
COMPARATIVE STUDY OF PRIORITY QUEUES

IMPLEMENTAnON

By

DONGHONG WEI

Bachelor ofForeign Languages

Shanxi University

Taiyuan, China

1990

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the degree of

MASTER OF SCIENCE
December, 1999

Oklaho.,..,,'" C '"I/o I It ... :• •~ ,._ .oJ., • , 'f

""""':Iry

COMPARATIVE STUDY OF PRIORITY QUEUES

IMPLEMENTATION

Thesis Approved:

DeaOfthe Graduate College

ii

ACKNOWLEDGMENTS

I wish to express my deepest appreciation to my advisor Dr. Jacques Lafrance for

accepting to be my major advisor. His enthusiastic support, constructive guidance,

encouragement, and friendship throughout time of acquaintance have been a constant

source of inspiration and motivation that helped me gain confidence academically and

professionally. My sincere appreciation also extends to Dr. John P. Chandler whose

intelligent suggestion and guidance have made this thesis feasible. r would like to thank

Dr. H. K. Dai for his constructive criticism, direction and wisdom. Grateful appreciation

also goes to the faculty and students of the Department of Computer Science for their

interest, guidance, and friendship.

I wish to sincerely thank my husband for his unconditional love, spiritual support

and endless encouragement.

To my parents, Shuren Wei and Shuzhen Ma, I want to tell them how much I love

them and that r could not have made it through graduate school without their total support

and consistent encouragement.

I dedicate this thesis to my dearest daughter, Connie Yang, who is the reason why

I have worked so feverishly to complete this project.

Finally, I would like to praise God for providing me with confidence, wisdom,

persistence and strength that guided me through the entire process.

iii

TABLE OF CONTENTS

Chapter Page

1. INTRODUCTION .. , , .. " , ' 1

II. LITERATURE REVIElEW.. , ", , ' .. , .. ' , .4

2.1 Priority Queue Data Structure , ', , 5
2.2 Priority Queue and Discrete Event Simulation. , , ,,10

III. DESIGN AND IMPLEMENTATION ISSURES.... , .14

3.1 Performance measurement Techniques , , 14
3.1.1 Access Patterns ," ' , , 14
3.1.2 Time Measurements " , " .,.19

3.2 Design and Implementation... ,' 20
3.2.1 Implicit Binary Heap Simulation , 21
3.2.2 Median Pointer Linked List Simulation. , ' .. , , .23
3.2.3 SPEEDESQ Simulation .. , 24

IV. EVALUATION., ,., .. , ' ,., '" ., 27

4.1 Program. .. , , " 27
4.2 Performance of Three Priority Queues 29

v. CONCLUSIONS , , , ,., ',.35

LITERATURE CITED. .."..

iv

. 37

LIST OF FIGURES

Figure Page

1. The Basic Operation Model ofa Priority Queue 5

2. Classic Hold Flow Chart 15

3. UplDown Model Flow Chart...... . 17

4. Markov Hold Flow Chart.. . 18

5 Implicit Binary Heap and an Array Representation.21

6. Implicit Binary Heap Flow Chart..22

7. Median Pointer Linked List Data Structure 23

8. Median Pointer Linked List Flow Chart .24

9. SPEEDESQ Data Structure 25

10. SPEEDESQ Flow Chart 26

11. The Simulation Program Flow Chart 28

12. Implicit Binary Heap With Classic Hold, Up/Down and Markov Hold 29

13. Empirical Behavior at Large N of the Implicit Binary Heap 29

14. Median Pointer Linked List with Classic Hold, Up/Down and Markov Hold 30

15. Empirical Behavior at Large N of the Median Pointer Linked List 3 J

16 SPEEDESQ with Classic Hold, Up/Down and .Markov Hold.... ..32

17 Empirical Behavior at Large N of the SPEEDESQ.. .33

18. The Performance of the Three Priority Queues with Markov Hold '" .. 34

v

CHAPTER I

INTRODUCTION

Priority queues are used in a wide variety of applications including operating

systems, real-time systems and discrete event simulations [Ronngren, 1997]. In a priority

queue, each element is ordered by its associated priority [Ayanne, 1990]. The basic

operations are dequeue and enqueue. A dequeue operation removes the element with the

highest priority, and an enqueue inserts a new element into the queue. Ordinary stacks

and queues are special cases of priority queues [Brown, 1988].

The implementation of the priority queues may have a profound effect on the

performance of such applications. Over the years, several performance studies on

priority queues have appeared in the literature. A significant number of these studies

have been performed in the context of discrete event simulation (DES) [Jones, 1986]. The

reason for studying priority queues is twofold: the specific implementation is often

crucial to the performance of the simulator, and the way operations are performed on the

pending event set provides an excellent test case for studying priority queue [Fujimoto,

1990]. The impact of the implementation of the pending event set can have a super linear

effect on the performance [Ronngren, 1993]. Although priority queues are used in various

contexts, they are some general quality measures of interest. The most important metric

is the time required to perform the most common operations that are dequeue and

enqueue, and we refer to this time as access time. In most cases, the measure of interest

1

is the amortized access time. Thus it is important to find methods that allow a realistic

and accurate assessment of the access time.

Up till now, the most widely used method for performance studies of priority

queues has been the Classic Hold introduced by Vaucher and Duval [Duval, 1975] and

refined by Jones [Jones, 1986]. It models operation on a fixed-size queue where a series

of hold operations (a dequeue followed by an enqueue) are perfonned. An UplDown

model is proposed by Ronngren et al [Ronngren, 1993], where a sequence of enqueues is

followed by an equally long sequence of dequeues. Markov Hold is proposed by Chung

et al. [Chung, 1993], where operations on the queue are detennined by a two-state

Markov process with states insert (enqueue) and delete (dequeue). By changing the

transition probabilities, the Markov Hold model can represent random sequences of

enqueue and dequeue operations.

Although the three methods mentioned above have been introduced to perform

the studies of priority queues, comparatively studying priority queues with the three

methods and examining the different priority queue algorithms for performing the event

list in discrete event simulation programs have not been studied before.

In this thesis I explored the three methods to study the behavior of three different

priority queues, which are array-based Implicit Binary Heap, linked-list-based Median

Pointer Linked List and lazy-queue-based SPEEDESQ Comparing the performances of

the three different typical priority queues with the three models, this thesis provides

readers with an accurate and reali stic analysis of each priority queue's access time

complexity for the simulation. Readers can choose the best priority queue or access

2

pattern depending on the application. The thrust of this thesis is to provide readers a

paradigm for the study of computation complexity of comparison based problems.

Chapter 2 provides a review of the priority queue data structures and the

implementation of the pending event set by use of priority queues. Chapter 3 provides a

discussion of the design and the implementation details of the software that is developed

as part of the thesis. The analysis and evaluation of the software developed are discussed

in Chapter 4. The thesis ends with Chapter 5 that provides a summary and the

conclusions drawn from the study.

3

CHAPTERn

LITERATURE REVIEW

An abstract data type (ADT) is a data type along with the set of operations of that

type. Abstract data types are mathematical abstractions. They can be viewed as an

extension of modular design [Weiss, 1997]. A Queue is one of the most simple and basic

ADT, as John Beidler mentioned [Beidler, 1996]:

A queue is a sequential, homogeneous, variable-sized, possibly empty collection
of objects whose attributes and operations satisfy the following:
1. A queue is said to be empty when it contains no obj ects.
2. A queue has two ends, called the front and the rear.
3. The only object in a queue that is visible is the object at the front of the queue.
4. The dequeue operation removes the object currently at the front of the queue.

All remaining objects in the queue, if any, move one position forward toward
the front ofthe queue. The object immediately following the front object
becomes the new front of the queue. If there are no other objects in the queue,
the queue becomes empty.

5 The enqueue operation inserts new objects at the rear of the queue. lfthe
queue was empty, the enqueued object becomes the front object in the queue.
At any time, new objects may be enqueued. When an object is enqueued, it
becomes the rear object in the queue.

The queue constructors modify the queue either by removing the object at the

front of the queue or by adding new objects to the rear of the queue [Beidler, 1996],

therefore, the basic operations are dequeue and enqueue. As the enqueue inserts an

element in the rear of the list, the queue expands. As the dequeue deletes the element at

the front of the list, the queue shrinks [Weiss, 1997]. The order of the objects in the

queue, from front to rear, is the order in which the objects were enqueued. The term

FIFO, first-in-first-out, describes the order of processing of the objects in a queue.

4

However, sometimes some types of data in the queue require the data to be

deleted according to a priority rather than FIFO. Any data structure that upports the

operations of searching, inserting, and deleting minimum or maximum is called a priority

queue [Horowitz, 1996].

The priority queue is a structure for storing and retrieving information [Beidler,

1996]. It has at least the following two operations: dequeue and enqueue. A dequeue

operation removes the element with the highest priority, and an enqueue operation inserts

a new element into the queue. Figure 1 shows the basic model ofa priority queue.

DeleteMax!M.in (H)+-1 Priority Queue H r-- Insert (H)

Figure 1. The Basic Operation Model of a Priority Queue

In the following two sections, I will review seven well-known priority queue data

structures and discrete event simulation.

2.1 Priority Queue Data Structures

There are obviously several ways to implement the priority queues. The following

seven well-known data structures will be introduced: Implicit Binary Heaps [Bentley,

1985], Median Pointer Linked Lists, Skew Heaps [Sleator and Tarjan, 1986], Calendar

Queue [Brown, 1988], Henriksen's [Henriksen, 1997], the Lazy Queue [Ronngren, 1993a]

and the SPEEDESQ [Steinman, 1992].

2.1.1 Implicit Binary Heap

A heap [Aho, 1974] is a standard data structure for implementing priority queues.

An Implicit Binary Heap is one of the most elegant of storage structures to represent a

priority queue. The Implicit Binary Heap is defined as a structure on locations 1 through i

of an array with the property that the element in location i is smaller than that in location

5

[il2}, thus including a complete binary tree with the property that th value of the parent

is greater than that of the child [Munro,1979}. Such a pointer free representation has been

called an implicit data structure. It is well known that the Implicit Binary Heap enables

us to perform the basic priority queue operations. In an enqueue operation, the new

element is placed at the base of the heap (i.e., as the rightmost leaf at the lowest level).

To restore the heap property (i.e., that each parent has a higher priority than any of its

children), the new element is compared to its parent and they are swapped if necessary.

This process has to be repeated upward in the heap until either the root is reached or at

some level no swap is needed. In the dequeue operation, delete the element with the

highest priority and then re-order the heap. Both the enqueue and dequeue operations

have a worst-case behavior of0 (log N) [Gaston, 1986], where N is the number of

elements in the queue.

2.1.2 Median Pointer Linked List

The M.edian Pointer Linked List was implemented as a Doubly Linked Circular

List that allows insertions to take place from both the front and the back [Weiss, 1997].

A pointer to the median element (with respect to the number of elements) in the list is

used to identify whether the insertions should be made from the front (time-stamp ofthe

new element is less than or equal to that of the median element) or the back end of the list

[McCormack and Sargent, 1981]. A dequeue operation on a Median Pointer Linked list

is performed in constant time, whereas the enqueue operation is O(N).

2.1.3 Skew Heap

The Skew Heap [Sleator and Tarjan 1986J(sometimes called a priority queue or

mergeable heap) is a self-adjusting forming heap-ordered binary tree where any

6

descendant of a node has lower priority than the node itself The self-adjusting data

structures have the following advantages: I) They need less space, since no balance

information is kept. 2) Their access and update algorithms are easy to understand and to

implement. 3) In an amortized sense, ignoring constant factors, they can be at least as

efficient as balanced structures [Sleator, 1986]. The fundamental operation on the Skew

Heaps is a meld operation. A meld operation merges two Skew Heaps into one,

preserving the heap property. Thus a dequeue operation is performed by removing the

topmost (root) node and melding the two resulting subheaps into a single heap. In the

top-down Skew Heap, an enqueue operation is performed as a meld of a one-node Skew

Heap and the existing Skew Heap. The amortized time to perform a dequeue or an

enqueue operation is O(logN) [Sleator and TaIjan 1986] although individual operations

may be D(N) if the heuristics for the balancing of the heap fails.

2.1.4 Calendar Queue

The Calendar Queue suggested by Brown is a multilist-based data

structure[Brown, 1988]. It is a new priority queue implementation for the future event set

problem. It uses an elegant techni.que to manage the overflow problem encountered in

multilist-based implementations. Calendar Queue is modeled after a desk calendar. In

the Calendar queue, there exists no dedicated overflow structure. All elements, including

those that would fall into an overflow structure in an ordinary multi list, are inserted into

the sublists. This is accomplished in the following way: all sublists span equally long

priority (time) intervals where the total length of these subintervals is called a year. When

a new element is inserted into the queue, the sublist into which the new element will fall

is calculated. To ensure good performance, it is required that the sublists, which are

7

implemented as linked lists, are kept short (an average length of two elements). This is

accomplished by a resize operation. The resize operation is performed when the queue

size has changed by a factor of two. The new length of the subintervals is calculated by

using an approximation of the distribution based on the first few elements [Brown 1998].

The Calendar Queue has 0(1) access time under many operating conditions although the

resize operations are O(N). The worst-case amortized access time for the Calendar Queue

is O(N).

2.1.5 Lazy Queue

The Lazy Queue [Ronngren et aI., 1993] is a multilist-oriented data structure. The

fundamental idea is to divide the future events into several parts and keep only a small

portion of the elements completely sorted [Robert, 1997]. The elements are divided into

1) A near future that is kept sorted, 2) A far future that is partially sorted, arid 3) A very

far future that is used as an overflow bucket. As time advances, part of the far future is

sorted by standard sorting techniques and transferred into the near future. This lazy

sorting behavior gives the queue its name. The far future part of the queue is

implemented as an array of unsorted sublists where each sublist corresponds to an equally

long priority interval. The near future consists of a sorted array of elements (transferred

from the far future) and a skew heap is used to insert the new elements that belong to the

near future. Skew heaps are used to implement the very far future of the lazy queue. To

ensure good utilization of the data structures, a set of resize operations was introduced.

Some modifications in the implementations resize operations have been performed that

improve the performance for smaller queue sizes as compared to the results presented in

[Ronngren et al. 1993a]. In particular, there is a resize operation that recalculates both

8

the length of a subinterval and the number of subintervals. Ronngren's operation is used

whenever a resize operation is initiated. However, the criteria for expensive, worst case

of O(NlogN), but they are amortized over the relatively inexpensive ordinary operations.

This results in a near 0(1) access time for many operation conditions. The worst-case

amortized access time can be restricted to O(N) [Ronngren et al., 1993]. A minimum

queue size of256 elements is requested to perform a resize operation. The Lazy queue is

stable only if the sorting algorithm and the implementations of the near and very far

futures are stable.

2.1.6 Henriksen's Data-Structure

Henriksen's [Henriksen, 1977] implementation of the pending event set employed

in GPSS/H [Gordon, 1981] uses a linked list and an array of pointers into the list. The

array of pointers is used to perfonn binary searches in the list to find the place where a

new element should be put in an enqueue operation. A heuristic algorithm is employed to

update the auxiliary pointers. The implementation was based on the code given in

Kingston where the array of pointers is used as a circular list of pointers [Kingston,

1986]. The size of the array of pointers is doubled when necessary as the size grows.

However, the array is not decreased in size if the queue size shrinks. The amortized

access time of Henriksen's algorithm is often 0 (log N), and limited by 0';;; in the worst

case [Kingston, 1986]. Dequeue operations are performed in constant time, whereas

enqueue operation can be 0 (,J;;).

2.1.7 SPEEDESQ

The SPEEDESQ [Steinman 1992] consists of two single linear linked lists. One

list, referred to as the "dequeue-list", is kept sorted and the other list, the "enqueue-list" is

9

unsorted. New elements are added to the enqueue-list, which can be done in constant time

since the list is kept unordered. The queue also maintains a variable recording of the

highest priority (smallest time-stamp) of any element present in the enqueue-list. A

dequeue operation removes the element with the highest priority from the dequeue-list.

In a dequeue operation, the enqueue-list is sorted and merged with the dequeue-list if the

dequeue-list is exhausted or whenever the highest priority element is present in the

enqueue-list. The merge operation is potentially an O(N) which, if frequent, result in a

worst-case performance of o(N). SPEEDESQ has constant enqueue time and a constant

time for many ofthe dequeue operations. However, dequeue operations that involve

sorting of the enqueue-list have an O(NlogN) time complexity.

2.1.8 Expected Performance of the Priority Queues

Table I Summarizes the theoretically expected performance of the sequential priority

queues.

Table 1. Expected Performance of Sequential Priority Queues

Queue

o I)

2.2 Priority Queue and Discrete Event Simulation (DES)

Priority queues are used in many applications including real-time systems,

operating systems and simulations. Typical applications require primitive operations

among the following five: INSERT, DELETE, MIN, UPDATE, AND UNION. The

10

operation INSERT (name, labe~ Q) adds an element to queue Q. DELETE (name)

removes the element. Operation MIN (Q) returns the name of the element in Q having the

least label, and UPDATE (name, label) changes the label of the element named. UNION

(Ql, Q2, Q3) merges into Q3 all elements ofQl and Q2; the sets Ql and Q2 become

empty [Chung, 1993].

A variety of applications directly require using priority queues are: job

scheduling, discrete simulation languages where labels represent the time at which events

are to occur, as well as various sorting problems [Jean, 1997]. Priority queues also playa

central role in several good algorithms such as optimal code constructions, Chartre's

prime number generator and Brown's power series multiplication. The applications have

also been found in numerical analysis algorithms and in graph algorithms for such

problems as finding shortest paths and minimum cost spanning tree [Jean, 1997].

The most popular use of priority queues is in the area ofdiscrete event

simulations (DES) [Ronngren, 1997]. Here, a priority queue is used to hold the pending

event set (PES) which contains the generated but not yet evaluated events. in discrete

event simulations, events are simulated as occurring at discrete times determined by

random variables. A data structure stores unprocessed events. The basic action is to

remove the event with the earliest time and process it. This processing may create new

events which must be inserted into the data structure and which will be processed in the

future. To accomplish this, the data structure should support two operations: insert and

delete-min. The data structure, which stores the events (according to their execution

times), is called an event-list. The event-list can be represented as a priority queue in

which priorities are assigned according to the time, the higher priority given to the item

11

with the smallest value. The Pending event set (PES) is the set of aU generated but not yet

evaluated events and, in general, is represented by a priority queue. Tile implementation

of the PES is often crucial to simulation performance. An empirical study by Comfort

[Comfort, 1984] indicated that up to 40% of the simulation execution time might be spent

on the management of the PES alone. Therefore, as systems become more complex and a

demand for fast simulators arises efficient implementation of the PES becomes

increasingly important [Ronngren, 1997].

In a PES, the simulated times at which the events are scheduled to be executed

(time-stamps) are used as priorities. A sequential discrete event simulator operates in a

three-step cycle: remove the events with the smallest time stamp (i.e., highest priority)

from the PES; execute this event; and insert any new events resulting from this execution

into the PES. Thus the two most common operations on the PES data structure are:

dequeues, the removal of the event with the highest priority, and enqueue, the insertion of

a new event. Empirical studies of real simulations [Comfort, 1984] indicate that these

two operations can account for as much as 98% of an operations on the PES, the rest

being other operations such as deletion of arbitrary events and the like. The performance

of the PES is influenced by a number of variables including the initial distribution of

events, the priority increment distributions, access patterns, and the size of the event set

Thus the event set implementation must be efficient under a wide variety of operation

conditions and possibly by adaptive to take advantage of these conditions [Jones, 1986].

The requirements of high performance simulation of complex systems and the

observation that these systems are often inherently parallel have motivated the

development of parallel discrete event simulati.on[Fujimoto, 1990]. In parallel DES

12

(PDES), the inherent parallelism that exists in most simulation models is realized by

allowing logical processes (LPs) to be executed in parallel using several processing

units[Steinman, 1992]. In PDES priority queues are also often used as scheduling queues

for LPs that are ready to execute. This queue may also be shared by several processing

elements.

In this thesis I comparatively studied the performance of the different priority

queues in the discrete event simulation programs.

13

CHAPTERID

DESIGN AND IMPLEMENTATION ISSUES

3.1 Measurement Techniques

When designing experiments to study priority queues, it is important to carefully

choose access patterns and measurement techniques. The choices should reflect the

operating conditions under which the priority queue will be used as well as enabling

accurate measurement of the performance metrics of interest. When selecting access

patterns for this thesis, I chose synthetic experiments over real simulations. Synthetic

experiments provide better control over the variables affecting performance, therefore

they better expose the factors that influence performance [Jones, 1986].

3.1.1 Access Patterns

There are three classes of access patterns used to implement the simulation:

Classic Hold, Up/Down Model, and Markov Hold.

Classic Hold

Up till now, the most widely used method for performance studies for priority

queues has been the Classic Hold (See Figure 2) introduced by Vaucher and Duval and

refined by Jones. A hold operation is defined as a dequeue followed by an enqueue

operation. The Classic Hold models the behavior of a discrete event simulation system

performing a sequence of operations. In the Classic Hold experiments, the queue is

initialized to a fixed size and the measurement phase, which consists of a number of

14

NO

Begin

Initialize Queue Size

Build Queue with this
Queue Size

Loop Time =Minimum

Increase Loop Time Value

YES

Increase Queue Size Value

NO

YES

End

Figure 2. Classic Hold Flow Chart

15

hold operations, is performed. The queue size having been built remains fixed

throughout the process of the Classic Hold operation.

UplDown Model

An UplDown Model (See Figure 3) is proposed by Ronngren et a1. [Ronngren,

1993], model the PES's transient behavior where the queue grows to a certain size by a

sequence of enqueues and then shrinks by a same sequence of dequeues. In the

experiment, the measurements start and end with a fixed size queue for this access

pattern.

Markov Hold

Chung et a1. [1993] proposed an elegant generalization of the Classic Hold, called

the Markov Hold model (See Figure 4). In Markov Hold, the operations on the priority

queue are generated by a two-state Markov process that may be in either of the states

insert (enqueue) or delete (dequeue). By changing the state transition probabilities this

model can be used to represent the Classic Hold, UplDown, and a generalized random

sequence of enqueue and dequeue operations. The Markov model can be used to

generate access patterns equivalent to the three classes mentioned.

In the Markov Hold simulation, the state transition is generated by the function

randomNum (). If the function returns even number, enqueue operation is performed. If

the function returns odd number, dequeue operation is performed.

16

Initialize Queue Size

Build Queue with this
Queue Size

NO

NO

Loop Time =Minimum

Increase Loop Time Value

YES

Loop Time =Minimum

Increase Loop Time Value

NO

Loop Time>
Maximum

Increase Queue Size Value

Queue Size>
Set Number

YES

End

Figure 3. UplDown Model Flow Chart

17

Begin

Initialize Queue Size

Build Queue with this
Queue Size

Loop Time =Minimum

NO NO

Is enqueue
operation?

YES

NO

Increase Loop Time Value

YES

Increase Queue Size Value

Queue Size>
Set Number

YES

End

Figure 4. Markov Hold Model Flow Chart

18

3.1.2 Time Measurements

All the simulation was performed on the Compaq Proliant 300 Server with 2

processors of 300MHz. The program code was built and compiled with the Microsoft.

Visual C++ under the Windows 95 environment. Due to insufficient resolution of the

available time measurement mechanisms, the function void Jtime (struct _timeb

*timeptr) was used to measure the access time. Jtime does not return a value, but fills in

the fields of the structure pointed to by pointer timeptr that points to _timeb structure.

The Jtime function gets the current local time and stores it in the structure pointed to by

timeptr. The _timeb structure is defined in SYS\TIMEB.H. It contains four fields:

dstflag which is nonzero if daylight savings time is currently in effect for the local time

zone; millitm which is fraction of a second in milliseconds; time which is in seconds since

midnight (00:00:00), January 1, 1970, coordinated universal time (UTC); timezone the

value of which is set from the value of the global variable _timezone (See Example).

Example

/* FTlME.C: This program uses _ftime to obtain the current time and then stores this
time in timebuffer*/
#include <stdio.h>
#include <sty/timeb.h>
void main (void)
{

struct_timeb timebuffer;
char *timeline;

ftime (&timebuffer);
timeline = ctirne(& (tirnebuffertirne));
printf (" The time is %.19s.%hu %s", timeline, timebuffer. millitm,
&timeline[20]);

}
Output
ThetimeisTueMar2115:26:41.341 1995

19

The Jtime routines use the TZ environment variable. IfTZ is not set, the run

time library attempts to use the time-zone information specified by the operation system.

Jtime store current system time in variable of type struct _timeb.

3.2 Design and Implementation

I used the three measurement methods (Classic Hold, the Markov Hold, and

Up/Down model) mentioned above to design and implement the performance of the three

different priority queues. These priority queues are the Implicit Binary Heap [Bentley,

1985], the Median Pointer Linked List [McCormack and Sargent, 1981] and the

SPEEDESQ [Steinman 1992]. The followings are the reasons why I choose these three

priority queues:

1. Implicit Binary Heap is a well-known priority queue. It stands for the array-based

structures that are popular because of the potential for a logarithmic relationship

between queue size (array size) and the complexity of insert and delete operations.

2. Median Pointer Linked List is a typical and classic ADT to represent priority queues.

It stands for the linked-list-based structure with more sophisticated pointer-based

algorithms.

3. SPEEDESQ is a two-linked-list priority queue data structure. It stands for the lazy

queue-oriented data structures that are more recently proposed queue

implementations.

In this simulation program, all codes were written in the C programming

language, since C programming language obtains the advantages of few restrictions, few

complaints, block structures, stand-alone functions and a compact set of keywords

20

[Schildt, 1990]. Moreover, C programming language has the pow rful portability and

efficiency.

Four operations on the priority queues were implemented in the experiment:

create-queue, dequeue, enqueue and free-queue . .Jtime () function was used to measure

the mean access time.

3.2.1 Implicit Binary Heap Simulation

3

Element in Array

Parent:
Left Child: 2i
!Right Child: 2i + 1

9

5

10

left child

right child

-99
6 7

Figure 5. Implicit Binary Heap and an Array Representation

21

Since the Implicit Binary Heap data structure (heap) is a binary tree completely

filled, it can be regarded as an array object. The Implicit Binary Heap thus consists of an

array and an integer element representing the priority (see Figure 5).

Implicit Binary Heap

Move the last element
to the first position in

the array

Figure 6. Implicit Binary Heap Flow Chart

In the heap simulation program (see figure 6), in order to avoid the transient

startup period of the simulation, the initial size of the heap is set up to 16, which is built

by buildFixedSizeQu 0 function. The element of the heap is generated by RandomNum 0

function. The enqueue operation is performed by the enqueueHeap 0 function and the

dequeue operation by dequeueHeap () function. Both operations involve ensuring that the

heap order property is maintained by Build_heap 0 function. The heap size is increased

22

by twice for each time from 16 to 100,000. For each fixed size heap, each acce pattern

loops 5 million times.

3.2.2 Median Pointer Linked List Simulation

The Median Pointer Linked list (See Figure 7) is implemented as a doubly linked

list. The structure is utilized in the design of each cell in the linked list.

101 98

prey .- prey

next -. next ---+
•••

30

+- prey

next 4

Median Pointer

• ••

7 -99

.- prey .- prey

next f---+ next

Figure 7. Median Pointer Linked List Data Structure

In the simulation program each cell is composed of an integer element and two

pointers referring to the previous and next cell. The queue size of the Median Pointer

Linked List is from 10 to 60,000 and for each queue size, the operations repeat 100,000

times to calculate the average. The list is built by the buildFixedSizeMedlst 0 function.

Each element of the cell is generated by the RandomNum 0 function. A median pointer

is set up to point to the middle position of the linked list. Enqueue and dequeue

operations were performed by calling the functions enquToMedLst 0 and

dequFrmMedLst 0 respectively. In the enqueue operation, the element of the new cell

will compare with the value of the median pointer. If the element is larger than the

median pointer node, the cell will be inserted from the front of the list, otherwise, the cell

will be inserted from the back of the List. The median pointer is updated after finishing

the two operations: when dequeue or equeue operation performs twice, the median

23

pointer moves backward or forward once, otherwise, the median pointer remains still. If

the linked list is empty, median pointer points to the head of the list (See Figure 8).

Median Pointer Linked List

a>b
?

Move the header
pointer to the next

YES

Update
Median Pointer

No

Add this element from
1+----1 the end of the list

Update
Median Pointer

Figure 8. Median Pointer Linked List Flow Chart

3.2.3 SPEEDESQ Simulation

The SPEEDESQ (See Figure 9) consists of two single linear linked lists: one is

sorted dequeue linked list and the other is unsorted enqueue linked list. The merge

24

operation will occur whenever the dequeue linked list is empty or the highest priority

element is present in the enqueue linked list.

Enqueue List:
(unsorted)

30 777

Next -. Next f---.

-55

••• • ••
Next -+-

123 388

Next ~ Next

Dequeue List:
(sorted)

101 90

Next -. Next ~

12

••• •••
Next -+-

8 -99

Next f-+ Next

Figure 9. SPEEDESQ Data Structure

In the design of the SPEEDESQ simulation, the sizes of the Ii st increased from 10

to 50,000 and for each queue size, the operations repeat 100,000 times to calculate the

average. Two linked list data structures are set up: enqueue-linked list and dequeue-

linked list. Two global variables are declared to record the highest priority of both the

linked lists. The enqueue operation is performed by enquToLst () function, in which the

new element is directly inserted to the enqueue linked list without comparison and

sorting. Each time the enqueue operation is performed, the highest priority variable is

updated by comparing with the new element. The dequeue operation is performed by

dequFrmLst 0 function that is much more complicated. In the dequeue operation, the

head of the linked list needs to be compared with the highest priority variable. If the

25

element is larger dequeue the element from the list. Ifthe element is smaller then sort the

enqueue list and then merge the two linked lists (See Figure 10).

SPEEDESQ

YES

Sort enqueue list
&

Add sorted euqueue
list to dequeu list

Figure to. SPEEDESQ Flow Chart

26

No

CBAPTERIV

EVALUATION

4.1 Program

The program simulated the performances of the Implicit Binary Heap, the Median

Pointer Linked List, and the SPEEDESQ. For each priority queue, the Classic Hold,

Up/Down Model and Markov Hold were used as the access patterns. Figure 11 shows the

flow chart of the simulation program.

The results are produced when the program terminates, which are used to

comparatively study and analyze the priority queues and three access patterns as well.

27

Initialize experiment
enviroment for Implicit

Binary Heap

Classic Hold
experiment

Up/Down Hold
experiment

Random Access
experiment

Initialize experiment
enviroment for Median

Pointer Linked List

Classic Hold
experiment

Up/Down Hold
experiment

Random Access
experiment

Initialize experiment
enviroment for
SPEEDESQ

Classic Hold
experiment

Up/Down Hold
experiment

Random Access
experiment

End

Figure 11. The Simulation Program Flow Chart

28

4.2 Performance of the Three Priority Queues

MeEf'l Access TIme
(us)

Implicit Binlry Heep

30

20

15

10

5

• 100 1000 10000

--'·brio.,

----·Cludc

- - - - - - UplDown

100000

Queue Size (IogN)

Figure 12. Implicit Binary Heap with Classic Hold, UplDown and Markov Hold

MeasuredTimel
ExpectedTime

Implicit Binary Heap with Markov
(Approx. Fit: y II O.3BBLogX.

1.8

1.5

1.2

0.9

0.6

03

o
10 100 1000 ooסס1 ooסס10

Queue Size

Figure 13. Empirical Behavior at Large N of the Binary Heap with Markov Hold

29

-

Figure 12 depicts the performance of the Implicit Binary Heap with the three

models. As expected, the Implicit Binary Heap exhibits O(logN) performance.

Figures 13 shows the performance of the Implicit Binary Heap with y-axis

standing for the (measured time)/(expected time) and x-axis for log (N). I derived from

the results of the figure12 the expected time ofthe Implicit Binary Heap for each hold,

i.e. y= O.29810g(X) for the Classic Hold, Y=0.4810g(X) for the Up/Down model and Y=

O.388Iog(X) for the Markov Hold respectively. From the graph, we find that when the

queue size increases, the (measured time) /(expected time) of the Implicit Binary Heap

approaches to a horizontal line. Therefore, we can get the conclusion that the Implicit

Binary Heap shows average 0 (logN) running time for each hold.

Medi.n Pointer Linked List

,----~ ----upmown -I
I --Markov :i .._ CI ••ic I
---------_ ..

100000

Queue Size (LogN)

100001000100

1 .

10

10

100

1000

Mean Access Time
(us)

10000

Figure 14. The Median Pointer Linked List with Classic Hold, UplDown and

Markov Hold

30

Median Pointer Linked Ust with Markov
(Approx. Fit: Y=O.111X)

MeasuredTimeJ
ElCpeCtedTime

1.8

1.5

1.2

0.9

0.6

0.3

ooסס1 ooסס2 30000 40000 50000 60000 ooסס7

Queue Size

Figure 15. Empirical Behavior at Large N of the Median Pointer Linked List

with Markov Hold

For the Median Pointer Linked List, an enqueue operation can be done either from

the front or the back of the list It means that the enqueue operation only searches half of

the list to find the correct insertion location, the average and worst case time complexities

are therefore (+N) and (t N) respectively. The dequeue operation time complexity is

0(1), since the highest priority is always in the head of the list. From the figure 14 we

can find that the mean access time of the Median Pointer Linked List grows linearly with

the increase ofelements in the queue. With the very small queue size (less than 30), the

Median Pointer Linked List performs very well. From the result of the experiment, I got

the expected time of the list for each hold. They are Y=O.116X for the Up/Down model,

Y=O.lOIX for the Classic Hold and Y=O.lllX for the Markov Hold. Figure 15 shows

3l

-

the (measured time/expected time) performance ofthe Median Pointer Linked List with

Markov Hold. The graph shows that when queue size (x-axis) increases a certain amount,

the value of the (measured time)1 (expected time) approaches to a horizontal line. This

proves that the mean access time of the Median Pointer Linked List grows linearly with

the increase of the queue size.

Mean Access Time
(us)

100000

10000

1000

100

10

1
10 100

SPEEOESQ

1000 10000

- - - - - UplUown

--Markov

- - -- Cla••ic

100000

Queue Size

Figure 16. SPEEDESQ with Classic Hold, UplDown and Markov Hold

Figure 16 shows the performance of the SPEEDESQ with three holds. Like the

Median Pointer Linked List, the SPEEDESQ also performs very well for small queue

size. The SPEEDESQ consists of two linked lists. One is an enqueue list that is unsorted,

so the enqueue operation simply inserts an element at the end of the enqueue list, which

costs 0(1) time complexity. The other linked list is a dequeue list that is sorted. The

dequeue operation depends on the location of the highest priority element. When the

32

-

highest priority element is present in the dequeue list, which is located in the head of the

dequeue list, the dequeue operation just deletes the head costing O(1) running time,

otherwise, it takes O(NlogN) worst-case time complexity to sort and merge the two

linked lists.

MeasuredTimel
ExpectedTIme

1.6

1.2

0.8

0.4

SPEEDESQ with Mar1(ov
(Approx. Fit: Y-o.30X)

ooסס1 2O<XXl 30000 40000 50000 60000

Queue Size

Figure 17. Empirical Behavior at Large N of the SPEEDESQ with the

Markov Hold

The expected time of the three holds are Y=O.273X for Classic Hold, Y=0.324X

for UplDown and Y=O.30X for Markov Hold respectively. Figure 17 shows the

(measured time) I (expected time) of the SPEEDESQ with Markov Hold. We find that

the graph is a horizontal line. Therefore, we can prove that the performances of the

SPEEDESQ grow linearly with the increase of queue size.

33

-

Mean Access Time For Three Priority Queues
Me~1lI Access

Time (us)

100000

10000

1000

100

10

1
10 100 1000 10000 100000

-Implicit Binary Heap

---Median Linked List

- - - - - SPEEDESQ

Figure 18. The Performances of the Three Priority Queues with Markov Hold

Figure 18 depicts the performance of the three priority queues with Markov Hold

on one graph. We can clearly see the differences among the three priority queues. As

expected, the Implicit Binary Heap exhibits 0 (log N) performance. We also noticed that

both Median Pointer Linked List and SPEEDESQ perform very well when the queue size

less than 30, however they can not compete with the Implicit Binary Heap when the

queue size larger than so.

34

-

CHAPTER V

CONCLUSION

In this thesis, I presented the performances for a detailed study of three priority

queue algorithms. Three different access patterns (Classic Hold, UplDown, Markov

Hold) were used to measure the mean access time. Having attempted to obtain a

comparative ranking of the three priority queues algorithms, we find that we are unable to

recommend anyone particular algorithm as being the best to use in all situations. All

these queues have some weak and strong points. However, the approach to arriving at the

conclusion has given readers some insight into methods for making the choice.

We note that Median Pointer Linked List and SPEEDESQ show good

performance for queue sizes smaller than 30 elements on average. We also find that the

mean access time of the SPEEDESQ is almost twice as much as the Median Pointer

Linked List. This is because searching an element in the sorted linked list of the Median

Pointer Linked List takes (±N) on average whereas for the SPEEDESQ, it takes 0 (t N)

on average. The dequeue operation for the Median Pointer Linked List always takes 0(1)

time. The enqueue operation for SPEEDESQ always takes 0 (1) and dequeue operation

also takes a (1) time if the merge is not necessary at this point. The Median Pointer

Linked List can be used for the application that requests 0 (I) time complexity of the

dequeue operation. The SPEEDESQ can be used for the application that requests the

running time of the enqueue operation to be 0 (]) without concerning the worst case of

35

dequeue operation. SPEEDESQ is weU suited for implementation on parallel machines

because of its parallel sublists.

The Implicit Binary Heap is the only choice among the three queues that gives

guaranteed performance. In fact, from the results, we find that the mean access time of

Implicit Binary Heap performs so well that the other two linked lists can not compete

with it when the queue size bigger than 50.

The results show that the standard Classic Hold yields results that correspond

closely to the Markov Hold experiments. The Markov Hold model has been suggested as

a generalization of the Classic Hold model. It allows random access patterns that could

better mimic the behavior ofreal simulations. It has been claimed that this capability

could reveal more information on the performance of priority queues. When comparing

among the results obtained using the Classic Hold, UplDown and Markov Hold, we draw

the following conclusions. The Classic Hold and the Up/Down models represent two

extreme cases. When the queue size remains nearly constant, the Classic Hold model

gives as accurate and informative results as the more random access patterns generated

by the Markov Hold Model. For changing queue sizes, the simple Up/Down access

pattern often gives sufficient information. The simplicity of the Classic Hold and the

Up/Down helps reveal more and clearer information on the dependencies ofqueue sizes

on the performance.

36

LITERATURE CITED

Aho, AY., Hopcroft, 1. E. and Ullman, 1. D., The Design and Analysis ofComputer

Algorithms, Addison-Wesley, Reading, Mass, 1974;

Ayanne, R., "LR-algorithm: Concurrent operations on priority queues", Proceedings of

the Second IEEE Symposium on Parallel and Distributed Systems, pp. 22-25, 1990;

Deldler, 1., "Priority Queue", Data Structures and Algorithms, pp. 243-244, 1996;

Brown, R., "Calendar queues: A fast a (1) priority queue implementation for the

simulation event set problem", Commun.ACM 31, 10 (Oct.), pp, 1220-1227, 1988;

Chung, K., Sang, J. and Rego, v., "A performance comparison of event calendar

algorithms: An empirical approach", Softw. Pract. Exper, 23. 10 (Oct.), pp. 1107-1138,

1993;

Choi, B. D., "Priority queue with two-state Markov-modulated arrivals", IEEE

Proceedings. Communications V. 145. No 3, 6 (June), pp. 152-159, 1998,

Floyd, R.W., "Algorithm 245, Tree sort 3", Corom. ACM 7 (1964), pp. 701, 1964;

37

Fujimoto, R., "Parallel discrete event simulation", Commun.ACM 33, 10 (Oct.), pp. 31

53, 1990;

Gston, Gonnet, R. and Munro, 1., "Heaps on Heaps", SlAM 1. Comput. Vol. 15 No.4,

pp. 965-971, 1986;

Gonnet, G.R., A Handbook of Algorithms and Data Structures, Addison-Wesley,

Reading, MA, 1984;

Henriksen, 1. 0, "An improved events list algorithms", Proceedings ofthe 1977 Winter

Simulation Conference, pp. 547-557, 1988;

Horowitz, E., Sahui, S. and Sanguthevar, R, Computer AlgorithmiC, 1996;

Knowlton and Kenneth, c., L6: Bell Telephone Laboratories Low-Level Linked List

Language, 1966;

Knuth, D.E., "Sorting and Searching", The Art of Computer Programming,VoI.3., 1973;

McCormack, W. M. and Sargent, R. G., "Analysis of future event set algorithms for

discrete event simulation", Commun. ACM 24, 12 (Dec.), pp. 801-812, 198];

38

Munro, J.I. and Suwanda, H., "Implicit data structures for fast search and update",

Compu!. System Sci, 21 (1980), pp. 236-250,1980;

Naor, D., Martel, c.u. and Matloff, N.S., "Performance ofPriority Queue Structures in a

Virtual Memory Environment", The Computer JournaL Vol. 34, No.5, pp. 1428-437,

1991 ;

Pugh, W., "Skip lists: A probabilistic alternative to balanced trees", Commun. ACM 33,

6 (June), pp. 668-676, 1990;

Ronngren, R., Ayani, R., Fujimoto, R. M. and Das, SR., "Efficient implementation of

event sets in time warp", In Proceedings of the Seventh Workshop on Parallel and

Distributed Simulation (PADS'93), pp. 101-108, 1993;

Steinman, I S, "SPEEDES: A unified approach to parallel simulation", In PI e

of the Sixth Workshop on Parallel and Distributed Simulation, pp. 75-84, 1982;

Weiss, M. A., Data Structures and Algorithm Analysis in C,]993;

Williams,lW.J., "Algorithm 23: Heapsort", Corom. ACM, 7(1964), pp. 347-348, 1964.

39

d

VITA

DONGHONG WEI

Candidate for the Degree of

Master of Science

Dissertation: COMP ARATIVE STUDY OF PRIORITY QUEUES
MPLEMENTATION

Major field: Computer Science

Biographical:

Personal Data: Born in Tangshan, Hebei, P.R.China, July 26, 1967, the daughter of
Shuren Wei and Shuzhen Ma.

Education. Graduated from 30th High School ofTaiyuan, Taiyuan, Shanxi, China,
July 1985; received Bachelor of Arts degree in Foreign Languages from
Shanxi University, Taiyuan, Shanxi, China, July 1990; completed the
requirements for the Master of Science degree at Oklahoma State
University in December, 1999.

