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CHAPTER I 

INTRODUCTION 

In plant breeding experiments, many genotypes are usually evaluated 

in different environments (such as location, years) before selecting a 

desirable genotype. Genotypes tested in different environments almost 

invariably show genotype-environment interaction; that is, the relative 

phenotypic performances of the genotypes vary from one environment to 

another. Such differential response of genotypes in different environ­

ments makes it difficult for breeders to decide which genotypes should 

be selected. 

Different attempts have been made to solve the problems created by 

genotype-environment interaction. Stratification of environments has 

been used to reduce the genotype-environment interaction. That is, the 

region for which a breeder is developing improved genotypes is subdivided 

so that within a subregion the interaction is reduced. The stratifica­

tion usually is based on such macro-environmental factors as temperature, 

water availability, and soil type. Even with this refinement of tech­

nique, the interaction of genotype with location in a subregion and with 

environments encountered at the same location in different years may re­

main unacceptedly large. 

Since little additional progress can be expected in reducing geno­

type-environment interaction by the stratification of environments, other 

methods need to be investigated. One such method is to select stable 
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genotypes that interact less with the environments in which they are to 

be grown. If the stability of performance, or the ability to show a min­

imum of interaction with the environment, is a genetic characteristic, 

then preliminary evaluation could be planned to identify the stable geno­

types. With only more stable genotypes remaining for the final stages of 

testing, a breeder would be greatly aided in selecting superior genotypes. 

The regression of each genotype in an experiment on an environmental 

index, originally proposed by Yates and Cochran (1938) and later used by 

Finlay and Wilkinson (1963), has been used to estimate the regression co­

efficient which is defined as the stability parameter. Regression coeffi­

cients measure phenotypic stability; that is, genotypes with regression 

coefficients of 1.0 have an average stability, whereas coefficients less 

than or greater than 1.0 indicate above average or below average stabil­

ity. 

In the regression approach, a desirable index, independent of ex­

perimental genotypes, is one obtained from environmental factors such as 

temperature, rainfall, and s~il fertility. Current knowledge of the re­

lationship of these factors and phenotypic performance does not permit 

the computation of such an index. The commonly used substitute for this 

index is the average phenotypic performance of genotypes in a particular 

environment. 

Several researchers (Eberhart and Russell, 1966; Miezen, Milliken, 

and Liang, 1979) have evaluated the environmental index by the 

mean performance of all genotypes grown in that environment. However, 

estimation and testing have been carried out as if this index had been 

determined independently of the data. Although some difficulties have 

been acknowledged (Freeman, 1973), no general study has been undertaken. 
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The purposes of the research reported herein are to obtain the 

estimators of stability parameters and derive the distributions of the 

estimators. Attention will be restricted to two simple designs, namely, 

the Completely Randomized Disign (CRD) within each environment and the 

Randomized Complete Block Design (RCBD) within each environment. 

In general, we assume that there are n genotypes and r replications 

within each of them environments. That is, there are nr observations 

in each of them environments. A general statistical model to be used 

herein is the following: 

Y .. k = ]J + T • + f3 • EV. + e .. k 
J.] 1 ]_ J J.] 

(1.1) 

where 

i = l, •.• ,n; j = l, .•. ,m; k = l, ••. ,r. 

Y .. k is the phenotypic performance of the ith genotype at the 
1] 

jth environment on the kth replicate; 

µ is the overall mean of the population; 

T. is the effect of the ith genotype; 
]_ 

Si is the stability parameter which measures the response of the 

ith genotype to varying environments; 

EV. is the effect of the jth environment; 
J 

eijk is the random error associated with ith genotype at the jth 

environment on the kth replication. 

The organization of this thesis is as follows: The relevant liter-

ature is reviewed in Chapter II. In Chapter III, the Maximum Likelihood 

method is employed to obtain the estimators of stability parameters when 



the design is a CRD within each environment. There are two sections in 

this chapter. A fixed model will be considered in the first section and 
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a mixed model in the second section. In both sections, the model will be 

described along the basic restrictions and assumptions. After obtaining 

the estimators of all the parameters, the distribution of the estimators 

for the stability parameters will be derived. In the end of each section, 

the sample size for which the estimators will have approximately a normal 

distribution will be discussed. In Chapter IV, the Restricted Maximum 

Likelihood method is employed. Again, the model will be described, the 

estimators for stability parameters will be obtained and the distributions 

of the estimators will be derived. In Chapter V, we will consider the 

estimation of the stability parameters when the design is a RCBD within 

each environment. In the first part of this chapter, the block effects 

are assumed to be random. In the second part, the block effects are 

assumed to be fixed. In Chapter VI, a Ratio method and Least Squares 

will be used to estimate the stability parameters in the case that the 

distribution of the random errors is not normal. In Chapter VII, we 

compare M.L.E., R.M.L.E., and Ratio Estimators for the stability param­

eters via approximate mean squared errors and computer simulation. 

Chapter VIII contains a brief summary of the thesis and recommendations 

for further research. 



CHAPTER II 

REVIEW OF LITERATURE 

The existence of interactions between genotypes and environmental 

factors has long been recognized, the earliest reference, which indeed 

precedes the analysis of variances, being Fisher and Mackenzie (1923). 

In considering the manurial responses of different potato varieties they 

concluded that "the yields of different varieties under different man-

urial treatments are better fitted by a product formula t_han by a sum 

formula". 

The idea of breaking down an interaction into several parts was 

given by Yates and Cochran (1938). In their words, "the degree of assoc-

iation between varietal differences and general fertility can be further 

investigated by calculating the regression of the yields of all varie-

ties". That is, in terms of a statistical model, the yield Yijk of the 

kth replicate of the ith genotype in the jth environment is regarded as 

made up of a general meanµ, a genotype effect T., an environmental effect 
1. 

EV., an interaction effect~ .. , and a random error s .. k' i.e., 
J 1.J 1.J 

(2 .1) 

The ~ij in equation (2.1) is regressed on EVj, i.e., 

~ij =a.EV. + s~. 
1. J 1.J 

(2.2) 

where a.. is a linear regression coefficient for the ith genotype and E~. 
1. 1.J 

5 
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is a deviation. 

Using (2.2), we can rewrite (2.1) as 

Y .. k= µ+T. + (l+a..)EV. + (e:~.+e: .. k). 
l.J l. l. J l.J l.J 

(2.3) 

Yates and Cochran showed that this regression accounted for a large 

part of interaction in a set of barley trials, but their ideas were not 

really taken up until Finlay and Wilkinson (1963) rediscovered them. The 

same method was also used by Perkins and Jinks (1968), who used it for 

estimating parameters in a biometrical genetical model. 

Regression methods were also considered by Rowe and Andrew (1964) 

and Eberhart and Russell (1966), who defined the environmental index to 

be the mean performance of all genotypes grown in that environment. In 

their analysis, they repartitioned the sum of squares for environments 

and genotype-environment interactions (see Table I). Their partitioning 

is into a linear component between environments with 1 degree of freedom, 

a linear component of genotype-environment interaction with n-1 degrees of 

freedom, and deviations from. regression, the deviations being found sep-

arately for each of the n genotypes with m-2 degree of freedom each. 

The trouble with this approach, as pointed out by Freeman and Perkins 

(1971), is that the sum of squares for the linear component between envir-

onments, which is allocated one degree of freedom, is the same as the sum 

of squares for environments with m-1 degree of freedom. Perkins and Jinks 

(1971) recognized that the environmental sum of squares is the same as 

that for the combined regression overall genotypes but did not use it, 

thus avoiding this difficulty. 

Significance testing in these models is dependent upon even more 

assumptions than the usual analysis of variance. Eberhart and Russell 



Source 

Total 

Genotypes (G) 

TABLE I 

ANALYSIS OF VARIANCE WHEN STABILITY PARAM­
ETERS ARE ESTIMATED 

D.F. S.S. 

nmr-1 l: y _ _l__y2 
ijk ijk nm.r • • • 

n-1 

Environments (E) m - 1 _!_ l:Y2 _ __Ly2 
nr . • j • nmr • • • 

J 

GxE 
1 2 1 2 1 2 12 

(n-l)(m-1) - l:Y .. --I:Y. --l:Y. +-~ 
r . . l.J • mr . i • • _ nr . • J • nmr • • • 

l.,J ]. J 

E (Linear) 1 

G x E (Linear) n-1 
1 2 2 1 2 2 =-tn (L:Y .. EV.) )/-I:EV.] - -(L:Y . EV.) /l:EV.} 
r . . J.J • J . J n . • J • J J. J 

1 J J J 

Pooled Deviation n(m-2) 
1 2 1 2 2 2 
- L:{[l:Y .. --(Y. ) ] - (L:Y .. EV.) /L:EV.} 
r l.J • m 1 • • • l.J • J • J 

G 
n 

Error 

* 1 EV.=- l:Y k 
J nr ik ij 

m-2 

m-2 

nm(r-1) 

i j J J 

1 2 1 2 2 2 
=-{[L:Y1 . --(Yl ) ] - (L:Y1 . EV.) /L:EV.} 
r • J" m •• • J" J . J 

J J J 

2 L2 
L: {L:Y •• k-=i .. } 

. . k J.J r l.J • 
1. 'J ' 

1 
L: Y .. k. 

nmr .. k l.J 
l.J 

7 
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(1966) point out that in their approach the comparison of the linear com­

ponent of the interaction against deviations from regression assumes that 

the deviations within the various genotypes are homogeneous. The same is 

true in the Yates and Cochran (1938) approach. For the same reason, 

pointed out by Freeman (1973), it is better to test the significance of 

the estimator of stability parameter for a particular genotype by compar­

ing the appropriate sum of squares against the deviations for regression 

for that genotype rather than against the pooled deviation term. 

Of the techniques discussed, there can be no doubt that the most 

fruitful has been the regression approach. For its success, a very high 

proportion of the interaction sum of squares should be explained by lin­

ear regression. When, as in the work of Bucio Alanis, Perkins, and Jinks 

(1969), very good linearity is found by regressing results from differ­

ent generations of inbred lines on midparental means, the method is un­

challengable, predictions across generations being remarkably good. The 

conditions making for success, i.e., linearity of regression, are very 

difficult to determine and one set of characteristics has frequently been 

found to give linear regressions, while other characteristics measured on 

the same set of genotypes have not. 



CHAPTER III 

MAXIMUM LIKELIHOOD METHOD 

In this chapter, we will employ the Maximum Likelihood method to ob-

tain the estimators of the stability parameters for the fixed model and 

mixed model. In this study, fixed model means that the environmental 

effects are assumed to be fixed and mixed model means that the environ-

mental effects are assumed to be random. 

3.1 Fixed Model 

3 .1.1. Model 

Consider a set of observations Y .. k classified according to geno­
l.J 

types and environments. The statistical model for the ijkth observation 

is represented as follows: 

= µ + T. + S.EV. + e . . k 
l. l. J l.J 

(3 .1) 

i = l, •.• ,n; j = l, ..• ,m; k = l, •.• ,r, 

where the same properties hold as model (1.1) with restrictions LT. = 0, 
i l. 

rs.= n, and rEV. = 0 and with the assumption that the e .. k's are i.i.d. 
i l. j J l.J 

N(O,cr2), 'rJ i,j ,k. 

Since e .. k"'N(O,cr2) then Y .. k"'N(µ+T.+S.EV.,cr 2). Fork= l, ... ,r, 
l.J l.J l. l. J 

~k's are i.i.d. Nnm(µ.J.nm+'.E®.im+§®E_v,cr2Inm)' where ~k = (Yllk'ylZk'"""• 

Y k)'; T = (,1 ,,2 , •.• ,, )'; S = (S1 ,s2 , ... ,s )';EV= (EV1 ,Ev2 , ... ,EV )' nm - n - n - m 

9 
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and© is the direct product (Kronecker product). The probability density 

function of rk is 

run nm 

f ( 0 E 2) = (27T)- z (cr2)- Z 
~k ~k;µ,~,~· y,cr 

1 n m 2 
exp - -2 { L: L: (y .. k - µ - Ti - S . EV. ) } • 

2cr i=l j=l iJ i J 

Since from (3.1) l:T. = 0, L:S. = n, and L:EV.= 0, then for any sand t 
. i • i • J 
i i J 

(s = l, •.. ,n; t = l, •.• ,m), we have 'l" = - I: T., S = n- L: S. and EV = 
s •J. i s •J. i t irs irs 

- I: EV .. After reparameterization we rewrite the probability density 
j:/:t J 

function of ~k as 

run nm 
= ( 27T)-z- (cr2)-2 

1 2 2 
exp-7 L: L: [y .. k-µ-T. -S.EV.] + I: [y. k-µ-T.+S.( L: EV.)] 

2cr i:/:s j:/:t iJ i i J i:/:s it i i j:/:t J 

+ L: [y .k-µ+( L: T.)-(n- L: S.)EV.] 2 +[y k-µ+( L: T.) 
•J.t SJ •J. i ·J. i J St •J. i Jr irs irs irs 

+ (n - L: S . ) ( I: EV. ) ] 2 } 'r:J k = 1, .•. , r 
i:/:s i j:/:t J 

where T* = (Tl, •.• ,Ts-l'Ts+l·, ..• ,Tn)', s* = (Sl, ..• ,Ss-l'Ss+l'···•Sn)', 

E.J* = (EV1 , •.• ,EVt_1 ,EVt+l•···•EVm)'. 

3.1.2. Maximum Likelihood Estimators for § 

Since Ik's (k = 1, •.. ,r) are i.i.d., then for the random sample 

= ( I I I ) I th 1 • h f h 1 • k 1 • h d f t • • Y ~l'~z·····~r , e ogarit mo t e i e i oo unc ion is 

r 
{ * * * 2 = ln IT fy (~k;µ,T ,S ,EV ,cr )} 

k=l -k 

runr runr 2 1 r 2 =--2-ln (27T)--2-ln (cr )--2 L: {I: I: [y .. k-µ-T. -S.EV.] 
2cr k=l i:/:s j:/:t iJ i i J 
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+ E [y tk-µ--r.+S.( E EV.)] 2 + E [y .k-µ+ (ET.) 
i#s s 1 1 j#t J j#t SJ i#s 1 

- (n- E S.)EV.] 2 + [y k-µ+ (ET.)+ (n- ES.)( E EV.)] 2 } (3.2) 
i#s 1 J st i#s 1 i#s 1 jit J 

Equations for obtaining e = (~,!*' ,§*' ,EJ*' ,;2) 1 , the Maximum Like­

lihood estimators of 8 = (µ,~*' .§*' ,E_v*' ,cr2)', come from differentiating 

(3.2) with respect to µ, Ti' 

i # s, j i t: 

2 
Si' EVj, cr for i = 1, ... ,n; j = l, ••. ,m and 

aL 1 
- = - { y - nmrµ} 
aµ 2 • • • cr 

ClL l 
- = - { y. - y - mrr . - mr ( l: T • ) } 
dT . 2 1° • S • • 1 . 1 

1 cr FfS 

'rJ i, iis 

~ ~ = 1
2 { E [ ( y . . • - y . ) EV . ] - r S . [ E EV~ + ( E EV . ) 2 ] 

µ i cr j it 1 J 1 t • J 1 j #t J j it J 

- E [ (y . - y ) EV. ] + r (n - E S. )[ E EV~ + ( E EV. ) 2 ]} 'rJ i, i#s 
jit SJ• st• J i#s i jit J j#t J 

ClL 1 2 av = 2 { E [ (y. . - Y. t ) S. ] - r ( E S.) [EV. + ( E EV.)] 
E j a iis iJ• ~ • 1 i#s 1 J jit J 

+ (y . - y ) (n - E S. ) - (n - E S . ) 2 [EV. + ( E EV. ) ] } 'rJ j , j it 
s J • st. . J. 1 . J. 1 J . J.t J irs irs Jr 

aL nmr 1 r 2 
- 2 = - 2 - 2 2 E { E E [y .. k-µ-T.-S.EV.] + E [y. k-µ-T. 
Cla cr (cr ) k=l iis jit 1 J 1 1 J iis it 1 

2 2 + S . ( E EV . ) ] + E [ y . k - µ + ( E T • ) - (n - E S . ) EV . ] + [ y k 
i j#t J jit SJ iis i iis i J st 

- µ + ( E T.) + (n - E S.) ( E EV.) J 2} 
jis 1 iis 1 jit J 

where Y ••• = i~kyijk' Yi•• = j~yijk'yij• = ;yijk" 

Equating each of the above 2n + m- 1 partial derivatives to zero, 

gives the Maximum Likelihood equations. The roots of the equations are 
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µ = y ••• (3. 3) 

l:J i, i:fs (3.4) 

L [ (y. . - y . ) - (y. t - y t ) ] EV . 
. :ft lJ • • J • ]_ • • • J 

[ E EV~ + ( E EV . ) 2 ] 
j:ft J jft J 

A 

1\ = 1 + l:Ji, i:fs (3. 5) 

[ E (y. . - y. ) S.] + [ (y . - y )(n - E S.)] 
• ..J. lJ • ]_ • • l. s J • s • • . ]_ 

A irs i:fs EV. = ~---~~~~~~~~~~~~~~~~--'-~~-

] [ E S~ .f. (n - E S.) 2 ] 
i:fs 1 i:fs i 

l:J j ' j :ft (3. 6) 

A2 1 - A A 2 - A A 2 
CJ = - L { E E [ y .. k - y . - S . EV . ] + E [ y . k - y . + S . ( E EV . ) ] 

nmr k i:fs j:ft l.J i-• i J i:fs it i-• 1 j:ft J 

+ 
A I\. 2 - A 

E [y .k-y - (n- L S.)EV.] + [y k-y + (n- ES.) 
•..J.t SJ S • • . ..J. J. J st S • • . ..J. J. 
]T J.rS J.rS 

(3. 7) 

1 1 1 1 
where Y ••• = nmry•••' Yi••= ;rr'Yi••' y•j• = nr :kyijk' and yij·A= ~ij•' 

A A 2 
S. , EV. , CJ are ex-

l. J 
From (3.5), (3.6), (3.7) we can see that none of 

A A* A 

Note that S1. is a function of EV , EV. is a 
- J 

plicit functions of y .. k. 
J.] 

A* A2 A* A* 
function of § , and CJ is a function of both § and ~V • From (3. 7) we 

A2 A* 
can see that CJ is strictly positive for any value of S* and E.Y (except 

A A 

for the case y .. k-y. = S.EV. 
l.J l.. • l. J 

l:J i, j , k then ~2 = O) • To obtain a 

A* A* numerical solution of § and E_V , an iterative method must be used. A 

computer program to obtain the numerical solution of a is attached in the 

Appendix A. 

To show the root of the Maximum Likelihood equations is a global (or 

local) maximum point of the likelihood function, we need to show the 

Hessian matrix H(8) which is the matrix of second partial derivatives of 

the logarithm of the likelihood function with respect to the parameters 
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is negative definite when evaluated at e. -

run 0 0 0 0 

0 m(In-l+Jn-1) 0 0 0 

A 32L 
I ~ r 

0 \l(Jn-l+Jn-1) H(@) = aeae' = -:z 0 A21 ~31 
cr 

0 0 Al2 \2(1m-l+Jm-l) 1:32 

0 0 
run 

1:13 ~23 A2 
cr 

where 

A2 A 2 
[ E S. + (n - E S.) ] 
if:s 1 ii:s 1 

A12 Cq,p) = A21 Cp,q) = 2[S - (n- E S.)][EV + ( E EV.)] 
P if:s 1 q jl:t J 

- [y - y - y + y ] 'if p=l, ••• ,n-1; 
pq• pt• sq• st• 

q=l, .•• ,m-1 

~13(p) 
1 -'-

= ~31 (p) = 72 [ E y .• - ypt. - y . + ;- ) EV.]-[ e - (n - i': s.)] 
cr jf:t PJ SJ" "st• J p if:s l. 

[ E EV~ + ( E EV . ) 2 ]} 
jl:t J jl:t J 

~23(q) 
1 A 

= a32 (q) = -2 [ E (y. - y. t ) S.] + [ (y - y t ) (n - i': Si.)] - A 0 iq• l. O l. sq• s O 0 

cr ii:s i~s 

- [ E e~ + (n - E i3.) 2 ][EV + ( E EV.)]} 'if q=l, ••• ,m-1. 
i~s 1 i~s 1 q j~t J 

From (3.5) and (3.6) we have ~13 = ~3i = 0, ~23 = ~)2 = 0, and A12 = A21 = 

[@*- (n- .r Si)jn_1 ][EJ*+ (_E EVj):lm-l]'. 
l.~S J~t 
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For q = 1, .•. ,m-1, we have 

[

Al (In-1+1n-1)' 
jB I= 

[S*-(n- I S.)J 1 ][EV*+( l: EV.)J ]' 
- • ...J. l. -n- - q • ...l.t J q I irs Jr 1 

q [EV*+( I EV.)J ][S*-(n- I S.)J 1 ], 
j - q j:h J q - i::f.s i -n-

I :\2 (1 +J ) 
q q 

n-1 ~ 2 q 
= (nAl ) (q+l) ( l: EV.) > 0. 

j >q J 
(3. 8) 

Since Al' AZ are always positive and the determinant of Ip+Jp is p+l, 

then from (3.8) we have the leading principal minors of -H(~) are posi­

tive. That is, H(~) is negative definite for all e. Therefore, e is at 

least a local maximum point of the likelihood function. 

2n+m-2 + + L(6;y) is differentiable in the space Q=R xR (R = (0,+ 00)), 

that is 1(§,y) is differentiable in a neighborhood of the true parameter 

~o· Then by the properties of M. L. equations, there is a root with 

probability 1 as r-+ 00 , which is consistent for 6. That is e is a consis-

tent estimator of e. 

3.1.3. Large Sample Distribution of the Estimators 

From (3.5) we can see that Si is not an explicit function of yijk" 

Consequently, the exact distribution of S. can not be obtained. If the 
]_ 

number of replications is large, we can employ the large sample method 

to derive the approximate distribution of $ .. 
]_ 

Y1 , Y2 , ••• , Y are i.i.d. with distribution F6 belonging to 
- - -r 

F = {Fe ; § E Q = RZn+m-Z x R +}. The following conditions hold: 

(Rl) For each ~En, the first derivatives of L(§;ik) with respect 

to e exist for all ~k· 
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(R2) For each e0En, there exists a function M(lk) (possibly depend­

ing on ~ 0 ) such that for every§ belong to N(~0), a neighbor­

hood of §0 , the relations 

(R3) 

IL'''(e;y >I < M(y) 
- -k -k 

hold for all ~k and E{M(lk)} exists for~ E N(~ 0 ). 
2 a L(~;~k) 

For each e E n, E{- ae ae I ~} is finite and positive defi-

ite. 

Then the asymptotic distribution of ;:; (~ - ~ 0 ) is -1 
N2n+m-l(Q,i <~o)) 

where 

nm, 0 0 ' 0 0 

0 ' m(In-l+Jn-1)' 0 0 0 

i(~o> 
1 

0 ' 0 Ell' 2:12' 0 =-
2 

(J 

0 • 0 E21' E22' 0 

0 ' 0 0 0 
nm 

' • 
2cr2 

z11 = [ E EV:+ ( Z EV.) 2](I l + J 1 ) 
j:h J j:ft J n- n-

= [~v* - ( L EV.)j 1][8* - (n - L 8.)j l]' 
j#t J -m- - i#s i -n-

= [ Z 8: + (n - Z 8.) 2](1 l + J 1) 
i#s i i#s i m- m-



1 
nm' 

µ µ 
1 1 -(I --J ) 
m n-1 n n-1 ' 

16 

- §* ) (3.9) 

EV* EV* 

where 

-v11 = 

2 
(J 

1 1 1 A A 

A 2 2 [In-1--nJn-1+-n(§*-jn-1) (§*-jn-1) 1
] 

[ L EV . + ( L EV . ) ] 
jft J jft J 

= - 1 EV* ( S*-j ) ' 
n[ I EV~+( I EV. ) 2 ] - - -n-l 

jft J jft J 

From the restrictions of (3 .1) we have S = n - I S EV = - I EV . 
s ifs i' t jft j 

That implies Ss = n- IS. and EV = I EV .. Then from (3.9) as r + 00 

ifs 1 t jft J 
we have 

The asymptotic distribution of § as r + 00 is 
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A2 
cr [I - !J +le@ - j )( s - j ) I ]) • 

m A 2 n n n n -n - -n 
(3.10) 

r( LEV.) 
j=l J 

3 .1. 4. Testing Hypothesis about Equality of Si 

A A 

From (3.10), the distribution of Si-Si' is 

A 

"' " • cr 
S.-S.,";'N((S.-S.,), 2 

i i i i r(LEV.) 
j J 

For testing the hypothesis 

1 A A 2 
[ 2 + -( S . - S • I ) ]) 0 

n 1 1 

vs. H: S. ::/- S.,. a 1 1 

The distribution of the test statistic under the null hypothesis is given 

as 

s = cf 
--_..,..N(O,l). 
as r-+<>o 

As a consequence of these tests, one could partition the S. 
1 

(3.11) 

(i = 1, ... , n) into several groups such that in the same group of S. 's there 
1 

is no significant genotype-environment interaction. After adjusting the 

S. 's in that group, we can compare the genotype effects. Then the best 
1 

genotype in that group could be selected. 

3.1.5. The Sample Size r 

In (3.9), we assume the sample sizer is large. In applications, 

one needs to know what is "large." Described below are simulation re-

sults showing how large r must be to make ~ approximately normally dis-

tributed. 
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In the computer simulation, we take the number of genotypes n as 3 

or 5, the number of environments m as 5 or 8, the number of replications 

r as 3, 10, 20, or 30, and the variance of sampling error cr2 as 0.01 or 

1. In each of the 32 cases, we generate 300 sets of nmr observations; 

the values of the parameters are also generated by the random number 

generator. 

After obtaining 300 @'s, a test of multivariate normality of these 

300 B's should be given. But there is no suitable method available for 

testing multivariate normality. If e is distributed as multivariate nor-

A* ~ 1/2 mal, then § = (2 - §0) (i(§0)) will be distributed as multivariate 

normal with mean zero and variance I 2n+m-l" Then, we test for multivar-

i~te normality of ~ by testing for univariate normality of A* 6 (p=l, ... , 
p 

2n+m-l) and testing for zero correlation between e* and e* 
p q 

(p :f. q) , where 

e* is the component of §*. 
p 

If any one of e* fail to be normally distrib­
p 

uted, then ~* would not be distributed as multivariate normal. That is, 

from the smallest O.S.L. among all the 2n+m-l tests we can see how well 

the distribution of §* approximates to the multivariate normal. 

The simulation results show that the tests of zero correlation coef-

ficient among e*'s are insignificant for all cases. A table of the 
p 

smallest O.S.L. value among all the 2n+m-l O.S.L. 's for testing the nor-

mality of e* is shown as Table II; where it can be seen that for most 
p 

cases, the normal distribution obtains for at least 10 replications. 

We are primarily interested in the distribution of §, and from the 

simulation results we know the distribution of S. (i = 1, ••. , n-1) will 
1 

A2 
approach to a normal distribution faster than cr • That means, for fewer 

replications, § will have an approximate normal distribution than e* did. 

A plot of the cumulative distribution functions (CDF) of the stan-
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TABLE II 

SIMULATION RESULT FOR TESTING THE NORMALITY 
A 

OF 8 IN THE FIXED MODEL 

r n m cr2 O.S.L. r n m cr2 O.S.L. 

3 3 5 1 <0.01 3 5 5 1 0.079 

10 3 5 1 >0.15 10 5 5 1 0.120 

20 3 5 1 0.098 20 5 5 1 0.095 

30 3 5 1 0.115 30 5 5 1 0.113 

3 3 5 0.01 <0.01 3 5 5 0.01 0.161 

10 3 5 0.01 0.082 10 5 5 0.01 0.049 

20 3 5 0.01 0.108 20 5 5 0.01 0.102 

30 3 5 0.01 >0.15 30 5 5 0.01 >0.15 

3 3 8 1 0.073 3 5 8 1 <0.01 

10 3 8 1 . 0.078 10 5 8 1 0.037 

20 3 8 1 >0.15 20 5 8 1 0.091 

30 3 8 1 0.116 30 5 8 1 >0.15 

3 3 8 0.01 0.038 3 5 8 0.01 0.064 

10 3 8 0.01 0.139 10 5 8 0.01 0.107 

20 3 8 0.01 >0.15 20 5 8 0.01 0.089 

30 3 8 0.01 >0.15 30 5 8 0.01 >0.15 
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dard normal and 
A* A A 1/2 
8. = (8. - 8.)/(Var(8.)) provides this comparison. Two 1 1 1 1 

figures for the CDF of "* "* the case n = 3, m= 5, 2 = 1 and r=3 81 and 132 for (J 

or 10 are given in Figure 1 and 2 of Appendix c. From Figure 1, we can 

see the CDF's of S~ for r= 3 and 10 are close to the CDF of the standard 

normal. The same was observed for Figure 2 and the other cases. This 

means, § will be approximately normally distributed for as few as 3 

replications. 

3.2 Mixed Model 

3.2.1. Model 

Consider a set of observations Y .. k classified according to geno-
1J 

types and environments. The statistical model for the ijkth observation 

is represented as follows: 

Y. "k 1] 
µ + T • + 8 . EV . + e .. k 

1 1 J 1J 

i=l, .•• ,n; j=l, •.. ,m; k=l, ••. ,r. 

(3.12) 

n 
Where the same properties hold as model (1.1) with restrictions~ T. = 0, 

i=l 1 
n ? 
~ 8. = n and with the assumption that the EV.'s are i.i.d. N(O,oE-) Vj 

i=l 1 J 

and eijk's are i.i.d. N(O,cr~) Vi,j ,k. Also we assume EV. 's are indepen­
J 

dent of e .. k's Vi,j,k. The only difference from the model of the previous 
1] 

section is the randomness of the EV.'s. 
J 

For j = l, .•• ,m, Y.'s are i.i.d. N (µi + -r®j, V), 
-J nr "1.nr - -r 

(Yl · 1' ... 'yl. ' .•• 'Y · 1 • ••• 'Y . ) ' and V = crE2 ( 8 8' ) ® J J Jr nJ nJ r - - r 
y = 
-j 

The probability density function of Y. Vj = 1, ••• ,m is: 
-J 

where 

2 + cr0r nr 
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nr 1 
2 2 

fy (y.;µ,T,S,crE,crO) = 
-j -J - -

(2'IT) 2 !vi 2 

exp - !2 { [ y . - ( µj + T © j ) ] Iv - l [ y . - ( µj + T © j ) ] 
-J -nr - -r -J -nr - -r 

2 nr-1 2 2 n 2 
where !vi = (cr0 ) [cr0 +rcrE\:/i)] and 

2 
crE 

-2---2---.¥..---2- (@ ® :J. r )( § ® l r) 1 ] • 

0 o + rcrE (i=lSi) 

Then 

n n 
Since I: T. = 0 and 

i=l l. 

I: S. = n (from (3.12)), then for any s, s = 1,2, 
i=l l. 

••. ,n, we have T = - I: T. and Ss = n - E S.. After reparameterization 
s i#s 1 i#s 1 

we can rewrite the probability density function of Y. 'l/j = 1, •.• ,m as 
-J 

1 

E S . ) 2 ) ]- Z exp -~ E 
i#s 1 2cr0 i#s 

2 2 
E(y .. k-µ-T.] +E(y .k-µ+( I: T.)] 
k l.J l. k SJ i#s l. 

[I: E(y .. k-µ--i:.)S. 
i#s k l.J 1 1 

+ E (y "k - µ + ( I: T.)) (n - I: S.)] 2 } 
k SJ i#s 1 i#s 1 



3.2.2. Maximum Likelihood Estimator for ~ 

Since Y. 's (j = 1, .•• ,m) are i. i. d. then for the random sample 
-J 

y = (y1', ••. ,y')', the logarithm of the likelihood function is 
- -m 

( * f3* 2 2 ) _ nmr 1 (2 ) (nr-l)m 1 ( 2) L µ, ~ , _ , a E, cr 0 ; ~ - - - 2- n 'IT - 2 n a 0 

__ 1_2:{ 2: 

2 2 . ·J. 
2 o0 J irs 

2 
l:(y .. k-µ-T.] 
k iJ i 

22 

+ l:(y "k-µ+( L T.)]2} + 
k SJ ifs i 

OE 
2 2 2 2 2 2:{ 2: 

2o0fo0 + roE [ 2: f3. +(n- 2: f3.) ]} j i:fs 
l:[y. "k 
k iJ 

ifs i ifs i 
2 

-µ-T.] f3. + L [y "k - µ + ( 2: T.)] (n - 2: f3.)} 
i i k SJ i:fs i i:fs i 

(3.13) 

• • A - A A* I A* I A2 A2) I k 1 Equations for obtaining ~ - (µ,~ ,§ ,crE,crO , the Maximum Li e i-

( * f3* 2 2) ( ) hood estimators of 6 = µ,~ ,_ ,crE,crO , come from differentiating 3.13 

with respect toµ, 'i' f3i' oi and cr~ for i = l, .•. ,n and i :f s: 

2 
31 1 nrcrE 
aµ = 2 { Y • • • -nmrµ- 2 . 2 [ 2 ) 2 2: [ 2: (y. . -y . ) f3. +ny . 

• •J. iJ• SJ" i SJ" 
J irs cr0 o0+rcrE 2: f3.+(n- 2: S. J 

i:fs i i:fs i 

- nrµ-r 2: T.f3.+r( 2: T.)(n- 2: S.)]} 
ifs i i i:fs i i:f s i 

(y .. -y . )S.+ny . -nrµ-r 2: T.f3.+r( 2: T.)(n- 2: S.)] 
iJ• SJ" i SJ• i:fs ii ifs i i:fs i 

( 2)2 
31 2 2 2 2 2 -1 r crE as-= -mroE[f3.-(n- 2: f3.)]{o 0+rcrE[ 2: f3.+(n- 2: S.) ]} 2 

i i i:fs i i:fs i ifs i cr0 

2: [ 2: 
j i:fs 

Vi:fs 
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2 2 2 2 -2 
(6.-(n- E $.)]{cr0+rcrE[ E $.+(n- E 6.) ]} E{ E (yiJ'·-ysJ .• )6. 

1 i:fs 1 i:fs 1 i:fs 1 j i:fs 1 

2 
2 crE 2 2 2 

+ny .• -nrµ-r E T.(6.-(n- E $.)]} +-2 {cr0+rcrE( E 6. 
SJ •4 l. l. ·4 l. •4 l. irs irs cr 0 irs 

2 -1 +(n- E $.) ]} E{y .. -y . -r(-r.+ E -r.)}{ E (y,, -y . )$. 
•4 l. • l.J" SJ" l. •4 l. •4 l.J" SJ" l. irs J l.rS irs 

+ny . -nrµ-r E T.[S.-(n- E $.)]} ~i:fs 
SJ• i:fs 1 1 i:fs 1 

3L mr 2 2 2 2 2 2 -1 1 2 2 - 2 =--[ E S.+(n- E S.) ]{cr +rcr [ E S.+(n- E 6.) ]} +-2 fo0+rcrE 
~ 2 2 ·4 i ·4 i 0 E ·4 i ·4 i 2 ocrE cr0 l.rS l.rS l.rS l.rS cr0 

[ E s:+(n- E 6.) 2]}-2E{ E (y .. -rµ-r-r.)$.+[y . -rµ+r( ET.)] 
i#s 1 i#s 1 j i#s l.J • 1 1 SJ • i:fs 1 

2 
(n- E 6.)} 

i#s l. 

2 
2 2 crE 2 2 2 

- µ +T . ) + E [ y . k -µ+ ( E Ti) ] } - 2 2 { cr 0 +rcr [ E s 
1 j,k SJ i:fs 2(cr0) E i:fs i 

2 - rµ+r ( E T . ) ] (n- E S. ) } • 
i:fs 1 i:fs 1 

Equating each of the above 2n+l partial derivatives to zero results 

in the Maximum Likelihood equations and the roots of the equations are: 

~ 

µ = y ••• (3 .14) 
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A 

T, = y i•. - y ••• 1 
\fi=l, •.• ,n and i;'s (3 .15) 

Si 1 + 

A2 A 2 - - - - A - - A 
[ Z 13.+(n- ZS.) ]Z{(y .. -y. )[ Z (y .. -y. )13.+(y . -y )(n- IS.)]} 

1 ..L 1 . 1J • • J • . 1J • 1 • • 1 SJ • S • • . 1 
i#s irs J 17's i#s 

- - A - - A 2 
Z{ I (y .. -y. )13.+(y . -y )(n- Z 13.)} 
• • ..L 1] • 1 • • 1 SJ • S • • . 1 
J irs i#s 

\f i = 1, .. ., n and i # s (3.16) 

1 Z{nr[ I (y .. -y. )S.+(y . -y ) 
A 2 A 2 . 1J • 1 • • 1 SJ • s •• 

(nr-l)m[ Z S.+(n- Z 13.) ] j i#s 
i#s 1 i#s 1 

( L Cl ) ]2 l[ A2 ( A )2) ( - )2} n- µ • - - Z i3 . + n- Z i3 • Z y .. k-y . 
i#s 1 r i#s 1 i#s 1 - i,k 1J i•• 

(3.17) 

1 {[ A2( A)2] ( - )2 Z Z i3. + n- I S. I y .. k y i .• 
j i;'s 1 ifs 1 i,k iJ 

A2 A 2 
(nr-l)m[ I S.+(n- I 13.) ] 

i#s 1 i/.s 1 

- - A - A 2 
- r[ Z (y. . -y. ) i3. + (y . -y ) (n- I S.) ] } 

1J • 1• • 1 SJ• • • • 1 
i/.s i/.s 

(3.18) 

• A A2 A2 
From (3.16), (3.17), and (3.18) we can see that none of Si' crE, cr0 

are explicit functions of yijk" Note that S. is a function of all S. and 
1 1 

A2 A2 
both crE and cr0 are also functions of all S. 

1 
(i = 1, ... ,n and i 1 s). By 

using the Cauchy-Schwarz inequality, we can show that for any solution of 

S. 'R, except for S. = A. (y. . -y. ) \fi. 1 1 1J. 1 •. 
(If . h" 2 O) A2 • in t is case, crE = , cr0 is 

is always positive. 
A2 

But it is very difficult to show crE > 0 algebraically. 

To derive a numerical solution of §*, we can use an iterative method. A 

computer program to obtain the numerical solution is contained in the 

Appendix A. 

By using the same methodology as in the section 3.1., we can show 
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A 

that the Hessian matrix H(§) is negative definite when evaluated at ~. 

A 

Thus e is a local maximum point of the likelihood function. 

Since L(~;y) is differentiable in the space Q = R Zn-l x R + x R + 
' that 

is L(~;i) is differentiable in the neighborhood of the true parameter ~O' 

then by the properties of M.L. equations, there is a root with probabil-

A 

ity 1 as m + 00 , which is consistent for e. That is, e is a consistent 

estimator of e. 

3.2.3. Large Sample Distribution of the Estimators 

A 

From (3.16) we can see that S. is not an explicit function of y .. k' 
1 1J 

it is very hard to derive the exact distribution of S .. If the number of 
1 

environments is large enough, we can employ the large sample method to 

derive the approximate distribution of S .. 
1 

¥1 , ¥2 , ••. , ¥mare i.i.d. with distribution Fe belonging to F = {F8 ; 

e E Q = R2n-l x R + x R+} and satisfy the conditions (R~) - (R3), as shown in 

section 3.1. Thus the asymptotic distribution of y;(~ - ~O) is NZn+l (Q, 

-1 
i (§0)), where 

2 
nrcrE 

1---
K ' 1 



2 
rcrEI',; K2 
-2-{ 1n-l+Jn-l - r.;;K }'.' y' }, 

a0 1 

2 

B 
rcrE rl',; I =- -y 
Kl K -1 

1 I -y 
K -1 

E s: + (n - E S.) 2 
ifs i ifs i 

y = S* - (n - E S.)j 1 ifs i -n-

rl',; I 1 
i(Y' -y' 

1 Kl -

2 rl',; _I';_ 
2 ' 2 

2crEKl 2c-EK1 

I',; Kl nr-1 + l:_} 
2 ' 

-{ 
2 (cr~) 2 K~ 2crEKl 2rcrE 

Since we have i-1 (e) Li-1 (e0), thus 
- m+w -

A 

vu 11 11 

-I* T* 
£ 

/r;( 
A 

) . 
) S* - S* ~ N(O, v22 v23 

A2 2 
v32 v33 v34 crE crE 

A2 2 
v43 V44 cro ao 

where 

A2 "2 
cr0+nrcrE 

ai<@* - j ) I nr -n-1 

vu= A2 
A2 A a 1 

+ !<s* crE(S*-jn-1)' _Q{I --J - j HS* r n-1 n n-1 n - -n-1 -

26 

(3.19) 

- • ) I} 
~n-1 



2(0;) 2 
v =V =- A 34 43 (nr-l)r~ 

2c&;) 2 
v44 = (nr-1) 
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From the restriction of (3 .12) we have i3 = n - L: i3. • That implies 
A A s i:fs 1 

S = n - L: S.. Then from (3.19), as m + 00 , we have 
i:fs i 

(3. 20) 

3.2.4. Testing Hypothesis about Equality of i3 1 s 

A A 

From (3. 20), the distribution of i3. - S. 1 is 
J. J. 



";" N((i3.-S.,), 
l. l. 

For the hypothesis 

the distribution of test statistics under the null hypothesis is given 

as 

s = --1 - N(O,l) 

As a consequence of these tests, one could partition the S. (i = 1, 
l. 

••• ,n) into several groups such that in the same group of S. 's there is 
l. 

no significant genotype-environment interaction. After adjusting the 

S. 's in that group, we can compare the genotype effects. Then the best 
l. 

genotype in that group could be selected. 

3.2.5. The Sample Size m 

To determine how large m should be to have approximately a normal 

distribution for ~. a computer simulation evaluation was carried out. 

The following values were chosen: the number of genotypes was 3 or 5, 

28 

the number of environments was 4, 10, 15, 20, or 30, the number of repli-

2 2 
cations was 2 or 10, the value of crE was 9, 4, or 1 and the value of cr0 

was 4, 1, or 0.01. For each of 300 sets of observations, the smallest 

O.S.L. value among all the O.S.L. value for testing the normality of 

each individual estimator is given in the Table III. 
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From Table III, we can conclude that the number of environments 

should be at least 30 in order for the distribution of ~ to be approxi-

rnately multivariate normal, regardless of the number of genotypes and 

replications or the value of a~ and cr~. 

TABLE III 

SIMULATION RESULT FOR TESTING THE NORMALITY 
OF S IN THE MIXED MODEL 

2 2 O.S.L. 2 2 O.S.L. m n r crE cro m n r crE cro 

4 3 2 9 4 <0.01 4 3 2 4 1 <0.01 

10 3 2 9 4 <0.01 10 3 2 4 1 <0.01 

15 3 2 9 4 0.013 15 3 2 4 1 0.013 

20 3 2 9 4 0.023 20 3 2 4 1 0.083 

30 3 2 9 4 >0.15 30 3 2 4 1 >0.15 

4 3 10 9 4 ..:::0.01 4 3 2 1 0.01 <0.01 

10 3 10 9 4 <0.01 10 3 2 1 0.01 <0.01 

15 3 10 9 4 0.014 15 3 2 1 0.01 0.011 

20 3 10 9 4 0.022 20 3 2 1 0.01 0.097 

30 3 10 9 4 >0.15 30 3 2 1 0.01 0.137 

15 5 2 9 4 0.027 15 5 2 4 1 0.036 

20 5 2 9 4 0.076 20 5 2 4 1 0.094 

30 5 2 9 4 >0.15 30 5 2 4 1 >0.15 



CHAPTER IV 

RESTRICTED MAXIMUM LIKELIHOOD METHOD 

Several researchers have evaluated the environmental index by the 

mean performance of all genotypes grown in that environment. This en-

vironmental index is dependent on the phenotypic performance and the 

ordinary least squares estimator of a stability parameter assuming nor-

mality is a ratio of two dependent Chi-square random variables for which 

the density has no simple form. However, if we condition on the environ-

mental index, then the distribution of § is easy to derive. 

4.1. Model 

Consider model (1.1) with restriction l:'t" .=O, l:S.=n, and l:EV.=O and 
i l. i l. j J 

with the assumption that the e .. k's are i.i.d. N(O,cr2), ~i,J0 ,k. Then 
. l.J 

Y ,.._, N (i)J ,cr2I ) , where 1jJ = µj + 1" © j + 8 ©EV® j . 
nmr - nmr - -nmr - -mr - - -r 2 
For B = .!.j © (I _ .!.J ) ©.!.j and EV= B 'Y, then EAV ,...., SN (EV .£._(I -

n-n m m m r-r - - m - 'nr m 

1:.3 )). The joint distribution of Y and EV is 
mm 

cr2 [Inmr' 

B' 
' 

B j 
1 1 
-(I --J ) 
nr m mm 

Given ~V= ~' where t;'j = 0, then 
·- ·- - -m 

) 

YjEV=t;,...,SN (ijJ+nrB(I _.!.J )-(t;-EV), cr2 (I -A)), 
- - - nmr - m m m - - nmr 

30 
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where A=nrB(I-!.J )-B' = !.1 ©(I _!.J )®!.J (Rao, 1966). 
mmm nn m mm rr 

Since I - A is singular, then a representation for the probability density 

function of ~I EJ = § (Khatri, 1968a) is 

(2TI) 

nmr-m+l 
1 1 1 -

exp-~[y-~-nrB(I --J) 
Zcr2 m m m 

- 1 -
(~-EV)]'(I-A) [y-ljJ-nrB(I --J) (~-EV)]} 
- - - - m mm - -

(4.1) 

Considering those y for which B '~ = ~, then the value of ( 4 .1) is 

(Zif) 

nmr-m+l 
2 1 

exp -- [y-1/J - nrB(I 
2 - - m 2cr 

1 - - 1 ---J) B'(y-l/l)]'(I-A) [y-ljJ-nrB(I --J) B' 
mm - - - - m mm 

(y-ljJ)]} 

= (2TI) 

nmr-m+l 
2 

(I - A)- (I - A) [y - ljJ]} 

nmr-m+l nmr-m+l 

= (2TI) 2 (/)- 2 

(y..., ~)} 

1 exp --{ [y-1/1]' (I -A) 
2cr2 - -

1 exp-- (y-ljJ)'(I -A) 
2cr2 

which is invariant under the choice of the generalized inverses of 

(I - !.J ) and (I - A). 
m mm 
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4.2. Restricted Maximum Likelihood 

Estimator for S 

Since the value of (4.1) is unique for the random sample y for which 

B'~=§, the logarithm of the likelihood function is 

L(µ,~,~.cr2;~IB'~=p =-nmr;m+lln(2'IT)-nmr;m+lln(cr2)-2cr\{ l: [yijk 

ijk 

-y +y -µ-T.-(S.-l)EV.] 2}-A (l:T.)-A (L:S.-n) 
•j• ••• 1. 1. J 1 . 1. 2 . 1. 

1. 1. 

(4. 2) 

After differentiating (4.2) with respect to µ, 'i' 

A. 2 , where i = 1, •.. ,n, and equating each partial derivative to zero we 

have the Maximum Likelihood equations and the roots of the equations 

are: 

A 

µ = y ••• 

Vi= 1, ••• ,n 

m - - 2 
l: (y. J .• - y ••• ) 

j=l 

\;/i=l, ... ,n (4.3) 

Since (4.3) maximizes (4.2) for all µER, T. ER, S. ER (i=l, .•• ,n), 
1. 1. 

2 + 
cr E R when l: T . = 0 and 

i 1. 

lihood estimator 

A " A A2 
l: S . = n, then µ, T . , S. and cr is the Maximum Like-
• I. 1. 1. 

1. 

of µ, T., S. (i = 1, ... ,n), and cr2 under the condition 
1. 1. 
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From (4.1) and (4.3) we have 

EV'EV 
= 1 + (Si - 1) Eiv [ = = ] 

- EV'EV 

Var(Si) = EEV[VarYjE"v(SilE_V)] +VarEV[EYIEV(SilEJ)] 
- - - - - ... 

Since it is very difficult to obtain the exact forms for the mean and 

variance of the ratio of two random variables, we will obtain approximate 

forms of E(S.) and Var(S.). Consider the Taylor series expansion of 
l. l. 

" " " (m-l)cr2 
E_V'E_V/E_V'E_V expanded about (E_V'E_V, + E_V'EJ), dropping all terms nr 

of order higher than 2, we have 

2 2 2 2 
EV'EV nrEEV. 2cr (nrEEV.) 

J . J 
E " ( - - ) % --~...___ ___ + ____ 2..._ __ 2_3 • 

E;_V EV'EV (m-l)cr2+nrEEV: [(m-l)cr +nrEEV.] 
j J j J 

Similarly, we have 

and 

Then 

2nrcr2[(m-l)cr2+2nrEEV:] 
. J 

nr + 
(m-1) cr2 +nrrnv: --[ (_m ___ l_) _cr2_+n_r_E_Ev_2.,..... ]~3--

j J j J 

2 2 
EV'EV nrcr EEVj 

Var EV ( : : ) ~ ____ 2....._ ___ 2_2_ + 
- EV'EV [ (m-l)cr +nrEEV.] 

j J 

2cr2 (nrrnv:) 3 
. J 

2 2 4 • 
[ (m-l)cr +nrrnv.] 

j J 



A 

2 
nrrnv. 

. J 
2cr2 (nrrnv7) 2 

. J 
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E(S.)~l+ 
l (Si - l){ 2 2 + 2 2 3} (4.4) 

and 

(m-l)cr +nrI:EV. [ (m-l)cr +nrrnv.] 
j J j J 

nrI:Ev: 2(nr2:EV7) 3 

+(S.-1)2cr2{ J + --~2~· _J __ 2_4} 
1 [(m-l)cr2+nrI:EV7J 2 [(m-l)cr +nrI:EV.] 

j J j J 

A 

4.3. Conditional Distribution of S and 

Testing a Hypothesis about Equality 

of S's , When B '~ = ~ 

A 

(4. 5) 

From (4.3) we can see Si is a ratio of two quadratic forms. It is 

difficult to obtain the distribution of the ratio of two dependent random 

variables. Since we are interested in the comparison of S. and S.,, we 
l l 

A A A 
can compare Si and Si, given_ B 'r = ~. The conditional distribution of S 

given B 'Y = t; is 

s I B 'Y = t; "' N (j + 
- - - n -n 

cr2 1 
A A (I - -J ) ) . 

rEV'EV n n n 
(4.6) 

From (4.6) we have 

EV'EV 2 
s.-s.,IB'Y=f;'VN((S.-S.,): =' 2Acr A). 

1 1 - - 1 1 EV'EV rEV'EV 

Then for testing the hypothesis 



A2 
the distribution of the test statistic S = (S. - S.,) / ( 20 ) l/2 under 

1 1 rEV'Ev 
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the null hypothesis is t with degree of freedom nmr-m+l. The implication 

to the plan breeder of this hypothesis being true is that there is no 

genotype-environment interaction for the two genotypes being compared. 

4.4. Analysis of Variance 

As pointed out by Freeman and Perkins, the mistake in the A.O.V. 
A 

table (see Table I) is that EV should be considered a random vector. In 

this case, the distributions of the sums of squares are complicated, un-

less we consider the conditional distribution of 'f given B 'l = ~. Without 

loss of generality, we may assume r = 1 throughout this chapter. To de-

rive the distributions of sums of squares of each source in Table I, we 

need apply the theorem which is taken from Rayner and Livingston (1965, 

Theorem 7.2) and the results are shown as follows: 

2 
( E y .. ) 

2 ij iJ 
Total S.S. = E y .. - 2 

i · 1 J "EV 

2 2 
'V 0 x with n.c. (non-centrality) 

nm-m+l 
J UL. • 

j J 

_Ll/J' (I - A)ijJ 
2cr2 - -

(i:y .. ) 
= ij 1J 

C.F. 

2 

nm 
2 2 . h 

'V cr x1 wit n.c. 
2 nmµ 

2cr2 
2 mE-r. 

1 2 22 i 1 
Genotypes S.S.= - I:(l::y .. ) -C.F. 'V cr xn-l with n.c. --2-

m i j 1J 20 

Genotypes x Environments (Linear) S.S. = 

2 2 cr x 1 with n.c. 
n-

A 2 A 2 
nE (Ey .. EV.) - ( E y .. EV.) 

i j 1J J ij 1J J 
A 2 

ni:EV. 
j J 
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Pooled Deviation S.S. = 

" 2 ( y .. EV.) 
n 2 1 2 · 1 J J 
I {Ly .. - -(Iy .. ) - J 2 } "' 

i=l j lJ m j lJ I EV 
j j 

2 2 
(J x(n-l)(m-2)" 

These sums of squares occur in the analysis of variance presented in 

Table IV. 

Using the theorem, given by Khatri (1963) and Shanbhag (1966), we 

can prove independence among the sums of squares of mean, genotypes, geno-

types x environment (linear), and pooled deviation. Then for testing the 

hypothesis: 

we have the test statistic 

and 

S = Genotypes x Environments (Linear) S.S./(n-1) 
Pooled Deviation S.S./(n-l)(m-2) 

S "' F ((n-1),(n-l)(m-2)) under H0 . 



Source 

Total 

Mean 

Genotype 

G x EV (Linear) 

Pooled Deviation 

TABLE IV 

ANALYSIS OF VARIANCE WHEN ENVIRONMENTAL INDEX 
IS GIVEN AS MEAN PERFORMANCE OF ALL 

GENOTYPES GROWN IN THAT 
ENVIRONMENT 

D.F. 

nm-m+l 

1 

n-1 

n-1 

(n-l)(m-2) 

s.s. 

(Ey .. )2 
2 .. 1] 

E y .. -~1J,,___ 
ij lJ nEEV. 

j J 

1 ( E 2 
nm .. Y ij) 

l.J 

1 2 1 2 
- E (Ey .. ) - -( E y .. ) 
m . . 1J nm .. l.J 

l. J l.J 

" 2 " 2 
n}: (ry .. EV.) - ( }:; y .. EV.) 

. . l.J J . . l.J J 
1 J 1] 

nEEv2 
j j 

E[rl. _.!c(E 2 (Eyilv.)2 
i j l.J m . Y ij ) - j J 

J rn"v2 1 
j j 

E.M.S. 

2 2 
a +nmµ 

2 m 2 
a +-1 LT. n- . 1 

l. 

cr2+[E(S.-1) 2][EEV:] 
. l. . J 
1 J 

2 
(J 

w 

" 



CHAPTER V 

THE ESTIMATION OF § WHILE THE DESIGN IS GIVEN 

AS A RANDOMIZED COMPLETE BLOCK DESIGN 

WITHIN EACH ENVIRONMENT 

In this chapter, we will consider the estimation of the stability 

parameters when the design is a randomized block design within each en-

vironment. Within each of the m environments, there are r blocks and n 

genotypes. The mathematical model for ijkth observation is represented 

as following: 

where 

i=l, ••. ,n; j=l, ••• ,m; k=l, ••• ,r; 

Y .. k is the phenotypic performance of the ith genotype at the 
iJ 

µ 

'[ . 
i 

jth environment on the kth block; 

is the overall mean of the population; 

is the effect of the ith genotype; 

(5 .1) 

h f h . th . . measures t e response o t e i genotype to varying environ-

ments; 

EV. is the effect of the jth environment; 
J 

is the effect of the kth block within the jth environment; yk(j) 

(•y)ik(j) is the effect of the ith genotype by the kth block interaction 

38 



within the jth environment; 

Eijk is the random error associated with the ith genotype at jth 

environment on the kth block; 

and furthermore we assume 2:T. = 0, 2: 13. = n, and 2:EV. = 0. 
. ]_ . ]_ . J 
]_ ]_ J 

In this chapter, we will obtain the estimator of § for each of the 
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following assumptions: (1) The blocks effects are random; and (2) The 

block effects are fixed and the genotype by block interaction effects are 

zero. 

5.1. Estimation of § for Random 

Block Effects 

In this section, we will consider the effects of blocks to be random. 

That is, yk(j) 's are i.i.d. N(O,cr~) 

+E .. k]'s, which are i.i.d. 
1-J 

2 N(O,cr ) • 
e 

and independent of the [(Ty)ik(j) 

Then from (5.1) we have Y .. k~N(µ+T. 
1-J ]_ 

+S.EV.,crb2+cr2) for all i,j, and k, and for i#i' 
i J e 

2 
Cov(Y. "k'Y., .k)=crb. From 

1-J ]_ J 

the above assumption, we have Yk~N (µi +T©j +S®EV,crb2 (J ®I )+cr2I ) 
- nm '>I-nm - -m - - n m e nm 

where ~k=(Yllk'Yl2k, ••• ,Ylmk'"""'Ynmk)' and for k#k' Cov(~k'~k 1 )=0. 

The probability density function of ~k is 

2 
2:[2:(y .. k-µ-EV.)] } 
j i 1-J J 

Since 1~ = 0, 1~~ = n, and ~~ E_V = 0, then for the random sample ~ = (~i, ~z, 

I ••. ,y ) -r , 

is 

f ( I QI I 2 2) the logarithm of the likelihood function o µ,~ ·~ ,Ey ,crb,cre 
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r 
ln rr {fy <ik)}-A1 0:-r.) - ;1. 2 o::s. -n) - ;1. 3 (rnv.). 

k-1 k 1 . 1 . J 
(5. 2) 

- - 1 J 

2 2 
Differentiating (5.2) with respect toµ, 'i' Si' EVj, crb, cre, and All 

for i=l, ••• ,n; j=l, ••• ,m; Jl=l,2,3, and equating each of the 2n+m+6 

partial derivatives to zero, we have the Maximum Likelihood equations and 

the roots of the equations are: 

µ = y ••• 

,.. 
Ti= Yi·· -Y ••• 

EV. = 
J 

,..2 1 { [ ( - ,.. 2 ( ,.. 2} 
crb = -(n---1-) n-m-r L: L: Y · · k - Y - EV· ) ] - L: Y .. k - Y · - S · EV · ) . k . 1J • • • J . 1J 1 • • 1 J 

J 1 1 

,..2 = 1 { ( - ,.. E" ) 2 [ ( _ E"v.)] 2} cr (n-l)nmr L: nL: y · 'k - Y · - (3 • V · - L: Y "k - Y e . k . iJ 1 • • 1 J . iJ • • • J 
J 1 1 

Using the same methodology as shown in Chapter III, it can be shown 

the above roots maximize the likelihood function (5.2). That is, (µ,!', 
"I " I "2 ,..2 2 2 S ,EV ,crb,cr ) is the M.L.E. of (µ,-r', S ', EV', cr b'cr ) . Also it can be 
- - e - e 

shown that for large r @ is an unbiased and consistent estimator of §. 
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Now, let us consider the Restricted Maximum Likelihood method of es-

.... 
timation as used in Chapter IV. The joint distribution of Y and EV is 

2 2 2 2 x ~ ob (J ®I )+o I , (nob+oe)B n mr e nmr 

"' SN ( 2 2 
) 

nmr+m 
2 2 

no +o .... 
b e(I _ _!.J ) EV EV (nob+oe)B' nr m mm 

where ijl=µj +T~j +S®EV®j and B = lj ®(I - 1J )®lj 
- -nmr - -mr - - -r n-n m m m r-r 

By Rao (1966), given ~V = ~, we have ~I EJ = ~ distributed as singular 

normal with mean (I - A)ijl + nrB(I _ _!.J )-s and variance (nob2 + a2)(I - A) -
- m mm - e 

no~H, where A= ~Jn® (Im -~Jm) ®;Jr and H= (In -~Jn) ®Imr By Khatri 

(1968a), a representation for the probability density function of !l(v= ~ 

is given as 

_! p 1 
2 2 = (2rr) ( II t-Q,) 

1 
[y- (I-A)ijJ-nrB(I -

- - n 
exp- 2 2 

Q,=l 2(nob+oe) 

2 
no 

_!.J )-t;]'(I-A- 2b 2 H) [:}'.'-(I-A)ijJ-nrB(I -
mm - - m 

noo+oe 

2 
nob 

where P is the rank of (I - A- 2 2 H) and AQ, (Q, = 1, •.. ,P) is the non-
nob+o 

2 2 e 2 
zero eigenvalue of [ (nob +o e) (I - A) - nob H] • 

1 -
For y of which B'y=t;, we have [y- (I-A)ijl-nrB(I --J) t;] = 

- - - - - m mm -

(I - A) Ci - ~). One form of the generalized inverse of [I - A- no~H/ (no~+ 
2 2 2 

oe] can be expressed as (I- cA+nobH/oe) for all c ER. Then for any d ER, 

all other generalized inverses can be represented as 

2 2 2 
nob nob nob 

(I-cA+-2-H)-d[I-(I-cA+-2-H)(I-A- 2 2 HJ 

o e a e nab +o e 



2 
ncrb 

= I - (c - d)A+-2-H. 
cr 

e 
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This is the same form as [I - cA + ncr~H/ cr!] which implies [I - cA + ncr~H/ cr!] 

is the unique form for the generalized inverse of [I - A- ncr~H/ (ncr~+cr!)]. 

Then the value of (5.4) for the random sample¥ such that B'¥ = ~ is 

(2n-) 

nmr-m+l 
2 

2 
ncrb 

{ (y -1/i)' (I -A+-2-H) (y -1/i)} 
cr 

e 

which is invariant of the choice of the generalized inverses of (I _!J ) 
m mm 

and [I - A - ncrb2H/ (ncrb2 +cr2)] • nmr e 

For the random sample ¥ such that B '¥ = §, the logarithm of the like-

d f f ( I I 2 2) lihoo unction o µ,! .~ ,crb,cre is 

nmr-m+l 1 (2 ) nmr-mr 1 ( 2) =- n n- - n cr 
2 2 e 

mr-m+ 1 2 2 1 - - 2 
2 ln(ncrb+cre)- 2 2 l: [y .. k-µ-•.-S.(y. -y )] 

2(ncrb+cre) ijk iJ 1 1 •J• ••• 

2 
ncrb - - - 2 

+-2-[y .. k-y .k-µ-•.-(S.-l)(y · -y )] }-A.1(1:•.) 
cr 1J • J 1 1 • J • • • • i 1 

e 

- A. (l:S. -n) 
2 . 1 

(5.5) 
1 

2 2 
Differentiating (5.5) with respect to µ, 'i' Si' crb, cre, and A. 2 for 

for i = 1, •.• , n, 2 = 1, 2, and equating each of the 2n+5 equations to zero, 

we have the Maximum Likelihood equations and their roots maximize (5.5). 

The solution for S. which is the Restricted Maximum Likelihood estimator 
1 

of S. is given as 
1 
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'\/i=l, •• ,n. (5. 6) 

5.2. Estimation of ~ for Fixed 

Block Effects 

In this section, the effects of blocks are assumed to be fixed and 

~Yk(j) = 0 for j = 1, ••• ,m and (Ty) ik(j) = 0 for all i, j, and k. Also we 

assume € •• k's are i.i.d. N(O,cr2) for all i, j, and k. Then from (5.1) we 
l.J 

have Y •• k"'N(µ+T.+13.EV.+yk(')' cr2) for all i, j, k. The probability 
l.J l. l. J J 

density function of X is 

nmr nmr 

= (2ir) 2 (cr2)--2- exp --1z E [y "k - µ - T. 
2 . 'k l.J l. cr l.J 

where ET.=0, ES.=n, EEV.=O, and Eyk('.)=O for j=l, ••• ,m. 
i 1 i 1 j J k J 

For the random sample l·· the logarithm of the likelihood function of 

( ' a' EV' ' 2) . µ , }; , !: , _ , Y , 0 l.S 

L(µ,!' ,§' ,E_V' ,y' ,cr2;i) = ln fy(y;µ,!' ,§' ,E_V' ,y' ,cr2) - Al <:•i) 
l. 

(5. 7) 

2 
Differentiating (5.7) with respect toµ, T., 13., EV., yk(')' cr, and 

l. l. J J 

AR. for i=l, ••• ,n; j=l, ••• ,m; k=l, ••• ,r; R.=l, ••• ,m+3 and equating each 

of the 2n+2m+mr+5 partial derivatives to zero, we have the Maximum 

Likelihood equations whose roots are: 

µ = y ••• 
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Vi=l, ••• ,n 

I:(y .. -y. )EV. 
" . 1J. • J. J 
Q = 1 + =] ______ _ 
µ1. 2 

I:EV. 
j J 

\fi=l, ..• ,n (5. 8) 

EV. = 
J 

" 

I: (y. . - y. ) 8. 
i 1J. 1 •. 1 

I: s: 
Vj=l, ... ,m 

i 1 

y k (j ) = y • j k - y • j • Vj=l, ... ,m; k=l, •.. ,r 

,..z 1 
er = -­

nmr 

To obtain the Restricted Maximum Likelihood estimate as before, we 

begin with the joint distribution of ! and EJ: 

[!] "' SNnmr+m([~], ~2 [Inmr' 
EV EV B' 

B ] 
1 1 
-(I --J ) 
nr m mm 

) 

where ljJ = µj + -r ® j + S ®EV® j + j © y and B = .!j ® (I - .!J ) @-?:i . 
- -nmr - -mr - - -r -n - n-n m m m r-r 

By Rao (1966), given EJ = ~, we have y I EJ = ~ distributed as singular 

normal with mean (I - A)~+ nrB (I _ .!J ) ~ and variance a2 (I - A), where 
m m m -

A= .!.J ® (I - .!J ) ®.!J . By Khatri (1968a) , a representation for the 
nn m mm rr 

probability density function of y I (v = ~ is given as 

(2'IT) 

nmr-m+l 
2 1 

exp -- [y - (I -A)ljJ - nrB 
2 ·- -2cr 
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(I _ _!_J )i;]'(I-A)-[y- (I-A)~-nrB(I _l:_J )t;]} 
mmm- - mmm-

(5. 9) 

For the random sample y_ such that B 'y_ = ~, the value of (5. 9) is 

nmr-m+l 

(2TI) 
2 

exp - - 1-{ (y - i)J) ' (I - A) (y - i)J)}, 
2 - - - -2CJ 

which is invariant of the choice of (I _ l:_J ) and (I - A) - . The log-
m m n nmr 

h f h 1 k h ( I I I 2) I arit m. o t e i eli ood function of µ,-~ ,§ ,y ,CJ while given B y = s 

is 

LC , 01 , 2. IB' = i:-) = _ nmr-m+l 1 ( 2 , _ nmr-m+l 1 ( 2) µ,I '~ ,y ,CJ ,y ¥ '.::: 2 n TIJ 2 n CJ 

1 - - 2 
--2 I {y .. k-µ-T,-S.(y. -y )-yk(')} -:\1 (IT.)-:\2 (IS.-n) 

2CJ . . lJ l l • J • • • • J . l . l 
J.Jk l l. 

- I[:\.+2(Iyk('))] 
j J k J 

(5.10) 

Differentiating (5.10) with respect toµ, T., S., CJk(')' 
. . l l J 

2 
CJ , and ;\£ 

for i=l,. • .,n; j =l, •.. ,m; k=l, ••. ,r and £=1, •.• ,m+2, and equating 

each of the 2n+m+mr+4 partial derivatives to zero, we have the Maximum 

Likelihood equations and the roots of the equations are: 

µ = y ••• 

T = y -y i i. . • .. \fi=l, ... ,n 

\fi=l, ..• ,n (5 .11) 

\fj=l, ••. ,m; k=l, ... ,r 



46 

~y ij • (y. j • -y ... ) 
A2 1 
<J = --­

nmr-m+l 
- - - - - J 2 

l: { y ' 'k-y. -y . k+ y ' - (y ' -y ) 2 } • . . 1.J 1. • • • J • J • • J • • • • - -
1.Jk l:(y . -y ) . • J • • •• 

J 

Since these roots maximize (5.10), then the solution for Si is the 

Restricted Maximum Likelihood estimator of S .. 
1. 



CHAPTER VI 

THE ESTIMATION OF ~ WHILE THE NORMALITY OF 

THE OBSERVATIONS IS NOT ASSUMED 

In the previous chapters, we obtained the estimator for the stabil-

ity parameter by assuming that the random error term in model (1.1) con-

stitute a sample from a normal population. In this chapter, we will 

estimate the stability parameter without normality. We will employ two 

estimation methods, namely, a ratio method and a generalized least 

squared method. The model is given as 

Y .. k = µ + 1". + 8.EV. + £ •• k 
l.J l. l. J l.J 

i = l, ••• ,n; j = l, ••• ,m; k = l, ••• ,r 

with restrictions E't" . = 0, EB. = n, and EEV. = 0. And assume that 
. l. . l. . J 
l. l. J 2 

£ .. k's are uncorrelated with mean zero and variance cr. 
l.J 

6.1. Ratio Estimator for @ 

(6.1) 

By the assumption of (6.1), the expected value of Y .. k isµ+•.+ 
l.J l. 

8. EV. ; then E (Y. . - Y. ) = S. EV. and E (Y . - Y ) = EV. • For any J. l. J l.J • l. • • l. J • J • • • • J 

such that y . - y '/= 0, the suggested ratio estimator of f3 1• is defined as • J. • •• 

A = y ij O - y i• O 

Si Vi = 1, •.• ,n (6.2) 

where y . - y '/= 0 • • J • • •• 

47 
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Assuming EV. 1' 0 ilj and using the Taylor series expansion, we have 
J 

the approximate forms for E(S.) and Var(S.) as 
1 1 

and 

2 
(Si - 1) (m-l)cr 2 

nmrEV. 

Var(i3.) % [(13. -1) 2 + 
1 1 

J 

2 
(n _ l)] (m-l)cr 

2 
nmrEV. 

J 

iii ,j (6.3) 

iii ,j. (6.4) 

The mean square errors of S for j = l, .•• ,m have the approximate 

form as: 

MSE(@) 
2 

= {L:(i3.-l)2[l+ (m-l)cr] 
• i EV2 1 nmr . 

J 

2 
+ n(n-l)}(m-l)cr2 . 

nmrEV. 
J 

2 
From (6.5), we can see that if we choose a j* such that EV.*= 

J 

then j* will minimize MSE(§) for all j. From this we can give 

estimator as 

where -y .* - y • J • • •• = Max{ 1-Y . - Y I}. . • J • • •• 
J 

6.2. Least Squares Estimator for ~ 

(6. 5) 

2 Max{EV.}, 
j J 

the ratio 

(6.6) 

Without loss of generality, we may assume r = 1 throughout this 

chapter. From the model (6.1) we can see that it is impossible to re-

gressor Y. . on EV. , since EV. 's are unobservable. But, since E (B 'Y) = EV 
1] J J 

where B = 1:.j ® (I. _ ..!.J ) we can measure E'._V by EV= B 'Y. That is 
n-n m m m ' -
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A 

EV 

where e rv 

Now, we can consider (6.1) as the errors-in-variables model. Let's 

define the model as 

¥ = Xg + §:* (6. 7) 

where X x2 = [I ®j I I ®EV], ~2n-l = nm n n .. m n - ·~ 
~I] I ' T* = µj + 't, and 

-n -

~*=~-~®~· 

Since cov(ej, e:ij 'k) = :n1cr2 V'j = j', = -~2 V'j f j', Var(:)= 

cr2 1 2 
-(I - -J ) and Var(§) = cr I , then the variance-covariance matrix of nm mm' ·~ nm 

e:* is cr2v, where V =I +l:.[(S-j )(S-j )' -J ]©(I _!J ). 
nm n - -n - -n n m m m 

Since V is a singular matrix, the generalized least squares estima-

tor for a is given as 

where V is a generalized inverse of V. 

The general form of the generalized inverse of V can be expressed as 

V-=I +C [_!.J ®(I _ _!.J )]+[!J ®(I _ _!.J )C -[(f3-j )(f3-j )'®(I 
run 1 n n m m m n n m m m 2 - -n - -n m 

_.!.3 ]/(ES:) for arbitrary nmxnm matrices c1 and c2 . We have different 
m m i i 

estimate values of ~ by selecting different c1 and c2• To find a "best" 

estimator, we need to minimize the mean squared errors of g with respect 

to c1 and c2. Since, 

Min MSE(§) 
Cl,C2 

= Min cr 2tr{(X'V-X)-lX'V-VV-X(X'V-X)-l} 

Cl,C2 

= cr2tr{[X'(I - . 12 (13-j )(S-j )'®(I _ _!.J ))X]-l}. 
nm Ef3. - -n -n m mm 

i l 

That is, for selecting the "best" generalized least squares estimator of 

~· c1 and c2 should be chosen as zero matrices in the general form of V . 

Then, we have 
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a. = y • 

I © - 1-EV' -
n l:EV~ - . 

(6. 8) 

j J 

From (6.8) we can see that the generalized least squares estimator 

for ~ is exactly the same as the ordinary least squares estimator for g. 

And we have the same result in the G.L.S.E. for 8 and R.M.L.E. for 13 when 

given F0r = B'~· 

To derive the approximate distribution of§, rewrite the model (6.7) 

as 

y = x a. + s 
-m m- -m 

l;/m = 2, 3, ••• 

where Y = (Y11 , ..• , Y1 , ••• , Y 1 , ... , Y ) ' , X = [I ® i I I ® EV] , -m m n nm m n >1.m n -

I 2 1 1 1 
a.= [µj +•' S'], s "' (0, cr V) and V =I --J ©(I ..;._J) + -[(S-
- -n - - -m m m nm n n m m m n -

j )( 13 - j ) ' ] ® (I - 1:.3 ) • 
-n - -n m m m 

Since V is symmetric and the rank of V is (n-l)(m-1), there exists 
m m 

a (n-l)(m-l)xnm matrix A with rank (n-l)(m-1) such that AV A' m mmm 

1 (n-l)(m-l)" Then 

A Y = A X a. + A s 

or 

where 

m-m m m m-m 

Y* = X*a + s* -m m- -m 

Y* = A Y , X* -m m-m m 

The least squares estimator of a. is a = (X*'X*)-lX*Y*. Since 
-m m m m-m 



and 

'1 
-I 
m n' 0 

0 _l _[ I + l ( 13 - :J. ) ( 13 - j ) I ] rnv7 n n - n - -n 

X' 
m 

j J 

=I © 1J + [I + l (13 - j ) (13 - j ) I] 
n m m n n - -n - -n 

0 - 1-EVEV'. ,.. 2 - -EEV. 
j J 

Then each diagonal element of x* (X*' x*)-l x* I has the form 
m m m m 

EV2 

+ L:EV1 d2 V'j = 1, ••• ,m where d1 and d2 are functions of n and § 

j j A 

depend on the choice of A , but both are independent of m and EV. 
m J 

V'j=l, •.• ,m. 
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1 ,..za.s.12 
as m -+ 00 , - L: EV. ____,.-a • That implies 

mj J ,.. 2 n 

L:Ev7 -+ 00 as m-+ "", such that for j = 1, •.. ,m, 
j J 

l EV. 
-=tl + ~ __..,. 0 as m -+ oo. 

m 1 L:EV: 2 
j J 

Then we have the maximum diagonal element of X*(X*'X*)-lX*' tending 0 as 
m m m m 

m-+ 00 , which satisfies Huber's condition (Arnold, 1980). Thus when m-+ 00 

we have 

- j )(13 - j )']). 
-n - -n 



CHAPTER VII 

A COMPARISON OF DIFFERENT ESTIMATION METHODS 

In this chapter, we attempt a limited comparison of three estimates 

derived in the previous chapters. We will make the comparison through 

the MSE's of the estimators. Since the exact Mean Squared Errors are 

difficult to obtain, we only derive approximate forms. 

From (3.10)·, when r + 00 , we have the MSE of the M.L.E. for Sas: 

= 
2 

(J 

2 [n 
r (LEV.) 

j J 

" From (4.4) and (4.5), the approximate results of E(S. ) 
iG 

we have the approximate form of the MSE of R.M.L.E. for S as 

2 2 4 2 2 
MSE(§G) ~ n(n-l)cr [(m -l)cr +2(m+l)cr n+n ] 

[(m-l)cr2+n] 3 

(7 .1) 

and Var(S. ) 
lG 

2 2 . 5 10 4 8 4 6 2 3 4 3 2 2 4 
+{a r(S.-1) [(m-1) a +(m-1) (4m-3)cr n+6(m-l) an +4(m-l) an +(m+l) a n 

. l 
l 

2 
where n = nr r EV .. 

j J 

From (6.5), (7.1), and (7.2), it is difficult to decide which one is 

smaller. To get a comparison result, we will use the computer to simu-
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late some special cases. 

In the computer simulations, we set the number of genotypes n as 5, 

the number of environments m as 3 or 5, the number of replications r as 3 

2 
or 30, and the variance of sampling errors cr as 1 or 100. In each case 

we generate two different sets of EV. One set has the sums of squares, 

E;,,V'E;,,V, less than 10, and the others greater than 10,000. For 100 sets of 

100 A I A 

observations in each case, we will compute the average of t~l (§£-§) (§£-§) 

for three different estimation methods. The results are shown as Table V. 

From Table V, we can see that Restricted Maximum Likelihood method 

(or Generalized Least Squares Method) always yields a small average mean 

squared error than Ratio method. And unless 2 rand EEV. are large, 
. J 

R.M.L.E. is always "better" than M.L.E. 

R.E. appears to be as good as M.L.E. 

u rnv7 
j J 

J 2 
is small and cr is large, 



n m r 

1 

3 

100 

3 

1 

30 

100 

5 

1 

3 

100 

5 

1 

30 

100 

TABLE V 

SIMULATION RESULT FOR THE COMPARISON OF MEAN 
SQUARED ERRORS OF MAXIMUM LIKELIHOOD 

ESTIMATORS, RESTRICTED MAXIMUM 
LIKELIHOOD ESTIMATORS, AND 

RATIO ESTIMATORS OF § 

cr2 rnv2 Average Mean Squared Errors 
j J 

M.L.E. R.M.L.E. R.E. 

2.0 E+O 7.5879 E-1 7.2202 E-1 8.3090 

2.0 E+4 7.5106 E-5 7.5093 E-5 1.0029 

2.0 E+O 4.6195 E+2 8.8479 E+l 9.8031 

2.0 E+4 7. 7773 E-3 7.7393 E-3 8.4602 

2.0 E+O 7.5351 E-2 7.4929 E-2 9.0217 

2.0 E+4 7 .1882. E-6 7.1888 E-6 9.9421 

2.0 E+O 1.0902 E+2 9.5655 E+O 1.0772 

2.0 E+4 7.0615 E-4 7.0618 E-4 9.4806 

LO E+l 2.2645 E-1 2.1809 E-1 4.1516 

1.0 E+5 · 2.1157 E-5 2.1156 E-5 3.5423 

1.0 E+l 2.2673 E+2 6.0726 E+O 9.5449 

1.0 E+S 1.8921 E-3 1. 8939 E-3 3.2559 

1.0 E+l 2.1427 E-2 2.1388 E-2 3.9562 

LO E+5 2.2966 E-6 2.2967 E-6 3.7314 

1.0 E+l 7.5892 E+O 2.0648 E+O 3.4054 

1.0 E+5 2.3004 E-4 2.3010 E-4 3.8913 
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E-1 

E-4 

E+l 

E-3 

E-2 

E-6 

E+l 

E-4 

E-1 

E-5 

E+O 

E-3 

E-2 

E-6 

E+O 

E-4 



CHAPTER VIII 

SUMMARY 

The main objectives of this thesis are to obtain estimates of sta-

bility parameters under different models and estimation methods and to 

derive the distributions of the estimators. We consider two different 

design, namely, completely randomized design within each environment and 

randomized blocks design within each environment. Normality is assumed 

in most models; however, we also consider the case that the distribution 

of the random error is unknown. 

8.1. Results and Conclusions 

In this paper, we consider four different estimation methods to es-

timate the stability parameters. These are Maximum Likelihood (ML), 

Restricted Maximum Likelihood (RML), Least Squares (LS), and a ratio (R) 

method. From (3.5), (3.16), (5.3), and (5.8), we can see the ML estima-

tor for S of the two different designs with two different assumptions has 

the same form. Also from (4.3), (5.6), and (5.11), the RML estimator for 

§and, from (6.10), the LS estimator for Sare the same conditioned on 
A 

EV = B'~· 

The simulation results for the comparison of ML, RML, and R suggests 

that, under normality, if the number of replications r and the variance 

of environments are large, we should employ the ML method to estimate the 

stability parameters; otherwise, we should use the RML method. If the 
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distribution of the observations is unknown, we can employ the LS method. 

Since the ratio estimator yields the largest mean squared error in most 

cases and its distribution is very difficult to derive, its use is not 

recommended in spite of its ease of calculation. 

8.2. Further Work 

There are several areas involving genotype-environment interactions 

that need further research. One interesting area is that the results ob-

tained in this thesis could, probably, be generalized to other experi-

mental designs and to "messy data" situations. Another area is the 

assumption that the genotype-environment interaction term in the model 

is (S. -l)EV .• For further research, one could consider the model as 
l. J 

Y .. k 
l.J 

µ + 1'. +EV. + 
l. J 

i=l, ••• ,n; j=l, ••• ,m; k=l, ••• ,r 

m 
where S ..::_ [mr - 1 - ~]. After obtaining the estimator for ai!l Vi, 2 , a 

test of i:!l = 0 V!l could be developed. 
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APPENDIX A 

A SAS PROGRAM FOR THE SOLUTIONS OF THE 

ESTIMATORS OF THE STABILITY PARAM­

ETERS WHEN THE DESIGN IS CRD 

The following program runs using SAS (1979 version) and can only be 

used when the data set is balanced and the design is CRD. 

Before using this program, the data set must be sorted by genotypes, 

environments, and replications (i.e., PROC SORT; BY GENO ENV REP;). The 

user should enter the number of genotypes N, environments M, and replica­

tions R into statement 11. The user also needs to specify whether the 

environmental effects are fixed or random. Enter MDl into statement 55 

for fixed effects or MD2 for random effects. 

This program will output the estimates of the stability parameters, 

the estimates of the variances of the estimators, and the observed sig­

nificance level for testing the hypothesis of equality of the stability 

parameters for two cases. The first case uses the RML method which con­

ditions on the mean performance of all genotypes grown in each environ­

ment. The second case uses the ML method with the environmental effects 

specified as fixed or random by the user. 
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1 DATA GNXEV; 
2 INPUT GENO ENV REP YIELD; 
3 CARDS; 
4 
5 
6 PROC SORT ; BY GENO ENV REP ; 
7 
8 DATA GNXEV ; SET GNXEV ; DROP GENO ENV REP 
9 

10 PROC MATRIX; 
11 N=???; M=???; R=???; 
12 COMMENT N: THE NUMBER OF GENOTYPES (VARIETIES), 
13 M: THE NUMBER OF ENVIRONMENTS (LOCATIONS, YEARS, ETC.), 
14 R: THE NUMBER OF REPLICATIONS; 
15 
16 Nl=N-1; 
17 NM-=N/JM; 
18 NR=N/JR; 
19 NRl=NR-1; 
20 MR=M/JR; 
21 NMR=N/JMR; 
22 FETCH Y DATA=GNXEV; 
23 YIJB•J (NM, 1); 
24 DO IJ=l TO NM; 
25 Rll=R#(IJ-1)+1; 
26 R12,.R/JIJ; 
27 YIJB(IJ,)=(J(l,R)*Y(Rll:R12,))#/R; 
28 END; 
29 YIB=(I(N)@J(l,M))*YIJB#/M; 
30 YJBz(J(l,N)@I(M))*YIJB#/N; 
31 YB=J(l,NMR)*Y#/NMR; 
32 Al•YIJB-YIB@J(M,1); 
33 A2•YIJB-J(N,l)@YJB; 
34 NOTE PAGE T H E M 0 D E L; 
35 NOTE SKIP•3 Y(I,J,K) • U + GEN(I) + BETA(I)'°'ENV(J) + ER(I,J,K); 

I • 

' 
36 NOTESKIP•3 'WHERE 
37 NOTE SKIP=2 I 

38 NOTE SKIP-=1 I 

Y(I,J,K) IS THE PHENOTYPIC PERFORMANCE OF THE '; 
ITH GENOTYPE AT THE JTH ENVIRONMENT ON'; 

39 NOTE SKIP=l I 

40 NOTE SKIP•2 I 

41 NOTE SKIP•2 I 

42 NOTE SKIP=2 I 

43 NOTE SKIP=l I 

44 NOTE SKIP=l I 

45 NOTE SKIP=2 I 

46 NOTE SKIP=2 I 

47 NOTE SKIPml 1 

48 NOTE SKIP•l I 

49 NOTE SKIP=l I 

50 NOTE SKIP=l I 

u 
GEN(!) 
BETA(I) 

THE KTH REPLICATE '; 
IS THE OVERALL MEANS OF THE POPULATION'; 
IS THE EFFECT OF THE ITH GENOTYPE ' ; 
IS THE STABILITY PARAMETER WHICH '; 
MEASURES THE RESPONSE OF THE ITH '; 
GENOTYPE TO VARYING ENVIRONMENTS '; 

ENV(J) IS THE EFFECT OF JTH ENVIRONMENT '; 
ER(I,J,K) IS THE RANDOM ERROR ASSOCIATED WITH '; 

THE ITH GENOTYPE AT THE JTH '; 
ENVIRONMENT ON THE KTH REPLICATION AND'; 
ASSUME ER(I,J,K) 0 N(0,V) AND ER(I,J,K) '; 

51 NAMEl='BETAl' 'BETA2' 
UNCORRELATED FOR ALL I,J,K. '; 

I BETA3 I I BETA4 I I BETAS I I BETA6 I I BETA 7 I ; 
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55 LINK ???; 
56 
57 COMMENT MDl: GIVEN THE RESULT WHILE ASSUMING THE ENVIRONMENTAL 
58 EFFECTS ARE FIXED, 
59 
60 MD2: GIVEN THE RESULT WHILE ASSUMING THE ENVIRONMENTAL 
61 EFFECTS ARE RANDOM; 
62 
63 STOP; 
64 
65 
66 MDl: 
67 LINK GM; 
68 LINK FM; 
69 RETURN; 
70 
71 
72 MD2: 
73 LINK GM; 
74 LINK MM; 
75 RETURN; 
76 
77 
78 GM: 
79 ENVH=YJB-YB; 
80 ENVSSmENVH'*ENVH; 
81 BETAH= (I (N)@ENVH I) '~YIJB///ENVSS; 
82 DFl=NMR-M+l; 
83 DVl•Y-(YIB@J(MR,1))-(BETAH@ENVH@J(R,1)); 
84 VH=DVl'*DVl#/DFl; 
85 VARBH•(VH#/(R#ENVSS))#(I(N)-J(N,N)#/N); 
86 VBD=(2#VH#/(R#ENVSS))##.5; 
87 
88 LINK TST; 
89 
90 OSL• (J(N ,N)-PROBT (STAT ,DFl) )f/2; 
91 NOTE PAGE ESTIMATION OF THE STABILITY PARAMETER 
92 NOTE SKIP•l BY USING .MAXIMUM LIKELIHOOD METHOD; 
93 NOTE SKIP•l WHILE THE ENVIRONMENTAL EFFECT ARE GIVEN BY THE MEAN 
94 PERFORMANCE OF ALL THE GENOTYPES GROWN IN THAT ENVIRONMENT.; 
95 NOTE SKIP0 5 THE ESTIMATE VALUE OF BETA; 
96 BETAHcBETAH'; 
97 PRINT BETAH COLNAME•NAMEl; 
98 NOTE SKIP=2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
99 PRINT VARBH COLNAME=NAMEl ROWNAME=NAMEl; 

100 NOTE PAGE COMPARISON OF BETA(I) AND BETA(I"); 
101 NOTE SKIP•3 THE OBSERVE SIGNIFICANCE LEVEL 
102 PRINT OSL ROWNAME=NAMEl COLNAME=NAMEl; 
103 RETURN; 
104 
105 
106 
107 FM: 
108 BETAH=J(N,l); 
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109 DO Ll=l TO 500; 
110 ENVH-= (BETAH '@I (M)) '~Alfi/ (BETAH I -J:BETAH) ; 
111 BETAHT=J (N' 1) +(I (N)@ENVH I )-1:A2fll (ENVH t .,':ENVH); 
112 D=J (l ,N) -1: (ABS (BETAHT-BETAH)) ; 
113 BETAH=BETAHT; 
114 IF D<0.0000000001 THEN GO TO Wl; 
115 END; 
116 Wl: 
117 DV2•Y-(YIB@J(MR,1))-(BETAH@ENVH@J(R,l)); 
118 VH•DV2'*DV2#/NMR; 
119 VARBH=(VH#/(R#(ENVH'*ENVH)))#(I(N)-J(N,N)#/N 
120 +(BETAH-J(N,l))'"(BETAH-J(N,l)) 'fJ/N); 
121 VBD= (2fJVHfl I (Rfl (ENVH I '"ENVH) ) ) 1111. 5 ; 
122 
123 LINK TST; 
124 
125 OSL•(J(N,N)-PROBNORM(STAT))#2; 
126 NOTE PAGE ESTIATION OF THE STABILITY PARAMETER 
127 NOTE SKIP•l BY USING MAXIMUM LIKELIHOOD METHOD; 
128 NOTE SKIP•l WHILE ASSUMING THAT THE ENVIRONMENTAL EFFECT ARE FIXED; 
129 BETAH•BETAH'; 
130 PRINT BETAH COLNAME=NAMEl; 
131 NOTE SKIP•2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
132 PRINT VARBH COLNAME•NAMEl ROWNAME•NAMEl; 
133 NOTE PAGE COMPARISON OF BETA(!) AND BETA(!"); 
134 NOTE SKIP2 3 THE OBSERVE SIGNIFICANCE LEVEL 
135 PRINT OSL COLNAME=NAMEl ROWNAME'"'NAMEl; 
136 
137 
138 
139 MM: 
140 BETAH~J(N,l); 
141 DO Ll=l TO 500; 
142 BETAHT=J(N,l)+(BETAH'*BETAH)#(A2'*(I(N)@(Al'*(BETAH@I(M))) '))' 
143 #/((Al'*(BETAH@I(M)))*(Al'*(BETAH@I(M))) '); 
144 0-J(l,N)*(ABS(BETAHT-BETAH)); 
145 BETAH•BETAHT; 
146 IF D<0.0000000001 THEN GO TO W2; 
147 END; 
148 W2: 
149 BETASS~BETAH'*BETAH; 
150 VEl 2 (Al'*(BETAH@I(M)))*(Al'*(BETAH@I(M))) '; 
151 VE2s(Y-(YIB@J(MR,1))) '*(Y-(YIB@J(MR,l))); 
152 VEH=(NR#VE1-BETASS#VE2#/R)#/(NR1#M#BETASS#BETASS); 
153 VOH•(BETASS#VE2-R#VE1)#/(NR1#M#BETASS); 
154 VBD=(2#V0H#(VOH+R#VEH#BETASS)#/(M#R#R#VEH#VEH#BETASS))##.5; 
155 VARBH=((VOH#(VOH+R#VEH#BETASS)#/(M#R#R#VEH#VEH#BETASS)))# 
156 (I(N)-J(N,N)#/N+(BETAH-J(N,l))*(BETAH-J(N,1)) '#/N); 
157 
158 LINK TST; 
159 
160 OSL=(J(N,N)-PROBNORM(STAT))#2; 
161 NOTE PAGE ESTIMATION OF THE STABILITY PARAMETER 
162 NOTE SKIP=l BY USING MAXIMUM LIKELIHOOD METHOD; 
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163 NOTE SKIP=l WHILE ASSUMING THAT THE ENVIRONMENTAL EFFECT ARE RANDOM; 
164 BETAH=BETAH'; 
165 PRINT BETAH COLNAME=NAMEl; 
166 NOTE SKIP=2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
167 PRINT VARBH COLNAME=NAMEl ROWNAME=NAMEl; 
168 NOTE PAGE COMPARISON OF BETA(I) AND BETA(I"); 
169 NOTE SKIP=3 THE OBSERVE SIGNIFICANCE LEVEL 
170 PRINT OSL COLNAME=NAMEl ROWNAME=NAMEl; 
171 RETURN; 
172 
173 
174 
175 TST: 
176 STAT=J(N,N); 
177 DO L2=1 TO N; 
178 STAT(L2,)•ABS(BETAH(L2,)-BETAH')#/VBD; 
179 END; 
180 RETURN; 
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APPENDIX B 

A SAS PROGRAM FOR THE SOLUTIONS OF THE 

ESTIMATORS OF THE STABILITY PARAM­

ETERS WHEN THE DESIGN IS RCBD 

The following program runs using SAS (1979 version) and can only be 

used when the data set is balanced and the design is RCBD. 

Before ~sing this program, the data set must be sorted by genotypes, 

environments, blocks, and replications (i.e., PROC SORT; BY GENO ENV BLK 

REP;). The user should enter the number of genotypes N, environments M, 

block R, and replications S into statement 7. The user also needs to 

specify whether the block effects are fixed or random. Entering MDl into 

statement 61 for fixed effects and MD2 for random effects. 

This program will output the estimates of the stability parameters, 

the estimates of variances of the estimators, and the. observed signifi­

cance level for testing the hypothesis of equality of the stability 

parameters for two cases. The first case is the result using the RML 

method and the second case is the result using the ML method. 
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DATA GNXEV; 
INPUT GENO ENV BLK REP YIELD; 
CARDS; 
PROC SORT ; BY GENO ENV BLK REP 
DATA GNXEV ; SET GNXEV ; DROP GENO ENV 
PROC MATRIX; 
N=???; M-???; R=???; S=???; 

BLK REP ; 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

COMMENT N: THE NUMBER OF GENOTYPES (VARIETIES), 
M: THE NUMBER OF ENVIRONMENTS (LOCATIONS, 
R: THE NUMBER OF BLOCKS, 

11 
12 Nl=N-1; 
13 NM=NlfM; 
14 NR=Nf/R; 
15 NRl=NR-1; 
16 MR=Mf/R; 
17 NMR•Nf/MR; 

S: THE NUMBER OF REPLICATIONS; 

18 NMRS=-NMRf/S; 
19 MRS•MRf/S; 
20 RS•Rf/S; 
21 FETCH YS DATA•GNXEV; 
22 ycJ (NMR, 1) ; 
23 DO IJK=l TO NMR; 
24 SllsSlf(IJK-1)+1; 
25 S12=Sf/IJK; 
26 Y(IJK,)m(J(l,S)*YS(Sll:Sl2,))lf/S; 
27 END; 
28 YIJB=J(NM,1); 
29 DO IJ=l TO NM; 
30 Rll•Rlf(IJ-1)+1; 
31 R12-Rf/IJ; 
32 YIJB(IJ,)=(J(l,R)*Y(Rll:Rl2,))#/R; 
33 END; 
34 YIB•(I(N)@J(l,M))*YIJB#/M; 
35 YJB=(J(l,N)@I(M))*YIJB#/N; 
36 YJKB•(J(l,N)@I(MR))*Y#/N; 
37 YB•J(l,NMR)*Y#/NMR; 
38 Al-YIJB-YIB@J(M,l); 
39 A2•YIJB-J(N,l)@YJB; 
40 NOTE PAGE T H E M 0 D E L; 
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YEARS, ETC.), 

41 NOTE SKIP•3 Y(I,J,K,L)•U+GEN(I)+BETA(I)ENV(J)+BLK(K(J))+ER(I,J,K,L); 
42 NOTE SKIPs3 'WHERE '; 
43 NOTE SKIP=2 ' Y(I,J,K,L) IS THE PHENOTYPIC PERFORMANCE OF THE '; 
44 NOTE SKIP•l i ITH GENOTYPE AT THE JTH ENVIROFMENT ON'; 
45 NOTE SKIP•l ' THE KTH BLOCK ON THE KTH REPLICATE '; 
46 NOTE SKIP•2 ' U IS THE OVERALL MEANS OF THE POPULATION'; 
47 NOTE SKIP•2 ' GEN(!) IS THE EFFECT OF THE ITH GENOTYPE '; 
48 NOTE SKIP•2 ' BETA(!) IS THE STABILITY PARAMETER WHICH '; 
49 NOTE SKIP• l ' MEASURES THE RESPONSE OF THE ITH ' ; 
50 NOTE SKIP=l ' GENOTYPE TO VARYING ENVIRONMENTS '; 
51 NOTE SKIP=2 ' ENV(J) IS THE EFFECT OF JTH ENVIRONMENT '; 
52 NOTE SKIP=2 ' BLOCK(K(J)) IS THE EFFECT OF KTH BLOCK WITHIN THE '; 
53 NOTE SKIP=l ' JTH ENVIRONMENT '; 
54 NOTE SKIP•2 ' ER(I,J,K,L) IS THE RANDOM ERROR ASSOCIATED WITH '; 



THE ITH GENOTYPE OF THE JTH 
ENVIRONMENT IN THE KTH BLOCK ON STH 
REPLICATION. 
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I • 

' I • , 
I • , 

55 NOTE SKIP= 1 I 

56 NOTE SKIP=! I 

57 NOTE SKIPcl 1 

58 NOTE SKIP=l I 

59 NOTE SKIP=l I 

ASSUME ER(I,J,K,L) 0 N(O,V) AND FOR ALL '; 
I,J,K,L ER(I,J,K,L) ARE UNCORRELATED I ' • 

60 NAMEl='BETAl' 'BETA2' 'BETA3' 'BETA4' 'BETAS' 'BETA6' 'BETA7'; 
61 LINK ???; 
62 COMMENT MDl: 
63 • 
64 . 
65 
66 STOP; 
67 
68 MDl: 

MD2: 

69 ENVH=YJB-YB; 

GIVEN THE RESULT WHILE ASSUMING THE BLOCK 
EFFECTS ARE FIXED, 
GIVEN THE RESULT WHILE ASSUMING THE BLOCK 
EFFECTS ARE RANDOM; 

70 ENVSS=ENVH'*ENVH; 
71 BETAH=(I(N)@ENVH')*YIJB#/ENVSS; 
72 DFl=NMRS-S#(M-1); 
73 DVl=YS-(YIB@J(MRS,l))-(BETAH@ENVH@J(RS,1))-(J(N,l)@(YJKB-(YJB@ 
74 J(R,l)))@J(S,1)); 
75 VH=-DVl I *DVl///DFl; 
76 VARBH• (VH/I/ (R//ENVSS) )/l(I (N)-J (N ,N) ff/N); 
77 VBD•(2#VH#/(R#ENVSS))##.5; 
78 LINK TST; 
79 OSL•(J(N,N)-PROBT(STAT,DF1))#2; 
80 NOTE PAGE ESTIMATION OF THE STABILITY PARAMETER FOR FIXED BLOCK 
81 EFFECTS BY USING RESTRICTED MAXIMUM LIKELIHOOD METHOD; 
82 NOTE SKIP=l WHILE THE ENVIRONMENTAL EFFECT ARE GIVEN BY THE MEAN 
83 PERFORMANCE OF ALL THE GENOTYPES GROWN IN THAT ENVIRONMENT.; 
84 NOTE SKIP•5 THE ESTIMATE VALUE OF BETA; 
85 BETAH=BETAH'; 
86 PRINT BETAH COLNAME•NAMEl; 
87 NOTE SKIP•2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
88 PRINT VARBH COLNAME•NAMEl ROWNAME•NAMEl; 
89 NOTE PAGE COMPARISON OF BETA(!) AND BETA(I"); 
90 NOTE SKIP•3 THE OBSERVE SIGNIFICANCE LEVEL 
91 PRINT OSL ROWNAME•NAMEl COLNAME•NAMEl; 
92 BETAH•J(N,l); 
93 DO Ll•l TO 500; 
94 ENVH• (BETAH '@I (M)) 1'Alfll (BETAH I *BETAH) ; 
95 BETAHT•J(N,l)+(I(N)@ENVH')*A2#/(ENVH'*ENVH); 
96 IPJ(l,N)*(ABS(BETAHT-BETAH)); 
97 BETAH•BETAHT; 
98 IF D<0.0000000001 THEN GO TO Wl; 
99 END; 
100 Wl: 
101 DV2•YS-(YIB@J(MRS,1))-(J(N,l)@(YJKB-(YJB@J(R,l))@J(S,l)-(BETAH@ 
102 ENVH@J(RS,1)); 
103 VH•DV2'*DV2#/NMRS; 
104 VARBH•(VH#/(R#(ENVH'*ENVH)))#(I(N)-J(N,N)#/N 
105 +(BETAH-J(N,l))*(BETAH-J(N,l))'#/N); 
106 VBD•(2/IVH#/(R#(ENVH'*ENVH)))##.5; 
107 LINK TST; 
108 OSL=-(J(N,N)-PROBNORM(STAT))/12; 



109 NOTE PAGE ESTIATION OF THE STABILITY PARAMETER FOR FIXED BLOCK 
110 EFFECTS BY USING MAXIMUM LIKELIHOOD METHOD; 
111 BETAH=BETAH'; 
112 PRINT BETAH COLNAME=NAMEl; 
113 NOTE SKIP=2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
114 PRINT VARBH COLNAME=NAMEl ROWNAME=NAMEl; 
115 NOTE PAGE COMPARISON OF BETA(!) AND BETA(!"); 
116 NOTE SKIP•3 THE OBSERVE SIGNIFICANCE LEVEL 
117 PRINT OSL COLNAME=NAMEl ROWNAME=NAMEl; 
118 RETURN; 
119 
120 
121 MD2: 
122 ENVH .. YJB-YB; 
123 ENVSS=ENVH'*ENVH; 
124 BETAH=(I(N)@ENVH')*YIJB#/ENVSS; 
125 DFl=NMRS-MRS; 
126 DVl•YS-(YIB@J(MRS,1))-((BETAH-J(N,l))@ENVH@J(RS,1))-(J(N,l)@ 
127 YJKB@J(S,l)); 
128 VH•DVl'*DVl#/DFl; 
129 VAR.BH•(VH#/R#ENVSS)#(I(N)-J(N,N)#/N); 
130 VBD•(2#VH#/(R#ENVSS))##.5; 
131 LINK TST; 
132 OSL=(J(N,N)-PROBT(STAT,DF1))#2; 
133 NOTE PAGE ESTIMATION OF THE STABILITY PARAMETER FOR RANDOM BLOCK 
134 EFFECTS BY USING RESTRICTED MAXIMUM LIKELIHOOD METHOD; 
135 NOTE SKIP•l WHILE THE ENVIRONMENTAL EFFECT ARE GIVEN BY THE MEAN 
136 PERFORMANCE OF ALL THE GENOTYPES GROWN IN THAT ENVIRONMENT.; 
137 NOTE SKIP=5 THE ESTIMATE VALUE OF BETA; 
138 BETAH•BETAH'; 
139 PRINT BETAH COLNAME•NAMEl; 
140 NOTE SKIP•2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
141 PRINT VAR.SH COLNAME•NAMEl ROWNAME•NAMEl; 
142 NOTE PAGE COMPARISON OF·BETA(I) AND BETA(!"); 
143 NOTE SKIP•3 THE OBSERVE SIGNIFICANCE LEVEL ; 
144 PRINT OSL ROWNAME•NAMEl COLNAME•NAMEl; 
145 DO L•l TO 500; 
146 BETAHT•J(N,l)+(I(N)@ENVH')*A2#/(ENVH'*ENVH); 
147 Vl•(YS-J(NMRS,l,YB)-(I(N)@ENVH@J(RS,l)))'*(J(N,l)@I(MRS)); 
148 V2•YS-(YIB@J(MRS,l))-(BETAH@ENVH@J(RS,l)); 
149 VB•((Vl'*Vl)-(V2'*V2))#/(Nl#NMRS); 
150 VE•(N#(V2'*V2)-(Vl'*Vl))#/(Nl#NMRS); 
151 IF VE LT 0 THEN GO TO W5; 
152 IF VB LT 0 THEN GO TO W5; 
153 ENVHT•(N#VB+VE)#((BETAH'@I(M))*Al-N#VB#(YJB-YB))#/ 
154 ((N#VB+VE)#(BETAH'*BETAH)-N#N#VB); 
155 0-J(l,M)*(ABS(ENVHT-ENVH)); 
156 ENVH .. ENVHT; 
157 IF D<0.0000000001 THEN GO TO W4; 
158 END; 
159 VAR.BH=VE#(I(N)-J(N,N)#/N+(N#VB+VE)#(BETAH-J(N,l))'*(BETAH 
160 -J(N,1))#/(N#Nl#VB+N#VE))#/(ENVH'*ENVH); 
161 VBD=(2#VE#/(R#S#(ENVH'*ENVH)))##.5; 
162 LINK TST; 
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163 OSL=(J(N,N)-PROBNORM(STAT))l/2; 
164 NOTE PAGE ESTIMATION OF THE STABILITY PARAMETER FOR RANDOM BLOCK 
165 EFFECTS BY USING MAXIMUM LIKELIHOOD METHOD; 
166 BETAH=BETAH'; 
167 PRINT BETAH COLNAME=NAMEl; 
168 NOTE SKIP•2 THE ESTIMATE VARIANCE OF THE ESTIMATE BETA; 
169 PRINT VARBH COLNAME=NAMEl ROWNAMEzNAMEl; 
170 NOTE PAGE COMPARISON OF BETA(I) AND BETA(I"); 
171 NOTE SKIPm3 THE OBSERVE SIGNIFICANCE LEVEL 
172 PRINT OSL COLNAME=NAMEl ROWNAME=NAMEl; 
173 W5: 
174 RETURN; 
175 TST: 
176 STAT=J(N,N); 
177 DO L2=1 TO N; 
178 STAT(L2,)mABS(BETAH(L2,)-BETAH')#/VBD; 
179 END; 
180 RETURN; 

69 



APPENDIX C 

FIGURES 

70 



CDF 
1.00 + 

0.75 + 

0.50 + 

0.25 + 

~/ 
~ ... 

~,,./ 

... 

,, 
' ,I 

71 

-=~C""' .... -o.oo +~--==----------+---------------+---------------+---------------+ 
-2.4 -1.2 0.0 1.2 2.4 

Figure 1. 

s! 2 
n=3 m=S cr =l 

~~~~-Normal 

--- r = 10 

-------- r "" 3 

A* The Cumulative Distribution Function of f31 When 
the Numbers of Replications are 3 and 10 



72 

CDF 
1.00 + 

0.75 + 

0.50 + 

0.25 + 

0.00 +------~~-=-----+---------------+---------------+---------------+ 
-2.4 -1.2 0.0 1.2 2.4 

"'* 82 2 
n=3 m=S cr =l 

----Normal 

---r=lO 

-------- r = 3 

Figure 2. "'* The Cumulative Distribution Function of 82 When 
the Numbers of Replications are 3 and 10 



VITA 

Chung-Hsien Sung 

Candidate for the Degree of 

Doctor of Philosophy 

Thesis: THE ESTIMATION OF STABILITY PARAMETERS 

Major Field: Statistics 

Biographical: 

Personal Data: Born in Ilan, Taiwan, Republic of China, September 
6, 1950, the first son of Mr. and Mrs. Yane-Keng Sung. 

Education: Graduated from Kaohsiung High School, Kaohsiung, Taiwan, 
in 1969; received Bachelor of Science degree in Mathematical 
Statistics from Tamk.ang College, Taipei, Taiwan, in 1974; re­
ceived Master of Arts degree in Mathematics from Northeast 
Missouri State University, Kirksville, Missouri, in 1979; com­
pleted requirements for the Doctor of Philosophy degree at 
Oklahoma State University, July, 1983. 

Professional Experience: Associate Actuary, Cathay Life Insurance 
Co., Taipei, Taiwan, 1977-1978; Graduate Teaching Associate, 
Northeast Missouri State University, Kirksville, Missouri, 
1978-1979; Graduate Teaching Associate, Oklahoma State Univer­
sity, 1979-1983. 


