
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

LEARNING ASSISTED DECOUPLED SOFTWARE PIPELINING

(LA-DSWP)

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

LUCIA R. FITZMORRIS
Norman, Oklahoma

2018

LEARNING ASSISTED DECOUPLED SOFTWARE PIPELINING
(LA-DSWP)

A THESIS APPROVED FOR THE
SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

BY

Dr. Ronald D. Barnes

Dr. Jon G. Bredeson

Dr. Joseph P. Havlicek

c© Copyright by LUCIA R. FITZMORRIS 2018

All Rights Reserved.

Ut in omnibus glorificetur Deus

Acknowledgements

I would like to thank my committee chair, Dr. Ronald Barnes, for his support

during the completion of this thesis. I cannot express how happy I have been to

work in your lab and share in your passion for computer architecture. I would

also like to thank the other members of my Master’s thesis committee, Dr. Jon

Bredeson and Dr. Joseph Havlicek, for providing the tools necessary for my

success.

To my peers in the Soonergy Lab, especially Sonya Wolff, without you I

never would have made it through this program. You have helped me grow as

an engineer and as a person. I will value our friendship always.

To my parents, thank you for showering me with your love and for instill-

ing in me a curiosity to explore the world. And to my little brother, you always

can brighten my day with your uncanny sense of humor and your kind heart. I

would also like to thank the sisters at Joseph Monastery. There is nothing like

having 16 women ask you every week “Are you done yet?” to put the fire under

you to finish a degree program.

Finally, some of the computing for this project was performed at the OU

Supercomputing Center for Education & Research (OSCER) at the University

of Oklahoma (OU). This material is based upon work supported by the National

Science Foundation under Grant No. 1018771.

iv

Table of Contents

Acknowledgements iv

List of Tables vii

List of Figures viii

Abstract ix

Chapter 1. Introduction and Motivation 1

1.1 Motivation . 2

1.1.1 Moore’s Law . 2

1.1.2 The Power Wall and Communication Latency 3

1.1.3 Multi-Core Processors . 5

1.1.4 Hardware Optimization Transparency 5

Chapter 2. Related Work 9

2.1 DOALL . 9

2.2 DOACROSS . 10

2.3 DOPIPE . 11

2.4 DSWP . 12

Chapter 3. Modern Processor Design 16

3.1 Out-of-Order Pipeline . 16

3.2 Memory System . 19

3.3 Inter-Core Communication . 21

Chapter 4. Transform Implementation 23

4.1 Software Details . 23

4.2 Program Dependency Graph Building 24

4.2.1 Data Dependencies . 25

4.2.2 Memory Dependencies . 26

4.2.3 Control Dependencies . 27

4.3 Directed Acyclic Graph Building . 28

4.4 Determine Partitions Using Machine Learning 29

v

4.4.1 Reinforcement Learning . 30

4.4.2 Learning Method and Policy 31

4.4.3 Problem Space . 34

4.5 Transform Source Code . 36

4.5.1 Move Instructions into New Partition Functions 36

4.5.2 Adding Flows to Partitions 38

4.5.3 Insert Functions into Code 39

4.5.4 Learning Information . 40

Chapter 5. Experimentation 42

5.1 Kernels . 42

5.1.1 Motivation . 42

5.1.2 Kernel Definitions . 44

5.2 Hardware Setup . 46

5.3 Experiment 1 Setup . 46

5.4 Experiment 1 Results . 47

5.5 Experiment 2 Setup . 49

5.6 Experiment 2 Results . 50

Chapter 6. Conclusion 54

6.1 Future Work . 55

Bibliography 57

Appendices

Appendix A. Notation and Nomenclature 62

Appendix B. Selected Code Snippets 63

B.1 Inter-Partition Flow Structure . 63

B.2 DSWP Flow Library Header . 64

B.3 ML Timing Library . 64

B.4 Linked List Variance Kernel . 64

B.5 Arbitrary Algorithm Calculations 66

B.6 Latency Calculation Code . 67

vi

List of Tables

4.1 State and Action Definitions for DSWP ML 34

5.1 Experiment Loop Summary Information 45

5.2 Experiment 1 Results . 48

vii

List of Figures

1.1 Reprint of Moore’s Original Plot c© 1998 IEEE [27] 3

2.1 Program Execution Before and After DOALL Parallelization . . 10

2.2 Program Execution After DOACROSS 11

2.3 Program Execution After DOPIPE Parallelization 12

3.1 Simplified Out-Of-Order Pipeline 17

3.2 Modern Processor Memory Hierarchy 20

4.1 Example Code Snippet for Data Dependence 25

4.2 Example Code Snippet for Memory Dependence 26

4.3 Example Code Snippet for Control Dependence 27

4.4 Example Control Dependence within PDG 28

4.5 Example Code Snippet for PDG and DAG 29

4.6 Example PDG for Code Snippet 29

4.7 Example DAG Condensation of PDG 30

4.8 Example Q-Tables for SARSA 31

4.9 Loop BB Structure . 37

4.10 Pseudo-BB to Inject DSWP Partitions 40

5.1 Experiment 1 Results . 49

5.2 Matrix Arbitrary Learning Curves 52

5.3 Matrix Multiply Learning Curves 53

viii

Abstract

LEARNING ASSISTED DECOUPLED SOFTWARE PIPELINING
(LA-DSWP)

Lucia R. Fitzmorris, M.S.
The University of Oklahoma, 2018

Supervisor: Dr. Ronald D. Barnes

In this thesis, I introduce and implement an extension to the Decoupled

Software Pipelining (DSWP) algorithm proposed by Rangan et al. [34]. This

new extension is named Learning Assisted Decoupled Software Pipelining (or

LA-DSWP) as it applies reinforcement learning to the partitioning problem

found within DSWP. Through experimentation, the viability of DSWP and

LA-DSWP as optimizations that produce significant program speedup is tested

and measured.

As computer architects strive to keep up with public expectations for

processor performance growth, they are increasingly turning to processor de-

signs which utilize multiple independent cores on a single chip. Unlike most

prior hardware innovations, computer programs must be written or compiled

with multiple threads in mind to take advantage of these new hardware in-

novations. Automatic thread-extraction using Decoupled Software Pipelining

seeks to extract multiple threads from a single-threaded program [28]. This is

done by allowing loops within the program to execute on multiple cores on a

single processor chip simultaneously without programmer intervention. DSWP

ix

focuses on splitting large recursive data structure’s traversal loops into multiple

threads in an attempt to increase overall program performance.

Unlike prior implementations of DSWP, this research uses a hardware

and language independent implementation of DSWP using the LLVM frame-

work. Rather than relying on custom-built hardware to facilitate communica-

tion between program threads, this implementation uses Intel’s Thread Building

Blocks library to create queues in the shared memory between the various on-

chip processor cores. As this thesis will show, this design setup relies heavily

on the memory subsystem of the targeted processors and is greatly impacted

by the actual design of the memory subsystem.

Another novel addition to DSWP explored in this thesis is the application

of machine learning to the partitioning process. Instead of partitioning the nodes

of a loop’s program dependency graph using predefined heuristics, this thesis

seeks to apply reinforcement learning to allow the DSWP agent to make more

informed decisions when optimizing a given loop. The DSWP agent is able to

collect and analyze data about each node of a program’s loop to partition the

loop on a node-by-node basis. This addition constitutes LA-DSWP.

Through experimentation on modern Intel processors, this thesis tests

the feasibility of LA-DSWP on current hardware. Multiple kernel programs were

written to search for program patterns that can achieve performance increases

using DSWP partitioning. Experiments were run using the partitioning methods

discussed in earlier papers along with the proposed method utilizing machine

learning.

x

Chapter 1

Introduction and Motivation

Since the earliest days of computing, programmers have preferred writing com-

puter code seqentially [32]. The process of creating a sequential list of instruc-

tions for the computer to follow is not only easily understood by a human

programmer, but it also mimics the way older computer processors execute the

program. In older processors, a program’s instructions are fetched from memory

and executed in the exact order given by the program [31]. To keep increasing

processor performance, computer architects have changed this model of pro-

gram execution within the processor in such a way that masks the pipeline’s

alterations from the programmer [13]. This model of “invisible hardware opti-

mizations” has reached its end, and now computer architects rely on processor

designs that require programmers to explicitly write code that will perform

better on a given hardware configuration.

In 2004, Rangan et al. proposed a method of automatic thread extrac-

tion from single-threaded program loops named Decoupled Software Pipelining

or DSWP [28,34]. This optimization was created to allow programmers to easily

take advantage of new multi-core, single chip processor architectures without

having to explicitly write programs using multiple, independent threads. This

thesis proposes an extension to the DSWP process by optimizing thread extrac-

tion within DSWP using machine learning. This new extension of Rangan’s

optimization is named Learning Assisted Decoupled Pipelining or LA-DSWP.

Through a hardware independent implementation of LA-DSWP, this thesis at-

1

tempts to discover the expected performance increase for programs running on

current hardware after they have been optimized using LA-DSWP.

1.1 Motivation

Before expounding on the definition of implementation of LA-DSWP, the re-

mainder of this chapter is used to discuss the motivation for exploring DSWP

based optimizations.

1.1.1 Moore’s Law

The idea that a computer is outdated as soon as it has been purchased is a

common sentiment expressed by everyone from computer scientists to casual

web-surfers. This sentiment is ofter ascribed to Moore’s law; however, Moore’s

law does not directly apply to performance increases. Instead, Moore’s law

refers to the fact that processor complexity will double every year [16,27]. While

Moore’s law has since been reduced to a doubling of processor complexity ev-

ery 18 months, his original prediction from only five data points – shown in

Figure 1.1 – was remarkably accurate. This increased processor complexity has

translated into a massive performance increase in the years since his original

prediction.

While there is some disagreement over how exactly to measure perfor-

mance, a commonly accepted measurement method is by comparing the ex-

ecution time of an agreed upon set of programs which mimic a normal user’s

workload [18]. Sets of programs designed to be representative of these workloads

are used as benchmarks, with one of the most popular sets being the Standard

Performance Evaluation Corporation (SPEC) benchmarks [31]. SPEC was cre-

ated in 1989 by a conglomerate of vendors and is updated every few years to

2

Figure 1.1: Reprint of Moore’s Original Plot c© 1998 IEEE [27]

include programs that represent the common classes of computing. As measured

with a comparison against the Vax-11/780 using the SPEC benchmarks, pro-

cessor performance increased by roughly 50% every year from 1986 to 2003 [17].

In contrast, Moore’s law only calls for a processor complexity increase of 35%

each year, showing that computer architects were able to increase processor

performance at a higher rate than processor complexity. This rate of processor

performance growth has slowed considerably since 2003, however, caused by

what is known as “the power wall.”

1.1.2 The Power Wall and Communication Latency

For a large portion of the history of processors, computer architects focused on

designs and optimizations that allowed them to increase two primary aspects

of their processors: frequency and IPC (Instructions Per Cycle) [2]. The speed

at which a processor can execute instructions is primarily limited by these two

3

aspects. Processor pipelining and memory cache structures were just a few of

the major developments during the tail end of the 20th century that allowed

computer architects to continue increasing processor performance by close to

50% per year [17]. These strategies came to an end in the early 2000’s.

One major constraint that architects began to struggle with is what is

now called the power wall. The very laws of physics that allow CMOS logic

to function, also enforce an important relationship between power consumption

and the frequency at which the MOSFET transistors switch. This relationship

is expressed by:

P ∝ 1

2
V 2
DDf (1.1)

where P is the power consumed by the processor, VDD is the supply voltage,

and f is the operating frequency of the processor [39]. In addition, energy

consumption is directly proportional to the heat production of a processor.

Pushing frequency into the GHz, computer architects have bumped into

the threshold where they are no longer able to feasibly cool their chips. Even

with the steady decline of processor voltage from 5V in the earliest processors

to almost 1V for today’s processors, the power wall makes continuing to in-

crease processor frequency at pre-2000 rates impossible [2, 13]. Compounding

the effect of the power wall has been the move to mobile consumer products.

Users demand smart devices and laptops that have long battery life and stay

reasonably cool [31]. The power wall has, in effect, largely stalled the increase

of processor frequencies.

Another effect compounding the power wall in the relationship that as

frequency increases, the number of instructions executed every cycle tends to

decrease [2]. Electricity can only travel at a finite speed, so as frequencies

increase, data is unable to travel as far through the processor. So as computer

4

architects have pushed frequency higher and higher, they must also work to

not cause the IPC to drop and cause the overall performance increase to be

negligible.

1.1.3 Multi-Core Processors

Another important rule that has held true in processor design has been Pollack’s

Rule [14]. Pollack’s Rule states that if the complexity of a circuit is doubled,

gain will be limited to at most a 50% improvement. This rate of increase

corresponds to the 50% increase in processor performance discussed in early

sections. After 2004, however, performance gains were impeded by the power

wall. This decrease in performance gains forced the industry to change the way

in which they designed processors; hence the age of the multi-core processor

was born [17].

A multi-core processor is a integrated circuit that contains multiple

smaller processors (or cores) that can execute completely independent threads.

By including multiple cores on a single IC, Pollack’s Rule should hypothetically

be mitigated by allowing a performance speedup of 100% while only doubling

the complexity of the chip [14]. Since roughly 2006, processor manufactures have

embraced the CMP (Chip Multi-Core) revolution as a way to meet demand and

continue to grow processor performance. Intel, for example, has pushed CMPs

for personal computers that can have up to 6 cores in a single chip [17]. Proces-

sors used for servers can even have considerably more cores: for example, the

Intel Phi processor has up to 72 cores [20].

1.1.4 Hardware Optimization Transparency

Until the rise of CMP’s, the innovations in processor design that allowed steady

performance increases were mostly invisible to typical computer programmers.

5

Most programmers work in high level languages (such as C++ or Python) and

therefore are unaware of the many optimizations that are performed on their

code by compilers and the hardware itself. In this manner, programmers are

able to continue writing software the same way it has always been written, yet

are able to reap the benefits of continued processor performance growth [13].

Take, for example, computer architects’ innovations for branch predic-

tion. Most processors since the mid 1980s have taken advantage of instruction

pipelining. In a pipelined processor, many different instructions can execute

inside a processor simultaneously, with each instruction being in a different

“stage” of the processor [31]. Therefore, new instructions must be fetched from

memory before all of the preceding instructions have been fully executed. This

can cause major problems with branch instructions. Since a new instruction

must be fetched from memory before a given branch has finished executing,

the processor must predict the value to which the program counter should be

changed to to continue fetching instructions for proper program execution. If a

processor mis-predicts the program counter, for example guessing that a branch

will update the PC to the next consecutive instruction in memory when it

should have actually jumped to a new block of code, the processor pipeline

must be flushed to remove the incorrect instructions from the data-path. Ac-

curate branch predictions are important for processor performance since flushes

can cause very long delays in program execution. Early methods of handling

branch prediction such as static predictions (for example, always predicting

that all branches will jump to a new block of code) were only about 62.5%

accurate [40]. Later methods using small state-machines and look-up tables

were able to increase correct prediction rates to 97% and now small neural

networks, known as perceptrons, are used to reach prediction rates of close to

6

100% [23, 40]. All of these innovations have taken place to improve processor

performance without programmers even needing to know that there has been a

change in the hardware.

Creating hardware improvements that are invisible to the software does

not extend to multi-core processors easily. Since the first assembly programs,

software has almost always been written in a very sequential way: first the

computer should do this, then add this, and finally store this [32]. High level

languages like Fortran or C were able to abstract away the smaller steps and

combine multiple machine level instructions into a single line of code, but the se-

quential manner of programming was unchanged. Even today’s object oriented

languages such as Python or C# rely on the fact that the order that instructions

are performed in is important and should remain unchanged. These instructions

may be scheduled by the hardware to execute in a different order by the pro-

cessors using out-of-order execution, but they must always keep memory and

registers consistent to match a processor working in-order. This once again

keeps innovations in processor design invisible to the programmer [17].

Multi-core processors require programmers to break this sequential way

of thinking. To achieve performance increases with these new processors, pro-

gramers must split their programs into multiple threads that all execute at the

same time. Communication between the threads is slow (limited by commu-

nication through usually the L2 or L3 cache) so programers must limit the

communication between the threads along with limiting the amount of shared

memory between the two [6, 22]. Enforcing memory consistency between two

processors is slow so data shared between the two processors can cause many

issues for the processor’s cache and memory buses [13]. Most programming lan-

guages have almost no native support for the structures and processes needed

7

to handle this new parallel way of programming, which in turn, causes program-

mers to be slow to adapt their code to match multi-core hardware. Institutions

using legacy code that in the past have been able to benefit from “Moore’s

Bounty” (the increase in performance with no change to software) are no longer

able to benefit from these new improvements in performance [24].

8

Chapter 2

Related Work

Many new methods have been introduced to try to automatically harness par-

allelism in loops to allow them to be run across many different processor cores.

Some new methods have been harnessed to give huge speedups for scientific com-

puting, but those methods usually carry strict requirements to ensure proper

code execution. In this section, we will focus on loop parallelization methods.

2.1 DOALL

The easiest method to understand is DOALL parallelization. A loop that is

DOALL parallel is one that has no dependencies from one iteration of the loop

to the next [30]. This can be a very strict definition for a loop to meet, but if

a loop meets this condition every iteration of the loop can be done in parallel.

This obviously has potential to give a huge gain in performance if there are many

cores to execute the different iterations such as in a GPU. An example of how

a loop could be broken with DOALL parallelization to be run across 4 different

cores can be seen in Figure 2.1. Notice that since there are no dependencies

between loop iteration, no communication is needed between the threads which

means DOALL loops performance increases are independent of communication

latency between threads. Hypothetically the parallelization shown in the figure

could give nearly a 4X speedup compared to the non-parallelized code.

9

Core 1:
Iteration 1
Iteration 2
Iteration 3

...
Iteration N

(a) Before Parallelization

Core 1:
Iteration 1
Iteration 5
Iteration 9

...
Iteration N-3

Core 2:
Iteration 2
Iteration 6
Iteration 9

...
Iteration N-2

Core 3:
Iteration 3
Iteration 7
Iteration 10

...
Iteration N-1

Core 4:
Iteration 4
Iteration 8
Iteration 11

...
Iteration N

(b) After Parallelization

Figure 2.1: Program Execution Before and After DOALL Parallelization

2.2 DOACROSS

The next type of parallelization is DOACROSS. Just like in DOALL, DOACROSS

splits iterations of the loop between multiple cores. Each iteration is com-

pletely executed by a single core. This is shown in Figure 2.2 which illustrates a

DOACROSS parallelization of a loop that has 3 instructions per iteration where

each iteration’s instructions are given a unique shape. DOACROSS differs from

DOALL in that data dependencies across iterations are allowed [30]. These are

shown by the edges in Figure 2.2 pointing from one core to another. Figure 2.2

assumes a latency of 1 cycle to communicate from one core to another. This

figure also shows that DOACROSS can be very sensitive to intra-core commu-

nication latency. A latency of 3 would cause this parallelization to have no

performance increase because each core would be executing while the other was

waiting for the value it depended on [29].

10

Cycle Core 1 Core 2

1

2

3

4

5

6

1

2

3

1

2

3

1

2

3

1

2

Figure 2.2: Program Execution After DOACROSS

2.3 DOPIPE

DOPIPE is very different from the two previous examples of code paralleliza-

tion. In both DOALL an DOACROSS each iteration of the loop is executed

completely on a single core. DOPIPE instead breaks a single iteration of a loop

into multiple steps and executes each step on a different core [29]. Figure 2.3

shows an example of the same program as in Figure 2.2, but parallelized using

DOPIPE. Notice that the first two instructions of every iteration occur in core

1 and the last instruction is executed in core 3. This can allow for far less com-

munication between the two cores if the code is broken in the correct places.

The primary constraint that makes DOPIPE unfeasible for most loops is that

it does not work if there are any extra control dependencies inside of the loop.

So for example, if the loop contains an if statement or another loop, it is no

longer a candidate for DOPIPE [30].

11

Cycle Core 1 Core 2

1

2

3

4

5

6

7

1

2

3

1

2

3

1

2

3

1

Figure 2.3: Program Execution After DOPIPE Parallelization

2.4 DSWP

Decoupled Software Pipelining (DSWP) was created to relax the control de-

pendency restraints of DOPIPE. DSWP was originally formulated at Princeton

University in 2004 [34]. The researchers noticed that many programs have loops

that traverse very large recursive data structures (RDS). In a typical loop there

are two main paths of instructions that are executed: traversal and computa-

tional. The traversal path is the one that traverses through memory to load

each node of the RDS. The second path does the actual computations that are

returned at the end of the traversal. So for instance, if a program is looking

for the average value of a linked list, the traversal path loads the pointers that

allow the program to move from each index in the list to the next. The compu-

tational path is the instructions that are using the values at each index to find

12

the overall average.

DSWP seeks to split RDS loops, and other loops like them, into two

separate threads that are mostly independent from each other. Not only does

DSWP allow speedups by allowing multiple instructions to execute in parallel,

it can also produce better behavior from the memory system of the processor.

RDS’s can result in poor cache performance because they usually have poor

locality within memory. Repetitive cache misses degrade performance and force

processors to stall for long periods of time. Ideally, the processor would fetch

as many instructions along the traversal path and begin loading data from

memory so that some of the latency caused by cache misses would be hidden

by the fact that many of the load instructions read times from memory would

overlap. This, unfortunately, is not how current processors operate; even out-of-

order processors fetch and issues instructions in program order and so the loads

of the traversal path have to wait on the instructions of the computational

path to be fetched. DSWP helps alleviate this problem by having all traversal

instructions on one core and computational instructions on another. This allows

the processor to queue many of the traversal load instructions together which

can greatly help the memory behavior of the processor [34].

Like DOACROSS and DOPIPE, DSWP relies on low-latency communi-

cation between multiple cores to pass data and control dependencies between

the two loop threads. The original DSWP work relied heavily on what was

termed the “synchronization array” to achieve this low latency communication

between cores [34]. The synchronization array is a set of hardware queues that

enable separate cores to both pop and push register values with a latency of 1

cycle between the two cores. The synchronization array works well in simulation

and helps minimize overhead, but currently only exist on simulated hardware

13

and therefore unable to be used for anything outside of theoretical proof of

concepts. Another constraint of the original DSWP algorithms is that their

automatic partitioning of loops into threads was done with a straight cut using

heuristics they found experimentally. Their heuristics were usually able to find

the best split for their threads, but occasionally would perform miserably, even

slowing the loop, while the best hand-tuned split was able to give a respectable

increase [28].

DSWP was later extended to use other methods to allow it to scale more

reasonably with the number of cores available. The first of these methods was

SpecDSWP [37]. Speculation has been used for both DOALL and DOACROSS

loops in the past and helps relax some of the constraints on a given loop [30].

Speculation allows the processor to guess if a certain condition is expected to

be a single value and so lets the compiler ignore a dependency. For instance, a

loop could have only one control dependency created by an error-detection if-

statement. This control dependency would need to be passed from one thread to

another and could create more overhead for a DSWP partitioning. The compiler

could instead choose to speculate that this value will always be false (assuming

the programmer did not make many mistakes) and so this communication could

be ignored and a queue from core 1 to 2 would no longer be needed. Extra

mechanisms are needed to handle instances where the processor mis-speculates

a given edge [37].

Another extension of DSWP combines both DOALL and DSWP into a

single method called PS-DSWP or Parallel-Stage Decoupled Software Pipelin-

ing [33]. PS-DSWP splits loops into two separate threads of execution, but

it then applies DOALL to the newly created threads. This allows DSWP to

be easily scalable and to take advantage of large numbers of cores. PS-DSWP

14

has been shown to give a much better speedup then DSWP alone, but still uses

heuristics to find its partitions and has only ever been implemented on simulated

hardware.

15

Chapter 3

Modern Processor Design

Modern processor design differs greatly from the simple architectures in under-

graduate textbooks. As discussed in Chapter 1, modern processors use a pipeline

model allowing multiple instructions to execute at once inside a processor. This

pipeline organization allows the high clock frequencies seen in today’s proces-

sors by allowing the work of a single instruction to be done in multiple short

clock cycles, rather than one long clock cycle. Processor pipelines, currently,

have also been harnessed to allow instructions to complete out of program or-

der, but still in a valid sequence. These features, along with a complex memory

system, have allowed modern processors to keep up with the growing pressure

to increase hardware performance.

3.1 Out-of-Order Pipeline

In a a typical in-order processor, instructions are fetched from memory in pro-

gram order, executed in program order, and then retired in program order. This

pattern of execution is easiest to understand and design and was the typical de-

sign of early processors. This method, however, is not the most efficient strategy

for a processor to follow. For example, a program might contain a long latency

instruction followed by a set of short latency instructions that do not depend

on the long latency instruction. In an in-order processor, the processor waits

until the long latency instruction has finished executing before it starts to exe-

cute subsequent instructions. An out-of-order processor could instead execute

16

Inst.
Queue

Res.
Station

Res.
Station

ROB Regs.

Mem.

Figure 3.1: Simplified Out-Of-Order Pipeline

the subsequent instructions while it is waiting on the long latency instruction

to finish execution. In doing this, out-of-order processors are better able to

harness instruction-level-parallelism by executing instructions as soon as they

have all of the data they need to execute, even if a preceding instruction has

not yet been executed. In executing instructions as soon as their data is ready,

the processor has more opportunities to allow multiple instructions to execute

at once.

Figure 3.1 illustrates a simplified out-of-order pipeline. In an out-of-order

pipeline, instructions are fetched from memory in program order and stored in

the instruction queue, which is a FIFO (first-in-first-out) buffer. Instructions

are then issued from the instruction queue to different reservation stations de-

pending on what sub-system of the processor they need for execution. For

instance, memory instructions may be stored in one reservation station, while

instructions using the integer ALU may be sent to another. During a clock

cycle, each reservation station checks to see if it contains instructions that have

all the data needed for execution, and if so, it dispatches the instruction to be

executed. This allows multiple instructions to execute at once, as long as the

processor subsystems are available. After an instruction finishes executing, it is

17

sent to be held in the reorder buffer (ROB). The reorder buffer is a queue used

to keep the state of memory and registers consistent with a processor that is

running in-order. To do this, the ROB only allows instructions to retire (make

changes to memory and the registers) in program order, meaning it stores in-

structions in a queue and only allows them to pop from the front if all preceding

instructions in program order have already left the ROB [17].

Since all instructions must move through the ROB before they are re-

tired, it can become a bottleneck in the pipeline. Take for example the Intel

Haswell architecture whose ROB is 192 instructions long and can have 72 load

instructions executing at once [22]. As will be discussed later, a load instruc-

tion requiring main memory can take roughly 200 cycles to execute and will stay

in the ROB that entire time. A program could likely exist that has two load

instructions that require main memory spaced 200 instructions apart. If both

instructions could be executed at the same time, some of the latency of the sec-

ond load could be masked because it would overlap with the execution time of

the first load instruction. This, however, will never occur because the ROB will

fill up with the first load instruction and the 191 subsequent instructions. This

will cause the second load not to be fetched until the first load is retired from

the ROB. DSWP tries to alleviate this problem by moving all load instructions

into a single core, pushing as many of the other instructions as possible into

a second core. This allows the ROB of the core with mostly loads to not be

diluted with non-memory instructions. Ideally this will allow many of the load

instructions’ executing times to overlap, thus increasing overall performance.

18

3.2 Memory System

All modern processors rely heavily on their memory hierarchy to perform well.

Accessing main memory implemented as Random Access Memory (RAM) can

require hundreds of CPU cycles. If processors dispatched load instructions to

main memory one at a time and waited for them to be fulfilled before moving

on, the processors would slow to a crawl compared to modern processor archi-

tectures. The primary way they are able to mask this latency is by using a

cache hierarchy.

A cache is a small, very fast memory structure that exists on-chip with

the main processor. Caches can be organized many ways, but the goal is to keep

them full of the data the program will most likely use next. When a program

loads data from memory, it first checks the L1 cache and if the data is found

(termed a cache hit), it is given to the processor without having to contact

main memory. If the data is not found (a cache miss) the next level of cache

is queried. This continues until either the data is found in a cache or, as a

last resort, main memory. The typical latency today for a L1 cache hit is on

the scale of 5 cycles and an L2 cache hit being about double that [17]. This

shrinks the latency of a memory load from the point of view of the processor to

tens of cycles instead of hundreds allowing it to have a much improved overall

performance. The trick, however, is how to choose what information should be

stored in the caches.

Software usually accesses memory in a combination of two different pat-

terns which form the idea of data locality. The first type of locality is spatial

locality, which is the idea that if data is loaded from a given memory location,

data from nearby will most likely be loaded next. An example of this fact is

iterating through an array. Caches are structured to take advantage of this idea

19

Core 0 Core 1 Core 2 Core 3

L1 L1 L1 L1

L2 L2 L2 L2

L3

Main Memory

Figure 3.2: Modern Processor Memory Hierarchy

20

by loading data in blocks. Instead of only loading the data that is needed by

the processor, a cache will load and store an entire block of data [31]. The

processor used in this research, for example, always loads data into its caches as

64 byte blocks. Using this method, the data that is needed by the processor is

loaded into the cache along with the bytes around it so they will already be in

the cache if they are needed later [22]. The second type of locality is temporal

locality, which is the idea that data that has been recently used will most likely

be used again. Caches take advantage of this principle by evicting data from

the cache that has been used the least recently.

3.3 Inter-Core Communication

In the original formulation of DSWP, a Synchronization Array (SA) was used

to facilitate inter-core communication [34]. Instead of requiring the creation

of a new piece of hardware, my work focuses on implementing DSWP on pre-

existing hardware. Intel and AMD, the two largest manufactures of processors,

currently use two different approaches to allow inter-core communication, but

both do agree on using a shared L3 cache as is illustrated in Figure 3.2.

Intel places the L3 cache in the Uncore, the structures of the processor

that don’t belong to a single core [22]. In the Uncore, the L3 cache is composed

of cache slices, with each slice being tied to a core. The slices are arranged

into a ring of at most 8 slices that are overseen by an agent. Each slice is

fully inclusive of the data held in its processor’s higher level caches and uses a

write-back policy. Unlike a typical cache, Intel describes the shared cache as

having a clean hit and a dirty hit. A clean hit is one in which the data needed

is contained within the querying core’s cache slice. A dirty hit is one in which

the data is found in another core’s L3 cache and so the agent must facilitate a

21

transfer of data from the supplying core to the querying core. Because of the

ring configuration, depending on the location of the slice providing the data,

the latency of the cache hit can be variable [22].

AMD took a slightly different approach with their Ryzen processors.

Like Intel, AMD uses cache slices that are tied to a given core. Instead of using

a ring of slices, however, these slices are fully connected in sets of 4 slices [6].

Also, instead of being fully inclusive, the L3 slices are victim caches. This

configuration of the L3 cache allows AMD to have the same latency to access

another core’s L3 cache slice as a core’s own slice [3].

In both cases, inter-core communication is tied directly to the memory

subsystem of each processor. Two cores will never be able to communicate with

a latency of less than a L3 dirty hit. This latency is a significant hurdle for

DSWP to overcome and is one of the main reasons the original research relied

instead on using the Synchronization Array [34].

22

Chapter 4

Transform Implementation

This implementation of the DSWP follows the algorithm described by Ottoni

and others [28]. This algorithm can be summarized as follows:

1. Build Program Dependency Graph (PDG)

2. Contract PDG to Form Directed Acyclic Graph

3. Determine Partitions Using Machine Learning

4. Create Partitions in Software

Steps 1 and 2 are largely unchanged from the process original DSWP

given by Ottoni and are implemented with a strong reliance on built-in LLVM

transform passes, as discussed in the next section. Machine learning has been

added to Step 3 to try to achieve a larger speedup across all benchmarks. Finally,

Step 4 has been updated to partition code to run on commonly found hardware

instead of relying on hardware with the custom designed Synchronization Array

to allow thread communication [34].

4.1 Software Details

The DSWP transform was completed implemented in C and C++ along with a

few bash scripts to facilitate machine learning training. The majority of the code

was created to interface with the LLVM framework. LLVM is a compiler created

23

at the University of Illinois at Urbana-Champaign [25] . Since its first release in

2003, LLVM has expanded in use and is currently the default compiler for all OS

X machines. It was created to help facilitate the analysis and transformation of

code by using an internal code representation (IR) that reads much like a RISC

assembly language, but is hardware independent [1]. This IR is able to capture

much of the original high level information that is useful for optimizations during

the entire lifetime of the software. The IR is generated by the LLVM front-end,

transformations are then run on the IR, and finally the IR is passed onto the

LLVM linker and back-end to be turned into machine specific executables. This

modular framework facilitates researchers to create generic transformations that

operate on the LLVM IR without having to focus on language or machine specific

limitations. The following figures in this section are given as LLVM IR.

The DSWP transformations used in this paper were all written as LLVM

Loop Transformation Passes so that they could use all of the analysis capabilities

included in LLVM. This includes using LLVMs analysis passes such as natural

loop discovery, memory analysis, and post-dominator tree creation.

The other library used by this project is Intel’s Thread Building Block

library [19]. This library was created by Intel to facilitate parallel program-

ming in multiple ways, but this project uses its thread safe queues to form

the synchronization arrays outlined for the DSWP algorithm. These queues

are non-blocking, fine-grained locking queues that can be safely accessed by

multiple threads at once.

4.2 Program Dependency Graph Building

After a candidate loop has been found by LLVM, the first step of the DSWP

algorithm is to construct its program dependency graph or PDG. The PDG

24

1 %x = load %x . addr
2 %y = load %y . addr
3 %sum = add %x , %y

Figure 4.1: Example Code Snippet for Data Dependence

is constructed to enumerate all data, memory, and control dependencies in a

given loop [10]. Within the PDG each instruction composing the target loop is

a node within the graph, and all dependencies are directed edges between the

instruction nodes.

4.2.1 Data Dependencies

The first of these dependencies, data, is almost trivial to enumerate in LLVM IR

because it is in Static Single Assignment (SSA) form [8]. Data dependencies are

caused when one instruction uses the value created by another instruction. For

example, in the code snippet in Figure 4.1, there is a data dependence between

the first and third instructions because the third instruction uses the value

created in the first instruction. In a SSA form, each variable is only assigned

a single time. So for instance in the code snippet shown in Figure 4.1, the

value %y will only be assigned by the above load instruction in the given scope.

Because of this, %y can be thought of as a label for the load instruction itself.

This relationship is expressed in LLVM IR by the fact that instruction operands

can be constants or other instructions. So for the example code snippet, %x is

not just a value in LLVM IR, it is equivalent to the load instruction itself. This

makes data dependencies very easy to find; the DSWP transform can simply

inspect the operands of a given instruction and add dependencies between it

and any of its operands that are also instructions.

25

1 %x = load %x . addr
2 %x2 = load %x . addr
3 %y = load %y . addr
4 s t o r e %s , %y . addr

Figure 4.2: Example Code Snippet for Memory Dependence

4.2.2 Memory Dependencies

The next kind of dependency, memory, is far more complex to find. Memory

analysis is a complex subject and is outside the scope of this research, so the

built-in LLVM memory analysis passes were used to facilitate this step of PDG

building. This project used all of the memory analysis passes that are built into

the LLVM framework. The data from these passes is then used to make alias

sets. Each alias set is comprised of memory pointers that could possibly alias

(refer to the same location in memory). If an alias set only contained pointers

that were used to read from memory, then the set was discarded with no change

to the PDG. This was done because the set only contained RAR (Read After

Read) dependencies which are not true dependencies and so can be reordered

as needed.

An example of this is shown in Figure 4.2 between the first two in-

structions. Both instructions load from the same location, but they can occur

in either order without affecting program execution. If an alias set contained

pointers that were given to functions that wrote memory or were used in a store

instruction, the set was used to create memory dependencies between the in-

structions in the PDG. An example of this would be the last two instructions

shown in Figure 4.2. If the store instruction was to happen before the last load

instruction, it would most likely change the outcome of the program and so is

marked as a dependency in the PDG.

26

1 IF COND:
2 br %x , 0 , %IF BODY, %IF END
3

4 IF BODY:
5 s t o r e %x , %x . addr
6 br %IF END
7

8 IF END :
9 %y = load %y . addr

Figure 4.3: Example Code Snippet for Control Dependence

4.2.3 Control Dependencies

The final type of dependency that must be added to the PDG is control depen-

dencies. These occur when an instruction can control whether or not another

instruction will execute. An example of a control dependence is shown in Fig-

ure 4.3. The first ”br” instruction can control whether or not the value of %x

will be stored into memory, therefore this dependency needs to be added to the

PDG of the example program. These control dependencies can most easily be

found using a post-dominator tree (PDT). This project used LLVM to build the

PDT which uses the algorithm outlined by Lenguer and Tarjan [26]. The PDT

is built with the basic blocks (BB) of the loop as its nodes and the edges show-

ing the post-dominance relationship between the different BB’s. A node, D, is

post-dominated by another node, E, if the program cannot reach the end of the

loop starting at D without traveling through E [10]. For example, in Figure 4.3,

the program cannot reach IF END without going through the IF COND block,

therefore IF END is post-dominated by IF COND.

Once the PDT has been found, it can be used to find control dependencies

between BB’s. A control dependency from basic block D to E iff D is not post-

dominated by E and there is a path from D to E in which all BB’s (that aren’t

27

Figure 4.4: Example Control Dependence within PDG

D or E) are post-dominated by E. This relationship can be seen in Figure 4.3;

IF COND is not post-dominated by IF BODY, and since there are not other

nodes in the path between the two BB’s the second condition is also met.

These control dependencies are shown within the PDG by adding an

edge from each instruction in a basic block to the terminator of the controlling

block. For example, for Figure 4.3, an edge would be added between the br %x,

0, %IF BODY, %IF END instruction and both instructions in the IF BODY

basic block as shown in Figure 4.4.

4.3 Directed Acyclic Graph Building

A requirement for DSWP is that all data flows must be unidirectional: data

cannot flow in and out from the same thread in a valid partitioning [34]. A nor-

mal program dependency graph will have many cycles which are usually formed

by program loops. To facilitate DSWP partitioning the PDG is condensed by

contracting all instructions that are strongly connected components (SCC) into

a single node. The search for SCC’s in the PDG is done using LLVM’s built in

scc iterator which uses Tarjan’s strongly connected components algorithm [36].

The contraction of the SCC will condense the PDG into a directed acyclic

graph (DAG) that can be used for DSWP partitioning. The DAG will not

28

1 while (next != 0x00)
2 {
3 int data = next−>data ;
4 data = doWork(data) ;
5 next−>data = data ;
6 next = next−>next ;
7 }

Figure 4.5: Example Code Snippet for PDG and DAG

Figure 4.6: Example PDG for Code Snippet

contain any cycles that can cause problems during the later DSWP partitioning.

An example of this contraction can be seen in Figure 4.7; it is the contraction

of the PDG in Figure 4.6 which was generated from the code in Figure 4.5.

All instructions in a strongly connected component will be partitioned into the

same thread. This is similar to the partitioning of SCCs to cores used in a

hardware approach to pipelining, Two Pass Pipelining [4, 5].

4.4 Determine Partitions Using Machine Learning

Previously, DSWP research has used different heuristics to choose which nodes

of a loop’s DAG should be assigned to each DSWP partition [28] [33] [37].

Usually these heuristics were able to create partitions that gave a decent speedup

and were able to match the best partition found iteratively. Sometimes, however,

the heuristics would perform very poorly on a few loops and would slow down the

code greatly. This project sought to use machine learning (ML) to better handle

29

Figure 4.7: Example DAG Condensation of PDG

different types of loops and so hopefully perform well on a broader spectrum of

loops.

4.4.1 Reinforcement Learning

Reinforcement Learning (RL) provides a system to define a problem that needs

to be solved in some statistical manner. Unlike many forms of machine learning,

reinforcement learning is not a supervised learning method: the exact correct

solution for the problem in not known [15]. RL is instead used to solve problems

where only the “goodness” of a solution is measurable. In RL an agent makes

decisions in its environment to try to solve a problem. To help define the

problem, an RL solution can be broken into 5 basic subelements:

• States : S

– All configurations the environment could possible be in.

• Actions : A

– A set of all actions that the agent can take.

• Policy : π : S → P (A = a|S)

– A mapping from states to actions that describes the probability that

30

Q(s0, a0) Q(s0, a1) . . . Q(s0, an)
Q(s1, a1) Q(s1, a1) . . . Q(s1, an)

...
...

. . .
...

Q(sm, a0) Q(sm, a1) . . . Q(sm, sn)

(a) Generic Q-Table

1 3 6 8
4 2 5 1
1 6 8 2
4 −3 10 5

(b) Q-Table Before

1 3 5.88 8
4 2 5 .76
1 6 8 2
4 −3 10 5

(c) Q-Table After

Figure 4.8: Example Q-Tables for SARSA

the agent will take an action given the state the environment is cur-

rently in.

• Reward Function: R : (s, a)→ R

– A mapping from state-action pairs (the action taken by the agent

from a given state) to a numeric value that measures the short-term

“goodness” of an action.

• Value Function: Q : (s, a)→ R

– A mapping from state-action pairs to a numeric value that measures

the long-term “goodness” of an action.

Notice that the subelements do not describe a solution to a given prob-

lem, but merely act as a framework that can be used to describe the problem [35].

4.4.2 Learning Method and Policy

The solution chosen for this research to solve the DSWP partitioning problem

is State-Action-Reward-State-Action (SARSA) with an epsilon-greedy policy.

SARSA seeks to create and update a table of Q-values until it converges on the

31

true Q values for a given set of states and actions. After the table converges the

learner can then exploit the learned values to take actions that will give it the

most long term rewards [38]. A generic Q-table for a state space with states s0

to sm and an action space with actions a0 to an is shown in Figure 4.8a. This

table is initialized to some set of values and then needs to be updated to reach

the true Q values for the current policy. This update is done iteratively by the

learner as it explores its environment. For each time-step, t, the agent takes

some action at from its current state st and will receive some reward from the

environment rt+1. This then moves the agent into a new state st+1 where it will

again take a new action at+1 and receive another reward rt+2. Each time the

agent takes an action it will update its Q-table using the following formula:

Q(st, at)← Q(st, at) + α ∗ [rt+1 + γ ∗Q(st+1, at+1)−Q(st, at)] (4.1)

In the formula, α is the learning rate (which is usually very small, but always

between 0 and 1) and γ is the discount factor (which is also always between 0

and 1) [35]. A large learning rate can speed up the learning process but can

also make the agent very sensitive to noise. A large gamma favors long term

rewards over short term rewards.

An example of an agent moving through states by taking different actions

can be seen in Formula 4.2.

s0 →a2 s1 →a3 s3 →a1 s0 (4.2)

An example of how the Q-Table for this agent would be before and after the

three actions is shown in Tables 4.8b and 4.8c, respectively. After the first

action, a2 in this case, the agent moves from state s0 to s2 and is given some

32

reward; for this example it will get a reward of 4. For formula 4.1 these values

can be filled in for st, st+1, at, and rt+1 as follows:

Q(0, 2)← Q(0, 2) + α ∗ [4 + γ ∗Q(s1, at+1)−Q(0, 2)] (4.3)

Next the agent takes its next action to go from s1 to s3 using action a3 and gets

a reward of 1. This allows the values of at+1 to be added. Also for this problem

α will be set to 0.1, and γ will be set to 0.8. Now the formula is the following:

Q(0, 2)← Q(0, 2) + 0.1 ∗ [4 + 0.8 ∗Q(1, 3)−Q(0, 2)] (4.4)

Next the original Q-Table (Figure 4.8b) is used to fill in values for the Q(0, 2)

and Q(1, 3) arguments.

Q(0, 2)← 6 + 0.1 ∗ [4 + 0.8 ∗ 1− 6] (4.5)

Solving we find the new value of Q(0,2) is 5.88. This is done once again to

update the value at Q(1,3) and the final Q-table is shown in Figure 4.8c.

The policy used by the agent to choose which actions to take from a

given state is the epsilon-greedy policy. In this policy the agent chooses to take

a random action with probability ε and chooses the to take the action with

the highest Q value with probability 1 − ε. Epsilon-greedy tries to balance

both exploration and exploitation of a given environment to achieve the highest

rewards over time. An ε close to 1 will create a learner whose actions are almost

completely randomly and so will explore most of the state space. An agent with

an ε close to 0 will always try to exploit its knowledge by choosing the action

with the Q value but may miss actions that have much better reward by never

exploring them and so never updating its Q-value to acknowledge the higher

rewards.

33

Table 4.1: State and Action Definitions for DSWP ML

State Features

Cycle Ratio Latency Flows Slack Percent Actions

[0.00, 0.20) [0, 10] [0, 0] [0, 50] [0, 10] ABOVE

[0.20, 0.30) (10, 30] [1, 1] (50,∞) (10, 20] BELOW

[0.30, 0.40) (30, 80] (1, 3] (20, 30]

[0.40, 0.45) (80,∞) (3, 5] (30, 40]

[0.45, 0.48) (5,∞) (40, 50]

[0.48, 0.52) (50, 70]

[0.52, 0.55) (70, 100]

[0.55, 0.60)

[0.60, 0.70)

[0.70, 0.80)

[0.80, 1.00]

4.4.3 Problem Space

The states used to describe the environment relate to each node in the DAG.

Each node is given its own state using different features that relate to differ-

ent characteristics of the node. A summary of the features that make up the

state of each node can be seen in Table 4.1. To determine most of the features

for the nodes, the instructions of the loop are first scheduled. Since LLVM

IR does not directly relate to hardware, latencies were generalized to to deter-

mine the latency for IR instructions [11]. When scheduling the instruction, an

infinite-width processor was assumed and instructions were scheduled within

their respective BBs. The instructions are scheduled using both bottom-up and

top-down methods. The bottom-up schedule is used to determine overall esti-

mated execution time of the loop iteration along with where each instructions

falls in that schedule. The top-down schedule is used to calculate each nodes

34

slack value, as described in the next paragraph.

After scheduling all instructions, each node is given a cycle level by

finding the instruction in the node with the max cycle assignment using the

bottom-up scheduling method which is then assigned to the DAG node. This

cycle level is used to find the Cycle Ratio of the node which is simply the

node’s cycle level divided by the total number of cycles needed to execute the

entire loop. Another feature of the node is its Latency, which is calculated by

adding the latencies of all instructions that make it up. The third feature of the

node based from its instruction latency is its Slack. The slack is determined

by finding the difference in cycle levels from both the top-down and bottom-up

scheduling methods. A node with a large amount of slack can be scheduled in

a variety of cycles without changing the overall latency of the loop. Another

feature that makes up a node’s state is the Flows feature. Flows is an estimate

of how many DSWP cross-core flows will be created by cutting above or below

the given node. Finally, Percent defines the percentage of nodes that are

currently assigned to both partitions.

The actions the learner is allowed to pick for a given node are ABOVE

and BELOW. An action of above means the all of the parents of the node will be

added to the first DSWP partition and the node and its children will be added

to the second partition. An action of BELOW will do the same, except the node

will be added to the first partition instead of the second. The rewards given to

the learner after making actions are based on a delayed system. Each reward is

the speedup of the loop from a baseline time where speedup is calculated as:

SpeedupDSWP
Base

=
(exec. time)Base

(exec. time)DSWP

(4.6)

Using this definition for the reward of a program means that the reward is only

35

found after all instructions have been partitioned and the program has been

executed.

4.5 Transform Source Code

After all of the earlier code analysis has completed and the target loop’s instruc-

tions have been assigned to partitions, a new LLVM pass is called to handle the

actual code transformation. New functions are created to handle each partition,

communication is added between the partitions, and finally, code is inserted to

allow the loop to run in parallel. As discussed earlier, execution time informa-

tion is also collected to assist machine learning so function calls are added to

allow precise timing of loop execution. All of these transformations are done at

the level of LLVM IR so that they are language and architecture independent

and can be done in tandem with any other optimization allowed by the LLVM

compiler.

4.5.1 Move Instructions into New Partition Functions

After each instruction has been assigned to a partition, the code must be trans-

formed to create the dual threads. This process begins by creating a new func-

tion for each of the DSWP partitions. After each function is created, the body

of the loop is copied into both functions, keeping the BB structure of the orig-

inal loop. Next, the instructions that do not belong to a partition are deleted

from its function, being careful not to corrupt the original CFG of the loop.

Finally, all instruction operands within the new partition functions are updated

to point to the newly created instructions inside the DSWP functions. If an

operand does not have a corresponding instruction within its new function it

is marked as depending on an outside value which will be handled in the next

36

Pre-
header

Loop Header Body Exiting

Exit

Figure 4.9: Loop BB Structure

step.

Two new basic blocks are also added to each function to act as loop

pre-header and exit blocks for the loop body within each partition function.

A loop pre-header is a basic block that dominates the loop which implies that

the loop will never be executed by the program without the pre-header block

executing first. The loop pre-header in this case also acts as the entry node for

the partition function. The exit block is much like the pre-header block but

instead post-dominates the loop which implies that it will also run after the

loop finishes executing. Both of the blocks are used for housekeeping in later

steps.

37

4.5.2 Adding Flows to Partitions

There are two main types of data flows that can be generated by partitioning

the program: internal and external. The external flows come from the fact

that some values used by the loop are created or consumed outside of the loop.

Therefore we must be able to pass information in and out of the newly created

loop partition functions. This is done using parameters for each of the functions.

For data that must be passed into the loop, it is stored into memory outside of

the loop and it is passed in by reference into the loop where it is loaded from

memory in the pre-header block within the partition function. This is done

in the pre-header block so that it is only loaded once instead of being loaded

during each iteration of the loop. For data that must be passed out of the loop,

memory is allocated outside of the loop and a memory address is passed into

the loop function. The final value of the data is then stored in the exit block of

the loop and loaded outside of the function so that it can be used by the main

program.

The second kind of flow that can be created is a flow between the two

partitions themselves. Previously, this was done using a custom built Syn-

chronization Array that existed in hardware that could be accessed using new

machine level push and pop instructions [34]. One purpose of this project was

to create a hardware independent implementation of this array. This was done

using a custom library built around Intel’s Thread Building Block Library. The

library focuses around the dswp flow struct whose definition can be found in Ap-

pendix B.1. Both the TBB library and the specialized library functions written

specifically for DSWP (shown in Appendix B.2) were careful to take into con-

sideration the challenges discussed by Ragan and others in their original DSWP

publications [34]. The original challenges that created considerable overhead

38

were OS synchronization used for locking the queues to make them thread-safe,

and problems with false-sharing and cache pollution because of shared mem-

ory communication between the two threads. TBB includes memory allocation

functions that make sure to stride across cache blocks to reduce false sharing

between communicating threads [17]. These allocators were used for all memory

allocation within the dswp flow struct. Care was also taken to allow all locking

to be done by the TBB library which allows fine-grained locking of the queues

to reduce delay when reading and writing the queues.

To pass data into a DSWP flow, the producing partition asks the flow

structure for an available memory location. The flow structure responds with a

pointer if there is room within the queue to add a value or the function blocks

until the queue is no longer full. The producing partition then saves the value

into the memory location and alerts the flow that it has finished storing into

memory. To consume a value from a DSWP flow, the DSWP partition asks

the flow structure for the address of the oldest value within the flow. The flow

structure will then return the address or block if the flow is empty. The partition

can then load from memory to obtain the value passes from the producing

partition. The consuming partition does not need to alert the flow structure

that it has finished loading from memory because of the design of the flow

structure. This feature is possible because the consuming function always loads

the shared value before asking for the pointer to the next value in the flow.

4.5.3 Insert Functions into Code

After the functions are constructed, the original code of the loop is deleted from

the program. The original pre-header for the loop is changed to instead point to

a newly constructed BB. The new BB is given code to construct and destruct

the dswp flow struct before and after the loop. It is also given code to zip

39

1 PREHEADER:
2 . . .
3 br %DSWP BLOCK
4

5 DSWP BLOCK:
6 c a l l d s w p f l o w i n i t ()
7 z ip parameters i n to array
8 . . .
9 c a l l c r e a t e t h r e a d (P a r t i t i o n 2)

10 c a l l P a r t i t i o n 1 ()
11 c a l l j o i n t h r e a d ()
12 c a l l dswp f low dest ()
13 br %EXIT
14

15 EXIT :
16 . . .

Figure 4.10: Pseudo-BB to Inject DSWP Partitions

any parameters that need to be passed into the second partition. Next a new

thread is created inside of the BB which allows the 2nd partition to run. After

the thread is created, the function for the master thread (the 1st partition) is

called. After both partitions are called, a join instruction is issued to make sure

both threads complete before the program moves ahead in execution. Finally the

BB is given a branch instruction that points to the exit block of the transformed

loop. A pseudo-code implementation of this process is shown in Figure 4.10.

4.5.4 Learning Information

For the purpose of machine learning, timing data must be collected on each

of the partitioned loops. This is done by using a few functions injected into

the code that log timing information for each loop. The declaration of these

function can be seen in Appendix B.3. Timing information for loop execution

time is stored out into files and used by the learner to calculate the speedup

40

of a particular partition and therefore the reward for a set of actions. The

timing functions are added as the first instruction and 2nd to last of the new

BB created at code insertion as described in Figure 4.10

41

Chapter 5

Experimentation

Two sets of experiments were run to verify the feasibility of the proposed opti-

mization. All experiments were run on a set of kernels created for this specific

research. The first set of experiments were used to find the best straight cut

DSWP partitioning using hand tuning. This was done to verify if a perfor-

mance increase could be found for each kernel. The second set of experiments

focused on if the machine learner could discover a jagged cut DSWP partition-

ing that performed as well or better than the best partitioning found in the first

experiment.

5.1 Kernels

To test the viability of the described implementations of DSWP and LA-DSWP,

kernel programs were created. These kernel programs mimic real user program

patterns and allowed benchmarking data to be collected for both optimizations.

5.1.1 Motivation

As mentioned in the Chapter 1, DSWP was created to take advantage of parallel

processing in loops that traverse recursive data structures (RDS). These loops

can usually be split into two blocks: a block that traverses the data structure,

and a block that does useful calculations. By splitting the loops into two sepa-

rate partitions running on multiple cores, we hope to better take advantage of

the memory subsystems of modern processors.

42

The kernels created to be partitioned using DSWP were designed to tax

a modern processor’s memory system. The two principles of locality discussed

in Chapter 3 usually keep caches full of the data a processor needs and thus

masks the latency of main memory. These two principles, however, do not

apply to some program behavior (for instance iterating through a large RDS).

As an example, consider a program that moves through a large tree, doing

work on each of its nodes. Each node must be loaded from memory, but most

likely each node will not be stored adjacent in memory. This causes spatial

locality to fail and the cache will no longer prefetch data for the processor to

use. Also assume the tree is very large, maybe on the scale of gigabytes, and

each node is only visited once. This means that the cache can no longer rely on

temporal locality either and so will never contain the information the processor

needs when loading a new node. This would force the processor to go to main

memory for each and every load of a node which will severely decrease overall

performance [31].

At this point the processor can still use a few optimizations to mask the

latency of the main memory loads. The first is pre-fetching the data [12]. The

processor is allowed to issue a prefetch to let the memory system know that

the processor will need a piece of data soon. These instructions can be trigger

through software or hardware. The software prefetch relies on the programmer

to predict what memory addresses should be loaded early into the cache. A

hardware prefetch is issued by the hardware itself and usually relies on learning

a particular load pattern. Another optimization the processor can use to hide

the latencies of main memory is an out-of-order pipeline [17]. As described

in Chapter 3, modern processor do not actually execute the instructions of a

program in the compiled order. The processor can instead reorder instruction in

43

a set window of instructions. For instance the processor used in this research is

able to reorder instructions within a 192 instruction window. Additionally, that

the processor can have 72 pending loads from main memory at a time means

that the processor can stack many loads together and so hide the latency of

later loads behind the latency of the first [22]. These processor optimizations

can still fail, however, on an RDS. A tree’s nodes may be stored randomly in

memory and so the hardware pre-fetcher may be unable to learn a load pattern,

and the there may be more instructions used to do calculations on each node

than can be held in the reorder buffer and so multiple loads cannot be sent to

memory at one time.

DSWP cannot fix the locality problems in the caches themselves and it

cannot help with prefetching. It can, however, help will the the reorder buffer

problem. The goal of DSWP is to split out all of the calculation instructions in

a RDS loop into a separate processor core so that while data will always have to

be fetched from main memory, as many loads as possible can be done together.

This is the driving idea behind the kernels created to test this implementation

of DSWP. All of the kernels were created to have almost no temporal or spatial

locality. They also do not follow any patterns the hardware pre-fetchers can

learn and the calculations done on each piece of data would completely fill the

processors reorder buffer so that loads can not be bundled together.

5.1.2 Kernel Definitions

The kernels written for this research focused on different patterns of RDS traver-

sal. Three common data structures were used as the backbone of the kernels:

matrices, binary trees, and linked lists. For each data structure three different

algorithms were ran on the structure for a total of nine kernels. The matrices

used in the kernels are C matrices built from an array of arrays. The binary

44

Table 5.1: Experiment Loop Summary Information

Kernal Total Latency DAG Node Count

Matrix Multiply 75 52

Matrix Log Loss 62 21

Matrix Arbitrary 74 20

Tree Variance 73 6

Tree Log Loss 115 18

Tree Arbitrary 112 14

Linked List Variance 16 6

Linked List Log Loss 65 20

Linked List Arbitrary 62 15

trees are sorted, unbalanced trees whose nodes are all the size of a single cache

block (64 bytes). The linked lists nodes are also the size of a single cache block.

A summary of the kernels used for these experiments is shown in Table 5.1. The

Total Latency of each loop is the total number of cycles needed to execute a

single iteration of the RDS loop based on a simple model of Haswell latencies.

The DAG Node Count is the number of nodes in the DAG of the RDS loop

in the kernel.

For the first three kernels, each data structure was used to store the data

needed to calculate the log loss of the output of a machine learning classifier.

The log loss of a machine learner across N predictions can be written as follows:

Log Loss = − 1

N

N−1∑
n=0

yn ∗ log pn (5.1)

where yn is the true classification of a given sample n, and p is the probability

the learner assigned to the true classification [7]. Another set of kernels find

45

the variance across the nodes of a given data structure. The variance of a list

of numbers can be calculated as:

s2 =
1

N − 1

N−1∑
n=0

(yn − ȳ)2 (5.2)

where N is the number of samples, yn is sample n, and ȳ is the mean of the data

set [9]. An example of a kernal finding variance can be found in the appendix.

The matrix data structure also has a kernel that multiples two matrices. It

is the only kernel that has been hand-optimized to perform well in a multi-

threaded application. Finally each data structure has an “arbitrary” algorithm

preformed on each of the nodes. The arbitrary algorithm simply runs a loop that

performs multiple operations on the values at each node of the data structure

before moving on. An example of these arbitrary calculations can be found in

the appendix. This was done to guarantee an algorithm that would fill up the

ROB with calculation instructions between the loading of each node.

5.2 Hardware Setup

All experiments were run on a single, unshared node of the University of Ok-

lahoma’s supercomputer, Schooner. Each node of Schooner contains two Intel

Xeon Haswell E5-2650v3 10-core 2.3 GHz processors along with 32 GB of RAM.

All testing was limited to a single processor so that partitions could communi-

cate through the processor’s Uncore as discussed in Chapter 2.

5.3 Experiment 1 Setup

In the first set of experiments, the viability of running DSWP optimizations on

current hardware was tested. To do this, the target loop in each kernel was split

46

into two DSWP partitions using a straight cut. This straight cut method closely

matches the method of automatic partitioning done in prior research [28]. The

total latency of the loop was calculated along with which cycle each node would

begin running (the node’s cycle level). These were then used to find the cycle

ratio of the node by dividing the node’s cycle level by the overall latency of

the loop. After these calculation, for most kernels, all nodes with a level ratio

between 0 and 0.5 went into one partition, while the rest went into the second

partition. For a few kernels, however the cutoff threshold of 0.5 was changed to

increase performance because the latency of the calculation and traversal paths

was lopsided.

After each kernel was partitioned, a baseline test was run. Timing func-

tions were injected into the original code at the LLVM IR level which was then

compiled and run 10 times. The outputs of the timing functions were then aver-

aged to find the baseline execution time for the target loop in the kernel. Next,

the partitioned version of the kernel was run 10 times. The output of its tim-

ing functions were then averaged to find the execution time after optimization.

Using these calculations the performance speedup was determined.

5.4 Experiment 1 Results

Table 5.2 and Figure 5.1 summarize the results using the straight cut method of

DSWP partitioning. As can be seen from both the table and the figure, only one

kernel was able to achieve a performance increase. The matrix multiply kernel

does not fit into the RDS pattern, however, and is easily handled by other

methods of parallelizations, such as DOACROSS. The rest of the programs run

at speeds ranging from 37% to 1% of the original unoptimized speeds.

This leads to the question of why such large slowdowns? Our opinion

47

Table 5.2: Experiment 1 Results

Kernal Name Cut Ratio Speedup

Matrix Multiply 0.5 1.78

Matrix Log Loss 0.52 0.01

Matrix Arbitrary 0.5 0.15

Tree Variance 0.5 0.03

Tree Log Loss 0.5 0.37

Tree Arbitrary 0.5 0.16

Linked List Variance 0.5 0.01

Linked List Log Loss 0.85 0.12

Linked List Arbitrary 0.82 0.21

follows the same reasoning as the original DSWP researchers [34]. As discussed

in Chapter 2, the DSWP partitions are only able to communicate through the

processor’s L3 cache. Intel estimates the average latency of a dirty hit in the

L3 cache (occurs when a core tries to read data another core has written) to

be about 110 cycles. They also estimate the average latency of a hit in DRAM

to be about 193 cycles [21]. The DSWP partition that is on the receiving end

of the data flows will have at least one dirty hit in the L3 cache every time it

consumes a value from the queue. This means at best, it will be able to save

83 cycles by letting the other partition load the data first. This is, however,

ignoring all of the other overhead required to handle the communication like

updating queue states. Also communication queues must be created between

the partitions to handle control flows which will create more dirty loads that

did not exist before partitioning and so will help negate the saved cycles.

48

Figure 5.1: Experiment 1 Results

5.5 Experiment 2 Setup

Even with the failure of DSWP to produce a performance increase for most

kernels in Experiment 1, machine learning was still applied to the problem to

discover whether or not reinforcement learning was a viable method to determine

how best to partition code into multiple DSWP partitions. Only two kernels

were selected to perform machine learning on, matrix multiplication and the

arbitrary matrix kernel. Matrix multiplication was chosen specifically because

it was the only kernel in which a DSWP partitioning resulted in a performance

increase.

For each machine learning run, an initial Q-Matrix was created with

all values initialized to 1.5. This value was chosen as it is on the high-side

of the expected reward for each state-action pair; this setup promotes early

exploration of the problem space. For each trial of the ML run, the code was

partitioned using an epsilon-greedy policy using epsilon = 0.1. After the code

49

was partitioned, it was executed and timing information was collected. This

information was used to calculate a reward for the actions chosen during that

specific trial. The Q-Table was then updated using Formula 4.1. The reward

for a given trial is the speedup of the optimized code over the un-optimized

code. The reward was given to the last state-action pair chosen only, with all

other rewards in the trial being set to 0. This method required a high γ value so

that the reward is able to trickle back to earlier choices. For these experiments

γ = 0.95. Each ML run included at least 1000 trial compilation and execution

pairs resulting in the same number of Q-Table updates.

Two separate learners were run on each kernel, each with its own learning

rate(α). A high learning rate can make the model very sensitive to noise, but the

model will converge to a solution faster. The α values used for this experiment

where α = 0.1 and α = 0.3.

5.6 Experiment 2 Results

Learning curves for each kernel are summarized in Figures 5.2a and 5.3. The

lighter line in both figures is the speedup of each trial in the given run. The

darker line is a moving average filter with a window of 10 of the speedups of the

trials. As was conjectured in Section 5.5, the higher α values did in fact help

the learner converge on a solution quicker.

For both kernels, neither learner was able to find a partitioning that

had a greater performance increase than the straight line partitioning used in

Experiment 1. In fact, for the matrix multiplication kernel, the learner explored

the partitioning that lead to a speedup of 1.78x, but it did not converge on this

solution. Even after 10,000 trials the learner was unable to converge on the

optimal solution. It instead converged on the same solution as the arbitrary

50

kernel’s learner: do not partition the loop. For the arbitrary kernel, this is the

best and only solution that does not degrade performance.

Both figures also show that the speedup for a giving partitioning is very

much all or nothing. For instance, in the matrix multiplication kernel all par-

titioning trials seem to produce a speedup of approximately 0, 1, or 1.8, with

nothing really in between. These extremes may be one reason the learners have

trouble converging on optimal solutions. There is no gradual increase of reward

as the pattern of node choice approach the best solution. The solutions for a

reward of 1 and 1.8 are local maximums that are surrounded on both sides by

choices that result in a reward of close to 0. Also the learner only has to take a

single good action to choose to partition all nodes in a single thread (leaving the

original code unchanged) while it must take multiple good actions sequentially

to partition nodes across the two partitions in the proper configuration to result

in a reward of 1.8.

What this experiment does not discover, is how well the above results

will generalize to other programs. Since only one kernel was found that had a

performance increase, there is not a way to check to see if the Q-values learned

for these kernels are overfit to these specific programs. More testing would need

to be done with different kernels of a variety of patterns to discover how well

this data can generalize.

51

(a) Learning Curve (α = 0.1)

(b) Learning Curve (α = 0.3)

Figure 5.2: Matrix Arbitrary Learning Curves

52

(a) Learning Curve (α = 0.1)

(b) Learning Curve (α = 0.3)

Figure 5.3: Matrix Multiply Learning Curves

53

Chapter 6

Conclusion

In this paper we discussed a new method to optimize single threaded programs

to run on multi-core processors. As computer architects strive to keep up with

public expectations for processor performance, they are increasingly turning to

processors with multiple cores. Unlike prior hardware innovations, computer

programs must be written or compiled in new methods to take advantage of

these new hardware innovations. Automatic thread-extraction using Decoupled

Software Pipelining seeks to extract multiple threads from a single-threaded

program so that an arbitrary piece of code can make use of multiple cores on

a processor chip. DSWP focuses on splitting large recursive data structure

traversal loops into multiple threads to increase overall program performance.

Unlike prior implementations of DSWP, this research focused on cre-

ating a hardware and language independent implementation of DSWP using

the LLVM framework. Instead of relying on custom-built hardware to facili-

tate communication between program threads, this implementation used Intel’s

Thread Building Blocks library to create queues in shared memory between the

different processor cores. This cased a heavily reliance on the memory subsys-

tems of the target processors.

Another novel approach to DSWP explored in this paper was the appli-

cation of machine learning to the partitioning process. Instead of partitioning

loops using predefined heuristics, this paper sought to apply reinforcement learn-

ing to allow the DSWP agent to make more informed decisions when optimizing

54

a given loop.

Through experimentation on modern Intel processors, this research found

that DSWP is unfeasible on current hardware. The overhead needed to facil-

itate thread communication through standard memory subsystems outweighs

the performance increases caused by executing code on multiple processor cores.

Machine learning was still applied, however, and while the learners were able to

converge to a reasonable solution, they were unable to find the best solutions

for a giving loop partitioning problem.Unfortunately, the generalizability of the

learners is unknown since most programs in the experiment were unable to be

partitioned in a manner that increased program performance.

6.1 Future Work

This research focused on running DSWP on RDS loops on a current Intel Proces-

sor. As discussed in Chapter 2, AMD currently uses a very different architecture

to handle communication between cores in a processor. This architecture differ-

ent could significantly change the outcomes of the experiments and could result

in a performance increase using DSWP. Also, the current trend in processors

is the scalability of the number of cores on a given chip, while not necessarily

focusing on the latency of communication between cores. This can be seen in

the general increase of latency in Intel chips from the original Intel Core Duo

processors to the current Haswell chips [22]. This trend may someday reverse

and focus on reducing latency between cores so that optimizations like DSWP

have a better chance at working.

Another frontier to continue exploring is the application of machine

learning to automatic thread extraction. Reinforcement learning was applied

in this research using a discrete set of features and states along with a Q-table

55

but other machine learning methods could be applied to gain greater results.

A neural network or simple linear regression model could instead be used to

predict Q-values for a set of continuous features so that they states used for

node partitioning could be fine-tuned compared to the bulky states described

in this paper. Hopefully, by exploring these new frontiers, a form of LA-DSWP

could be created that was able to overcome the inter-core communication over-

head of a real processor to produce performance increases in general computer

programs.

56

Bibliography

[1] V. Adve, C. Lattner, M. Brukman, A. Shukla, and B. Gaeke, “LLVA: A low-

level virtual instruction set architecture,” in Proceedings of the 36th annual

IEEE/ACM International Symposium on Microarchitecture, ser. MICRO

36. IEEE Computer Society, December 2003.

[2] V. Agarwal, M. Hrishikesh, S. W. Keckler, and D. Burger, “Clock rate

versus IPC: The end of the road for conventional microarchitectures,” in

Proceedings of the 30th Annual International Symposium on Computer Ar-

chitecture, June 2003, pp. 84–95.

[3] AMD, “Software optimization guide for amd family 17h processors,” AMD,

Tech. Rep. 55723, August 2017.

[4] R. D. Barnes, E. M. Nystrom, J. W. Sias, S. J. Patel, N. Navarro, and

W. W. Hwu, “Beating in-order stalls with ‘flea-flicker’ two-pass pipelining,”

in Proceedings of the 36th Annual IEEE/ACM International Symposium on

Microarchitecture, 2003, pp. 387–398.

[5] R. D. Barnes, J. W. Sias, E. M. Nystrom, S. J. Patel, J. Navarro, and W. W.

Hwu, “Beating in-order stalls with ‘flea-flicker’ two-pass pipelining,” IEEE

Transactions on Computers, vol. 55, no. 1, pp. 18–33, January 2006.

[6] M. Clark, “A new x86 core architecture for the next generation of comput-

ing,” AMD, Tech. Rep., August 2016.

[7] G. Cybenko, D. O’Leary, and J. Rissanen, Eds., The Mathematics of In-

formation Coding, Extraction and Distribution, ser. IMA volumes in math-

ematics and its applications; 107. New York, NY: Springer New York,

1999.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and

F. K. Zadeck, “Efficiently computing static single assignment form

and the control dependence graph,” ACM Trans. Program. Lang.

Syst., vol. 13, no. 4, pp. 451–490, Oct. 1991. [Online]. Available:

http://doi.acm.org/10.1145/115372.115320

[9] B. S. Everitt, Ed., Cambridge Dictionary of Statistics, 2nd ed. Cambridge,

UK: Cambridge University Press, 2002, ch. Variance, pp. 388–389.

57

[10] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program

dependence graph and its use in optimization,” ACM Trans. Program.

Lang. Syst., vol. 9, no. 3, pp. 319–349, July 1987. [Online]. Available:

http://doi.acm.org/10.1145/24039.24041

[11] A. Fog, Instruction Tables, Technica University of Denmark, May 2017.

[12] J. W. C. Fu, J. H. Patel, and B. L. Janssens, “Stride directed prefetch-

ing in scalar processors,” in Proceedings of the 25th annual international

symposium on Microarchitecture, December 2002, pp. 102–110.

[13] S. H. Fuller and L. I. Millett, Eds., Future of Computing Performance, The:

Game Over or Next Level? National Academies Press, 2011.

[14] P. P. Gelsinger, “Microprocessors for the new millennium: Challenges,

opportunities, and new frontiers,” in 2001 IEEE International Solid-

State Circuits Conference. Digest of Technical Papers. ISSCC (Cat.

No.01CH37177), Feb 2001, pp. 22–25.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical

Learning: Data Mining, Inference, and Prediction. Springer, 2017.

[16] M. T. Heath, “A tale of two laws,” The International Journal of High

Performance Computing Applications, vol. 29, no. 3, pp. 320–330, August

2015.

[17] J. L. Hennessy and D. A. Patterson, Computer Architecuture: A Quanti-

tative Approach, 5th ed. Waltham, MA: Elsevier, Inc., 2012.

[18] K. Huppler, “The art of building a good benchmark,” in Performance Eval-

uation and Benchmarking: First TPC Technology Conference, R. Nambiar

and M. Poess, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 18–30.

[19] Intel threading building blocks documentation. Intel Corporation. [Online].

Available: https://software.intel.com/en-us/tbb-documentation

[20] Intel R© Xeon PhiTM x200 product family. Intel Corporation. [Online].

Available: https://ark.intel.com/products/series/92650/Intel-Xeon-Phi-

x200-Product-Family

[21] Using Intel VTune Amplifier XE to Tune Software on the Intel Xeon Pro-

cessor E5 v3 Family, Intel Corporation.

58

[22] Intel 64 and IA-32 Architectures Optimization Reference Manual, Intel Cor-

poration, December 2017.

[23] D. A. Jiménez and C. Lin, “Dynamic branch prediction with perceptrons,”

in The Seventh International Symposium on High-Performance Computer

Architecture., January 2001, pp. 197–206.

[24] J. Larus, “Spending moore’s dividend,” Commun. ACM,

vol. 52, no. 5, pp. 62–69, May 2009. [Online]. Available:

http://doi.acm.org/10.1145/1506409.1506425

[25] C. Lattner and V. Adve, “LLVM: a compilation framework for lifelong pro-

gram analysis & transformation,” in Code Generation and Optimization,

2004. CGO 2004. International Symposium on. USA: IEEE, 2004, pp.

75–86.

[26] T. Lengauer and R. Tarjan, “A fast algorithm for finding dominators in a

flowgraph,” ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 1, no. 1, pp. 121–141, January 1979.

[27] G. E. Moore, “Cramming more components onto integrated circuits,” Pro-

ceedings of the IEEE, vol. 86, no. 1, pp. 82–85, Jan, 1998.

[28] G. Ottoni, R. Rangan, A. Stoler, and D. August, “Automatic thread ex-

traction with decoupled software pipelining,” in Microarchitecture, 2005.

MICRO-38. Proceedings. 38th Annual IEEE/ACM International Sympo-

sium on. USA: IEEE, 2005, pp. 12 pp.–118.

[29] D. Padua Haiek, “Multiprocessors: Discussion of some theoret-

ical and practical problems,” January 1980. [Online]. Available:

http://search.proquest.com/docview/288131513/

[30] V. Pankratius, A.-R. Adl-Tabatabai, and W. Tichy, Eds., Fundamentals of

Multicore Software Development, ser. Computational Science Series. CRC

Press, 2012.

[31] D. A. Patterson and J. L. Hennessy, Computer Organization and Design:

The Hardware/Software Interface, 5th ed. Morgan Kaufmann Publishers

Inc., 2014.

[32] M. Priestley, A Science of Operations Machines, Logic and the Invention

of Programming, ser. History of Computing. Springer, London, 2011.

59

[33] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August,

“Parallel-stage decoupled software pipelining,” in Proceedings of the 6th

Annual IEEE/ACM International Symposium on Code Generation and

Optimization, ser. CGO ’08. New York, NY, USA: ACM, 2008, pp. 114–

123. [Online]. Available: http://doi.acm.org/10.1145/1356058.1356074

[34] R. Rangan, N. Vacharajani, M. Vachharajani, and D. August, “Decoupled

software pipelining with the synchronization array,” in Proceedings of the

13th International Conference on Parallel Architecture and Compilation

Techniques, September - October 2004, pp. 177–188.

[35] R. S. Sutton and A. G. Barto, Reinforcement learning: An Introduction.

The MIT Press, 1998.

[36] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM Journal

on Computing, vol. 1, no. 2, pp. 146–160, June 1972.

[37] N. Vacharajani, R. Rangan, E. Raman, M. Bridges, G. Ottoni, and D. Au-

gust, “Speculative decoupled software pipelining,” in Proceedings of the

16th International Conference on Parallel Architecture and Compilation

Techniques, September 2007, pp. 49–59.

[38] C. Watkins and P. Dayan, “Q -learning,” Machine Learning, vol. 8, no. 3,

pp. 279–292, May 1992.

[39] N. H. E. Weste and D. M. Harris, CMOS VLSI Design: A Circuits and

Systems Perspective, 4th ed., M. Hirsch, Ed. Addison Wesley, 2001.

[40] T. Yeh and Y. N. Patt, “Alternative implementations of two-level adap-

tive branch prediction,” in Proceedings of the 19th Annual International

Symposium on Computer Architecture, August 1992, pp. 124–134.

60

Appendices

Appendix A

Notation and Nomenclature

CFG Control Flow Graph

CMP Chip Multiprocessor

BB Basic Block

DAG Directed Acyclic Graph

DSWP Decoupled Software Pipelining

IR Intermediate Representation

LLVM Low Level Virtual Machine

ML Machine Learning

PDG Program Dependency Graph

PDT Post-Dominator Tree

RDS Recursive Data Structures

RL Reinforcement Learning

SARSA State Action Reward State Action Learning

SCC Strongly Connected Components

SPEC System Performance Evaluation Cooperative

SSA Static Single Assignment

TBB Intel’s Thread Building Block Library

62

Appendix B

Selected Code Snippets

B.1 Inter-Partition Flow Structure

1 struct dswp flow
2 {
3 concurrent bounded queue<void ∗ ,
4 c a c h e a l i g n e d a l l o c a t o r<void∗> >∗∗ queues

;
5

6 char padding [6 4] ;
7

8 int numberOfQueues ;
9 void∗∗ dataMaps ;

10

11 char padding1 [6 4] ;
12

13 int∗ nextIndex ;
14 void∗∗ nextAddress ;
15

16 char padding2 [6 4] ;
17

18 s i z e t ∗ s i z e s ;
19

20 char padding3 [6 4] ;
21

22 int∗ pops ;
23 int popIte r ;
24

25 char padding4 [6 4] ;
26

27 int∗ f e e d s ;
28 int f e e d I t e r ;
29

30 } typedef dswp flow ;

63

B.2 DSWP Flow Library Header

1

2 int d s w p f l o w i n i t (dswp flow∗ f low ,
3 int flowNumber , s i z e t ∗ s i z e s) ;
4

5 void dswp f low dest (dswp flow∗ f l ow) ;
6

7 void∗ dswp f low feedFlow Get (dswp flow∗ f low , int index) ;
8

9 void dswp f low feedFlow Flag (dswp flow∗ f low , int index) ;
10

11 void∗ dswp flow consumeFlow (dswp flow∗ f low , int index) ;
12

13 void d s w p f l o w s t a r t p o p i t e r (dswp flow∗ f l ow) ;
14

15 void dswp f l ow end pop i t e r (dswp flow∗ f l ow) ;
16

17 void d s w p f l o w s t a r t f e e d i t e r (dswp flow∗ f l ow) ;
18

19 void d s w p f l o w e n d f e e d i t e r (dswp flow∗ f l ow) ;

B.3 ML Timing Library

1 void dswp t iming s ta r t (struct t imeva l ∗ tv) ;
2

3 void dswp timing end (int loopNum , struct t imeva l ∗ tv) ;

B.4 Linked List Variance Kernel

1 #include <s t d i o . h>
2 #include <s t d l i b . h>
3 #include <math . h>
4

5 #define s i z e 100000000
6

7 struct l l n o d e
8 {
9 struct l l n o d e ∗ pred ;

10 struct l l n o d e ∗ succ ;
11 f loat value ;

64

12 } typedef l l n o d e ;
13

14 void c r ea t e node (l l n o d e ∗ node , f loat value)
15 {
16 node−>pred = 0x0 ;
17 node−>succ = 0x0 ;
18 node−>value = value ;
19 }
20

21 l l n o d e ∗ add node (void∗ address , l l n o d e ∗ t a i l , f loat
value)

22 {
23 l l n o d e ∗ newNode = (l l n o d e ∗) address ;
24 c r ea t e node (newNode , va lue) ;
25

26 t a i l−>succ = newNode ;
27 newNode−>pred = t a i l ;
28

29 return newNode ;
30 }
31

32 int main ()
33 {
34 // b u i l d up a g i a n t LL
35

36 FILE∗ fp ;
37 f loat value = 0 ;
38 fp = fopen (”random . csv ” , ” r ”) ;
39

40 // c r e a t e f r o n t
41 f s c a n f (fp , ”%f ” , &value) ;
42 l l n o d e ∗ f r o n t = mal loc (s izeof (l l n o d e)) ;
43 c r ea t e node (f ront , va lue) ;
44

45 l l n o d e ∗ t a i l = f r o n t ;
46

47 // b u i l d r e s t o f LL
48 for (int i = 0 ; i < s i z e −1; ++i)
49 {
50 void∗ address = mal loc (s izeof (l l n o d e)) ;
51 f s c a n f (fp , ”%f ” , &value) ;
52 t a i l = add node (address , t a i l , va lue) ;
53 }

65

54

55 p r i n t f (”%f \n” , f ront−>value) ;
56

57

58 //sum up across a l l v a l u e s in the LL to f i n d mean
59

60 f loat sum = 0 ;
61

62 l l n o d e ∗ cur r ent = f r o n t ;
63

64 while (cur r ent != 0x0)
65 {
66 l l n o d e ∗ temp = cur rent ;
67 cur r ent = current−>succ ;
68

69 sum += temp−>value ;
70 }
71

72 f loat mean = sum / s i z e ;
73

74 // f i n d var iance now t h a t we have the mean
75 sum = 0 ;
76 cur r ent = f r o n t ;
77 while (cur r ent != 0x0)
78 {
79 l l n o d e ∗ currentNode = cur rent ;
80 cur r ent = current−>succ ;
81

82 f loat e r r o r = currentNode−>value − mean ;
83 e r r o r = e r r o r ∗ e r r o r ;
84 sum = sum + e r r o r ;
85 }
86

87 f loat var iance = sum / (s i z e − 1) ;
88 p r i n t f (”%f \n” , var i ance) ;
89 }

B.5 Arbitrary Algorithm Calculations

1

2

66

3 //do a whole bunch o f worth wi th j u s t the
4 // v a l u e s h o p f u l l y caus ing the ROB to f i l l
5 // w h i l e w a i t i n g f o r miss
6 temp = 0 ;
7 for (unsigned int i = 0 ; i < 150 ; ++i)
8 {
9 double temp = currentNode−>va lues [i % 5] ∗ i ;

10 temp = temp / (i +1) ;
11 }

B.6 Latency Calculation Code

1 unsigned int getLatency (I n s t r u c t i o n ∗ i n s t)
2 {
3

4 unsigned OpCode = ins t−>getOpcode () ;
5

6 switch (OpCode)
7 {
8 // terminators

−−−
9 case I n s t r u c t i o n : : Ret : ;

10 case I n s t r u c t i o n : : Br : return 2 ;
11

12 case I n s t r u c t i o n : : Unreachable : return 0 ;
13

14 // binary−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
15 case I n s t r u c t i o n : : Add : ;
16 case I n s t r u c t i o n : : FAdd : ;
17 case I n s t r u c t i o n : : Sub : ;
18 case I n s t r u c t i o n : : FSub : return 1 ;
19

20 case I n s t r u c t i o n : : Mul : ;
21 case I n s t r u c t i o n : : FMul : return 2 ;
22

23 case I n s t r u c t i o n : : UDiv : ;
24 case I n s t r u c t i o n : : SDiv : ;
25 case I n s t r u c t i o n : : FDiv : ;
26 case I n s t r u c t i o n : : URem: ;
27 case I n s t r u c t i o n : : SRem: ;
28 case I n s t r u c t i o n : : FRem: return 15 ;

67

29

30 // b i t w i s e
−−−

31 case I n s t r u c t i o n : : And : ;
32 case I n s t r u c t i o n : : Or : ;
33 case I n s t r u c t i o n : : Xor : ;
34 case I n s t r u c t i o n : : Shl : ;
35 case I n s t r u c t i o n : : LShr : ;
36 case I n s t r u c t i o n : : AShr : return 1 ;
37

38 //memory−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 case I n s t r u c t i o n : : Al loca : ;
40 case I n s t r u c t i o n : : Load : ;
41 case I n s t r u c t i o n : : Store : return 5 ;
42 case I n s t r u c t i o n : : GetElementPtr : return 2 ;
43

44

45 // other−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
46 case I n s t r u c t i o n : : ICmp : return 1 ;
47 case I n s t r u c t i o n : : FCmp: return 2 ;
48

49 case I n s t r u c t i o n : : PHI : return 0 ;
50

51 case I n s t r u c t i o n : : Ca l l : return 50 ;
52

53 default : return 1 ;
54 }
55

56 }

68

