
 LIGHT-WEIGHT HIERARCHICAL CLUSTERING

 MIDDLEWARE FOR PUBLIC-RESOURCE

 COMPUTING

 By

 AUSTIN ROYCE GILBERT

 Bachelor of Science

 Oklahoma State University

 Tulsa, Oklahoma

 2002

 Submitted to the Faculty of the
 Graduate College of

 Oklahoma State University
 in partial fulfillment of

 the requirements for
 the Degree of

 MASTER OF SCIENCE
 May, 2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215299141?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 LIGHT-WEIGHT HIERARCHICAL CLUSTERING

 MIDDLEWARE FOR PUBLIC-RESOURCE

 COMPUTING

 Thesis Approved:

 __Dr. István Jónyer______________________________
 Thesis Advisor

 __Dr. Johnson Thomas____________________________

 __Dr. XiaoLin Li________________________________

 __Dr. A. Gordon Emslie__________________________
 Dean of the Graduate College

 ii

 ACKNOWLEDGMENTS

 I would like to thank Professor Jónyer for graciously agreeing to overseeing my thesis work. I
would also like to express my gratitude to Professors Thomas and Li for all of their wonderful insights and
for sitting on my advisory board.

 I would like to thank the Department of Computer Science for supporting me during my course
work with a teacher’s assistantship. The experience I gained was invaluable.

 A special thanks to Earl Goodman, Jr. and all of my good friends at Tulsa Community College for
offering me work and friendship, and for availing their resources to me over the course of my thesis work. I
appreciate it immensely.

 Finally, I would like to thank my darling wife Maryna for all her support and encouragement along
the way. I never would have made it without you.

 iii

 TABLE OF CONTENTS

Chapter Page

 1. INTRODUCTION..1

 2. LITERATURE REVIEW ...3

 Distributed Virtual Parallel Machines...3
 Metacomputing Approaches..4
 Web-browser and Screen-saver Distributed Systems...5
 Peer-to-Peer Metacomputing and Grid Computing Approaches..5
 Public-Resource Computing Middleware...6

 3. SimpleDS: A LIGHTWEIGHT HIERARCHICAL CLUSTERING
 MIDDLEWARE...8

 Work Flow..8
 System Architecture..9
 Clustering... 10

 4. IMPLEMENTATION...13

 Implementation Overview..13
 Development Environment..14
 System Modules...15

 5. EMPIRICAL EVALUATIONS...28

 Lottery Scheduling Simulation for Task Assignment by
 Cluster Managers..28

 6. CONCLUSIONS...35

 Future Work..35

 REFERENCES... . .37

 APPENDIXES..46

 SimpleDS USER MANUAL..46

 iv

 LIST OF FIGURES

Figure Page

 3.1. Task Manifest and Workflow Diagram..8

 3.2. Hierarchically Distributed Architecture...9

 4.1. State Machine Diagram of Work Processor Thread..15

 4.2. Work Manager State Machine Diagram..17

 4.3. Work Manager Controller Process Diagram..18

 4.4. Download Manager State Machine Diagram Diagram...20

 4.5. Upload Manager State Machine Diagram Diagram..22

 4.6. Cluster Browser State Machine Diagram..23

 4.7. Membership Request Message Format..26

 4.8. Work Request Message Format...27

 4.9. File Response Message Format...27

 5.1. Average Turnaround Time Per Priority..32

 5.2. Comparing Lottery Scheduling Against FIFO Scheduling..32

 5.3. Comparing Lottery Scheduling Against FIFO Scheduling With Shorter Task
 Times In Lower Priority Levels...33

 5.4. Performance of Secondary Scheduling Algorithms...34

 v

 CHAPTER 1

 INTRODUCTION

 There are many areas of science where conducting meaningful research requires large amounts of

computation. In many cases, research activities are restricted due to limited availability of computational

resources. These limitations are especially apparent at smaller institutions with limited research budgets

(Chambers and Poore, 1975; Scragg, 1987; Chavey, 1995; Best, Chamberlain, Maene, 2002), and for

projects with very large computational needs (Seti@Home). Public-resource computing (Sullivan, et al.,

1997; Anderson et al., 2002; Loewe, 2002; Anderson, 2003; Anderson, 2004), which builds on earlier

works in computer-resource sharing (Shoch and Hupp, 1982; Nichols, 1987; Litzkow, 1987; Litzkow, 1988;

Theimer and Lantz, 1988), offers a solution for expanding access to resources beyond those dedicated to

research. However, the Internet bandwidth required to host large-scale projects (SETI, 2004) may represent

another barrier (Gammill, 1990). Moving the public-resource computing paradigm to a hierarchically

scalable architecture is expected to be the path to overcoming the bandwidth barrier, thereby improving

resource accessibility. This research explores such an approach in a lightweight hierarchical clustering

middleware.

 Today’s most prominent public-resource computing system, the Berkeley Open Infrastructure for

Network Computing (BOINC) (Anderson, 2003; Anderson, 2004), utilizes a centrally distributed client-

server architecture, the scalability of which is directly proportional to the bandwidth available at the central

server and/or the server’s performance (Ibe, Choi, and Trivedi, 1993; Nelno, et al., 1995; Arlitt,

Krishnamurthy, and Rolia, 2001). We are proposing a public-resource computing middleware utilizing a

hierarchically distributed architecture as an attempt improve scalability. The proposed middleware will

employ clusters of clusters, grouping resources according to Internet addresses in an attempt to conform

optimally to the underlying network’s topology. Some of the main ideas behind our research are as follows.

 We expect that organizing participants into clusters will streamline work requests and the return of

results. Clustering will reduce the number of clients interacting with a single server, allowing the system to

 1

take advantage of low latency, high-bandwidth connections for distributing/collecting work. We expect

Local Area Network (LAN) (Metcalfe and Boggs, 1976; DEC, 1980; Shoch, 1980; Bux, 1981; Rosenthal,

1982; Graube, 1982; IEEE, 1983) and Wide Area Network (WAN) (Bell, 1986; Haas and Cheriton, 1987)

connections to constitute a significant portion of smaller clusters within the system.

 We expect that distributing work over the highest bandwidth lowest latency connections available

will reduce the overall system latency. When these connections are LAN/WAN connections they also help

to regulate Internet bandwidth utilization on the client side.

 We expect that reducing the number of clients interacting with a single server will reduce the

potential for concurrent client interactions and will simplify the communication-scheduling problem. The

potential for better scheduling could further improve network efficiency by enabling better coordination of

network resource utilization. For the purposes of this thesis, we will leave investigations into impact of

clustering on the communication-scheduling problem as future work.

 The motivations for this project are as follows. We expect to enable organizations to make better

use of their existing computational infrastructure by harnessing the idle CPU cycles of their computers. We

expect to lower the amount of bandwidth needed for hosting a public-resource computing project by

improving network utilization. We expect that lowering bandwidth demands will make the computational

model accessible to a wider range of institutions that could not otherwise afford to host public-resource

computing projects. Finally, we expect the improved availability of computational resources offered by the

public-resource computing model will encourage the model’s use in new and interesting work.

 2

 CHAPTER 2

 LITERATURE REVIEW

 Even though the term public-resource computing has not be formally defined, it has been widely

used in the literature in such contexts that imply the following two constraints. First, because access to

resources is being donated by third party volunteers, the middleware must only use a resource’s idle

computing time. Restricting the system to idle computing cycles is something of a tradition (Shoch and

Hupp, 1982; Theimer, Lantz, and Cheriton, 1985; Theimer, 1986; Litzkow, 1987; Theimer and Lantz, 1988;

Freeley, et al., 1991). This practice is sometimes called cycle stealing (Litzkow, 1987; Litzkow, 1988;

Tannenbaum and Litzkow, 1995; Bhatt, et al., 1997; Rosenberg, 2002). Second, the middleware must not

require administrative privileges or special network configurations to run. This constraint assures maximum

accessibility to the system, and allows the inclusion of resources volunteered by users who either don’t

have the skill or the privileges to modify their network configuration. We feel meeting this constraint

necessitates the use of client-driven communications, that is, all communication between computing

resources and project hosting servers must be initiated by the client resources. Servers are unable to initiate

communication directly to the clients. The majority of distributed computing systems fail to meet one or

both of these constraints, making them unsuitable for use as a public-resource computing middleware.

 2.1 Distributed Virtual Parallel Machines

 Distributed Virtual Parallel Machines (DVPMs) are distributed computing systems designed to

emulate a massively parallel computer using inter-networked commodity computers. There has been no

shortage of offerings in this area. Examples include Parallel Virtual Machine (PVM) (Sunderam, 1990;

PVM, 2005), Message Passing Interface (MPI) (Forum, 1995; MPI, 2005), Heterogeneous Adaptable

Reconfigurable NEtworked SystemS (HARNESS) (Beck, et al., 1999), and Visper (Stankovic and Zhang,

2002) to name a few.

 3

 MPI and PVM are not suitable for use in public-resource computing systems for a few reasons.

Most notably they lack task distribution mechanisms. Programs must be installed on the participating

machines, be available over a shared network drive, such as NFS, or must be uploaded via a remote shell

prior to use. Access to shared network drives cannot be assumed in a public-resource computing

environment. Uploading programs over a remote shell would require inbound network access to

participating resources, violating our second constraint.

 Visper is built on top of the Aglets software agent platform (Aglets, 2002). Aglets utilizes an

asynchronous messaging system which relies on inbound network communications, making it unsuitable

for use in public-resource computing.

 Heterogeneous Adaptable Reconfigurable NEtworked SystemS (HARNESS) is a metacomputing

infrastructure for deploying fault-tolerant DVPMs and running fault-tolerant MPI (Fagg, Bukovsky, and

Dongarra, 2001). HARNESS utilizes a peer-to-peer distributed control algorithm to remove the single point

of failure found in other DVPMs. However, this algorithm necessitates the need for inbound

communication making it unsuitable for use in a public-resource computing system.

 2.2 Metacomputing Approaches

 IceT (Gray and Sunderam, 1999) is a metacomputing system written in Java. IceT gains access to

remote resources via HTTP requests. The necessity of running an HTTP server on client resources negates

its use in a public-resource computing setup.

 Condor (Litzkow, 1988) is a cycle-stealing metacomputing system. Condor uses a client-server

architecture where servers schedule jobs on “pools” of idle clients after locating them on their network. The

server-driven communications for job scheduling make Condor unsuitable for use in public-resource

computing systems. In the last few years Condor has been integrated into the Globus Toolkit (Foster and

Kesselman, 1997) and released as Condor-G (Frey, et al., 2002).

 XGrid (Apple, 2005) is a distributed computing middleware focused on ease of use and

configuration. It features automatic resource discovery on LANs through mDNS (Cheshire, 2005). XGrid

has been configured for use in a public-resource computing system (Parnot, 2005), though it is not well

suited for this role for at least two reasons. First, XGrid is platform specific. Projects can only be hosted on

Apple Macintosh computers. Although XGrid use BEEP (Rose, 2001), an open standard for

communications protocols that allows for the development of third party clients, to date only Unix-like

 4

operating systems have been supported (Côté, 2004). The Unix XGrid agents can only participate as

processing clients (i.e., no job submission). Second, if an executable used by a task is not installed locally

on the client’s machine, the executable is copied to the client. When the task is completed the executable is

removed. No file or executable caching scheme is employed. This approach exacerbates the current

problems public-resource computing systems have with bandwidth utilization.

 2.3 Web-browser and Screen-saver Distributed Systems

 Javelin (Christiansen, et al., 1997) is a web-browser driven distributed computing system. Javelin

is client-driven and can be used for public-resource computing, however, it has some severe limitations.

Applets are not allowed to access the local filesystem, therefore calculated results must reside in memory.

Also, the tasks can only be defined in the Java language. Our middleware will support the execution of

tasks written in a wide range of scripting and programming languages.

 2.4 Peer-to-Peer Metacomputing and Grid Computing Approaches

 OurGrid (Andrade et al., 2003) is a peer-to-peer computational middleware. OurGrid’s use of a

peer-to-peer architecture necessitates that all peers be able to receive inbound network communication.

This violates our second constraint for use as a public-resource computing system.

 The Globus Metacomputing Toolkit (Foster and Kesselman, 1997) is a toolkit for building

metacomputing infrastructures, which is more recently termed grid computing. (Foster and Kesselman,

1999) Globus requires inbound and outbound communication which makes it unsuitable for use in a public-

resource computing system.

 The gLite framework (GLite, 2005) is a metacomputing approach based on the AliEn grid

framework (AliEn, 2007). GLite’s architecture closely resembles Globus. The gLite framework has been

chosen as the base for analyzing data from the ALICE project (ALICE, 2007), a CERN Large Hadron

Collider project (LHC, 2007). For our purposes it has shortcomings similar to the Globus framework.

 OCEAN (Padala, et al., 2003) is a peer-to-peer metacomputing framework with a heavy emphasis

on utilizing a computational economy (Buyya, Abramson, and Giddy, 2001; Buyya and Vazhkudal, 2001)

approach to distributed computing and resource sharing. The peer-to-peer nature of OCEAN’s resource

matching algorithm makes it unsuitable for use in a public-resource computing system, because the peer-to-

 5

peer architecture necessitates the need for inbound network communications which violates our second

constraint for public-resource computing systems.

 2.5 Public-Resource Computing Middleware

 Grid MP. United Devices’ Grid MP middleware (United Devices, 2005; GridMP, 2005) is a public-

resource computing middleware built around a computational economy model (Buyya, Abramson, and

Giddy, 2001; Buyya and Vazhkudal, 2001). Grid MP is a commercial product and must be licensed before

deployment in public-resource computing projects. The commercial nature of the middleware also means

little technical information is available regarding its architecture, preventing it from being highly available

and making it difficult to assess fairly.

 ZetaGrid (Zeta, 2002) is cycle-stealing middleware developed in Java and funded by IBM. It

features encrypted communications and nonrepudiation of client and server exchanges via digital

signatures. ZetaGrid has a client-server architecture where work flow is demand driven by client

availability. One of the more interesting features of ZetaGrid is the incorporated trust model, which is used

to determine the amount of work a client is entrusted with and how frequently a client’s results are

reviewed for errors. Unfortunately, at the time of this writing, ZetaGrid’s trust algorithms used are not

available in the literature. Its security features make ZetaGrid an attractive option for public-resource

computing project distributing sensitive data to trusted clients over the untrusted Internet.

 Berkeley Open Infrastructure for Network Computing (BOINC) (Anderson, 2003; Anderson,

2004) is a cycle-stealing middleware designed for deployment in public-resource computing environments.

BOINC is a mature and well developed middleware, but lacks sophistication in bandwidth utilization and

ease of use.

 Achieving high performance for large projects with BOINC can require large quantities of

bandwidth to serve the large number of participating computing resources. For example, in 2004, the

SETI@home project, which utilizes the BOINC architecture, had to throttle back the computation rate of

their distributed application in order to limit their bandwidth consumption to 30 Mbits/s (SETI, 2004). A

full T-1 connection has a maximum rate of 1.536 Mbits/s, meaning that even when throttled down, the

SETI project was using approximately 19.5 T-1 lines. This example highlights some of the issues with

hosting larger projects.

 6

 BOINC does not take advantage of the underlying network topology. No consideration is given to

proximity of participants. For example, BOINC clients residing on the same LAN work independently to

retrieve work and return results. Coordination of these clients is possible and we expect coordination to

lead to a better communication model.

 Installing, configuring, and running a project on BOINC is far from trivial. Several services must

be installed and configured, including the Apache HTTP server (Apache, 2005), the MySQL relational

database (MySQL, 2005), and the Python scripting language (Python, 2005). Each additional service adds

work for systems administrators, and requires considerable expertise. Additionally, each network service

introduces security concerns.

A major goal of our project is to simplify the effort needed to host public-resource computing

projects by reducing the amount of configuration involved. A second project goal is to minimize security

threats by requiring as few new network services as possible.

 7

 CHAPTER 3

 SimpleDS: A LIGHTWEIGHT HIERARCHICAL CLUSTERING MIDDLEWARE

 In this chapter we describe our implementation of a hierarchical clustering middleware named

SimpleDS in detail. The outline of this chapter is as follows. Section 3.1 provides a high-level overview of

work-flow in our system. Section 3.2 introduces the system architecture. Finally, section 3.3 presents

proposed clustering mechanisms for SimpleDS.

 3.1 Work Flow

 The largest unit of work in SimpleDS is the project. A project is a group of related tasks, task-files,

and results. A task defines some work to be done by the system. Tasks are described by task manifests. A

task manifest describes the task-files needed to complete a task. Task-files include data-files and

executables. A task manifest (fig. 3.1) is a string describing the relationship between a task’s executables

and the data files, that is, which data files are inputs to which executables. Further, manifests describe

output files resulting from running the defined executable(s). The last output files produced by the

completion of a task are the task’s results. Tasks are distributed throughout the system for processing and

results are collected. Results are data files describing the outcome of a task. Typically, result files will be

ASCII (ASCII, 1986) text files. Binary data files can be used but caution must be exercised to ensure cross-

platform compatibility.

Figure 3.1. Task Manifest and Workflow Diagram

data1 exec1 OUTPUT
input output

data:(data1)
exec:(exec1):(Darwin-8.0.0-powerpc)
{exec1}:(data1):(OUTPUT)

Task Workflow

Related Task Manifest

 8

 3.2 System Architecture

 SimpleDS uses a hierarchically distributed architecture to facilitate distributed computation, as

shown in figure 3.2. A hierarchically distributed architecture consists of three components: a central server,

intermediate servers, and clients. In SimpleDS, central severs and intermediate servers are called cluster

managers. Cluster managers are responsible for hosting and distributing tasks, data files, and executable

files. Cluster managers are also responsible for collecting results. Special cluster managers, called root

nodes, provide the functionality for task submission/creation. Results collected by cluster managers are

forwarded to the root nodes where the associated tasks were created.

Figure 3.2. Hierarchically Distributed Architecture

 A cluster manager and its associated nodes are referred to as a cluster. We wish clusters in

SimpleDS to be dynamic, forming automatically when it is advantageous to the overall system performance

and dissolving when they are no longer needed. The performance metrics used to determine overall system

performance have yet to be determine, initially both turnaround time and throughput will be measured. We

refer to the process of cluster formation and disbandment as clustering. Many clustering algorithms are

possible. We feel that clusters will be most useful when they form along the boundaries of the underlying

network topology. We base this belief on the principle of network locality (Lorence and Satyanarayanan,

1990; Freedman and Mazieres, 2003; Pias, et al., 2003). Network locality is also referred to as network

proximity (Castro, et al., 2002; Amini and Schulzrinne, 2004; Zhan, 2004). It is sometimes discussed in

 9

conjunction with the related topics of topology-awareness (Ratnasmay, 2002; Karonis, et al., 2002; Castro,

et al., 2003), network-awareness (Krishnamurthy and Wang, 2000; Massoulie, Kermarrec, and Ganesh,

2003), or locality-awareness (Zhang, et al., 2004). Network locality simply says that the closer two nodes

are together on the physical network, the fewer routing hops between them, the lower the communication

latency will be. It should be noted that this principle is a generality and does not hold true for every

possible case. Network locality is typically generalized into a distance metric (Francis, et al., 2001;

Huffaker, et al., 2002; Ng and Zhang, 2002; Amini and Schulzrinne, 2004; Costa, et al., 2004; Cox, et al.,

2004), many of which are based on Roundtrip Time (RTT). Haffaker et al. (Haffaker, 2002) have

demonstrated that the 24-hour moving average minimum RTT is generally the best estimator for network

locality.

 3.3 Clustering

 The purpose of clustering is twofold. From the project hosting perspective, we aim to share the

burden of hosting with amicable peers. From the client/participant perspective we seek to coordinate the

use of shared network infrastructure, both to prevent overuse and to exploit lower latency connections

available across a shared infrastructure. In both cases, we seek to conform to the underlying network

topology.

 Private addressing (Rekhter, et al., 1996) introduced a dichotomy into the Internet. There are host

addresses visible from the Internet and addresses only visible by nodes residing on the same LAN. We feel

this dichotomy warrants the use of two separate clustering algorithms and work discovery mechanisms -

one to take advantage of shared local infrastructures (LANs and WANs), and one for Internet level

clustering.

3.3.1 LAN Clustering

 Our LAN clustering algorithm is client driven. Clients are either compute nodes or cluster

managers needing work. As clients become available to perform work they seek a local cluster manager.

Resource discovery occurs over IP multicast channels (Deering, 1989). The link-local layer is searched

first, followed by the organization-local layer. A client seeking work broadcasts a work request to all

participants. Local cluster managers respond with the amount of work they have and the highest user

assigned priority for the work. The client employs a lottery-scheduling algorithm (Waldspurger and Weihl,

 10

1994) to choose from the list of cluster manager responses. Cluster managers with the most work at the

highest priority will be given the most lottery tickets. A random number is chosen to determine the lottery

winner. The client then associates itself with the lottery winner. The client will stay associated with the

cluster manager as long as it can supply a constant flow of work. When work shortages arise, the client will

restart the browsing process. If no work is available locally, the cluster manager will begin the Internet-

level browsing process. Any work retrieved from an Internet cluster will be shared among the local clients.

The goal is to have as few cluster managers downloading work from the Internet as possible, preferring a

steady lower bandwidth stream to short high bandwidth bursts. In this way, we can avoid the scenario

where thousands of nodes saturate their local Internet connection downloading work from Internet servers.

3.3.2 Internet Clustering

 The Internet clustering algorithm is also client driven. When clients are available to process tasks,

or cluster managers need more work, they seek an Internet cluster manager with work to distribute. Being

an Internet cluster manager requires an Internet routable address. In an environment with Network Address

Translation (NAT) (Egevang and Francis, 1994) port redirection must be configured, which requires

administrative privileges and know-how, hence participants are never required to participate as Internet

cluster managers. The search for a cluster manager begins at the LAN/WAN level. If no local cluster

managers are discovered then the client continues the search for work with a web service request for a list

of available projects. The function of the list is to serve as a global directory of projects. Projects hosted on

root nodes with the ability to support Internet clusters will automatically register themselves with the

project directory web service. In the future, the web service will utilize a highly available redundant

architecture supporting data replication. The back-end will likely be implemented using a Lightweight

Directory Access Protocol (LDAP) (Wahl, Howes, and Kille, 1997) directory, or a similar directory

structure. Initially the list provided by the web service will contain each project’s name, description,

contact, and the IP address for its root node. In the future, more information may be provided. Nodes will

examine the list of IP addresses and perform the longest prefix matching algorithm (LPM) (Fuller, et al.,

1993; Ruiz-Sanchez, Biersack, and Dabbous, 2001) on the pre-CIDR addresses (Fuller, et al., 1993). If no

exact match is given, the node will select the IP which is closest to its own, where 203.0.5.2 would be a

match to 200.10.45.7 when compared with 210.2.4.5. Three to five candidate cluster managers will be

selected. The node will then test its roundtrip time with each candidate and select the node with the lowest

 11

result. The node will then contact the candidate and request to join its cluster. The cluster manager then has

the option to accept the request, reject the request, or refer the requesting node to another cluster. If the

request is rejected, the seeking node will move on to the cluster manager with the next lowest roundtrip

time. If the request is accepted, the node will enter its work processing phase by requesting work. If a

cluster manager has several other cluster managers associated under it, it may elect to refer the requesting

node to one of them. In this case, the referring cluster manager returns a list of its associated cluster

managers to the requesting node. The node would then restart the browsing algorithm with this list.

 The purpose of the referral process is to direct incoming nodes to cluster managers with the closest

network proximity in order to establish and maintain a structure that best conforms to the underlying

network topology.

 Once a cluster manager is no longer providing an adequate amount of work, a node may restart the

browsing process to maintain a constant flow of work. Hence, nodes swarm to new work sources when old

work sources can no longer supply an adequate amount of work. In this way, the clustering algorithm is

dynamic. Clusters form around work sources, aligning themselves to the underlying topology, the clusters

cease growing once an adequate work force has been assembled and they disband as the work source runs

low.

 We will investigate the merit of this approach and make refinements as needed. We are already

aware of several potential issues. One of which is the convoy effect (Vogels, van Renesse, Birman, 2003)

exhibited by some distributed applications. At this point we are uncertain as to the impact the convoy effect

will have, but we feel it is likely that an optimal or near optimal limit for the nesting of clusters must be

found and adhered to.

 12

 CHAPTER 4

 IMPLEMENTATION

 In this chapter we will describe the system implementation. Our main design goals for the

implementation were to make the system stable, robust (resistant to failure), flexible, and portable. The

middleware is implemented in C++.

 4.1 Implementation Overview

 The system design process involved a certain amount of trial and error until the final design

emerged which was both stable and robust. Our initial implementation was driven by a single complex state

machine running in a single thread of execution. It proved neither robust nor stable. We learned from the

design mistakes we made and moved to three threads and three simpler state machines. The result was a

simpler system, but was still not robust or stable. It took a third redesign before the result yielded a system

stable and robust enough to serve as a base for further development. We describe the final design in this

chapter.

 Our approach for the final redesign was to break the system functionality into independent

modules, giving each module its own state machine and isolating each state machine in its own thread. For

the majority of the modules, this approach allowed us to simplify the state machines down to three basic

states: an action state, a sleep state, and a checkup state. Each module runs independently. We found this

the fastest path toward a stable and robust system. When modules need to communicate, interaction occurs

through table entries in the back-end database. One module may write information in the database and

another reads/updates/deletes it at a later point in time. All database interactions occur in ACID transactions

(atomic, consistent, isolated, durable) to assure a consistent state, even in the event of a power failure on

the hosting computer. Further, our experience with our first implementation led us to design the

implementation using the crash-only paradigm (Candea and Fox, 2003). During system start up each

 13

module has no assumptions about its state. They all begin in their checkup state to determine if they need to

progress to their action state or their sleep state. Because they are independent, no module makes any

assumptions about the state of other modules. Any module can fail without causing a complete failure of

the middleware as a whole, enabling graceful degradation in the event of failure.

 4.2 Development Environment

 A middleware of this nature is a large undertaking. Utilizing existing libraries helped make the

task marginally less difficult, but care had to be taken to ensure that each library incorporated into the

project was stable and portable. We checked each library for portability, requiring support for FreeBSD,

Macintosh OS X, Microsoft Windows XP, and Linux at the very least. For UNIX platforms, we required the

library to compile cleanly with GCC (GCC, 2007) versions 3.4 and 4.0. On windows, we required native

support for Microsoft Visual C++ (Microsoft, 2007) versions 7.0 (Visual Studio 2003) and 8.0 (Visual

Studio 2005). VC++ 6.0 is not supported because of its lack of support for IPv4/IPv6 agnostic function

calls. We also required libraries to support a variety of processor architectures, including PowerPC, Intel

i386, and AMD64. The library vetting process was informal. This resulted in many delays due to necessary

experimentation and testing of each library. The end gain, however, is a system that compiles and runs on

Microsoft Windows XP and many varieties of UNIX without modification. Further, the system is postured

to be easily, but not trivially, ported to other unsupported platforms.

 We utilized the Boost Library collection (BOOST, 2003) to abstract idiosyncrasies between

incompatible computing models, for example, the POSIX threading model versus Windows threading. In

particular, we used the Boost Filesystem and Thread libraries throughout our middleware. Our middleware

routinely handles file creation, deletion, and I/O. Interacting with files requires system dependent file paths.

The Boost Filesystem library provides a useful file path abstraction which greatly simplified the task of

creating portable filesystem code. Likewise, the Boost Thread library hides the differences in the POSIX

thread model versus the Windows thread model, allowing a single consistent API for thread management,

greatly improving the readability and maintainability of the code base.

 Our middleware has to track a lot of information about tasks. We elected to use a pre-existing data

store rather than develop our own proprietary solution. We initially considered implementing our data store

using BerkeleyDB (Olson, Bostic, and Seltzer, 1999) as it is very portable and widely available. However,

 14

we elected to go with SQLite (SQLite, 2005) instead. SQLite is an embedded SQL database offering good

performance. We chose SQLite for two reasons. First, SQLite has great language support, offering APIs in

several programming and scripting languages, meaning that we could in turn offer our APIs in several

programming and scripting languages. Secondly, we found a very useable and intuitive C++ API for SQLite

called CppSQLite (Groves, 2004), which greatly eased the learning curve needed to use SQLite.

 4.3 System Modules

 The system is composed of seven modules and three support frameworks. The system modules

are: the Upload Manager, the Download Manager, the Multicast Manager, the Client Manager, the Cluster

Browser, the Work Manager, and the Work Processor(s). The support frameworks are: the Task Scheduler,

the File Manager, and the Statistical Engine.

4.3.1 The Work Processor

 Each node may have zero or more work processors. Each work processor is isolated in its own

thread. The default number of work processors is determined by the number of CPUs a system has. System

specific calls are used to determine the number of CPUs present, e.g. sysconf, sysctl, and GetSystemInfo.

The sole purpose of the work processor is to execute tasks. The work processor lifecycle (fig. 4.1) has four

states: INIT, IDLE, CHECK_FOR_WORK, and PROCESS. The work processor starts in the INIT state

where its local variables are initialed and immediately continues on into the CHECK_FOR_WORK state.

IDLE
CHECK_

FOR_WORK
No Work

Client Has

Uncompleted

Work

LOADING_

WORK_UNIT

Execute

SAVING_

RESULTS

Figure 4.1. State Machine Diagram of Work Processor Thread

 15

 In the CHECK_FOR_WORK state, the work processor asks the task scheduler for a single task. If

the task scheduler assigns a task, the work processor continues into the PROCESS state, otherwise it

returns to the IDLE state.

 In the IDLE state, the work processor thread sleeps. This prevents unnecessary use of the CPU

when there are no tasks available for execution. The default sleep time is randomly selected between one

second and two seconds.

 In the PROCESS state, the work processor, sets up and executes assigned tasks. The PROCESS

state is broken into three sub-states representing possible failure points: work unit loading, execution, and

result saving. The temporary work directory is created during the loading phase. The required data files and

executables are unpacked into the working directory. A process is forked and the process priority is changed

to idle - on UNIX systems this is a nice level of 20, on Windows this is the IDLE_PRIORITY_CLASS. If

the process priority cannot be changed to an acceptable level, the task exits with an error, otherwise the task

is executed according to the manifest definition. Any error messages printed to STDERR by the

executables are redirected to a file called ERRORS. Output printed to STDOUT are redirected to a file

called OUTPUT. After the task execution completes, the executables and input data files are deleted and

any remaining files are archived for return to the cluster manager. Finally, the temporary work directory is

deleted from the host system. If any of these sub-states fail, the work processor sets the task status to

TASK_ERROR, otherwise the task status is set to TASK_COMPLETE. The presence of the

TASK_COMPLETE status does not indicate that a task was completed successfully, it merely indicates that

the middleware was able to execute the tasks defined by the task manifest and was able to save the results.

The ERRORS file must be examined to determine if the task generated runtime errors or not.

 There are a couple of known shortcomings with our current implementation of the work processor.

There are no middleware imposed limits on memory utilization, execution time, or CPU utilization of the

task being processed. By CPU utilization we mean the percentage of the CPU being utilized. This is a

metric the SETI@home project has shown to be a concern for volunteers due to temperature and power

consumption issues (SETI, 2005b). Of course, on UNIX systems, our processes would be limited by the

ulimit (IEEE, 2001) settings, but on Windows and some other platforms, we would have the ability to

adversely affect the performance of the host system, e.g. exhausting available physical and virtual memory.

These short comings need to be addressed in future releases.

 16

4.3.2 The Work Manager

 The work manager is the keystone of work flow in the system. It handles communications

associated with task requests and determines the amount of work a node needs. It has four states: INIT,

CHECK_FOR_WORK, REQUEST_WORK, and IDLE (fig. 4.2).

WM_INIT WM_CHECK_FOR_WORK WM_REQUEST_WORK

WM_IDLE

Figure 4.2. Work Manager State Machine Diagram

 In SimpleDS, nodes may request multiple tasks simultaneously and the work manager maintains

the queue of assigned tasks. All tasks and related files are kept on hand until they can be processed locally,

reassigned to other nodes, or the tasks are overdue. The work queue increases the efficiency of the system

by allowing the work processors to execute task after task without delays for network communication. The

goal of the work manager is to maintain enough work on hand to ensure that the work processors are

constantly busy. To this end, the work manager must decide when to make work requests and how much

work to request. This is not an easy task. Having too much work on hand could mean not completing all

tasks in a timely manner, and too little work means cycles wasted idling.

 First, tasks in the system are not assumed to be homogeneous. The same executable with the same

input may have different running times, even on similar hardware, depending on the class of application to

which the task belongs. Further, no assumption can be made about the processing speed of clients.

Benchmarks can estimate a client’s processing speed, but cannot account for variability in the client’s

availability which affects the observed processing speed of the client. Since the system is volunteer based,

each client’s availability is expected to vary in unexpected ways, causing the observed processing speed to

vary unexpectedly. Finally, no assumption is made about the mix of tasks assigned. A node may be assigned

dozens or hundreds of tasks with durations averaging six hours, and then suddenly be assigned tasks with

durations averaging 30 minutes. This makes the problem of determining how much work to keep on hand

 17

very challenging. However, this problem is not unlike problems faced in many engineering disciplines

where a single variable needs to be regulated within a certain constraint while it is continually being

affected by outside forces. One solution to such problems is a controller. A simple example of a controller

is a thermostat which regulates room temperature.

Start

accumulator +=

numCompletedTasks

setPoint = QLen *

taskCompletionRate

error =

setPoint - PV

CHECK_FOR_WORK

error < 0

accumulator -=

floor(accumulator)

REQUEST_WORKIDLE

Assigned

Work ?
Work

Request

idleTime = 60 sec

numTasks =

ceil(accumulator)

Yes

Yes

idleTime *= 2

idleTime +=

lastIdleFor

LAN

Cluster ?

No

Yessleep

(idleTime)

No

accumulator -=

(42 * error) / setPoint
2

No

WorkOnHand

numCompletedTasks

taskCompletionRate

=

(now - last) /

numCompletedTasks

PV =WorkOnHand *

taskCompletionRate WorkOnHand

Figure 4.3. Work Manager Controller Process Diagram

 The work manager utilizes a feedback controller to regulate the task queue size, or work on hand.

Figure 4.3 shows the controller process inlaid in the work manager’s state machine. The controller’s output

variable is the task queue size, this is the variable we wish to affect. This variable is also referred to as the

process variable. The controller’s input variable, or the variable that it can alter to adjust the output, is the

number of tasks to request. By regulating the number of tasks the work manager requests the queue size

can be regulated. The initial queue size is zero, and the initial task completion rate is set to 60 seconds so

that a node’s initial work request is one task. As the processing speed of our node increases, more tasks will

be requested and the queue size will increase. As the processing speed decreases, fewer tasks will be

requested and the queue size will decrease.

 18

 Controllers compare the process variable with a setpoint to determine how to adjust the input

variables. In the thermostat example, the setpoint is the desired room temperature and the process variable

is the current room temperature. Here the setpoint is the desired queue size and the process variable is the

current queue size. The setpoint is somewhat arbitrary in nature. We calculate our setpoint as the desired

queue size, QLen in fig. 4.3, times the task completion rate. The task completion rate is the number of tasks

completed per second, an observable value. Task completion rates less than or equal to zero are reset to the

default value of 60, or 1 task per minute. Our process variable, PV in fig. 4.3, is the amount of work on

hand, or current queue size, scaled in terms of the task completion rate. The upper bound for the process

variable is set to 691200 seconds, or 8 days. Meaning at the current task completion rate, the maximum

queue size will facilitate 8 days worth of work. The error term for the controller is the setpoint minus the

process variable. The sign of error term is evaluated. A zero error term indicates the queue size is about

right, and a negative value indicates the queue size is too large. In either case, a derivative term is applied

to the accumulator and we proceed to the IDLE state. If the error term is positive, we have less than the

desired amount of work on hand so we proceed to the REQUEST_WORK state. The accumulator indicates

the amount of work that should be requested, after saving this value for use in the REQUEST_WORK

state, the accumulator is reset.

 In the REQUEST_WORK state, the work manager iterates through a list of available cluster

managers making task requests over the network. It will continue iterating through the cluster manager list

until it has reached the end of the list or until it has been assigned enough work to meet the expected

demand as calculated in the CHECK_FOR_WORK state. The cluster manager list is a shared data object

and is constructed by the cluster browser subsystem. If the end of the list is reached, a flag is set indicating

that the cluster browser should begin browsing for clusters again. As tasks are assigned, entries are made

in the datastore’s Task table. Entries include information indicating the associated project, the assignment

time, the due-time, the assigning cluster manager, and the task manifest. Each task’s state is set to

TASK_NEW. This prevents the task from being assigned until the required files are downloaded by the

download manager.

 In the IDLE state, the work manager sleeps for a variable period of time. If the work manager is

entering the IDLE state from the CHECK_FOR_WORK state, the sleep duration is a constant 60 seconds.

If the work manager is entering the IDLE state from the REQUEST_WORK state and work was assigned,

 19

the sleep duration is a constant 60 seconds. If the work manager is entering the IDLE state from the

REQUEST_WORK state and work was not assigned, then the sleep duration is set according to a back-off

algorithm. The back-off algorithm is used to give the cluster manager a chance to gather work before

requesting work again. If the cluster manager resides on the same local area network as the client, as

determined by its IP address, then a Fibonacci back-off is used. Otherwise, exponential back-off is used.

4.3.3 The Download Manager

 The Download Manager is responsible for communicating with potential cluster managers and

handling all file downloads. The download manager runs in its own thread. There are four states in the

download manager’s lifecycle (fig. 4.4): INIT, NEEDED_FILES, REQUEST_FILES, and IDLE.

DM_INIT DM_NEEDED_FILES DM_REQUEST_FILES

DM_IDLE

Figure 4.4. Download Manager State Machine Diagram

 In the INIT state, the download manager’s local variables are initialized, the download manager

then enters the NEEDED_FILES state.

 In the NEEDED_FILES state, the download manager queries the Task table for tasks in the

TASK_NEW state. For each task in the TASK_NEW state, the task’s manifest is parsed to determine the

data files and executables needed by the task. For each required file, the download manager polls the File

Manager framework to determine if the files have been registered. A registered file is a file that has been

downloaded and associated with its project with an entry in either the Executables table or the DataFiles

table. A list of files that are not registered is constructed and passed into the REQUEST_FILES state. If list

is empty, then no files are needed and the download manager proceeds into the IDLE state instead.

 In the REQUEST_FILES state, the download manager contacts the cluster manager which

assigned the task and requests all files present in the file request list. Note that the request is not made from

 20

the cluster manager where the project originates. Data file requests are straight forward, but executables

require extra effort. The download manager must request executables for all operating system and

architecture platforms it wishes to complete the tasks on. For nodes acting as clients only, this is simply its

own operating system and architecture platform. However, if this node is also acting as a cluster manager, it

may need to request executables for its clients’ platforms as well. Currently, the middleware takes the naive

approach and requests all available versions of the executable for which it has at least one active client. For

example, a Windows XP machine running on an x86 processor who has a single PowerPC Macintosh client

and twelve XP clients would need to download two executables for each project’s tasks: one executable for

the x86/XP platform and one for the PowerPC/Macintosh platform. This would allow each task to be

assigned to any of its associated clients, but given the ratio of platforms in this case, our approach could

prove wasteful - depending on the performance of the single Macintosh client and the download or rotate

frequency of the executables involved. The download manager could possibly benefit here by predicting

which platforms it should request rather than requesting the executable for all client platforms. Further

research will be needed in this area. The REQUEST_FILES state handles the file transfer using the same

TCP connection as the file request. After each file has been downloaded, its MD5 checksum is calculated, if

the transfer was successful the file is registered, otherwise the file is requested again at a latter point in

time. After every needed file is downloaded for a task, the task’s state is updated to TASK_READY which

indicates that it is ready to be processed by a Work Processing thread or by a client node.

 In the IDLE state, the download manager sleeps for one second and then re-enters the

NEEDED_FILES state.

4.3.4 The Upload Manager

 The upload manager is the module responsible for returning completed tasks and error messages

to the cluster manager that assigned the work. The upload manager has four states (fig. 4.5): INIT,

CHECK_RESULTS, RETURN_WORK, and IDLE.

 In the INIT state, the upload manager initializes its local variables and then moves into the

CHECK_RESULTS state.

 In the CHECK_RESULTS state, the upload manager queries the datastore for tasks with the

TASK_COMPLETED task state assigned. These are tasks that have been processed by the work processing

 21

threads and are packaged for return to the cluster manager which assigned them. A list of completed tasks

and their result files is built from the query. This list is passed into the RETURN_WORK state.

 In the RETURN_WORK state, the upload manager contacts each cluster manager in the list and

returns all the result files, or error messages, for tasks assigned by that cluster manager. If a cluster manager

is unavailable the results are stored for a future attempt. If a node is not able to return completed results

within a week of their project designated due time, the results are discarded and no further attempt is made

to return them. Likewise, the assigning cluster manager would reset the status of an unreturned result and

reassign it. After all possible tasks or error messages are returned, the upload manager progresses into the

IDLE state.

 In the IDLE state the upload manager pauses for five minutes, then continues back into the

CHECK_RESULTS state to check for more completed work.

UM_INIT UM_CHECK_RESULTS UM_RETURN_WORK

UM_IDLE

Figure 4.5. Upload Manager State Machine Diagram

4.3.5 The Multicast Manager

 The multicast manager is a thread that listens for special multicast discovery messages. The

packets contain a short DISCOVERY message and are sent out by nodes on a LAN to discover local cluster

managers. When the multicast manager receives a DISCOVERY message, it responds with the amount of

local and foreign work it has available to assign, the node’s cluster manager port, a TCP port, and its IP

address. Local work is work the machine is hosting, i.e. projects and tasks are created on that machine not

another. Foreign work is work from any other machine, whether the cluster manager is located on the LAN

or on the Internet.

 22

4.3.6 The Cluster Browser

 The cluster browser is responsible for locating and tracking available cluster managers. It ranks

discovered cluster managers according to round-trip-time (RTT) heuristics. Local cluster managers, or

cluster managers residing on the same network as the node, are preferred, followed by wide-area network

cluster managers, or cluster managers hosted behind the same Internet router, and finally cluster managers

from the Internet at large. The cluster browser has four states: INIT, LAN_BROWSE,

INTERNET_BROWSE, and IDLE. Figure 4.6 shows the state machine diagram for the cluster browser.

 In the INIT state, the cluster browser initializes its local variables before moving into the

LAN_BROWSE state.

CB_INIT CB_LAN_BROWSE CB_INTERNET_BROWSE

CB_IDLE

Figure 4.6. Cluster Browser State Machine Diagram

 In the LAN_BROWSE state, the cluster browser searches the local area network (LAN) and the

wide area network (WAN) for cluster managers with work. A simple multicast based discovery protocol is

used during the LAN browsing phase. Discovery messages are broadcast on UDP port 52378 by default,

though the port is configurable. The cluster browser sends out three DISCOVERY messages during LAN

browsing, then waits for and logs responses.

 The first discovery message is limited in scope to other devices on the same network hub or

switch. This is indicated by setting the multicast scope to link-local. These machines represent the nearest

possible neighbors on the physical network topology and typically have the lowest latency connections

available on the local area network. The multicast scope of the second discovery message is set to site-

local. Site-local multicast traffic can be forwarded to other network hubs and switches interconnected

through local routers. Site-local messages likely reach all nodes residing on the same physical campus,

because these nodes likely share a common router. These connections are low latency connections, though

typically slower than link-local connections. Note, not all routers are configured to forward multicast

 23

traffic, and the extent to which they do varies widely from network to network. The multicast scope of the

third discovery message is set to organization-local. These messages would potentially be forwarded across

wide area network connections via WAN routers. These message can potentially traverse the breadth of the

organization’s network, but not beyond to the Internet. After sending the three discovery messages one

second apart, the cluster browser waits for responses.

 The DISCOVERY response messages contain several pieces of information, including: the cluster

manager’s IP address, the amount of locally hosted work available, the priorities of locally hosted work,

and the amount of work originating elsewhere. This information is feed into a stochastic algorithm, which

assigns a rank to each of the responding cluster managers. Cluster managers with locally hosted work are

favored over those with work originating elsewhere. Likewise, cluster managers with more higher priority

tasks are favored over those with lower priority tasks. The algorithm uses lottery scheduling to rank the

cluster managers, appending them to the cluster manager list from lowest to highest ranking. This cluster

manager list is shared with the work manager, which asks for tasks from cluster managers in order. When

the work manager has exhausted the list of local cluster managers, it sets a flag to indicate an Internet

browse is necessary. If the Internet browse flag is set, the cluster browser proceeds to the

INTERNET_BROWSE state, otherwise it enters the IDLE state.

 In the Internet browse state, the cluster browser searches for cluster managers on the Internet. The

cluster browser may enter this state when there are either no local cluster managers available, or the local

cluster managers have not provided work for the past hour. This last heuristic is used to prevent nodes from

contacting Internet cluster managers when there are temporary work shortages among local cluster

managers.

 Multicast browsing would be the ideal algorithm for finding the nearest Internet cluster manager,

because it would ensure the neighbor with fewest hops was discovered first. While protocols exist for

forwarding multicast traffic over the Internet, they are frequently not supported by legacy Internet routers

or not implemented by Internet Service Providers limiting their current usefulness. Various techniques for

constructing Internet-scale one-to-many communication channels have developed to work around the

current limitations. Discussion of these methods is considered beyond the scope of this work.

 Our Internet clustering implementation will utilize the Internet Relay Chat protocol (IRC). IRC is

readily available and facilitates a channel for one-to-many communication across the Internet. Essentially,

 24

the cluster browser will connect to an IRC channel, like #simpleds, where cluster managers with work to

distribute will make advertisements. When the cluster browser connects to the channel, cluster managers

seeking workers will write a message to the channel describing their IP address and the amount of work

they have available. The contents of these advertisements will be nearly identical with their multicast

counter parts. The cluster browser will parse the advertisements, and begin ranking the candidates

according to their round-trip-times. The best candidates will be appended to the cluster managers list below

the local cluster managers. When needed, the work manager will attempt to contact these cluster managers

in the order they are ranked.

 Once the Internet browsing algorithm has completed, the cluster browser toggles the both the

LAN and Internet browsing flags off and proceeds to the IDLE state. Once in the IDLE state, the cluster

browser remains idle until the LAN browse flag is again marked by the work manager. The flag is checked

every ten seconds. Once the flag is marked, the cluster browser proceeds to the LAN_BROWSE state and

the cycle continues.

4.3.7 The Client Manager

 The client manager is the thread that listens for and responds to client requests. To function as a

cluster manager in the SimpleDS architecture, the client manager thread must be running. The client

manager listens on TCP port 52377 by default, but is configurable to any valid TCP port.

 For stability purposes a message passing protocol was chosen for communication. All

communication uses the same basic XML structure. The contents of messages are contained between

<message> tags. Our convention is to use lowercase for all tag labels. The contents of each message is

signed by the sending parties private key for the purposes of non-repudiation. The base-64 encoded

signature is contained in a <sig> tag following the message. The entire message content is used to generate

the signature, including the <message> tags. The current implementation, however, does not currently

validate these signatures. In the future, a key-exchange protocol and signature validation should be

implemented, to ensure the validity of executables being transfered.

 Valid client requests include: MEMBERSHIP_REQUEST, WORK_REQUEST,

RESULT_RETURN, and FILE_REQUEST. Valid response messages include: OK, DONE, FILE, EXEC,

WORK, NO_WORK.

 25

 The MEMBERSHIP_REQUEST is the first contact between a cluster manager and a client node.

In the current implementation, this message notifies the cluster manager that this client has associated with

it. The only valid response is an OK message from the server. The design of this message leaves room for

the cluster manager to deny permission to join the cluster. Figure 4.7 displays the format of a

MEMBERSHIP_REQUEST message.

<message>
 <type>MEMBERSHIP_REQUEST</type>
 <from>username@org::fingerprint</from>
 <os>OS-VER-ARCH</os>
 <reputation> Values </reputation>
 <reputationSig> Sig </reputationSig>
</message>
<sig> MESSAGE SIGNATURE </sig>

Figure 4.7. Membership Request Message Format

 The <type> tag indicates the message type. The <from> tag contains the node’s identity string.

The identity string is composed of three parts: the owner’s chosen username, organization, and the node’s

key’s hexadecimal fingerprint. The username and organization default to anonymous and unknown

respectively, users are not required to change these. Each node generates a private and public key pair when

it is installed, its public key fingerprint is used to identify the node. The <os> tag contains the node’s

operating system, operating system version, and CPU architecture. The <reputation> tag is a placeholder

for the future implementation of a reputation system, described in (Gilbert, Abraham, Paprzycki, 2004).

 In a WORK_REQUEST message, the client tells the cluster manager that it would like to be

assigned work. The cluster manager may respond with either a list of assigned tasks or a NO_WORK

message. If work is assigned, each assigned task is sent in an individual WORK message, to which the

client may accept the assigned task or report an error using an OK message or an ERROR message. After

the last task is transmitted, the server sends a DONE message to indicate the end of the list. The

WORK_REQUEST format is shown in figure 4.8.

 26

<message>
 <type>WORK_REQUEST</type>
 <from>anonymous@unknown:fingerprint</from>
 <os>OS-VER-ARCH</os>
 <reputation>REP</reputation>
 <reputationSig>REP_SIP</reputationSig>
 <numWorkUnits> number </numWorkUnits>
</message>
<sig> MESSAGE SIGNATURE </sig>

Figure 4.8. Work Request Message Format

The <numWorkUnits> tag contains an integer value, which is the number of tasks that the client would like

to be assigned.

 The RESULT_RETURN message indicates that a client wants to return a completed task, or a task

that has erred out. The cluster manager may respond with either an OK message, in which case the client

begins uploading the result file, or a LATER message containing a future window when the client should

attempt to return results. The LATER message is not currently implemented, but it remains as a place-

holder for result return scheduling.

 The FILE_REQUEST message type indicates that a client needs a file from the cluster manager.

The same message is used to request data files and executables. The <os> tag is used to indicate the

executable platform the file is needed for executable files. If the client needs executables for multiple

platforms, they must send an individual request for each desired platform. The cluster manager may

respond to a FILE_REQUEST with a FILE, EXEC, or NO_SUPPORT response. The FILE response

message indicates the cluster manager is returning a data file. The binary contents of the data file follow

after the closing tag of the message signature, see figure 4.9.

<message>
 <type>FILE</type>
 <from> nodeid </from>
 <os> OS VERS </os>
 <project> project </project>
 <file> file name </file>
 <fileSize> size </fileSize>
 <fileSig>
 File Signature
 </fileSig>
</message>
<sig> MESSAGE SIGNATURE </sig>
BINARY FILE DATA ...

Figure 4.9. File Response Message Format

 27

The EXEC response has the same form as the FILE message, but indicates that the server is returning an

executable for the desired computing platform. The binary contents of the file follow the closing tag of the

message signature. The NO_SUPPORT message indicates that the cluster manager does not have the

requested file. If the requested file is required to complete an assigned task, the task will be erred out by the

client node. The FILE and EXEC messages contain two notable features: the <fileSize> tag and the

<fileSig> tag. The file size is the file size in octets and the file signature contains the MD5 hash of the file.

For security reasons, this MD5 hash should be signed by the originating project’s private key to ensure that

the executable has not been tampered with, however, in the current implementation the signature is simply

the MD5 sum of the file.

 The OK message is an affirmative response to the immediately proceeding message. ERROR

messages are negative responses to the immediately proceeding message. The TCP connection is closed

immediately following an ERROR message.

 The DONE massage is an informative message used to indicate the end of a list. Each list element

are communicated individually, with the DONE message used to indicate the end of the list.

4.3.8 Support Frameworks

 There are three supporting frameworks used by SimpleDS: the task scheduler, the file manager,

and the statistical engine. Support frameworks do not have their own threads or lifecycles. Rather, they are

objects abstracting interaction with particular database tables or wrapping complex tasks into simpler more

manageable ones.

 The statistical engine is used to track events of interest in the system. The only statistic of interest

in the current implementation is the task completion rate. Every time a client returns a completed task, or a

work processor thread completes a task, the function informTaskCompletedOK() gets called. The function

makes note of the current time in seconds and makes an entry of this time into the statistics database. These

time ticks are then used to determine the task completion rate, or the number of tasks completed per

second, which is used by the work manager to determine whether or not to make a work request.

 The file manager handles all files for a project. It tracks whether or not a given data file or

executable is on-hand or needs to be downloaded by the download manager. Once a data file or executable

is no longer needed, the file manager takes care of deleting the file and all file references. The file manager

sets up and tears down the temporary work directories used by work processors to execute tasks. The work

 28

processor threads make calls to the file manager to setup temporary directories. The file manager makes

sure that the work directories contain all the required files and returns the path to the work processor. Once

the task has been executed, the work processor calls the file manager again to clean up the directory. All

data input files and executables are deleted from the directory, the files left in the directory are then

archived as a result, and a reference to the archived result file is saved for the upload manager. Basically,

all filesystem calls are wrapped by the file manager. The file manager uses the Boost Filesystem library

(BOOST, 2003) for all filesystem related system calls to ensure good portability between platforms.

 The main purpose of the task scheduler is to assign tasks. It provides the function getTasks() to

accomplish this goal. The client manager makes the request on behalf of clients sending WORK request

messages, and the work processors call the function for themselves when they need another task to work

on. The getTasks() function takes three arguments: a list of acceptable operating system platforms, the

number of desired tasks, and the ID string of the requesting node. The task scheduler takes the operating

system list and constructs a list of projects supporting those platforms. Work is assigned from this list of

projects. If the available projects do not support any operating system on the input list, no work is returned.

If the projects in the constructed list have differing project priorities, lottery scheduling is used to determine

the priority level to assign from first. The probabilities .75, .18, .05, .01, and .01 are assigned to the priority

levels 0, 1, 2 , 3, and 4 respectively. If there are not enough available tasks at the chosen priority level, the

next level down is iteratively chosen until either enough work has been assigned or all priority levels have

been visited. The task scheduler then returns a list of the assigned work. The status of each assigned task is

changed from TASK_READY, to TASK_ASSIGNED to prevent the task from being assigned multiple

times, though we plan on supporting task redundancy in the future, it is not currently implemented.

 29

 CHAPTER 5

 EMPIRICAL EVALUATION

 This chapter outlines our planned empirical evaluations. Each evaluation is presented in a single

subsection. Each subsection will briefly describe the goal for the evaluation, provide a setup (where

appropriate), a list of constants, a list of variables, a list of measurements, and a short procedural (where

appropriate).

 5.1 Lottery Scheduling Simulation for Task Assignment by Cluster Managers

 Each cluster manager may host multiple projects with varying priorities. We will evaluate a

stochastic lottery scheduling algorithm for priority scheduling at the cluster manager level. The goal of this

simulation is to tune the parameters of our lottery scheduling algorithm for task assignment to find a

balance between fairness and prioritization under ideal circumstances.

 Constants. The simulation will have one cluster manager and 100 clients. Each client will have

100% availability. For simplicity, all clients will be assumed to have the same CPU rating. All tasks are

created at time 0 and have the same duration - one simulated hour. There are three projects for each priority

level. There are five priority levels, level one being the highest priority and five being the lowest. Each

project has 1,000 tasks to complete, 15,000 tasks total.

 Variables. The first variable is the ratio of lottery tickets from each priority level to the next. We

will begin our investigation using the following three ratios: 2:1, 4:1, and n:(n-1). The ratio 2:1 is the ratio

suggested by Waldspurger and Weihl. (2004). We choose one steeper ratio and one flatter ratio to begin our

investigation. With the ratio 2:1 priority level 1 will be given 16 lottery tickets. Each subsequent priority

level will be given half as many, level five having only one ticket. With the 4:1 scheme, priority level one

will be given 256 tickets. Each subsequent level will be given 1/4 this number with priority level five

having one ticket. With the n:(n-1) scheme, priority level 1 will have 5 tickets, level 2 will have 4 tickets,

etc. Level 5 will be given 1 ticket.

 30

 The second variable is the selection algorithm for projects (tasks) with the same priority level. The

simulation will cover first-come-first-serve, round-robin, and random selection. Random selection will

simply choose one of the three projects with equal probability.

 The third variable is the decision made in the event a given priority level has no tasks. There are

two reasonable choices: choosing the next priority level up or choosing the next priority level down.

 Measurements. The average turnaround time for tasks at each priority level will be calculated.

 Procedure. Time begins at zero and increments linearly at one minute intervals. All clients arrive at

time zero for task assignment. Each client is assigned one task at a time, returning for another task once the

duration for the previous task is fulfilled. A random number is then generated (the lottery ticket). The range

of the number is based on the ticketing scheme, the 2:1 scheme ranges between 0 and 30, the 4:1 scheme

ranges between 0 and 339, and so on. The winner is chosen by the range of the value chosen. The

simulation ends when all tasks are completed. A simulation run is performed for each combination of the

three defined variables.

 When all the tasks are the same duration and each priority level has the same number of tasks, all

priority one tasks should finish before lower priority tasks. However, lower priority tasks should be given

the opportunity to make progress. We will select the ratio scheme which best meets this constraint and

implement this scheme into the middleware.

 Results. There was no difference in performance associated with the out-of-task resolution

algorithms in terms of average turnaround time per priority level. Therefore, for the discussion regarding

average turnaround times, we will plot only the results for the scheduling scheme using the round-robin

out-of-task resolution algorithm.

 The scheduling schemes utilizing ratios 2:1 and 4:1 with upward out-of-task resolution exhibit

priority inversions when the highest priority level has no tasks left to distribute (fig. 5.1). When the highest

priority levels are out of work, the upward out-of-task resolution function looks for tasks on the lowest

priority level. This behavior causes the lowest level priority projects to complete before some higher level

priority projects. This is not the desired behavior when the task duration is constant and equal. We can rule

out the use of these scheduling schemes.

 31

Figure 5.1. Average Turnaround Time Per Priority Level

 All of the scheduling schemes using the ratio N:(N-1) lack sufficient distinction between priority

levels. We would prefer a more significant distinction between priority levels than this scheme can provide,

hence we will avoid using these schemes. We continue by examining the behavior of the remaining

scheduling schemes against a first-in-first-out (FIFO) scheduling policy (Figure 5.2).

Figure 5.2. Comparing Lottery Scheduling Against FIFO Scheduling

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

0 Min

850 Min

1,700 Min

2,550 Min

3,400 Min

4,250 Min

5,100 Min

5,950 Min

6,800 Min

7,650 Min

8,500 Min

N:(N-1),D 2:1,D 4:1,D N:(N-1),U 2:1,U 4:1,U N:(N-1),N 2:1,N 4:1,N

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

0 Min

850 Min

1,700 Min

2,550 Min

3,400 Min

4,250 Min

5,100 Min

5,950 Min

6,800 Min

7,650 Min

8,500 Min

2:1,D 2:1,N 4:1,D 4:1,N FIFO

 32

 The lottery scheduling scheme using a 4:1 ratio with either nearest or downward out-of-task-

resolution is comparable to FIFO when all of the task durations are equivalent. The advantage to using a

stochastic scheduling is apparent when the lower priority tasks have shorter durations. Because lottery

scheduling gets these tasks assigned sooner, much like a shortest-job-first scheduler would do, projects with

short tasks don’t have to wait as long before completing. To demonstrate this, we will change the run time

of all tasks from 60 minutes to 1 minute, except priority level 1 tasks, which will retain their 60 minute

duration. Figure 5.3 shows the results for this scenario. We observe the lottery scheduling schemes as

having a slight edge over FIFO in this case.

Figure 5.3. Comparing Lottery Scheduling Against FIFO With Shorter
Task Times In Lower Priority Levels

 Now we will discuss the affect the secondary scheduling algorithms have on the average TAT of

tasks on the same priority level. The secondary scheduling algorithm is used to choose between multiple

projects existing on the same priority level. Ideally, we would like projects on the same priority level to

have equivalent average turnaround times. Figure 5.4 shows the average TAT of projects on priority level 1

for the primary lottery scheduling scheme using a 4:1 ratio, with downward out-of-task resolution.

Priority 1 Priority 2 Priority 3 Priority 4 Priority 5

500 Min

650 Min

800 Min

950 Min

1,100 Min

1,250 Min

1,400 Min

1,550 Min

1,700 Min

1,850 Min

2,000 Min

2:1,D 4:1,D FIFO

 33

Figure 5.4. Performance of Secondary Scheduling Algorithms

 We can see that choosing the In Order or FIFO scheduling algorithm for selecting a project among

projects on the same priority level leads to undesirable behavior. Both the Round Robin and Random

Selection algorithms display the desired behavior. Random selection has the advantage of not needing to

reference the previously selected project in order to make the scheduling decision. We see this as an

advantage in a highly concurrent scenario.

Project 1 Project 2 Project 3

0 Min
250 Min
500 Min
750 Min

1,000 Min
1,250 Min
1,500 Min
1,750 Min
2,000 Min
2,250 Min
2,500 Min

In Order (FIFO) Round Robin Random Selection

 34

 CHAPTER 6

 CONCLUSIONS

 We had high expectations at the onset of this project. As the project progressed and the number of

bugs encountered became overwhelming, one thing became painfully clear: debugging multiprogrammed

network applications is hard. These applications exhibit nondeterministic behavior. Some faults are simply

not consistently reproducible, even in controlled environments. Further, any change to any aspect of the

middleware required the system be fully retested to ensure correctness, making the debugging process even

more intractable. Modularizing the system helped, but wasn’t a panacea. Given the size of the project, we

conclude that we grossly underestimated the amount of time needed to implement, test, and debug our

middleware. Having said that, we still feel the work is an incremental step forward and was worth

undertaking. Many valuable lessons were learned and will not be soon forgotten.

 One valuable conclusion that we draw from this project is this: as hard as multiprogramming is, it

can be leveraged to simplify a program’s architecture. When used with appropriately modularized

components, a multi-threaded application can actually be easier to implement and debug than its single

threaded counter part, because it offers a vehicle for simplifying a system’s state machines.

6.1 Future Work

 There are many areas where this project can be improved upon. Our approach to nearly every

system module provides opportunity for improvements and future work in many areas, including: file

caching, data compression, and task scheduling. Here we outline some of what we feel could be the most

interesting future work.

 One of the larger problems with public-resource computing systems is ensuring the reliability of

the results. The system must prevent inaccuracies introduced by calculation errors (e.g. from over-clocked

CPUs) or cheaters. The current approach to ensuring accurate results is to have each task computed by three

to five nodes and compare the results. Germain (2003) suggests that equivalent confidence levels can be

achieved through statistical sampling of tasks, whereby a smaller portion of tasks would be rechecked by

 35

trusted sources and untrusted sources would have their work double-checked more frequently. This

approach would tie in nicely to a reputation system or a blacklist solution. ZetaGrid uses some trust metrics

to this end, but their exact algorithms are not available in the literature at this time. This is certainly an area

worth further investigation.

 In a hierarchical clustering approach to public-resource computing, as well as peer-to-peer

approaches, each intermediate server has to anticipate future work-demand and attempt to have the work on

hand to fill it. This is a deep and interesting produce-consumers problem providing ample opportunity for

future work relating to the work manager’s task scheduling.

 Finally, our project’s task scheduler is an area for further work. The current implementation is

believed to be reasonable through comparison with a FIFO scheduler, however better approaches may exist

and further work is suggested to this end. We feel the application of machine learning and other artificial

intelligence approaches may be of particular interest here, since there is a good deal of inference taking

place. Essentially, the job of deciding which tasks should be assigned to a particular client can be viewed as

a classification problem. Likewise, comparing the speed or reliability of a node relative to the other

participants is a classification problem. Our initial instinct here was to investigate the use of a distributed

reputation system as an input to artificial intelligence approaches, our thoughts are outlined to some extent

in (Gilbert, Abraham, Paprzycki, 2004).

 36

REFERENCES

D. Abramson, R. Sosic, J. Giddy and B. Hall, "Nimrod: A Tool for Performing Parametised Simulations
using Distributed Workstations", The 4th IEEE Symposium on High Performance Distributed Computing,
Virginia, August 1995.

“Aglets,” IBM Corp., Internet: http://www.trl.ibm.com/aglets/. 2002.

ALICE: A Large Ion Collider Experiment at CERN LHC, Internet: http://aliceinfo.cern.ch. 2007.

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, "Characterizing Reference Locality in the
WWW," Proceedings of 1996 International Conference on Parallel and Distributed Information Systems
(PDIS '96), pp. 92-103.

L. Amini and H. Schulzrinne, "Client Clustering for Traffic and Location Estimation," Proceedings of IEEE
International Conference on Distributed Computing Systems (ICDCS’04), 730-737. March 2004.

D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer, “SETI@home: An experiment in
public-resource computing,” Communications of the ACM, Vol. 45, no. 11, 56-61, November 2002.

D. P. Anderson, "Public Computing: Reconnecting People to Science," Proceedings of the Conference on
Shared Knowledge and the Web, Residencia de Estudiantes, Madrid, Spain, November 2003.

D. P. Anderson, "BOINC: A System for Public-Resource Computing and Storage," Proceedings of 5th
IEEE/ACM International Workshop on Grid Computing, Pittsburgh, November 2004.

N. Andrade, W. Cirna, F. Brasileiro, P. Roisenberg, “OurGrid: An Approach to Easily Assemble Grids with
Equitable Resource Sharing,” Proceedings of the Ninth Workshop on Job Scheduling Strategies for Parallel
Processing, 2003.

The Anthrax Project, Internet: http://www.grid.org/projects/anthrax/. 2005.

The Apache HTTP Server Project, Internet: http://httpd.apache.org/. 2005.

Y. Aridor and D. B. Lange, “Agent Design Patterns: Elements of Agent Applications Design,” Proceeding
of the Second International Conference on Autonomous Agents (Agents '98), May 1998.

M. Arlitt, D. Krishnamurthy, J. Rolia, “Characterizing the Scalability of a Large Web-Based Shopping
System,” ACM Transactions on Internet Techonolgy, Vol. 1, No. 1, Aug. 2001, pp. 44-69.

J. E. Baldeschwieler, R. D. Blumofe and E. A. Brewer. “ATLAS: An Infrastructure for Global Computing,”
Proceedings of the 7th IEEE Workshop on Future Trends of Distributed Computing Systems, Cape Town,
South Africa, Dec. 1999.

C. Baumer, M. Breugst, S. Choy, and T. Magedanz. “Grasshopper: a universal agent platform based on
OMG MASIF and FIPA standards,” Technical report, IKV++ GmbH, 2000.

M. Beck, J.J. Dongarra, G.E. Fagg, G. Al Geist, P. Gray, J. Kohl, M. Migliardi, K. Moore, T. Moore, P.
Papadopoulous, S.L. Scott, and V. Sunderam, "HARNESS: A Next Generation Distributed Virtual
Machine," International Journal on Future Generation Computer Systems, Elsevier Publ., Vol. 15, No. 5/6,
1999.

 37

C.G. Bell, “Toward a history of (personal) workstations,” Proceedings of the ACM Conference on the
History of Personal Workstations, January 1986.

Berkeley Open Infrastructure for Network Computing (BOINC), Internet: http://boinc.berkeley.edu/. 2005.

T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI): General Syntax”, IEEE
Network Working Group, RFC 2396, August 1998.

J. Best, W. Chamberlain, S. Maene, “Astrophysical Computational Research in a Small College Setting,”
Journal of Comptuing Sciences in Colleges, Vol. 17, No. 3, Feb 2002, pp. 194-202.

S.N. Bhatt, F.R.K. Chung, F.T. Leighton, and A.L. Rosenberg, “On Optimal Strategies for Cycle-Stealing in
Networks of Workstations,” IEEE Transactions Comp., Vol. 46, No. 5, May 1997, pp. 545-557.

Boost C++ Libraries, Internet: http://www.boost.org/. 2003.

D.A. Butterfield and G.J. Popek, "Network tasking in the Locus distributed UNIX system," Proceedings of
the Summer USENIX Conference, June, 1984, pp. 62-71.

W. Bux. “Local-area subnetworks: A performance comparison,” IEEE Transactions. Communications
COM. Vol. 29, No. 10 (Oct.), 1981.

R. Buyya, D. Abramson, and J. Giddy, "A Case for Economy Grid Architecture for Service Oriented Grid
Computing", 10th IEEE International Heterogeneous Computing Workshop (HCW 2001), In conjunction
with IPDPS 2001, San Francisco, California, U.S.A, April 2001.

R. Buyya, D. Abramson, and J. Giddy, “Nimrod-G Resource Broker for Service-Oriented Grid
Computing”, IEEE Distributed Systems Online, in Volume 2 Number 7, November 2001.

R. Buyya, S. Vazhkudal, “Compute Power Market: Towards a Market-Oriented Grid," Proceedings of the
First IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGrid '01), May, 2001.

The Cancer Research Project, Internet: http://www.grid.org/projects/cancer/. 2005.

G. Candea and A. Fox, “Crash-Only Software,” Proceedings of the 9th Workshop on Hot Topics in
Operating Systems (HotOS IX), 2003.

M. Castro, P. Druschel, Y.C. Hu, A. Rowstron, "Exploiting network proximity in peer-to-peer overlay
networks," Proceedings of the International Workshop on Future Directions in Distributed Computing
(FuDiCo 2002), 2002.

M. Castro, P. Druschel, Y.C. Hu, and A. Rowstron, "Topology-aware routing in Structured peer-to-peer
overlay networks," Proceedings of the International Workshop on Future Directions in Distributed
Computing (FuDiCo 2003), 2003.

J.A. Chambers, R.V. Poore, “Comuter Networks in Higher Education: Socio-economic-political Factors,”
Communications of the ACM. Vol. 18, No. 4, April 1975, pp. 193-199.

S. Chapin, J. Karpovich, A. Grimshaw, “The Legion Resource Management System”, Proceedings of the
5th Workshop on Job Scheduling Strategies for Parallel Processing, April 1999.

D. Chavey, “A Multi-purpose Computer Lab for a Small College,” Proceedings of the Twenty-third Annual
ACM Conference on User Services: Winning the Networking Game, St. Louis, Missouri, USA, 1995, pp.
67-72.

S. Cheshire, “Multicast DNS,” Draft RFC, June, 2005.

 38

B.O. Christiansen, P. Cappello, M.F. Ionescu, M.O.Neary, K.E. Schauser, and D. Wu, "Javelin: Internet-
based parallel computing using java," ACM 1997 PPoPP Workshop on Java for Science and Engineering
Computation, June 1997.

W. Cirne, and K. Marzullo, “Open Grid: A user-centric approach for grid computing,” Proceedings of the
13th Symposium on Computer Architecture and High Performance Computing, 2001.

ClimatePrediction.net, Internet: http://climateprediction.net/. 2005.

B. Cohen, “Incentives Build Robustness in BitTorrent,” Workshop on Economics of P2P Systems. June
2003.

“Common Vulnerabilities and Exposures: the Standard for Information Security Vulnerability Names,”
Internet: http://www.cve.mitre.org/. 2005.

M. Costa, M. Castro, A. Rowstron, P. Key, "PIC: Practical Internet coordinates for distance estimation",
Proceedings for the Twenty-fourth International Conference on Distributed Systems. Tokyo, Japan, March,
2004.

D. Côté, "Simple: XGrid agent for UNIX architectures," Internet: http://www.novajo.ca/simple/archives/
000026.html. June, 2004.

R. Cox, F. Dabek, F. Kaashoek, J. Li, and R. Morris, "Practical, Distributed Network Coordinates," ACM
SIGCOMM Computer Communication Review, Vol. 34, No. 1, January, 2004, pp113-118.

S. Deering, “Host Extensions for IP Multicasting,” RFC 1112, Aug. 1989.

Distributed.net, Internet: http://www.distributed.net/. 2005.

Earth Simulator Group, Internet: http://www.es.jamstec.go.jp. 2005.

K. Egevang, and P. Francis, “The IP Network Address Translator (NAT),” RFC 1631, May 1994.

Einstein@home, Internet: http://www.physics2005.org/events/einsteinathome/index.html. 2005.

The Ethernet: A Local Area Network Data Link Layer and Physical Layer Specifications, Sept. 30. 1980.
DEC, Intil Corp. Xerox Corp. Maynard, Mass.

G. Fagg, A. Bukovsky, J. Dongarra, "HARNESS and Fault Tolerant MPI," Parallel Computing, Vol. 27, No.
11, October 2001, pp. 1479-1496.

FightAids@home, Internet: http://fightaidsathome.scripps.edu/. 2005.

Find-a-Drug, Internet: http://www.find-a-drug.org.uk. 2005.

Folding@home, Internet: http://folding.stanford.edu. 2005.

M. Forum, "MPI: A Message-Passing Interface Standard," Technical report, University of Tennessee, June
1995.

I. Foster and C. Kesselman, “Globus: A metacomputing infrastructure toolkit,” The International Journal of
Supercomputer Applications and High Performance Computing, vol. 11, no. 2, 115-128, 1997.

I. Foster and C. Kesselman, Eds., The Grid: Blueprint for a Future Computing Infrastructure. Morgan
Kaufmann Publishers, 1999.

 39

A. Fox, S.D. Gribble, Y. Chawatha, E.A. Brewer, P. Gauthier, “Cluster-based Scalable Network Services,”
Proceedings of the Sixteenth ACM Symposium on Operating Systems Principles, Saint Malo, France, 1997,
pp. 78-91.

P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, L. Zhang, "IDMaps: A Global Internet Host Distance
Estimation Service," IEEE/ACM Transactions on Networking, Vol. 9, No. 5, October, 2001.

M. Freedman and D. Mazieres. "Sloppy hashing and self-organizing clusters". In Proceedings of the 2nd
International Workshop on Peer-to-Peer Systems (IPTPS '03), Berkeley, CA, February 2003.

M.J. Freeley, B.N. Bershad, J.S. Chase, and H.M. Levy, "Dynamic Node Reconfiguration in a Parallel-
Distributed Environment," Proceedings of the third ACM SIGPLAN symposium on Principles and practice
of parallel programming, ACM Press, New York, NY, USA, 1991, pp 114-121.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke, "Condor-G: A Computation Management Agent
for Multi-Institutional Grids," Cluster Computing, Vol. 5, No. 3, Springer Science, July 2002. pp 237-246.

V. Fuller, T. Li, J. Yu, and K. Varadhan. RFC 1519 "Classless Inter-Domain Routing (CIDR): an Address
Assignment and Aggregation Strategy,” September 1993.

S. Gammill, “Tomorrow the World: Establishing an Internet Connection at a Small College,” Proceedings
of the Eighteenth Annual Conference on User Services (ACM SIGUCCS), Cincinnati, Ohio, USA, 1990, pp.
137-140.

Genome@home, Internet: http://www.stanford.edu/group/pandegroup/genome/. 2005.

C. Germain, “Result Checking in Global Computing Systems,” Proceedings of the 17th Annual
International Conference on Supercomputing.San Francisco, California. 2003.

A. Gilbert, J. Thomas, and I. Jonyer, “Modeling Work Flow in Hierarchically Clustered Distributed
Systems,” Proceedings of the International Conference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’04). Las Vegas, Nevada. June 2004.

A. Gilbert, A. Abraham, M. Paprzycki, “A System for Ensuring Data Integrity in Grid Environments,”
Proceedings of the International Conference Information Technology (ITCC’04), Las Vegas, Vol. 1,
435-439, 2004.

The gLite Middleware Project, Internet: http://glite.web.cern.ch/glite/. 2005.

The GNU Compiler Collection, Internet: http://gcc.gnu.org/. 2007.

M. Graube. “Local area nets: a pair of standards”, IEEE Spectrum (June), 60-64. 1982.

P. Gray, and V.S. Sunderam, “Metacomputing with the IceT System,” International Journal of High
Performance Computing Applications, Vol. 13, No. 3, 1999, pp. 241-252.

Great Internet Mersenne Prime Search, (GIMPS), Internet: http://www.mersenne.org/prime.htm. 2005.

Grid MP Middleware, Internet http://www.ud.com/solutions/deploy/mp_enterprise.htm. 2005.

R. Groves, “CppSQLite - C++ Wrapper for SQLite,” Internet: http://www.codeproject.com/database./
CppSQLite.asp. 2004.

Z. Haas, D.R. Cheriton, "A Case For Packet Switching in High-Performance Wide-Area Networks,"
Proceedings of the ACM Workshop of Frontiers in Computer Communications Technology, ACM
SIGCOMM Computer Communication Review, Vol. 17, No. 5, Aug. 1987.

 40

B. Huffaker, M. Fomenkov, D. Plummer, D. Moore, and K. Claffy, "Distance Metrics in the Internet,"
Proceedings of the International Telecommunications Symposium (ITS'02), 2002.

The Human Genome Project, Internet: http://www.ornl.gov/sci/techresources/Human_Genome/home.shtml.
2005.

The Human Proteome Folding Project, Internet: http://www.grid.org/projects/hpf/about.htm. 2005.

O.C. Ibe, H. Choi, and K.S. Trivedi, “Performance evaluation of client-server systems,” IEEE Transactions
on Parallel and Distributed Systems, Vol. 4, No. 11, Nov. 1993, pp. 1217-1229.

“IEEE Project 802”, Local Network Standards. Institute of Electrical and Electronic Engineers, New York.
1983.

IEEE Std 1003.1-2001 Standard for Information Technology - Portable Operating System Interface
(POSIX) Base Definitions, Issue 6. IEEE, New York, NY, USA, 2001.

M. Izatt, P. Chan and T. Brecht, “Ajents: Towards an Environment for Parallel, Distributed and Mobile Java
Applications”, Proceedings ACM 1999 Java Grande Conference, pp. 15-25, June 1999.

G. Judd, M. Clement, Q. Snell, "DOGMA: Distributed Object Group Management Architecture"
Concurrency: Practice and Experience, Vol. 10, No. 11-13, Sept. 1998, pp. 977-983.

E. Jul, H. Levy, N. Hutchinson, and A. Black, "A Fine-grained mobility in the Emerald System," ACM
Transactions on Computer Systems, 6(1):109-133, February 1988.

N.T. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and S. Lacour, "A Multilevel Approach to
Topology-Aware Collective Operations in Computational Grids," Technical report ANL/MCS-P948-0402,
Mathematics and Computer Science Division, Argonne National Laboratory, USA, April 2002.

K. Krauter, R. Buyya, and M. Maheswaran, “A Taxonomy and Survey of Grid Resource Management
Systems for Distributed Computing”, International Journal of Software: Practice and Experience (SPE),
ISSN: 0038-0644, Volume 32, No. 2, pp 135-164, Wiley Press, USA, February 2002.

B. Krishnamurthy and J. Wang, "On Network-Aware Clustering of Web Clients," in Proc. ACM
SIGCOMM, August/September 2000.

The Large Hadron Collider (LHC) Project, Internet: http://lhc.web.cern.ch. 2007.

The Lattice Project, Internet: http://lattice.umiacs.umd.edu/. 2005.

LHC@home, Internet: http://athome.web.cern.ch/athome/. 2005.

M. J. Litzkow, "Remote Unix: Turning Idle Workstations into Cycle Servers," Proceedings of the Summer
1987 Usenix Conference, June, 1987, pp. 381-384.

M.J. Litzkow, "Condor - a hunter of idle workstations," Proceedings of the 8th International Conference on
Distributed Computing Systems, San Jose, CA, USA, June 1988. pp. 104-111.

L. Loewe, "evolution@home: Experience with work units that span more than 7 orders of magnitude in
computational complexity," Proceedings of the 2nd IEEE/ACM International Symposium on Cluster
Computing and the Grid (CCGrid2002), Berlin, Germany, 2002.

M.J. Lorence, and M. Satyanarayanan, "IPwatch: a tool for monitoring network locality," ACM SIGOPS
Operating Systems Review, Vol. 24, No. 1, pp 58-80, ACM Press, New York, NY, USA, January, 1990.

 41

L. Massoulie, A.M. Kermarrec, and A.J. Ganesh, "Network awareness and failure resilience in self-
organising overlay networks," Proceedings of the 22nd International Symposium on Reliable Distributed
Systems, October, 2003. pp 47-55.

Message Passing Interface (MPI), Internet: http://www-unix.mcs.anl.gov/mpi. 2005.

R.M. Metcalfe, and D.R. Boggs. “Ethernet: Distributed packet switching for local computer networks,”
Communications of the ACM. Vol. 19, No. 7 (July). 395-404. 1976.

Microsoft Visual Studio, Internet: http://msdn2.microsoft.com/en-us/vstudio/default.aspx. 2007.

The MITRE Corporation, Internet: http://www.mitre.org/. 2005.

M.O. Neary, B.O Christiansen, P. Cappello, and K.E. Schauser. "Javelin++: Scalability Issues in Global
Computing," Proceedings of the ACM Java Grande 1999 Conference, San Francisco, California, June
12-14, 1999.

M O. Neary, A Phipps, S Richman, and Peter Cappello, "Javelin 2.0: Java-based parallel computing on the
Internet" Proceedings Euro-Par 2000 Parallel Processing, pp. 1231-1238. 2000.

MySQL Open Source SQL Database, Internet: http://www.mysql.com/. 2005.

J.E. Nelno, C.M. Woodside, D. Petriu, and S. Majumdar, “Software Bottlenecking in Client-Server Systems
and Rendezvous Networks,” IEEE Transactions on Software Engineering, Vol. 21, No. 9, Sept. 1995, pp.
776-782.

T.S.E. Ng and H. Zhang, “Predicting Internet Network Distance with Coordinate-based Approaches,”
Proceedings of Twenty-First Annual Joint Conference of the IEEE Computer and Communications
Societies, Vol. 1, June 2002, pp. 170-179.

D.A. Nichols, “Using Idle Workstations in a Shared Computing Environment,” Proceedings of the 11th
ACM Symposium on Operating Systems Principles, Nov., 1987.

M.A. Olson, K. Bostic, M. Seltzer, “Berkeley DB,” Proceedings of the Paper - 1999 USENIX Annual
Technical Conference, June 1999, pp. 183-192.

Oxford University’s Centre for Computational Drug Discovery, Internet http://www.chem.ox.ac.uk/
curecancer.html. 2005.

P. Padala, C. Harrison, N. Pelfort, E. Jansen, M. Frank, C. Chokkareddy, “OCEAN: The Open Computation
Exchange and Arbitration Network, a Market Approach to Meta Computing,” Proceedings of the Second
International Symposium on Parallel and Distributed Computing, Oct. 2003.

V. Pande, et al. “Atomistic Protein Folding Simulations on the Submillisecond Time Scale Using World-
wide Distributed Computing,” Biopolymers, Vol. 68, 91-109, 2003.

Parallel Virtual Machine (PVM), Internet: http://www.csm.ornl.gov/pvm/pvm_home.html. 2005.

C. Parnot, “Xgrid@Stanford,” Internet: http://cmgm.stanford.edu/~cparnot/xgrid-stanford/index.html.
2005.

A. Patrizio, "Genome Effort Hits Home," Wired, February, 2001. Available: http://wired.com/news/
technology/0,1282,41842,00.html.

M. Pias, J. Crowcroft, S. Wilbur, T. Harris, S. Bhatti, "Lighthouses for scalable distributed location,"
Proceedings of the Second International Workshop on Peer-to-Peer Systems, Berkeley, CA, USA, February,
2003.

 42

Predictor@home, Internet: http://predictor.scripps.edu/. 2005.

Python Programming Language, Internet: http://www.python.org/. 2005.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A Scalable Content-Addressable
Network," Proceedings of ACM SIGCOMM, Aug. 2001.

S. Ratnasmay, M. Handley, R. Karp, and S. Shenker, "Topologically-aware overlay construction and server
selection." Proceedings of the Twenty-first IEEE INFOCOM, New York, N.Y., June 2002.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G.J. de Groot, E. Lear, “Address Allocation for Private
Internets,” RFC 1918, February 1996.

M. Rose, “The Blocks Extensible Exchange Protocol Core,” RFC 3080, March 2001.

A.L. Rosenberg, “Optimal Schedules for Cycle-Stealing in a Network of Workstations with a Bag-of-Tasks
Workload,” IEEE Transactions on Parallel and Distributed Systems, Vol. 13, No. 2, IEEE Press,
Piscataway, NJ, USA, Feb. 2002, pp 179-191.

R. Rosenthal. The selection of local area computer networks. NBS Special Publication. 500-96. National
Bureau of Standards, Washington, D.C., November, 1982.

M.A. Ruiz-Sanchez, E. Biersack, and W. Dabbous, “Survey and Taxonomy of IP Address Lookup
Algorithms,” IEEE Network, Vol. 15, No. 2, March/April 2001, pp. 8-23.

G.W. Scragg, “A Crisis in Computer Science Education at Liberal Arts Colleges,” ACM SIGSCSE Bulletin,
Vol. 19, No. 2, June 1987, pp. 36-42.

SETI@home 3.03 release notes. 2004.

SETI@home, Internet: http://setiathome.ssl.berkeley.edu/. 2005.

SETI@home forums, Internet: http://setiathome.berkeley.edu/forum_thread.php?id=23378. 2005.

J.F. Shoch. An annotated bibliography on Local Computer Networks. Xerox Palo Alto Research Center,
Palo Alto, California, April, 1980.

J. Shoch and J. A. Hupp, “The ‘Worm’ Programs - Early Experience with a Distributed Computation.”
Communications of the ACM, March 1982. Vol. 25, No. 3, 172-180.

SimpleDS Middleware Project, Internet: http://www.breakingrobots.net/projects/SimpleDS/. 2005

The Smallpox Project, Internet: http://www.grid.org/projects/smallpox/. 2005

N. Stankovic and K. Zhang, "A Distributed Parallel Programming Framework," IEEE Transactions on
Software Engineering, Vol. 28, No. 5, 2002, pp. 478-493.

T. Sterling, D. Savarese, D. Becker, D. J. Becker, J. E. Dorband, U. A. Ranawake, C. V. Packer, “Beowulf:
A Parallel Workstation For Scientific Computation,” Proceedings of the 24th International Conference on
Parallel Processing (ICPP), Vol. 1, 11-14, August 1995.

W. Sullivan III, D. Werthimer, S. Bowyer, J. Cobb, D. Gedye, D. Anderson, "A new major SETI project
based on project serendip data and 100,000 personal computers," Astronomical and Biochemical Origins
and the Search for Life in the Universe, Proceedings of the Fifth International Conference on
Bioastronomy, Editrice Compositori Publ., Bologna, Italy, 1997.

V. A. Sunderam, “PVM: A Framework for Parallel Distributed Computing.” Concurrancy - Practice and
Experience. Vol. 2, No. 4. 1990. 315-339.

 43

SQLite Embeddable SQL database, Internet: http://www.sqlite.org. 2005.

H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Willinger, "Network topologies, power
laws and hierarchy," Tech. Rep. TR01-746, Technical Report, University of Southern California, 2001

T. Tannenbaum, and M. Litzkow, "The Condor distributed processing system," Dr. Dobb's Journal,
February 1995.

M. M. Theimer, K.A. Lantz, and D.R. Cheriton, "Preemptable remote execution facilities for the V-system,"
Proceedings of the Tenth ACM Symposium on Operating Systems Principles, Orcas Island, Washington,
USA, Dec., 1985. pp. 2-12.

M. M. Theimer, "Preemptable Remote Execution Facilities for Loosely-Coupled Distributed Systems,"
Ph.D. Th., Stanford University, June 1986. Available as Stanford Computer Science tech. report STAN-
CS-86-1128.

M.M. Theimer, and K.A. Lantz, "Finding idle machines in a workstation-based distributed system,"
Proceedings of the 8th International Conference on Distributed Computing Systems, pp 112-122. IEEE
Computer Society, June 1988.

Top Five-Hundred Super Computer List, http://www.top500.org/lists/2004/11/. 2005.

United Devices, Internet http://www.ud.com/home.htm, 2005.

W. Vogels, R. van Renesse, K. Birman, “The Power of Epidemics: Robust Communication for Large-Scale
Distributed Systems,” ACM SIGCOMM Computer Review, Vol. 33, No. 1, ACM Press, NY, January 2003.
pp. 131-135.

M. Wahl, T. Howes, S. Kille, “Lightweight Directory Access Protocol (v3),” RFC 2251, December 1997.

C.A. Waldspurger, W.E. Weihl, “Lottery Scheduling: Flexible Proportional-Share Resource Management,”
Proceedings of the First Symposium on Operating Systems Design and Implementation, USENIX
Asssociation, Monterey, California, USA, Nov. 1994.

R. Winter, T. Zahn, J. Schiller, "Topology-Aware Overlay Construction in Dynamic Networks,"
Proceedings of the Third International Conference on Networking (ICN 2004), Gosier, Gaudeloupe, French
Caribbean, February/March 2004.

XGrid, Internet: http://www.apple.com/macosx/features/xgrid/. 2005.

X3.4 1986. American Standard Code for Information Interchange (ASCII) as defined by the American
National Standards Institution standard X3.4-1986.

T. Zahn, R. Winter, J. Schiller, “Simple, Efficient Peer-to-Peer Overlay Clustering in Mobile, Ad-Hoc
Networks,” IEEE International Conference on Networks (ICON 2004), Singapore, November 2004.
“ZetaGrid: The Grid for Everybody,” Internet: http://www.zetagrid.net/

X.Y. Zhang, Q. Zhang, Z. Zhang, G. Song, and W. Zhu, "A construction of locality-aware overlay
networks: mOverlay and Its Performance," IEEE Journal on Selected Areas in Communications, Vol. 22,
No. 1, January, 2004.

 44

 APPENDIX A

 SimpleDS USER MANUAL

 Here we describe the system interface from a user’s perspective. For demonstrative purposes, we

will walk through creating an example project and preparing a few tasks for distribution. In this case, we

will be creating a project to process 100 data files with a single executable. This kind of application belongs

to the Single Program Multiple Data (SPMD) class of applications.

 A.1 Creating Projects

 A project is created from the command line using the sdsaddproj tool. Projects are referenced by

unique a Universal Resource Identifier (URI) (Berners-Lee, Fielding, Masinter, 1998). Currently, the URI

does not need to reference an actual web page, however, in the future a web page describing the project

may be required. The following is the syntax for the sdsaddproj tool.

sdsaddproj <URI> <description> <email contact> [<priority>] [<redundancy count>]

 The first argument is the project’s reference URI. The second argument is a short description of

the project. The third argument is a contact email address for the project. The fourth argument is optional

and indicates the project priority, this value defaults to one. The final argument is also optional, it is the task

redundancy value. This value also defaults to one and is ignored in the current implementation.

 For our example, we will use the URI http://www.agentlab.net/projects/example1, a short

description, and my email address, leaving the project priority and redundancy values at the default

settings.

./sdsaddproj http://www.agentlab.net/projects/example1 “This is an example project”
austirg@cs.okstate.edu

 Executing the command creates the directory $SDS_HOME/Project/<project name> for the

project’s files, where $SDS_HOME is the install path for SimpleDS, and <project name> is the project’s

short name. Short names are used because URIs do not represent valid path names on many operation

systems. A project short name is derived from the project’s URI. The short name is the value after the last

slash in the URI. E.g., the URI http://www.agentlab.net/projects/example1 would yield a short name

 45

example1. The use of project short names introduce the possibility of name collisions among projects. For

example, the projects http://www.agentlab.net/projects/example1 and http://www.okstate.edu/SimpleDS/

Projects/Whereever/example1 would cause a short name collision. A method for resolving short name

collisions is planned but not currently implemented. After creating a project reference, data files and

executables may be added to the project.

 A.2 Registering Executables

 Executables are expected to be statically compiled, no library support is provided by the

middleware. Executables are registered using the sdsaddexec tool.

sdsaddexec [--no-cache] <URI> <name> <path>
sdsaddexec [--no-cache] --os=<OSTriplet> <URI> <name> <path>

 The <URI> argument contains the project’s URI. The <name> argument is the executables

reference name within the project. The reference name need not be the same as the executable’s actual

name, however all future references to the executable must be made by the name supplied here. The

<path> argument is a path to the executable being registered. During the registration process, a compressed

copy of this file is made into $SDS_HOME/Projects/<project name>/Bin/<os name>/<os arch>/, where

$SDS_HOME is the installation path of SimpleDS, <project name> is the project’s short name, <os name>

is the operating system name the executable is compiled for, and <os arch> is the CPU architecture the

executable is compiled for.

 The --no-cache flag tells the tool to inform clients not to cache the executable. Executables are

cached by default according to the algorithm described in section 3.5. For our example application we want

the executables cached. For an MISD or MIMD application, executables would be used only once, hence

we would employ the --no-cache flag for that class of applications.

 By default, sdsaddexec assumes that the executable being registered is compiled for the operating

system hosting the project. E.g. if the project were running on Linux, then the tool assumes that the

executable is a Linux executable. This behavior is changed by specifying the --os flag with an operating

system triplet as an argument. An operating system triplet is a string in the form <on name>-<os ver>-<os

arch>. The <os name> portion of the triplet describes the name of the operating system the file is compiled

for, e.g. Linux, Darwin, Windows, etc. The <os arch> describe the CPU architecture the executable is

 46

compiled for. E.g., powerpc, x86, sparc, etc. The <os ver> portion is a string describing the version of the

operating system the system is compiled for. E.g., 8.2.0, Win32, 2.4.24-1, etc. This string is operating

system dependent, and the system will work out operating system compatibility issues automatically. For

example, an executable compiled for Linux 2.4.16 could also be run on 2.4.18 without issues but might not

run on Linux 2.2.0. For the most part, upward compatibility will be assumed. That is, if an executable is

registered for Linux 2.4.14, then it will be assumed compatible for 2.4.15, 2.4.16, 2.6.18 etc. Any

exceptions will be handled on a case by case bases. Note that the current implementation ignores the OS

version string and assumes complete compatibility between operating system versions.

 To demonstrate, we will register two executables, one executable will be a Windows executable

and the other will be for Linux. Both executables will perform the same operation, so they will be given the

reference name exec1. For demonstrative purposes, assume the Linux executable resides in the directory /

usr/local/share/myLinuxExec, and that the Windows executable resides in the directory /usr/local/share/

myWindowsExec. Here, we show the executables being registered when the hosting system is Linux.

./sdsaddexec http://www.agentlab.net/projects/example1 exec1 /usr/local/share/myLinuxExec

./sdsaddexec --os=Windows-WIN32-x86 http://www.agentlab.net/projects/example1 exec1
 /usr/local/share/myWindowsExec

 A.3 Registering Data Files

 Data files are registered to a project using the sdsadddata tool. The syntax of this tool follows:

sdsadddata [--cache] [--update] [--bundle] <URI> <name> {<name>}

 Again, <URI> specifies the project’s URI. The <name> argument is the data file’s reference name

and its actual path on the system. If the file path contains directories, they will be removed and only the

filename will be used. Tasks in the system will make reference to this file by this value. A compressed copy

of the data file is made in $SDS_HOME/Project/<project name>/Data/, where $SDS_HOME is the

installation path for SimpleDS and <project name> is the short name of the project URI. Data files are not

cached by default. To cache a data file, for example a configuration file that will be used by multiple tasks,

the --cache flag is specified. Otherwise, a data file is used by a task, then delete from the filesystem. The --

update flag is used to tell the system to replace the current file (of the same name) with a newer version.

 47

 For our running example of creating a project with 100 data files to be processed, we would need

to register each of the files using sdsadddata. A few examples are shown below:

./sdsadddata http://www.agentlab.net/projects/example1 data1

./sdsadddata http://www.agentlab.net/projects/example1 data2 data3 data4

./sdsadddata --cache http://www.agentlab.net/projects/example1 config1

 Here we have registered the first four data files and the configuration file config1 for use in the

system. We can see this tool works well for one or two files, but registering 100 files this way would be

tedious. Many operating system shells provide wildcard expansion features. The sdsadddata tool will

capitalize on this feature where possible. In this example, all the files matching the pattern data* would be

imported to the project.

./sdsadddata http://www.agentlab.net/projects/example1 data*

Alternatively, an entire directory of data files can be imported into the system by passing a directory path as

the name argument instead of a file name. Here, we are importing all the contents of the directory /home/

austirg/mydata:

./sdsadddata http://www.agentlab.net/projects/example1 /home/austirg/mydata/

This tool will also support bundling multiple data files into one compressed archive. In this case the

--bundle option would be specified along with a directory path. Then all of the files contained in the

directory would be compressed into one archive named after the directory.

./sdsadddata --bundle http://www.agentlab.net/projects/example1 /home/austirg/bundle1/

Finally, multiple bundles could be created simultaneously using wildcard expansion.

./sdsadddata --bundle http://www.agentlab.net/projects/example1 /home/austirg/bundle/*

In this case, any directory name matched by the wildcard * would become bundles, and any file names
matched by the wildcard expansion would be imported as single files.

 48

 A.4 Creating Tasks

 Tasks are created using the sdsaddtask tool. There are two required arguments, the URL of the

project the task is being created under and the quoted manifest string describing the task:

./sdsaddtask http://www.agentlab.net/projects/example1 “MANIFEST STRING”

The command returns 0 if the task is created successfully, and returns -1 if there is an error. Possible errors

may include an invalid task manifest string, an unregistered project, or a manifest string containing

references to files that haven’t been registered. The format of the manifest string is described in the

following section.

 A.5 Example Task Manifests

 Task manifests are strings that describe tasks. They describe the components needed by a task and

how these components relate to each other. Task components include data files, executables, operating

systems/architecture constraints, compilers and/or interpreters needed, and output files created as a result of

execution. The task manifest format is relatively straightforward but flexible. Rather than present a formal

definition of the manifest grammar, we demonstrate the grammar with examples. At times, our examples

will refer back commands from section A.3.

A.5.1 Simplest Example

 The simplest possible manifest string looks like this:

data:(data1)
exec:(exec1):(Darwin-8.0.0-powerpc)
{exec1}:(data1):()

Note we are adding return characters for readability, but these are not required by the system. The data

declaration data:() declares what data files the task will use. The example above requires one data file:

data1. The data file name here refers to data files we registered previously using the sdsadddata tool, refer

to section A.3 for a review.

 The next section is the executable declaration. This section defines the executables needed by the

task and the architectures the task can be executed on. This task requires an executable referred to as exec1.

 49

The only supported platform is Apple’s Macintosh operating system version 10, or Darwin 8 as reported by

the unix command uname -s and uname -r.

 The final section in this example declares the relationship between the data files and the

executables. This example is equivalent to the following DOS or UNIX command lines: “exec1 data1”. It

simply says run exec1 with the file data1 as the only argument. All task output will be redirected to a file

called OUTPUT, all task error messages written to standard error are redirected to a file called ERRORS.

An ERRORS file with a size larger than zero indicates an error occurred during the task. After a task is

executed, the OUTPUT and ERRORS files are archived together and are returned as the result.

A.5.2 An Example With Data File Caching

 Here we give a slightly more advanced example, demonstrating the file caching segment. Recall

that executable files are cached by default. Project wide configuration files should make use of this

example to prevent clients from repeatedly downloading them:

data:(data1 configFile)
exec:(exec1 exec2):(Darwin-8.0.0-powerpc Linux-2.4-i386)
cached:(configFile)
{exec1}:(configFile data1):(myoutputfile)
{exec2}:(myoutputfile):()

 Here we define a data file, data1, and a configuration file, configFile. We also declare two

executables, exec1 and exec2. Two operating systems are supported this time. The configuration file,

configFile is declared to be cached with the cached:() segment. The equivalent command line is: “./exec1

configFile data1 & ./exec2 myoutputfile”. In this example we explicitly declared an output file called

myoutputfile. This is a file that we opened and wrote data to using language or system calls. The contents of

myoutputfile are generated during the execution of exec1, if the return code of exec1 permits, exec2 is

subsequently executed passing myoutputfile as the only command line argument.

A.5.3 A MISD or MIMD Example

 Perhaps a project needs to execute each executable only once, as in a MISD or MIMD scenario. In

this case, we want to override the default caching for executable files so that they are used once and then

discarded. We do this using the notCached:() segment:

 50

data:(configFile)
exec:(exec1):(Darwin-8.0.0-powerpc Linux-2.4-i386)
cached:(configFile)
notCached:(exec1)
{exec1}:(configFile):()

Note that the cached and notCached segments must appear after the data and exec segments.

A.5.4 An Example with a Command Line Argument Flag

 Passing flags and arguments into executables is sometimes desirable. We use double quotes to

specify command line arguments, options, and flags.

data:(data1)
exec:(exec1):(Darwin-8.0.0-powerpc Linux-2.4-i386)
{exec1}:(“--flag1” “value” “--input-file” data1):()

This manifest is equivilent to “./exec1 --flag1 value --input-file data1”. This manifest demonstrates how to

pass command line options into your executables.

A.5.5 Access to Virtual Machines, Compilers, and Interpreters

 One of the design goals of SimpleDS was to ensure flexibility. It is designed to run task

executables that require a virtual machine or interpreter. We use the term stub to refer to such a non-native

subsystem. It should be noted that our primary focus in development is getting native code working, and

the stub implementation is incomplete, we are presenting the manifest syntax here for completeness and to

highlight the potential for flexibility.

data:(data1)
stub:(java):(1.4):(exec1.class)
{exec1.class}:(data1):()

 This manifest defines a task that runs the class exec1.class on the JVM version 1.4. There is a

single data file, data1. This is equivalent to the command line “java exec1 data1”.

 Perhaps we want the clients to compile the java class using javac version 1.4 and then execute the

class on the appropriate JVM:

data:(data1 exec1.java)
compiler(javac):(1.4)
stub:(java):(1.4):(exec1.class)
{javac}:(exec1.java):(exec1.class)
{exec1.class}:(data1):()

 51

Note the slight difference between the use of the stub:() segment and the compiler:() segment. The stub

segment is used to declare scripts or byte code that is dependent on a virtual machine or interpreter for

execution, whereas the compiler segment defines an exposed system executable that will generate

executables or byte code files that can be run later or returned as a result. An example of compiling a C

program and then executing it on some data:

data:(file1.c file2.c file3.c data1)
compiler(gcc):(3.3)
{gcc}:(file1.c file2.c file3.c):(a.out)
{a.out}:(data1):()

Here we compile three C files into one executable, a.out, and then execute a.out to process our data file,

data1. Notice that the supported operating systems are not defined. Any source code must be portable and

account for the platform. You can see having access to compilers could be useful for MIMD projects with

many small executables but probably should be excluded from use in a more general scenario.

 Perl, Python, Ruby, and the Parrot virtual machine could be accessed fairly easily using our stub

context. Scripting languages make heavy use of extendable modules, Perl is a good example of this.

Installed modules vary from system to system, so dependent modules are encouraged to be distributed as

cached data files in conjunction with the use of command line arguments to define the include directory as

“.”

 Stubs are not automatically available, each compiler or virtual machine that a client wants to

expose must be explicitly registered with SimpleDS. In the future, it may be possible to only expose stubs

and prevent clients from executing native code. Again flexibility is a design goal.

 A.6 System Management and Performance Monitoring Tools

 The primary tool used for investigating projects, project files, and tasks will be sdsshow. This tool

has not yet been implemented. Sdsshow will display some information about the current projects, project

files, and project tasks. For example, it may show a list of all the projects along with the number of

complete tasks and the total number of tasks. It may also show some statistical information, such as

turnaround time, or average turnaround time per task, etc. It will also display information about the status

of a task. In general, the sdsshow tool will be used to query the back-end database for the most common

 52

information. The interface for this tool has not been finalized. We envision something like the unix

command top.

 The tools for deleting projects, tasks, data files, and executables will be: sdsdelproj, sdsdeltask,

sdsdeldata, sdsdelexec. The interface for these tools will be in the form <tool name> <URI> <val>, e.g. “./

sdsdelexec http://www.agentlab.net/projects/example1 exec1” indicates that we want to delete the

executable named exec1 from the project http://www.agentlab.net/projects/example1. Note that the

executables for all platforms would be eliminated with this command. Finer grained control will likely be

implemented also. Further, the state of any unassigned tasks depending on this executable would be

changed to prevent their assignment. Sdsdeldata is the data file counter part to sdsdelexec and works in the

same fashion. Sdsdelproj would eliminate the executables, data files, tasks, and results for an entire project.

A flag will be available to prevent the destruction of results, however the default command will clean

results also. The Sdsdeltask command deletes single tasks from the system.

 53

 VITA

 Austin Royce Gilbert

 Candidate for the Degree of

 Master of Science

Thesis: LIGHT WEIGHT HIERARCHICAL CLUSTERING
 MIDDLEWARE FOR PUBLIC-RESOURCE
 COMPUTING

Major Field: Computer Science

Biographical:

 Educational: Graduated from Marion High School, Marion, Kansas in May 1996.; received
 Associate of Applied Science in Computer Information Systems and Associate of Arts in
 Liberal Arts from Tulsa Community College in July, 1998 and July, 2002 respectively;
 received Bachelor of Science in Computer Science from Oklahoma State University,
 Tulsa, Oklahoma in August, 2002; Completed requirements for Master of Science degree
 with a major in Computer Science at Oklahoma State University, Stillwater, Oklahoma in
 May, 2007.

 Experience: Employed as a network security analyst after completing Bachelor’s and before
 returning to pursue a Master’s degree; worked for Oklahoma State University,
 Department of Computer Science as a research assistant and teacher’s assistant during
 Master’s course work.

Name: Austin Royce Gilbert Date of Degree: May, 2007

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: LIGHT-WEIGHT HIERARCHICAL CLUSTERING MIDDLEWARE
 FOR PUBLIC-RESOURCE COMPUTING

Pages in Study: 53 Candidate for the Degree of Master of Science

Major Field: Computer Science

Abstract: The goal of this work was to investigate ways to implement and improve a
public-resource computing middleware. Specifically, to make hosting a public-resource
computing project logistically simpler and to examine the affect of hierarchical clustering
on bandwidth utilization at the central server. To this end, we present the architecture for
our cross-platform, multithreaded public-resource computing middleware.

 Implementing and debugging the middleware proved far more challenging than
initially anticipated. As hard as debugging multithreaded programs is, our experience has
shown us that it can be leveraged to simplify system components. Our main contribution
is the final system architecture.

Advisor’s Approval:___Dr. István Jónyer__

