A Comparative Study. in Signal Processing and Information 

Technology, 2007 IEEE International Symposium on. 2007. Alcala de Henares, Spain. 

80. Williamson, J.R., Bliss, D.W., Browne, D.W., Indic, P., Bloch-Salisbury, E., and Paydarfar, D. 

Using Physiological Signals to Predict Apnea in Preterm Infants. in Signals, Systems and 

Computers (ASILOMAR), 2011 Conference Record of the Forty Fifth Asilomar Conference on. 

2011. Pacific Grove, CA: IEEE. 

81. Várady, P., Micsik, T., Benedek, S., and Benyó, Z., A Novel Method for the Detection of Apnea 

and Hypopnea Events in Respiration Signals. Biomedical Engineering, IEEE Transactions on, 

2002. 49(9): p. 936-942. 

82. Maier, C. and Dickhaus, H., Central Sleep Apnea Detection from Ecg-Derived Respiratory 

Signals. Application of Multivariate Recurrence Plot Analysis. Methods of Information in 

Medicine, 2010. 49(5): p. 462-6. 

83. Moody, G.B., Mark, R.G., Zoccola, A., and Mantero, S., Derivation of Respiratory Signals from 

Multi-Lead Ecgs. Computers in Cardiology, 1985. 12: p. 113-116. 

84. Babaeizadeh, S., Zhou, S.H., Pittman, S.D., and White, D.P., Electrocardiogram-Derived 

Respiration in Screening of Sleep-Disordered Breathing. Journal of Electrocardiology, 2011. 

44(6): p. 700-706. 

85. Bock, J. and Gough, D.A., Toward Prediction of Physiological State Signals in Sleep Apnea. 

Biomedical Engineering, IEEE Transactions on, 1998. 45(11): p. 1332-1341. 

86. Waxman, J.A., Graupe, D., and Carley, D.W., Automated Prediction of Apnea and Hypopnea, 

Using a Lamstar Artificial Neural Network. American Journal of Respiratory and Critical Care 

Medicine, 2010. 181(7): p. 727-733. 

87. Paradiso, R., Loriga, G., and Taccini, N., A Wearable Health Care System Based on Knitted 

Integrated Sensors. Information Technology in Biomedicine, IEEE Transactions on, 2005. 9(3): 

p. 337-344. 

88. Lymberis, A. and De Rossi, D., Myheart: Fighting Cardiovascular Disease by Preventive 

Lifestyle and Early Diagnosis. Wearable eHealth Systems for Personalised Health Management: 

State of the Art and Future Challenges, 2004. 108: p. 36. 

89. Di Rienzo, M., Rizzo, F., Parati, G., Brambilla, G., Ferratini, M., and Castiglioni, P. Magic 

System: A New Textile-Based Wearable Device for Biological Signal Monitoring. Applicability in 

Daily Life and Clinical Setting. in Engineering in Medicine and Biology Society, 2005. IEEE-

EMBS 2005. 27th Annual International Conference of the. 2005. Shanghai, China,: IEEE. 

90. Anliker, U., Ward, J.A., Lukowicz, P., Troster, G., Dolveck, F., Baer, M., Keita, F., Schenker, 

E.B., Catarsi, F., and Coluccini, L., Amon: A Wearable Multiparameter Medical Monitoring and 

Alert System. Information Technology in Biomedicine, IEEE Transactions on, 2004. 8(4): p. 415-

427. 

91. Oliver, N. and Flores-Mangas, F. Healthgear: A Real-Time Wearable System for Monitoring and 

Analyzing Physiological Signals. in Wearable and Implantable Body Sensor Networks, 2006. 

BSN 2006. International Workshop on. 2006. Boston, MA: IEEE. 

92. Wilhelm, F.H., Roth, W.T., and Sackner, M.A., The Lifeshirt: An Advanced System for 

Ambulatory Measurement of Respiratory and Cardiac Function. Behavior Modification, 2003. 

27(5): p. 671-691. 



207 

 

93. Hailstone, J. and Kilding, A.E., Reliability and Validity of the Zephyr™ Bioharness™ to Measure 

Respiratory Responses to Exercise. Measurement in Physical Education and Exercise Science, 

2011. 15(4): p. 293-300. 

94. Michael Berry, G.S.L., Data Mining Techniques: Theory and Practice Course Notes. 2009: Data 

Miners, Inc. 

95. Loh, W.Y., Classification and Regression Trees. Wiley Interdisciplinary Reviews: Data Mining 

and Knowledge Discovery, 2011. 1(1): p. 14-23. 

96. Sarma, K.S., Predictive Modeling with Sas Enterprise Miner: Practical Solutions for Business 

Applications. 2007, Cary, NC: SAS Institute. 

97. Sas Institute Inc. The Arboretum Procedure. 

2001.http://support.sas.com/documentation/onlinedoc/miner/em43/allproc.pdf 

98. Kitchen, C.M.R., Nonparametric Variable Selection Using Machine Learning Algorithms in High 

Dimensional (Large P, Small N) Biomedical Applications, in Biomedical Engineering, Trends in 

Electronics, Communications and Software, Laskovski, A., Editor. 2011, InTech. 

99. Burgette, L.F. and Reiter, J.P., Multiple Imputation for Missing Data Via Sequential Regression 

Trees. American Journal of Epidemiology, 2010: p. kwq260. 

100. Lee, J.H., Kim, I.Y., and O'keefe, C.M., On Regression-Tree-Based Synthetic Data Methods for 

Business Data. Journal of Privacy and Confidentiality, 2013. 5(1): p. 5. 

101. Rubin, D.B., The Bayesian Bootstrap. The Annals of Statistics, 1981. 9(1): p. 130-134. 

102. He, Y., Missing Data Imputation for Tree-Based Models. 2006, University of California Los 

Angeles. 

103. Burns, R.P. and Burns, R., Business Research Methods and Statistics Using Spss. 2008: SAGE 

Publications. 

104. Freund, R.J. and Wilson, W.J., Statistical Methods. 2003, Burlington, MA: Academic Press. 

105. Bewick, V., Cheek, L., and Ball, J., Statistics Review 14: Logistic Regression. Critical Care, 

2005. 9(1): p. 112-118. 

106. Czepiel, S.A. Maximum Likelihood Estimation of Logistic Regression Models: Theory and 

Implementation. 2002.http://www.czep.net/stat/mlelr.pdf 

107. Hagan, M.T., Demuth, H.B., and Beale, M.H., Neural Network Design. 2002: University of 

Colorado Bookstore. 

108. Hagan, M., Demuth, H., Beale, M., and De Jesus, O., Neural Network Design (2nd Edition). 

2014: Martin Hagan. 

109. Fawcett, T., An Introduction to Roc Analysis. Pattern Recognition Letters, 2006. 27(8): p. 861-

874. 

110. Swaving, M., Van Houwelingen, H., Ottes, F.P., and Steerneman, T., Statistical Comparison of 

Roc Curves from Multiple Readers. Medical Decision Making, 1996. 16(2): p. 143-152. 

111. Eng, J., Receiver Operating Characteristic Analysis: A Primer. Academic Radiology, 2005. 

12(7): p. 909-916. 

112. Fawcett, T., Roc Graphs: Notes and Practical Considerations for Researchers. Machine 

Learning, 2004. 31: p. 1-38. 

113. Mcneil, B.J. and Hanley, J.A., Statistical Approaches to the Analysis of Receiver Operating 

Characteristic (Roc) Curves. Medical Decision Making, 1983. 4(2): p. 137-150. 

114. Hanley, J.A. and Mcneil, B.J., The Meaning and Use of the Area under a Receiver Operating 

Characteristic (Roc) Curve. Radiology, 1982. 143(1): p. 29-36. 

http://support.sas.com/documentation/onlinedoc/miner/em43/allproc.pdf
http://www.czep.net/stat/mlelr.pdf


208 

 

115. Metz, C.E., Roc Methodology in Radiologic Imaging. Investigative Radiology, 1986. 21(9): p. 

720-733. 

116. Redline, S., Sanders, M.H., Lind, B.K., Quan, S.F., Iber, C., Gottlieb, D.J., Bonekat, W.H., 

Rapoport, D., Smith, P.L., and Kiley, J.P., Methods for Obtaining and Analyzing Unattended 

Polysomnography Data for a Multicenter Study. Sleep Heart Health Research Group. Sleep, 

1998. 21(7): p. 759-767. 

117. Redline, S., Et Al. Sleep Heart Health Study.  [cited 2014; Available from: 

http://sleepdata.org/datasets/shhs. 

118. Schlomer, G.L., Bauman, S., and Card, N.A., Best Practices for Missing Data Management in 

Counseling Psychology. Journal of Counseling Psychology, 2010. 57(1): p. 1. 

119. Humphries, M. Missing Data & How to Deal: An Overview of Missing Data. 

2012.http://www.texaslonghornsl.com/cola/centers/prc/_files/cs/Missing-Data.pdf 

120. Pappas, P.A. and Depuy, V. An Overview of Non-Parametric Tests in Sas: When, Why, and How. 

in SouthEast SAS Users Group Conference. 2004. Nashville, TN. 

121. Acuna, E. and Rodriguez, C., The Treatment of Missing Values and Its Effect on Classifier 

Accuracy, in Classification, Clustering, and Data Mining Applications. 2004, Springer. p. 639-

647. 

122. Mundfrom, D.J. and Whitcomb, A., Imputing Missing Values: The Effect on the Accuracy of 

Classification. Multiple Linear Regression Viewpoint, 1998. 25. 

123. Chan, L.S. and Dunn, O.J., The Treatment of Missing Values in Discriminant. Analysis-I. The 

Sampling Experiment. Journal of the American Statistical Association, 1972. 67(338): p. 473-477. 

124. Kostoglou-Athanassiou, I. and Athanassiou, P., Metabolic Syndrome and Sleep Apnea. 

Hippokratia Medical Journal, 2008. 12(2): p. 81-86. 

125. Box, G.E. and Cox, D.R., An Analysis of Transformations. Journal of the Royal Statistical 

Society, 1964: p. 211-252. 

126. Force, A.O.S.a.T. and Medicine, A.a.O.S., Clinical Guideline for the Evaluation, Management 

and Long-Term Care of Obstructive Sleep Apnea in Adults. Journal of Clinical Sleep Medicine, 

2009. 5(3): p. 263. 

127. Collop, N.A., Anderson, W.M., Boehlecke, B., Claman, D., Goldberg, R., Gottlieb, D.J., Hudgel, 

D., Sateia, M., and Schwab, R., Clinical Guidelines for the Use of Unattended Portable Monitors 

in the Diagnosis of  Obstructive Sleep Apnea in Adult Patients. Journal of Clinical Sleep 

Medicine, 2007. 3(7): p. 737-747. 

128. Verveer, P.J. and Duin, R.P.W., An Evaluation of Intrinsic Dimensionality Estimators. Pattern 

Analysis and Machine Intelligence, IEEE Transactions on, 1995. 17(1): p. 81-86. 

129. Meek, S. and Morris, F., Abc of Clinical Electrocardiography: Introduction. I—Leads, Rate, 

Rhythm, and Cardiac Axis. British Medical Journal, 2002. 324(7334): p. 415. 

130. Thaler, M.S., The Only Ekg Book You'll Ever Need. Vol. 365. 2010: Lippincott Williams & 

Wilkins. 

131. Richard Pflanzer, W.M., Physiology Lessons for Use with the Biopac Student Lab. 2008. 

132. Grier, J.W. How to Use 1-Lead Ecg Recorders to Obtain 12-Lead Resting Ecgs and Exercise 

("Stress") Ecgs. 2008  [cited 2014 03/26]; Available from: 

http://www.ndsu.edu/pubweb/~grier/1to12-lead-ECG-EKG.html. 

http://sleepdata.org/datasets/shhs
http://www.texaslonghornsl.com/cola/centers/prc/_files/cs/Missing-Data.pdf
http://www.ndsu.edu/pubweb/~grier/1to12-lead-ECG-EKG.html


209 

 

133. Atkielski, A. Schematic Diagram of Normal Sinus Rhythm for a Human Heart as Seen on Ecg, 

Two Periods Forming a Rr-Interval. 2009; Available from: 

http://commons.wikimedia.org/wiki/File:ECG-RRinterval.svg#. 

134. Van Ravenswaaij, C., Kollee, L.A., Hopman, J.C., Stoelinga, G.B., and Van Geijn, H.P., Heart 

Rate Variability. Annals of Internal Medicine, 1993. 118(6): p. 436-447. 

135. Xie, A., Teodorescu, M., Pegelow, D.F., Teodorescu, M.C., Gong, Y., Fedie, J.E., and Dempsey, 

J.A., Effects of Stabilizing or Increasing Respiratory Motor Outputs on Obstructive Sleep Apnea. 

Journal of Applied Physiology, 2013. 115(1): p. 22-33. 

136. Kheirandish-Gozal, L. and Gozal, D., Sleep Disordered Breathing in Children: A Comprehensive 

Clinical Guide to Evaluation and Treatment. 2012: Humana Press. 

137. Xiong, C., Sjöberg, B.J., Sveider, P., Ask, P., Loyd, D., and Wranne, B., Problems in Timing of 

Respiration with the Nasal Thermistor Technique. Journal of the American Society of 

Echocardiography, 1993. 6(2): p. 210-216. 

138. O’brien, C. and Heneghan, C., A Comparison of Algorithms for Estimation of a Respiratory 

Signal from the Surface Electrocardiogram. Computers in Biology and Medicine, 2007. 37(3): p. 

305-314. 

139. Lipsitz, L.A., Hashimoto, F., Lubowsky, L.P., Mietus, J., Moody, G.B., Appenzeller, O., and 

Goldberger, A.L., Heart Rate and Respiratory Rhythm Dynamics on Ascent to High Altitude. 

British Heart Journal, 1995. 74(4): p. 390-6. 

140. Ding, S., Zhu, X., Chen, W., and Wei, D., Derivation of Respiratory Signal from Single-Channel 

Ecgs Based on Source Statistics. International Journal of Bioelectromagnetism, 2004. 6(1). 

141. Chow, S.-M., Ferrer, E., and Hsieh, F., Statistical Methods for Modeling Human Dynamics: An 

Interdisciplinary Dialogue. 2012: Taylor & Francis. 

142. Cordes, D., Haughton, V.M., Arfanakis, K., Carew, J.D., Turski, P.A., Moritz, C.H., Quigley, 

M.A., and Meyerand, M.E., Frequencies Contributing to Functional Connectivity in the Cerebral 

Cortex in ''Resting-State'' Data. American Journal of Neuroradiology, 2001. 22(7): p. 1326-1333. 

143. Shim, I., Soraghan, J., and Siew, W., Detection of Pd Utilizing Digital Signal Processing 

Methods. Part 3: Open-Loop Noise Reduction. Electrical Insulation Magazine, IEEE, 2001. 

17(1): p. 6-13. 

144. Mallat, S.G., A Theory for Multiresolution Signal Decomposition: The Wavelet Representation. 

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1989. 11(7): p. 674-693. 

145. Gao, R.X. and Yan, R., Wavelets: Theory and Applications for Manufacturing. 2010, Springer. 

146. Monzón, L., Beylkin, G., and Hereman, W., Compactly Supported Wavelets Based on Almost 

Interpolating and Nearly Linear Phase Filters (Coiflets). Applied and Computational Harmonic 

Analysis, 1999. 7(2): p. 184-210. 

147. Takens, F., Detecting Strange Attractors in Turbulence, in Dynamical Systems and Turbulence, 

Warwick 1980. 1981, Springer Berlin Heidelberg. p. 366-381. 

148. Le, T.Q., Cheng, C., Sangasoongsong, A., Wongdhamma, W., and Bukkapatnam, S.T., Wireless 

Wearable Multisensory Suite and Real-Time Prediction of Obstructive Sleep Apnea Episodes. 

Translational Engineering in Health and Medicine, IEEE Journal of, 2013. 1: p. 2700109-

2700109. 

149. Karandikar, K., Le, T.Q., Sa-Ngasoongsong, A., Wongdhamma, W., and Bukkapatnam, S.T. 

Detection of Sleep Apnea Events Via Tracking Nonlinear Dynamic Cardio-Respiratory Coupling 

http://commons.wikimedia.org/wiki/File:ECG-RRinterval.svg


210 

 

from Electrocardiogram Signals. in Neural Engineering (NER), 2013 6th International 

IEEE/EMBS Conference on. 2013. IEEE. 

150. Wongdhamma, W., Le, T.Q., and Bukkapatnam, S.T. Wireless Wearable Multi-Sensory System 

for Monitoring of Sleep Apnea and Other Cardiorespiratory Disorders. in Automation Science 

and Engineering (CASE), 2013 IEEE International Conference on. 2013. Madison, WI: IEEE. 

151. Bukkapatnam, S.T., Le, T., and Wongdhamma, W., Device and Method for Predicting and 

Preventing Obstructive Sleep Apnea (Osa) Episodes. 2013, The Board Of Regents For Oklahoma 

State University. 

152. Baker, G.L. and Gollub, J.P., Chaotic Dynamics: An Introduction. 1996: Cambridge University 

Press. 

153. Scheinerman, E.R., Invitation to Dynamical Systems. 2012: Courier Corporation. 

154. Dq, N. The Idea of a Dynamical System.  [cited 2015 July 9]; Available from: 

http://mathinsight.org/dynamical_system_idea. 

155. Marwan, N., Encounters with Neighbours: Current Developments of Concepts Based on 

Recurrence Plots and Their Applications. 2003: Norbert Marwan. 

156. Marwan, N., Romano, M.C., Thiel, M., and Kurths, J., Recurrence Plots for the Analysis of 

Complex Systems. Physics Reports, 2007. 438(5): p. 237-329. 

157. Webber Jr, C.L. and Zbilut, J.P., Recurrence Quantification Analysis of Nonlinear Dynamical 

Systems, in Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. 2005, 

National Science Foundation: Arlington, VA. p. 26-94. 

158. Ding, M., Grebogi, C., Ott, E., Sauer, T., and Yorke, J.A., Plateau Onset for Correlation 

Dimension: When Does It Occur? Physical Review Letters, 1993. 70(25): p. 3872. 

159. Kantz, H. and Schreiber, T., Nonlinear Time Series Analysis. Vol. 7. 2004: Cambridge University 

Press. 

160. Zbilut, J.P. and Webber, C.L., Recurrence Quantification Analysis. Wiley Encyclopedia of 

Biomedical Engineering, 2006. 

161. Kennel, M.B., Brown, R., and Abarbanel, H.D., Determining Embedding Dimension for Phase-

Space Reconstruction Using a Geometrical Construction. Physical Review A, 1992. 45(6): p. 

3403. 

162. Fraser, A.M. and Swinney, H.L., Independent Coordinates for Strange Attractors from Mutual 

Information. Physical Review A, 1986. 33(2): p. 1134. 

163. Roulston, M.S., Estimating the Errors on Measured Entropy and Mutual Information. Physica D: 

Nonlinear Phenomena, 1999. 125(3): p. 285-294. 

164. Hegger, R. and Kantz, H., Improved False Nearest Neighbor Method to Detect Determinism in 

Time Series Data. Physical Review E, 1999. 60(4): p. 4970. 

165. Webber Jr, C.L. and Marwan, N., Recurrence Quantification Analysis: Theory and Best 

Practices. 2014: Springer International Publishing. 

166. Freedman, D. and Diaconis, P., On the Histogram as a Density Estimator:L 2 Theory. Zeitschrift 

für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 1981. 57(4): p. 453-476. 

167. Lorenz, E.N., Deterministic Nonperiodic Flow. Journal of the atmospheric sciences, 1963. 20(2): 

p. 130-141. 

168. Saltzman, B., Finite Amplitude Free Convection as an Initial Value Problem-I. Journal of the 

Atmospheric Sciences, 1962. 19(4): p. 329-341. 

http://mathinsight.org/dynamical_system_idea


211 

 

169. Sprott, J., Simplifications of the Lorenz Attractor. Nonlinear Dynamics, Psychology, and Life 

Sciences, 2009. 13(3): p. 271. 

170. Eckmann, J.-P., Kamphorst, S.O., and Ruelle, D., Recurrence Plots of Dynamical Systems. 

Europhys. Lett, 1987. 4(9): p. 973-977. 

171. Thiel, M., Romano, M.C., Kurths, J., Meucci, R., Allaria, E., and Arecchi, F.T., Influence of 

Observational Noise on the Recurrence Quantification Analysis. Physica D: Nonlinear 

Phenomena, 2002. 171(3): p. 138-152. 

172. Schinkel, S., Dimigen, O., and Marwan, N., Selection of Recurrence Threshold for Signal 

Detection. The European Physical Journal Special Topics, 2008. 164(1): p. 45-53. 

173. Zbilut, J.P. and Webber, C.L., Embeddings and Delays as Derived from Quantification of 

Recurrence Plots. Physics Letters A, 1992. 171(3): p. 199-203. 

174. Webber, C.L. and Zbilut, J.P., Dynamical Assessment of Physiological Systems and States Using 

Recurrence Plot Strategies. Vol. 76. 1994. 965-973. 

175. Marwan, N., Donges, J.F., Zou, Y., Donner, R.V., and Kurths, J., Complex Network Approach for 

Recurrence Analysis of Time Series. Physics Letters A, 2009. 373(46): p. 4246-4254. 

176. Marwan, N., Kurths, J., and Foerster, S., Analysing Spatially Extended High-Dimensional 

Dynamics by Recurrence Plots. Physics Letters A, 2015. 379(10): p. 894-900. 

177. Little, M.A., Mcsharry, P.E., Roberts, S.J., Costello, D.A., and Moroz, I.M., Exploiting Nonlinear 

Recurrence and Fractal Scaling Properties for Voice Disorder Detection. BioMedical 

Engineering OnLine, 2007. 6(1): p. 23. 

178. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U., Complex Networks: 

Structure and Dynamics. Physics Reports, 2006. 424(4): p. 175-308. 

179. Gao, J., Recurrence Time Statistics for Chaotic Systems and Their Applications. Physical Review 

Letters, 1999. 83(16): p. 3178. 

180. Oppenheim, A.V. and Schafer, R.W., Discrete-Time Signal Processing. 3rd ed. 2010, Upper 

Saddle River, NJ: Prentice Hall. 

181. Ljung, L., System Identification. 1998, Englewood Cliffs, NJ: Springer. 

182. Lds-Group Understanding Fft Windows. Application Note Ano14. 2003.http://www.physik.uni-

wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf 

183. Marwan, N. Cross Recurrence Plot Toolbox 5.18 (R29.3). 2015.http://tocsy.pik-

potsdam.de/CRPtoolbox/ 

184. Benz, R.L., Masood, I., and Pressman, M.R., Sleep Disorders Associated with Chronic Kidney 

Disease, in Chronic Kidney Disease. 2012, InTech. 

185. Dawson, D., Yang, H., Malshe, M., Bukkapatnam, S.T.S., Benjamin, B., and Komanduri, R., 

Linear Affine Transformations between 3-Lead (Frank Xyz Leads) Vectorcardiogram and 12-

Lead Electrocardiogram Signals. Journal of Electrocardiology, 2009. 42(6): p. 622-630. 

 

http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
http://www.physik.uni-wuerzburg.de/~praktiku/Anleitung/Fremde/ANO14.pdf
http://tocsy.pik-potsdam.de/CRPtoolbox/
http://tocsy.pik-potsdam.de/CRPtoolbox/


 

VITA 

 

Woranat Wongdhamma 

 

Candidate for the Degree of 

 

Doctor of Philosophy 

 

Thesis:    STATISTICAL MODELS FOR DETECTING EXISTENCE OF OBSTRUCTIVE 

SLEEP APNEA, PREDICTING ITS SEVERITY, AND FORECASTING FUTURE 

EPISODES 

 

Major Field:  Industrial Engineering and Management 

 

Biographical: 

 

Education: 

 

Received the B.Eng. degree in Electrical Engineering from Mahidol University, 

Nakhon Pathom, Thailand in May 2003 

 

Received the M.S. degree in Industrial Technology from Texas A&M University – 

Commerce in December 2006 

 

Completed the requirements for the Doctor of Philosophy in Industrial Engineering and 

Management at Oklahoma State University in December 2015 

 

Experience:   

 

Woranat has research interests in statistical analysis, new product development, 

data mining, analytics, and sensor networks for real-time monitoring and decision 

making. After the completion of his M.S. study, he had worked at Media Standard 

Company Limited as a General Manager. His responsibility included product release 

planning, copyrights management, and post-production management. He was also a 

visiting lecturer at the Civil Aviation Training Center (CATC), Thailand. During his 

Ph.D. study, he had worked as a Graduate Research Associate for the School of Industrial 

Engineering and Management at Oklahoma State University. He was responsible for the 

development of the statistical and data mining models (classification and forecasting), 

and the sensor networks for real-time monitoring and decision making device. 

 

Professional Memberships:   

 

 Institute for Operations Research and the Management Sciences (INFORMS) 

 The Industrial Engineering Honor Society (Alpha Pi Mu) 

 Institute of Electrical and Electronics Engineers (IEEE) 

 Institute for Industrial Engineers (IIE) 


	STATISTICAL MODELS FOR DETECTING EXISTENCE OF OBSTRUCTIVE SLEEP APNEA, PREDICTING ITS SEVERITY, AND FORECASTING FUTURE EPISODES
	By
	Master of Science in Industrial Technology
	Texas A&M University – Commerce
	Commerce, Texas
	2006
	Submitted to the Faculty of the
	STATISTICAL MODELS FOR DETECTING EXISTENCE OF OBSTRUCTIVE SLEEP APNEA, PREDICTING ITS SEVERITY, AND FORECASTING FUTURE EPISODES
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER I
	CHAPTER II
	CHAPTER III
	CHAPTER IV
	CHAPTER V
	CHAPTER VI
	CHAPTER VII
	CHAPTER VIII
	CHAPTER IX
	VITA
	Woranat Wongdhamma
	Candidate for the Degree of
	Thesis:    STATISTICAL MODELS FOR DETECTING EXISTENCE OF OBSTRUCTIVE SLEEP APNEA, PREDICTING ITS SEVERITY, AND FORECASTING FUTURE EPISODES
	Major Field:  Industrial Engineering and Management

