
DETECTING MALICIOUS CODE IN SENSOR

NETWORK APPLICATIONS USING PETRI NETS

By

 PRATHIBA REDDY NALABOLU

 Bachelor of Science in Computer Science and

Engineering

 Osmania University

 Hyderabad, Andhra Pradesh

 2005

Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 December, 2007

ii

DETECTING MALICIOUS CODE IN SENSOR

NETWORK APPLICATIONS USING PETRI NETS

Thesis Approved:

Dr. Johnson P. Thomas

 Thesis Adviser

Dr. Nohpill Park

Dr. Venkatesh Sarangan

Dr. A. Gordon Emslie

Dean of the Graduate College

iii

ACKNOWLEDGEMNETS

I sincerely thank my advisor Dr. Johnson P. Thomas for his continuous guidance,

support and for many insightful conversations during the developement of ideas in this

thesis. I would like to thank my committee members Dr. Venkatesh Sarangan and Dr.

Nohpill Park for their intuitive comments.

Finally, I would also like to thank Computer Science Department for providing

me assistance in the technical areas during my education here.

iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION..1

II. REVIEW OF LITERATURE..3

III. PETRI NETS ...7

3.1 Modeling Software...9

IV. DELUGE ...11

4.1 Working of Deluge ..12

V. SYSTEM MODEL..15

VI. ATTACKS AND APPLICATION MODELING..19

6.1 Important Assumptions..20
 6.2 Attacks ...21
 6.3 Application...22

VII. IMPLEMENTATION ..23

7.1 Attack Modeling ..24
 7.1.1 Selective Forwarding and Sink Hole ..24
 7.1.2 Sybil Attack ..28
 7.1.3 Denial of Service...31
 7.2 Application Modeling ..35
 7.3 Application with Attacks ...38
 7.3.1 Selective Forwarding and Sink Hole ..38
 7.3.2 Sybil Attack ..40

v

Chapter Page

7.3.3 Denial of Service...42
 7.4 Detection Tool ...43
 7.4.1 Code to Petri net transformation ...43
 7.4.2 Detection Algorithm ...48
 7.4.3 Validation of Algorithm..50
 7.4.4 Complexity of the of Algorithm ...62

VIII. CONCLUSIONS...64

APPENDIX..66

REFERENCES ..76

vi

LIST OF TABLES

Table Page

1 Places to transitions...47

2 Transitions to Places ...48

3 Category of places and transitions ..48

4 Places to Transitions, sfPT..51

5 Transitions to places sfTP...51

6 Category of places and transitions, sfC...52

7 Places to transitions, appPT ..52

8 Transitions to places appTP..53

9 Category table appE..53

10 Places to transitions appPT ...57

11 Transitions to places appTP..58

12 Category Table appE...59

13 Places to transitions appPT ...60

14 Transitions to places appTP..60

15 Category Table appE...61

vii

LIST OF FIGURES

Figure Page

1. Petri net representing the flow of control in programs [14]..................................10

 2. Nodes advertise new code version..13

 3. Nodes request for new code version ...13

 4. Nodes advertise new code version for next hop ...14

 5. Malicious Code Detector ..15

 6. Selective Forwarding ..26

 7. Selective Forwarding and Sink Hole ..27

 8. Code for Sybil Attack ...29

 9. Sybil Attack ...30

 10. Denial of Service...33

 11. Petri net for Denial of Service ..34

 12. Application..36

 13. Petri net for application...37

 14. Application with Selective Forwarding ..39

 15. Application with Sybil Attack ..40

 16. Application with Denial of Service...42

 17. IF Construct ..44

 18. FOR Construct ..45

viii

Figure Page

19. WHILE Construct ..45

 20. Event Send ..46

 21. Example to illustrate data structures ...47

1

CHAPTER I

INTRODUCTION

The need to reprogramme sensor nodes in a wireless sensor network arises due to

changing application requirements. Sensor nodes once deployed cannot be physically

reached. Therefore techniques have been developed to reprogramme the motes remotely.

But the process of code updation is fraught with challenges. An adversary can inject

packets into the network and accomplish widespread rapid installation of corrupt code.

Attackers can also hijack packets and embed malicious code within the packet. This code

can launch different attacks like Selective forwarding, Denial of Service and Sinkhole

attacks.

Code updation mechanisms like Remote code propagation [2], Efficient Code

Distribution [1] and Viral Code Propagation [25] concentrate on reducing the bandwidth

and energy usage of the node. They do not stress on propagating the code securely.

Secure code propagation in Sensor Networks is important as any attacker could inject

malicious code and propagate it. Currently there are no existing approaches in wireless

sensor networks to identify whether the code received by a mote is free of malicious

content.

2

The important issue is how to deal with the malicious code that has already been

received by the sensor node. Malicious code modifies the behavior of the sensor node and

attacks the applications as well. In this thesis we propose to identify potential attacks in

the code which is received by a node during code distribution process. The key idea is to

build a library of attacks, model the attacks and the sensor network application, in Petri

nets. We then aim to identify malicious patterns in the application (code) and also

estimate the damage caused by the attacks.

The objectives of this thesis include:

� Implement Selective Forwarding, Sink Hole attack, Denial of Service and Sybil

attack.

� Define Petri net models for list of attacks mentioned above.

� Embed Selective Forwarding, Sink Hole attack, Denial of Service and Sybil

attack in a sensor network application.

� Define Petri net models for the code which has been embedded with attacks

� Identify attack signatures in the sensor network application

The remainder of this document contains chapters as follows. Chapter II contains

Problem background, related work and literature review pertinent to it. Chapter III

reviews about Petri nets and modeling software using Petri nets. Chapter IV discusses the

relevance of Deluge protocol. The System Model is discussed in Chapter V. Chapter VI

talks about modeling attacks and application. Finally Chapter VII describes

implementation of the solution.

3

CHAPTER II

REVIEW OF LITERATURE

In this section we review the previous work in the field. We first review why we

need to reprogramme the sensor networks. Sensor nodes are deployed in order to gather

valuable data. Once they are deployed, they need not be tended to. These nodes are

usually deployed in hostile or sensitive environments like ocean beds, birds nest, or in

buildings [24]. However in the course of time, the application requirements may change

or a bug fix may be required. In this situation, the node needs to be reprogrammed. The

problem of reprogramming the wireless sensor networks has been addressed in many

ways. Some of the techniques are Remote Code Updation Mechanism [2] and Efficient

Code Distribution [1]. The two mechanisms are not secure. In other words there is no

way a sensor node can detect if the code received has malicious content.

 To update the code in sensor networks, the code is divided into images or

fragments. These fragments are transmitted part by part. This mechanism is called

pipelining [1]. Due to this mechanism the nodes need not wait for the entire code image.

After receiving a part or fragment they can forward it to other nodes. A malicious node

can intercept the code fragment as it is being transmitted.

4

It can hijack the original code and send a malicious code or viruses. The malicious node

can cause widespread installation of malicious code. It will also consume the network

resources and bandwidth.

The code distribution mechanism proposed by Stathopoulos et. al. is ‘Remote

Code Update Mechanism for Wireless Sensor Networks’ [2]. The protocol developed is

called Multihop Over-the-Air Programming (MOAP). This mechanism proposes to use

Ripple dissemination protocol for reprogramming the sensor nodes remotely. The

protocol uses a publish-subscribe method. Here a set of nodes act as source, other nodes

act as receivers. For a node to become a source it should have the complete code image.

So a node waits for all the code image packets to arrive. When that node becomes the

source, the new version of the code is advertised and other nodes subscribe a newer

version of this code image.

The Ripple mechanism guarantees that the source is one hop away, follows ripple

like data propagation [2]. The MOAP protocol is also vulnerable to attacks from

malicious nodes or advisory [11]. An adversary can compromise a node in the network.

This node can pose as a source and publish its malicious code. When the code is installed

and executed, different attacks like DOS, Sybil attack could be launched on the node.

Efficient Code Distribution in Wireless Sensor Networks [1] proposed by Reijers

et. al. is not resilient to malicious code injections either. It considers packet losses,

communication costs but it does not consider the secure code propagation. In this scheme

the new code image is built using edit script of commands that are easy to process by the

nodes. The procedure for code distribution consists of four stages- Initialization, Code

5

image building, Verification and Loading. Energy is saved by distributed only changes to

the currently running code [1].

‘Viral code Propagation in Wireless Sensor Networks’ by Levis [25] presents

scalable and rapid algorithms for disseminating code through a sensor network. They

show that by dynamically adjusting transmission rates, networks can reprogramme very

quickly while having a low overhead when stable. In order to reduce the time taken for

reprogramming and to prevent the saturation of available bandwidth, three distributed

algorithms are proposed.

Slijepcevic et. al. [24] proposed a security mechanism to prevent malicious code

injection into the network. They classified the types of data existing in sensor networks,

and identified possible communication security threats according to that classification.

They developed a multitiered security architecture where each mechanism has different

resource requirements, they allow for efficient resource management, which is essential

for wireless sensor networks. The security architecture called SensorWare is multitiered

where each tier is based on private key cryptography. Each tier in the multitiered

architecture is implemented with by using various algorithms or by using the same

algorithm with adjustable parameters that change its strength and corresponding

computational overhead. Using one algorithm with adjustable parameters has the

advantage of occupying less memory space [24]. They characterized mobile code as

sensitive data. They employed encryption to messages with code.

However, the attacker can break the encryption using ‘brute force’ approach and

inject harmful code. Using encryption also results in overhead. They also did not state

6

how to protect the node from malicious code already at the node. This has been stated as

one of their future challenges.

Some of the cases where a malicious code can hamper the working of the node and in

turn the entire network are:

• The malicious code can launch DOS (Denial of Service) and Selective

Forwarding attacks in the network.

• It can consume the battery life and other scarce resources on the nodes.

• In military applications it is very important to verify code updates to prevent

downloading of malicious code or viruses.

• In commercial application like manufacturing, if a sensor node picks up

malicious code, it could affect the profit making processes.

• In applications that require privacy to be maintained, malicious nodes try to

propagate code to sensor nodes to snoop on the information.

Very little work has been done on the secure code updation in sensor networks. It

is evident that all the previous work has been aimed to prevent malicious injections

into the network. As far as we are aware, no one has looked at the problem of

detecting malicious code present at the sensor node.

7

CHAPTER III

PETRI NETS

In this section we review Petri nets and their role in understanding systems. Petri

nets are flowcharting technique used to model asynchronous and concurrent processes

[14]. Petri nets are composed of four symbols: circles, bars, arcs and dots. A circle

represents a place which models a condition in the graph. The bars are transitions in

which represent actions that occur. The arcs are bidirectional connections between places

and transitions. A place can only connect to a transition. A transition in turn can only

connect to a place. Therefore a Petri net is a bipartite directed graph. The dots are tokens

which reside in places. Tokens move from place to place upon occurrence of some rules

[14].

A transition can fire when it becomes enabled. A transition is enabled when each

of the input places has at least one token. When a transition fires the token from each

input place goes to each output place. If a place is connected to two or more transitions

then firing of one transition disables all other transitions. Another arc known as inhibitor

arc connects a place to a transition and is represented with a small circle at the end of the

arc. Inhibitor arc is used to model limited resources.

8

The definition of Petri net follows [16]:

Petri net is a 5 tuple (P, T, F, W, M0) where

� P is a finite set of places;

� T is a finite set of transitions;

� F is a set of arcs known as flow relations;

� W is a weight function;

� M0: P -> {0, 1, 2….} is the initial marking

A Petri net with tokens is said to be a marked Petri net. Petri net has characteristics such

as boundness and livness. A Petri net can have more than one token in a place.

Boundness: A k- bounded Petri net has k tokens in a single place at a time. If the exact

value of ‘k’ is unknown but is known to be some finite number then the net is referred to

as being ‘bounded’.

Safe net: In a case where the number of tokens in a net is equal to one, it is called a ‘safe

net’.

 Conservative net: The total number of tokens has to remain constant.

Transitions can be in any of the three states:

Dead: A transition is dead if there exists no sequence of firings, from some initial

markings, which will enable the transition.

Potentially firable: If there exists a sequence of firings which enable a transition, then it

is potentially firable.

9

Live: A transition is live, if for every possible marking that can result from some initial

markings, the transition can be enabled.

3.1 Modeling Software

Petri nets can give the user graphical presentation of the code he wants to model

[14]. Program structures such as IF- THEN- ELSE, DO-WHILE and PARBEGIN and

PAREND can be modeled in Petri nets. Although Petri nets do not shown which path will

be chosen during execution time, however they do show the structure of the code. Figure

1 shows the modeling of the following code.

 L S0

DO WHILE P1

 IF P2 THEN

 S1

 ELSE

 S2

 END IF

 PARBEGIN S3, S4, S5

PAREND

 END DO

 GOTO L

10

Figure 1 Example of Petri net representing the flow of control in programs [14]

11

CHAPTER IV

DELUGE

Deluge provides an efficient mechanism for remotely installing any code such as

program binaries, to many nodes within a wireless sensor network. The following

features are included with Deluge [26]:

Multihop support: Wirelessly program all nodes in a multihop network without

physically handling the nodes.

Epidemic propagation: Continuous propagation by all nodes helps ensure reachability

of those nodes with intermittent connectivity.

Store multiple program images: Each node can store multiple program images and can

quickly switch your network between different programs without continuous

downloading.

Golden image: A program image with minimal support for network programming stored

in a safe location on external flash. This piece of code will allow for recovery.

Isolated bootloader: A piece of code that is guaranteed to execute after each reset

independent of the TinyOS application. The bootloader is responsible for programming

the microcontroller and recovers from programming errors by loading the Golden Image.

12

Deluge's multiple program image support allows different application code to

coexist in the network [26]. With some additional logic to determine which program

image a specific node should use, a heterogeneous network with different application

code can exist. Finally, Deluge exports a very simple interface to extend its functionality.

For example, Deluge can be enabled or disabled to control which nodes participate in the

dissemination process. Additionally, nodes can decide which program image to use and

when, thus allowing for heterogeneous networks where nodes execute different binaries

[26].

With the help of deluge, we can remotely install the new program on the nodes.

The program will be stored in the flash memory. Since deluge can hold up to three

program binaries, different applications coexist. The program we write to detect

malicious code can access the sensor application in the flash memory.

4.1 Working of Deluge

This section captures the gist of how deluge epidemically propagates new

applications on motes [27].

Step1: Nodes periodically advertise their new version of the application. In the figure

below, a node advertises ‘Version 2’. Its immediate neighbors realize that they have

‘Version 1’.

13

Figure 2 Nodes advertise new code version

Step 2: The neighbors request for the new versions.

Step 3: Requested data is sent.

Figure 3 Nodes request for new code version

14

Step 4: Nodes use Nack to indicate dropped packets. Dropped packets are sent again.

Step 5: Now the neighbors of first node, advertise their new versions to next hop. These

nodes in the next hop receive new versions.

Figure 4 Nodes advertise new code version for next hop

Continuous propagation is exhibited by all the nodes, thereby reaching nodes with

intermittent connectivity.

15

CHAPTER V

SYSTEM MODEL

Figure 5: Malicious Code Detector

In this thesis we identify potential attacks in the code which is received by a node

during code distribution process. It aims to create a library of attacks by representing

16

selective forwarding, DOS attacks, Sybil attack and Sink Hole attack in the form of Petri

nets. This work is based on ‘Static Analysis of Executables to Detect Malicious Patterns’

[23]. The problem considered in this thesis is as follows: Assume we are given source

code of a sensor network application which could possibly contain an attack like selective

forwarding. We have to determine if the code contains any malicious content that would

change the behavior of a node.

System Model Description

Figure 5 shows the system model. The main components in the system model are:

• Decompiler

• Attack Petri nets

• Detection tool

o Transform application to attack Petri nets

o Detection Algorithm

The function of each component is as follows:

Decompiler: It takes the executable nesC code and decompiles it to nesC source code.

Attack Petri nets: Library of attack Petri nets which are selective forwarding, denial of

service, Sybil and sink hole attack.

17

Detection Tool: The detection tool has two functions:

• It transforms the nesC code to Petri net.

• It takes attack Petri nets and the Petri net of application, matches both of them. It

uses detection algorithm that is implemented in Java. It matches both the Petri

nets to detect an attack. Finally it outputs whether an attack is present or not.

Detection Algorithm uses two violation categories to decide if the application has

malicious content. The violation categories are:

Existence: The fact that something exists is a violation.

Sequence: The fact that several things happen in a sequence is sufficient to detect an

attack.

‘Existence’ indicates the potential for an attack, whereas ‘Sequence’ shows the presence

of an attack.

Input/Output to the System

Input: The input to the system is executable code of a sensor node application. A

decompiler is used to decompile executable code to nesC code. This code is given as

18

input to the Detection Tool. Detection algorithm takes the nesC code and attack Petri nets

as inputs.

Output: If the attack is found in the application it returns the sequence of instruction

representing the attack. If the attack is not found then it says the attack is not found. If

some of the attack states are found but there is no complete attack signature then it says

that there could be a potential for an attack.

19

CHAPTER VI

ATTACKS AND APPLICATION MODELING

We are going to represent sensor network attacks and application in the

form of Petri nets. The main motivation to use Petri nets in representing the attacks is the

possibility to understand important properties of the attacks and reason about them. They

help in examining the techniques used or targeted by particular attacks [20]. One of the

techniques to insert malicious code is to insert unnecessary dead code or unwanted jump

instructions. In this section we discuss what places and transitions in a Petri net represent

while modeling attacks and applications.

 As we said before the attacks and application will be in nesC code. In nesC there

are events which give rise to actions in the sensor node. For example the event ‘Send’

causes an action where a packet is to be sent to another node. The event ‘Receive’ means

that a packet has been received by a node.

Attacks like selective forwarding, sink hole and Sybil attack are routing attacks

that mainly take place during routing packets. For this reason, we are going to examine

the events like ‘Send’ and ‘Receive’. During these events we are going to examine the

actions that are taking place during forwarding a packet and after receiving it.

20

The work is divided as

� Attack Modeling

• Programming attacks in nesC using TOSSIM simulator.

• Modeling attacks as Petri nets creating a library of attack Petri nets.

� Application Modeling

• Programming the sensor application in nesC.

• Embedding attacks in the application.

• Modeling the above application as Petri net.

6.1 Important Assumptions

The following are assumptions made in this thesis:

� We only consider code which is infected with attacks such as:

• Selective forwarding

• Denial of service

• Sink Hole

• Sybil Attack

� The malicious code is embedded with sensor network application.

� The source code of the sensor application in nesC.

21

6.2 Attacks

The attacks are routing attacks that take place during forwarding packets. The

attacks target packets dropping them completely/selectively and also flooding them

repeatedly. Therefore, we represent the places, transitions, and tokens as follows.

Places: Sensor nodes and programming constructs in the nesC code.

Transitions: Events, actions and flow of control (branches in the code).

Tokens: Packets that being sent and received.

We have a Petri net P = {p0, p1, p2…pn} of places representing interesting states or

modes of the security relevant entities of the system in interest. Then we have a set T =

{t0, t1, t2… tn) of transitions that represent input events, commands, or data that can cause

one or more security relevant entities to change their state. This Petri net also has a set of

tokens that move from place to place when transitions are fired. If token is at place it

means that the attacker has gained control of that place. If pi and pj are two places where

pi precedes pj, then the attacker should gain control of pi before gaining control of place

pj [20].

22

6.3 Application

Application has embedded attack in it. We are going to examine send and receive

events, where a node is involved in sending a packet and another node is involved in

receiving the packet. Hence nodes are sending, receiving and forwarding packets. These

events are causing some actions to take place. Transitions represent events and flow of

control of code, which will be discussed in detail in chapter VII. Representation of the

places, transitions, and tokens are discussed in section 6.2.

We propose to develop a program which will detect the presence of attacks in

source code by utilizing the library of attack Petri nets. Consider the code to be examined

is modeled as a Petri net, P. We also have a library of Petri nets which are Selective

Forwarding attack, S and DOS attack, D. To say that the given code has malicious

content in it, we have to determine if P has D in it. In other words, we have to find states

in P that are the attack signature. This signature could represent S or D. Matching of the

application Petri net and attack Petri net gives us a set of matching states and the

resources used by the states.

23

CHAPTER VII

IMPLEMENTATION

The implementation has four parts.

• In the first part we are going to program the attacks on TINYOS 1.1 platform in

nesC.

• Second part consists of transforming attacks into Petri nets as intermediate

representation.

• Third part consists of embedding the attacks in sensor application and modeling it

as a Petri net.

• In the final part, we are going to design and implement a program that will detect

malicious code in the (sensor) applications.

In the implementation phase, we have implemented the components Attack Petri nets

and Detection Tool.

24

7.1 Attack Modeling

7.1.1 Selective Forwarding and Sink Hole Attacks

a) Selective Forwarding: Selective forwarding attack influences the communication

in a Multi hop network [12]. In a Multi hop network, a node forwards a message

to its neighbor, thus acting as a forwarder. If a node has been compromised by an

attacker, it could launch selective forwarding attack on the network. The

malicious node selectively drops few packets. This node selects few nodes

randomly and drops packets that are received from them. The compromised node

does not drop all the packets. This is because if it drops all the packets, the link

quality degrades and the multi hop protocol rejects the node from selecting it as

parent node. It also does not drop all the packets as it will raise the suspicion of its

neighboring nodes.

The effectiveness of this attack on the network depends on placement of

malicious node with respective to the base station and the number of packets

dropped. In this case we assume that the attacker is a compromised node that is in

the path to the base station. The closer the attacker is to the base station, the more

number of packets are received by it [12].

b) Sink Hole Attack: The easiest way of creating a sink hole is to have a malicious

node pretend it is a base station [12]. This can cause a big part of the network to

start sending their traffic towards that node. How many nodes are affected

25

depends on the part of the network the malicious node is located in. This is

because nodes closer to the real base station will not send traffic towards the

malicious node because it is further away than the real base station [12].

In a sinkhole attack, the adversary’s goal is to lure nearly all the traffic

from a particular area through a compromised node, creating a metaphorical

sinkhole with the adversary at the center [22]. Because nodes on, or near, the path

that packets follow have many opportunities to tamper with application data,

sinkhole attacks can enable many other attacks (selective forwarding, for

example). Sinkhole attacks typically work by making a compromised node look

especially attractive to surrounding nodes with respect to the routing algorithm.

For instance, an adversary could advertise an extremely high quality route to a

base station.

Effectively, the adversary creates a large ‘sphere of influence’, attracting

all traffic destined for a base station from nodes several (or more) hops away from

the compromised node. By ensuring that all traffic in the targeted area flows

through a compromised node, an adversary can selectively suppress or modify

packets originating from any node in the area. It should be noted that the reason

sensor networks are particularly susceptible to sinkhole attacks is due to their

specialized communication pattern [22].

Attack Code

Figure 6 is the code snippet which does selective forwarding in combination with

sink hole attack. In the code, the node checks if the link is busy. In an attack scenario,

26

even when the link is not busy it does not send the packets. In normal cases, a node

forwards a packet if the radio signal is not busy. So it first checks for busy radio signal. If

the signal is busy the packet is sent, the action of sending a packet is independent of any

other conditions. But here, Nodes 2 and 3 are attackers here. They are the sink holes that

are in the path to base station. They drop packets selectively.

27

Petri net model of attack

Figure 7: Selective Forwarding and Sink Hole

Places:

A: Attacker node which has been compromised

Y: A condition is satisfied. The packet is forwarded. The packet is selectively forwarded

to the neighbor.

N: The condition is not satisfied. Packet is dropped. It is a sink hole.

B: Neighboring node.

Transitions:

T1: Checks for a condition. In the code it is specifically an ‘IF’ construct. The condition

has occurred. Packet is forwarded (conditionally).

T2: Condition failed, packet dropped.

28

T3: The action of sending a packet. In programming construct it is a ‘Send’ action.

7.1.2 Sybil Attack

In a Sybil attack, a single node presents multiple identities to other nodes in the

network [22]. Sybil attacks pose a significant threat to geographic routing protocols.

Location aware routing often requires nodes to exchange coordinate information with

their neighbors to efficiently route geographically addressed packets. It is only reasonable

to expect a node to accept but a single set of coordinates from each of its neighbors, but

by using the Sybil attack an adversary can ‘be in more than one place at once’ [22].

Attack Code

The following code launches Sybil attack by creating multiple identical nodes.

The Sybil nodes send connection establishment requests to neighbors. In Multihop, data

of its neighbors is kept in the neighbor table. The table has a maximum size of sixteen.

When the table is full and a message from a node that is not in the table is received, the

node with the lowest send quality is replaced with the new node. If a Sybil attack node

assumes the identity of sixteen nodes it can remove all real neighbors from the neighbor

tables of all nodes within its radio range. It can even remove the base station if the fake

node's send quality is higher than the one from the base station.

//Creating multiple identical nodes, sending requests to neighbors, causing flooding,
request establishment packets
event TOS_MsgPtr Receive.receive(TOS_MsgPtr m) {

29

Msg *message = (Msg *)m->data;
 Msg *data = (Msg *)pkt.data;
 if(m->addr == TOS_LOCAL_ADDRESS)
 {
 dbg(DBG_USR1,"Received message from %d",child);
 // attack code
 attack++;

//send the packet to next hop
data->source = TOS_LOCAL_ADDRESS;

 data->origin = message->origin;
 data->seqNo = message->seqNo;
 data->value = message->value;
 if(TOS_LOCAL_ADDRESS != 3) {
 post addOperation();
 if(call Send.send(parent, sizeof(Msg), &pkt))
 dbg(DBG_USR1, "SENT MESSAGE TO %d", parent);
 }

else{
 //Sybil nodes flood packets
 while(i!=15){

// sybil node creation
 parent = TOS_LOCAL_ADDRESS + i;
 post addOperation();
 //each sybil node floods packets
 if(call Send.send(parent, sizeof(Msg), &pkt))
 dbg(DBG_USR1, "SENT MESSAGE TO %d", parent);
 i++;
 }

}
}
return m;

 }
}

Figure 8: Code for Sybil Attack

Figure 9 shows the Petri net representation of the code of Figure 8, where four

Sybil nodes are created. Each Sybil node then sends each neighboring node connection

establishment packets.

30

Petri net model of Attack

Figure 9: Sybil Attack

Places:

A: Attacker node which has been compromised

W: Checking for occurrence of a condition

Y: A condition is satisfied. Sybil attack is launched.

N: The condition is not satisfied. There are no further transitions.

S, U, V and X: Sybil identities are created. Each Sybil identity sends connection

establishment requests to its neighbors.

31

B: Sensor Node.

Transitions:

T1: Attacker node starts a while loop

T2: Checks for a condition. The condition has not occurred.

T3: Condition is true. There are further transitions.

T4: Firing of T4 creates Sybil nodes.

T5, T6, T7, and T8: Firing of T5, T6, T7 and T8 causes the Sybil nodes to send

connection establishment packets to the neighboring nodes.

7.1.3 Denial of Service

Although we usually use the term to refer to an adversary’s attempt to disrupt,

subvert, or destroy a network, a DoS attack is any event that diminishes or eliminates a

network’s capacity to perform its expected function [4]. Hardware failures, software

bugs, resource exhaustion, environmental conditions, or any complicated interaction

between these factors can cause a DOS. Determining if a fault or collection of faults is

the result of an intentional DoS attack presents a concern of its own—one that becomes

even more difficult in large-scale deployments, which may have a higher nominal failure

rate of individual nodes [4].

Some of the forms of denial of service attacks are jamming, flooding and

exhausting battery resources. Misdirecting packets is another common form of denial of

32

service attack. Compromised nodes simply forward packets along wrong paths, thereby

diverting traffic away from intended destination.

Attack Code

In this attack scenario, an attacker repeatedly transmits packets to other nodes, in

order to prevent them from servicing a request. Flooding is one form of DOS attack

which has been implemented here. The attacker sends connection establishment packets

to other nodes. Meanwhile if any other node sends a request packet to another node, its

request is never satisfied. This is because the request might not even reach the destination

as the channel is always busy with the packets from the attacker.

Figure 10 is the code snippet for a DOS attack. Here the attacker is flooding the

channel with connection establishment request packets that results in requests not

reaching destination and not being processed. Node 3 has been compromised here. In

other words it is the attacker and it launches DOS. It is in the path to base station.

33

Figure 10: Denial of Service

34

Petri nets model of attack

Figure 11: Denial of Service

Places:

A: Attacker node which has been compromised.

F: FOR loop begins.

Y: A condition is satisfied. Packets are flooded causing DOS attack.

35

N: The condition is not satisfied. There are no further transitions and attack stops.

B: Neighboring node.

Transitions:

T1: Attacker node starts a ‘FOR’ loop. T1 is fired when attacker receives a packet to

forward. T1 places a token in places.

T2: Checks for a condition. T2 is fired when condition false

T3: T3 is fired when condition true.

T4: The action of sending a packet. In programming construct it is a ‘Send’ action. A

token is placed in places B and A. Now T1 can fire again and the process continues. This

results in the attacker repeatedly sending packets.

7.2 Application Modeling

We have used a sensor application to embed attacks in it. A sensor application

resides in the sensor node and it has a particular function. The particular application that

we developed has each node in the sensor network sending a packet to base station every

1000 milliseconds. When a node sends a packet to its neighbor, other nodes forward the

packet to the base station. The attackers are in the path towards the base station. When

the attacker node receives the packet it launches that particular attack.

36

Figure 12: Application

37

Petri net Model of Application

Figure 13: Application

Places:

T: This is a place for ‘Timer’ or a clock.

4, 3, 2 and 1: Sensor nodes.

B: Base station

38

Transitions:

T1: Timer firing. Nodes 4, 3, and 1 can now send packets with destination as B.

T2, T3, T4 and T5: The transitions represent ‘Send’ actions.

In the above figure 4, 3, 2, 1 and B are sensor nodes. Timer is clock. For every 1000

msec, the nodes start sending packets with destination as node B.

7.3 Application with Attacks

7.3.1 Selective forwarding attack and Sink Hole

The colored portion in the Figure14 shows the sensor application that has

selective forwarding embedded in it. This is a global scenario in which the network has 4

nodes and a base station. Each node sends packet to base station. Node 4 sends a packet

to node 3. Node 3 selectively forwards it to node 2. Node 2 forwards the packet to node

1, which in turn forwards it to the base station.

39

Figure 14: Application with Selective forwarding attack

Places:

T: This is a place for ‘Timer’.

4, 3, 2 and 1: Sensor nodes.

B: Base station

Y: A condition is satisfied. No further transitions.

N: The condition is not satisfied. The packet is selectively forwarded to the neighbor.

Transitions:

T1: Timer firing

T2, T3: The transitions represent ‘Send’ actions.

T4: In the code it is specifically an “IF” constructs. Condition true.

40

T5: Condition false.

T6, T7: The action of sending a packet. In programming construct it is a ‘Send’ action.

7.3.2 Sybil attack

The colored portion in the Figure 15 shows sensor application that has Sybil

attack embedded in it. This is a global scenario in which the network has 4 nodes and a

base station. Each node sends packet to base station. Node 4 sends a packet to node 3.

Node 3 is the attacker who creates Sybil nodes. These Sybil nodes send connection

establishment request packets to neighboring nodes.

Figure: 15 Application with Sybil Attack

41

Places:

T: Timer

4, 2 and 1: Sensor nodes.

3: Attacker node which has been compromised

W: A while loop starts.

Y: A condition is satisfied. Create a Sybil node.

N: The condition is not satisfied.

B: Base station.

Transitions:

T1: Attacker node starts a WHILE loop.

T2, T3 and T4: The action of sending a packet. In programming construct it is a ‘Send’

action.

T5: Checks for a condition. In the code it is specifically a ‘while’ construct. Condition is

true.

T6: Checks for a condition. In the code it is specifically a ‘while’ construct. Condition is

false.

T7: Creates a Sybil identity.

T8: The action of sending a packet. In programming construct it is a ‘Send’ action. Also

it represents a loop where packets are flooded until the condition is satisfied.

T9: The action of sending a packet. In programming construct it is a ‘Send’ action.

42

7.3.3 Denial of Service

Figure 16 shows a global scenario in a wireless sensor network. The above sensor

application has Denial of Service attack embedded in it. Attacker node floods other nodes

with packets causing the other requests to be not processed.

Figure 16: Application with Denial of Service

Places:

T: Timer

4, 2 and 1: Sensor nodes.

3: Attacker node which has been compromised

Y: A condition is satisfied. Packets are flooded causing DOS attack.

N: The condition is not satisfied. No further transitions take place.

43

B: Base station.

Transitions:

T1: Timer fires.

T2 and T4: Each node starts sending packets to the base station. In programming

construct it is a “Send” action.

T5: Checks for a condition. In the code it is an ‘IF’ construct. Condition true.

T6: Checks for a condition. In the code it is an ‘IF’ construct. Condition false

T7: The action of sending a packet. In programming construct it is a ‘Send’ action. Also

it represents a loop where packets are flooded until the condition is satisfied. T7 also

places a token in place 3. Because of this T3 repeatedly fires and the process is repeated.

T8: The action of sending a packet. In programming construct it is a ‘Send’ action.

7.4 Detection Tool

7.4.1 Code to Petri net transformation

For transforming the code to Petri nets, we examine the events present in the

application. Events cause some actions to take place. Some of the events in TinyOS are

‘Send’ and ‘Receive’

Send: “Send” is an event of sending a packet to the neighboring node.

44

Receive: Receive is an event of receiving a packet from neighboring node. After

receiving the packet, a node checks if the packet is meant for it. Then it forwards the

packet to its neighbor. It is in this situation where the different types of attacks take place.

If the forwarder node becomes compromised, it launches the attacks.

When there is a send and receive event, it means that when a node is sending,

another node is receiving, so we have two places to represent the source and destination

nodes.

‘IF’ construct is modeled as follows:

Figure 17: IF Construct

C is a place for the ‘IF’ construct. ‘IF’ construct has two execution (flow of control) paths

represented by places Y and N. Transition T1 is fired if the condition in ‘IF’ statement is

satisfied. Transition T2 is fired if the condition in ‘IF’ statement is not satisfied.

When a ‘FOR’ construct occurs, we represent it as follows:

45

Figure 18: FOR Construct

When a ‘WHILE’ statement occurs it is represented as follows:

Figure 19: WHILE Construct

46

When the event ‘Send’ occurs, they are represented as in Figur 20. The dot in S is a

packet which is being sent to R.

Figure: 20 Event Send

Data Structures Used:

We have used adjacency lists to represent Petri nets. Each petri nets has 3 lists,

one list shows links between Places to Transitions and another table shows links from

Transitions to Places. The third list shows what each transition and place stand for. In

other words it indicates if a place is a node or a program construct like ‘IF’, ‘FOR’, or

‘WHILE’ and whether a transition is a Send/Receive or a flow of control.

Adjacency lists are also convinient when we try to establish a sequence between

the states and transitions.

47

Figure: 21 Example to illustrate data structures

48

Table 3: Category of places and transitions

49

7.4.2 Detection Algorithm

Input: Application and attack Petri nets.

Output: Sequence of instructions that represent an attack found in A.

1) Take input as the sensor application in nesC.

2) Initialize the adjacency lists for attack Petri nets. Attack Petri nets are SFiji

(Selective Forwarding), Si,j (Sybil) and Di,j (Denial of Service) .

3) Initialize each Category List SFCi,j, SCi,j, DCi,j respectively.

4) Start scanning the application to find events.

5) When an event ‘Send’ or ‘Receive’ is found, construct Petri net Ai,j from the

program constructs ‘IF’, ‘FOR’, ‘WHILE’, Send.send().

6) Construct a Category list for the above application Petri net ACi,j with categories

as NODES, SEND, RECEIVE, IF, FOR, WHILE, YES, NO.

7) Prove Existence violation category. Take the attack library Petri net Category lists

compare them with the Category list of the application net. If some set of states

are matching with a particular attack, then goto STEP 8 otherwise goto STEP 10.

8) Prove Sequence violation category. Take the adjacency lists of that particular

attack found in STEP 7. Compare the adjacency lists of application with the attack

to check if the sequences between the states are present. If the attack sequence is

found in the application then STEP 9 otherwise goto STEP 11.

9) Return ‘Attack found’, also return the sequence of attack instructions.

10) Return ‘Attack not found’.

50

11) Return ‘Potential for an attack’ as STEP 7 found some random states which are

not in a sequence.

12) End

7.4.3 Validation of Algorithm

The Detection Tool produces a Petri net from the application and it uses the attack

Petri nets to find the presence of attacks in the application. If the attack is found it returns

the sequence of instructions of the attack. The detection algorithm has been programmed

in Java.

The Detection Tool was tested on the following:

1) Applications consisting Selective Forwarding (with Sink Hole), Sybil and Denial

of Service were input to the Detection Tool and the tool detected the presence of

attacks. It returned the sequence of attack instructions. Table 4 is showing

Selective Forwarding.

51

Table 4: Places to Transitions, sfPT

Table 5: Transitions to Places, sfTP

52

Table 6: Category of places and transitions, sfC

Example: Applicationon with Selective Forwarding

Table 7: Places to transitions, appPT

53

Table 8: Transitions to Places, appTP

Table 9: Category table, appE

54

The process of detection is as follows

• Prove Existence

Number of nodes in appC = Number of nodes in sfC

appC has IF construct, so does sfC

appC has SEND event so does sfC

A match with selective forwarding attack.

Hence the attack states exist.

• Prove Sequence

55

56

57

All the states are in a sequence, so there is Sequence violation.

Since there is existence and sequence, the application has selective forwarding

attack.

2) Application without any particular attack was tested and it resulted in the output

‘Potential for attack’. It also gave the Petri nets states and transitions found. Here

the Petri net found did not match any particular attack. There is no sequence in the

states found. But some of the states are random and do match. This could mean

there is a potential for attack.

Example: Application with potential for attacks

Table 10: Places to transitions, appPT

58

Table 11: Transitions to Places, appTP

59

Table 12: Category table, appE

The detection process is as follows:

• Prove Existence

Number of nodes in appC = Number of nodes in sfC

Number of nodes in appC = Number of nodes in DC

Number of nodes in appC = Number of nodes in SC

appC has IF construct which matches with Selective forwarding.

appC has SEND event so does sfC, DC, SC

There is existence of some attack states. One of the states matches with Selective

forwarding. Another state matches with sybil and denial of service attack.

So we can say that there is a potential for an attack.

60

3) Application without attacks was input to the Tool and it resulted in ‘No attacks

found’. Table 13 shows an example without any attacks.

Table 13: Places to transitions, appPT

Table 14: Transitions to Places, appTP

61

Table 15: Category table, appE

The detection process is as follows

• Prove Existence

Number of nodes in appC != Number of nodes in sfC

Number of nodes in appC != Number of nodes in DC

Number of nodes in appC != Number of nodes in SC

appC has no IF/FOR/WHILE construct.

appC has SEND event which is not an attack state.

62

There is no match between the attack net and the application net. Hence, no

existence. Since there is no existence of any attack states, we can say that there is

no attack in the application.

7.4.4 Complexity of the algorithm

The main constraint is space due to limited storage in a sensor node. Memory is

needed for adjacency lists of attacks and application. We are also using two FIFO queues

to establish a ‘sequence’ between the petri net states. We store petri net places and

transitions in the queue. This algorithm uses a strategy similar to Breadth First Search

(BFS) Algorithm. BFS uses a FIFO queue to put the root node in the queue and it

explores all the unexplored nodes.

 An alternative to adjacency list is an adjacency matrix to represent petri nets. But

matrices occupy more space than a list. Use of adjaceny lists over matrices has

considerably reduced the use of memory.

Advantages of adjacency lists:

1. If the Petri net is not very dense, this representation is great, because it doesn’t

waste memory locations for non-existent edges.

2. It is easy to list all of the edges coming out of a node.

From a computational perspective of the algorithm, it heavily relies on finding

programming patterns in the application. When patterns are found a petri net is

63

constructed. For the detection of attacks, the algorithm searches the adjacency lists of

attacks and the application to match the sequence of states. Therefore this algorithm does

not depend on complex computations of any kind. Computations if any have to be kept

very low as the nodes do not have high processing capabilities.

The algorithm tries to match the petri nets by establishing a ‘sequence’ between the

states. A petri net is a bipartite graph of nodes P (that are places) and transitions T (that

are edges). In the worst case when the sensor application is large, the petri net

constructed is dense. The algorithm will have a large number of places and transitions to

examine. The complexity depends on the denseness of the application Petri net.

The complexity of the detection algorithm is Big oh(P+T+A), where P is the number

of places, T is the number of transitions and A is the number of arcs in application Petri

net. Therefore, for these attacks the algorithm is practical for sensor networks.

64

CHAPTER VIII

CONCLUSIONS

In this thesis we investigate the vulnerabilities present during code

distribution process and detect the malicious code present in sensor applications. The

approach to use Petri nets to model the attacks helps us in understanding the behavior of

the attacks and find patterns in attacks. We programmed the attacks in nesC to find

patterns in them. The attack code was then transformed into Petri nets. We then inserted

malicious code/attacks in a sensor application. The application was transformed into a

Petri net as well. Using the attack Petri nets and application Petri net, we tried to detect

the attacks in the application.

To experimentally validate our proposed model, we have developed a Detection

Tool that will use the attack Petri nets to detect malicious code in the applications. This

tool when tested on a sensor application detected the particular attacks present in it. It

detected the sequence of instructions that closely matched the states in the attack Petri

nets.

65

In future this approach can be expanded to identify more attacks and behavior of

those attacks. It also consists of finding more categories for matching the structures of

application and attack Petri nets. Future work in this area includes working on executable

code to find attack signatures. Working on the executable code would eliminate the need

for a decompiler. The sensor application code may also contain a combination of attacks

such as Denial of Service with selective forwarding. The code could also contain

obfuscated attacks. In the case of obfuscated attacks, the attacks are hidden within the

code, in other words they do not look like attacks, as they are not continuous. Therefore,

there are a lot of possibilities to expand this work in future.

66

APPENDIX

I. Input: SelectiveForwarding.txt

 The screen shot below shows a dialog box which asks the name of the sensor

application file. The Detection Tool when run prompts for the name of the file. The

name of the file “SelectiveForwarding.txt” is given as input here.

67

Output: The screen shot below shows the output when the input is given to the detection

tool. It recognizes the attack patterns in the input application. The dialog box below

shows that the application has selective forwarding in it. The sequences of instructions

which are malicious are shown. Also the Petri net representation for that particular attack

is shown. A, Y, N and B are places. T1, T2 and T3 are transitions.

68

II. Input: dos.txt

This screen shot shows the input dialog box. But this time the input given is dos.txt

which contains the nesC code of the application.

69

Output: This screen shot shows the output which shows that the application has

denial of service attack present in it. The sequences of instructions along with the

Petri net representations of the attack are shown.

70

III. Input: sybil.txt

This screen shot shows the input dialog box where the input is give n as a file

containing nesC code. The file is sybil.txt

71

Output: This screen shot shows the output when an application infected with Sybil

attack is given to the Detection Tool. The output shows that Sybil attack is found.

The sequences of corrupt instructions and the Petri net representation of the attack

are shown.

72

IV. Input: App.txt

This screen shot shows the input given to the detection tool which is application

without any particular attacks.

73

Output: This screen shot below shows the output . The output is “Potential for attack”. It

also shows the Petri nets states and transitions found. Here the Petri net found does not

match any particular attack. There is no sequence in the states found. But some of the

states do match. This could mean there is a potential for attack.

74

V. Input: na.txt

This screen shot shows the input given to the Detection Tool.

75

Output: The output shows that ‘No attack found’. There are no attacks in the application.

76

REFERENCES

[1] Reijers N. and Langendoen K., “Efficient Code Distribution in Wireless Sensor

Networks”, Proceedings of the 2nd ACM International conference on Wireless sensor

networks and applications WSNA '03, 2003

[2] Stathopoulos T., Heidemann J. and Estrin D., “A Remote Code Updation Mechanism

for Wireless Sensor Networks”, Technical Report Centre for Embedded Networked

Sensing (CENS), 2003

[3] Bergeron J., Debbabi M., Desharnais J., Erthioui M.M., Lavoie Y. and Tawbi N.,

“Static Detection of malicious Code in Executable Programs”

[4] Wood A.D and Stankovic J.A., “A Taxonomy for Denial-of-Service Attacks in

Wireless Sensor Networks”, Handbook of Sensor Networks: Compact Wireless and

Wired Sensing Systems, CRC Press, 2004 (invited paper).

[5] McDermott J.P., “Attack Net Penetration Testing”, Proceedings of the 2000

workshop on new security paradigms, pp. 15-21, 2001

[6] Ho Y., Frincke D. and Tobin Jr. D. “Planning, Petri Nets and Intrusion Detection”,

21st Proceedings of National Information Systems Security Conference, pp. 346-361,

1998

[7] Romer K, “Programming Paradigms and Middleware for Sensor Networks”, Institute

for Pervasive Computing, Zurich

77

[8] Lifton J., Seetharam D., Broxton M., and Paradiso J., “Pushpin Computing System

Overview: A Platform for Distributed, Embedded, Ubiquitous Sensor Networking”,

Proceedings of the First International Conference on Pervasive Computing, 2002

[9] Lanigan P.E., Gandhi R. and Narasimhan P., “Poster Abstract: Secure Dissemination

of Code Updates in Sensor Networks”, Proceedings of 3rd ACM Conference on

Embedded Networked Sensor Systems (SenSys '05), pp. 278 - 279. November 2005

[10] Porras P.A., Cheung S., Almgren M., “Malicios Code Outbreak Discovery: Issues

and Approaches”, International Position Paper, DARPA Malicious Code Defense

Workshop, Denver, Colorado, August 21-23, 2002

[11] Deng J., Han R. and Mishra S., “Secure Code Distribution in Dynamically

Programmable Wireless Sensor Networks”, Proceedings of the fifth international

conference on Information processing in sensor networks, pp. 292 – 300, 2006

[12] Datema S., “A Case Study of Wireless Sensor Network Attacks”, MS Thesis in

Computer Science, Delft University of Technology

[13] Voght H., Ringwald M., Strasser M., “Intrusion Detection and Failure Recovery in

Sensor Nodes”, Tagungsband INFORMATIK 2005, Workshop Proceedings, LNCS,

Heidelberg, Germany, September 2005.

78

[14] Angelo G., “Tutorial on Petri Nets”, ACM SIGSIM Simulation Digest archive pp.

10-25, 1983

[15] Petri Nets, http://www.cse.fau.edu/~maria/COURSES/CEN4010-SE/C10/10-7.html

[last accessed – April, 2007]

[16] Yao W. and He X., “Mapping Petri Nets to Parallel Programs in C, C++”,

Department of Computer Science, North Dakota State University, COMPSAC '96 - 20th

Computer Software and Applications Conference, 1996.

[17] Ali H., “A New Model for Monitoring Intrusion Based on Petri Nets”, Information

Management & Computer Security, Volume 9, pp. 175-182, 2001

[18] De P., Liu Y., and Das S., “Modeling Node Compromise Spread in Wireless Sensor

Networks using Epidemic Theory”, Proceedings of the 2006 International Symposium on

World of Wireless, Mobile and Multimedia Networks, pp. 237 – 243, 2006

[19] Zhang Q., Yu T. and Ning P., “A Framework for Identifying Compromised Nodes in

Sensor Networks”, Proceedings of 2nd IEEE Communications Society/CreateNet

International Conference on Security and Privacy in Communication Networks

(SecureComm 2006), pp. 1- 10, August 2006

[20] Godse A., “Petri Net Based Model for Protocol Damage Estimation and Protection”,

MS Thesis, Department of Computer Science, Oklahoma State University, 2006

[21] Da Silva A., Martins M., Rocha B., Lourero A., Ruiz L. and Wong H.,

“Decentralized Intrusion Detection in Wireless Sensor Networks”, Proceedings of the 1st

ACM international workshop on Quality of service & security in wireless and mobile

networks, pp. 16 – 23, 2005

79

[22] Karlof C., Wagner D., “Secure Routing in Wireless Sensor Networks: Attaks and

Countermeasures”, Proceesings of first IEEE International Workshop on Sensor Network

Protocols and Applications, pp. 113 - 127, 2003

[23] Christodorescu M., Jha S., “Static Analysis of Executables to Detect Malicious

Patterns”, Proceedings of the 12th USENIX Security Symposium, pp. 169 -186, August

2003

[24] Slijepcevic S., Tsiatsis V., Zimbeck S., Potkonjak M. and Srivastava M., “On

Communication Security in Wireless Ad-Hoc Sensor Networks”, Proceedings of the 11th

IEEE International Workshops on Enabling Technologies: Infrastructure for

Collaborative Enterprises, pp. 139 – 144, 2002

[25] Levis P., “Viral Code Propagation in Wireless Sensor Networks”, EECS

Department, University of California, Berkeley

[26] Hui J., “Deluge 2.0 TinyOS Network Programming”, Fourth International TinyOS

Technology Exchange (TTX4) 2004,

www.cs.berkeley.edu/~jwhui/research/deluge/deluge-manual.pdf [last accessed - May 24,

2004]

[27] Hui J. “Deluge 2.0 Tiny OS Network Programming”, University of California,

Berkely, www.tinyos.net/ttx-02-2005/developments/ttx2005-deluge.ppt [last accessed -

May 24, 2004]

VITA

Prathiba Reddy Nalabolu

Candidate for the Degree of

Master of Science

Thesis: DETECTING MALICIOUS CODE IN SENSOR NETWORK
APPLICATIONS USING PETRI NETS

Major Field: Computer Science

Biographical:

Personal Data: Born in Andhra Pradesh, India, on June 8th, 1984, the elder

daughter of Ramana Nalabolu and Uma Nalabolu.

Education: Graduated from Neeraj Public School, Hyderabad, India in May

 1999; received Bachelor of Engineering degree in Computer Science

 & Engineering from Osmania University, Hyderabad, Andhra

 Pradesh, India in May 2005. Completed the requirements for

 Master of Science degree with a major in Computer Science at

 Oklahoma State University in December 2007.

Professional Memberships:

1) Phi Kappa Phi

2) Golden Key International Honor Society

ADVISER’S APPROVAL: Dr. JOHNSON P. THOMAS

Name: Prathiba Reddy Nalabolu Date of Degree: December, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: DETECTING MALICIOUS CODE IN SENSOR NETWORK

APPLICATIONS USING PETRI NETS

Pages in Study: 79 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study: Sensor Network reprogramming is essential and crucial for

software updates or bug fixes on nodes. Reprogramming is fraught with many
challenges. Attackers can easily insert malicious code during code propagation.
Such code propagates in an epidemic way from one source to many, bringing
down the whole network. The proposed model called Malicious Code Detector is
based on Petri nets. The strategy to use Petri nets to model attacks is to understand
the properties of the attacks. The proposed system model detects the malicious
code at each node. The main components of the System are a Detection Tool and
Library of attack Petri nets.

Findings and Conclusions: The Detection Tool’s function is to transform code to Petri

nets. The Detection Tool based on a Detection Algorithm that uses the attack Petri
nets and the sensor application to detect the presence of corrupt code/attacks in it.
Detecting such corrupt code can lead to shutting down of that particular node and
most importantly preventing further propagation of this malicious code
throughout the network.

