
ANALYSIS OF IP BASED IMPLEMENTATIONS OF

ADDERS AND MULTIPLIERS IN SUBMICRON AND

DEEP SUBMICRON TECHNOLOGIES

 By

 VIJAYA CHANDRA KURAPATI

 Bachelor of Technology in Electrical and Electronics

 Engineering

Jawaharlal Nehru Technological University

 Hyderabad, Andhra Pradesh

 2006

 Submitted to the Faculty of the
 Graduate College of the

 Oklahoma State University
 in partial fulfillment of
 the requirements for

 the Degree of
 MASTER OF SCIENCE

 December, 2008

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SHAREOK repository

https://core.ac.uk/display/215298829?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 ii

ANALYSIS OF IP BASED IMPLEMENTATIONS OF

ADDERS AND MULTIPLIERS IN SUBMICRON AND

DEEP SUBMICRON TECHNOLOGIES

 Thesis Approved:

 Dr. James E. Stine, Jr.

 Thesis Adviser

 Dr. Louis G. Johnson

 Dr. Sohum Sohoni

 Dr. A. Gordon Emslie

 Dean of the Graduate College

 iii

ACKNOWLEDGMENTS

I am very grateful to my adviser Dr. James E. Stine, Jr. who has allowed me to work

under him. His thorough support and exemplary guidance all through my work have

helped me a lot. Also, I would like to thank Dr. Louis G. Johnson and Dr. Sohum Sohoni

for being a part of my thesis committee.

Finally, I would like to thank my family who has encouraged me to pursue my Master’s

degree. I would also like to thank my friends and relations for their support.

 iv

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

 1.1 Motivation ...2
 1.2 Overview of Adder Architectures ...3

 1.2.1 Ripple Carry Adder ..3
 1.2.2 Carry Look-Ahead Adder ..4
 1.2.3 Carry Select Adder ...5
 1.2.4 Conditional Sum Adder ...5

 1.3 Overview of Multiplier Architectures ...6
 1.3.1 Carry-Save Array Multiplier ..8
 1.3.2 Wallace Tree Multiplier ...9
 1.3.3 Booth’s Algorithm ...11
1.4 Pipelining ..12

II. REVIEW OF LITERATURE ...15

III. POWER DISSIPATION IN CMOS GATES ...19

 3.1 Sources of Power Dissipation ...20

 3.1.1 Static Power Dissipation ..21
 3.1.2 Dynamic Power Dissipation ..23
 3.1.3 Short-Circuit Power Dissipation ..25

IV. METHODLOGY ..26

 4.1 Design Flow ..26
 4.1.1 Overview of EDA Tools ..27
 4.2 Synthesis ...28
 4.3 Place & Route ...32
 4.4 Functional Simulation and Power Analysis ..34

 v

V. RESULTS AND CONCLUSION ..35

 5.1 Results ..35
 5.1.1 Power Analysis ...35
 5.1.2 Delay and Area ...40
 5.2 Conclusions ..48

REFERENCES ..50

APPENDICES ...53

 vi

LIST OF TABLES

Table Page

1.1: Radix-4 Booth Recoding Algorithm ……..…………………………………………12

3.1: Power Consumption in Deep Submicron Technology …..20

4.1: Synthesis Implementations of Adder Architectures …………………..……………29

4.2: Synthesis Implementations of Multiplier Architectures ……………………………29

4.3: Implementation Technologies ………………………………………………………30

 vii

LIST OF FIGURES

Figure Page

1.1: Power Consumed in various Technologies …………………………………………..2

1.2: Generalized Structure of a n-bit Ripple Carry Adder ………………………………..3

1.3: A 4-bit Carry Look-Ahead Adder Implementation using a

Carry Look-Ahead Generator (CLG) ……………………………………………......4

1.4: A 16-bit Carry Select Adder Implementation with 4 blocks …………...……………5

1.5: A 4-bit Conditional Sum Adder Implementation …………………………………....6

1.6: Basic Scheme for an M x N-bit Multiplier …………………………………………..7

1.7: 4 x 4 bit Carry-Save Array Multiplier ……………………………………………….9

1.8: Dot representation of 4-bit x 4-bit Wallace Tree Multiplier ………………………..11

1.9: Pipelining …………………………………………………………………...............13

1.10: Pipelining Process …………………………………………………………………14

3.1: Power Consumed in Watts for Microprocessor Chips ……………………...............21

3.2: Leakage Currents …………………………………………………………...............22

3.3: Dynamic Power in a CMOS Inverter ……………………………………………….23

4.1: Implementation Methodology ………………………………………………………26

4.2: Verilog HDL instantiation of Adder in DesignWare Building Block IP …...............27

4.3: Synthesis Flow ……………………………………………………………...............31

4.4: Place & Route Flow ………………………………………………………...............32

 viii

Figure Page

5.1: Power Results for Adder in 45nm Technology …………………………………….36

5.2: Power Results for Multiplier in 45nm Technology …......………………………….37

5.3: Power Results for Adder in 90nm Technology ...…………………………………..38

5.4: Power Results for Multiplier in 90nm Technology ...………………………………39

5.5: Area and Delay Results for Adder in 45nm Technology ...…………………………41

5.6: Area and Delay Results for Multiplier in 45nm Technology ………………………43

5.7: Area and Delay Results for Adder in 90nm Technology …………………………...45

5.8: Area and Delay Results for Multiplier in 90nm Technology ………………………47

B.1: Results for Two-Stage Pipelined Implementation of Adder in 180nm

Technology ……………………………………….………………………………...60

B.2: Results for Unpipelined Implementation of Adder in 180nm Technology ………...61

B.3: Results for Two-Stage Pipelined Implementation of Multiplier in 180nm

Technology …………………………………………………………………………62

B.4: Results for Unpipelined Implementation of Multiplier in 180nm Technology ……62

B.5: Results for Two-Stage Pipelined Implementation of Adder in 250nm

Technology …………………………………………………………………………63

B.6: Results for Unpipelined Implementation of Adder in 250nm Technology ………...63

B.7: Results for Two-Stage Pipelined Implementation of Multiplier in 250nm

Technology …………………………………………………………………………64

B.8: Results for Unpipelined Implementation of Multiplier in 250nm Technology ……64

 1

CHAPTER I

INTRODUCTION

With the continuous technological advancements being achieved in the semi-conductor

industry, the market has seen increased demand for factors such as portability,

performance and high functional integration in digital devices. This increased demand

has made scaling of MOS transistors inevitable. Continuous decrease in feature size of

the MOS transistors has resulted in decreased sizes of CMOS gates and enabling highly

dense packaging of integrated circuits and thus increasing wiring densities.

The trend of continuously scaling the device size and increasing chip densities has not

only resulted in high design complexity but also has caused the design time to increase.

Over the past decade for this very reason the concepts of design reuse and Intellectual

Property (IP) have been adopted in the design of digital circuits. This adoption as a

mainstream design practice has changed the approach of designers and has resulted in

increased design productivity.

With IP being the popular choice of the designers so as to reduce the design time and

with designs being implemented in deep submicron technologies, the designers are facing

new set of challenges. In the deep submicron regime where static power dissipation is no

 2

more ignorable, the focus of the designers has now shifted towards minimizing the value

of average power consumed by the circuit. The figure below shows a comparison of

dynamic power and leakage power in different technologies

Figure 1.1: Power Consumed in various Technologies

1.1 Motivation

The core of any kind of processor is its data path. Data path is the one of the crucial

component which decides the key parameters such as the clock frequency, area and

power dissipation of the design. Adders and multipliers are the main components in the

data path and they are of major concerns for the designers of the data path. The use of IP

being popular for designing large systems, it is of more importance to investigate the

performance of various adder and multiplier implementations that are available with the

commercially available IP. This thesis focuses on analyzing adders and multipliers of

various implementations that are available with Synopsys DesignWare IP.

 3

1.2 Overview of various Adder Architectures

Adders are one of the key components of any data path. As any component in VLSI

design, the choice of adder architecture is constrained by the important factors of area,

speed and power. Among the various architectures of adders available few of them are

briefly described in this section.

1.2.1 Ripple Carry Adder

Ripple carry adders are one of the most simple adder architectures available. A n-bit

ripple carry adder is made of up a collection of n number of individual full adder cells.

These adders are simple in design and also they occupy less area. But they are

constrained in their performance capabilities. For the modern day designs where high

speed of operation is required, these adders fall short by a large extent as the delay

through the adder chain to produce the output is very large. Hence, these adders are not

very popular to be implemented in the modern day designs. Because of their simplicity in

design there are certain circuit implications which can be efficiently implemented using

ripple carry adders. The figure below gives a generalized structure for a ripple carry

adders [6].

Figure 1.2: Generalized Structure of a n-bit Ripple Carry Adder

 4

1.2.2 Carry Look-Ahead Adders

As seen earlier ripple carry adders are limited in their performance capabilities. So,

adders with improved performance are required. Carry look-ahead adders are one such

solution. As the name suggests, in carry look-ahead adders the carry chain is generated

ahead of time utilizing all of the inputs to improve the addition operation. This is

achieved at the expense of increased area and power in the form of increased number of

gates. The carries are precomputed using the generate and propagate signals which are

computed using the below equations [7]

Gi = Ai . Bi

Pi = Ai + Bi

Where A and B are inputs and k represents the ith bit

The sum and carry bits in terms of the generate and propagate signals are given by the

below equations [7]

Ci+1 = Gi + Pi.Ci

The figure below shows a 4-bit carry look-ahead adder as an example [6]

Figure 1.3: A 4-bit Carry Look-Ahead Adder Implementation using a Carry Look-Ahead

Generator (CLG)

 5

1.2.3 Carry Select Adders

Carry select adders are one of the other popular architectures which show improved

performance over ripple carry adders. As in ripple carry adders they are popular for their

regular layout structure. These adders basically consist of blocks where each block

executes two additions. One assumes that the input carry is ‘1’ and the other assumes that

the input carry is ‘0’. The input carry signal ‘0’ generates a block generate signal and the

input carry signal ‘1’ generates a block propagate signal which are used to produce the

carry out signal for the subsequent block which selects the appropriate set of sum bits.

The figure below shows a 16-bit carry select adder implementation [6]

Figure 1.4: A 16-bit Carry Select Adder Implementation with 4 blocks

1.2.4 Conditional Sum Adders

Conditional sum adder architecture is supposed to be the fastest adder theoretically.

These are very similar to the carry select adders in concept. The idea lies in precomputing

the results for the addition assuming input carry to be ‘0’ and other assuming input carry

to be ‘1’ and selecting the proper results based upon the actual value of input carry signal

 6

using a multiplexer control. The figure below shows a 4-bit conditional sum adder

implementation [10]

Figure 1.5: A 4-bit Conditional Sum Adder Implementation

1.3 Overview of Multiplier Architectures

Multipliers are the key components in the datapath which consume huge amount of

power and occupy large areas. In multipliers, the power dissipation is huge owing to the

power dissipated in the large number of gates which are a part of the multiplier structure.

Adder blocks form the building blocks for various multiplier structures. In general, any

multiplication operation can be divided into three steps [6]

1) Partial Product Generation – With the inputs available generating partial products

utilizing a collection of gates.

2) Partial Product Reduction – Utilizing the adders to reduce the partial products to

sum and carry vectors for further computation.

3) Final Carry-Propagate Addition – Adding sum and carry vectors to produce the

final result.

 7

A multiplication operation performed on an M-bit number and an N-bit number results in

a result with (M + N) number of bits. The figure below shows a basic scheme for an

unsigned M x N-bit multiplier [12]

Figure 1.6: Basic Scheme for an M x N-bit Multiplier

In general, multipliers can be classified in three broad categories [12]

1) Sequential Multipliers – in these types of multipliers, the partial products are

generated sequentially and these are added to the previously accumulated sum.

The shift and add multipliers are an example of sequential multipliers. The delay

of sequential multipliers is very large and so hardly put into use in modern

designs.

2) Parallel Multipliers – in these types of multipliers, the partial products are

generated in parallel and multi operand fast adders are used for accumulation of

the product.

3) Array Multipliers – these types of multipliers iteratively utilize identical cells that

generate new partial products and accumulate them simultaneously.

 8

Among the various available multiplier architectures few of them are briefly described

below

1.3.1 Carry-Save Array Multiplier

Carry-save array multiplier is one of the simplest available architecture in multipliers.

This architecture is very similar to the traditional human method of performing

multiplication operations. Carry-save array multipliers show simplicity in layout and

hence are preferred. This multiplier makes use of modified half adder (MHA) and

modified full adder (MFA) as the building block. A MHA consists of an AND gate that

produces the partial product bit and a half adder (HA). The MHA adds the partial product

bit from the AND gate with the partial product bit from the previous row. A MFA

consists of an AND gate that produces a partial product bit and a full adder (FA) that

adds the partial product bit with the sum and carry bits from the previous row. In general,

carry-save array multiplier has a complexity proportional to the order of n2 for area and

order of n for delay associated with the product generation [6]. The figure below shows a

carry-save multiplier used for multiplication of two 4-bit numbers [6]

 9

Figure 1.7: 4 x 4 bit Carry-Save Array Multiplier

1.3.2 Wallace Tree Multiplier

C S Wallace introduced this multiplier architecture where the partial products were

summed using a tree of carry-save adders. Wallace tree adders follow a three step

technique to multiply two numbers [8].

 10

1) Initially the bit products are formed

2) Using the tree of carry-save adders the bit product is reduced to a two row matrix

3) To produce the product these two rows are summed using fast carry propagate

adders

In Wallace tree multipliers, the rows are grouped into sets of three and the rows which do

not form a group are transferred to the next reduction stage. The height of the matrix in

the jth reduction stage is where wj is defined by the following recursive equations [6]

Utilizing the above equations the intermediate matrix heights are determined based on the

bit size of the operands. A Wallace tree multiplier yields a delay proportional to the

logarithm of operand size n which is of the order of log3/2 n [4]. The structure of the

Wallace tree multiplier makes it difficult for custom layout when compared to the array

multipliers. The figure below shows dot representation for a Wallace tree multiplier

which computes the product for two 4-bit numbers [6].

 11

Figure 1.8: Dot representation of 4-bit x 4-bit Wallace Tree Multiplier

1.3.3 Booth’s Algorithm

Booth’s algorithm is one of the best known algorithms for implementing multipliers.

Sometimes this algorithm is also referred to as Booth’s Recoding Algorithm. This

algorithm tries to minimize the number of partial products generated during

multiplication. This is achieved utilizing the fact that multiplication with bit ‘0’ requires

 12

only a shift operation to be performed on the product. This algorithm can be utilized

conveniently to perform signed magnitude multiplication and 2’s complement

multiplication of numbers. But, care has to be taken in the case of 2’s complement

multiplication for the sign bit. Booth’s recoding is usually done in two steps of encoding

and selection. The process of encoding involves selection of certain number of bits of the

multiplier and determines the type of operation to be performed on the multiplicand.

Then the selection of the partial products required for the operation is made. Booth’s

algorithm has been implemented in two variations. One, Radix-2 Booth Recoding where

in two bits are examined to define the operation. Two, Radix-4 Booth Recoding where in

three bits are examined to define the operation. The table below shows the Radix-4 Booth

Recoding Algorithm [8]

Table 1: Radix-4 Booth Recoding Algorithm

The benefit of generation of less number of partial products in the Booth’s algorithm

comes at an expense of increased hardware.

1.4 Pipelining

Pipelining is a popular technique that has been employed in the design industry over

several years. This is an architectural choice employed by designers to reduce power.

 13

Over the years, systems have been pipelined to improve performance. Arithmetic circuits

such as adders and multipliers which are a key part of the system’s datapath can be

pipelined to improve performance. The key terms associated with any pipelined systems

are

1) Latency - The delay from when an input is established until the output associated

with that input becomes valid.

2) Throughput: The rate at which inputs or outputs are processed is available.

Pipelining as such does not reduce power by itself but reduces the critical path delay by

inserting registers between combinational logic. The clock signal to registers has high

activity thus contributing to dynamic power. By pipelining glitches can be prevented

from propagating over register boundaries but logic activity is unchanged. The timing

slack from pipelining can be used for voltage scaling and gate downsizing to achieve

significant power savings.

The figure below shows the advantage of pipelining two logic blocks connected in series.

Figure 1.9: Pipelining

 14

The figure below shows how the process of pipelining increases throughput

Figure 1.10: Pipelining Process

 15

CHAPTER II

REVIEW OF LITERATURE

The design of high performance arithmetic circuits has always attracted ASIC processor

designers. There have been many works that try to improve the performance of these

circuits in terms of power consumption or delay associated. This chapter focuses on few

of such literary works that had been done previously in this field.

In [11], Sean Kao et al presented the impact of design choices on power and performance

of domino CMOS adders through the use of an optimization tool to confirm the results.

Also, they came up with a 64-bit fast and energy efficient adder design utilizing sparse

radix-4 Ling adder topology. The design was implemented in a general purpose 90nm

CMOS technology and the adder performed 64-bit addition in 240ps while consuming a

power of 260mW at a supply voltage of 1V and room temperature. In [12], Keivan Navi

and Omid Kavehei came up with a new 1-bit full adder cell design style called “Bridge”.

This full adder cell was supposed to consume low power and offer high performance.

Simulations were performed using HSPICE simulator in 90nm standard CMOS

technology and the results of these simulations were compared in terms of power, delay

and power-delay product and were found to be superior to a conventional CMOS 1-bit

full adder cell implemented in the same technology. In [13], Lan Wei as a part of his

 16

Master’s thesis studied the effect of pipelining on various adder structures. He studied the

effect of pipelining on four different adder structures at the physical implementation level

and came up with an optimal adder structure. He implemented the adder structures using

a 0.35 um technology based standard library at a nominal supply voltage of 3.3V.

In [14], Sheng Sun and Carl Sechen made an extensive study of carry look-ahead (CLA)

adders and carry-select adders with a wide range of trade-offs in logic levels, fan-out’s

and wiring complexity. They also proposed sparse CLA adder architectures based on

buffering techniques to reduce logic redundancy and improve energy efficiency. All the

designs were implemented using an energy-delay layout optimization flow with full RC

extraction. In [15], Vojin G. Oklobdzija and Bart R. Zeydel presented energy-delay

estimation (EDE) method which extends logical effort (LE) and its application to the

analysis and selection of high-performance VLSI adders. To demonstrate the accuracy of

the method in the energy-delay space for selecting adder architecture they implemented

and compared the designs in 130nm and 100nm CMOS technologies.

In [15], Amir Ali Khatibzadeh et al presented the design of an 8 X 8-bit digital multiplier

which provides superior performance when compared to conventional array multipliers in

terms of power consumption and speed. The proposed multiplier was implemented in

TSMC 0.18um technology and was estimated to operate at a maximum frequency of

1.1GHz while dissipating 22mW of power. In [17], Nazir Mehmood as part of his

Master’s thesis presented an energy efficient 32-bit multiplier architecture. The multiplier

presented was based on the Modified Booth Encoding scheme. The multiplier was

 17

implemented in 90nm technology and was found to be superior to a conventional 32-bit

CMOS multiplier in terms of power, speed and area. In [18], Pouya Asadi and Keivan

Navi proposed a 54X54-bit multiplier design which used high speed, self timed carry

look-ahead adder structures. The proposed multiplier was implemented using a radix-4

booth encoding scheme to reduce the number of the partial products that had to be

generated. The multiplier was implemented using a 0.13um CMOS process at a nominal

supply voltage of 1.3V.

In [19], Ryusuke Egawa et al laid their focus on the increasing power density values with

circuits being implemented in deep submicron technologies. To address this issue in

multiplier designs they proposed a sophisticated multiplier which aims at partial product

reduction tree and incorporates bit level parallelism. The proposed multiplier design was

applied to a 32-bit design and was compared to conventional 32-bit multipliers and was

shown to achieve significant improvement in terms of power consumption and area

occupied. In [20], Dimitris Bekiaris et al presented a radix-4 array multiplier based on

4-to-1 multiplexers. The proposed multiplier was implemented using TSMC 0.13um

technology library and was compared to Modified-Booth array multiplier.

Christian Schuster et al in their paper [21] focused on comparison of multipliers at

architecture level and aimed at selecting the multiplier architecture that offered the

minimum total power dissipation by simultaneously optimizing both static and dynamic

power dissipation. The designs were analyzed in UMC 0.18um technology. In [22],

Thomas K. Callaway and Earl E. Swartzlander, Jr aimed at analyzing the power-delay

 18

characteristics of CMOS multipliers. They implemented four multiplier architectures in

three different bit widths and modeled the multipliers for the product of the power

consumed and the delay associated with the multiplier. Using the results obtained they

were able to identify the best possible multiplier architecture that offered optimum

power-delay product. In [23], Leonardo L. de Oliveira et al presented performance

comparisons between two multiplier architectures. They drew comparisons between a

radix-4 array multiplier which was modified to handle sign bits in 2’s complement and a

general Modified Booth multiplier at the physical implementation level. They compared

these multiplier architectures for both pipelined and unpipelined versions.

 19

CHAPTER III

POWER DISSIPATION IN CMOS GATES

The three main issues the researchers face during the design of VLSI circuits and systems

involve area, performance and power [2]. Until recently the prime focus was laid on the

parameters of area and performance and power had tertiary importance. With designs

being implemented in deep submicron technologies (feature size less than 130nm) the

focus has now been laid on the problem of power and is of primary importance. This is

because of the possibility of implementing tens of millions of gates on a small die which

has increased power density and total power dissipation and is at the limits what

packaging, cooling and other infrastructure can support [1].

Historically, both power density and power consumption in integrated circuits have

increased with the development of technology. The high power density in the deep

submicron technology not only poses problems with packaging and cooling but also

addresses reliability concerns [1]. This is because in temperature causes the mean failure

time of devices to increase exponentially, possibility of formation of local hot spots on

the chips, increased leakage and may also lead to timing degradation [1]. Addressing this

issue International Technology Roadmap for Semiconductors (ITRS) has predicted some

values for power in deep submicron technology which are listed in the table below [1]

 20

Node 90nm 60nm 45nm

Dynamic Power per cm2 1X 1.4X 2X

Static Power per cm2 1X 2.5X 6.5X

Total Power per cm2 1X 2X 4X

Table 3.1: Power Consumption in deep submicron technology

3.1 Sources of Power Dissipation in CMOS circuits

Average power dissipation in traditional CMOS circuits can be expressed as sum of three

main components [3]:

1) Static Power Dissipation

2) Dynamic Power Dissipation

3) Short-Circuit Power Dissipation during switching of transistors

In the form of an equation it can be expressed as below

Pavg = Pstatic + Pdynamic + Pshort-circuit

Where Pavg is the average power dissipation, Pstatic is the static power dissipation, Pdynamic

is the dynamic power dissipation due to the switching of transistors and Pshort-circuit is the

short-circuit power dissipation.

 21

The figure below shows power consumed by the microprocessor chips over the years [4].

Figure 3.1: Power Consumed in Watts for Microprocessor Chips

The figure clearly shows that in recent years static power is of equal importance during

the design process. This significant change in static power is due to the fact that leakage

in CMOS has increased with reduction in transistor sizes.

3.1.1 Static Power Dissipation

CMOS circuits even in their idle states dissipate some power [3]. This is known as Static

Power. This dissipation is a result of the various leakage currents through the nMOS and

pMOS transistors in their nominally off condition. There are four main sources of leakage

currents through a CMOS gate and have been shown in the figure below [1]

1) Sub-Threshold Leakage (ISUB): This is the current which flows from the drain to

the source current of a transistor operating in the weak inversion region.

 22

2) Gate Leakage (IGATE): This is the current which flows from the gate through the

oxide to the substrate due to gate oxide tunneling and hot-carrier injection.

3) Gate Induced Drain Leakage (IGIDL): This is the current which flows from the

drain to the substrate induced by a high field effect in the MOSFET drain caused

by a high VDG.

4) Reverse Bias Junction Leakage (IREV): This is the current caused by minority

carrier drift and generation of electron/hole pairs in the depletion region.

Figure 3.2: Leakage Currents

Sub-threshold current is the current which flows through a gate when it is not turned off

completely [1]. The value of the sub-threshold current is dependent upon the thermal

voltage and it increases exponentially with increasing temperature [1]. Sub-threshold

current value also depends on the exponential difference between the VGS and VT of the

gate. A pretty good approximation of the sub-threshold current value can be given by the

following equation [1]

Where W and L are the dimensions of the transistor, Vth is the thermal voltage and n is a

fabrication process dependent parameter which usually varies from 1.0 – 2.5 [1].

 23

The tunneling of current through the gate oxide causes gate leakage. At the deep

submicron level the gate oxide thickness is so thin that the value of gate leakage current

is substantial. This value can be as large as the value of the sub-threshold current and

hence important. Modern researchers have found out that the gate leakage could be

reduced by using high-k dielectric materials as gate oxides [1].

3.1.2 Dynamic Power Dissipation

The power dissipated by a CMOS gate due to the charging and discharging of the

capacitances in the circuit is dynamic power. The figure below illustrates power

dissipation in a CMOS inverter [5]

Figure 3.3: Dynamic Power in a CMOS Inverter

Here CL is the sum of the parasitic capacitances of nMOS and pMOS gates, wire

capacitance and the internal capacitance of the circuits driven by the inverter.

The energy per transition in the above CMOS gate is given by [1]:

Energy/Transition = CLVdd
2

Here Vdd is the supply voltage.

 24

Using the above equation of Energy/Transition we can now describe the dynamic power

of the CMOS gate by the following equation [1]:

Pdynamic = Energy/Transition x fclock = CeffVdd
2fclock

Ceff = CLPtrans

Here Ptrans is the probability of an output transition and fclock is the system clock

frequency.

The above equation clearly shows that dynamic power is directly related to the switching

activity in the gate and also the capacitance of the gate. Hence, dynamic power is data

dependant rather than transistor size.

As the technology has scaled down there has been a constant increase in the value of the

dynamic power dissipation owing to the factors of increased clock frequencies and

increased functional requirements of the circuits. One can effectively reduce the dynamic

power dissipation value by lowering the value of the supply voltage as its value varies

quadratically with the supply voltage. This lowering of the supply voltage in the modern

designs has been limited because at the deep submicron level. This is because lowering

the value of supply voltage decreases the value of the drive current resulting in slower

circuits. To maintain consistency the threshold voltage value needs to be lowered which

could increase the static power dissipation. This causes problems in deep submicron

technologies where static power dissipation cannot be ignored. Hence now various other

options are being explored to reduce dynamic power dissipation.

 25

3.1.3 Short-Circuit Power Dissipation

In CMOS gates under some switching conditions there exists a direct path between the

power supply and ground. This is when current flows directly from the power supply to

the ground through the CMOS gate. The power dissipation occurring under this condition

is known as short-circuit power dissipation. This power dissipation occurs because of the

finite rise and fall times of the input waveforms at the gate.

Short-circuit power dissipation in CMOS gates can be reduced by matching the rise and

fall times at the inputs of the CMOS gates and can be kept in check. This value can also

be reduced by lowering the value of the supply voltage [5]. One can easily note that in

dynamic circuits there is no short-circuit power dissipation as there never exists a path

between the power supply and ground at any time because the precharge and the

evaluation stages in the dynamic logic circuits are independent of each other.

 26

CHAPTER IV

METHODOLOGY

4.1 Design Flow

Design flow describes a series of sequential steps that are performed during the design

process. These steps at various levels of the design process are coordinated by the

designer with the help of various electronic design automation (EDA) tools. In this

section an overview of the flow of design process has been given and also the tools used

have been briefly described. The figure below gives the implementation methodology

Figure 4.1: Implementation Methodology

 27

4.1.1 Overview of EDA Tools Used

DesignWare and Building Block IP

The DesignWare Building Block Intellectual Property (IP) is a collection of reusable IP

blocks that can be used by the designers to have transparent and high-level optimization

of performance of the IP blocks during synthesis. The IP provides HDL instantiations that

are technology independent and can be directly used by the designers. This enables

design reuse and increased productivity. This IP is a product of the Synopsys, Inc.

Design Complier

Design Compiler is a synthesis tool that synthesizes the HDL designs available into

optimized technology-dependent, gate-level netlists. This tool is a product of the

Synopsys, Inc. which supports a wide range of design styles and can optimize both

combinational and sequential designs for speed, area and power.

SoC Encounter

SoC Encounter is a product of the Cadence Design Systems, Inc. which provides a fast

and feasibility analysis of the designs whether they meet the required targets and is

physically realizable. The SoC Encounter system supports advanced timing closure and

routing, as well as signoff analysis engines for final implementation.

NC-Verilog

The NC-Verilog simulator is a Verilog HDL simulator that will simulate the behavior of

a digital circuit provided that a Verilog HDL model file exists for that circuit. This tool is

 28

a product of the Cadence Design Systems, Inc. and delivers high performance and high

capacity verilog simulation.

4.2 Synthesis

Synthesis is one of the important parts of the design phase where the designs in HDL are

converted to gate-level netlists. In this thesis, synthesizable and technology independent

Verilog HDL instantiations of adder and multiplier architectures that are available with

the DesignWare Building Block IP of Synopsys, Inc. is utilized for synthesis. The figure

below shows Verilog HDL instantiation of Adder in DesignWare Building Block IP.

Figure 4.2: Verilog HDL instantiation of Adder in DesignWare Building Block IP

 The adder and multiplier architectures were synthesized for various bit widths in sub-

micron and deep submicron technologies. Adder architectures are implemented for bit

widths of 16-bits, 32-bits, 64-bits, 128-bits and multiplier architectures are implemented

for bit widths of 16-bits, 32-bits, 64-bits in all the technologies. The details of the

 29

implemented adder architectures, multiplier architectures and the implemented

technologies are presented in the below tables

Implementation Function

rpl Ripple Carry Synthesis Model

rpcs Ripple Carry Select Architecture Synthesis Model

pparch Delay-Optimized Flexible Parallel-Prefix Synthesis Model

csm Conditional-Sum Synthesis Model

clf Fast Carry-Look Ahead Synthesis Model

cla Carry-Look Ahead Synthesis Model

bk Brent-Kung Architecture Synthesis Model

Table 4.1: Synthesis Implementations of Adder Architectures

Implementation Function

wall Booth-recoded Wallace-Tree Synthesis Model

pparch Delay-Optimized Flexible Booth Wallace Synthesis Model

nbw Either a non-Booth (A_width+B_width ≤ 41) or a Booth Wallace-tree

(A_width+B_width > 41) Synthesis Model

csa Carry-Save Array Synthesis Model

Table 4.2: Synthesis Implementations of Multiplier Architectures

 30

Library Process Voltage

GSCLIB045 Cadence 45nm 1.1 V

GSCLIB090 Cadence 90nm 0.9V

GSCLIB180 Cadence 180nm 3.0V

OSU250 TSMC 250nm 2.5V

Table 4.3: Implementation Technologies

The process of synthesizing various adder and multiplier architectures for the specified

bit widths in various technologies is done using Design Compiler and is automated using

Tcl script file. The script file contains design compiler directives that are executed in a

sequential manner.

In the initial part of the synthesis the user defined variables are set and also the required

technology library and Synopsys database are set. Then the design is read-in and later the

synthesis environment, design constraints and compiler directives are set which control

the synthesis process. Now, the read-in design is initially roughly compiled for timing

only in the first compilation stage and later in the second compilation stage the circuit is

refined for circuit area and timing. At the end of the second compilation stage a gate-level

netlist is generated and also the simulation information on timing, area and power are

saved into reports. The generated netlist and reports are technology dependent and differ

from one particular implementation to the other.

 31

The figure below shows the synthesis flow

Figure 4.3: Synthesis Flow

 32

4.3 Place & Route

Place and Route is the process of generating a physical design from the gate-level netlist

that is generated from the synthesis stage. The generated netlist after the synthesis stage

is technology dependent and comprises of the design implemented using standard cells

from the implemented technology library.

The place and route of the synthesized design is done using Cadence SoC Encounter and

the process is automated using a script file in Tcl. The script file consists of a series of

commands internal to the Cadence SoC Encounter that are executed in a sequential order

which is in accordance with the place and route process flow. Initially, the design which

is in the form of gate-level netlist and also the lef file of the technology library used are

setup. An initial floorplan is created for the design and the power structures are created.

Later the design which comprises of the standard cells of the technology library is placed

which is followed by the routing of the power nets. Then a trial route is performed and

then the timing graph is built and the results are saved into a preliminary timing report.

The design is optimized prior to clock tree synthesis (CTS) and then clock tree synthesis

is performed on the design if the design contains a clock port. The results from the clock

tree synthesis are saved and RC extraction is done and the timing results are saved. The

design is again optimized after the clock tree synthesis and again the timing results are

saved. The design is now optimized for leakage power and later global routing is done.

After completion of global routing of the design, timing graph is built and the final results

which give the delay associated with design are saved. Now the design, netlist, sdf and

def files associated with the design are saved.

 33

The figure below shows the Place & Route flow

Figure 4.4: Place & Route Flow

 34

4.4 Functional Simulation and Power Analysis

Once place and route of the design is complete and the final netlist of the design is saved,

functional simulation is done on the design. The netlist which comprises of the standard

cells of the technology library used is a Verilog HDL file and so NC-Verilog a HDL

simulator is used for the simulation process. The simulation is carried out using an

automated test bench where the design is tested for various test vectors. The results of the

simulation are dumped into a vcd file. Once the simulation process is complete and

successful, the design is analyzed for power. Power analysis of the design is done

utilizing the results from the simulation that had been dumped into a vcd file. Performing

power analysis gives the total amount of dynamic power and leakage power consumed by

the design. It also gives the information on the total capacitance of the largest toggled net,

total id and total activity during the functional simulation process. Cadence SoC

Encounter is used for performing power analysis on the design and the results from this

are saved into a report.

 35

CHAPTER V

RESULTS AND CONCLUSION

5.1 Results

In this thesis, various implementations of adders and multipliers were implemented at the

physical implementation level in all the technology libraries as specified in Table 4.3 for

both unpipelined and two-stage pipelined versions. The pipelined versions of the adders

and multipliers were synthesized using the compiler directive ‘pipeline_design’ during

the synthesis process.

5.1.1 Power Analysis

Power dissipation has been a key area of concern for the design engineers implementing

design in deep submicron technologies. It has been observed in deep submicron

technology that there is a considerable impact of leakage power on the value of average

power. Also, with higher circuit densities as the power dissipation per unit area is very

high there is a need to address the problem of controlling the value of dynamic power

dissipation.

Below the results for dynamic power dissipation, leakage power, Energy-Delay product

for adders and multipliers in deep submicron technologies for unpipelined and two-stage

pipelined versions have been presented.

 36

Adder - Two-Stage Pipelined Adder - Unpipelined

Figure 5.1 Power Results for Adder in 45nm Technology

 37

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

Figure 5.2 Power Results for Multiplier in 45nm Technology

 38

Adder - Two-Stage Pipelined Adder - Unpipelined

Figure 5.3 Power Results for Adder in 90nm Technology

 39

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

Figure 5.4 Power Results for Multiplier in 90nm Technology

 40

5.1.2 Delay and Area

Delay and area associated with any circuit are directly related to the input bit widths. As

the bit width increases the associated delay increases and so does the area.

Below the results for delay, area, number of instances (gate count and register count) for

adders and multipliers in deep submicron technologies for unpipelined and two-stage

pipelined versions has been presented.

Adder - Two-Stage Pipelined Adder - Unpipelined

 41

Adder - Two-Stage Pipelined Adder – Unpipelined

Figure 5.5: Area and Delay Results for Adder in 45nm Technology

 42

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

 43

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

Figure 5.6: Area and Delay Results for Multiplier in 45nm Technology

 44

Adder - Two-Stage Pipelined Adder – Unpipelined

 45

Adder - Two-Stage Pipelined Adder – Unpipelined

Figure 5.7: Area and Delay Results for Adder in 90nm Technology

 46

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

 47

Multiplier - Two-Stage Pipelined Multiplier – Unpipelined

Figure 5.8: Area and Delay Results for Multiplier in 90nm Technology

 48

With the results presented above for adders and multipliers we can observe that as the bit

width increased the parameters of interest such as power, delay, area also increased. This

is true with both adders and multiplier implementations. One can observe that the

contribution of leakage power is very high in the designs implemented in deep submicron

technologies. Observing the results one can notice that an unpipelined version of an adder

or a multiplier has shown more efficient performance in terms of power dissipation and

associated delay when compared to its two-stage pipelined counterpart. This is in

contrary to the very concept of pipelining which assures the designer of an improved

performance of the system both in terms of power dissipation and delay. This

disagreement with the actual concept of pipelining can be addressed by observing the

results of the gate count associated with the adder and multiplier designs. One can see

that the gate count for a two-stage implementation is almost double to its counterpart in

all cases. Here the gate count represents the number of standard cells instances that are

needed to implement the specific implementation. Also, for a pipelined system the total

number of gates is given by the sum of the gate count and the register count associated

with the implementation. So, this tremendous increase in number of the gates required to

implement the same function as an unpipelined counterpart has accounted for these

varying results.

5.2 Conclusions

The work in this thesis is based on the analysis of the existing architectures of adders and

multipliers implemented in modern day technologies. The analysis is based on the

physical implementation of the designs which take into account the parasitic capacitances

 49

and also wiring delay associated. Various implementations of adders and multipliers have

been analyzed at the physical implementation level for power (dynamic and leakage),

delay and area in four different technologies. Utilizing the results that were obtained,

implementations of adders and multipliers that offer the optimal parameters in terms of

power, delay and area have been concluded. In the adder design the implementations cla

and pparch offered optimal results and in the multiplier design the implementations

pparch and wall offered optimal results. These results were consistent in all implemented

technologies for all implemented bit widths. Depending upon the need of the application

the designer can also choose from other implementations.

Further study in this topic can be made on the low-power design of these structures.

Since, power has been the prime focus point for designers investigating various low-

power techniques that can be used to minimize the power dissipation can be useful.

Several power reduction techniques such as clock gating, controlled switching activity,

capacitance reduction and use of low-voltage standard cell library can be studied and can

be implemented on the adder and multiplier structures to test for their behavior.

 50

REFERENCES

[1] Michael Keating, David Flynn, Robert Aitken, Alan Gibbons, Kaijian Shi “Low

Power Methodology Manual for System-On-Chip Design”, Springer, 2007

[2] Saraju P. Mohanty, Nagarajan Ranaganathan, Elias Kougianos, Priyadarsan Patra

“Low-Power High-Level Synthesis for Nanoscale CMOS Circuits”, Springer, 2008

[3] Vikas Kumar, Cadence Design Systems, Inc. “Low-Power CMOS Circuit Design” in

http://www.powermanagementdesignline.com/howto/189500236

[4] Saeeid Tahmasbi Oskuii “Design of Low-Power Reduction-Trees in Parallel

Multipliers” Ph.D. Dissertation, Norwegian University of Science and Technology,

2008

[5] Sataporn Pornpromlikit “Power-Efficient Design of 16-Bit Mixed Operand

Multipliers” Master’s Thesis, Massachusetts Institute of Technology, 2004

[6] James E. Stine “Digital Arithmetic Datapath Design Using Verilog HDL”, Kluwer

Academic Publishers, 2004

[7] Abdellatif Bellaouar, Mohamed I. Elmasry “Low-Power Digital VLSI Design:

Circuits and Systems”, Kluwer Academic Publishers, 1995

[8] Vojin G. Oklobdzija, “High-Speed VLSI Arithmetic Units: Adders and Multipliers”,

in “Design of High-Performance Microprocessor Circuits”, Book Chapter, Book

edited by A. Chandrakasan, IEEE Press, 2000

 51

[9] Reto Zimmermann “Binary Adder Architectures for Cell-Based VLSI and their

Synthesis” Ph.D. Dissertation, Swiss Federal Institute of Technology, Zurich

[10] Ranaganathan Panchagam “Minimization of Power Dissipation in Digital Circuits

Using Pipelining and a Study of Clock Gating Technique” Master’s Thesis,

University of Central Florida, 2004

[11] Sean Kao, Radu Zlatanovici, Borivoje Nikolic “A 240ps 64b Carry-Lookahead

Adder in 90nm CMOS”, Solid-State Circuits Conference 2006, ISSC 2006, Digest of

Technical Papers, IEEE International, 2006

[12] Keivan Navi, Omid Kavehei “Low-Power and High-Performance 1-Bit CMOS Full-

Adder Cell”, JOURNAL OF COMPUTERS, VOL. 3, NO. 2, FEBRUARY 2008

[13] Lan Wei “Implementation of Pipelined Bit-parallel Adders” Master’s Thesis,

Linkoping Institute of Technology, Sweden, 2003

[14] Sheng Sun, Carl Sechen “Post-Layout Comparison of High Performance 64b Static

Adders in Energy- Delay Space”, Computer Design 2007, ICCD 2007, 25th

International Conference, 2007

[15] Vojin G. Oklobdzija, Bart R. Zeydel “Energy-Delay Characteristics of CMOS

Adders” in “High-Performance Energy-Efficient Microprocessor Design”, Book

Chapter, Springer US, 2006

[16] Amir Ali Khatibzadeh, Kaamran Raahemifar, Majid Ahmadi “A 1.8 V 1.1 GHz

Novel Digital Multiplier”, Electrical and Computer Engineering, 2005 Canada

Conference, 2005

[17] Nasir Mehmood, Martin Hansson, and Atila Alvandpour “An Energy-Efficient 32-

bit Multiplier Architecture in 90-nm CMOS”, 24th Norchip Conference, 2006

 52

[18] Pouya Asadi and Keivan Navi “A Novel High-Speed 54×54 bit Multiplier”,

American Journal of Applied Sciences, 2007

[19] Ryusuke Egawa, Jubei Tada, Gensuke Goto, Tadao Nakamura “A Sophisticated

Multiplier in Advanced CMOS Technologies” The 21st International Technical

Conference on Circuits/Systems, Computers and Communications, 2006

[20] Dimitris Bekiaris, Kiamal Z. Pekmestzi and Chris Papachristou “A High-Speed

Radix-4 Multiplexer-Based Array Multiplier” Proceedings of the 18th ACM Great

Lakes symposium on VLSI, 2008

[21] Christian Schuster, Jean-Luc Nagel, Christian Piguet, and Pierre-André Farine

“Leakage Reduction at the Architectural Level and Its Application to 16 Bit

Multiplier Architectures” in “Integrated Circuit and System Design”, Springer

Berlin / Heidelberg, 2004

[22] Thomas K. Callaway and Earl E. Swartzlander, Jr “Power-Delay Characteristics of

CMOS Multipliers” Proceeding of13th
 IEEE Symposium on Computer Arithmetic,

1997

[23] Leonardo L. de Oliveira, Cristiano Santos, Daniel Ferrão, Eduardo Costa, José

Monteiro, João Baptista Martins, Sergio Bampi, Ricardo Reis “A Comparison of

Layout Implementations of Pipelined and Non-Pipelined Signed Radix-4 Array

Multiplier and Modified Booth Multiplier Architectures” in “VLSI-SoC: From

Systems To Silicon”, Springer Boston, 2007

[24] Design Compiler User Guide, Version 2002.05, Synopsys

[25] DesignWare Building Block IP User Guide, Synopsys

[26] Encounter User Guide, Product Version 6.2.2, Cadence

 53

APPENDICES

APPENDIX-A

In this section the script files that have been used to automate the design flow process

have been presented.

Synthesis script

set names [getenv "names"]
set bit [getenv "bit"]
set my_toplevel $names
set my_clock_pin clk
set my_clk_freq_MHz 5000
set my_input_delay_ns 0
set my_output_delay_ns 0

set type [getenv "type"]
set my_verilog_files [getenv "source"]

set OSU_FREEPDK [format "%s%s" [getenv "OSU_FREEPDK"] "/lib/files"]
set search_path [concat $search_path $OSU_FREEPDK]
set link_library [set target_library [concat [list gscl45nm.db] [list dw_foundation.sldb]]]
set target_library "gscl45nm.db"
define_design_lib WORK -path ./WORK
set verilogout_show_unconnected_pins "true"

set_ultra_optimization true
set_ultra_optimization -force

analyze -f verilog $my_verilog_files

elaborate $my_toplevel

current_design $my_toplevel

link
uniquify

 54

set my_period [expr 1000 / $my_clk_freq_MHz]

if { [find port $my_clock_pin] == [list $my_clock_pin] } {

set clk_name $my_clock_pin
 create_clock -period $my_period $clk_name

}
if { [find port $my_clock_pin] == [list] } {
 set clk_name vclk
 create_clock -period $my_period -name $clk_name
}
set_driving_cell -lib_cell INVX4 [all_inputs]
set_input_delay $my_input_delay_ns -clock $clk_name [remove_from_collection
[all_inputs] $my_clock_pin]
set_output_delay $my_output_delay_ns -clock $clk_name [all_outputs]

set port_load [load_of slow/INVX4/A]
set_load $port_load [all_outputs]

set_implementation $type [list U1]

#/* compile -ungroup_all -map_effort high */
compile -map_effort high

report_resources

compile -incremental_mapping -map_effort high

report_resources

check_design
report_constraint -all_violators

set filename [format "%s%s" $my_toplevel ".vh"]
write -f verilog -output $filename

set filename [format "%s%s" $my_toplevel ".sdc"]
write_sdc $filename

set filename [format "%s%s" $my_toplevel ".db"]
write -hier -output $filename

redirect timing.rep { report_timing }
redirect cell.rep { report_cell }
redirect power.rep { report_power }

 55

quit

Place and Route script

Setup design and create floorplan
loadConfig ../../scripts/encounter.conf
#commitConfig

Create Initial Floorplan
floorplan -r 1.0 0.6 20 20 20 20

Create Power structures
addRing -spacing_bottom 5 -width_left 5 -width_bottom 5 -width_top 5 -spacing_top 5 -
layer_bottom metal5 -width_right 5 -around core -center 1 -layer_top metal5 -
spacing_right 5 -spacing_left 5 -layer_right metal6 -layer_left metal6 -nets { gnd vdd }

Place standard cells
placeDesign

Route power nets
sroute -noBlockPins -noPadRings

Perform trial route and get initial timing results
trialroute
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.1.placed

Run in-place optimization
to fix setup problems
setIPOMode -mediumEffort -fixDRC -addPortAsNeeded
initECO ./ipo1.txt
fixSetupViolation
endECO
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.2.ipo1

Run Clock Tree Synthesis
createClockTreeSpec -output encounter.cts -bufFootprint buf -invFootprint inv
specifyClockTree -clkfile encounter.cts
ckSynthesis -rguide cts.rguide -report report.ctsrpt -macromodel report.ctsmdl -
fix_added_buffers

 56

Output Results of CTS
trialRoute -highEffort -guide cts.rguide
extractRC
reportClockTree -postRoute -localSkew -report skew.post_troute_local.ctsrpt
reportClockTree -postRoute -report report.post_troute.ctsrpt

Run Post-CTS Timing analysis
setAnalysisMode -setup -async -skew -autoDetectClockTree
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.3.cts

Perform post-CTS IPO
setIPOMode -highEffort -fixDrc -addPortAsNeeded -incrTrialRoute -restruct -topomap
initECO ipo2.txt
setExtractRCMode -default -assumeMetFill
extractRC
fixSetupViolation -guide cts.rguide

Fix all remaining violations
setExtractRCMode -detail -assumeMetFill
extractRC
if {[isDRVClean -maxTran -maxCap -maxFanout] != 1} {
fixDRCViolation -maxTran -maxCap -maxFanout
}

endECO
cleanupECO

Run Post IPO-2 timing analysis
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.4.ipo2

Add filler cells
addFiller -cell FILL -prefix FILL -fillBoundary

Connect all new cells to VDD/GND
globalNetConnect vdd -type tiehi
globalNetConnect vdd -type pgpin -pin vdd -override

globalNetConnect gnd -type tielo
globalNetConnect gnd -type pgpin -pin gnd -override

Run global Routing
globalDetailRoute

 57

Get final timing results
setExtractRCMode -detail -noReduce
extractRC
buildTimingGraph
setCteReport
report_timing -nworst 10 -net > timing.rep.5.final

Output GDSII
#streamOut final.gds2 -mapFile gds2_encounter.map -units 1000 -mode ALL -stripes 1
delayCal -sdf final.sdf
saveNetlist -excludeLeafCell final.v
saveDesign final.enc
defOut -floorplan -netlist -routing final.def

Output DSPF RC Data
rcout -spf final.dspf

Run DRC and Connection checks
verifyGeometry
verifyConnectivity -type all

exit

Configuration file

set names [getenv "names"]

Specify the name of your toplevel module
set my_toplevel $names

No changes required below

global env
set OSU_FREEPDK $env(OSU_FREEPDK)

global rda_Input
set rda_Input(ui_netlist) $names.vh
set rda_Input(ui_timingcon_file) $names.sdc
set rda_Input(ui_topcell) $names

set rda_Input(ui_netlisttype) {Verilog}
set rda_Input(ui_ilmlist) {}

 58

set rda_Input(ui_settop) {1}
set rda_Input(ui_celllib) {}
set rda_Input(ui_iolib) {}
set rda_Input(ui_areaiolib) {}
set rda_Input(ui_blklib) {}
set rda_Input(ui_kboxlib) ""
set rda_Input(ui_timelib) "$OSU_FREEPDK/lib/files/gscl45nm.tlf"
set rda_Input(ui_smodDef) {}
set rda_Input(ui_smodData) {}
set rda_Input(ui_dpath) {}
set rda_Input(ui_tech_file) {}
set rda_Input(ui_io_file) ""
set rda_Input(ui_buf_footprint) {BUF}
set rda_Input(ui_delay_footprint) {BUF}
set rda_Input(ui_inv_footprint) {INV}
set rda_Input(ui_leffile) "$OSU_FREEPDK/lib/files/gscl45nm.lef"
set rda_Input(ui_core_cntl) {aspect}
set rda_Input(ui_aspect_ratio) {1.0}
set rda_Input(ui_core_util) {0.7}
set rda_Input(ui_core_height) {}
set rda_Input(ui_core_width) {}
set rda_Input(ui_core_to_left) {}
set rda_Input(ui_core_to_right) {}
set rda_Input(ui_core_to_top) {}
set rda_Input(ui_core_to_bottom) {}
set rda_Input(ui_max_io_height) {0}
set rda_Input(ui_row_height) {}
set rda_Input(ui_isHorTrackHalfPitch) {0}
set rda_Input(ui_isVerTrackHalfPitch) {1}
set rda_Input(ui_ioOri) {R0}
set rda_Input(ui_isOrigCenter) {0}
set rda_Input(ui_exc_net) {}
set rda_Input(ui_delay_limit) {1000}
set rda_Input(ui_net_delay) {1000.0ps}
set rda_Input(ui_net_load) {0.5pf}
set rda_Input(ui_in_tran_delay) {120.0ps}
set rda_Input(ui_captbl_file) {}
set rda_Input(ui_cap_scale) {1.0}
set rda_Input(ui_xcap_scale) {1.0}
set rda_Input(ui_res_scale) {1.0}
set rda_Input(ui_shr_scale) {1.0}
set rda_Input(ui_time_unit) {none}
set rda_Input(ui_cap_unit) {}
set rda_Input(ui_sigstormlib) {}
set rda_Input(ui_cdb_file) {}
set rda_Input(ui_echo_file) {}

 59

set rda_Input(ui_qxtech_file) {}
set rda_Input(ui_qxlib_file) {}
set rda_Input(ui_qxconf_file) {}
set rda_Input(ui_pwrnet) {vdd}
set rda_Input(ui_gndnet) {gnd}
set rda_Input(flip_first) {1}
set rda_Input(double_back) {1}
set rda_Input(assign_buffer) {0}
set rda_Input(ui_pg_connections) [list \
 {PIN:vdd:} \
 {PIN:gnd:} \
]
set rda_Input(PIN:vdd:) {vdd}
set rda_Input(PIN:gnd:) {gnd}

Power Analysis script

set names [getenv "names"]

restoreDesign final.enc.dat $names

setExtractRCMode -detail -noReduce
extractRC

updatePower -vcd $names.vcd -vcdTop stimulus/dut -noRailAnalysis -report
$names.power vdd

exit

 60

APPENDIX-B

In this section the results for adder and multiplier implementations in submicron

technologies (180nm and 250nm) have been presented. These results are in the form of

excel spread sheets.

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Total Gates Register Count Gate Count

DW_180 add rpl 16 9888 0.83 20302 0.019178 16850.7 13986.1 184 24 160

add rpcs 16 11418 0.439 33985 0.01172 14919.4 6549.62 191 27 164

add pparch 16 10194 0.634 28526 0.015345 18085.5 11466.2 196 24 172

add csm 16 14981 0.592 41117 0.027928 24341.3 14410 289 36 253

add clf 16 11331 0.472 36828 0.014512 17382.8 8204.68 224 35 189

add cla 16 11796 0.496 31308 0.015796 15528.8 7702.28 212 41 171

add bk 16 9786 0.419 26953 0.01074 11293.3 4731.89 182 34 148

add rpl 32 20863 0.812 46051 0.038508 37393.4 30363.4 402 48 354

add rpcs 32 27130 0.936 61835 0.054281 57877.6 54173.4 607 53 554

add pparch 32 21004 0.829 45001 0.039305 37305.8 30926.5 415 48 367

add csm 32 32429 0.666 94371 0.067552 62851.1 41858.8 706 55 651

add clf 32 23529 0.52 55245 0.032599 28727.4 14938.2 460 79 381

add cla 32 21812 0.704 46404 0.039491 32668.4 22998.6 417 72 345

add bk 32 22395 0.478 62722 0.027253 29981.1 14331 456 68 388

add rpl 64 41553 1.326 61979 0.126561 82184.2 108976 845 91 754

add rpcs 64 53545 1.689 75711 0.196701 127876 215983 1219 103 1116

add pparch 64 41788 1.243 67543 0.117251 83955.9 104357 851 92 759

add csm 64 72656 0.725 219310 0.169309 159000 115275 1589 105 1484

add clf 64 57667 0.643 166670 0.095537 107169 68909.7 1320 133 1187

add cla 64 44513 0.947 72731 0.110761 68876.3 65225.9 844 144 700

add bk 64 45487 0.585 97967 0.067064 57310.7 33526.8 964 128 836

add rpl 128 86094 2.291 80950 0.449425 185456 424880 1808 178 1630

add rpcs 128 109294 2.416 114160 0.56114 275811 666359 2448 202 2246

add pparch 128 85485 1.854 96608 0.360529 179111 332072 1759 180 1579

add csm 128 152824 0.882 435380 0.425353 384005 338692 3538 197 3341

add clf 128 123904 0.717 314210 0.227497 225289 161532 2893 292 2601

add cla 128 88999 1.052 151010 0.238783 158863 167124 1813 260 1553

add bk 128 107488 0.584 249000 0.158714 145416 84922.9 2327 294 2033

Figure B.1: Results for Two-Stage Pipelined Implementation of Adder in 180nm
Technology

 61

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Gate Count

DW_180 add rpl 16 7269 1.451 1810.1 0.018618 2626.46 3810.99 214
add rpcs 16 7730 1.094 2166.6 0.014684 2370.26 2593.06 200
add pparch 16 5968 0.598 3256.1 0.006909 1947.15 1164.4 188
add csm 16 9619 0.696 2736.8 0.020106 1904.81 1325.75 230
add clf 16 6833 0.618 3481.6 0.008901 2151.63 1329.71 220
add cla 16 7245 0.618 3099.7 0.0089 1915.61 1183.85 241
add bk 16 6328 0.574 3151.6 0.007132 1809.02 1038.38 210

add rpl 32 12616 2.678 2040.1 0.059848 5463.39 14631 357
add rpcs 32 17732 1.557 3443.2 0.050805 5361.06 8347.17 477
add pparch 32 12344 0.76 5985.6 0.018244 4549.06 3457.29 419
add csm 32 23605 0.833 5560 0.0594 4631.48 3858.02 581
add clf 32 12440 0.803 5540.2 0.021919 4448.78 3572.37 394
add cla 32 13599 0.81 5071.6 0.021205 4108 3327.48 450
add bk 32 12466 0.733 5908 0.017169 4330.56 3174.3 416

add rpl 64 23791 6.592 1994.9 0.260226 13150.4 86687.4 623
add rpcs 64 39184 2.111 5002.5 0.160784 10560.3 22292.8 1124
add pparch 64 25879 0.923 10405 0.046124 9603.82 8864.33 843
add csm 64 52315 1.035 8172.8 0.168798 8458.85 8754.91 1244
add clf 64 30357 0.902 11178 0.056886 10082.6 9094.51 977
add cla 64 27630 0.952 8959.7 0.051933 8529.63 8120.21 885
add bk 64 26365 0.912 10300 0.047933 9393.6 8566.96 881

add rpl 128 59490 4.585 4925.6 0.535161 22583.9 103547 1806
add rpcs 128 70260 4.084 5553 0.561795 22678.5 92619 2012
add pparch 128 55120 1.093 19326 0.115858 21123.3 23087.8 1812
add csm 128 118325 1.28 14935 0.471782 19116.8 24469.5 2846
add clf 128 61256 1.128 18978 0.150419 21407.2 24147.3 1968
add cla 128 53110 1.18 15343 0.123345 18104.7 21363.5 1734
add bk 128 60223 1.088 20608 0.122509 22421.5 24394.6 2031

Figure B.2: Results for Unpipelined Implementation of Adder in 180nm Technology

 62

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Total Gates Register Count Gate Count

DW_180 mult csa 16 82902 1.937 98829 0.3376 191432 370804 1253 97 1156

mult pparch 16 87280 1.835 152800 0.346173 280388 514512 1814 47 1767

mult nbw 16 87581 1.213 144250 0.22375 174975 212245 1401 84 1317

mult wall 16 82661 1.245 207160 0.231657 257914 321103 1571 72 1499

mult csa 32 301178 3.895 270630 2.31659 1.05E+06 4.11E+06 3774 319 3455

mult pparch 32 299923 2.609 478280 1.66376 1.25E+06 3.26E+06 5976 94 5882

mult nbw 32 300523 1.66 672420 1.09198 1.12E+06 1.85E+06 5897 159 5738

mult wall 32 300625 1.665 672130 1.1027 1.12E+06 1.86E+06 5918 159 5759

mult csa 64 1266621 7.291 889740 18.4564 6.49E+06 4.73E+07 16034 1383 14651

mult pparch 64 1116642 3.802 1649300 8.90695 6.27E+06 2.38E+07 22671 185 22486

mult nbw 64 1063208 2.297 2156000 5.10026 4952332 1.14E+07 19999 357 19642

mult wall 64 1061355 2.524 2010200 5.59949 5.07E+06 1.28E+07 19863 357 19506

Figure B.3: Results for Two-Stage Pipelined Implementation of Multiplier in 180nm
Technology

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Gate Count

DW_180 mult csa 16 65466 3.415 3473.6 0.430768 11862.3 40509.8 996

mult pparch 16 68470 1.944 2543.9 0.234077 4945.34 9613.74 1033

mult nbw 16 64240 2.018 3132.6 0.246458 6321.59 12757 1037

mult wall 16 63382 2.067 3628.8 0.252133 7500.73 15504 1402

mult csa 32 255931 6.522 7942.8 3.03906 51802.9 337859 3358

mult pparch 32 251600 2.617 6392.7 1.29756 16729.7 43781.6 5045

mult nbw 32 267682 2.782 7554.2 1.45576 21015.8 58466 5595

mult wall 32 267681 2.783 7551.2 1.45634 21015 58484.7 5595

mult csa 64 1027695 12.606 21988 23.224 277181 3.49E+06 12747

mult pparch 64 1046609 3.55 13513 7.2104 47971.1 170297 21545

mult nbw 64 994081 3.855 16150 7.42936 62258.2 240005 19681

mult wall 64 994179 3.854 16167 7.42936 62307.6 240133 19681

Figure B.4: Results for Unpipelined Implementation of Multiplier in 180nm Technology

 63

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Total Gates Register Count Gate Count

DW_250 add rpl 16 17943 1.161 22549 0.028729 26179.4 30394.3 205 23 182

add rpcs 16 22143 1.204 24699 0.034001 29737.6 35804.1 275 27 248

add pparch 16 17664 1.214 19276 0.029789 23401.1 28408.9 203 23 180

add csm 16 24852 0.821 41045 0.025545 33697.9 27666 313 31 282

add clf 16 23694 0.7 37876 0.021567 26513.2 18559.2 279 48 231

add cla 16 21354 0.788 26415 0.022724 20815 16402.2 216 44 172

add bk 16 21102 0.691 36139 0.019504 24972 17255.7 241 35 206

add rpl 32 35955 1.915 28359 0.094021 54307.5 103999 432 44 388

add rpcs 32 44028 1.693 38665 0.096007 65459.8 110823 571 50 521

add pparch 32 35838 1.819 28980 0.090113 52714.6 95887.9 437 44 393

add csm 32 54945 0.958 88918 0.06738 85183.4 81605.7 680 63 617

add clf 32 52815 0.877 76730 0.063059 67292.2 59015.3 684 75 609

add cla 32 37968 1.223 36208 0.061714 44282.4 54157.4 425 70 355

add bk 32 42018 0.808 46302 0.042093 37412 30228.9 534 81 453

add rpl 64 74691 3.353 33557 0.323454 112517 377270 946 90 856

add rpcs 64 95190 2.412 62821 0.295832 151524 365476 1264 99 1165

add pparch 64 74781 2.174 52609 0.221791 114372 248645 949 87 862

add csm 64 125469 1.065 182300 0.174703 194150 206770 1600 126 1474

add clf 64 130941 1.025 164220 0.185935 168325 172533 1732 205 1527

add cla 64 86046 1.556 70137 0.185071 109133 169811 1044 141 903

add bk 64 115842 0.96 156860 0.158352 150586 144563 1551 166 1385

add rpl 128 154047 4.322 57471 0.891888 248390 1.07E+06 1951 176 1775

add rpcs 128 182763 4.96 60645 1.17507 300799 1.49E+06 2350 201 2149

add pparch 128 162234 5.742 47124 1.29643 270586 1.55E+06 2104 173 1931

add csm 128 240954 1.17 277870 0.347736 325108 380376 2779 262 2517

add clf 128 283737 0.931 384180 0.371553 357672 332993 3845 407 3438

add cla 128 160662 2.094 103270 0.461141 216247 452821 1969 267 1702

add bk 128 281397 1.12 302250 0.441493 338520 379142 3703 465 3238

Figure B.5: Results for Two-Stage Pipelined Implementation of Adder in 250nm
Technology

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Gate Count

DW_250 add rpl 16 8808 2.652 1518.6 0.033314 4027.33 10680.5 117
add rpcs 16 9738 2.555 1487.8 0.034237 3801.33 9712.4 107
add pparch 16 10860 1.089 2918.1 0.015155 3177.81 3460.64 185
add csm 16 15156 1.386 2132.2 0.028682 2955.23 4095.95 172
add clf 16 12249 1.2 2534.1 0.021162 3040.92 3649.1 204
add cla 16 14946 1.2 2369.1 0.023708 2842.92 3411.5 246
add bk 16 10704 1.075 2548.2 0.014631 2739.31 2944.76 183

add rpl 32 26724 3.289 1974.2 0.123068 6493.14 21355.9 414
add rpcs 32 25419 3.36 2226.7 0.117264 7481.71 25138.5 333
add pparch 32 25992 1.276 4848.4 0.042852 6186.56 7894.05 442
add csm 32 34668 1.691 3446.9 0.079046 5828.71 9856.35 387
add clf 32 25878 1.349 4438.4 0.049069 5987.4 8077 418
add cla 32 26163 1.597 3518.8 0.054792 5619.52 8974.37 427
add bk 32 22146 1.355 4338.3 0.037029 5878.4 7965.23 387

add rpl 64 60516 5.202 2567.3 0.464148 13355.1 69473.2 945
add rpcs 64 57138 4.984 2727.7 0.402762 13594.9 67757 791
add pparch 64 48426 1.587 8061.8 0.094666 12794.1 20304.2 838
add csm 64 77616 2.076 5712.4 0.213392 11858.9 24619.1 866
add clf 64 51528 1.665 7434.4 0.123237 12378.3 20609.9 831
add cla 64 53151 1.894 5926.9 0.135023 11225.5 21261.1 864
add bk 64 49878 1.601 8104 0.096809 12974.5 20772.2 871

add rpl 128 103491 15.475 1776.6 2.32651 27492.9 425453 1555
add rpcs 128 123126 10.101 2860.7 1.7705 28895.9 291877 1754
add pparch 128 108297 1.879 14586 0.252068 27407.1 51497.9 1852
add csm 128 171012 2.306 10992 0.518919 25347.6 58451.6 1898
add clf 128 114198 1.984 13687 0.314325 27155 53875.5 1847
add cla 128 96987 2.161 10868 0.274425 23485.7 50752.6 1569
add bk 128 106122 1.92 14638 0.247507 28105 53961.6 1851

Figure B.6: Results for Unpipelined Implementation of Adder in 250nm Technology

 64

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Total Gates Register Count Gate Count

DW_250 mult csa 16 154440 4.526 83069 0.988524 375970 1.70E+06 1813 87 1726

mult pparch 16 147618 3.34 122010 0.731928 407513 1.36E+06 1904 46 1858

mult nbw 16 180261 2.217 139800 0.590032 309937 687130 2356 86 2270

mult wall 16 180480 2.442 161380 0.656825 394090 962368 2536 81 2455

mult csa 32 595152 8.403 252560 6.97945 2.12E+06 1.78E+07 6511 363 6148

mult pparch 32 527592 5.631 333330 4.50035 1.88E+06 1.06E+07 6900 91 6809

mult nbw 32 566262 3.205 464600 2.65031 1489043 4.77E+06 7346 181 7165

mult wall 32 568053 3.126 460750 2.60052 1.44E+06 4.50E+06 7342 181 7161

mult csa 64 2317194 16.088 813450 51.5701 1.31E+07 2.11E+08 24310 1451 22859

mult pparch 64 1896498 7.15 1060900 20.2545 7585435 5.42E+07 24610 179 24431

mult nbw 64 1897812 4.188 1294100 11.3972 5.42E+06 2.27E+07 23215 428 22787

mult wall 64 1899465 4.278 1278100 11.5934 5.47E+06 2.34E+07 23455 428 23027

Figure B.7: Results for Two-Stage Pipelined Implementation of Multiplier in 250nm
Technology

Technology Implementation Types Bit Area Delay Power Leakage Energy EDP Gate Count

DW_250 mult csa 16 103794 7.235 2247.5 1.10435 16260.7 117646 919

mult pparch 16 119685 3.564 2386.8 0.626444 8506.56 30317.4 1471

mult nbw 16 120069 3.994 2075.4 0.703463 8289.15 33106.9 1399

mult wall 16 112578 4.035 2447.9 0.66295 9877.28 39854.8 1328

mult csa 32 399018 13.922 4226.8 8.10706 58845.5 819247 3277

mult pparch 32 400446 5.694 4008.7 3.35155 22825.5 129968 4453

mult nbw 32 375786 5.377 4470.1 2.88422 24035.7 129240 3804

mult wall 32 375966 5.383 4765.1 2.88949 25650.5 138077 3804

mult csa 64 1525113 28.987 11230 64.3685 325524 9.44E+06 11116

mult pparch 64 1279794 7.095 7365.2 13.0186 52256.1 370757 11466

mult nbw 64 1331481 7.884 7235 14.885 57040.7 449709 12083

mult wall 64 1320645 7.455 8341.5 13.9431 62185.9 463596 11810

Figure B.8: Results for Unpipelined Implementation of Multiplier in 250nm Technology

VITA

VIJAYA CHANDRA KURAPATI

Candidate for the Degree of

Master of Science

Thesis: ANALYSIS OF IP BASED IMPLEMENTATIONS OF ADDERS AND

MULTIPLIERS IN SUBMICRON AND DEEP SUBMICRON
TECHNOLOGIES

Major Field: Electrical and Computer Engineering

Biographical:

Education:
Completed the requirements for the Master of Science in Electrical and
Computer Engineering at Oklahoma State University, Stillwater, Oklahoma in
December, 2008.

Education:
Completed the requirements for the Bachelor of Technology in Electrical and
Electronics Engineering from Jawaharlal Nehru Technological University,
Hyderabad, India in May, 2006.

ADVISER’S APPROVAL: Dr. James E. Stine, Jr.

Name: VIJAYA CHANDRA KURAPATI Date of Degree: December, 2008

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ANALYSIS OF IP BASED IMPLEMENTATIONS OF ADDERS AND

MULTIPLIERS IN SUBMICRON AND DEEP SUBMICRON
TECHNOLOGIES

Pages in Study: 64 Candidate for the Degree of Master of Science

Major Field: Electrical and Computer Engineering

Scope and Method of Study:

Datapath is at the heart of the microprocessor whose performance is a key factor
which determines the performance of the processor. Adders and multipliers are
the key elements in the datapath which usually are a measure of the performance
of the datapath. So, with scaling of MOS transistors down into the deep
submicron regime, it is necessary to investigate the performance of these key
elements at such small device sizes. This thesis focuses on investigating the
performance of existing architectures of adders and multipliers in the submicron
and deep submicron technologies at the physical implementation level. Also, an
effort has been made to investigate the performance of pipelined implementations
of these architectures. Verilog HDL instantiations of adders and multipliers that
are available with the DesignWare Building Block IP of Synopsys have been
utilized in this thesis. The entire process of the design right from synthesis of the
design down to power analysis of the design has been carried out using various
EDA tools and has been automated using scripts written in TCL.

Findings and Conclusions:

Various architectures of adders and multipliers available with the DesignWare
Building Block IP were implemented in different technologies for various bit
widths. Adders and multipliers were implemented in unpipelined and two-stage
pipelined configurations. These design implementations were analyzed for key
parameters of total dynamic power, leakage power, Energy-Delay product, delay
and area at various bit widths. Using the results obtained optimal implementations
of adders and multipliers for before mentioned key parameters were summarized.
These results were consistent for all implemented bit widths in all implemented
technologies. Also, the leakage power was seen to contribute a higher percentage
to the value of the average power dissipation in deep submicron technologies
when compared to submicron technologies.

