
h STUDY OF TWO COMPETING INDEX

MECHANISMS: PREFIX JL•-TREE

AND TRIE STRUCTURES

BY

AN-LEE ANNE FENG
/1

Bachelor of Science in Agriculture

National Taiwan University

Taipei, Taiwan

Republic of China

1972

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the Degree of
MASTER OF SCIENCE

December, 1982

' ..

/hesi"s
)q~ :1.-
r~~;ls
~.'d-

'.·'.

') :.

A STUDY OF TWO COMPETING INDEX

MECHANISMS: PREFIX B•-TREE
'

' AND TRIE STRUCTURES

Thesis *pproved:

DeariOfGraduate College

ii

1143210 I

PREFACE

This thesis deals with two competing index mechanisms,

namely, pref ix B+-trees and trie structures, which are

useful for handling varying size keys in document retrieval

systems. Refinements and variants of these two indexing

methods are studied. Tradeof f s of storage requirements and
- .

retrieval time or performance benefits and maintair:iance

difficulties for various refining approaches are examined.

I would like to express my sincere appreciation and

gratitude to Dr. James R. Van Doren, my major professor, for

his patience, guidance, encouragement and understanding

throughout my graduate study. Thankes are also extended to

Dr. D. D. Fisher and Dr. s. A. Thoreson for serving on my

graduate committee.

I extend a very special and sincere thanks to Dr. D. D.

Fisher and Dr. J. R. Phillips for unfailing confidence and

support which they have given me over the last three years.

Finally, a debt of gratitude which can never be

adequately expressed is due my parants, Mr. and Mrs. Ko-Chun

Feng and their favorite daughter, An-Chun, for their love,

understanding, and sacrifices throughout my studies in the

States. For this and their unfailing support I am forever

indebted.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION 1

II. BRIEF DESCRIPTION OF ON-LINE DOCUMENT
RETRIEVAL SYSTEMS • • • • • • . • • • • • • 3

Introduction • • • • • • • • . 3
How It Works • • . • • . • • • • • . • • • 4

Inverted File Techniques • • • • • • 6
General Operations • • • • • • • • • 10
Index Decoding • • • • • • • • • • • 11

III. PREFIX B•-TREE INDEXING •• 14

IV.

Basic B-Trees • • • • • • • • • • • • • • 15
Organization of B-Trees • • • • . • . 15
Advantages of B-Tree Based Indexing . 17

B•-Trees • • • • • • • • • • • • • 19
Motivation of B•-Trees • • • • • • • 19
Characteristics of B •-Trees • • • • . 20

Pref ix B•-Trees • • • • • • • • • • • • • 22
Simple Pref ix B•-Trees • • • 26
Pref ix B•-Trees • • • • • • • • . 28
Search, Insertion, and Deletion • 33

Evaluation of Pref ix B•-Tree Indexing 41

TRIE STRUCTURE INDEXING • •

Digital Search Trees •••••••
Basic Trie Structure • • • • • • • • •
Refinements and Variants of Tries •.•.

Pruning a Trie • • • • • • • . •
Reordering Attribute Testing •.••
Entering Multiple Keys ••••.••
O-Tries (Order-Containing Tries)
Linked List Implementation • • •
C-Tries (Compressed Tries) •••

Evaluation of Trie Index • •

44

45
48
55
56
57
62
62
66
68
71

V. SUMMARY, CONCLUSION AND SUGGESTION FOR FURTHER
RESEARCH • • • . • • • • • • • • • • • • . . 75

Summary of Pref ix B•-Tree Indexing •
Summary of Trie Indexing .•••••

iv

75
78

Chapter Page

Conclusion and Suggested Further Work 81

BIBLIOGRAPHY • . • . • . . . • • • . . • . . . 83

v

Table

I •

II.

LIST OF TABLES

Common Pref ix in Simple Pref ix B•-tree of
Figure 8

Knuth's MIX Character Code and Bit String
Representation for each Alphabetic
Character • • • • • • • • • • • • • • •

vi

Page

31

47

LIST OF FIGURES

Figure

1. Inverted File Structure with Separate
Accession List • . . • . • • • • •

2. Inverted File Structure with Accession Lists
Included in the Index .••••.•

3. Existing Index Decoding Techniques

4. Page Organization of B-Trees
5. A B-Tree with Index and Sequence Set

6. (a) A Leaf Node of a B+-Tree (b) Results of
Inserting the Key 'SEPARATOR' into the Leaf

Page

8

9

12

17

21

Node of (a) • • • • • • • . . • . . • . • • . • 24

7. Two Possible Node Organizations for Pref ix
B +-Trees . • . . . • . • • • • ·• . • . .• 26

8. A Simple Prefix B+-Tree • . . . 27

9. Partial Index Structure of a Simple Pref ix
B+-Tree •••.••. 30

10. Prefix B+-Tree Derived from the Simple Prefix
B+-Tree of Figure 8 • • • . . . • • . • • • 32

11. Result of Inserting the Key 'CONSTRUCT' into the
Pref ix B+-Tree of Figure 11 . . • 36

12. Result of Deleting the Key 'CONTROL' from the
Pref ix B+-Tree of Figure 11, Merging Scheme
Is Used. 39

13. Result of Deleting the Key 'CONTROL' from the
Pref ix B+-Tree of Figure 11, Redistribution
Scheme Is Used • • . • . . • . 40

14. A Digital Search Tree for 10 Common Programming
Languages and Software Packages, Inserted in
Increasing Lexical Order . . • 47

Vl l

Figure Page

15. Trie Constructed for Keys of Figure 15, Sampling
One Character at a Time, Left to Right . • . . 50

16. Result of Inserting Keys 'PLANS' and 'APPLY' into
the Trie of Figure 16 • . • • • • • • . . • 53

17. Result of Deleting Keys 'FORTRAN' and 'PL!' from
the Trie of Figure 16 • . • • . • . 54

18. (a) A Full Trie, and (b) A Pruned Trie for Keys
of Figure 16, Sampling One Character at a Time,
Left to Right . • . • • • • . . . • • . • • • . 58

19. (a) A Leaf Chain and (b) an Internal Chain 59

20. Trie Constructed for Keys of Figure 15, Sampling
One at a Time, Right to Left . • • • • • • 61

21. Trie Obtained for Keys of Figure 16 When Number
of Levels is Limited to 3, Key Has Been Sampled
Left to Right, One at a Time . . • • • • • 64

22. An 0-Trie for the Set of Keys of Figure 8(# of
Levels = 3, # of Branch Nodes = 5) • . . . 65

23. An Optimum Pruned Trie for the Set of Keys in
Figure 8 (# of Levels = 5, # of Branch Node
= 8) • . • • • • • • • • • • • • . . . 66

24. The Linked List Implementation of the Trie Shown
in Figure 21 . • • • • • • • • • • • • 67

25. Structure of (a) an Internal Branch Node and
(b) a Leaf Node in a C-trie • . . • • . • . 70

viii

CHAPTER I

INTRODUCTION

A major use of digital computers is to manage,

correlate and retrieve large collections of data, either in

the form of formatted text or text with minimal formatting.

Retrieval of information from large data files stored on

secondary storage, such as magnetic disk and drum cannot be

performed efficiently or rapidly without an efficient method

for external searching. Standard forms of information

retrieval systems consist of master files, inverted files

and an index of keywords. To retrieve an item, the index is

searched for the keyword and the corresponding entry in the

inverted file extracted, giving the address in the master

file of all the records satisfying the request. The most

time consuming part of this

of the index and several

minimize this.

retrieval process is the search

methods have been devised to

will center on two

pref ix B•-tree and

The intention of this thesis

techniques for constructing an index:

trie structure. Both of them are tree

with keys of variable length and can be

structured indices

used in textual

to speed up databases or document retrieval systems

information retrieval.

1

2

Chapter II presents a brief description of on-line

document retrieval systems. Index techniques, inverted file

techniques, general operations and several index schemes

used in document retrieval systems are all addressed.

Chapter III contains a discussion of the development of

B-trees, B+-trees, simple prefix B+-trees and prefix

B+-trees. Motivation, refinements, and tradeoffs at each

evolutionary step of B-tree development are illustrated by

examples.

Chapter IV discusses a particular type of digital

search tree which is called a trie structure. The primary

concern about it in this thesis will be placed on

illustrating how to minimize storage requirements. A primary

difficulty with a trie structure is also discussed. The

variants of tries, such as pruned tries, 0-tries, linked

list implementation of tries and C-tries, are examined by

examples.

The final chapter summarizes what has been presented,

illustrates the comparisons between pref ix B+-trees and trie

structures and makes suggestions for further study and

research.

CHAPTER II

BRIEF DESCRIPTION OF ON-LINE

DOCUMENT RETRIEVAL SYSTEMS

Introduction

The great importance of the role played ~y. ~~cument

retrieval systems or textual databases is to achieve better

access to all types of stored information from the different

areas in science, so that people can make use of existing

knowledge and information to solve various problems such as

scientific, political, technical, economic and social

problems.

Document retrieval systems or textual databases consist

of a large collection of documents, with some scheme to

delimit and access the individual documents within a

database. By convenience, the term document will refer to

the individual books, journal articles, court decision

cases, etc. (26). Retrieval from textual databases may be

based on contexts and retrieval keys consisting of

arbitrarily chosen words or portions of words. Unlike

formatted databases, which are concerned with fields and key

values of known position and format, the contents of textual

databases are order dependent and very little formatting is

necessary. The order dependency here means that contents

3

4

retrieved from a textual database do not reside in some

known positions within a record which one can specify, but

are exactly in the order in which the contents are kept in a

database. Many textual databases contain a large number of

documents and grow fairly rapidly. For example, a textual

database containing all court decisions would take around 25

billion characters, while large formatted databases may

generally contain 10 to 100 million characters (13).

How It Works

In the past, many of the computer-based retrieval

systems relied on manually assigned keywords or index terms

for the identification of documents, even though a search

operation, for the most part, is carried out automatically.

The typical document retrieval system in the past can be

considered in four parts:

1. A classification scheme is devised for the document
collection.

2. Index terms are assigned to a document so that it
can be entered into the classification.

3. A query is formulated using terms
classification scheme.

from the

4. A search is made to find documents relevant to the
query (17).

A variety of classification schemes are used. For

example, the Dewey or Universal Decimal System used in

libraries assigns a text number to each document, with which

the position of this document relative to others in a

hierarchical system is shown. An alternative method is to

5

assign index terms or keywords which indicate the subject

matter of the document. For instance, a particular article

might have as index terms the phrases, 'Information

retrieval system', 'File organization', and 'Search

algorithm' (26).

Nevertheless, the idea that manual systems and

procedures should be replaced by suitably chosen automatic

methods has became more widespread since the 1960s, as the

amount and complexity of the available information has

continued to grow. However, cost and storage capacity for

automatic full text analysis has been a serious limitation.

Recent improvements in microelectronics and peripheral

storage technology have eliminated many of the cost barriers

to such approaches. Improvements in indexing organization

schemes have also. contributed to solving performance

limitations. Today a growing number of textual databases

dealing with bibliographic reference allow online access to

a large body of information in a given field, e.g. computer

assisted legal research (CALR) systems in law. Lexis,

Westlaw and JURIS are the three major online CALR systems

which provide free text accesses to the full text of source

documents (1). In this approach, the full text of documents

is stored in its original form and then is lexically

analyzed on a word basis: significant or nontrivial words

are selected to build an index to enable retrieval to stored

documents, while predetermined noise

(e.g., the, to, and, this, that etc.)

or noncontent

are ignored.

words

Each

6

significant word can serve as a key term from which all the

documents containing it can be obtained by a search scheme,

no subject indexing is used. This is called free text

access which means the access to any word in the entire

text, excluding a list of noise words. This full text/free

text combination permits the searcher to look for almost any

combination of words or phrases, any place in the text of

document. Since a particular document can be searched by

specifying a great number of significant words rather than a

few index terms in the classification schemes, the search is

more precise and also saves the manual work of full text

searching. For instance, if the user asks for the co

occurrence of two terms in the same sentence or paragraph,

it can be done by just merging the accession lists

corresponding to the.specified co-occurrence terms (see the

next section), and then retrieving documents according to

the accession numbers on the resulting accession list.

However, a large amount of computer effort may be required

to implement lexical analysis on full text during database

preparation. General descriptions and evaluations of online

full text document retrieval systems can be found in

Appenzeller (1) and Benson (4).

Inverted File Techniques

After the complete set of allowable key terms is

obtained, no matter whether they are index terms assigned

to documents or significant words selected from documents, a

7

'roadmap' providing the search path to the documents is

required to be constructed. A common approach to search

such document collections rapidly is to use an inverted

file technique. According to Knuth's (16) definition, an

inverted file means that the roles of records and attributes

are reversed. That is to say, instead of listing the

attributes of a given record, the records having a given

attribute are listed. Here, his definition can be extended

as: from an inverted file, a list can be obtained which

contains all the accession numbers of the documents in a

database in which the given term is found.

Figure 1 and Figure 2 illustrate two

for implementing an inverted file structure.

possible schemes

Although it is

convenient to view this structure as having two parts, the

inversion and document files, more details can be obtained

if the inversion file is further divided into two logical

parts, index and accession lists. The index consists of all

the unique key terms, and all of them might reside in the

bottom level with some of them being duplicated in the upper

levels. In Figure 1, each unique key term in the bottom

level is stored with a pointer to the corresponding

accession list, while in Figure 2, each key term in the

bottom level is immediately followed by the accession list

corresponding to it. In the latter case, the organization

of the bottom level is different from that of upper levels.

For large databases, both the index and the accession lists

are separate, or the accession lists are included in the

8

lowest level of the index, index as well as accession lists

are stored in a secondary storage.

upper
level of
index

bottom
level of
index

inversion
file

accession
list

L

k

document
file DDDDDD

Figure 1. Inverted File Structure with Separate
Accession Lists

In using an inverted file technique, a query is

answered by locating the accession lists of the key terms in

the query, followed by processing ('or-ing' and 'and-ing')

these lists to determine the correct documents, and finally

9

by retrieving the documents. The principal advantages of

this organization are that all query logic can be completed

without accessing the database until the resulting subset of

the database is formed, and then the qualified documents can

be searched (13).

upper
level of
index

inversion
file

bottom
level of
index

Accession
List

Accession
List

document
file

\
DD DD DD D···

Figure 2. Inverted File Structure with Accession Lists
Included in the Index

10

General Operations

Normal operations on an interactive document retrieval

system consist of forming progressively smaller subsets of

the database until the number of the documents is small

enough to be examined by the user. This is done by the

specification of search patterns consisting of co

occurrences, alternatives, and exclusions. Searches for co

occurrences locate two or more terms within a specified

context, either unordered or ordered. The specification of

an ordered co-occurrence can either require that the terms

be contiguous or be separated within a specified number of

words. Searches for alternatives locate contents which

contain at least one of a group of given terms. Exclusion

searches locate contexts which do not contain two selected

terms simultaneously.(13).

It is frequently desirable in on-line retrieval systems

that there be some 'dialogues' which transmit the

intermediate results from the system to the user, and based

upon these results, the user can specify the action he wants

the system to take via this dialogue facility. For example,

the presearch statistics such as the number of documents

required to be retrieved can be transmitted to the user

after the index decoding process (see next section) is done.

The user at the terminal then decides, based on the

statistics, whether to proceed with the search in the

document file, to modify the query, or terminate it. This

facility can help to avoid wasteful and wrong retrieval.

11

Index Decoding

Basically, on-line document retrieval can be viewed as

a two step process: step 1 involves index decoding which

translates the query language key term into an address or

series of addresses to every document in the document

file that satisfies the key conditions. The information

required to perform this decoding is called the key index.

Step 2 consists of the random access search in the document

file based upon the list addresses obtained from step 1

(17). The most time-consuming part of this retrieval

process is the index decoding. The critical parameter is

the number of acce·sses to the secondary storage. One

procedure is to narrow the search down to a group (known as

a block or bucket or page) of keys, which can be searched

rapidly in primary memory. The size of these blocks is

selected to be the same as the size of the unit of transfer

between primary and secondary storage.

be further reduced by selecting an

structure.

The search time can

appropriate index

Figure 3 classifies the existing techniques that are

used to perform index decoding. These divide into two

general classes, one called key to address transformation or

hashing, the other called tree or table look-up decoding

(17). The first level distinguishes the hashing approach

from the tree approach. In general hashing requires less

search time than the tree approach. However, the range and

distribution of the values of keys may effect the efficiency

12

of the hashing scheme to a great degree (6). This makes it

difficult to use such a scheme in a general document

retrieval system in which the properties of keys are not

known in advance. The tree approach, on the other hand, has

no such difficulty.

KEY DIRECTORY DECODING

/ ~
Hashing I I Tree j

/~
Fixed .Length Key j I Variable Length Key

Figure 3. Existing Index Decoding Techniques

At the second level, the tree method branches into

fixed versus variable length keys. The trade-off here is

based entirely upon ambiguous decoding. Since in a general

language a complete key is generally variable in length, if

any transformation is made on this key that converts it to a

fixed length, then some ambiguous decoding may be

introduced. On the other hand, the tree with variable

length keys is guaranteed not to produce an ambiguous

13

decoding, but the price is increased programming complexity.

The attention of this thesis is focused narrowly and

specifically upon the data structure of the index using tree

structure with variable length keys. Two techniques are to

be examined, namely, prefix B+-trees and trie structures.

CHAPTER III

PREFIX B•-TREE INDEXING

External searching is critical to retrieve information

from databases such as document retrieval systems appearing

on secondary storage. The index which speeds retrieval by

directing the search path to the document file is kept in

the secondary storage as well as the document file itself

because the set of all keys may not fit in primary memory.

A tree organized index is efficient for external searching,

if an appropriate way to represent the tree is chosen (16).

The starting section of this chapter presents a brief

discussion of the basic B-tree as proposed by Bayer and

Mccreight (2), and illustrates why B-trees are considered

the standard organization for indexes in a database system.

Section 2 shows a superior variant of B-tree, the B•-tree,

which has an independent B•-index and the order set of

leaves, the sequence set or B•-file (3). The remainder of

this chapter is focused on the prefix B•-tree, in which, the

B•-index in a B•-tree is further improved by using key

pref ix compression and "shortest" separator keys in order to

reduce the number of levels and the space requirements of

the B+-index. Simple prefix B•-trees and pref ix B•-trees

are illustrated. In section 3, the algorithms for

14

15

constructing and maintaining pref ix B•-trees are reviewed.

The final section, section 4,

pref ix B•-tree indexing.

contains an evaluation of

Basic B-trees

With the fact that an index resides on discs or drums,

searching it should be done by accessing secondary storage.

The time required to access secondary storage is the main

component·· of the total time required to retrieve information

from databases. (11). Minimizing the number of accesses to

secondary storage is highly desirable.

A new approach to external searching by means of multi

way branching was proposed in 1970 by Bayer and Mccreight

(2). They called this new kind of data structure a B-tree.

Based upon Bayer a~d McCreight's definition, the index

consists of a number of entries which are triples (k(i),

a(i), p(i)) of fixed ~ize data itemst namely a key k(i),

some associated information a(i}, and a pointer p(i). The

key k(i} identifies an unique element in the index, the

associated information field a(i) is typically a pointer to

a record or a collection of records identified by k(i), and

the pointer p(i) is a disc address at which the root of the

subtree containing all the keys which satisfy the branching

condition is located.

Organization of B-trees

The index is broken into pages of fixed size. A page

16

is a block of information transferred between primary memory

and secondary storage, and also corresponds to a node in a

B-tree index. Each page need only be partially filled.

Figure 4 depicts the organization of a page (node) P with j

keys, j associated information fields, j+l pointers and some

unused space. k (i) , a (i) and p (i) represents key,

associated information and pointer to the ith successor of P

respectively. Within each page (node) P, the keys are

sequential in increasing order, that is, k(i) < k(i+l) for

0 < i < j. p(O) is a pointer to a subtree which contains

keys less than k(l) and p(j) is a pointer to a subtree which

contains keys greater than k(j). Other pointers p(i), for

0 < i < j, point to subtrees which contain keys greater than

k(i) but less than k(i+l). If the node P is a leaf node,

then all pointers of-it are undefined (2), or they should be

eliminated (16). since a leaf node is a terminal node which

carries no branching information in the indexing sense.

A B-tree of order m is a tree which has the node

organization mentioned above and satisfies the following

properties:

1. A B-tree is a balanced search tree in which each
path from the root to any leaf has uniform depth.

2. Each node, except for the root, contains between
FLOOR((m-1)/2) and (m-1) keys. This guarantees
that storage utilization is at least 50 •

3. The root node contains between 1 and (m-1) keys.

4. All leaf nodes appear on the same level and have no
successors ..

5. Each nonleaf node with k keys has (k+l) successors
(16) .

17

p(O) k(l) a(l) p(l) k(2) a(2) --- k(j) a(j) p(j) unused

Figure 4. Page Organization of B-trees

Except for the root page which may be kept in internal

memory during retrieval, pages of an index are usually kept

in secondary storage and require an access to secondary

stroage each time they are to be inspected. Once a page has

been read into the internal memory, an internal search is

required to locate the proper descendant pointer. Knuth(l6)

points out that a sequential search might be proper for

small nodes, while a binary search might be useful if the

node is large.

Advantages of B-tree Based Indexing

The superiority of B-trees over other index techniques

is in the methods for inserting and deleting records. These

methods always leave the tree balanced. This is done by

restricting deletion and insertion at leaf nodes only. If

the key to be deleted is in an upper level node, it is first

swapped with its predecessor or successor, which always

18

appears on the leaf level. Therefore, nodes splitting off a

sibling during insertion or two siblings being catenated

into a single node during deletion are always initiated at

leaves and propagate toward the root.

trees are built from the bottom up.

In other words, B-

The only way in which

the height of the tree can increase is that the root node

splits and a new root must be introduced. The opposite

process occurs if the tree contracts. The basic operations

performed on B-tree based indexes such as searching,

insertion and deletion will be examined when the prefix

B+-tree is discus.sea.

According to Bayer and Mccreight {2, p.174), a B-tree

based index offers significant advantages:

1. Storage utilization is at least 50% at any time and
should be considerably better on the average.

2. Storage is requested and released as the file grows
and contracts. There is no congestion problem or
degradation of performance if the storage occupancy
is very high.

3. Although the B-tree structure is originally
designed to function as an index for dynamic
random access files, the natural order of the keys
in a B-tree is maintained and sequential processing
based on that order is also allowed.

Besides, Knuth {16} points out that a B-tree based index

makes it possible both to search and to update a large file

with 'guaranteed' efficiency, in the worst case, using

relatively simple algorithms. Comer (7) also states that

there is no need for periodic 'reorganization' of the entire

file if using a B-tree to index a file.

19

As with most file organizations, variants of B-trees

abound. Among them, B+-trees are probably the most widely

used variant of the original B-tree. VSAM, IBM's general

purpose B-tree based organization and access method, is a

well-known example of using a B+-tree approach. The

motivation, characteristics and use of B+-trees are given in

this section. It is intended that this section offers

prerequisite background for the prefix B+-tree.

Motivation of B+-trees

The conventional B-tree is quite good· for indexing a

dynamic random access file, but a weakness of it is apparent

in the case that sequential processing is required. A

simple preorder tree traversal can be used to extract all

the keys in order, while a significant amount of primary

memory may be required to stack all the nodes along a path

from the root to avoid reading these nodes twice.

Additionally, processing a "find next" operation may require

tracing a path through several nodes before reaching the

desired key (7). Furthermore, in a conventional B-tree,

associated information stored with the key may occupy a

considerable portion of an index node, so that the order of

the B-tree may be relatively small and the height of it may

be relatively large. B+-trees were designed to remove these

weaknesses and provide a way which is suited to both a

random and sequential processing environment.

20

Characteristics of B+-trees

The major deviations of B+-trees from conventional B

trees are summarized by the following:

1. All keys of B+-trees reside in leaves, Each upper
level key is copied from a bottom level key during
a node split on insertion.

2. Only the keys in the bottom
with data records. In other
in the upper level contains
but no associated information

level are associated
words, an index entry
only key and pointer
at all.

3. Each leaf node of B•-trees has a link field which
points to the next leaf node to the right, except
the link in the rightmost node which is null (7).

From the above, it is convenient to view a B•-tree as having

two independent parts as mentioned at the beginning of this

chapter: the B•-index and the sequence set which are

depicted in Figure 5. The B•-index that directs searches to

the bottom level is organized exactly the same as a

conventional B-tree. The sequence set is actually a linked

list of all leaves in sequence order. Some implementations

of a B•-tree may have data stored with the keys in leaf

nodes and others have accession lists or pointers to

accession lists stored with the keys in leaves. Therefore,

the structure of leaf nodes may differ from the structure of

the upper level nodes.

A successful random search in a B•-tree begins at the

root as in a conventional B-tree but it is detected only

when a matching key is found at the leaf level. Sequential

processing begins at the leftmost leaf and is aided by

following the horizontal links across the leaves. Other

21

requests such as 'find all records with key values between x

and y' can be answered by locating the first qualified

record in the bottom level and then processing sequentially

the following records from that point until the key value

exceeds y.

random

sequential/
access t:--

I I I I I I\
v v v v v v

index: a
B-tree

L> D-> D-> D-> D-> D-> D · · · · D-> D sequence
set

Figure 5. A B+-tree with Index and Sequence Set

In order to fully appreciate a B+-tree, one needs to

consider the advantage of using it to perform sequential

processing and 'find next' operations. Since horizontal

22

pointers can be followed during sequential processing of a

file, no node will be accessed more than once, so space for

only one node need be available in primary memory.

Similarly, at most one access can satisfy a 'find next'

operation. Besides these advantages, the B•-tree approach

retains logarithmic access time properties for random

access. Thus, B•-trees are well suited to applications

which require both random and sequential processing.

Pref ix B•-Trees

In a B•-tree, only the keys in the bottom level are

associated with data records. Keys in upper B•-index nodes

are duplicated from bottom level keys and serve merely as a

roadmap to guide the search to the correct leaf. This fact

implies that there ~s no need to store actual keys in the

upper level nodes as long as they can direct the search path

correctly. This suggests a way for further improvement.

Bayer and Unterauer (3) propose a refined structure, the

Prefix B•-tree, which stores parts of keys, namely,

prefixes, in the upper index part of a B•-tree. The major

advantage of a pref ix B•-tree is that it decreases access

time as well as saves space, as may be seen in the

subsequent discussion.

Bayer and Unterauer (3) actually call their data

structure a pref ix B-tree even though they define their data

structure based on a 'B*-tree'. There is some inconsistency

in B-tree literature about 'B*' and 'B•'. Since a 'B*-tree'

23

is defined as a B•-tree in this report, the name prefix

B•-tree is then chosen for Bayer and Unterauers' data

structure. Figure 6 illustrates the general concept of

pref ix B•-trees. Suppose that a leaf is already full and

contains the sequence of keys 'index', 'key', 'pointer' and

'search'. In order to insert the key 'separator', this leaf

node must be split into two and the key 'pointer' could

propagate into the upper index a~ usual. In fact, however,

any of the strings, 'pointe', 'point', 'poin', 'poi', 'po',
·- .

or 'p' w6u1d ~o as nicely as 'pointer' does. Since it makes

no difference for directing searches to leaves, the shortest

one among these candidates, say 'p', can be chosen to save

space.

Two kinds of prefix B•-trees are described by Bayer and

Unterauer, simple prefix B•-trees and prefix B•-trees. A

simple pref ix B•-tree is a B+-tree in which the B•-index is

replaced by a B-tree of separators. Those separators are

prefixes of actual keys which are chosen carefully to

minimize their length. In pref ix B+-trees, the prefixes are

not fully stored due to the fact that all the keys in a

given B+-tree subtree may share a common prefix. If the

common prefix can be reconstructed from the subtree's

predecessor as the tree is searched, then it need not ever

be represented within the subtree itself.

length of separators can be further reduced.

Therefore, the

It should be noted at this point that in textual

database environments, actual keys in leaves are variable in

24

length as well as separators in upper level nodes. Thus,

both separators and actual keys can easily be accommodated

by controlling the number of occupied bytes or words in a

node rather than the number of keys or separators. However,

additional structure information such as number of words or

bytes used, number of separators stored, and length of each

separator may be required to be kept in a given node in

order to facilitate subsequent · updates and internal

searches. Two alternative node organizations of pref ix

B•-trees are shown in Figure 7.

index key pointer search

(a)

index key pointer search separator

{b)

Figure 6. {a) A Leaf Node of a B•-tree; {b) Result
of Inserting the Key 'SEPARATOR' into
the Leaf Node of {a)

25

NW, NS and l(i) represent number of words or bytes

used, number of separators stored within this node and the

length of the separator s(i) respectively. In the upper

nodes, p(i) is a pointer to a descendant node as usual.

Howev~r, in the leaf node, s(i) is an actual key and p(i)

may have several interpretations, such as a pointer to an

external node which might be a data record or an accession

list identified by s(i), or the data record or the accession

list itself. In the latter case, if the data record or the

accession list is variable in length, then one more field

which indicates the number of words occupied by such data

record or accession list needs to be associated with p(i).

The last pointer in each leaf node does not associate with

any key in that node, so that it can be used as a horizontal

pointer to the next leaf to the right. It should be"noted

that the structure of leaves .need not be identical to that

of upper level nodes. Moreover, it is possible to have

several types of leaves residing in the bottom level in some

practical applications.

Internal searches can make use of NW, NS and l(i) to

either rapidly and precisely position the next separator, or

detect whether or not successive separators reside within

this node. During insertion and deletion, NW can be

utilized to determine if splitting or merging is necessary

to be performed. Of course, the information needs to be

updated each time insertion or deletion is encountered.

NW NS p(O) 1(1) s(l) p(l) 1(2) s(2) ••. l(j) s(j) p(j)

NW NS 1(1) 1(2) •. l(j) p(O) s(l) p(l) ••. s(j) p(j)

Figure 7. Two Possible Node Organizations
for Pref ix B•-trees

Simple Pref ix B•-Tree

26

un-

used

un-

used

Bayer and Unterauer (3) defined the separator as: Let x

and y be an arbitrary adjacent pair of real keys which

consist of alphabetic characters and the ordering of the

keys is the alphabetic order, then any string s with the

property

x < s ~ y

can be used as a separator to separate x and y. Among those

possible separators, a unique prefix V of y, such that no

other separator between x and y is shorter than y, is chosen

to be the separator in the simple pref ix B•-tree approach.

Thus, the separator used in this approach is the pref ix of

the larger key in a key pair and its length should be as

short as possible.

Root---,
v

v
subtree

0

Eiil---------v
v subtree

~JcoNs j coNTRI
1

2

v v v
10.------.

lcoM . coNI
11 12 I CONT I I coo I---.

100 v
110 v

construction
consular

120 v

I control I
v lcollatel v

101..-----.
121 ..-------.

v
command
compiler

111 ..-------.
!continue!

v
10 2------.

connect
connection

Figure 8. A Simple Prefix B+-tree

coordinate
coordination

27

According to Bayer and Unterauer's (3) suggestion,

simple pref ix B+-trees only allow the shortest separators

being moved from the leaf node to its predecessor node when

the leaf node is being split. When a nonleaf node is being

28

split, one of the separators of that node is moved up one

level, no further compression is performed on it. The

insertion, deletion and search algorithms applied to simple

pref ix B+-trees are similar to those on B•-trees, except

that variable length separators are used to guide the

search. Figure 8 depicts an example of a simple pref ix

B+-tree in which separators in upper level nodes are

represented by upper case letters, while lower case letters

are used for actual keys in the bottom level.

Pref ix B+-Trees

In fact, sets of keys that arise in practical textual

database applications are often in clusters. This implies

that the collating sequence 'distance' between successive

separator words may be small and hence all the separators in

a given subtree of a simple prefix B+-tree may share a

common prefix. With the goal of further reducing the height

of the index part of simple pref ix B+-trees, the common

pref ix can be kept in the predecessor nodes rather than

repeatedly stored in the subtree itself as long as the

common prefix can be reconstructed from the subtree's

predecessor. Based upon this idea, Bayer and Unterauer

proposed the pref ix B+-tree.

Consider Figure 9 as a partial index structure of a

simple pref ix B•-tree. Node P denotes an arbitrary upper

level node, LL(P) and SU(P) are the largest lower bound and

the smallest upper bound of node P respectively, which are

29

determined from the predecessor node of node P by tree

structure definition. For all keys k or separators s which

are or might be stored in node P or the subtree with node P

being the root, the following holds:

LL(P) .S. k < SU(P)

LL(P) < s < SU(P).

In node p, p(O), p(l), ••.•. , p(j) are pointers to the

successors of node P, which are denoted as node p(i) for

0 s i ·~ j, and can be either upper level nodes or leaf

nodes; s(l), s(2), •••.• , s(j} are separators, s(j} being the

last one on node P. In order to focus attention on the

separators and pointers, other structural information which

may facilitate search and update processes is not presented.

Similar to LL(P) and SU(P), let LL(p(i)) and SU(p(i))

for 0 ~ i ~ j denote the largest lower bound and the

smallest upper bound of node p(i). Therefore, LL(p(i)) and

SU(p(i)), for 0 Si< j, correspond to the leftmost and

rightmost entries in each of the following pairs,

respectively:

(LL(P), s(l)), (s(l), s(2)), •.••• , (s(j), SU(P)).

That is (3, p.17),

-- [s(i) LL(p(i))
LL(P)

[
s(i)

SU(p(i)) =
SU(P)

for i = 1,2, ,J

for i = 0

for i = 0,1, ,j-l

for i = j.

Then obviously, if all separators or keys in node p(i)

30

have a nonempty common prefix c(i), it must be the one

defined as follows: Let c(i) be the longest common prefix

(possibly the empty string) of LL(p(i)) and SU(p(i))), then

the common prefix c(i) of node p(i) is defined as:

c(i)l(j) if LL(p(i)) = c(i)l(j)z and SU(p(i)) =
c(i)l(j+l), where l(j) preceed l(j+l)

c(i) = immediately in the collating sequence
and z is an arbitrary string

c(i) otherwise.

LL(P) SU(P)

node P

p(O) ls(l) lp(l) ls(2) I···· ls(j) lp(j) I unused

~ ~) { \ ?
node p(O) node p(l) node p (j)

Figure 9. Partial Index Structure of a Simple
Pref ix B+-Tree

Reconsider the simple prefix B+-tree in Figure 8. It

could be found that there are several adjacent separator

31

pairs sharing the common pref ix which leads the same common

prefix to be repeatedly stored in the lower levels. Based

upon the simple prefix s•-tree in Figure 8, Figure 10 shows

the following: {a) the separator pairs sharing common

prefixes, {b) the shared common prefix c{i), {c) the rule

used to determine c(i): rule 1 represents c(i) = c{i)l{j),

while rule 2 represents c{i) = c(i), and (d) the nodes from

which c{i) can be removed •

. ·- ._; .·.

TABLE I

COMMON PREFIX IN SIMPLE PREFIX
B•-TREE OF FIGURE 8

separator common rule node from which
pairs ·prefix used c (i) can be removed

CO, D c 1 1, 10, 11, 12
CO, CONS co 2 10

CONS, CONTR CON 2 11

From Figure 10, it is apparent that the prefix 'c',

'co', 'con' and 'c' can be removed from node 1, 10, 11, and

12 respectively. Therefore, by using this pref ix

compression technique, the simple prefix s•-tree in Figure 8

can then be modified to yield a pref ix B+-tree which is

illustrated in Figure 10.

Pref ix compression on a leaf node without regard to its

32

predecessor can be employed to facilitate sequential

processing without ancestry information.

Root---,
v

......------E·iJ--------.
I p(l)
v

v
subtree

0
~I -P<-10-)~1 ~,o-Ns~i-oN-T~Rj~~~I
v v v

v
subtree

2

100 110 128---....

I
p(lOl)

110 v

construction
consular

120V

jcontroll
v

100 v

jcollatel V
121 .-------....

101 ..------. ---.... v
command
compiler

v

111 ------.
!continue!

10 2 ..-------.
connect
connection

coordinate
coordination

Figure 10. Prefix B+-Tree Derived from the Simple
Pref ix B+-Tree of Figure 8

33

Search, Insertion and Deletion

Pref ix B•-trees are designed to combine some of the

advantages of B-trees, digital search trees and key

compression techniques as may be seen in the subsequent

examples which illustrate the underlying algorithms for

processing pref ix B•-trees. All the examples are based upon

the pref ix B•-tree depicted in Figure 10.

To search for a key 'COMPLEX', the following steps are

encountered:

1. Search root node Root, pointer
followed, since 'CO' < 'COMPLEX' <

p(l)
ID I •

is to be

2. Determine the common prefix for node 1 from 'CO'
and 'D', yielding 'C'.

3. Remove 'C' from 'COMPLEX', yielding 'OMPLEX'.

4. Search node 1, pointer p(lO) is to be followed,
since 'OMPLEX' < 'ONS'.

5. Determine the common prefix for node 10 from 'CO'
and 'CONS', yielding 'CO'.

6. Remove 'CO' from 'COMPLEX', yielding 'MPLEX'.

7. Search node 10, pointer p(lOl) is to be followed,
since 'M' < 'MPLEX' < 'N'.

8. Search node 101 for the full key 'COMPLEX". Search
terminates unsuccessfully since 'COMPLEX' is
greater than the largest key 'COMPILER' in this
node.

Searching for a key en an index node can be summarized

as two steps: (1) Determine the common pref ix for this node

from its largest lower bound and its smallest upper bound.

(2) Remove this common prefix from the original search

argument, and then compare this new search argument against

the partial separators in this node to locate the descendant

34

node which needs to be examined next.

General compression techniques, such as front

compression, rear compression or combination of these two

are to eliminate as many as possible characters from keys

according to some rules, as long as the current key differs

from the previous and the next one (5). Since the length

and the characters of the removed parts are not the same, a

significant amount of processing overhead is required as

searching proceeds, namely, the need to decompress the keys

on the current node first or to change the search argument

to be used for comparison with each search step. On the

other hand, the way the common prefixes of pref ix B+-trees

are constructed is very similar to the way of constructing

prefixes in traversing digital search trees, which are to be

examined in the next.chapter. The compressed portions for

all the keys reside in one node of prefix B+-trees, are

identical and are easily determined along the search path.

It is now clear that pref ix B+-trees avoid the main

disadvantage of other compression techniques in terms of

reducing the processing overhead.

Since a failed search operation may be immediately

followed by an insertion operation and a successful one may

be immediately followed by a deletion operation, there is a

need to keep the common pref ix of each node along the search

path for later use.

To insert the key 'CONSTRUCT' and the associated

information, the following steps are encountered:

35

1. Follow the search scheme just described to see if
the key is already present. The search path is node
Root -> node 1 -> node 11 -> node 110.

2. Since the search failed,
the associated information
the position in node
'CONSTRUCTION'.

the key 'CONSTRUCT' and
needs to be inserted at
110, before the key

3. Suppose an overflow on node 110 occurs as
'CONSTRUCT' is attempted to be inserted. Node 110
is then split into two nodes 110 and 110'.

4. There are two possibilities to rearrange
'CONSTRUCT', 'CONSTRUCTION', and 'CONSULAR' into
node 110 and 110'. One of them is to place
'CONSTRUCT' and 'CONSTRUCTION' into node 110 and
place 'CONSULAR' into node 110'. Thus, a new
separator 'CONSU' is selected to separate node 110
and 110'. (another possiblity will be illustrated
later.)

5. The common prefix of node 11, the predecessor node
of node 110 and 110', is 'CON', therefore, the
partial separator 'SU' is then inserted into node
11 without affecting the other separator 'T' on
node 11.

Of course, splits may propagate toward the root and

trigger further splits. In the worst case, splitting

propagates all the way to the root and the tree increases in

height by one level. Figure 11 depicts the new pref ix

B•-tree after 'CONSTRUCT' is inserted according to the above

steps.

In most cases, the insertion can be completed by simply

inserting the key and the associated information into a leaf

node. However, the insertion process is quite complicated

if overflow conditions are encountered. There are two

strategies, namely, node splitting and node equalization

that can be used to handle overflow conditions. The former

is the one used in the previous example which splits the

36

overflow node into two and propagates the separator of them

into their predecessor node, while the later employes a

local distribution scheme to delay splitting until 2 sibling

nodes are full.

v
subtree

0

Ei~-----.v
v subtree

Ir--___ 1,.....I0-NS-i -ON_T__,R 1------,1 2

v v v
10~ 11.---- 12~

Li~ ~·~ ~

102 v

connect
connector

101 v

110' v

jconsularj

120 v

jcontroll

command
compiler

100 v

jcollatel
110 v

construct
construction

111 v

jcontinuej

121 v

coordinate
coordination

Figure 11. Result of Inserting the Key 'CONSTRUCT'
into the Pref ix B•-Tree of Figure 10

37

More complications arise in a pref ix

environment than in a conv entional B-tree or B+-tree. The

lengths of partial separators stored in a given node, say P,

are affected by its largest lower bound and smallest upper

bound which are the partial separators stored in node Q, the

predecessor node of node P. Inserting (in the case of node

split) or rep~acing (in the case of node equalization) a

partial separator into node Q might change the common pref ix

for node P and/or its sibling node, and will cause the

partial separators on them to shrink or expand. therefore,

both (1) predetermining whether or not the equalization to

the sibling node is possible and (2) recomputing the partial

separators on node P may be required for overflow handling.

Moreover, Bayer and Unterauer suggest splitting a node

within an interval around the median key instead of

splitting precisely in the middle when a node must be split.

Their idea can be illustrated by the previous example:

Recall when 'CONSTRUCT' is inserted into node 110, the key

sequence in that node is 'CONSTRUCT', 'CONSTRUCTION' and

'CONSULAR'. Splitting this sequence in the middle between

the first and second would yield 'CONSTRUCT!' as the

shortest separator. Allowing a split point to be chosen one

key to the right yields 'CONSU' as separator. This idea can

be applied to split

nodes. Since similar

both leaf nodes and the upper level

keys differing only in the last few

letters are quite common in practical applications, allowing

38

selection of the shortest separator within a small split

interval may decrease the length of the shortest separators,

and increase the branching degree of nodes, so that it tends

to decrease the height of the index part and improve

performance. ~he tradeoff of allowing a split internal is a

decrease of storage utilization because there can now be

nodes less than half full.

To delete a key 'CONTROL' and the associated

information, the following steps are encountered:

1. Follow the search scheme to locate the leaf node
containing the key 'CONTROL', node 120 is found.

2. Delete 'CONTROL' and its associated information
from leaf node 120.

3. Node 120 becomes empty after the key 'CONTROL' is
deleted. Therefore, merging node 120 with node 111
or redistribution of keys between node 120 and
node 121 is required.

4.

5.

Suppose·
chosen,
process
must be

that merging node 120 with
then node 120 is discarded.

propagates one level up, that
merged onto node 11.

node 111 is
The merging
is node 12

Delete the partial separator 'ONTR',
between node 11 and the original node
their common predecessor node, node 1,
has no need to remian.

which is
12, from
because it

6. Recompute the common prefix for node 11 from its
largest lower bound 'CONS' and smallest upper bound
'D', yielding 'C'.

7. Recalculate the old and new partial separators, 'T'
and '00', on node 11, yielding 'C'.

Figure 12 shows the new prefix B+-tree after 'CONTROL'

is deleted according to the above steps. Figure 13 depicts

the new pref ix B+-tree in the case that redistribution

between node 121 and the original node 120 occurs after

39

'CONTROL' is deleted. Notice that in the latter case,

deletion is done at the leaf level.

Root--,
v

Eiil------..v
V subtree

v
subtree

0 1 2
...-------~------..
v

10~
r:_i~

101 v

102 v

connect
connector

command
compiler

v

111 v

I continue I
v

v 100 v

jcollatel
110 ..------..... coordinate

coordination construction
consular

Figure 12. Result of Deleting the Key 'CONTROL' from
the Prefix B•-tree of Figure 10, Merging
Scheme Is Used

v
subtree

0

Root--i
v

Eiil-----v

40

V subtree

-1 -------

1 -,0-NS __ i_ON_T_Rl~~~I 2

v v .·. ··. v
ioD __ 1_1c~J i21~oruirNATrl

102 v

connect
connector

111 v

lcontinuel

101 v 110 v 120 v

command
compiler

construction
consular

I coordinate I
100 v

I collate I
Figure 13.

v
121 -------I coordination I

Result of Deleting the Key 'CONTROL'
from the Prefix B+-tree of Figure 10,
Redistribution Scheme Is Used

Deletion is the inverse of insertion. It always starts

at a leaf node and in most cases, it is completed by simply

41

deleting the key and the associated information from the

leaf node. However, deletions encounter similar

complications that occur in splitt ing a node during

insertion, if merging two nodes must be done. For example,

merges may propagate toward the root, and the common prefix

of the merged node may change because of altering its

largest lower bound or smallest upper bound. Therefore,

both predetermining and recomputing work which was mentioned

in the insertion process is also required for deletion.

Nevertheless, it should be recalled here that in a

prefix B+-tree, the B+-index is separate from the leaf nodes

and all actual keys reside in the leaves. Therefore, it

doesn't matter which values are encountered through the

search path as long as the path leads to the correct leaf.

This feature simplifies the deletion operation

B+-trees. If the leaf remains at least half

for pref iex

full after

deleting keys from it, the index needs not be changed even

though the pref ix of this deleted key was selected as a

separator. Of course, if the leaf node is less than half

full, the merging or redistribution procedure is used to

adjust values in the B+-index as well as in the leaves.

Evaluation of Pref ix B+-Trees

Both simple pref ix B+-trees and

alternatives of B+-trees. They

pref ix B+-trees

combine some of

are

the

advantages of B-trees, digital search trees and compression

techniques without inheriting their main disadvantages. The

following summarize Bayer and Unterauer's (2 ,

42

p.24)

evaluation:

1. The basic advantages of B-trees,
guaranteeing good worst-case performance
storage utilization, are preserved.

such as
and good

2. The technique of constructing prefixes while
traversing the tree during a search is similar to
digital search trees without the danger of
obtaining unbalanced trees.

3. The techniques of key compression, such as choosing
shortest separators (as in rear compression) and
pruning off the common pref ix from shortest
separators (as in front compression) are applied
without excessive processing overhead.

The main advantage of simple pref ix B•-trees and pref ix

B•-trees are to increase the branching factor, save space,

decrease the height ·of the tree, and hence possibly decrease

access times. However, this method of indexing also

introduces additional complicating factors as follows:

1. The separators or partial separators are variable
length strings, so that each node can have a
different branching factor which is determined by
the internal organization of a node. The index
building and maintainance algorithms do not know
beforehand how many separators can be packed into a
node. They must have the capability of handling
variable length separators.

2. The additional time required to search a node after
it has been read is inevitable due to the varying
location of separators within a node.

3. The separator which is propagated must be unique in
that upper level node. A mechanism must therefore
be added to the node splitting algorithm to insure
uniqueness.

4. Additional processing may be required for some
insertions or deletions which may alter the longest
common pref ix, if prefix B+-trees indexing is used.

According to Bayer and Unterauer's (3) experimental

results, the computing time and saving of disc accesses of

43

using simple pref ix B+-tree and pref ix B+-tree compared to

using the B+-tree in a dynamic environment are shown as

follows:

Computing Time - The time to execute the algorithms for
simple pref ix B+-tree is almost identical to the
time for s+-trees, while pref ix B+-trees need
50-100 percent more time.

Saving of disk accesses - If trees have less than 200
pages, no saving is achieved. For trees having
between 400 and 800 pages, simple prefix B+-trees
require 20-25 percent fewer disk accesses than a
B+-tree. Prefix B+-trees need about 2 percent
fewer disk access than simple pref ixB+-trees.

The above results suggest that simple prefix B+-trees

are more ·cost effective than pref ix s+-trees in a dynamic

environment. Howe.ver, the pref ix B+-tree is probably

superior to simple pref ix B+-tree in a static environment

because minimizing the search time to an index is more

important than minimizing its set up time. For relatively

static databases, the pref ix B+-tree index can be

constructed from a sorted list of keys which identify the

records of that database. The largest common pref ix of

separators or keys can be factored out as usual, but kept

within the same node as the separators or keys reside on.

This modification requires slightly more storage space but

simplifies the search logic. Although the index building

process for pref ix B+-tree index is quite complicated and

costly, it is still worth doing it to obtain the advantages

of less storage and fast retrieval in a relatively static

environment.

CHAPTER IV

TRIE STRUCTURE INDEXING

Besides pref ix B+-trees, the other particularly useful

index structure for handling varying size keys is the trie.

This name was suggested by E. Fredkin (10) in 1960 because

it is a part of information "retrieval". The basic idea

behind the trie structure is to view a key as having

multiattributes. The branching at any level of a trie index

is governed not by the entire key value but by only portion

of it. That is to say, instead of basing a search method on

comparing the entire.key values in the conventional way, one

can make use of their representation as a sequence of digits

or alphabetic characters to build a trie index. The

advantage of a trie implementation is having potentially

fast access time, but the disadvantage is the relative

inefficiency in using storage space. Several approaches are

presented to improve the disadvantage of the inefficient

storage utilization of a trie, as may be seen in the

subsequent discussion.

Digital search trees

section of this chapter.

are illustrated in

The digital search

the first

tree is a

general structure for dealing with multiway branching

decisions based on portions of keys. The trie structure is

44

commonly considered a particular type

tree, even though trie structures were

45

of digital search

developed earlier

than digital search trees. The second section presents the

basic trie structure and the ways it can be improved. The

third section examines some refinements and variants of trie

structures, such as pruned tries, O-tries, linked list

implementation of tries and C-tries.

Digital Search Trees

The search methods can be classified into two

categories according to whether they are based on

comparisons between keys or on digital properties of the

keys (16). The conventional search methods, such as B-trees

and binary search trees fall into the first category, while

the digital search tree is a good example of the second

category.

A digital search tree is essentially an m-ary tree.

Keys of the digital search tree are considered binary coded

to form 0, 1 bit strings. These bit strings are partitioned

into substrings of equal length, such that these substrings

viewed as binary numbers have values between 0 and m-1. As

an example consider the binary case m=2, in which the search

argument is scanned one bit at a time, that is, the length

of the partitioned substrings is one. Figure 14 depicts

such a digital search tree for 10 common programming

languages and software packages, inserted in increasing

lexical order. In order to simplify this example, Knuth's

46

MIX character code (16) is used to provide binary data for

this illustration: the keys have been expressed in MIX

character code which is then converted into binary numbers

with five bits per byte. Table II shows Knuth's MIX

character code and bit string representation for each

alphabetic character.

PASCAL

Figure 14. A Digital Search Tree for 10 Common Pro
gramming Languages and Software Packages,
Inserted in Increasing Lexical Order

TABLE II

KNUTH'S MIX CHARACTER CODE AND BIT STRING
REPRESENTATION FOR EACH

ALPHABETIC CHARACTER

Alphabetic MIX Bit String
Characters Character Code Representation

A 1 00001
B 2 00010
c 3 00011
D 4 00100
E 5 00101
F 6 00110
G 7 00111
H 8 01000
I 9 01001
J 10 01010
K 11 01011
L 12 01100
M 13 01101
N 14 01110
0 15 01111
p 16 10000
Q 17 10001
R 18 10010
s 22 10110
T 23 10111
u 24 11000
v 25 11001
w 26 11010
x 27 11011
y 28 11100
z 29 11101

47

48

From Figure 14 it should be noticed that full keys are

stored in the nodes of the digital search tree as in the

conventional tree structure, but bits of the search

arguments are used to govern whether to take the left or

right branch at each step. Suppose that the word SAS, whose

bit string representation is '10110 00001 10110', is

searched in the tree of Figure 14. SAS is first compared

with ALGOL at the root of the tree. Since there is no match

and the first bit of SAS is 1, the search path is turned to
...

the right and SAS is compared with PASCAL; Since there is

no match and the second bit is 0, the search path is turned

to the left and SAS is compared with PLI; and so on, until

SAS is found (in the case of Figure 14) or the appropriate

place where SAS can be inserted is located.

It is understandable that if bit strings, which

represent keys, are partitioned into substrings of length

two, then the branching factor m of each node could be four,

each of them corresponds to one of the values 0, 1, 2 and 3.

Thus, the search arguments need to be scanned two bits at a

time. It is not difficult to see that the same branching

strategy used in the binary case could also be applied to an

m-ary digital search tree for any m>>>2.

Basic Trie Structure

Although the trie structure is commonly considered a

particular type of digital search tree, it differs from

the basic digital search tree in two major aspects: First,

49

the branching at any node in a trie structure is governed by

constituent character(s) or digit(s) rather than constituent

bit(s) of the keys. Second, the key is not recorded in full

in a trie structure until the first point where the key is

uniquely identified.

Figure 15 shows the basic trie structure for the same

key set as in the digital search tree of Figure 14. There

are two types of nodes in a trie structure, na~ely, the

branch node and the information node. In Figure 15, branch

nodes are represented by solid-line blocks, while broken

line blocks are used for information nodes. Each branch node

is an array of m pointer fields with components

corresponding to digits or alphabetic characters. If keys

are composed of character-valued attributes (English

alphabet), there would be 27 entries in each branch node,

one for each letter of the alphabet and one for the blank

character which is used an end-of-key symbol to insure that

no key may be a prefix of another. At level 1 all key

values are partitioned into 27 disjoint classes depending on

their first character. The i-th pointer field of the root

node contains the pointer to a subtrie which contains all

key values beginning with the i-th alphabetic letter. On

the j-th level the branching is determined by the j-th

character of the search argument. It should be obvious that

the attribute values should have a small, contiguous range,

such as characters or digits, otherwise the size of each

node would be large. When a subtrie contains only one

50

value, it is represented by an information node, a leaf

node. The information node contains a key value, together

with other associated information, such as the data record

or the accession list identified by the key, or the pointer

to the data record or to the accession list.

A F L p s

[10 11 ~ 12 13 14

I ~ v v
11--------- 12------

jFORTRANI !LISP!
--------- ------

L v p A L V A L V N
13.--------.... l22 23 1-----' 20 21~

~-
14 [24 25 26 I
~--~

v
20-------

1 ALGOL I
------- v

21-----
1 APL I

Figure 15.

v v v
22---

IPASCALI
24----- 26--------

1 SAS I ISNOBOLI
----- v

25------
c v I ISLAMI

23L: 30 31

~-~
v v

30----- 31-----
1 PLC I IPLI I

Trie Constructed for Keys of Figure 14,
Sampling One Character at a Time, Left
to Right

51

Searching the trie for a key value X requires breaking

up x into its constituent characters and following the

branching patterns determined by these characters. For

example, the word SAS is searched in the trie structure of

Figure 15, the first letter of SAS, namely S, is looked up

at the root. The pointer field corresponding to S in the

root node indicates to go on to node 14 and look up the

second letter there. Then, node 14 indicates to go on to

node 24 and look up the third letter there. Since SAS is

uniquely identified at level 3, an information node (leaf

node) is encountered and search is terminated successfully.

On the other hand, if the word ASSEMBLER is searched, the

root node directs the search to node 10, looking up the

second character in the same way; node 10 indicates that the

second character shou1d be L or P, otherwise, the search

argument is not in the trie. Thus, searching for ASSEMBLER

is terminated unsuccessfully.

Both insertion into a trie and deletion from a trie are

straightforward. Suppose that two entries, 'PLANS' and

'APPLY', need to be inserted into the trie of Figure 15.

First, an attempt to search for 'PLANS' in the given trie

terminates unsuccessfully at node 23. Hence, 'PLANS' is not

in the trie aod may be inserted here. Next, the search for

'APPLY' leads the search path to the information node 21. A

comparison indicates that the key in node 21, APL, is not

equal to 'APPLY'. Both 'APL' and 'APPLY' will form a

subtrie of node 10. The two values 'APL' and 'APPLY' are

52

sampled until the sampling results in two different values.

It happens when the third letter of 'APL' and 'APPLY' are

compared. The resulting trie after inserting 'PLANS' and

'APPLY' is given in Figure 16.

Suppose that the key 'FORTRAN' needs to be deleted

from the trie of Figure 15. It is done simply by setting the

pointer field corresponding to 'F' of the root node to

null, no other changes need to be made. Next, suppose that

the key 'PLI' needs to be deleted. This deletion leaves

only one key value in the subtrie 23. This means that the

node 23 may be deleted and node 30 move up one level. the

resulting trie after deleting 'FORTRAN' and 'PLI' is in

Figure 17.

It is not hard to discover that the branching decision

in a trie is simply made by indexing the array of pointers,

i.e. the branch node. That is to say, the pointer in the

fourth field of the current branch node is followed, if the

character examined is D; fifth for E; and sixth for F; etc.

Hence, the time required to decide which path to follow at

each node is constant. A trie search is quite fast when

nodes are already in internal memory. However, when nodes of

a trie are kept in secondary storage and require an access

to external storage each time they are to be inspected,

performance of a trie is significantly affected by the

number of levels in that trie. Performance of trie indexes

in internal storage vs. external storage is examined in the
final section of this chapter.

53

A F L p s

[
I ~ v v

--------- ------
jFORTRANI ILISPI
--------- ------

L v p A L v A L V N

·I ~-~ [I_ ~--~I
v v v v

------- --------
I ALGOL I I PASCAL I ISASI jSNOBOLI
------- ---·-----

v

L v p A c v I ISLAMI

s ~ [_e 2
v v v v v

----- ------- ------- ----- -----
IAPLI I APPLY I IPLANSj IPLCI IPLI I
----- ------- ------- ----- -----

Figure 16. Result of Inserting Keys 'PLANS' and 'APPLY'
into the Trie of Figure 15

An unsuccessful search might be faster in a trie index

than in a prefix B•-tree index because it can be detected

54

before the leaf node is reached (recall the previous example

of searching for ASSEMBLER). Unfortunately, nearly 90% of

the arrray entries in Figure 15 are empty, which implies

that trie structure may be quite wasteful in space

utilization. In fact, high-storage cost is the primary

difficulty with the basic trie structure idea.

A L p s

[
~ v

ILISPI

L v p A L V A L V N

~-~ l1-~ v ----~----------
I ALGOL I I PASCAL I

~--~I
v v

ISASI ISNOBOLI
------- v -------- v v

----- -----
IAPLI IPLCI ISLAMI
----- -----

Figure 17. Result of Deleting Keys 'FORTRAN' and 'PLI'
from the Trie of Figure 15

There are two approaches which can be used together to

achieve better space utilization for using a trie index,

namely, reducing the number of levels and reducing the space

required at each node.

55

Several methods for achieving these

two goals are known and will be examined in the next

section.

Refinements and Variants of Tries

Consider building a trie index, using the same

branching strategy as used in Figure 15 for the key set of

Figure 8 in Chapter III on page 27. A trie loses its

advantage because of the distribution of the keys. For

example, a trie requires ten iterations to distinquish

between COORDINATE and COORDINATION. Trie structures were

originally designed for storing alphabetic character

strings, therefore it is understandable that the attribute

testing order is from left to right, one at a time.

Nevertheless, when a key is viewed as a k-tuple, in which

attributes are unrelated, both examining all the attributes

of keys and testing attributes in left-to-right order are no

longer necessary. This fact leads to several ways to reduce

the space requirement of a trie: One is pruning a trie

which eliminates useless attributes; the other is reordering

attribute testing which moves the useless attributes to the

end where they will not be reached during a search.

Moreover, the number of levels in a trie can be limited to

some fixed number by storing more than one key in each

information node (leaf node), so that both the number of

branch nodes and the number of information nodes can be

reduced.

56

Pruning ~ Trie

There are two kinds of tries: (1) tries in which each

attribute is tested, and (2) tries in which testing of

attributes stops when a key has been distinguished. The

former are called full tries, while the latter are often

called pruned tries (8). Figure 18 depicts a full trie and

a pruned trie in a simplified form (each I I . represents a 27

entry branch node and '=' represents an information node),

which corresponds to the trie of Figure 15.

It is obvious that all nodes marked by * in Figure

lB{a) do not further divide the sets of keys. Their

omission would result in a smaller trie; they are useless.

In the pruned trie of Figure 18(b), which is actually the

same as the one of Figure 15, there is no internal node

corresponding to only one leaf node: all useless attributes

are eliminated. It should be noticed here that pruning a

trie only eliminates leaf chains but not internal chains.

Figure 19 {a) and {b) show a leaf chain and an internal

chain respectively. A leaf chain starts a node, the head of

the leaf chain, whose predecessor has more than one

successor but its descendant and itself have at most one

successor. A pruned trie is formed from a full trie for the

given key set by deleting descendants of all the heads of

leaf chains.

However, by pruning a trie, some information about keys

may be lost. So, although correct queries are not affected,

some incorrect queries may report success. In this case,

57

probably one more access to the information node is required

to verify whether or not the search is successful.

Pruned tries can be further improved by eliminating

internal chains, as will be seen in the section of order-

containing tries. Since pruning is such a basic space-

saving operation, it is assumed that all tries are pruned

hereafter in this thesis.

Reordering Attribute Testing

Given a set of key values to be represented in a trie

index, the number of levels in the (pruned) trie will

obviously depend on the attribute testing order used to

determine the branching at each level. This testing order

can be defined by a sampling function SAMPLE(X,i) which

appropriately samples the key X for branching at the i-th

level (14). Several sampling functions are shown as

follows, where X = x(l)x(2) x(n):

(a) SAMPLE(X,i) = x (i)

(b) SAMPLE(X,i) = x(n-i+l)

(c) SAMPLE(X,i) = x(r(X,i)),
for r(X,i) a randomization function

[x(i/2) if i is even
(d) SAMPLE(X,i) =

x(n-(i-1)/2) if i is odd.

The example trie of Figure 16 uses the sampling

function (a) and results in four levels, requiring five

branch nodes. Using the function (b), which is sampling one

58

*
G 0

* *
0 T p c M B

* * * = *
L R A 0

* * *
A L L

*
N

=
(a)

(b)

Figure 18. (a) A Full Trie, and (b) a Pruned Trie for
Keys of Figure 15, Sampling One Character at
a Time, Left to Right

59

character at a time, right to left, on the same key values

yields the trie of Figure 20, which has only three levels

and requires only two branch nodes. Reordering attribute

testing to reduce the size of a trie is an attractive

proposition~ an ordering which yields a minimum size trie is

desirable. However, choosing the optimal attribute testing

order or sampling function for any particular set of key

values is very difficult. The property of an attribute

being useful or useless is related to the occurrence of an

attribute in a particular trie and may not be known

beforehand. Therefore the attribute testing order for a

volatile file must be dynamic and used during or after a

trie has been constructed.

/
deleted

when
pruning

a
trie

Head

Leaf
Chain

not
deleted

when
pruning

a
trie

=
(a) (b)

\

l Internal
(Chain

)

Figure 19. (a) A Leaf Chain and (b) an Internal Chain

60

Although optimal attribute testing order is very

difficult to find, Comer (9) summarized four heuristics,

which employ computationally efficient procedures to produce

tries which are smaller than a randomly ordered trie,

although they may not be minimum. The following shows these

four heuristics (heuristic 2, 3 and 4 based on heuristic 1

but several extensions to that idea are considered):

Heuristic 1 - Elimination
When building a trie,
each depth which can
keys.

of Useless Attributes
select a useful attribute at
further divide the sets of

Heuristic 2 - Splitting Heuristic
When building a trie, select an attribute at each
depth which adds the most nodes (including leaves).
Among all attributes adding the maximum number of
nodes, select one which adds the most leaves.

Heuristic 3 - Greedy Heuristic
When building a trie, select an attribute at each
depth which adds the most leaves. Among all
attributes adding the maximum number of leaves,
select one which adds the most internal nodes.

Heuristic 4 - Leaf Greedy Heuristic
When building a trie, select an attribute at each
depth which adds the most leaves. Among all
attributes adding the maximum of leaves, select one
which adds the fewest number of internal n.odes
greater than zero.

Heuristic 1 attempts to reduce the space requirements

of a trie by eliminating useless attributes. Heuristic 2

tends to break up the sets of keys rapidly, yielding leaves

earlier in the trie. Both heuristic 3 and heuristic 4

extend the idea of generating leaves as soon as possible,

using it as the primary criterion for selecting attributes.

Heuristic 3 reverses the criteria used in heuristic 2, and

61

the resultant tries tend to be short, but wide. Heuristic 4

attempts to yield leaves as fast as possible, avoid those

attributes which would make the trie wide. Thus, the tries

produced by heuristic 4 are usually narrow, but long. A

more thorough treatment of each heuristic and their cost

criterion can be found in Comer (9).

c E I L M N p s

~--~ -t t
v v v v

------ ------
IPLI I ISLAMI ILISPI

v ------ v ------ v

ISNOBOLI I FORTRAN I ISASI

A v 0 p

~ 1-1
I

v v v
-------- ------- -----
I PASCAL I I ALGOL I IAPLI
-------- ------- -----

Figure 20. Trie Constructed for Keys of Figure 14,
Sampling One Character at a Time, Right
to Left

Besides the number of nodes, the maximum number of

62

levels in a trie is a critical element affecting the trie

performance, especially in the case that most of the nodes

of a trie index must reside on secondary storage.

Entering Multiple Keys

The maximum number of levels in a trie can be kept low

by adopting a different strategy for managing information

nodes (leaf nodes). If the maximum number of levels is

limited to n, then all key values that are synonyms up to

level n-1 can enter the same information node. That is to

say, information nodes need to be designed to hold more than

one key value. If the attribute testing order is chosen

properly, there will be only a few synonyms in each

information node and hence can be processed in internal

memory during retrieval (14). Figure 21 shows the use of

this strategy on the trie of Figure 16 with n=3.

All the above discussions deal with a fixed, global

ordering of attribute testing which applies to all paths

from a root to a leaf in the trie. Another alternative for

reducing the space requirement of a trie is to test

attributes in different orders along different paths from a

root to a leaf. This implementation is called an O-trie, in

which the order of attribute testing is contained in the

node itself.

O-tries (Order-containing Tries)

The idea of an O-trie is taken from PATRICIA (Practical

63

Algorithm To Retrieve Information Coded In Alphanumeric),

which is an economical and flexible indexing technique,

based on digital properties of keys, designed by Morrison

(19). In PATRICIA, each node in the tree includes extra

information telling how many attributes to 'skip' in the

ordering. Based upon PATRICIA, Douglas Comer (9) proposes

an even more generalized structure, an O-trie, in which

information is added to each node telling explicitly which

attribute to test at that node. Suppose that there are k

attributes, only log k extra bits are needed in each node to

specify which attribute to test. Figure 22 shows one

possible O-trie for the set of keys in Figure 8, in which

every branch node has at least two sons. The numbers in the

internal nodes of this O-trie represent the position of the

letters which should be tested.

Figure 23 shows one of the optimum pruned

the global attribute testing order 6, 3, 8, 11.

four levels

marked by

and seven branch nodes

* indicate the internal

in this trie

chains which

tries with

There are

and nodes

cannot be

removed by just pruning a trie. All the four heuristics for

pruned tries produce the same trie as shown in Figure 23, if

the attribute testing order is 6, 3, 8 and 11. It can be

now concluded that the size of a trie in terms of number of

levels and nodes can be reduced further by relaxing the

requirement that there be a global testing order.

Building an O-trie probably requires two passes:

starting with an arbitrary attribute order, constructing a

64

trie, and then reordering attribute testing within the

various subtries to reduce the size. Although an O-trie is

a good approach to reducing the storage requirement for a

trie, finding the optimum attribute testing orders for

various subtrees still implies much complexity.

A F L p s

[_~ ~---
v v

!FORTRAN! ILISPI

L V P A V L A L V N

'.S ___ != I
!PASCAL~

~--~
v v _=:r~-1-

IALGOL, ~ ISASI ISNOBLEI
------- v -------- v ----- v --------

IAPLI !PLC PLII ISLAMI

Figure 21. Trie Obtained for Keys of Figure 15 When
Number of Levels Is Limited to 3, Key
Has Been Sampled Left to Right, One at a
Time

65

The refinements and variants mentioned above, such as

pruning a trie, reordering attribute testing, entering

multiple keys into the same information node and including

the local attribute testing order in each branch node

itself, are designed to reduce the number of levels and the

number of nodes in a trie structure. The following

discussion will illustrate ways to reduce the space required

at each node.

1 2 3 4 5

1 Connect
4 Coordination
7 Command

10 Construction

6 7 8

2 Connection
5 Compiler
8 Continue

11 Collate

3 Coordinate
6 Consular
9 Control

Figure 22. An 0-trie for the Set of Keys of Figure 8 (# of
Levels = 3, # of Branch Nodes = 5)

*
n

a 5 6 7 8
b

= 1 Connect 2 Connection
1 2 3 Coordinate 4 Coordination

5 Compiler 6 Consular
7 Common 8 Continue
9 Control 10 Construction

3 4 11 Collate

Figure 23. An Optimum Pruned Trie for the Set of Keys
in Figure 8, with the Global Attribute
Testing Order 6, 3, 8, 11(# of Levels = 5,
of Branch Nodes = 8)

Linked List Implementation

66

Since most of entries in the branch node tend to be

empty, omitting these empty entries is highly desirable.

Doubly chained trees, which are essentially linked list

implementations, are proposed by Sussenguth (23) to save

space at each node. In this linked list implementation, all

sons of a node x are placed on a list, which corresponds to

a branch node, with x pointing to the first entry. An entry

67

is added to a list only in the case when an attribute is

present. It is clear that the number of entries in the

linked list implementation is not fixed, but determined by

the distribution of keys, so that storage corresponding to

empty entries is saved. Figure 24 illustrates the linked

list implementation of the trie shown in Figure 23, 'A'

being the null link and '=' being the information node.

v v v v

~
v

=

Figure 24.

~- EJ->~
I I

EJ->~
I I

= = = =

v

=
The Linked List Implementation of the Trie

Shown in Figure 21

68

From Figure 24, it must be noticed that all the levels

of the doubly chained tree take much less space than those

of the trie of Figure 21. However, this advantage is at the

expense of searching time, since branching is no longer

determined by simply indexing the node array of pointers.

Additionally, the time required to decide which path to

follow at each linked list is no longer constant; nodes on

the right-hand side requires a longer search than those on

the left-hand side. D. Comer (9) summarized the heuristics

proposed by Severence and Yao for a compromise about the

space-time tradeof f of the doubly chained tree and the

conventional trie structure, in which the first few levels

are represented by branch nodes and the remaining levels by

doubly chained trees.

C-tries (Compressed Tries)

The compressed trie or C-trie approach, presented by

Maly (18), has the same underlying tree structure as a trie

but can save a lot of space. The basic distinction between

tries and C-tries is that, instead of storing explicit

pointers in each branch node, C-tries utilize single bit

fields facilitated by other information to locate the proper

descendant at each node. This improvement in storage

requirements is achieved at the cost of decreasing the

flexibility of the structure. It implies that the main use

of C-trie is for situations where index files are relatively

69

static, as will be seen in the subsequent illustration.

Similar to a trie structure, there are two types of

nodes in a C-trie, ie., the internal branch node and the

leaf node. A branch node N on level j in a C-trie has the

structure of Figure 25(a). The field BRANCH-INDICATOR

corresponds to pointer field of a trie. Retrieval of keys

is made possible by referring to the fields BRANCH-

INDICATOR, APDRESS-OFFSET and the base address of the

current level. Interpretation of each field is stated

below:

NODE-TYPE: a one bit field
The internal branch node has the NODE-TYPE = 0

BRANCH-INDICATOR: a m-bit field
Each bit corresponds to a field of a trie with the
first bit corresponding to a blank character. The
k-th bit is set when one or more keys pass this
node N and have their j-th attribute being the k-th
character in ·the attribute set.

ADDRESS-OFFSET: a field less than or equal to log n
bits where n is the number of keys. This field
gives the number of nonzero bits of the BRANCH
INDICATOR fields in the nodes on level j to the
left of node N.

In order to get the descendant address of the x-th

field of BRANCH-INDICATOR on level j, both the number of

1-bits to the left of and including the x-th bit in BRANCH

INDICATOR field and the number in ADDRESS-OFFSET field of

the given node be added to the base address of the nodes on

level j. The base address of each level is computed after

the C-trie structure is constructed. Hence, this descendant

address calculation might become more clear after the

construction of C-trie is illustrated.

70

On the other hand, a leaf node in a c:trie may have the

structure of Figure 25(b). Interpretation of each field is

stated below:

NODE-TYPE - a one bit field
The leaf node has the NODE TYPE = 1

DST - a one bit field
DST = 0 if suffix can fit into SUFFIX
DST = 1 otherwise

SUFFIX - a multiple bits field depending on selection
This field contains the suffix x(j+l) ... x(m) of the
key x(l) •••• x(m) for those having DST= 0 or
contains a pointer to a suffix table for those
having DST = 1

RECORD-ADDRESS - a field less than or equal to µog~nj
bits, where n is the number of keys. This field
contains a pointer to the corresponding actual
record residing in secondary storage

NODE-TYPE BRANCH-INDICATOR ADDRESS-OFFSET

1 m flogin l
(a)

NODE-TYPE DST I SUFFIX I RECORD-ADDRESS

1 1 flog.:.i. n 1
(b)

Figure 25. Structure of (a) an Internal Branch
Node and (b) a Leaf Node in a C-trie

71

Of course, there is no restriction that a leaf node .
must have the same size as an internal branch node does.

Hence, the size of the SUFFIX field can be chosen properly

according the properties of the key set, so that the expense

of both the space used to storing suffixes and the time

spent to looking at a suffix table can be minimized as much

as possible.

A C-trie for a given set of n keys can be constructed

from an ordered list of keys, one level at a time, top to

bottom. Each level j corresponds to the (j+l)-th att:riblite

in all the 'unfinished' keys. A key is removed from the

list when either its attribute currently processed is a

blank or it becomes uniquely identified. The result of this

construction is a sequence of nodes stored as a contiguous

bit string. First is the root node, which is followed by

all nodes on level 1 from left to right, followed by all

nodes on level 2, etc. Each node can be packed into

sequential words to form an addressible entity. The base

address of the nodes on each level is one less than the

address of the first node on the.given level.

Evaluation of Trie Structures

The trie structure is a convenient way of indexing

files in which a key consists of a number of attributes. A

trie index is efficient in time if it is small enough to fit

in primary memory. In this case, a trie index can be read

in once and will be searched internally.thereafter. Since

72

branching at each node of a trie is simply by indexing an

array of pointers, it is faster than other index structures.

Furthermore, if there is a high probability of unsuccessful

search, full tries with linked list implementations on the

lower levels can be employed for this situation, because an

unsuccessful search will work faster in the trie and the

entire key can be checked in the trie index without

externally searching the information node.

However, when a trie index is too large to fit in

primary memory, that is, it must be kept in a secondary

storage, the number of levels in a trie becomes a critical

problem. In general, trie indexes require more levels and

more nodes to represent a given set of keys than other

multiway index structures~ even though their nodes are

usually much smaller than those of others. This fact

implies that more accesses to the secondary storage might be

required before a successful search can be reported, if a

trie index is used. Forturnately, the size of a trie,

namely, the number of levels as well as the number of branch

nodes, can be dramatically reduced by selecting a proper

order in which attributes are tested.

Choosing a global ordering of the attributes which

produces a minimum size trie is difficult, especially when

the key set is quite volatile. Although several heuristics

have been presented to produce tries which are close to

optimal in some sense, performance of them still inevitably

degrades after significant number of insertions and

73

deletions have been done. In order to maintain good

performance, updating attribute testing order according to

the current occurrence of attributes in a trie after some

period of time, might be desired. For this purpose, order

containing tries (O-tries) might be a good alternative. In

order to determine when an O-trie needs to be partially

reconstructed, it is useful to add a count field to each

branch node. This count field will at all times indicate

the total number of insertions and deletions made at all

subtries with the given node being the root. Subtries could

be reconstructed according to the new local attribute

testing order which yields small subtries, as soon as the

count field of their root node exceeds the predetermined

limit. Therefore, local optimization, both in the number of

levels and the number of nodes, can be always expected.

On the other hand, for large and relative static

databases such as dictionaries, compress tries (C-tries)

present a compact method of representation , yet facilitate

reasonably fast searching. Since the fields in a C-trie are

only one bit long, it can be expected that C-trie indexes

are usually much smaller than other indexes and thus

probably can fit in primary memory most of time. Hence,

after the whole index is read in, all index searching can be

done internally. External access to the information node is

required only when the search of index is successful.

It can be concluded now that a trie index provides the

following advantages compared to a prefix B•-tree index, if

an

74

appropriate way to represent the trie is chosen:

1. Shorter internal searching time

2. Greater ease of insertion and deletion

3. Greater convenience in handling arguments of
varying lengths

4. Greater flexibility of key compression which is
achieved by selecting attributes testing order.

However, the main disadvantages of trie indexes are

those: (1) storage utilization is relative low and (2)

number of levels is relative large. The latter is more

significant when external searching to the trie index is

required. Moreover, trie index is not in uniform depth,

thus search along different path from the root to a leaf

might require various number of accesses to a secondary

storage, it is always undesirable. Since the efficiency of

a trie reduces as the number of levels increases, it might

be a good idea to index large databases using a tr-ie for the

first few levels and then switch to some other technique.

Of course, if the whole trie index can fit in primary

memory, 0-trie and C-trie approaches are still good enough

for dynamic and static databases respectively.

CHAPTER V

SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR

FURTHER RESEARCH

Among many existing techniques and structures used for

indexing a database, prefix B+-trees and trie structures as

were presented in previous chapters, might be the best two

candidates for indexing a textual database. A summary of

their basic structure, advantages, disadvantages, possible

refinements, possible usages and suggestions for further

research follows.

Summary of Pref ix B+-tree Indexing

Basic Structure

A prefix B+-tree is a variation of a standard B-tree.

The B+-tree structure implies that all actual keys reside in

leaf nodes.

Key compression techniques are used. Shortest

separators (rear compression) with common prefixes being

pruned off (front compression) are stored in internal branch

nodes to direct the search to leaf nodes. Since the length

of separators is variable, the branching degree of each node

is determined by its internal organization. It should be

noted that pruned prefixes can be reconstructed while

75

76

traversing the tree during a search.

Advantages

Compared to tries, faster retrieval and less storage

requirements generally result if the storage medium is a

secondary storage device such as a disc. Besides good

worst-case performance and good storage utilization of a

B+-tree are retained, the number of both levels and pages

(nodes) required by the index part of a prefix B+-tree are

even less than those of a B+-tree. Therefore, retrieval

time, number of disc accesses and storage requirement are

reduced by using pr~fix B+-trees.

Predictable search performance results.

pref ix B+-tree is predictable and uniform.

The depth of a

Hence, the

search cost can be predicted and each request requires about

the same time.

Disadvantages

The complexity of index building and maintenance

algorithms of

so that the

a prefix B+-tree is increased significantly,

time required to execute the maintenance

algorithms for a prefix B+-tree is much more

required by a B+-tree (50 -100 percent more).

internal searching time is increased due

location of separators within a node.

than the time

Additionally,

to the varying

77

Possible Refinement Schemes

Instead of splitting precisely in the middle when a

node must be split, a split interval can be selected to

decrease the length of the shortest separators and increase

the branching degree of nodes, so that it tends to decrease

the height of the index part and improve performance.

If the key set is relatively static, the common prefix

can be kept within the same node as the separators and keys

in order to simplify the search logic at the expense of

slightly more storage space.

Possible Usages

Pref ix B+-trees are suitable for indexing large textual

databases, in which key words are of varying length but are

in clusters and the index has to be reside on secondary

storage for external searching.

A pref ix B+-tree is suggested to be used in a

relatively static environment because the advantage of less

storage and fast retrieval can be earned by only building

the index once without frequent maintenance. However, a

simple pref ix B+-tree might be more cost effective than a

prefix B+-tree in a dynamic environment, because storing

"shortest" separators in the branch node without pruning

their common prefixes can save considerable amount of

computing time required by some insertions and deletions

which might occur very frequently in a dynamic environment.

78

Suggestions for Further Research

Bayer and Unterauer (3) argued that no satisfactory

explanation can be made for the unexpectedly high computing

time to execute the algorithms for a prefix B+-tree. Tests

can be performed to determine empirically, as well as

analytically, the causes of the high computing time and

alternatives to improving it.

In practical applications, sets of keys are of ten far

from random and they tend to be in clusters with the

identical leading letters. Choosing a suitable split point

can be expected to reduce the length of the shortest

separators. Of course, increasing the number of separators

around the median key, which is considered for choosing a

suitable split point results in shorter "shortest"

separators and tends to decrease the height of the index

part. However, the storage utilization might then be

decreased since there can now be pages (nodes} less than

half full. More empirical data can be obtained to find the

effect of choosing different sizes of split interval.00680

.us Basic Structure;.sk 2 a The amount of the effect could

be given in terms of height, the number of pages used and

the average stroage utilization.

Summary of Trie Indexing

Basic Structure

A trie structure is a particular type of digital search

79

tree with the following characteristics: each internal

branch node is an array of m pointer fields with components

corresponding to digits or alphabetic characters, and the

branching at any node in a trie structure is governed by

constituent character(s) or digit{s) rather than entire

keys. The key is not recorded in full in a trie until the

first point where the key is uniquely identified.

Advantages

Compared to pref ix B+-tree, shorter internal searching

time and greater ease of insertion and deletion result by

using a trie index.

might be faster in a

index because it can

reached.

Disadvantages

Furthermore, an unsuccessful search

trie index than in a pref ix B•-tree

be detected before the leaf node is

Besides the main disadvantage of the relatively low

storage utilization, a trie is usually of unbalanced

structure as well as greater and unpredictable depth. The

number of levels in a trie is determined by the distribution

of the given key set and is usually larger than that in a

pref ix B•-tree. Leaf nodes are not at the same level. The

time required to locate a search argument is determined by

the search path encountered, so that the search cost is not

uniformly predictable.

80

Possible Refinement Schemes

The main disadvantage of a trie indeed is the relative

inefficiency in using storage. The following variants were

presented to improve this disadvantage:

1. Prune a trie to eliminate useless attributes.

2. Select the (global) attribute testing order to move
the useless attributes to the end of the testing
order where it will not be reached during a search.

3. Enter multiple keys into the
limit the number of levels in
number.

same leaf node to
a trie to some fixed

4. Include local attribute testing order
branch node to indicate the optimum
testing order for various subtries
containing tries.

in each
attribute

Order

5. Use linked lists to implement branch nodes on the
lower levels in a trie in order to save the storage
corresponding to empty entries.

6. Compress each pointer field to a single bit field
to save the storage - Compressed tries.

Possible Usages

Because of the shorter internal search time but the

greater and unpredictable depth of a trie index, it is well

suited for internal searching use without disc accesses.

For instance, tables which are used to detect whether or not

a search argument is a noise word or is equivalent to some

other words, can be represented in trie indexes. Excellent

performance may result not only because the tables are

usually small enough to fit in primary memory and trie

indexes can provide fast retrieval, but also because a high

frequency of unsuccessful search might be encountered.

Bl

For large but relatively static databases, compressed

tries present a compact way to represent them. If the whole

C-trie index can be read in internal memory and all index

search can be done internally thereafter, the compressed

trie approach is suitable for this application.

Suggestions for Further Research

Performance of a trie is

testing order applied on it.

desirable but computationally

closely tied to the attribute

Hence, how to obtain a highly

difficult attribute testing

order for a given set of keys to yield a minimum-size trie

could be an attractive research subject.

Conclusions and Suggested Further Work

Several approaches have been presented to improve the

original B-ttee index and trie index in order to achieve

better performance. However, with all of these approaches,

tradeoff situations arise concerning storage requirements

and retrieval time or performance benefits and maintenance

difficulties. In summary, prefix B+-tree indexes have

advantages of smaller storage requirements and fast

retrieval from secondary storage but disadvantages of

maintenance difficulties and much higher computing time,

while trie indexes have advantages of very fast retrieval in

primary memory and maintenance ease but disadvantages of

inefficient storage utilization and improper characteristics

for external searching.

82

Fortunately, one can confine all actual keys to leaf

nodes. Hence, nonleaf nodes or internal branch nodes can

then be filled with any kind of trees or any combination of

trees which can lead the search path to the correct leaf

node. Therefore, even though there is no way to eliminate

all the disadvantages for any given index approach,

selecting a most suitable approach among them, according to

the practical use, can ~till optimize indexing performance.

There exists one possible scheme for large dynamic

textual databases which utilizes the trie approach for the

first few levels of an index and pref ix B+-tree approach for

the remaining levels. The reasons behind this are (1) the

most frequently accessed upper level trie nodes save

internal searching time and tend to break up the sets of

records rapidly, and (2) the lower level pref ix B+-tree

structures gurantee the uniform depth of index and present a

quite compact way to represent the index. Moreover, prefix

reconstruction might be simplified to just concatenate

characters which are encountered in the upper trie structure

along the search path so that there is no need to rearrange

separators due to the change of the length of common

prefixes.

(1)

(2)

BIBLIOGRAPHY

Appenzeller, T. "Evolution in CALR
National Online Meeting Proceedings,
(March, 1981), 37-40.

Systems."
New York

Bayer, R. and Mccreight,' E. "Organization
Maintainance of Large Order Indexes."
Informatica, Vol. 1 (1972), 173-189.

and
Acta

(3) Bayer, R. and Unterauer, K. "Pref ix B-tree." ACM
Transactions on Database Systems, Vol. 2 (March,
1977), 11-16.-

(4) Benson, D.A. "A Microprocessor-based System for the
Delivery of Full-text, Encyclopedic Information."
Proceedings of the 44th ASIS Annual Meeting, Vol.
18 (1901), 175-rn.-- -- -

(5) Chang, H.K. "Compressed Indexing Method." IBM
Technical Disclosure Bulletine, Vol. 11, No. --rr
(April, 1969), 1400.

(6) Christian, D.D. "A B-tree Index Approach to storing
and Retrieving Records on Direct Access Auxiliary
Storage." (Unpub. M.S. thesis, Oklahoma State
University, 1977.)

(7) Comer, D. "The Ubiquitous B-tree." Computing
Surveys, Vol. 11, No. 2 (June, 1979), 121-137.

(8) Comer, K. "Heuristics for Trie Index Minimization."
ACM Transactions on Database Systems, Vol. 4
TI979), 383-395.

(9) Comer, D. and Sethi, R. "The Complexity of Trie Index
Construction." ~· Assn. Computing Machinery,
Vol. 2 (July, 1977), 428-440.

(10) Fredkin, E. "Trie Memory." Communications ACM, Vol.
3 (Sept., 1960), 490-499. -

(11) Grimson, J.B., and Stacey, G.M. "A Performance Study
of Some Directory Structures for Large Files."
Information Storage and Retrieval, Vol. 10
(1974)' 357-364.

83

84

(12) Held, G. and Stonebraker,
Communications ACM,
139-143.

M. "B tree re-examined."
Vol. ~l (Feb., 1978),

(13)

(14)

(15)

(16)

(17)

(18)

Hollar, L.H., and Stellhorn, W.H. "A Specialized
Architecture for Textual Information Retrieval."
Proc. Nat. Computer Conference, (1977), 697-702.

Horowitz, E. and Sahni, S. Fundamentals of Data
Structure. Computer Science Press Inc., Potomac,
Maryland, 1976.

Knapp, P.E. "Implementation of a Generalized Access
Path Structure." (Unpub. M.S. thesis, Oklahoma
State University, 1981.)

Knuth, D.~. The Art £! Computer Programming Vol. 3:
Sorting and Searching. Addison Wesley Publ. co:,
Reading, Mass., 1973.

Lefkovits, D. File Structure ~ On-Line Systems.
Spartan Books, New York, Washington, (1969 .

Maly, K. "Compressed Trie." Communications ACM, Vol.
19 (July, 1976), 409-415.

(19) Morrison D. "PATRICIA Practical Algorithm To
Retrieve Information Coded in Alphanumeric." J.
ACM, Vol. 15, No. 4 (Oct, 1968), 514-534.

(20) Salton, G. Automatic Information and Retrieval.
McGraw-Hill Book Company, New York~l968).

(21) Salto~, G. ~ SMART Retrieval System= Ex~eriments
in Automatic Document Processing. Prentice-Hall,
Inc., Englewood Cliffs, New Jersey, (1971).

(22) Siler, K.F. "A Stochastic Evaluation Model for

(23)

Database Organization in Data Retrieval System."
Communication ACM, Vol. 19 (Feb., 1976), 84-95.

Sussenguth, E.H. JR. "Use of Tree
Processing files." Communications
(May, 1963), 272-279.

Structures for
ACM, Vol. 5

(24) Wagner, R.E. "Indexing Design Considerations." IBM
Syst. ~.,Vol. 12, No. 4 (1973), 351-367.

(25) Webster, R.E. "B•-tree." (unpub. M.S. report,

(26)

Oklahoma State University, 1980.)

Williams, P.W., and Khallaghi, M.T.
Retrieval Using a Substring Index."
Vol. 20 (August, 1977), 257-262.

"Document
Computer~.,

VITA;;..

AN-LEE ANNE FENG

Candidate for the Degree of

Master of Science

Thesis: A STUDY OF TWO COMPETING INDEX MECHANISMS:
PREFIX B+-TREES AND TRIE STRUCTURES

Major Field: Computing and Information Science

Biographical:

Personal Data: Born in Tainan, Taiwan, Republic of
China, October 25, 1949, the daughter of Mr. and
Mrs. K. C. Feng.

Education: Graduated from Taipei Municipal First High
Girls' School, Taipei, Taiwan, Republic of China,
in June, 1968; received Bachelor of Science in
Agriculture degree from National Taiwan
University, Taipei, Taiwan, Republic of China, in
June, 1972; completed requirements for the Master
of Science degree at Oklahoma State University in
December, 1982.

Professional Experience: Programmer, China Data
Processing Center, Taipei, Taiwan, Republic of
China, June, 1979 - December, 1979; programmer,
Time Management Software, Stillwater, Oklahoma,
Jan, 1982 Aug, 1982; graduate teaching
assistant, Department of Computing and Information
Science, Oklahoma State University, Stillwater,
Oklahoma, September, 1980 - September, 1982;
programmer, Starduster Games, Norman, Oklahoma,
October, 1982 - present.

