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CHAPTER I 
 

INTRODUCTION 

 

The need to reprogramme sensor nodes in a wireless sensor network arises due to 

changing application requirements. Sensor nodes once deployed cannot be physically 

reached. Therefore techniques have been developed to reprogramme the motes remotely. 

But the process of code updation is fraught with challenges. An adversary can inject 

packets into the network and accomplish widespread rapid installation of corrupt code. 

Attackers can also hijack packets and embed malicious code within the packet. This code 

can launch different attacks like Selective forwarding, Denial of Service and Sinkhole 

attacks.  

Code updation mechanisms like Remote code propagation [2], Efficient Code 

Distribution [1] and Viral Code Propagation [25] concentrate on reducing the bandwidth 

and energy usage of the node. They do not stress on propagating the code securely. 

Secure code propagation in Sensor Networks is important as any attacker could inject 

malicious code and propagate it. Currently there are no existing approaches in wireless 

sensor networks to identify whether the code received by a mote is free of malicious 

content.  
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The important issue is how to deal with the malicious code that has already been 

received by the sensor node. Malicious code modifies the behavior of the sensor node and 

attacks the applications as well. In this thesis we propose to identify potential attacks in 

the code which is received by a node during code distribution process. The key idea is to 

build a library of attacks, model the attacks and the sensor network application, in Petri 

nets. We then aim to identify malicious patterns in the application (code) and also 

estimate the damage caused by the attacks.  

 

The objectives of this thesis include: 

� Implement Selective Forwarding, Sink Hole attack, Denial of Service and Sybil 

attack. 

� Define Petri net models for list of attacks mentioned above. 

� Embed Selective Forwarding, Sink Hole attack, Denial of Service and Sybil 

attack in a sensor network application. 

� Define Petri net models for the code which has been embedded with attacks 

� Identify attack signatures in the sensor network application  

 
The remainder of this document contains chapters as follows. Chapter II contains  

Problem background, related work and literature review pertinent to it. Chapter III 

reviews about Petri nets and modeling software using Petri nets. Chapter IV discusses the 

relevance of Deluge protocol. The System Model is discussed in Chapter V. Chapter VI 

talks about modeling attacks and application. Finally Chapter VII describes 

implementation of the solution.  
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CHAPTER II 
 

REVIEW OF LITERATURE 

 

In this section we review the previous work in the field. We first review why we 

need to reprogramme the sensor networks. Sensor nodes are deployed in order to gather 

valuable data. Once they are deployed, they need not be tended to. These nodes are 

usually deployed in hostile or sensitive environments like ocean beds, birds nest, or in 

buildings [24]. However in the course of time, the application requirements may change 

or a bug fix may be required. In this situation, the node needs to be reprogrammed. The 

problem of reprogramming the wireless sensor networks has been addressed in many 

ways. Some of the techniques are Remote Code Updation Mechanism [2] and Efficient 

Code Distribution [1]. The two mechanisms are not secure. In other words there is no 

way a sensor node can detect if the code received has malicious content. 

 To update the code in sensor networks, the code is divided into images or 

fragments. These fragments are transmitted part by part. This mechanism is called 

pipelining [1]. Due to this mechanism the nodes need not wait for the entire code image. 

After receiving a part or fragment they can forward it to other nodes. A malicious node 

can intercept the code fragment as it is being transmitted. 
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It can hijack the original code and send a malicious code or viruses. The malicious node 

can cause widespread installation of malicious code. It will also consume the network 

resources and bandwidth. 

The code distribution mechanism proposed by Stathopoulos et. al. is ‘Remote 

Code Update Mechanism for Wireless Sensor Networks’ [2]. The protocol developed is 

called Multihop Over-the-Air Programming (MOAP). This mechanism proposes to use 

Ripple dissemination protocol for reprogramming the sensor nodes remotely. The 

protocol uses a publish-subscribe method. Here a set of nodes act as source, other nodes 

act as receivers. For a node to become a source it should have the complete code image. 

So a node waits for all the code image packets to arrive. When that node becomes the 

source, the new version of the code is advertised and other nodes subscribe a newer 

version of this code image.  

The Ripple mechanism guarantees that the source is one hop away, follows ripple 

like data propagation [2]. The MOAP protocol is also vulnerable to attacks from 

malicious nodes or advisory [11]. An adversary can compromise a node in the network. 

This node can pose as a source and publish its malicious code. When the code is installed 

and executed, different attacks like DOS, Sybil attack could be launched on the node.   

Efficient Code Distribution in Wireless Sensor Networks [1] proposed by Reijers 

et. al. is not resilient to malicious code injections either. It considers packet losses, 

communication costs but it does not consider the secure code propagation. In this scheme 

the new code image is built using edit script of commands that are easy to process by the 

nodes. The procedure for code distribution consists of four stages- Initialization, Code 



5

image building, Verification and Loading. Energy is saved by distributed only changes to 

the currently running code [1].  

‘Viral code Propagation in Wireless Sensor Networks’ by Levis [25] presents 

scalable and rapid algorithms for disseminating code through a sensor network. They 

show that by dynamically adjusting transmission rates, networks can reprogramme very 

quickly while having a low overhead when stable. In order to reduce the time taken for 

reprogramming and to prevent the saturation of available bandwidth, three distributed 

algorithms are proposed.   

Slijepcevic et. al. [24] proposed a security mechanism to prevent malicious code 

injection into the network. They classified the types of data existing in sensor networks, 

and identified possible communication security threats according to that classification. 

They developed a multitiered security architecture where each mechanism has different 

resource requirements, they allow for efficient resource management, which is essential 

for wireless sensor networks. The security architecture called SensorWare is multitiered 

where each tier is based on private key cryptography. Each tier in the multitiered 

architecture is implemented with by using various algorithms or by using the same 

algorithm with adjustable parameters that change its strength and corresponding 

computational overhead. Using one algorithm with adjustable parameters has the 

advantage of occupying less memory space [24]. They characterized mobile code as 

sensitive data. They employed encryption to messages with code.  

However, the attacker can break the encryption using ‘brute force’ approach and 

inject harmful code. Using encryption also results in overhead. They also did not state 
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how to protect the node from malicious code already at the node. This has been stated as 

one of their future challenges. 

 

Some of the cases where a malicious code can hamper the working of the node and in 

turn the entire network are: 

• The malicious code can launch DOS (Denial of Service) and Selective 

Forwarding attacks in the network.  

• It can consume the battery life and other scarce resources on the nodes. 

• In military applications it is very important to verify code updates to prevent 

downloading of malicious code or viruses. 

• In commercial application like manufacturing, if a sensor node picks up 

malicious code, it could affect the profit making processes. 

• In applications that require privacy to be maintained, malicious nodes try to 

propagate code to sensor nodes to snoop on the information.   

 

Very little work has been done on the secure code updation in sensor networks. It 

is evident that all the previous work has been aimed to prevent malicious injections 

into the network. As far as we are aware, no one has looked at the problem of 

detecting malicious code present at the sensor node.  
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CHAPTER III 
 

PETRI NETS 

 

In this section we review Petri nets and their role in understanding systems. Petri 

nets are flowcharting technique used to model asynchronous and concurrent processes 

[14]. Petri nets are composed of four symbols: circles, bars, arcs and dots. A circle 

represents a place which models a condition in the graph. The bars are transitions in 

which represent actions that occur. The arcs are bidirectional connections between places 

and transitions.  A place can only connect to a transition. A transition in turn can only 

connect to a place. Therefore a Petri net is a bipartite directed graph. The dots are tokens 

which reside in places. Tokens move from place to place upon occurrence of some rules 

[14]. 

A transition can fire when it becomes enabled. A transition is enabled when each 

of the input places has at least one token. When a transition fires the token from each 

input place goes to each output place. If a place is connected to two or more transitions 

then firing of one transition disables all other transitions. Another arc known as inhibitor 

arc connects a place to a transition and is represented with a small circle at the end of the 

arc. Inhibitor arc is used to model limited resources. 
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The definition of Petri net follows [16]:  

Petri net is a 5 tuple (P, T, F, W, M0) where  

� P is a finite set of places; 

� T is a finite set of transitions; 

� F is a set of arcs known as flow relations; 

� W is a weight function; 

� M0:  P -> {0, 1, 2….} is the initial marking 

 

A Petri net with tokens is said to be a marked Petri net. Petri net has characteristics such 

as boundness and livness. A Petri net can have more than one token in a place.  

Boundness: A k- bounded Petri net has k tokens in a single place at a time. If the exact 

value of ‘k’ is unknown but is known to be some finite number then the net is referred to 

as being ‘bounded’.   

Safe net: In a case where the number of tokens in a net is equal to one, it is called a ‘safe 

net’. 

 Conservative net: The total number of tokens has to remain constant. 

 

Transitions can be in any of the three states: 

Dead: A transition is dead if there exists no sequence of firings, from some initial 

markings, which will enable the transition.  

Potentially firable: If there exists a sequence of firings which enable a transition, then it 

is potentially firable. 
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Live: A transition is live, if for every possible marking that can result from some initial 

markings, the transition can be enabled. 

3.1 Modeling Software 

 

Petri nets can give the user graphical presentation of the code he wants to model 

[14]. Program structures such as IF- THEN- ELSE, DO-WHILE and PARBEGIN and 

PAREND can be modeled in Petri nets. Although Petri nets do not shown which path will 

be chosen during execution time, however they do show the structure of the code. Figure 

1 shows the modeling of the following code. 

 L S0

DO WHILE P1 

 IF P2 THEN 

 S1 

 ELSE 

 S2 

 END IF 

 PARBEGIN S3, S4, S5

PAREND 

 END DO         

 GOTO L     
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Figure 1 Example of Petri net representing the flow of control in programs [14] 
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CHAPTER IV 
 

DELUGE 

 

Deluge provides an efficient mechanism for remotely installing any code such as 

program binaries, to many nodes within a wireless sensor network. The following 

features are included with Deluge [26]: 

 

Multihop support: Wirelessly program all nodes in a multihop network without 

physically handling the nodes. 

Epidemic propagation: Continuous propagation by all nodes helps ensure reachability 

of those nodes with intermittent connectivity. 

Store multiple program images: Each node can store multiple program images and can   

quickly switch your network between different programs without continuous 

downloading. 

Golden image: A program image with minimal support for network programming stored 

in a safe location on external flash. This piece of code will allow for recovery. 

Isolated bootloader: A piece of code that is guaranteed to execute after each reset 

independent of the TinyOS application. The bootloader is responsible for programming 

the microcontroller and recovers from programming errors by loading the Golden Image. 
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Deluge's multiple program image support allows different application code to 

coexist in the network [26]. With some additional logic to determine which program 

image a specific node should use, a heterogeneous network with different application 

code can exist. Finally, Deluge exports a very simple interface to extend its functionality. 

For example, Deluge can be enabled or disabled to control which nodes participate in the 

dissemination process. Additionally, nodes can decide which program image to use and 

when, thus allowing for heterogeneous networks where nodes execute different binaries 

[26].  

With the help of deluge, we can remotely install the new program on the nodes. 

The program will be stored in the flash memory. Since deluge can hold up to three 

program binaries, different applications coexist. The program we write to detect 

malicious code can access the sensor application in the flash memory.    

 

4.1 Working of Deluge 

 

This section captures the gist of how deluge epidemically propagates new 

applications on motes [27]. 

 

Step1: Nodes periodically advertise their new version of the application. In the figure 

below, a node advertises ‘Version 2’. Its immediate neighbors realize that they have 

‘Version 1’. 
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Figure 2 Nodes advertise new code version 

 

Step 2: The neighbors request for the new versions. 

Step 3: Requested data is sent. 

 

Figure 3 Nodes request for new code version 
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Step 4: Nodes use Nack to indicate dropped packets. Dropped packets are sent again. 

Step 5: Now the neighbors of first node, advertise their new versions to next hop. These 

nodes in the next hop receive new versions. 

 

Figure 4 Nodes advertise new code version for next hop 

 

Continuous propagation is exhibited by all the nodes, thereby reaching nodes with 

intermittent connectivity. 
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CHAPTER V 
 

SYSTEM MODEL 

 

Figure 5: Malicious Code Detector 

 

In this thesis we identify potential attacks in the code which is received by a node 

during code distribution process. It aims to create a library of attacks by representing 
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selective forwarding, DOS attacks, Sybil attack and Sink Hole attack in the form of Petri 

nets. This work is based on ‘Static Analysis of Executables to Detect Malicious Patterns’ 

[23]. The problem considered in this thesis is as follows: Assume we are given source 

code of a sensor network application which could possibly contain an attack like selective 

forwarding. We have to determine if the code contains any malicious content that would 

change the behavior of a node.  

 

System Model Description 

Figure 5 shows the system model. The main components in the system model are: 

• Decompiler 

• Attack Petri nets 

• Detection tool 

o Transform application to attack Petri nets 

o Detection Algorithm 

 

The function of each component is as follows: 

Decompiler: It takes the executable nesC code and decompiles it to nesC source code. 

 

Attack Petri nets: Library of attack Petri nets which are selective forwarding, denial of 

service, Sybil and sink hole attack. 
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Detection Tool: The detection tool has two functions: 

• It transforms the nesC code to Petri net. 

• It takes attack Petri nets and the Petri net of application, matches both of them. It 

uses detection algorithm that is implemented in Java. It matches both the Petri 

nets to detect an attack. Finally it outputs whether an attack is present or not. 

 

Detection Algorithm uses two violation categories to decide if the application has 

malicious content. The violation categories are: 

Existence: The fact that something exists is a violation. 

Sequence: The fact that several things happen in a sequence is sufficient to detect an 

attack. 

‘Existence’ indicates the potential for an attack, whereas ‘Sequence’ shows the presence 

of an attack.  

 

Input/Output to the System 

 

Input: The input to the system is executable code of a sensor node application. A 

decompiler is used to decompile executable code to nesC code. This code is given as 
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input to the Detection Tool. Detection algorithm takes the nesC code and attack Petri nets 

as inputs.  

 

Output: If the attack is found in the application it returns the sequence of instruction 

representing the attack. If the attack is not found then it says the attack is not found. If 

some of the attack states are found but there is no complete attack signature then it says 

that there could be a potential for an attack.   
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CHAPTER VI 
 

ATTACKS AND APPLICATION MODELING 

 

We are going to represent sensor network attacks and application in the 

form of Petri nets. The main motivation to use Petri nets in representing the attacks is the 

possibility to understand important properties of the attacks and reason about them. They 

help in examining the techniques used or targeted by particular attacks [20]. One of the 

techniques to insert malicious code is to insert unnecessary dead code or unwanted jump 

instructions. In this section we discuss what places and transitions in a Petri net represent 

while modeling attacks and applications. 

 As we said before the attacks and application will be in nesC code. In nesC there 

are events which give rise to actions in the sensor node. For example the event ‘Send’ 

causes an action where a packet is to be sent to another node. The event ‘Receive’ means 

that a packet has been received by a node.   

Attacks like selective forwarding, sink hole and Sybil attack are routing attacks 

that mainly take place during routing packets. For this reason, we are going to examine 

the events like ‘Send’ and ‘Receive’. During these events we are going to examine the 

actions that are taking place during forwarding a packet and after receiving it.  
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The work is divided as 

� Attack Modeling 

• Programming attacks in nesC using TOSSIM simulator. 

• Modeling attacks as Petri nets creating a library of attack Petri nets. 

 

� Application Modeling 

• Programming the sensor application in nesC. 

• Embedding attacks in the application. 

• Modeling the above application as Petri net. 

 

6.1 Important Assumptions 

 

The following are assumptions made in this thesis: 

� We only consider code which is infected with attacks such as: 

• Selective forwarding  

• Denial of service  

• Sink Hole 

• Sybil Attack 

� The malicious code is embedded with sensor network application. 

� The source code of the sensor application in nesC. 
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6.2 Attacks  

 

The attacks are routing attacks that take place during forwarding packets. The 

attacks target packets dropping them completely/selectively and also flooding them 

repeatedly.  Therefore, we represent the places, transitions, and tokens as follows. 

 

Places: Sensor nodes and programming constructs in the nesC code. 

Transitions: Events, actions and flow of control (branches in the code). 

Tokens: Packets that being sent and received. 

 

We have a Petri net P = {p0, p1, p2…pn} of places representing interesting states or 

modes of the security relevant entities of the system in interest. Then we have a set T = 

{t0, t1, t2… tn) of transitions that represent input events, commands, or data that can cause 

one or more security relevant entities to change their state. This Petri net also has a set of 

tokens that move from place to place when transitions are fired. If token is at place it 

means that the attacker has gained control of that place. If pi and pj are two places where 

pi precedes pj, then the attacker should gain control of pi before gaining control of place 

pj [20]. 
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6.3 Application 

 

Application has embedded attack in it. We are going to examine send and receive 

events, where a node is involved in sending a packet and another node is involved in 

receiving the packet. Hence nodes are sending, receiving and forwarding packets. These 

events are causing some actions to take place. Transitions represent events and flow of 

control of code, which will be discussed in detail in chapter VII. Representation of the 

places, transitions, and tokens are discussed in section 6.2. 

We propose to develop a program which will detect the presence of attacks in 

source code by utilizing the library of attack Petri nets. Consider the code to be examined 

is modeled as a Petri net, P. We also have a library of Petri nets which are Selective 

Forwarding attack, S and DOS attack, D. To say that the given code has malicious 

content in it, we have to determine if P has D in it. In other words, we have to find states 

in P that are the attack signature. This signature could represent S or D. Matching of the 

application Petri net and attack Petri net gives us a set of matching states and the 

resources used by the states.  
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CHAPTER VII 

 

IMPLEMENTATION 

 

The implementation has four parts. 

• In the first part we are going to program the attacks on TINYOS 1.1 platform in 

nesC.  

• Second part consists of transforming attacks into Petri nets as intermediate 

representation. 

• Third part consists of embedding the attacks in sensor application and modeling it 

as a Petri net. 

• In the final part, we are going to design and implement a program that will detect 

malicious code in the (sensor) applications.   

 

In the implementation phase, we have implemented the components Attack Petri nets 

and Detection Tool. 
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7.1 Attack Modeling 

 

7.1.1 Selective Forwarding and Sink Hole Attacks 

 

a) Selective Forwarding: Selective forwarding attack influences the communication 

in a Multi hop network [12]. In a Multi hop network, a node forwards a message 

to its neighbor, thus acting as a forwarder. If a node has been compromised by an 

attacker, it could launch selective forwarding attack on the network. The 

malicious node selectively drops few packets. This node selects few nodes 

randomly and drops packets that are received from them. The compromised node 

does not drop all the packets. This is because if it drops all the packets, the link 

quality degrades and the multi hop protocol rejects the node from selecting it as 

parent node. It also does not drop all the packets as it will raise the suspicion of its 

neighboring nodes. 

The effectiveness of this attack on the network depends on placement of 

malicious node with respective to the base station and the number of packets 

dropped. In this case we assume that the attacker is a compromised node that is in 

the path to the base station. The closer the attacker is to the base station, the more 

number of packets are received by it [12].  

 

b) Sink Hole Attack: The easiest way of creating a sink hole is to have a malicious 

node pretend it is a base station [12]. This can cause a big part of the network to 

start sending their traffic towards that node. How many nodes are affected 
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depends on the part of the network the malicious node is located in. This is 

because nodes closer to the real base station will not send traffic towards the 

malicious node because it is further away than the real base station [12]. 

In a sinkhole attack, the adversary’s goal is to lure nearly all the traffic 

from a particular area through a compromised node, creating a metaphorical 

sinkhole with the adversary at the center [22]. Because nodes on, or near, the path 

that packets follow have many opportunities to tamper with application data, 

sinkhole attacks can enable many other attacks (selective forwarding, for 

example). Sinkhole attacks typically work by making a compromised node look 

especially attractive to surrounding nodes with respect to the routing algorithm. 

For instance, an adversary could advertise an extremely high quality route to a 

base station.  

Effectively, the adversary creates a large ‘sphere of influence’, attracting 

all traffic destined for a base station from nodes several (or more) hops away from 

the compromised node. By ensuring that all traffic in the targeted area flows 

through a compromised node, an adversary can selectively suppress or modify 

packets originating from any node in the area. It should be noted that the reason 

sensor networks are particularly susceptible to sinkhole attacks is due to their 

specialized communication pattern [22].  

 

Attack Code

Figure 6 is the code snippet which does selective forwarding in combination with 

sink hole attack. In the code, the node checks if the link is busy. In an attack scenario, 
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even when the link is not busy it does not send the packets. In normal cases, a node 

forwards a packet if the radio signal is not busy. So it first checks for busy radio signal. If 

the signal is busy the packet is sent, the action of sending a packet is independent of any 

other conditions. But here, Nodes 2 and 3 are attackers here. They are the sink holes that 

are in the path to base station. They drop packets selectively.    
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Petri net model of attack

Figure 7: Selective Forwarding and Sink Hole 

Places: 

A: Attacker node which has been compromised 

Y: A condition is satisfied. The packet is forwarded. The packet is selectively forwarded 

to the neighbor. 

N: The condition is not satisfied. Packet is dropped. It is a sink hole. 

B: Neighboring node. 

 

Transitions: 

T1: Checks for a condition. In the code it is specifically an ‘IF’ construct. The condition 

has occurred. Packet is forwarded (conditionally). 

T2: Condition failed, packet dropped. 
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T3: The action of sending a packet. In programming construct it is a ‘Send’ action. 

 

7.1.2 Sybil Attack 

 

In a Sybil attack, a single node presents multiple identities to other nodes in the 

network [22]. Sybil attacks pose a significant threat to geographic routing protocols. 

Location aware routing often requires nodes to exchange coordinate information with 

their neighbors to efficiently route geographically addressed packets. It is only reasonable 

to expect a node to accept but a single set of coordinates from each of its neighbors, but 

by using the Sybil attack an adversary can ‘be in more than one place at once’ [22].  

 

Attack Code

The following code launches Sybil attack by creating multiple identical nodes. 

The Sybil nodes send connection establishment requests to neighbors. In Multihop, data 

of its neighbors is kept in the neighbor table. The table has a maximum size of sixteen. 

When the table is full and a message from a node that is not in the table is received, the 

node with the lowest send quality is replaced with the new node. If a Sybil attack node 

assumes the identity of sixteen nodes it can remove all real neighbors from the neighbor 

tables of all nodes within its radio range. It can even remove the base station if the fake 

node's send quality is higher than the one from the base station.  

 
//Creating multiple identical nodes, sending requests to neighbors, causing flooding, 
request establishment packets 
event TOS_MsgPtr Receive.receive(TOS_MsgPtr m) { 
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Msg *message = (Msg *)m->data; 
 Msg *data = (Msg *)pkt.data; 
 if(m->addr == TOS_LOCAL_ADDRESS) 
 { 
 dbg(DBG_USR1,"Received message from %d",child); 
 // attack code 
 attack++;  

//send the packet to next hop 
data->source = TOS_LOCAL_ADDRESS; 

 data->origin = message->origin; 
 data->seqNo = message->seqNo; 
 data->value = message->value; 
 if(TOS_LOCAL_ADDRESS != 3) { 
 post addOperation();    
 if(call Send.send(parent, sizeof(Msg), &pkt)) 
 dbg(DBG_USR1, "SENT MESSAGE TO %d", parent); 
 }

else{ 
 //Sybil nodes flood packets 
 while(i!=15){ 

// sybil node creation 
 parent = TOS_LOCAL_ADDRESS + i; 
 post addOperation(); 
 //each sybil node floods packets  
 if(call Send.send(parent, sizeof(Msg), &pkt)) 
 dbg(DBG_USR1, "SENT MESSAGE TO %d", parent); 
 i++; 
 }

}
}
return m; 

 }
}

Figure 8: Code for Sybil Attack 

 

Figure 9 shows the Petri net representation of the code of Figure 8, where four 

Sybil nodes are created. Each Sybil node then sends each neighboring node connection 

establishment packets. 
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Petri net model of Attack

Figure 9: Sybil Attack 

 

Places: 

A: Attacker node which has been compromised 

W: Checking for occurrence of a condition 

Y: A condition is satisfied. Sybil attack is launched. 

N: The condition is not satisfied. There are no further transitions. 

S, U, V and X: Sybil identities are created. Each Sybil identity sends connection 

establishment requests to its neighbors. 
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B: Sensor Node. 

 

Transitions: 

T1: Attacker node starts a while loop 

T2: Checks for a condition. The condition has not occurred.  

T3: Condition is true. There are further transitions. 

T4: Firing of T4 creates Sybil nodes.  

T5, T6, T7, and T8: Firing of T5, T6, T7 and T8 causes the Sybil nodes to send 

connection establishment packets to the neighboring nodes.  

 

7.1.3 Denial of Service 

 

Although we usually use the term to refer to an adversary’s attempt to disrupt, 

subvert, or destroy a network, a DoS attack is any event that diminishes or eliminates a 

network’s capacity to perform its expected function [4]. Hardware failures, software 

bugs, resource exhaustion, environmental conditions, or any complicated interaction 

between these factors can cause a DOS. Determining if a fault or collection of faults is 

the result of an intentional DoS attack presents a concern of its own—one that becomes 

even more difficult in large-scale deployments, which may have a higher nominal failure 

rate of individual nodes [4].  

Some of the forms of denial of service attacks are jamming, flooding and 

exhausting battery resources. Misdirecting packets is another common form of denial of 
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service attack. Compromised nodes simply forward packets along wrong paths, thereby 

diverting traffic away from intended destination.  

 

Attack Code

In this attack scenario, an attacker repeatedly transmits packets to other nodes, in 

order to prevent them from servicing a request. Flooding is one form of DOS attack 

which has been implemented here. The attacker sends connection establishment packets 

to other nodes. Meanwhile if any other node sends a request packet to another node, its 

request is never satisfied. This is because the request might not even reach the destination 

as the channel is always busy with the packets from the attacker. 

Figure 10 is the code snippet for a DOS attack. Here the attacker is flooding the 

channel with connection establishment request packets that results in requests not 

reaching destination and not being processed. Node 3 has been compromised here. In 

other words it is the attacker and it launches DOS. It is in the path to base station. 
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Figure 10: Denial of Service 
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Petri nets model of attack

Figure 11: Denial of Service 

 

Places: 

A: Attacker node which has been compromised.  

F: FOR loop begins. 

Y: A condition is satisfied. Packets are flooded causing DOS attack. 
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N: The condition is not satisfied. There are no further transitions and attack stops. 

B: Neighboring node. 

 

Transitions: 

T1: Attacker node starts a ‘FOR’ loop.  T1 is fired when attacker receives a packet to 

forward. T1 places a token in places.  

T2: Checks for a condition. T2 is fired when condition false 

T3: T3 is fired when condition true. 

T4:  The action of sending a packet. In programming construct it is a ‘Send’ action. A 

token is placed in places B and A. Now T1 can fire again and the process continues. This 

results in the attacker repeatedly sending packets. 

 

7.2 Application Modeling 

 

We have used a sensor application to embed attacks in it. A sensor application 

resides in the sensor node and it has a particular function. The particular application that 

we developed has each node in the sensor network sending a packet to base station every 

1000 milliseconds. When a node sends a packet to its neighbor, other nodes forward the 

packet to the base station. The attackers are in the path towards the base station. When 

the attacker node receives the packet it launches that particular attack.  
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Figure 12: Application 
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Petri net Model of Application

Figure 13: Application 

 

Places: 

T: This is a place for ‘Timer’ or a clock. 

4, 3, 2 and 1: Sensor nodes. 

B: Base station 
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Transitions: 

T1: Timer firing. Nodes 4, 3, and 1 can now send packets with destination as B. 

T2, T3, T4 and T5: The transitions represent ‘Send’ actions.  

 

In the above figure 4, 3, 2, 1 and B are sensor nodes. Timer is clock. For every 1000 

msec, the nodes start sending packets with destination as node B.  

 

7.3 Application with Attacks 

 

7.3.1 Selective forwarding attack and Sink Hole 

 

The colored portion in the Figure14 shows the sensor application that has 

selective forwarding embedded in it. This is a global scenario in which the network has 4 

nodes and a base station. Each node sends packet to base station. Node 4 sends a packet 

to node 3. Node 3 selectively forwards it to node 2.  Node 2 forwards the packet to node 

1, which in turn forwards it to the base station. 
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Figure 14: Application with Selective forwarding attack 

 

Places: 

T: This is a place for ‘Timer’. 

4, 3, 2 and 1: Sensor nodes. 

B: Base station 

Y: A condition is satisfied. No further transitions. 

N: The condition is not satisfied. The packet is selectively forwarded to the neighbor. 

 

Transitions: 

T1: Timer firing 

T2, T3: The transitions represent ‘Send’ actions. 

T4: In the code it is specifically an “IF” constructs. Condition true. 
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T5: Condition false. 

T6, T7: The action of sending a packet. In programming construct it is a ‘Send’ action. 

 

7.3.2 Sybil attack 

 

The colored portion in the Figure 15 shows sensor application that has Sybil 

attack embedded in it. This is a global scenario in which the network has 4 nodes and a 

base station. Each node sends packet to base station. Node 4 sends a packet to node 3. 

Node 3 is the attacker who creates Sybil nodes. These Sybil nodes send connection 

establishment request packets to neighboring nodes.          

Figure: 15 Application with Sybil Attack 
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Places: 

T: Timer 

4, 2 and 1: Sensor nodes. 

3: Attacker node which has been compromised 

W: A while loop starts. 

Y: A condition is satisfied. Create a Sybil node. 

N: The condition is not satisfied.  

B: Base station. 

 

Transitions: 

T1: Attacker node starts a WHILE loop.  

T2, T3 and T4: The action of sending a packet. In programming construct it is a ‘Send’ 

action. 

T5: Checks for a condition. In the code it is specifically a ‘while’ construct.  Condition is 

true. 

T6: Checks for a condition. In the code it is specifically a ‘while’ construct.  Condition is 

false. 

T7: Creates a Sybil identity. 

T8:  The action of sending a packet. In programming construct it is a ‘Send’ action. Also 

it represents a loop where packets are flooded until the condition is satisfied. 

T9: The action of sending a packet. In programming construct it is a ‘Send’ action. 
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7.3.3 Denial of Service 

 

Figure 16 shows a global scenario in a wireless sensor network. The above sensor 

application has Denial of Service attack embedded in it. Attacker node floods other nodes 

with packets causing the other requests to be not processed. 

 

Figure 16: Application with Denial of Service 

Places: 

T: Timer 

4, 2 and 1: Sensor nodes. 

3: Attacker node which has been compromised 

Y: A condition is satisfied. Packets are flooded causing DOS attack. 

N: The condition is not satisfied. No further transitions take place. 
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B: Base station. 

 

Transitions: 

T1: Timer fires.  

T2 and T4: Each node starts sending packets to the base station. In programming 

construct it is a “Send” action. 

T5: Checks for a condition. In the code it is an ‘IF’ construct. Condition true. 

T6: Checks for a condition. In the code it is an ‘IF’ construct.  Condition false 

T7:  The action of sending a packet. In programming construct it is a ‘Send’ action. Also 

it represents a loop where packets are flooded until the condition is satisfied. T7 also 

places a token in place 3. Because of this T3 repeatedly fires and the process is repeated. 

T8: The action of sending a packet. In programming construct it is a ‘Send’ action. 

 

7.4 Detection Tool 

 

7.4.1 Code to Petri net transformation 

 

For transforming the code to Petri nets, we examine the events present in the 

application. Events cause some actions to take place.  Some of the events in TinyOS are 

‘Send’ and ‘Receive’ 

 

Send: “Send” is an event of sending a packet to the neighboring node.  
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Receive:   Receive is an event of receiving a packet from neighboring node. After 

receiving the packet, a node checks if the packet is meant for it. Then it forwards the 

packet to its neighbor. It is in this situation where the different types of attacks take place. 

If the forwarder node becomes compromised, it launches the attacks. 

When there is a send and receive event, it means that when a node is sending, 

another node is receiving, so we have two places to represent the source and destination 

nodes.  

 

‘IF’ construct is modeled as follows: 

 

Figure 17: IF Construct 

 

C is a place for the ‘IF’ construct. ‘IF’ construct has two execution (flow of control) paths 

represented by places Y and N. Transition T1 is fired if the condition in ‘IF’ statement is 

satisfied. Transition T2 is fired if the condition in ‘IF’ statement is not satisfied.  

 

When a ‘FOR’ construct occurs, we represent it as follows: 
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Figure 18: FOR Construct 

 

When a ‘WHILE’ statement occurs it is represented as follows: 

Figure 19: WHILE Construct 
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When the event ‘Send’ occurs, they are represented as in Figur 20. The dot in S is a 

packet which is being sent to R. 

 

Figure: 20 Event Send 

 

Data Structures Used: 

 

We have used adjacency lists to represent Petri nets. Each petri nets has 3 lists, 

one list shows links between Places to Transitions and another table shows links from 

Transitions to Places. The third list shows what each transition and place stand for. In 

other words it indicates if a place is a node or a program construct like ‘IF’, ‘FOR’, or 

‘WHILE’ and whether a transition is a Send/Receive or a flow of control. 

Adjacency lists are also convinient when we try to establish a sequence between 

the states and transitions. 
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Figure: 21 Example to illustrate data structures 
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Table 3: Category of places and transitions  
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7.4.2 Detection Algorithm 

 

Input: Application and attack Petri nets. 

Output: Sequence of instructions that represent an attack found in A. 

 

1) Take input as the sensor application in nesC. 

2) Initialize the adjacency lists for attack Petri nets. Attack Petri nets are SFiji 

(Selective Forwarding), Si,j (Sybil) and Di,j (Denial of Service) . 

3) Initialize each Category List SFCi,j,  SCi,j, DCi,j respectively.

4) Start scanning the application to find events. 

5) When an event ‘Send’ or ‘Receive’ is found, construct Petri net Ai,j from the 

program constructs ‘IF’, ‘FOR’, ‘WHILE’, Send.send(). 

6) Construct a Category list for the above application Petri net ACi,j with categories 

as NODES, SEND, RECEIVE, IF, FOR, WHILE, YES, NO. 

7) Prove Existence violation category. Take the attack library Petri net Category lists 

compare them with the Category list of the application net. If some set of states 

are matching with a particular attack, then goto STEP 8 otherwise goto STEP 10. 

8) Prove Sequence violation category. Take the adjacency lists of that particular 

attack found in STEP 7. Compare the adjacency lists of application with the attack 

to check if the sequences between the states are present. If the attack sequence is 

found in the application then STEP 9 otherwise goto STEP 11. 

9) Return ‘Attack found’, also return the sequence of attack instructions. 

10) Return ‘Attack not found’. 
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11) Return ‘Potential for an attack’ as STEP 7 found some random states which are 

not in a sequence. 

12) End 

 

7.4.3 Validation of Algorithm 

 

The Detection Tool produces a Petri net from the application and it uses the attack 

Petri nets to find the presence of attacks in the application. If the attack is found it returns 

the sequence of instructions of the attack. The detection algorithm has been programmed 

in Java.   

 

The Detection Tool was tested on the following: 

 

1) Applications consisting Selective Forwarding (with Sink Hole), Sybil and Denial 

of Service were input to the Detection Tool and the tool detected the presence of 

attacks. It returned the sequence of attack instructions. Table 4 is showing 

Selective Forwarding. 
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Table 4: Places to Transitions, sfPT 

 

Table 5: Transitions to Places, sfTP 
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Table 6: Category of places and transitions, sfC 

 

Example: Applicationon with Selective Forwarding  

Table 7: Places to transitions, appPT 
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Table 8: Transitions to Places, appTP 

 

Table 9: Category table, appE 
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The process of detection is as follows 

• Prove Existence 

Number of nodes in appC = Number of nodes in sfC 

appC has IF construct, so does sfC 

appC has SEND event so does sfC 

A match with selective forwarding attack. 

Hence the attack states exist.  

• Prove Sequence 
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All the states are in a sequence, so there is Sequence violation. 

Since there is existence and sequence, the application has selective forwarding 

attack. 

 

2) Application without any particular attack was tested and it resulted in the output 

‘Potential for attack’. It also gave the Petri nets states and transitions found. Here 

the Petri net found did not match any particular attack. There is no sequence in the 

states found. But some of the states are random and do match. This could mean 

there is a potential for attack. 

Example: Application with potential for attacks 

 

Table 10: Places to transitions, appPT 
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Table 11: Transitions to Places, appTP 
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Table 12: Category table, appE 

 

The detection process is as follows: 

• Prove Existence  

Number of nodes in appC = Number of nodes in sfC 

Number of nodes in appC = Number of nodes in DC 

Number of nodes in appC = Number of nodes in SC  

 

appC has IF construct which matches with Selective forwarding. 

appC has SEND event so does sfC, DC, SC 

There is existence of some attack states. One of the states matches with Selective 

forwarding. Another state matches with sybil and denial of service attack. 

So we can say that there is a potential for an attack. 
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3) Application without attacks was input to the Tool and it resulted in ‘No attacks 

found’. Table 13 shows an example without any attacks. 

 

Table 13: Places to transitions, appPT 

 

Table 14: Transitions to Places, appTP 
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Table 15: Category table, appE 

 

The detection process is as follows 

• Prove Existence 

Number of nodes in appC != Number of nodes in sfC 

Number of nodes in appC != Number of nodes in DC 

Number of nodes in appC != Number of nodes in SC  

 

appC has no IF/FOR/WHILE construct. 

appC has SEND event which is not an attack state. 
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There is no match between the attack net and the application net. Hence, no 

existence. Since there is no existence of any attack states, we can say that there is 

no attack in the application.  

 

7.4.4 Complexity of the algorithm 

 

The main constraint is space due to limited storage in a sensor node. Memory is 

needed for adjacency lists of attacks and application. We are also using two FIFO queues 

to establish a ‘sequence’ between the petri net states. We store petri net places and 

transitions in the queue. This algorithm uses a strategy similar to Breadth First Search 

(BFS) Algorithm. BFS uses a FIFO queue to put the root node in the queue and it 

explores all the unexplored nodes. 

 An alternative to adjacency list is an adjacency matrix to represent petri nets. But 

matrices occupy more space than a list. Use of adjaceny lists over matrices has 

considerably reduced the use of memory. 

Advantages of adjacency lists: 

1. If the Petri net is not very dense, this representation is great, because it doesn’t 

waste memory locations for non-existent edges. 

2. It is easy to list all of the edges coming out of a node.  

From a computational perspective of the algorithm, it heavily relies on finding 

programming patterns in the application. When patterns are found a petri net is 
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constructed. For the detection of attacks, the algorithm searches the adjacency lists of 

attacks and the application to match the sequence of states. Therefore this algorithm does 

not depend on complex computations of any kind. Computations if any have to be kept 

very low as the nodes do not have high processing capabilities.  

The algorithm tries to match the petri nets by establishing a ‘sequence’ between the 

states. A petri net is a bipartite graph of nodes P (that are places) and transitions T (that 

are edges). In the worst case when the sensor application is large, the petri net 

constructed is dense. The algorithm will have a large number of places and transitions to 

examine. The complexity depends on the denseness of the application Petri net.  

The complexity of the detection algorithm is Big oh(P+T+A), where P is the number 

of places, T is the number of transitions and A is the number of arcs in application Petri 

net. Therefore, for these attacks the algorithm is practical for sensor networks.  
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CHAPTER VIII 

 

CONCLUSIONS 

 

In this thesis we investigate the vulnerabilities present during code 

distribution process and detect the malicious code present in sensor applications. The 

approach to use Petri nets to model the attacks helps us in understanding the behavior of 

the attacks and find patterns in attacks. We programmed the attacks in nesC to find 

patterns in them. The attack code was then transformed into Petri nets. We then inserted 

malicious code/attacks in a sensor application. The application was transformed into a 

Petri net as well. Using the attack Petri nets and application Petri net, we tried to detect 

the attacks in the application. 

To experimentally validate our proposed model, we have developed a Detection 

Tool that will use the attack Petri nets to detect malicious code in the applications. This 

tool when tested on a sensor application detected the particular attacks present in it. It 

detected the sequence of instructions that closely matched the states in the attack Petri 

nets.  
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In future this approach can be expanded to identify more attacks and behavior of 

those attacks. It also consists of finding more categories for matching the structures of 

application and attack Petri nets. Future work in this area includes working on executable 

code to find attack signatures. Working on the executable code would eliminate the need 

for a decompiler. The sensor application code may also contain a combination of attacks 

such as Denial of Service with selective forwarding. The code could also contain 

obfuscated attacks. In the case of obfuscated attacks, the attacks are hidden within the 

code, in other words they do not look like attacks, as they are not continuous. Therefore, 

there are a lot of possibilities to expand this work in future. 
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APPENDIX 

 

I. Input: SelectiveForwarding.txt 

 The screen shot below shows a dialog box which asks the name of the sensor 

application file. The Detection Tool when run prompts for the name of the file. The 

name of the file “SelectiveForwarding.txt” is given as input here. 
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Output: The screen shot below shows the output when the input is given to the detection 

tool. It recognizes the attack patterns in the input application. The dialog box below 

shows that the application has selective forwarding in it. The sequences of instructions 

which are malicious are shown. Also the Petri net representation for that particular attack 

is shown. A, Y, N and B are places. T1, T2 and T3 are transitions. 
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II. Input: dos.txt 

This screen shot shows the input dialog box. But this time the input given is dos.txt 

which contains the nesC code of the application.  
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Output: This screen shot shows the output which shows that the application has 

denial of service attack present in it. The sequences of instructions along with the 

Petri net representations of the attack are shown.  
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III. Input: sybil.txt 

This screen shot shows the input dialog box where the input is give n as a file 

containing nesC code. The file is sybil.txt 
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Output: This screen shot shows the output when an application infected with Sybil 

attack is given to the Detection Tool. The output shows that Sybil attack is found. 

The sequences of corrupt instructions and the Petri net representation of the attack 

are shown. 
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IV. Input: App.txt 

This screen shot shows the input given to the detection tool which is application 

without any particular attacks. 
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Output: This screen shot below shows the output . The output is “Potential for attack”. It 

also shows the Petri nets states and transitions found. Here the Petri net found does not 

match any particular attack. There is no sequence in the states found. But some of the 

states do match. This could mean there is a potential for attack. 
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V. Input: na.txt 

This screen shot shows the input given to the Detection Tool. 
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Output: The output shows that ‘No attack found’. There are no attacks in the application. 
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