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CHAPTERl 

INTRODUCTION 

The most limiting factor in the perfonnance of over-sea radar systems is usually 

the surface-scatter clutter. This clutter can give high energy return signals which can 

overwhelm the signal returned from actual targets, such as ships and low flying aircraft, or 

cause false alanns when no target is present. The random roughness of the sea surface is 

responsible for this clutter. Full understanding ofthe surface scattering mechanism that 

leads to clutter signals will aid in the development of detection algoritluns that can extract 

true signals from the clutter, reducing both the number of missed targets and the fa lse 

alarm rates of such radars. 

There are several analytically derived models to predict the radar backscatter from 

rough surfaces, each of which are valid under certain conditions. The most popular of 

these theories are the small perturbation method (SPM) [Rice 1958], Kirchoff (or physical 

optics) approximation (KA) [Beckman and Spizzichino 1963], and the two scale model 

[Wright 1968]. Because of the approximations made in the derivations of the models, 

each is rigorously valid only under certain conditions. For example, the Kirchoff 

approximation assumes electromagnetically large-scale roughness, gently varying surfaces 

(long surface correlation surface) and small to moderate incidence angles. It predicts the 

scattering due to the physical optics current induced on the surface of the scatterer. SPM 
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on the other hand, was derived assuming short correlation lengths and moderate incidence 

angles. First order SPM predicts the Bragg-resonant scattering, which is due to surface 

components resonant with the illuminating field's wavelength. The two scale model 

incorporates both of these models by applying KA to the electromagnetically large scale 

surface roughness and SPM to the small scale roughness. None ofthese models directly 

include the effects of surface self-shadowing, and as such, are expected to fai l at the 

largest incidence angles (smallest grazing angles). 

Despite the approximations made in their derivations, the theoretical models have 

often been shown to accurately predict rough-surface scattering outside of their known 

regions of validity. For, example, Guinard and Daley (1970) showed experimentally that 

the two scale model gives accurate sea-surface scattering at angles of incidence to 85° at 

vertical polarization. On the other hand, Chen and West (1995) showed that both SPM 

and KA can give accurate scattering from numerically generated surfaces at horizontal 

polarization and extremely large incidence angles under some surface roughness 

conditions. For the models to be used to their fullest potential, the true ranges of validity 

must be determined. 

The moment method is a popular numerical technique that is often used to check 

the accuracy of approximate models in scattering problems [Broschat, 1993; Chen and 

Fung 1988; Kim et. a!. 1992; Chen and West 1995]. In this approach, the moment method 

is used to solve electromagnetic integral equations, yielding the surface current. The 

surface current is then numerically re-radiated, giving the scattered field. This technique 

has been used to confirm the validity of the scattering theories under the conditions for 
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which they were rigorously derived [Durden and Vesecky 1990; Chen and Fung 1988; 

Thorsos 1988]. 

Unfortunately, the standard moment method is not well suited to application at the 

largest incidence angles. The surfaces modeled must be truncated, due to the limitations 

of computer speed and physical storage, leading to non-physical diffraction from the edges 

in the numerical scattering that can mask the real scattering, especially at small grazing 

angJes. One way to circumvent this limitation is to apply a tapered weighting window to 

the incident electromagnetic field[Thorsos 1988]. This tapered window forces the 

excitation to zero at the edges and reduces the diffraction. This method has the limitation 

of not using the exact illuminating field. Also, electromagnetically valid weighting 

functions require longer numerically modeled surfaces with increasing incidence 

angles[Thorsos 1988]. At the largest incidence angles, the modeled surface must be so 

long that application of the moment method is cost prohibitive. A second approach is to 

force the surface to be periodic and include an infinite number of periods of the surface, 

thereby eliminating the edges in the modeled surface [Rodriguez 1990] and allowing the 

application of the technique at small grazing angles. The primary disadvantage of this 

approach is that an infinite series must be evaluated for each element of the moment 

interaction matrix, leading to computational inefficiency. A more efficient implementation 

ofthe periodic surface moment method was developed by Chen and West (1995), and 

used to investigate the validity of the scattering models from a limited class of surfaces 

down to grazing incidence [West et. aI., 1995]. 
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The most severe limitation in numerical studies of surface scattering is the method 

used to represent the scattering surface. Typically. sample surfaces are generated from an 

approximate power spectral density. Several roughness spectrum approximations have 

been used to model the ocean surface, including the power law or PhiUips spectra 

[Phillips, 1958] and the Pierson-Moskewitz spectra [Broschat, 1993]. The 

Pierson-Moskewitz spectra is an approximation of the entire wave spectrum for the ocean 

surface. parameterized by the speed of the wind generating the waves. The power law 

spectra represents the saturated (large wave number) range of the Pierson-Moskewitz 

spectrum, and is not (to first order) a function of the wind speed. The saturated region 

includes Bragg-resonant energy at most frequencies. These are approximate spectra only, 

and as such their validity is not well established. 

Only a few direct measurements of the wavenumber spectra of short ocean waves 

exist. These measurements are usually taken with a scanning laser slope gauge and can 

only resolve wave numbers from approximately 31 to 990 radim, which is not sufficient to 

resolve small capillary waves. Laboratory data from wave tanks is the only reliable source 

of such short wave data. There is some question of how well the results obtained with this 

laboratory data can be extrapolated to the field conditions found in the open sea [Jahne 

and Klinke, 1994]. 

The goal of this work is to examine the ranges of validity of the theoretical models 

in describing the scattering from actual water surfaces. Experimentally measured slope 

images taken in a closed wave tank, with wind generating waves, are integrated to obtain 

height profiles. 
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These surfaces should have roughness similar to that of open water surfaces. The 

scattering from upwind/downwind cuts of the surfaces is calculated using the 

periodic-surface moment method of Chen and West (1995). This scattering is then used 

to evaluate the ranges of validity ofthe scattering models when applied to actual water 

surfaces. A detailed review of the periodic surface moment method used is given in 

chapter two, as is a brief description of the SPM and KA scattering models. The 

processing of the raw surface data to allow application of the PS!v1M is given in chapter 

three, and the validity of the scattering models is examined in chapter four. Finally chapter 

five provides conclusions to be drawn from this effort. 
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CHAPTER 2 

ELECTROMAGNETIC ANALYSIS 

Introduction 

This chapter gives an overview of the periodic-surface moment method used to 

predict scattering from perfectly conducting rough surfaces. The moment method is a 

general numerical technique used to solve linear integro-differential equations[Harrington, 

1968]. When applied to rough surface scattering problems, the moment method is first 

applied to integral equations that force the surface boundary condition to be met, yielding 

the unknown surface currents. These currents can be re-radiated to give the backscattered 

field. Also included in this chapter is an overview of two approximate scattering theories, 

the Kirchoff approximation (KA) and the small perturbation model (SPM). The Kirchoff 

approximation re-radiates the physical optics current to get the backscattered field. The 

small perturbation model uses the roughness spectrum of the surface to predict the 

scattering due to small resonant components of the surface. 

The General Scattering Problem 

Figure 2.1 shows the general rough surface scattering geometry to be considered 

here. 
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r • 
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l' = vector from origin to source 

Figure 2.1 Geometry for the General Scattering Problem 

Moment Method Scattering Calculations 

The Electric Field Integral Equation 

The scattering from a one-dimensionally rough surface is best described by the 

electric field integral equation when the illumination is horizontally polarized. The EFIE 

insures that the boundary condition 

E~ = an x(ES +E') = 0, (2-1) 

is met. Where E'tan is the total tangential field at the surface 1In is a unit vector normal to 

the surface, E" is the scattered electric field, and Ei is the incident electric field. For a 

general, two-dimensionally rough surface the EFIE is given by [Balanis 1989] 

/fan x [k2 ff J,(r')G(r, r')ds' - If v' . J(r')V'G(r, r')cW] = an x ELm (2-2) 

on S, where ~o = 41t X 10-7 , Eo = 3~1t X 10-9 is , T] = ~ , is the intrinsic impedance of free 

space, k = til J~E = ~ is the electromagnetic wave number, A is the wavelength of the 

incident field, CJJ is the radial frequency of the incident field, r is a vector from the origin to 

an observation point on the surface, r' is a vector from the origin to a point on the source, 
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S is the scattering surface and G(r,r') is the three dimensional form of Green's function 

given by 

r' e-JIdI 
G(r, ) = 41tR ' (2-3) 

where R is the distance from the source point to the observation point. R is expressed in 

Cartesian coordinates as 

(2-4) 

The surface current density on the surface of the scatterer is found by solving equation 

(2-2) for I.(r') using the moment method. The scattered field is then found by re-radiating 

the surface current using 

ES(r) = -j)lffi Is J,,(r'')G(r, r')ds-' +~ V L VI . J,,(r')G(r, r')ds' (2-5) 

This re-radiation equation can be simplified for a one dimensionally rough 

scattering surface with a horizontally polarized incident field. In this case the scattering 

surface is described as y = f(x) . The incident electric field E' has only a z component, 

and the scattered electric fields are uniform in z. 

Thus using, 

I- e-Jajii+t2 d _ '_u(2)( ) _ ~ t - -j/1.l1o ax, 
yX2+11 

(2-6) 

the EFIE reduces to 

; IL Jz(p/)H~2) (kR)dl = E~(p). (2-7) 

Here, L is the surface profile in the x-y plane, and H~2) (kR) is the zero order Hankel 

function of the second type. This equation is a scalar integral equation and is directly 

solvable by the moment method. Similarly, the surface current re-radiation reduces to 

Eo! = -Gz ; IL Jz(xl)H~2)(klp - p'I)dx'. (2-8) 
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The Magnetic Field Integral Equation 

The magnetic field integral equation is used to describe scattering from a rough 

surface at vertical polarization. The MFIE insures that the boundary condition 

J!=anx(HJ-H i ) (2-9) 

is met, where H S is the scattered magnetic field, and H is the incident magnetic field. For 

a general 2-D scattering problem the MFIE is given by [Balanis 1989] 

J.~r) -an xfJs-ASJZ(r')G(r, r')ds' = an xHi(r). (2-10) 

The integration domain S-ilS indicates the principal-value evaluation of the integral 

around the singularity at r = rl. The MFIE is also a vector integral equation for the 

surface current. Likewise, it can also be simplified for the two dimensional case. Using 

the same arguments as in the last section and assuming a TM"' polarized incident wave, 

equation 2-10 reduces to 

h~r) +~ fL_6JJz(r')coso/H~2)(kR)dl' =-H~(r) (2-11) 

This scalar integral equation is also solved by direct application of the moment method. 

The scattered field is given by 

HS(r) = -jmp. Is JsCr')G(r, r')dS + ~E V Is V' . Js(r)G(r, r')ds', 

which for the two-dimensional case reduces to 

(2-12) 

k (2) 
H; =~ fr Js(p')cos'¥H1 (kR)dl'. (2-13) 

where 'I' is the angle between the distance vector and the normal vector at the observation 

point. 

The Moment Method 

The moment method is used to approximate solutions to equations with the 

general form [Harrington 1968] 

L[ftR)] = g(R), 

9 
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L is an arbitrary linear integra-differential equation, f is an unknown function to be 

determined, and g is a known excitation function. In scattering problems, equation (2-14) 

corresponds to the :MFIE or EFIE with g(R) as the illuminating field (or source) and f{R) 

is the unknown surface current. 

The first step in applying the moment method is to approximate the unknown 

function as a weighted sum ofN known basis functions : 

N 
ftR) = L <x;Ni(R), 

;=) 
(2-15) 

where NI(R) are the basis functions and <XI are unknown coefficients to be determined by 

the moment method. Substituting equation 2-15 into 2-14 and recalling the properties of a 

linear operator gives 

N 
L <x;L[Ni(R)] = g(R). 
i=1 

The residual of this approximate solution is 

N 
Res(R) = l: a;L[M(R)] - g(R) 

1=1 

The values of the coefficients are chosen to minimize this residual. 

(2-16) 

(2-17) 

The moment method uses the method of weighted residuals to find the optimal 

weighting coefficients. The weighted residuals are obtained by taking the inner product of 

the residual and N weighting functions wj(R). The inner product is defined by 

<wj(R),Res(R) >= fn wj(R)Res(R)dQ (2-18) 

Setting these weighted residuals to zero and again taking advantage of the linearity of the 

L operator gives the general moment equation: 

L adn Wj (R)L [N; (R)]dQ = In Wj(R)g(R)dQ (2-19) 

This equation has N linear algebraic equations and N unknowns, and can be readily solved 

for a l using general linear algebra methods. 
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Examining equation (2-19), it is seen that the moment method is a two step 

process. The first step is to "fill" the moment interaction matrix. This step includes a 

numerical integration for each matrix element and increases processing time by ~ as more 

basis functions are used to describe the surface. The second step is to solve the system of 

equations generated for the unknown coefficients, a/so The direct linear algebra methods 

usually used to solve for the u j coefficients are order N3. Because of this the solve time is 

usually the limiting factor in the standard moment method. However, the fill time is 

actually greater in the periodic surface implementation used here. 

Basis Functions 

The choices for basis functions are limitless. They can include either entire domain 

functions valid over the entire surface or sub-domain basis functions valid over only a 

portion of the surface [Harrington 1968]. Sub-domain basis functions are typically used 

for electromagnetic scattering problems. Traditional choices for sub-domain basis 

functions in electromagnetic scattering problems include pulse functions, piecewise 

sinusoid and piecewise linear functions [Balanis 1989]. The basis functions should be 

chosen, if possible, to closely approximate the unknown function while striving to 

minimize the computational effort expended. The basis functions used in this work 

are subdomain pulse functions, as shown in Figure 2.2. With this method the surface is 

divided into a series of small segments and the current density along the segment is 

considered constant. 
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Pulse func.tlon, height = 1 

1 

rl+l 

Figure 2.2 A Pulse Basis Function 

Using this basis function produces a stairstep approximation to the surface current as 

shown in Figure 2.3. 

The pulse basis functions were chosen for their computational simplicity. The evaluation 

of the linear operator in the EFIE and/or MFIE can be accurately evaluated without the 

use of numerical integration [Harrington, 1968]. While fewer basis functions could 

theoretically be used with "better" basis functions which more accurately approximate the 

actual current density, in practice it has been shown that the actual reduction is small, and 

any advantages are more than outweighed by the increased matrix fill time [Axline and 

Fung 1978]. 

Jz 

Figure 2.3 A Stairstep Current Approximation 
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Pulse fun.cll.on, height = 1 
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x 
x1+1 

Figure 2.2 A Pulse Basis Function 

Using this basis function produces a stairstep approximation to the surface current as 

shown in Figure 2.3 . 

The pulse basis functions were chosen for their computational simplicity. The evaluation 

of the linear operator in the EFIE and/or MFIE can be accurately evaluated without the 

use of numerical integration [Harrington, 1968]. While fewer basis functions could 

theoretically be used with "better" basis functions which more accurately approx.imate the 

actual current density, in practice it has been shown that the actual reduction is small, and 

any advantages are more than outweighed by the increased matrix fill time [Axline and 

Fung 1978]. 

Jz 

x 

Figure 2.3 A Stairstep Current Approximation 
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Weighting Functions 

As with the basis functions, many choices are available for weighting functions. In 

this work the weighting functions are chosen to be Dirac delta functions, ( or impulse 

functions) centered on the basis functions. This choice forces the surface boundary 

conditions to be matched exactly at the point of the impulse. The primary advantage of 

this approach is that the inner product in equation (2-18) reduces to the evaluation of the 

operand at discrete points, thus eliminating the integration entirely. Again, this has been 

shown to yield good results when applied to rough surface scattering [Chen and Fung]. 

Traditional MM Scattering 

The moment method is now applied to the EFIE to yield the currents on a 

one-dimensional rough surface at horizontally polarized illumination. The EFIE in 

equation (2-7) is first rewritten as 

E~(x) = ~ J JI +h;(x') Jj(x')H~2)(kR)dxl, (2-20) 

where hex') is the surface displacement and ~(x') is the first derivative, with respect to x', 

of the displacement. The moment method is applied by expanding the unknown current as 

a weighted sum of pulse basis functions: 

Jj(x') = L~=] JnP[x' -xn], (2-21) 

where In are the unknown weighting coefficients, 

P(X/) = Xn - "'2 < x < Xn + -2- , { 
1 I!.r., I!.r. } 

o elsewhere 
(2-22) 

and"" , and .1xn are the center and length of the nth segment respectively. Substituting 

(2-21) into (2-20) gives 

E~(x)= ~ L~lJnJl!.rn Jl +h;(x')H~2)(kR)dx' (2-23) 
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the impulse weighting functions are now applied: 

f:E~(x)8(x-xm)dx = ~ L~] JnJllx" JI +h~(xm) f:Hi2\kR)o(x -xm)dxdx' (2-24) 

so 

E~(xm) = ~ L!] J"fllx Jl +h;(xm) H~2)(kRm)dx' 
r---~-----"--------- ' 

where Rm = J(x m _x')2 + [hl(xm) -h(x')J2 . 
(2-25) 

Evaluating at the N segments, (2-25) can be rewritten as the matrix equation 

(2-26) 

where V m = EizCxJ and 

Zmn = ; Jllxn J 1 + h;(xm) m2)(kRm)cix' (2-27) 

Solving (2-26) for the In completes the moment method solution. 

There is no closed form expression for the integral in equation (2-27), but if certain 

conditions are met there are good approximations[Harrington 1968]. If the integration 

length is electrically small and the observation point (xJ is not on the nth segment, the 

integrand is approximately constant and (2-27) can be evaluated by 

kr) rrl2' 
Zm" = 711[,,11 (, (kRm,,) (2-28) 

where 

(2-29) 

and 

(2-30) 

If the observation point is on the source segment, the integral is dominated by the behavior 

of the integrand at the singularity at ~ = O. In this case the equation (2-27) is accurately 

represented by 

Zmm = ~ 11 [iH12) (1 - j~ In i'k~,.,) (2-31 ) 

where 'Y = 1.781, is the Euler constant. 

Use of the magnetic field integral equation with the moment method and point 

matching is similar to this development with the EFIE [Axline and Fung, 1978]. 
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The Periodic Surface Moment Method 

Finite computer resources limit the size of the scattering surface that can be treated 

with the standard moment method. The number of segments used to model the surface 

increases linearly with the surface size, and the memory needed to store the interaction 

matrix increases by~. Also the computational time needed to solve the system of linear 

equations depends on N3. Thus both the CPU time needed to solve the equations, and the 

memory needed to store the complex interaction matrix elements limit the size of the 

surface that can be solved with this method, so the numerically modeled surface must be 

artificially truncated. This truncation leads to non-physical edge diffraction effects that 

mask the physical scattering from the surface. The standard moment method avoids the 

diffraction by applying a weighting function that smoothly reduces the incident field to 

zero at the edges. However, Thorsos (1988) showed the electromagnetically valid 

weighting windows become quite narrow beams at small grazing angles, leading to 

unrealistic illumination of the surface features that gives incorrect scattering. 

Many of the disadvantages of the standard moment method at small grazing angles 

can be overcome by assuming that the scattering surface is periodic and infinitely 

extending, as shown in Figure 2-4. Although only a finite length of surface is numerically 

modeled, the assumption of periodicity eliminates the edges. Thus, no illumination 

weighting function is needed to avoid the diffraction effects, so the technique can be 

applied at arbitrarily small grazing angles [Kim et. al., 1992]. The primary disadvantage of 

this approach is that a slowly converging infinite series must be evaluated during the fill 
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Figure 2.4 A Surface Made Periodic 

stage of the moment solution. Direct evaluation of the series is computationally 

prohibitive at small grazing angles. 

In this work the efficient implementation of the periodic surface moment method 

developed by Chen and West (1995) is used. This approach is summarized here. 

Horizontal Polarization 

As mentioned earlier, the electric field integral equation is used for horizontal 

po I arizatio n(IllI). The current on the periodic surface is given by 

l(x' + pL) = eJkpLsin 9'l(x') . (2-32) 

The form of the EFIE for periodic surfaces is obtained by substituting (2-32) into (2-8), 

yielding 
p=oo 

Eo(x) = ~ J~~2 J 1 + h~(x') l(x') L eJkpLsin 9 'H~2)(kRp)dxf (2-33 ) 
p=>--

J(x') is the unknown current density on the center period (p = 0), Sj is the incident angle, 

L is the surface period, and ~ is the distance from the current source to the observation 

point given by 

Rp = J[x- (x' +pL)P + [hex) -h(x')J2 (2-34) 
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The moment method is applied as before, yielding 

{ 
~f!JcpLSin9/JI(})(kRmnp) ~ } 

Zh = kTJ 6 ln r--- m n 

mn 4 [1 _ j~ In(~) + 1-eiKpLsin 9/1102) (kRmnp) m = n . 
(2-35) 

where Rmnp = J[xm - (Xn +pL)P + [h(xm) -h(xn)P and 6In is defined earlier. 

The matrix elements include an infinite series that has no closed fonn evaluation. 

At lower incident angles the series converges quickly and only a few tenns are needed to 

obtain accurate results. However, as the angle of incidence increases towards grazing 

angles the series converges more and more slowly, and as the incidence angle approaches 

90° direct evaluation of the series becomes quite time consuming. Thus, the matrix fill 

time becomes prohibitive at large incidence angles if direct evaluation is used. 

In Chen and West's approach, the matrix element equation is rewritten as 

Zh - bj Al [ h+ + h- + ho] mn - 4"L.l 11 Smll Smn Smn, 

where 

Sh+ = ~ ejkpLsin 9; m2) (kR ) mn.L. 0 mnp 
p=p<r+-L , 

m~n } 

nl =n ' 

(2-36) 

(2-37) 

(2-38) 

(2-39) 

Thus, the infinite series has been divided into an upper (h+), lower (h"), and center (hO) 

summation. Proper choice of the cutoff period (pJ insures that all effects of the surface 

displacements are included in the evaluation of the S~~. This sub-series must therefore be 

evaluated exactly for each matrix element. However, the lower and upper summations can 

be calculated much more efficiently. The upper series is examined first. 
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When the source point is a great distance from the observation point the distance 

between them can be approximated by 

Rmnp =pL+&, p> ° (2-40) 

where, ox = xn - x",. Substituting (2-37) into (2-35), replacing the Hankel function with 

its large argument approximation and performing a Q order Taylor expansion gives 

where 

and 

A - (2q-1)!! 
q - (2q)!! 

(2-41) 

(2-42) 

(2-43) 

These same arguments can be used to reduce equation 2-40, the lower summation, to 

SZ;;, = ff ei(k&:+~) f A q U-q &q 
q~ 

(2-44) 

where 

Uq = L e-ikpL{1+sin8t)_J_l 

p=po+J (PL)q+ 2 
(2-45) 

The evaluation of both the upper and lower summations have been reduced to 

evaluating a linear combination of the upper and lower "universal series" U~ and Uq. AJI 

dependencies on m and n are contained solely in ox. For this reason the universal series 

for each matrix element are identical and need only be evaluated a single time. This 

approach reduces the calculation of the moment interaction matrix to evaluating the 

universal series once and combining with it a few direct calculations for each elements' 

center summation. This greatly improves the efficiency of evaluating the matrix terms. 
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Vertical Polarization 

The vertical polarization development of the universal summation approach to the 

periodic-surface moment method is similar to that taken for the horizontal polarization, 

except the magnetic field integral equation is now used. The MFIE for uniform 

illumination and a periodic surface reduces to [Kim et. al 1992]. 

-Hi (x) = J~) +~ lJt J 1 +h;(x') J(x') i elkpLsin 9, COS '¥'Hi2) (kRp)cix' , 
-Ll2 p=--

(2-46) 

where 'V' is the angle between the vector from the source to observation point and the 

surface normal vector at the source point. Following a similar procedure as that for the 

EFIE yields, 

Z~n = tOmn +~ln~(S~ +Sv,;" +S~n) 

where 

U + and U - , are the universal series defined earlier and q q 

I _ [x,,-xm+pL]h .. (x,,)+[h(x.,}-h(x,,)] 

cos'¥mnp - J ' 
I h .. (x,,) 

cos'¥n = ~ 
,,1+h; 

R""", l+h~(x,,) 

(2-47) 

(2-48) 

(2-49) 

(2-50) 

(2-51) 

(2-52) 

(2-53) 

The evaluation of matrix elements has again been reduced to evaluating each 

universal series once and the direct evaluation of a few center terms. 
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Scattering Calculations 

The moment method yields the current induced on the scattering surface by the 

incident field. The re-radiation of the surface current is then used to find the scattered 

field from which the surface radar cross-section is determined. The radar scattering 

coefficient of a surface is defined as the radar cross section ofa surface divided by its 

physical cross section. This work uses one dimensionally rough surfaces, so the scattering 

coefficient calculations are therefore referenced to the surface length rather than an area. 

In order to reduce the phase interference fading encountered when calculating the 

backscattering from a single surface, the scattering from N. surfaces is averaged. The 

one-dimensional surface scattering coefficient is estimated by [Axline and Fung, 1982J 

cr(B) = ~~[ Lf-l IA; 12 - ~.I Lf-l A; 12] (2-54) 

where ~. is the scattered field from the jib surface, R is the distance from the far field 

observation point to the to the source point, and L is the length of the scattering surface. 

At horizontal polarization, A: is the electric field scattered from a single surface period, 

given by [Axline and Fung, 1982; Chen and West, 1995]. 

(2-55) 

where e. is the scattering angle. 

At vertical polarization A~ is the single-period scattered magnetic field given by 
J k e-:r(kr+~)LN 6././i(x )cos'P eJk[xnsin9/+h(xn)cos9tldt- (2-56) 

8nr n=l n n n 

Parameter Constraints 

Chen and West derived several constraints on the parameters of the periodic 

surface required for the validity of the moment method solution. These are now 

summarized. 
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The scattering from a periodic surface is zero everywhere except on a grating 

re-radiation lobe, defined when 

. e i). . e sm 3 = T-sm j. (2-57) 

If a grating lobe exists at ±90o (horizontal), the infinite series in the periodic surface EFIE 

and MFIE do not converge. This can be avoided by insuring 

L fA. 
:i: sin9,±! (2-58) 

where t is any integer. 

Approximations made in deriving equation (2-41), (2-44), (2-49), and (2-51) 

require the following inequalities to be met: 

P 10 
0> kL 1 

P 8(hmox-hminl2 

0> V. ' 
P 22.4(hmax-hminl 

0> L 

where ~ = the maximum displacement of the surface, and hrnin is the minimum 

displacement. 

Universal Series Evaluation 

(2-59) 

(2-60) 

(2-61) 

When the incidence angle nears 90° the universal series converge very slowly and 

direct evaluation becomes computationally prohibitive. The epsilon algorithm for 

acceleration of series convergence was therefore applied to the universal series with 

excellent results [Thatcher 1963]. 
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Approximate Scattering Theories 

The two most popular approximate rough surface scattering theories are the 

Kirchoff approximation (KA) and the small perturbation model (SPM). A brief summary 

of these theories is given here. 

The Kirchoff Approximation 

The Kirchoff approximation assumes that the current induced on the scatterer 

surface can be approximated by treating the local region of the surface as an infinite, 

perfectly conducting inclined plane [Beckman and Spizzichino, 1963]. Using this, the 

surface current is then determined from the physical optics approximation: 

Js = 2anxH i (2-62) 

The KA is valid with electromagnetically long correlation-length surfaces or 

large-scale displacement surfaces at moderate incidence angles. The scattering 

coefficients predicted by the Kirchoff approximation were determined using the approach 

of Chen and Fung (1988). In this, the scattering coefficient is again calculated using 

equation (2-54). However, the scattered fields are calculated from the physical optics 

currents numerically determined from equation (2-62) rather than the surface currents 

obtained via the moment method . Use of this approach insures that any differences in the 

calculated lv1M and KA scattering coefficients will be due to fundamental limitations of the 

Kirchoff approximation itself, rather than the additional approximations required to yield a 

closed Conn KA expression as in Beckman and Spizzichino (1963). 
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The Small Perturbation Model 

The small perturbation method finds the total field in the presence of a smooth 

scatterer, and then perturbs these fields to account for the small-scale roughness. First 

order SPM predicts the scattering to be entirely due to the "Bragg-resonant" surface wave 

energy, whose wave number is given by 

K = 2ksin 8; (2-63) 

where K is the surface wave number. When this condition is met, the additional round trip 

electrical path length between identical points on the surface wave but within different 

periods is an integer multiple of the radar wavelength i.e. 2M sin 8; = n'A., as shown in 

Figure 2.5. This yields constructive interference which overwhelms all other scattering 

contributions. The scattering coefficients predicted by first order SPM (n=1) are 

0'"" = 4K3 (l +sin2(8)W(2Ksin(8)) 

O'hh =4K3cos4(8)(W(2Ksin(8))) 
(2-64) 

(2-65) 

where W(K) is the surface roughness power spectral density. W(k) will be estimated from 

the sample surface displacements to allow the calculation of the scattering coefficients 

using SPM. 

Figure 2.5 Mechanism for Bragg-Resonance Scattering 
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Chen and Fung (1988) have shown the small perturbation model to be accurate 

when the surface roughness standard deviation is small compared to the electromagnetic 

wavelength and angle of incidence is between about 20° and 70°. 
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CHAPTER 3 

THE SURFACES AND THEIR PREPARATION 

Introduction 

This chapter discusses the measurement and processing of the water surface 

profiles that were used in the electromagnetic scattering calculations. Surface slope 

profiles measured in a wave tank were provided by B. lahne and J. Klinke of Scripps 

Institute of Oceanography. The measurement facilities and measurement procedure are 

first discussed in this chapter. Then the procedure used to derive the surface displacement 

profile from the slope is described, and the adjustments to the surface required to allow 

the application of the periodic surface moment method are then examined. Finally, the 

procedure used to estimate the wave height spectrum from the surface profiles is 

described. 

The Data Collection 

The wave tank data used was collected from a circular wave tank facility at the 

Institute for Environmental Physics at the University of He idle burg, Germany [Jahne and 

Klinke, 1994]. The apparatus used for this data collection is depicted in Figure 3. 1. 
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: vertical rays to camera 

--....... _______ Flat Water Surface 

, lUys are paraDel once they pUi through the ImJ 

&ttom. GrTank 
<:::: • :;;> Frelnel Len. <;: :;;; 

, ' 

C=:::::::::==:;;;;=::J Ab5Grption WedEe 

L-_____ ...J DlfTu.sor 

<a) (b) 

Figure 3.1 The Apparatus Used to Measure Slope Data 

This particular setup shines light from the under the bottom of the wave tank up 

through the combination of an optical diffusor, an absortpion wedge, and a Fresnel lens at 

one focal length distance from the wedge. A ccdcamera is placed at a large distance, 

therefore all rays reaching the camera are vertical. The optical diffusor is meant to 

simulate an isotropic light source by diffusing the light from the halogen lamps below. 

The absorptive wedge provides a known intensity gradient. The light then passes to the 

Fresnel lens, all rays emitted from a certain point on the diffusor are parallel once they 

pass through the lens. If the water is flat the rays going to the camera will all come from 

the center of the diffusor as shown in Figure 3-1a. If the water is sloped the light comes 
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4m 

Figure 3.2 The Circular Wave Tank 

from another point on the diffusor as shown in Figure 3-1b. Ifa linear absorption wedge 

is used, the intensity at the camera is approximately linearly related to the slope. Iahne 

and Schultz (1992) showed that the non-linearities for the system used here are quite low. 

The SampJes 

The wave-tank data provided was captured from a circular wave tank as pictured 

in Figure 3.2. The wind was generated by a rotating paddle wheel mounted near the 

ceiling of the water channel. The speed of the wind driving the waves was 10 meters per 

second and the fetch of the waves produced is theoretically infinite [J ahne and Klinke 

1994], mimicking the conditions in the open sea. 

An image of a patch of the surface 18cm long in the along-wind direction and 

14cm in the across wind direction was provided. The along wind dimension was sampled 
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, 

14cm cross wind 
240 samples 

, 18cm along wind <- - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -> 
: 496 samples 

Wind Direction 

Figure 3.3 Surface Patch Dimension 

496 times, while the cross wind dimension was sampled 240 times, giving along wind and 

across wind sampling intervals of 0.363 and 0.583 millimeters respectively. Since only 

one dimensional surfaces can be treated with the moment method implementation of 

chapter two, each of the 240 along wind slices was processed separately and scattering 

from each was used for the backscattering coefficient calculations. Due to correlation 

between adjacent alongwind slices, the number of independent surfaces is much less than 

240, as discussed later. 

Data Processing 

Figure 3.4 shows a single along-wind slice of the surface slope profile. The 

discontinuity of2.198355 when the slopes exceeded 1.0991775 is most likely due to an 
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Figure 3.4 A Slice of pre-processed slope data 
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unsigned integer being treated as a signed integer in the data writing or reading scheme. 

The discontinuities and mean offset were removed, as shown in Figure 3.5. 
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Figure 3.5 Zero Mean Slope Data 
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Surface Displacement 

The moment method requires the surface displacement as well as the surface slope. 

This was obtained by numerically integrating the slope profile. The displacement at the nih 

sample was given by 

Yn+l =Yll8x+Yll (3-1) 

where yin is the is the surface slope at the nth sample and (5x is the along-wind sampling 

interval. The integration was initialized by setting Yo=O. 

The numerical scattering routine requires the rough surface to be periodic. Simply 

assuming the integrated profile is periodic would lead to discontinuities in the surface 

slope as shown in Figure 3.6. Note that there is no discontinuity in the height since the 

average slope was forced to be zero, giving a zero displacement at both ends of the 

surface profile. However, the slope discontinuity gives a sharp edge in the surface that 

could lead to unrealistic scattering particularly at the higher frequencies examined. 

displacement 

Figure 3.6 A Period Boundary Dis-Continuity 
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i=10 i=N-IO 

Figure 3.7 The Raised Cosine Window 

This was avoided by multiplying the height profile with the windowing function shown in 

Figure 3.7. Each edge of the window represents one half cycle of a raised cosine function, 

The weighting function is written mathematically as 

W(X)={ f~:=~::~Xlt) ~,;x,;°x~=:}. 
1 elsewhere 

(3-2) 

where Llx = °4~~m , the along wind sampling distance. 

6x was chosen to be IOcx, so that 10 samples were modified on each side of the profile 

(20 of the 496 total). Since the height data was changed by the window, the slope 

changed also. 

1st derivative dis-continuity is removed by window 

displacement 

one period 

Figure 3.8 Removing the Period Boundary Edges 
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The slope at the boundaries was re-calculated using the chain rule. The windowed height 

data is given by 

hex) = W(x)h(x) , 

so the windowed slope data is 

h'(x) = ~[W(x)h(x)] = W(x)h'(x) + W'(x)h(x). 

h'(x) is the slope profile. 

Independent Profiles 

(3-3) 

(3-4) 

As mentioned earlier, since the along-wind profiles were taken from the 

same image, adjacent profiles are not independent. To estimate the number of 

independent profiles available, the surface autocorrelation in the cross-wind direction was 

estimated. 

Cross 
Wind 
Direction 

I I I 1 I I 

I I I I I I 
Slope Image 

248 I 496 points 

- I -. -. ~ • • - - - - - - - - - - - - - - - - - - - - - - • - - - - - - - - • - lag N 

L '. ' •• _ I ., _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - - - - - - - - - ... lag3 

~ ... _ •.... ___ - _ . - . . . _ . - . . . . - - - - - - . - . - . - - - - - - .Iag 2 
~ :_ :_ : _: .,: _ _ _ __ _ _ _ _ _ _ _________ .. _ _ _ _ _ _ _ _ _ _ _ __ . lag 1 

sample # 1 2 3 . .. N 
AloDgwind direction 

Figure 3.9 Slices used for Generating Surface Statistics 
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This was accomplished by calculating the autocorrelation function for a single cross-wind 

cut, shown in Figure 3.9, using 

RCn) = N~71 L':-~ h khk-71 , (3-7) 

where hk is the kth cross-wind displacement sample. The autocorrelation functions 

calculated for all 240 across-wind cuts were then averaged to give the estimated 

across-wind autocorrelation for the entire surface. The results are shown plotted in Figure 

3.10. 

The surface autocorrelation reduces to one half at approximately at n = 7 in Figure 

3.10. The correlation of 0.5 is used in conjunction with the widely accepted 3-dB antenna 

beamwidth to indicate uncorrelation between samples [U1aby, et. al. 1982]. Thus, there 

are approximately 2;8 or 35 independent surfaces in the image. The nonnalized standard 

deviation of the calculated scattering coefficients are therefore ),.. = 0.17 [UJaby, et. 
0/ 35 

a1.1982] giving an RMS error in the scattering coefficients of±0.7dB. 
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Figure 3.10 The Crosswind Autocorrelation Function 
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Figure 3.11 Roughness Spectrum Estimate 

The surface power spectral density used in the small-perturbation scattering 

calculations was estimated using the periodogram calculated from the independent upwind 

surface profiles 

[Bendat and Piersol, 1984]. The 496 point upwind slices of the surface profile were 

extended to 1024 points by zero padding and converted to the frequency domain using an 

FFT. The individual spectral Jines were then squared and normalized to the number of 

points in the FFT (1024). The spectral lines at a given wave number were then averaged 

across the independent surfaces to yield the final spectral estimate .. Again because 

approximately 35 independent surfaces were used the RMS error in the spectral estimate 

is about ± 17% (±0.7dB). Figure 3.11 shows the calculated periodogram. And Figure 

3.12 shows the dB plot of the periodogram, along with the plots of several power-law 

spectra from k 3 to k4 dependencies. 
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As mentioned before, the power law spectrum is an estimate of the saturated range 

of the power spectral density for the ocean surface. It has the form 

W(k) = Wok-<1. 

values ofa ranging from 3 to 4 have been proposed. Expressing (3-8) in dB yields 

(3-8) 

(3-9) 

.Figure 3.12 shows that a = 3.5 gives a good prediction of the measured power spectral 

density in the saturated (high wave number) range. 
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CHAPTER 4 

THE RESULTS OBTAINED WITH 

EACH SCATfERINGMETHOD 

INTRODUCTION 

The scattering from the processed surfaces was calculated at frequencies ranging 

from 8GHz to 58GHz and incidence angles ranging from 5° to 89°. This frequency range 

was selected to test the validity of the small perturbation and Kirchoff approximation 

scattering theories for different levels of surface roughness. As the frequency increases 

the illumination wavelength decreases, and the surface displacements become electrically 

larger. The results from the periodic surface moment method, small perturbation, and 

Kirchoff theoretical scattering models, are compared at both horizontal and vertical 

polarizations in this section. 

Moment Method Parameters 

Several physical parameters of the surface had to be varied with the frequency and 

incidence angle in order to meet the conditions summarized in chapter two. In particular, 

the length of the scattering surface was truncated from the full 18 cm to meet equations 
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(2-57) and (2-58). The number ofterrns in the infinite series of equations (2-35) and 

(2-46) that were exactly evaluated was automatically determined from equations (2-59) , 

(2-61) and (2-62). 

The number of basis functions used in the moment method description of the 

surface was changed with frequency. Axline and Fung, (I978). showed that 

approximately 10 basis functions are required per wavelength along the modeled surface 

to yield an accurate MM: prediction of the scattering. Use of more basis functions would 

result in unneeded computational expense, while use of fewer would yield to inaccurate 

results . Once the length and corresponding number of basis functions were calculated, the 

height profile was fe-sampled from a cubic spline fit of the surface. This resampled data 

was used in the periodic surface calculations. The actual lengths of the modeled surface 

used at each frequency and the associated numbers of basis functions are shown in table 

4.1. Note that fewer basis functions are used as frequency decreases due to the longer 

wavelength. Chen and West showed that a surface length of 5 wavelenbrths (50 basis 

functions) is sufficient for accurate results at up to 89 degrees. 

Results 

Figures 4.1 through 4.6 show the calculated surface backscattering coefficient with 

both horizontally and vertically polarized illumination at frequencies ranging from 8GHz 

to 58GHz. The scattering coefficients calculated using the periodic surface moment 

method, small perturbation model, and the Kirchoff approximation are shown. The RMS 
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surface heights, expressed in wavelengths, corresponding to each frequency used are 

summarized in table 4.2. 

Table 4.1 Parameters Used for Moment Method Analysis 

Frequency 8GHz 18GHz 28GHz 38GHz 48GHz 58GHz 

9, L(m) andN L(m) andN L(m)andN L(m) andN L(m) andN L(m) and N 

5 O.22m O.19m O.19m O.18m O.2m O.19m 
70 segments 13 9 segments 208 segments 277 segments 381 segments 450 segments 

10 O.22m 0.19m O.19m a.18m O.18m a.18m 
71 segments 141 segments 211 segments 281 segments 351 segments 422 segments I 

t 
15 O.19m O.18m O.18m O.18m 0.18m a.18m 

; 60 segments 132 segments 204 segments 276 segments 348 segments 423 segments I 
20 D.2m O.18m 0.18m 0.18m 0.18m O.18m 

66 segments 131 segments 206 segments 281 segments 355 segments 421 segments 

25 0.2m O.18m 0.18m 0.18m 0.18m 0.18m 
63 segments 134 segments 204 segments 275 segments 353 segments 422 segments 

30 0.19m 0.18m O.19m I 0.18m O.ISm a.18m 
63 segments 132 segments 208 segments 278 segments 347 segm.ents 423 segments 

35 O.2m 0.19m 0.18m O.ISm O.ISm 0.18m 
: 64 segments 135 segments 205 segments 275 segments 352 segments 422 segments 

40 a.19m 0.19m O.18m 0.I8m 0.18m 0.18m 
61 segments 135 segments 208 segments 275 segments 34S segments 421 segments 

50 0.19m O.l9m 0.18m 0.18m 0.1801 0.1801 
61 segments 135 segments 208 segments 275 segments 348 segments . 423 segments 

60 0.19m 0.18m a.19m O.I8m a .18m a.18m 
63 segments 132 segments 208 segments 278 segments 347 segments 423 segments 

65 a.2m a.18m O.18m a.18m a.18m O.18m 
63 segments 134 segments 2a4 segments 275 segments 353 segments 423 segments 

70 0.2m a.lSm a. 18m O.18m O.18m a.18m 
66 segments 131 segments 206 segments 281 segments 355 segments 421 segments 

75 O.19m a.I8m O.ISm · 0.18m a .18m a.lSm 
60 segments 132 segments 204 segments 277 segments 34S segments 420 segments 

78 O.18m a.18m O.18m O.ISm 0.18m 0.18m 
6a segments 133 segments 207 segments 281 segments 355 segments 426 segments 

80 0.22m O.19m a.19m 0.18m a.18m a.18m 
71 segments . 141 segments 211 segments 281 segments 351 segments 422 segments 

82 D.2m O.l8~1 a.19m O.19m a.18m a.19m 
66 segments 131 segments 218 segments 283 segments 349 segments 436 segments 
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8GHz 

18GHZ 

28GHz 

38GHz 

48GHz 

58GHz 

Table 4.1 (cont) 

0.22m O.19m O.19m O.18m 0.2m O.19m 
70 segments 139 segments 208 segments 277 segments 381 segments 450 segments 

0.36m O.24m O.21m O.19m O.21m O.2m 
115 segments 173 segments 230 segments 288 segments 402 segments 460 segments 

O.27m O.24m O.23m O.23m O.22m O.19m 
87 segments 173 segments 259 segments 345 segments 431 segments 431 segments 

O.54m O.24m O.31m O.23m O.27m O.22m 
172 segments 172 segments 344 segments 344 segments 516 segments 516 segments 

Table 4.2 RMS Surface Height in Wavelengths 

Frequency RMS Surface Height (in wavelengths) 

0.0857744 

0.1929924 

0.3002104 

0.4074284 

0.5146464 

0.6218644 
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Discussion 

At 8GHz, the surface standard deviation is 0.086"-, meeting the smallness criteria 

for SPM to be valid at moderate incidence angles given in chapter two[Ulaby et.a!' 1982]. 

This is confirmed in Figure 4.1 where SPM and PSMM agree to within 3 dB at all angles 

examined above 20° for horizontal polarization and from 20° to 87° incidence at vertical 

polarization. Above 87° the M:M-VV scattering drops rapidly, and is 12dB below the 

SPM predictions at 89°. The Kirchoff approximation is accurate to within 2dB at all 

incidence angles below 20°. These results are similar to those found by Chen and West 

(1995) in their investigation of scattering from small-scale rough surfaces that had 

Gaussian-weighted roughness spectra .. 

The operating frequency was increased to 18GHz in Figure 4.2, giving a surface 

standard deviation ofO.193ft... The roll off of the SPM-VV scattering now occurs at a 

smaller incidence angle of 82° most likely due to the increased self shadowing resulting 

from the greater electromagnetic roughness. The horizontal results still proved accurate 

to 89° incidence. KA is accurate to 25° at both polarizations at this frequency, slightly 

higher than at 8GHz, and again, due to the increased surface roughness. 

The general trend of the PS1'vfM-VV scattering rolloff beginning at lower 

incidence and KA scattering being accurate to higher incidence with increasing frequency 

is continued in Figures 4.3 through 4.6. At 58GHz in Figure 4.6, the surface standard 

deviation is 0.629"-. Here the strong rolloffin the PSMM-VV occurs at about 75° 

incidence, reaching a maximum error of more than 25dB at 89°. SPM-ID-I gives excellent 
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agreement with the corresponding MM results through 88° and overpredicts the scattering 

by only 7dB at 89° incidence. This result is not in agreement with the large-scale 

roughness results found by Chen and West (1995). This disagreement arises from the fact 

that Chen and West used a Gaussian power spectral density to describe the surface 

roughness, which includes no Bragg-resonant energy at high frequencies/large roughness . 

KA is still valid at this frequency up to about 40°. Note that PSMM yields similar 

scattering coefficients at the two polarizations at the smallest incidence angles at aU 

frequencies, and the maximum angle at which they agree increases with increasing 

frequency. This allows KA, which includes no polarization dependence, to accurately 

predict the scattering for both polarizations up to these angles. 

As discussed earlier, the power spectral density for the experimentally measured 

surfaces is in agreement with the power-law spectra sometimes used to describe the ocean 

surface. Thus these results are quite different from the scattering from the 

Gaussian-weighted spectrum surfaces presented by West and Chen(1995), but similar to 

that obtained by West et. aI. (1995) when a power law surface was used. 
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CHAPTER FIVE 

CONCLUSIONS 

The validity of the small perturbation and Kirchoff approximation models in 

predicting electromagnetic scattering from rough water surfaces has been examined. The 

scattering predicted by the models was directly compared with the numerically calculated 

"exact" scattering from sample water surfaces. Use ofa periodic-surface moment method 

for scattering calculations allowed the comparison at incidence angles up to 89°, 

considerably higher than that possible using the standard windowed-illumination moment 

method. 

Often the greatest limitation of numerical studies such as this, is the method used 

to represent the scattering surface. The statistics of the roughness of open water surfaces 

are not well known and accurate direct measurements of the roughness with resolution 

fine enough to resolve the small Bragg-resonant ripple waves do not exist. Thus surfaces 

have typically been generated from idealized roughness spectra that are at best only rough 

approximations of the actual surface spectra. 

In this work, the scattering surfaces were derived from direct measurements of the 

upwind/downwind slopes of wind-generated water surfaces in a circular wave tank. The 

slopes were processed to yield several independent, one dimensionally rough scattering 

surface to which the numerical scattering algorithm was directly applied. While the 
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surfaces are of course also not truly representative of the open sea surface, this approach 

does allow the Bragg-resonant ripples to be resolved allowing an accurate representation 

of a very important scattering mechanism with wind-generated water surfaces. 

When the frequency was chosen so that the scattering surface roughness was 

electromagnetically small(8GHz) the small perturbation theory was found to be accurate at 

incidence angles up to at least 89° for horizontal polarization. At vertical polarization, 

SPM was accurate to 87° and rolled off sharply at higher incidence. The incidence angle 

at which this rolloff occurred reduced with increasing frequency down to about 75° at 

58GHz, indicating that SPM is valid over a wider range of surface roughness and 

incidence angles at horizontal polarization. The Kirchoff approximation was found to be 

accurate at small and moderate grazing angles, with the highest angle of validity 

increasing with frequency. A surprising result is that KA seems to accurately predict the 

scattering for vertical polarization up to 85° at 58GHz, with no shadowing correction. 

These results indicate that the approximate scattering models may be valid over a wider 

range than previously thought. 
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