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CHAPTER I 

 

 

BACKGROUND, RATIONALE AND SCOPE OF THE INVESTIGATION 

 

Introduction and Scope of the Study 

 

 Proteomics is the study of proteins present in a biological sample such as serum, 

urine, cerebrospinal fluid etc., which involves identification, quantification and 

characterization of the proteins present in the biological sample.  Proteomics is 

extensively involved in the analysis of body fluids to detect disease biomarker proteins or 

any other proteins that are differentially expressed in response to a given disease or 

treatment.  Human serum is one of the body fluid that reflects the physio-pathological 

state of person and it can be easily accessed for clinical studies.  The vast complexity of 

serum arises primarily from its high dynamic concentration range that spans over 10 to 12 

orders of magnitude.  Also, the presence of a large number of proteins especially those 

present at very low levels further complicates the analysis of serum.  Different techniques 

such as depletion of the high abundance proteins, electrophoretic and chromatographic 

pre-fractionation and equalization of the protein concentration have been reported to 

reduce the complexity of serum.  These diverse techniques along with the advancement in 

mass spectrometry (MS) have allowed gaining increasing knowledge about many  
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biological samples.  The major purpose of the work presented in this dissertation is to 

contribute to the introduction and evaluation of new ways and strategies for reducing the 

complexity of the human serum and in turn contribute to facilitating the identification of 

candidate biomarkers with the assistance of advanced MS techniques.  In one approach, 

immobilized metal affinity chromatography (IMAC) along with a protein equalizer 

technique were combined to reduce the complexity of the human serum.  In another 

approach, lectin affinity chromatography (LAC) was used to selectively enrich the 

glycoproteins present in human serum.  The LAC strategy was further demonstrated for 

its promising biological potentials by comparing a disease-free serum with a breast 

cancer serum to identify the glycoproteins that were differentially expressed due to 

changes in their glycosylation pattern in cancer serum. 

 This chapter gives a brief introduction to IMAC, LAC and glycoproteins analysis.  

This is followed by providing (i) short reviews of the different techniques that are 

currently used to address the complexity of a biological sample and (ii) an overview of 

different strategies used in identification of glycoprotein biomarker candidates in various 

diseases, particularly in cancer. 

Chapter II describes a strategy where the reduction of the protein dynamic 

concentration range in serum was obtained using protein equalizer beads.  The 

“equalized” proteins were further fractionated on IMAC and reversed phase 

chromatography (RPC) columns arranged in tandem format.  The fractions obtained from 

the IMAC and RPC columns were analyzed using liquid chromatography (LC)-MS/MS.  

This strategy allowed for identification of a greater number of proteins without depleting 

the high abundance proteins (HAP). 
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Chapter III investigates the potentials of three broad specificity lectins to enrich 

the glycoproteins present in human serum using tandem lectin affinity monolithic 

columns.  By using the broad specificity lectins the most common type of N-linked 

glycans namely, high-mannose, complex and hybrid type glycoproteins and O-linked 

glycoproteins can be captured.  This enrichment of the glycoproteins allowed reducing 

the sample complexity and led to the identification of many glycoproteins using LC-

MS/MS.  This strategy was applied to profiling the differentially expressed proteins in 

breast cancer serum with respect to disease-free serum. 

Chapter IV focuses on selective enrichment of sialylated and fucosylated 

glycoproteins.  Alteration of sialylation and fucosylation of glycoproteins is a common 

feature in the case of many diseases.  Therefore, three lectins, which have affinity toward 

sialylated and fucosylated glycoproteins, were immobilized on macroporous monolithic 

columns and they were arranged in series (i.e., tandem columns) to capture the 

glycoproteins present in the serum.  This strategy to capture targeted glycoproteins was 

also applied to breast cancer serum to identify the differentially expressed proteins in 

comparison to the disease-free serum. 

Chapter V involved the combination of both broad and narrow specificity lectins 

for capturing a broad spectrum of glycoproteins in a single run. The lectin columns were 

arranged in tandem series, where the narrow specificity lectins were followed by the 

broad specificity lectins.  In this arrangement, the binding sites of the various lectins are 

in principle more evenly exploited so that biding site overloading would be minimized 

and more efficient glycoprotein capturing may be achieved.  

 



4 
 

General Background Information Pertinent to the Dissertation 

Immobilized Metal Ion Affinity Chromatography 

 In the year 1975, Porath and co-workers introduced IMAC by immobilizing zinc 

and copper ions to fractionate human serum proteins [1].  In IMAC, the underlying 

principle is the binding of the proteins to the metal chelated to the stationary phase such 

as iminodiacetic acid (IDA)-agarose.  Even though cysteine and tryptophan residues on 

the protein surface can interact with the immobilized metal ion, it has been shown that 

histidine (His) on the surface of a protein is greatly involved in the protein-metal 

interaction [2, 3].  For IMAC, the monolithic columns used in this dissertation were 

bonded with iminodiacetic acid (IDA) chelated with a given transition metal ions (e.g., 

Zn
2+

, Cu
2+

, Ni
2+

).  If a given protein has two-vicinal His residues or two or more His on 

the surface then it is retained by the IDA-Zn
2+

 column; for a protein to be retained on an 

IDA-Ni
2+

 column it should contain at least two His residues on the surface and the 

presence of even one His residue on the surface of a protein makes it retained on a IDA-

Cu
2+ 

column [3].  Thus, IMAC can offer an effective fractionation of serum proteins 

based on the number of His residues exposed on the surface of the protein solute. This 

approach was used to fractionate serum proteins in Chapter II.  The applications of IMAC 

in protein fractionation in general and in proteomics samples in particular can be found in 

the recent review article by Block et al. [4]. Also, fractionation of histidine-tagged 

recombinant proteins are discussed in detail.   
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Lectin Affinity Chromatography 

 Lectin affinity chromatography (LAC) involves the specific interactions between 

the immobilized lectins on a given support and carbohydrates and glycoconjugates such 

as glycoproteins, glycolipids and glycopeptides.  In fact, lectins are sugar-binding 

proteins, which are of non-immune origin.  Since lectins are capable of differentiating 

subtle changes in a variety of glycoforms, they have found extensive applications in the 

field of glycoproteomics. Depending on their specificity, lectins are classified as either 

broad or narrow specificity ligands.  Both lectin types have been used for capturing 

specific glycoproteins present in biological fluids and tissues [5-7].  Although sugars 

have low affinity towards lectins (Kd = 10
2 

- 10
6 

M
-1

), as compared to carbohydrate-

specific antibodies (Kd = 10
4 

- 10
8
 M

-1
), lectins have the advantage that they are readily 

available and the elution conditions from a given lectin column do not require any harsh 

conditions such as low pH elution as in the case of antibodies [8]. The use of lectins in 

cancer biomarker discovery has been recently reviewed by Kim et al. [9]. 

Lectins bound to agarose, silica, monoliths, membranes, polyhydroxylated 

polymer (POROS) support or magnetic beads have been used in many studies for 

theenrichment of glycoproteins [10, 11].  Monoliths, which are rigid continuous 

macroporous separation media have found use in proteomics studies [12, 13] due to their 

many advantages such as good mass transfer, low back pressure and ability to scale up or 

down the preparation process, stability, etc. Also, monoliths having different pore sizes 

with nonspecific binding can be readily prepared.  Monolith based supports find 

applications in different chromatographic separation modes such as reversed-phase, ion-

exchange, hydrophobic interaction, immobilized metal ion affinity, bioreactors, affinity 
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chromatography etc., [14].  The work presented in this dissertation involves 

polymethacrylate based monolithic supports for IMAC and LAC.   

 

Protein Equalizer versus Immuno-depletion  

 Protein equalizer technology (ProteoMiner™) is a novel technique that can 

simultaneously decrease the HAP concentration and increase the low abundance protein 

concentration.  Thus, it can reduce the dynamic concentration range of proteins in many 

biological samples or fluids.  The Protein equalizer consists of peptide ligand libraries 

that are synthesized via a modified Merrifield approach using the “separate-recombine-

assemble” method [15].  In brief, a batch of millions of microscopic, porous 

chromatographic beads is split into different batches of equal parts.  Then a given amino 

acid is chemically attached to the beads present in a given batch. Different batches of 

beads are bonded with different amino acids.  These batches are recombined and split 

again for further attachment of amino acids.  Using this method, peptide ligand libraries 

are prepared [16].  By this process each bead would contain copies of single, unique 

amino acid sequence [17].  In a study, different amino acid lengths were investigated for 

capturing red blood cell cytoplasmic proteins.  It was observed that at least four amino 

acids are required for selectivity of the beads and when the amino acid length was six, the 

largest possible population of proteins was captured [18]. 

The ProteoMiner™ technology works on the principle of affinity 

chromatography.  Under large overloading conditions of a given biological sample, the 

proteins are captured by the specific hexapeptide beads.  Proteins that are present at high 

concentration rapidly saturate the beads whereas the low-abundance proteins will not 
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saturate immediately but are gradually captured by the beads under the overloading 

condition of the sample.  Then, the unbound proteins are washed away to ensure that all 

the non-captured proteins are completely eliminated and the bound proteins are eluted 

using appropriate buffers [16].  The adsorption of the proteins onto the beads are via 

combination of interacting forces such as ion-exchange interactions, hydrophobic 

associations, hydrogen bonding, structural docking and Van der Waals interactions [16]. 

On the other hand, depletion of HAP is a commonly practiced approach to 

achieve in-depth analysis of proteome.  In this approach, specific HAP are removed using 

polyclonal antibodies, which can recognize many regions of a target and thus efficiently 

deplete them.  Even though depletion techniques are reproducible and efficient in 

removing HAP, the presence of medium abundance proteins still masks the low 

abundance proteins.  Also, there have been reports that depletion can result in co-

depletion of many valuable low abundant proteins [19, 20].  Unlike the depletion 

approach, the protein equalizer technology does not deplete any proteins but instead it 

equalizes the concentration of the proteins present in a sample. The high sensitivity of the 

protein equalizer was demonstrated in a recent report where even 1 g casein per liter 

present in white wine was detected using the protein equalizer technology [21].  This 

represented a 200 fold increase in sensitivity as compared to the traditional enzyme-

linked immunosorbent assay test which had a sensitivity of 200 g casein per liter [22].  

Hence, the use of the protein equalizer in serum analysis to reduce the dynamic 

concentration range should allow for in-depth proteomic analysis.  This technique is 

utilized in Chapter II and compared to immuno-depletion. 
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Glycoproteomics: Another Complex Dimension 

Apart from the wide dynamic concentration range of proteins, the human 

proteome is further complicated as a result of more than 100 post-translational 

modifications (PTMs) taking place in the proteome [23].  At the later stage of its 

biosynthesis, a given protein is subjected to covalent PTMs such as glycosylation, 

acetylation, phosphorylation, oxidation, methylation etc.  Glycosylation is one of the 

most common PTMs, which plays a key role in many of the biological processes that 

include immune defense, cell growth and cell-cell adhesion [24, 25].  Glycosylation is a 

process in which addition of carbohydrates to proteins takes place in the presence of a 

series of enzymes [26].   

Glycoproteins are glycosylated proteins, i.e., they have glycans (carbohydrates) 

covalently attached to them.  The different types of glycans, that vary in their structures 

or branching types, result in various forms of glycoproteins and they are called 

glycoforms.  There are three major types of glycoproteins namely, 

glycosylphosphatidylinositol (GPI) anchors, N-linked and O-linked glycoproteins.  When 

a protein contains a GPI sequence, GPI anchors are covalently attached to a fully folded 

protein. In N-linked glycoproteins, the carbohydrate is attached to the nitrogen of the 

amide of an asparagine that is present in the amino acid sequence of a protein.  If the 

carbohydrate is attached to the oxygen of a serine or threonine residue of a protein then it 

is termed as O-linked glycoproteins [24].  N-Linked glycans are divided into three types 

(i) high-mannose, (ii) complex and (iii) hybrid type (see Fig.1)  The N-linked glycans 

have a similar core structure that comprises two N-acetylglucosamine (GlcNAc) and 

three mannose units (see Fig.1), found in common to all the three types (indicated by a 
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box in Fig. 1).  Unlike the N-linked glycoproteins, the O-linked glycoproteins have at 

least 8 core structures out of which 4 are the most common types (see Fig. 2).   

Over the years, many studies have established that glycoproteins are involved in a 

diverse array of disease conditions such as (i) infectious diseases like viral, bacterial and 

parasitic infections, (ii) inflammation, (iii) immune deficiency, (iv) cancer metastasis, (v) 

rheumatoid arthritis, (vi) inherited disorders and (vii) abnormal catabolism of  

 

(i) High-mannose type 

 

 

 

(ii) Complex type 

 

 

 

(iii) Hybrid type 

 

 

  

 

Figure 1.  The three types of N-linked glycoproteins with the common core structure 

shown in the dashed box. 
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Figure 2.  Four most common types of core structures of O-linked glycoproteins 

 

glycoconjugates [27].  Although glycoproteins are involved in many diseases, 

identification of glycoprotein biomarkers for cancer is an extensively active field of 

research.   

Cancer is the second most common cause of death in the world and detection of 

cancer biomarkers at an early stage is a crucial goal.  Some of the glycoproteins that have 

been approved as cancer biomarkers by the Food and Drug Administration (FDA) are 

carcinoembryonic antigen, prostate-specific antigen, cancer antigen 125, alpha-

fetoprotein and Her-2/neu [9].  The majority of glycoproteins are synthesized in the liver 

and they are circulated in serum/plasma, urine and saliva [28].  Since it is understood that 

proteins can leak from tumor tissue into the blood [29] and as much as 50% of the human 

serum proteins are glycosylated [30], it is then of great importance to identify, quantify 

and characterize the glycoproteins present in serum. Glycoproteomics and its importance 

in diseases such as in breast cancer are the topics of Chapters III, IV and V.  
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Approaches for Proteomics Analysis by Mass Spectrometry 

 The two major approaches practiced in proteomics MS for protein identification 

and characterization involve either the fractionation of the intact proteins or their peptide 

fragments, which are obtained by enzymatically digesting (e.g., with trypsin) the complex 

proteome.  In one approach, the tryptic peptides are further fractionated using different 

separation strategies and finally analyzed through MS to identify the parent proteins.  

Whereas in the second approach, the intact proteins are fractionated using various 

separation approaches and finally digested into peptides and analyzed through MS to 

identify the parent proteins.  Some of the techniques in which the peptides are 

fractionated using different separation methods are discussed below and those techniques 

that involve fractionation of intact proteins are discussed in the next section. 

 Due to the high complexity of biological samples, a single step fractionation (i.e., 

single column) would not be sufficient enough to comprehensively analyze complex 

samples, and therefore multiple fractionation steps are required to analyze the proteome.  

In 1-dimensional (1D) LC, the most commonly used method for separation is based on 

the difference in hydrophobicity of the proteins using RPC columns [31].  In 2-

dimensional (2D) LC, the commonly practiced separation approach involves strong 

cation exchange (SCX) in the first dimension and RPC in the second dimension [32, 33].  

Isoelectric focusing [34] and hydrophilic interaction chromatography [35] have also been 

used as the first separation dimension in 2D LC. 

 In a study by Gilar et al. [36], a comparison between 1D and 2D-LC analysis was 

carried out using whole human serum (i.e., non depleted serum).  In the 2D-LC, the first 

dimension separation was performed using either a SCX column or an RPC column, and 
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the second dimension separation involved the use of an RPC column.  As one would 

expect, only 52 proteins were identified in the 1D-LC study whereas 184 and 142 

proteins were identified in the RPC-RPC and SCX-RPC 2D-LC respectively, clearly 

indicating that the 2D-LC is necessary to reduce the complexity of the biological sample.  

The SCX-RPC identified mostly 7-13 long amino acid peptides whereas, the RPC-RPC 

identified peptides longer than 20 amino acids.  The detection of longer and hydrophobic 

peptides by RPC-RPC indicated that these peptides were lost in the SCX separation.  The 

authors concluded that the SCX-RPC and RPC-RPC methods were not complementary 

and the latter method was more suitable to hydrophobic peptides.  

As stated above, in many of the multidimensional LC set ups used in proteome 

analysis, the first separation dimension of the tryptic peptide digest involves commonly 

the use of SCX chromatography.  In a recent investigation, where shotgun proteome 

analysis of the mammalian nuclear cell lysate was carried out using 2D-LC, the 

traditionally used SCX chromatography in the first dimension was replaced by a mixed 

mode reversed-phase anion exchange (MM RP-AX) and the second dimension separation 

was done using RPC.  The authors made a comparison between the MM RP-AX and the 

SCX analysis based on the peptide fractionation efficiency, distribution of peptide charge 

state, pI and hydrophobicity of the identified proteins and it was concluded that MM RP-

AX offered an effective alternative to the conventionally used SCX chromatography.  For 

example, the number of unique peptides and proteins increased by 150% when MM RP-

AX was used in the first dimension.  Another advantage of this method is that the use of 

gradient acetonitrile to elute peptides from the first dimension eliminated any desalting 

steps before the second dimension.  Also, potential ion suppression and salt precipitation 
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that lead to harmful effects in RP-LC-MS/MS analysis which is usually observed in the 

case of SCX, was not observed in MM RP-AX [37]. 

 In another 2D-LC study, low pH (pH 3) and high pH (pH 10) RPC concatenation 

fractionation approach of the tryptic peptides was performed as an off-line first 

dimension separation.  In this proteome analysis, the high pH and low pH concatenation 

strategy were evaluated using human MCF10A cell sample.  From the first dimension 60 

fractions were collected using either high-pH or low-pH RPC. The concatenation was 

done by pooling early, middle and late RPC fractions of 60 total collected fractions 

whereby for instance the fractions 1, 16, 31 and 46 were combined together, and the 

fractions 2, 17, 32 and 47 were also similarly combined and so on.  The high pH 

concatenation resulted in increase of the number of peptide and protein identification by 

1.8 and 1.6 fold, respectively, when compared to the traditional SCX chromatography, 

whereas the low pH concatenation yielded results that were comparable to the SCX 

results.  This indicates that concatenation strategy using high-pH RPC in the first 

dimension is a better alternative to the traditionally used SCX separation [38]. 

In a very recent investigation by Krishnan et al. [39], the first dimension 

separation was based on OFFgel electrophoretic (OGE) fractionation which allowed them 

to identify 1373 proteins from human platelet proteome.  The second dimension analysis 

was achieved by RPC fractionation and the proteins were identified by nano-LC-MS/MS.  

In the OGE, the peptides migrate according to their pI values on an Immobiline™ 

DryStrip.  After focusing, the samples were recovered from the sample wells and then 

loaded into the RPC column for MS/MS detection.  This shotgun proteome analysis by 
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OGE fractionation and RPC fractionation in the first and second dimension allowed them 

to perform in-depth analysis of the human platelet proteome. 

 When a complex proteome mixture is enzymatically digested, it results in 

enormous number of peptides.  As mentioned above, there are various methods available 

for the separation of these peptides, but still it is a major problem as too many peptides 

are involved in the fractionation process.  Also, fractionation of these peptides based on 

their properties does not give much information about the nature of the protein.  But, 

when fractionation is done at the protein level more information about the nature of the 

protein could be obtained.  For example, when protein fractionation is done using IMAC 

(as shown in Chapter II), one could assess the number of His residues present on the 

surface of the protein or when the fractionation is done using LAC (as described in 

Chapters III, IV and V), information about the glycoforms of the glycoproteins could be 

obtained.  Thus, the research work discussed in this dissertation involves fractionation at 

protein level. 

  

Overview of Different Techniques Currently Used to Reduce the Complexity of 

Biological Samples – Sample Treatment 

 Proteomics analysis and profiling is a problem of sample preparation in the first 

place. Most of the techniques involved in proteomics involve two major areas: (i) protein 

separation/sample preparation and (ii) protein identification by MS.  In order to analyze a 

proteome mixture, it is necessary to fractionate the complex proteome based on their 

characteristics such as solubility, pI value, molecular weight, hydrophobicity, etc.  The 

various fractionation steps commonly practiced include depletion of the proteins, protein 
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equalizer technology and chromatographic and electrophoretic separation.  The extensive 

growth in MS techniques along with various novel fractionation strategies have allowed 

for identification of increased number of proteins.  In this Chapter, articles published on 

various fractionation techniques used in proteomics over the years 2009-to present have 

been reviewed.  Prior to 2009, there were 3 major review articles that dealt with various 

aspects of fractionation/sample preparation for proteomics analysis [40-42]. One of these 

review articles [40] discussed the liquid-based separation system employed for in-depth 

proteomic analysis for the time period 2002-2009.  Another review article [41] described 

sample preparation and fractionation associated problems along with different strategies 

used for cancer biomarker discovery.  The review article [42] gave an overview about 

different technologies used in sample preparation and fractionation for biomarker 

discovery for the time period of 2004-2007.   

 

Overview of Depletion methods  

Depletion is one of the commonly used methods to reduce the complexity of a 

given proteomics sample despite reports that some of the depletion methods result in co-

depletion of many other clinically important low abundant proteins [19].  Some of the 

depletion method has been directed towards either high molecular weight (HMW) 

proteins or HAP.  Many other depletion methods and precipitation methods reported prior 

to 2009 have been reviewed by Jmeian and El Rassi [40]. 

 

 Solvent precipitation methods  Some of the low molecular weight (LMW) 

proteins that are present in plasma/serum reflect the pathological state and they could 
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serve as potential biomarkers [43].  Thus, the identification of these LMW proteins gains 

importance in proteome analysis.  Kawashima et al. [44] described a method to 

concentrate the LMW proteins/peptides from serum using differential solubilization (DS) 

method.  In the DS method, LMW proteins were isolated by diluting the serum with 

denaturing solution containing urea, thiourea and dithiothretiol (DTT), followed by 

centrifugation, and acidic treatment. They were able to analyze quantitatively more than 

1500 LMW proteins/peptides from 1 L of serum by combining the DS method with 

RPC separation followed by matrix assisted laser desorption/ionization (MALDI)-time of 

flight (TOF)-MS.  This method was compared to other depletion techniques such as 

organic precipitation, ultrafiltration and albumin/IgG affinity removal methods.  It was 

found that many peptides including those bound to albumin were observed in the DS 

method, but not the other three methods. 

 Warder et al. [45], described a protocol to precipitate the HAP which included 

albumin and transferrin.  In brief, the serum was incubated with either DTT or tris(2-

carboxyethyl)phosphine, and centrifuged to obtain the pellet which was rich in albumin.  

Analysis of the supernatant by MALDI-TOF-MS did not show any intact albumin ions 

indicating that albumin was completely precipitated.  This reproducible method could be 

extended to plasma from other species and can also be scaled up to a larger volume of 

sample. 

 

 Immunoaffinity depletion methods Immunoaffinity methods involve the use of 

specific antibodies to capture one or a group of proteins.  There are many commercially 

available immunodepletion columns to deplete one, six, twelve, fourteen or twenty HAP.  
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In a study done by Tu et al. [46],  the performance of the commercially available columns 

to deplete 7 or 14 HAP was evaluated on the shotgun proteomic analysis of human 

plasma.  It was observed that the depletion columns were highly reproducible, but a few 

non-targeted proteins were also captured by the depletion columns.  Immunodepletion of 

top 7 or 14 proteins resulted in 25% increase in identified proteins as compared to 

unfractionated plasma. 

In a recent study, a one-step process was reported to concentrate, purify and 

deplete albumin from urine.  In brief, the urine proteins were first reduced, alkylated and 

transferred to a spin filter, where it was treated with anti-human serum albumin.  The 

proteins were incubated and spun down to remove the waste.  The supernatant solution 

containing the proteins were further tryptically digested, fractionated either using Off-gel 

electrophoresis or high pH RPC separation and analyzed by LC-MS/MS.  By the Off-gel 

electrophoresis fractionation, 703 proteins were identified whereas using the RPC 

separation 499 proteins were identified. This simple, efficient and reproducible method is 

compatible with diverse down-stream applications and is also a potential method to study 

other complex body fluids [47].  

 A comparative study was made to see the outcome when one, six, twelve or 

twenty major proteins were depleted [48].  When the number of depleted proteins was 

increased from twelve to twenty proteins the benefits were limited, whereas when 6 

proteins were depleted many low abundant proteins were detected [48].  In another study 

[49], 12 highly and 77 moderately abundant proteins present in serum were depleted 

using commercially available antibody columns.  They were able to identify 222 and 71 

proteins when 77 and 12 proteins were depleted, respectively.  Clearly, this indicates that 
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the simultaneous depletion of the high and the moderate abundant proteins would 

increase the number of identified low-abundant proteins.  These findings were in good 

agreement with the results presented in ref. [50] in which the same approach was 

followed to reduce the complexity of the proteome.  The authors were able to establish 

the above mentioned approach to identify the differentially expressed proteins in ovarian 

cancer sera.  It is to be noted that despite a simultaneous depletion of both high and 

moderate abundance proteins was performed on the sera, the flow-through fractions still 

contained some of the moderately abundant proteins, indicating that the depletion was not 

complete [49, 50].  Also, depleting the 77 moderately abundant proteins might have a 

disadvantage that it can result in co-depletion of some of the clinically important proteins.  

 

Overview of the Protein Equalizer Approach 

 In principle, the combinatorial peptide ligand library (CPLL) reduces significantly 

(i.e., almost equalizes) the dynamic concentration range of proteins present in a given 

complex biological sample.  In fact, under overloading conditions, and when a given 

sample of complex proteome is treated with the CPLL beads,  HAP immediately saturate 

the corresponding ligands whereas the proteins that are present at very low level gets 

selectively enriched by the corresponding ligands [18].  The concept of peptide ligand 

libraries was combined with other fractionation methods such as differential gel 

electrophoresis (DIGE) and off-gel fractionation [51, 52], to identify a high number of 

low abundant proteins.  The protein equalizer technology has allowed in-depth 

proteomics analysis of a complex mixture of human proteome [53].  It has also allowed 
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for in-depth analysis of animal plasma proteome as it does not require any antibodies that 

are usually specific for human plasma proteins [54].   

In a novel method, the equalized proteins were further fractionated based on their 

differences in isoelectric points using solid-state-buffers (SSB) associated with cation 

exchangers [51]. In earlier methods, the equalized proteins, which resulted from treating 

a given serum sample with the CPLL beads, were further fractionated by 1D gel analysis.  

This procedure yielded a number of fractions to be analyzed.  To avoid this cumbersome 

process, protein equalizer in combination with SSB method was proposed, whereby the 

equalized proteins are allowed to adsorb on a solid phase where their net charge is 

opposite to the ion exchange column.  This proposed method, which reduced the number 

of fractions to be analyzed, was compared to the performance of the classical anion 

exchange chromatography.  It was observed that the eluted fractions from SSB method 

had different ranges of isoelectric points, while the anion exchange chromatography did 

not show a good discrimination of the isoelectric points. When this method was 

compared to the performance of Off-Gel fractionation (pI based fractionation in off-gel 

format) after treating the serum with CPLL beads, it was observed that the SSB method 

detected more number of proteins spots in 2D gel electrophoresis (2-DE), although the 

Off-Gel method resulted in better pI discrimination. 

In another study [55], three different methods including high abundance protein 

precipitation, restricted access materials (RAM) combined with IMAC and CPLL beads 

were evaluated to see which of these methods serves as a best fractionation step for the 

analysis of LMW proteins.  The evaluation was performed based on the peptide/protein 

peaks generated from surface enhanced laser desorption/ionization-TOF-MS analysis and 
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on the reproducibility of the methods. Even though the authors concluded all the three 

methods were complementary, the peptide affinity beads efficiently depleted the HMW 

proteins.  The IMAC-RAM method identified some additional LMW protein peptides 

whereas the precipitation method using organic solvents did not give any new 

information on the peptide/protein peaks. 

In another study [56], three different commercially available protein enrichment 

methods were compared to see if combining these methods would allow access to the 

low-abundant proteins. The three different methods were immunodepletion using Seppro 

IgY14 (contained polyclonal antibodies raised against the 14 highest abundance 

proteins), a two-step immunodepletion process using Seppro IgY14 and Seppro IgY-

Supermix system (that contained a mixture of antibodies raised against the proteins 

present in the flow-through fraction of IgY12) and the third strategy involved the use of 

the CPLL beads.  When the bound fractions were analyzed using 2-DE, as expected 

differences in the protein patterns were observed for the three methods.  In another 

experiment by the authors, the flow through from IgY14 column was treated with CPLL 

beads. In principle, combining two different fractionation methods should allow for 

identification of more number of proteins.  In contrast, it was observed that the multi-step 

fractionation showed only slight increase in the sensitivity as compared to the one-step 

fractionation.  It was observed that the one-step fractionation using the CPLL beads and 

the IgY14 fractionation increased the number of genes in 2-DE as compared to the 

unprocessed plasma.  The author concluded that the combination of the two different 

fractionation methods did not show any significant increase in the number of genes in 2-
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DE, but it only made the whole process very expensive leading to few thousand dollars 

per sample. 

  

Chromatographic and Electrophoretic Enrichment/Pre-fractionation Methods  

 Chromatographic pre-fractionation using one dimension  A method to deplete the 

high abundance proteins was proposed based on hydrophobic interaction chromatography 

(HIC) [57].  56 main plasma proteins were divided into three different clusters as high, 

medium and low hydrophobicity based on their average hydrophobicity.  Some of the 

highly abundant proteins fell in the category of medium hydrophobicity proteins, which 

represented 70% of the highly abundant proteins.  This method was compared with the 

immuno-affinity depletion of albumin.  It was concluded that HIC increased the number 

of detected spots on 2-DE by 80% when compared to the albumin immunoaffinity 

depletion. 

 Another method to enrich the LMW proteins present in serum was introduced by 

Wu. et al. [58].  Serum was treated with a C18 absorbent with an average pore size of 100 

Å under denaturing conditions using urea and DTT. After incubation and washing, the 

LMW proteins were eluted using 60% v/v acetonitrile solution.  The eluted proteins were 

subjected to sodium dodecyl sulfate polyacrylamide gel (SDS-PAGE) analysis and the 

gel bands were further analyzed by LC-MS/MS.  In the presence of the denaturing 

conditions, the protein-protein interactions were broken, thus allowing the identification 

of the proteins that were bound to the HMW proteins.  Since, the procedure does not 

involve any addition of salts, desalting steps were avoided before analyzing the samples 

by 2-DE.  Also, more than 110 LMW proteins were identified from the serum and the 



22 
 

eluted LMW fraction contained only 5% of the HMW proteins.  In addition to serum 

proteins, this method was also demonstrated in analyzing proteins in cell and tissue 

extracts.  

 

Multidimensional chromatographic pre-fractionation In an study by Cellar et al. 

[59], two-dimensional separation was carried out for sample enrichment and fractionation 

for mammalian proteomics.  In the first dimension, IgY immunodepletion column was 

used to deplete the HAP from the sample.  The HAP deprived sample was then passed 

through a trap cartridge which serves as an injection loop for the on-line second 

dimension.  The second dimension column included an analytical C18 column with large 

pores.  This on-line arrangement facilitated (i) on-line desalting, (ii) automatic buffer 

exchange, (iii) simple concentration and (iv) fractionation of the protein based on their 

polarity. This advantageous method offers a convenient on-line proteomic approach as 

compared to the traditional immunodepletion process which results in dilution of the 

depleted protein fractions.  

 In a study by Jmeian and El Rassi [12], an integrated fluidic platform was 

introduced to deplete the HAP in serum and to fractionate/concentrate the medium and 

low abundance proteins.  The HAP were depleted using monolithic antibody columns, 

whereas the fractionation/concentration was achieved by IMAC.  In brief, the serum 

sample deprived of albumin was injected into the tandem series of antibody columns 

(connected in the order: protein G′, protein A, antihuman 1-antitrypsin, anti-human 

transferrin, anti-human haptoglobin and anti-human 2-macroglobulin) in order to 

deplete the seven HAP.  This was followed by online concentration by IMAC which 
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consisted of monolithic stationary phases that were bound to IDA chelated with Zn
2+

, 

Ni
2+

 and Cu
2+

.  The proteins that were not retained on the IDA-metal columns were 

captured by the RPC column that followed the IDA-metal columns.  The bound fractions 

from the metal-chelate columns and the RPC column were further analyzed using 2-DE.  

1450 protein spots were detected from the gel analysis using SYPRO fluorescent stain.  

Analysis of the detected gel spots resulted in the identification of 295 proteins through 

LC-MS/MS and MALDI-TOF analysis. 

As will be discussed in Chapter II, the above mentioned method was further 

expanded by using protein equalizer technology to reduce the dynamic protein 

concentration range.  The equalized proteins were further fractionated on metal-chelate 

columns and the RPC column.  The analysis of the bound fractions using LC-MS/MS 

resulted in identification of 82 non-redundant proteins.  This approach was compared to 

depletion of HAP as a sample pre-treatment before fractionation using IMAC and it was 

observed that protein equalizer technology resulted in identification of more number of 

proteins, see Chapter II for more details.   

 

 Electrophoretic fractionation methods Electrophoretic fractionation of proteins 

has been commonly used in proteomics, and the long-standing fractionation method used 

is gel electrophoresis.  Some of the drawbacks of 2-DE has allowed for various 

electrophoretic techniques to emerge in proteomics technology.  Some of them include 

liquid-phase isoelectric focusing, free-flow electrophoresis (FFE), capillary 

electrophoresis (CE) and membrane electrophoresis [60].  CE combined with MS has 
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been proved to be efficient tool for biomarker discovery in urinary proteomics [61] and in 

tumor biomarker discovery [62]. 

In a study by Wang et al. [63], two different approaches were compared using 

human cancer cell lysates.  The first approach was GeLC-MS/MS approach, in which 

proteins were first separated using SDS-PAGE and analyzed using LC-MS/MS. The 

second approach consisted of micro-scale solution (Micro-sol) isoelectric focusing of the 

proteins, which was followed by SDS-PAGE separation and finally the gel slices from 

SDS-PAGE were analyzed using LC-MS/MS.  In Micro-sol liquid phase isoelectric 

focusing, protein samples are divided into multiple tandem electrode chambers using 

isoelectric membranes.  As predicted, 90% of the proteins identified in the first approach 

were also found in the second approach.  Also, the second approach resulted in 22% 

increase in the number of identified proteins indicating that the inclusion of the Micro-sol 

isoelectric focusing step before SDS-PAGE in the workflow allowed for increase in the 

proteome coverage.  

Unlike other liquid-based fractionation methods, which involve a solid support, 

FFE is done in absence of any solid support such as gel.  In FFE, an electric field is 

applied perpendicularly to the flow, which results in the separation of charged particles 

according to their electrophoretic mobility or isoelectric point.  As an application of FFE, 

it was applied to identify the proteins present in urine sample [64].  The intact urine 

proteins was concentrated using ultrafiltration and isoelectric focusing via FFE to obtain 

approximately 50 fractions.  These fractions were tryptically digested and analyzed using 

RPC-MS.  This strategy of including the FFE step before MS analysis allowed facilitating 

the in-depth analysis of urine proteome. 
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Capturing/Targeting Specific Glycoproteins – Capturing/Targeting Sub-glycoproteomics 

by LAC and other Affinity Chromatography 

 The following sections discuss different strategies used in capturing sub-

glycoproteome, which is a major sub-proteome of serum.  The section focuses on 

glycoproteomic analysis in the aim of identifying candidate biomarkers for the time 

period of the last five years (2006 – present). 

   Single or serial lectin columns The identification and determination of structure 

and functions of glycoproteins are of great value in clinical studies.  Recent reviews on 

the clinical applications of glycoproteomics can be found in refs. [65] and [66], which 

describe the different glycomic approaches used for the identification of cancer 

biomarkers.   

Alterations in glycosylation patterns are very common in diseases. For example, 

alterations in sialylation, fucosylation, high mannose-type, sialyl Lewis x (sLe
x
) 

structures and changes in the degree of glycan branching have been reported in cancer 

patients [67-69].   

In a study to target the sialic acid-rich glycoproteins in pancreatic cancer serum, 

three different lectins were used namely wheat germ agglutinin (WGA), sambuccus nigra 

agglutinin (SNA) and Maackia amurensis lectin (MAL), which have affinity towards 

sialic acid containing glycoconjugates.  The serum sample was first depleted of the 12 

HAP and the sialylated glycoproteins were subsequently enriched using the three 

immobilized lectins.  The enriched fractions were further fractionated by RPC using non-

polar non-porous silica (NPS) stationary phases.  To achieve enhanced speed, resolution
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 and reproducibility, the RPC column was heated at 60ºC.  The fractions from the RPC 

column were further subjected to SDS-PAGE analysis.  The three glycoproteins namely, 

IgG, -1-antitrypsin and plasma protease C1 inhibitor were found to be altered and were 

subjected to MALDI-quadrupole ion trap-TOF-MS to identify the glycan structures.  This 

strategy allowed the detection of the altered glycosylation in pancreatic serum with 

respect to disease-free serum [70].  

In another application [71] of LAC, fucosylated serum glycoproteins were 

targeted using Aleuria aurantia lectin (AAL) to identify biomarkers of primary 

hepatocellular carcinoma (HCC).  Prior to LAC with agarose-bound AAL, the serum was 

depleted of the top 12 most abundant proteins using commercially available polyclonal 

antibody microbeads. It was observed that the fucosylated biantennary glycans increased 

from 5.8 % in disease-free patients to 10% in HCC sera and to 8.5% in cirrhotic serum.  

Four fucosylated proteins namely hemopexin, -2-HS-glycoprotein, anti-1-

antichymotrypsin and transferrin were further validated using lectin fluorophore-linked 

immunosorbent assay. 

 Abbott et al. [72] demonstrated the enrichment of (1,6)-branched N-linked 

glycan structures using L-phytohemagglutinin (L-PHA) lectin which has affinity towards 

the same.  The (1,6)-branched N-linked glycans have been reported to serve as marker 

in the detection of tumor progression [73].  Disease-free and breast cancer tissues were 

profiled by LAC using an L-PHA column.  In brief, the delipidated tissue samples were 

treated with biotinylated L-PHA lectin to enrich the (1,6)-branched N-linked 

glycoproteins.  The L-PHA bound glycoproteins were then captured using streptavidin 

particles and the captured proteins were eluted with a mobile phase consisting of 
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urea/DTT/ammonium bicarbonate.  The enriched glycoproteins were then subjected to 

nanospray ionization (NSI)-MS/MS, which allowed the identification of 34 proteins that 

were found to be elevated in breast cancer tissue when compared to the diseased-free 

tissue.   

  In another study by Mann et al. [7], a label-free quantitative analysis of 

fucosylated serum glycoproteins was carried out using the lectins AAL and Lotus 

tetragonolobus agglutinin (LTA).  First, seven HAP proteins namely, albumin, IgG, 

antitrypsin, IgA, transferrin, haptoglobin and fibrinogen were depleted from the serum 

samples.  Thereafter, a serial LAC was performed using agarose-bound AAL and LTA 

lectins.  The glycoproteins thus enriched by LAC were further fractionated using an RPC 

column. The RPC fractionated proteins were tryptically digested and analyzed by NSI-

MS/MS.  To ensure that the same amount of proteins was subjected to RPC fractionation, 

a bicinchoninic acid assay was performed.  The quantification of the proteins was done 

by the summation of the peak areas of the identified peptides.  This strategy was 

established to identify potential glycoprotein candidates in the study of esophageal 

adenocarcinoma and high-grade dysplasia. 

 In a recent study be Cho et al. [74], sLe
x
 glycan containing glycoproteins were 

targeted in human plasma to identify whether sLe
x
 containing proteins are shed into the 

blood stream from cell surfaces and to determine if these proteins are related to 

tumorigenesis.  An agarose conjugated CHO-31 antibody was used to selectively capture 

the sLe
x
 containing glycoproteins.  Further analysis was done using the following two 

approaches: (i) the captured glycoproteins were fractionated using RPC, and the fractions 

obtained were tryptically digested and subsequently identified using MALDI-MS/MS, 
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and (ii) the proteins were tryptically digested into peptides first and then fractionated on 

an RPC column. This was followed by MALDI-MS/MS analysis of the peptide RPC 

fractions.  Of these two methods the former method identified four times more number of 

proteins than the latter.  This method allowed the authors to identify some of the Le
x
 and 

sLe
x
 bearing glycoproteins in the plasma. Some of them were found to be elevated more 

than three folds in the breast cancer plasma, which could serve as potential biomarkers 

for breast cancer. 

In an effort to identify putative altered glycoprotein biomarkers for lung 

adenocarcinoma, Hongsachart et al. [75] developed a method in which initially the 

healthy and the lung cancer serum were screened using seven fluorescein isothiocyanate 

(FITC) labeled lectins for specific glycoprotein profile of the sera.  Based on the 

screening results, WGA, which showed highest specific binding with the glycoproteins, 

was selected for the enrichment of glycoproteins from the sera. Following this, a co-

immunoprecipitation of haptoglobin using anti-haptoglobin was performed.  The removal 

of haptoglobin from the WGA bound sample allowed the identification of increased 

number of differentially expressed proteins, which otherwise would have been masked by 

haptoglobin. Further analysis was done using DIGE, and it was noted that the unbound 

fraction from the WGA column mostly contained the high abundance proteins like 

albumin and IgG.  Using this strategy, three up-regulated and two down-regulated 

glycoproteins in lung cancer serum relative to healthy serum were identified and they 

were further validated by Western blot analysis. 

A tandem affinity depletion which combines affinity fractionation and 

immunoaffinity depletion was reported to identify low-abundance proteins in human 

http://en.wikipedia.org/wiki/Fluorescein_isothiocyanate
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plasma [76].  In this approach, the glycoproteins present in plasma were first enriched by 

LAC using WGA. In the second step, immunoaffinity depletion was carried out using 

antibodies that were raised in llama (Lama Glama) against the proteins that were captured 

in the lectin enrichment step.  By using this strategy, the authors were able to selectively 

enrich carcinoembryonic antigen that was spiked in disease-free serum by a factor of 

600-800 fold. 

 In a study by Jung et al. [77], LAC was performed using lectins with broad and 

narrow specificity such as concanavalin A (Con A), Helix pomatia agglutinin, 

Lycopersicon esculentum, AAL and Lens culinaris agglutinin (LCA) to analyze the 

changes in protein concentration of breast cancer plasma in comparison to disease-free 

plasma.  In this study, the quantification of the protein concentration was achieved with 

stable isotope coding.  The glycoproteins that were enriched using LAC were tryptically 

digested, fractionated on an RPC column and analyzed using MALDI-MS/MS.  It was 

observed that small groups of proteins increased in concentration by 3 or more fold in the 

breast cancer as compared to the disease-free plasma.  It was also concluded that there is 

no relationship between the glycan diversity and the abundance of a particular protein 

glycoforms. 

 

 Multi-lectin affinity chromatography (M-LAC) with high abundance protein 

depletion In M-LAC mixture of lectins having complementary specificities for different 

glycosylation are immobilized in a given column.  In M-LAC, after treating the lectin 

column with the sample, the column is eluted sequentially using specific displacer for 

each lectin, i.e., the haptenic sugar.  Some of the lectin enrichment processes which are 
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used in M-LAC are discussed below.  Due to the high complexity of serum that is usually 

amplified by the presence of HAP, some of the approaches integrated the process of 

depletion of HAP to identify the glycoproteins present in serum.   

Hancock and his co-workers extensively used M-LAC for the enrichment of 

glycoproteins from serum/plasma [78-82].  As the presence of the HAP will interfere 

with the interaction of the low-abundant glycoproteins, the HAP were first depleted and 

then the depleted serum was fractionated using M-LAC.  In a study by Plavina et al. [83], 

albumin and IgG were first depleted from the plasma sample followed by the enrichment 

of the glycoproteins using M-LAC and the identification of proteins using nano-LC-

MS/MS.  Also, a comparison of M-LAC with and without the depletion step was made, 

and it was shown that the total number of identified proteins (in bound and unbound 

fractions) increased from 120 to 191 by including the depletion step.  To demonstrate the 

ability of this method, it was applied to biomarker discovery from psoriasis samples.  It 

was observed that 11 proteins had different concentrations between the control and 

psoriasis plasma samples, and the protein galectin-3 binding protein was further validated 

using enzyme linked immunosorbent assay.  The authors concluded that the combination 

of depletion of HAP with M-LAC allowed the in-depth analysis of  proteins, which had 

concentrations of 10-100 ng/mL. 

In another application of M-LAC by Hancock and co-workers [82], changes in 

breast cancer serum was identified using three lectins namely Con A, WGA and Jacalin 

(JAC).  These lectins were mixed in a ratio of 1:1:1 and packed into a column. Some of 

the HAP like albumin, IgM, IgA, and IgG were depleted while other HAP such as -1-

antitrypsin, transferrin and haptoglobin were not depleted as they might be involved in 
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cancer related changes.  The depleted serum was then subjected to M-LAC and the bound 

fractions were further analyzed using three different orthogonal analytical platforms to 

identify glycoproteins that had either concentration or glycan structure changes due to the 

breast cancer.  In the first platform, SDS-PAGE analysis was performed and three 

different detection methods namely, Coomassie blue staining, fluorescent staining of the 

glycoproteins and lectin blotting with biotinylated SNA were carried out.  In the second 

platform the proteins were fractionated based on their pI values using ProteomeChip 

(dPC) to identify the breast cancer proteins, which show a change in their pI values.  In 

the third platform, a lectin-antibody sandwich microarray was performed using AAL to 

detect the neutral glycan structure changes in the breast cancer serum.  By all the three 

platforms the authors identified complement C3 beta chain, -1-antitrypsin, transferrin 

and -1B-glycoprotein as potential glycoproteins for further studies in breast cancer 

human serum. 

In a recent report by the same group [84], an automated high-performance liquid 

chromatography (HPLC) platform was introduced to remove high abundance proteins 

and to fractionate glycoproteins using immuno-affinity depletion and M-LAC in order to 

facilitate the identification of the breast cancer associated serum biomarkers.  The 

depleted and the fractionated glycoproteins obtained from M-LAC were further subjected 

to isoelectric focusing separation using a digital dPC, which had the operating range of 

pH 4.20~6.20 and 6.00~8.00.  The gel plugs from the dPC were combined to get 10 

fractions and these were subjected to in-gel digestion and LC-MS analysis.  It was 

concluded that the inclusion of the isoelectric focusing using dPC fractionation after M-

LAC extended the dynamic range of serum proteome and also resulted in identification of 
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low abundance proteins with higher sequence coverage.  Finally, the proteins 

thrombospondin-1 and 5, -1B-glycoprotein, serum amyloid P-component and tenascin-

X were selected as promising candidates to analyze breast cancer serum. 

 

Lectin and other affinity microarrays The expeditious growth in identification of 

glycoprotein biomarkers for various diseases triggered the growth of high throughput and 

reproducible technique such as lectin microarray, which is a newly emerging technique to 

analyze the alterations in glycans.  Some of the applications of lectin microarray include 

glycoform characterization, biomarker discovery, pathogen detection, etc. [85]. In 

microarrays, spots of proteins are arrayed on solid supports (e.g., microscopic slides) as 

capture molecules.  The array is then treated with complex proteome to determine the 

presence and/or amount of proteins present in the sample.  The interaction of the array 

and the sample is detected through various detection techniques such as fluorescent 

methods, evanescent fluorescent field, etc.  Some of the reports in which lectin 

microarrays were used in identifying biomarkers for different diseases are discussed 

below.  

The application of lectin array was demonstrated in ref. [86], whereby the 12 

HAP were first depleted from the delipidated plasma and the glycoproteins present in the 

plasma were then enriched using agarose-bound Con A.  The captured glycoproteins 

were further fractionated using NPS-RP-HPLC.  The fractions obtained from the NPS-

RP-HPLC were then screened for changes in glycosylation patterns using five lectins 

namely, AAL, SNA, MAL, peanut agglutinin (PNA) and Con A.  The use of these five 

lectins covered > 95% of reported N-glycan types and elevated levels of fucosylation and 
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sialylation in colorectal cancer and adenoma plasma samples were observed when 

compared to disease-free samples.  The fractions which showed altered glycosylation in 

the lectin microarray were subjected to SDS-PAGE analysis and lectin blotting.  By this 

method, the authors were able to identify complement C3, histidine-rich glycoprotein and 

kininogen-1 as potential markers of colorectal cancer which showed elevated levels of 

fucosylation and sialylation.  

 An application of antibody microarray to analyze the difference in glycosylation 

was done in a study by Kuno et al. [87].  The protein prostate-specific antigen which is 

an N-linked glycoprotein and podoplanin an O-linked glycoprotein was selected for 

profiling the differential glycan expression.  In brief, (i) the protein was enriched using 

immuno-precipitation using a specific antibody, (ii) the protein was quantified by 

immunoblotting method and (iii) an antibody-overlay lectin microarray was performed 

for profiling the glycosylation changes.  This method makes use of the antibody to its 

maximal potential by using it for enrichment, quantification and in microarray.  By this 

strategy, an ultrasensitive analysis on a nanogram-scale was performed, that would lead 

to rapid identification of glycoprotein biomarkers present in biological samples. 

 In another application by Liu et al. [88], lectin arrays were used for identification 

and confirmation of biomarker candidates for distinguishing early HCC from cirrhosis.  

Initially, sera sample depleted of the 12 HAP was analyzed using lectin array consisting 

of 16 lectins to identify the differences in glycosylation patterns.  Based on the lectin-

array results, the lectins AAL and LCA were chosen to selectively enrich the fucosylated 

glycoproteins.  These glycoproteins were identified by LC-MS/MS and the potential 

biomarkers were further validated using an AAL-antibody array.  By this combined 
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strategy complement C3, ceruloplasmin, histidine-rich glycoprotein and CD14 were 

reported as biomarker candidate for early detection of HCC.   

 A lectin microarray analysis of the glycans present on the cell surface was done to 

distinguish the stem-like glioblastoma neurosphere culture from traditional adherent 

glioblastoma cell line [89].  Glioblastoma is a common type of malignant primary brain 

tumor in humans.  A lectin microarray which consisted of 16 lectins was used to screen 

the sample for difference in glycan patterns of the two cell lines.  The results from the 

lectin microarray indicated that two galactose specific lectins Trichosanthes kirilowii 

agglutinin (TKA) and PNA showed stronger binding capacity to the cells as compared to 

other lectins.  Thus, TKA and PNA were selected to capture the glycoproteins from the 

cell cultures using affinity chromatography.  These glycoproteins were tryptically 

digested and analyzed using LC-MS/MS.  The differentially expressed glycoproteins 

were analyzed using label-free spectral counting method.  Six glycoproteins namely, 

receptor-type tyrosine-protein, phosphatase zeta, tenascin-C, chondroitin sulfate 

proteoglycan NG2, podocalyxin-like protein 1 and CD90, and CD44 that were 

differentially expressed in the disease cell line were further validated by Western blotting 

analysis.  It was concluded that further analysis of these proteins might improve the 

earlier diagnosis of glioblastoma.  

 

Rationale of the Study  

As discussed in the previous sections, human serum is a complex mixture and 

identification of proteins present in it is a major task.  Although over the recent years 

different fractionation methods have proved efficient in reducing the complexity of the 
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human serum proteome, which in turn facilitated the identification of the proteins present 

in serum by MS, there still exists a need for more efficient fractionation and sample 

preparation methods in order to allow a more in-depth proteomics profiling of the human 

serum.  In-depth proteomics refers to reaching the analysis of the low abundance proteins 

that are the most likely to be reflective of a person’s patho-physiological state. Thus, by 

identifying the low abundance proteins and being able to determine their alteration and 

expression in certain “diseased” serum, one could obtain information about the 

progression of the particular disease.  The primary objective of the various interrelated 

projects described in this dissertation is to develop an integrated approach to reduce the 

complexity of the human serum proteomics and to capture the part that is the most 

affected.   

 In Chapter II, the dynamic concentration range of serum will be reduced using 

protein equalizer technology.  The equalized proteins will then be further fractionated 

using a series of IMAC columns followed by RPC column prior to LC-MS/MS analysis.  

This strategy will allow for identification of more number of proteins as compared to the 

immuno subtraction of the high abundance proteins (i.e., the depletion approach). 

 In Chapter III, three tandem lectin monolithic columns of broad specificity will be 

investigated for their effectiveness in capturing and enriching a given sub-glycoproteome 

that is thought to be associated with the progression of cancer such as breast cancer.  This 

method will allow the capturing of a wide range of serum glycoproteins and in turn the 

detection of certain glycoproteins that are differentially expressed in cancer serum as 

compared to disease-free serum. 
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 In Chapter IV, three tandem lectin monolithic columns of narrow specificity will 

be examined in the capture of a more specific set of serum glycoproteins such as 

sialylated and fucosylated glycoproteins that are thought to be elevated in cancer serum. 

Since, this strategy targets only specific glycosylation, it would therefore give more 

insight into specific glycoproteins that are differentially expressed in cancer serum 

relative to disease-free serum. 

 In Chapter V, the broad and narrow specificity lectins studied in Chapters III and 

IV will be combined and used as six tandem monolithic columns to capture the serum 

sub-glycoproteome over a wide range of glycosylation.  By assessing the usefulness of 

each set of lectins separately, the combination strategy favored the detection of a much 

wider range of glycoproteins than when using only broad or narrow specificity lectins.  

More specific rationale and significance statements are given in the introductory parts of 

each chapter of this dissertation. 

 

Summary 

This chapter has (i) outlined the scope of the dissertation, (ii) briefly discussed the 

principles of IMAC, LAC and protein equalizer technology, (iii) provided a brief 

introduction to glycoproteomics, (iv) briefly described the fundamental approaches in 

proteomics profiling, (v) overviewed the current depletion methods, protein equalizer 

technology and chromatographic/electrophoretic fractionation methods for in-depth 

proteomics, (vi) overviewed the different approaches used for sub-glycoproteomics and 

(vii) presented the rationale of the current investigation. 
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CHAPTER II 

 

 

REDUCTION OF PROTEIN CONCENTRATION RANGE DIFFERENCE 

FOLLOWED BY MULTICOLUMN FRACTIONATION PRIOR  

TO 2-DE AND LC-MS/MS PROFILING OF  

SERUM PROTEINS 

 

Introduction 

 

The wide dynamic concentration range of serum proteins that extends over 10 – 

12 orders of magnitude, and the many thousands of proteins that might be present in 

serum make the in-depth proteomic analysis of such a sample a major challenge for 

current analytical and separation technologies. Many protein biomarkers in the serum are 

present at very low concentration, and most often the high-abundance proteins mask 

these proteins. Thus far, three major approaches have been introduced to reduce the 

complexity of human serum proteomics and facilitate serum proteomic profiling, 

including (i) depleting high abundance proteins by immuno-subtraction [1-3], (ii)  

 

* The content of this chapter has been published in Electrophoresis, 2011, 32, 674-685. 
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minimizing concentration differences in abundance by the concept of “protein equalizer” 

or the ProteoMiner™, which uses peptide library beads derived from combinatorial 

peptide ligand libraries (CPLL) [4, 5] and (iii) electrophoretic and chromatographic pre-

fractionation [1, 6]. 

In recent studies, Jmeian and El Rassi introduced tandem affinity columns based 

on protein A, protein G´ and antibodies for the depletion of the eight high abundance 

proteins (e.g., albumin, IgG, IgA, IgM, transferrin, 1-antitrypsin, haptoglobin and 2-

macroglobulin) [7] and multicolumn based platforms for the depletion of high abundance 

proteins and subsequent concentration/fractionation of low abundance proteins and their 

applications to profiling protein expression in disease-free and osteoarthritis sera [8, 9].  

The multicolumn platforms demonstrated the simultaneous operation of the tandem 

affinity depletion columns with tandem fractionation columns consisting of immobilized 

metal affinity chromatography (IMAC) columns in series with a reversed-phase 

chromatography (RPC) column. These platforms were very effective in preparing serum 

protein fractions for 2-dimensional gel electrophoresis (2-DE) and LC-MS/MS profiling.  

Of interest to our investigation is the novel approach called “protein equalizer 

technology” or “ProteoMiner™” for reducing protein concentration differences that are 

based on the selective adsorption of proteins to peptide library beads.  The 

ProteoMiner™ technology has been recently introduced [10] and its principle of 

preparation, operation and applications were reviewed, among other things, in recent 

articles [4-6, 11].  Briefly, the protein equalizer technology consisting of peptide affinity 

beads can in principle achieve simultaneously the dilution of high abundance proteins and 

concentration of low abundance proteins.  If the hexapeptide library contains equal 
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numbers of affinity ligands to all proteins and the sample volume is large enough to 

saturate all binding sites, the abundance of all proteins in the final eluted fraction will be 

the same [11].  

In this study, the ProteoMiner™ technology was combined with IMAC columns 

and RPC column for achieving protein concentration range reduction followed by 

concentration/fractionation of the equalized proteins. While the ProteoMiner™ equalizes, 

IMAC and RPC fractionation allows the simplification of the sample complexity.  

 

Experimental 

Instrumentation 

A Milton Roy, LDC division, multiple solvent delivery system Model CM4000 

(Riviera Beach, FL, USA) was used with a Rheodyne injector Model 7010 (Cotati, CA, 

USA) with a 1 mL loop along with a metering pump Model III CM from Milton Roy, 

LDC division, and a Model 200 UV-Vis variable wavelength detector from Linear 

Instruments (Reno, NV, USA).   

The first dimension of the 2-DE experiments was performed on a Multiphor II 

IEF system from GE Healthcare (Uppsala, Sweden) while the second dimension was 

performed on a mini-Protean module for 8.6 x 6.8 cm gels from Bio-Rad Laboratories 

(Hercules, CA, USA).  Fluorescent gel images were taken with Typhoon Trio Plus from 

GE Healthcare.  All mass spectra were obtained using a hybrid LTQ-Orbitrap mass 

spectrometer (Thermo Fisher Scientific, Waltham, MA, USA).   
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Reagents and Materials 

 Pooled human serum was purchased from Innovative Research (Southfield, MI, 

USA). Iodoacetamide, urea and dithiothreitol (DTT), were purchased from Sigma 

Chemical Co. (St. Louis, MO, USA).  Glycidyl methacrylate (GMA), ethylene glycol 

dimethacrylate (EDMA), 2,2´-azobis(isobutyronitrile) (AIBN) and 1-dodecanol were 

purchased from Aldrich Chemical Co. (Milwaukee, WI, USA). Cyclohexanol, HPLC 

grade acetonitrile, zinc sulfate, cupric chloride, and nickelous nitrate were obtained from 

Fisher Scientific (Fair Lawn, NJ, USA). Glycine, tris(hydroxymethyl)aminomethane 

(Tris), sodium dodecyl sulfate (SDS), acrylamide, bromophenol blue, Bio-Safe
TM

 

Coomassie, SYPRO
R
 ruby protein gel stain, ReadStrip

TM
 IPG strip 7 cm pH 4-7, Bio-

Lyte
R
 3/10, 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate (CHAPS), 

Tris-glycine gels 10-20% Tris-HCl (8.6 cm W x 6.8 cm L) and the ProteoMiner
TM

 kit 

were from Bio-Rad Laboratories (Hercules, CA, USA). Iminodiacetic acid (IDA) was a 

gift from W. R. Grace (Nashua, NH, USA). Poly(styrene/divinylbenzene) reversed-phase 

(RP) media with a particle size of 20 m and a pore size of 300 Å (PLRP-S, 20 m, 300 

Å) was purchased from Polymer Laboratories (Amherst, MA, USA).  

 

Affinity Columns and Reversed-Phase Column Preparation 

 A well mixed and degassed polymerization mixture of 18% (w/w) GMA, 12% 

(w/w) EDMA, 59.5% (w/w) cyclohexanol and 10.5% (w/w) dodecanol containing 1.0% 

(w/w) AIBN with respect to the monomers was introduced into a 25.0 cm x 4.6 mm ID. 

stainless steel column that functions as a mold for the monolith.  The column was heated 

at 50 ˚C for 24 h.  The resulting monolithic column was washed extensively with 
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acetonitrile (ACN) followed by water and then filled with 0.9 M IDA in 2.0 M potassium 

carbonate and heated at 80 ˚C for 24 h to form an IDA-modified surface [12].  The IDA-

column was then rinsed with water. The modified monolithic support was transferred 

from the 25.00 cm column to a shorter column (5.00 cm) by connecting the two columns 

with a ¼”-union and running water through the columns at flow rate of 3.0 mL/min until 

the modified monolithic support is transferred. Three IDA columns of 5.00 cm x 4.6 mm 

each were filled up with the IDA-monolith by this way. The metal ions were immobilized 

on the IDA-monolithic surface by pumping ten column volumes of 5.0 mg/mL metal 

solution through the column. Then the columns were washed with ten column volumes of 

water and 5 column volumes of loading mobile phase. The RPC column was prepared by 

dry packing a 3.00 cm x 4.6 mm ID. stainless steel column (having an end column fitting 

with a 2 µm frit attached at the outlet end) with PLRP-S particles having 20 m mean 

particle diameter and 300 Å mean pore diameter.  Once the dry packing was finished, a 

second end column fitting with a 2-m frit was attached to the inlet end. Thereafter, the 

column was flushed with isopropanol at a backpressure between 1500 and 2000 psi to 

ensure good packing.  The inlet column end fitting was removed to repack the column 

again to minimize any void volume.  In the last step, the column was rinsed with 

acetonitrile and stored at room temperature.   

 

ProteoMiner™ Treated Serum  

 Serum protein equalization was performed using ProteoMiner
TM

 enrichment kit 

according to the manufacturer procedure.  In summary, the storage solution was first 

washed out from the spin column containing 100 µL of peptide beads with deionized 
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water.  Thereafter, the column was washed with the 10 mM NaH2PO4, 150 mM NaCl, pH 

7.4 solution provided with the kit.  When the spin column was ready for sample binding, 

1 mL of centrifuged serum sample was added to the column and equilibrated at room 

temperature for 2 h.  The unbound proteins were removed with the wash buffer and the 

captured proteins were eluted by 3 x 100 L of 8 M urea containing 2% CHAPS 

dissolved in 5% acetic acid.  Although this loading and elution protocol of the peptide 

beads has been practiced by others [13-15], different and harsher elution conditions have 

been reported by Sennels et al. [16] and Fasoli et al. [17]. 

 The resulting solution containing the equalized proteins were dialyzed against (i) 

0.1 M urea (ii) 0.01 M urea (iii) 0.005 M NaH2PO4 containing 0.005 M NaCl pH 7.0 and 

(iv) the binding mobile phase (0.05 M Na2HPO4, 0.05 M NaCl, pH 7.0) used for the 

tandem columns.  The equalized dialyzed sample (~1.5 mL) was injected in 0.5 mL 

aliquot onto the IMAC/RPC tandem columns (see next section) to fractionate the 

equalized proteins.   

 

Tandem Column Platform - Chromatographic Conditions 

The IDA-metal columns were arranged in the following order: IDA-Zn
2+ 
 IDA-

Ni
2+

  IDA-Cu
2+ 

followed by the RPC column.  The RPC column that was originally 

stored in acetonitrile was washed with 10 bed volumes of water before use.  The 4 

columns connected in tandem were first equilibrated with 10 column volumes of the 

binding mobile phase consisting of 0.05 M Na2HPO4, 0.05 M NaCl, pH 7.0.  Then, 0.5 

mL of the equalized serum was injected onto the tandem columns. This was followed by 

washing with the binding mobile phase for 15 min at a flow rate of 0.5 mL/min to remove 
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any unbound proteins.  Thereafter, the tandem columns were disconnected from each 

other, and the proteins captured by each IDA-metal column were eluted using of 0.05 M 

Na2HPO4, 0.05 M NaCl, 100 mM imidazole, pH 7.0.  The RPC column was washed with 

water and the bound proteins were eluted using 80:20 (v/v) ACN:H2O containing 0.1% 

trifluoroacetic acid (TFA).  After eluting the proteins, the RPC column was again washed 

with water to prepare it for the next injection.  

 

Two-Dimensional Gel Electrophoresis (2-DE) and Spot Counting 

 The fractions from the three IMAC and the RPC columns were dialyzed against 

water at 4˚C for 24 h in Spectra/Por dialysis bags from Spectrum Laboratories, Inc 

(Houston, TX, USA) according to the manufacturer procedure.  The samples were then 

evaporated to dryness with a speed vac and stored at -20˚C until use.  Part of each 

fraction was submitted for the LC-MS/MS analysis and the remaining fractions were re-

dissolved in 125 L of the rehydration solution made of 7 M urea, 2 M thiourea, 4% 

(w/v) CHAPS, 0.8% (w/v) Bio-Lyte
R
 3/10.  The 7 cm isoelectric focusing strips were 

allowed to stay in the rehydration solution for 12 h.  Then the strips were focused with a 

voltage ramp of 200 V for 2 h, 500 V for 1 h and 3500 V for 4 h at 20˚C.  After focusing, 

the strips were stored at -70˚C until use.  The strips were first equilibrated for 15 min 

with a buffer solution made of 50 mM Tris-HCl, pH 8.8, containing 6 M urea, 30% (v/v) 

glycerol, 2% (w/v) SDS, 1% (w/v) DTT and traces of bromophenol blue, then 

equilibrated with a buffer solution made of 50 mM Tris-HCl, pH 8.8, containing 6 M 

urea, 30% (v/v) glycerol, 2% (w/v) iodoacetamide and traces of bromophenol blue for 

another 15 min.  The strips were then sealed to the polyacrylamide gel (10-20%) with 1% 
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(w/v) agarose solution and the second dimension was performed according to the precast 

gel manufacturer procedure.  Thereafter, the gels were stained with SYPRO
R
 Ruby 

Protein stain according to the manufacturer recommendation.  The gels were scanned 

with the Typhoon Trio Plus instrument at 100 m resolution.  The 532 nm excitation 

laser and the 610 nm band pass emission filter were used to get the image of the gels. The 

software ImageMaster 2D Platinum v6.0 from GE-Healthcare (Uppsala, Sweden) was 

used for detecting the spots from the 2-DE electropherograms. After washing the 

SYPRO-stained gels with water, Coomassie blue staining was performed for 1 h 

according to the manufacturer protocol and then finally the gels were washed with water 

to prevent over-staining.  

 

LC-MS/MS Methodology 

Samples were analyzed on a hybrid LTQ-Orbitrap mass spectrometer from 

ThermoFisher Scientific coupled to a New Objectives PV-550 nanoelectrospray ion 

source and an Eksigent NanoLC-2D chromatography system.  Peptides were analyzed by 

trapping on a 2.5 cm ProteoPrep II pre-column (New Objective) and analytical separation 

on a 75 µm ID fused silica column packed in house with 10-cm of Magic C18 AQ, 

terminated with an integral fused silica emitter pulled in house.  Peptides were eluted 

using a 5-40% ACN/0.1% formic acid gradient performed over 40 min at a flow rate of 

300 nL/min.  During each one-second full-range FT-MS scan (nominal resolution of 

60,000 FWHM, 300 to 2000 m/z), the three most intense ions were analyzed via MS/MS 

in the linear ion trap.  MS/MS settings used a trigger threshold of 1000 counts, 

monoisotopic precursor selection (MIPS), and rejection of parent ions that had 
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unassigned charge states, were previously identified as contaminants on blank gradient 

runs, or were previously selected for MS/MS (data dependent acquisition using a 

dynamic exclusion for 150% of the observed chromatographic peak width).  Column 

performance was monitored using trypsin autolysis fragments (m/z 421.76), and via 

blank injections between samples to assay for contamination.  

 

LC-MS/MS Data Analysis 

Centroided ion masses were extracted using the extract_msn.exe utility from 

Bioworks 3.3.1 and were used for database searching with Mascot v2.2.04 (Matrix 

Science) and X! Tandem v2007.01.01.1 (www.thegpm.org). Both Mascot and X! 

Tandem were set up to search the IPI_Human_022209 database (v3.55, 75554 entries) 

assuming the digestion enzyme trypsin. Mascot and X! Tandem were searched with a 

fragment ion mass tolerance of 0.80 Da and a parent ion tolerance of 15 ppm. S-

Carbamoylmethylcysteine cyclization (N-terminus) of the N-terminus, oxidation of 

methionine, N-formylation of the N-terminus, acetylation of the N-terminus and 

iodoacetamide derivative of cysteine were specified in Mascot and X! Tandem as 

variable modifications. 

 Scaffold (version Scaffold-2-05-01, Proteome Software Inc., Portland, OR) was 

used to validate MS/MS based peptide and protein identifications.  Peptide identifications 

were accepted only if they could be established at greater than 80% probability as 

specified by the Peptide Prophet algorithm.  Protein identifications were accepted if they 

could be established at greater than 99% probability and contained at least 2 unique 

identified peptides.  Protein probabilities were assigned by the Protein Prophet algorithm. 
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Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. 

 

Results and Discussion 

Overall Strategy – Combinatorial Peptide Ligand Libraries (ProteoMiner™) Followed by 

Column Fractionation  

 It is well established that CPLL is capable of reducing the concentration dynamic 

range of the serum proteome, thus conveniently allowing the detection of the low 

abundance proteins [16].  Also, the use of tandem IMAC and RPC columns has been 

shown in a recent article from our laboratory to serve as an effective approach to 

fractionate and concentrate serum proteins [9].  In this tandem arrangement, the IDA-

metal chelate and RPC columns were connected in the order of decreasing selectivity 

(i.e., IDA-Zn
+2 
IDA-Ni

+2 
 IDA-Cu

+2
  RPC columns). By allowing the serum 

treated with peptide beads to contact first the IDA-Zn
2+

 column (the more selective 

column in the chain), the binding sites of IDA-Ni
2+ 

are saved for the proteins to which 

this column has the strongest affinity. Also, IDA-Cu
2+

, which has an affinity for proteins 

with even one single surface exposed histidine (His) residue would benefit from placing 

the other two metal chelate columns ahead so that its binding capacity could be used 

more efficiently for capturing other proteins.  Of course, any other proteins that are not 

retained by the tandem IMAC columns will be trapped in the RPC column.  The 

combination of reducing protein concentration differences provided by the peptide beads 

with the fractionation and concentration provided by the tandem IMAC and RPC 

columns should in principle facilitate the mining of serum proteome. In order to assess 
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TABLE 1 

LC-MS/MS RESULTS OF THE IDENTIFIED PROTEINS FROM THE EQUALIZED HUMAN SERUM WITHOUT 

SUBSEQUENT FRACTIONATION 

Identified Proteins  Accession # 

Molecular 

weight 

(KDa) 

Spectra count 
Unique 

peptide 

252 kDa protein IPI00022937 (+1) 252 9 2 

55 kDa protein IPI00029863 (+2) 55 6 3 

Antithrombin III variant IPI00032179 53 112 16 

Apolipoprotein A-I IPI00021841 31 178 26 

Apolipoprotein A-II IPI00021854 11 91 9 

Apolipoprotein A-IV IPI00304273 45 101 24 

Apolipoprotein B-100 IPI00022229 516 80 21 

Apolipoprotein C-I IPI00021855 9 6 2 

Apolipoprotein C-II IPI00021856 11 15 3 

Apolipoprotein C-III IPI00021857 (+1) 11 22 4 

Apolipoprotein D IPI00006662 21 39 8 

Apolipoprotein E IPI00021842 36 110 20 

C4b-binding protein alpha chain IPI00021727 67 103 17 

Carboxypeptidase N subunit 2 IPI00479116 61 8 2 
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CD5 antigen-like IPI00025204 38 17 5 

cDNA FLJ51925, highly similar to 

Vitamin K-dependent protein C 
IPI00908685 (+1) 58 10 2 

Ceruloplasmin IPI00017601 122 46 13 

Clusterin IPI00291262 (+2) 52 99 21 

Complement C1q subcomponent 

subunit A 
IPI00022392 26 16 3 

Complement C1q subcomponent 

subunit C 
IPI00022394 26 23 7 

Complement C1s subcomponent IPI00017696 (+1) 77 14 4 

Complement C3 (Fragment) IPI00783987 187 643 114 

Complement C5 IPI00032291 188 22 6 

complement component 1, q 

subcomponent, B chain precursor 
IPI00477992 (+1) 27 21 3 

Complement component 4B 

preproprotein 
IPI00418163 (+2) 193 763 84 

Complement component C9 IPI00022395 63 14 6 

Complement factor H-related 5 IPI00006543 (+1) 67 7 3 

Complement factor H-related 

protein 1 
IPI00011264 (+1) 38 40 5 

Fibronectin 1 isoform 4 

preproprotein 
IPI00414283 (+1) 257 244 51 

Fibulin 1 IPI00889740 78 63 3 

FLJ00385 protein (Fragment) IPI00168728 (+6) 56 38 3 
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Galectin-3-binding protein IPI00023673 65 51 12 

Glutathione peroxidase 3 IPI00026199 26 12 4 

IGHA1 protein IPI00166866 (+3) 53 40 9 

IGHG1 protein IPI00448925 (+12) 60 54 13 

IGHM protein IPI00477090 (+3) 67 84 17 

IGKV1-5 protein IPI00419424 (+19) 26 37 5 

IGLV3-25 protein IPI00550162 (+1) 25 38 5 

immunoglobulin J chain IPI00178926 18 10 2 

Inter-alpha-trypsin inhibitor heavy 

chain H1 
IPI00292530 101 8 3 

Inter-alpha-trypsin inhibitor heavy 

chain H2 
IPI00305461 (+1) 106 60 14 

Isoform 1 of Alpha-1-antitrypsin IPI00553177 47 80 16 

Isoform 1 of C4b-binding protein 

beta chain 
IPI00025862 (+1) 28 9 2 

Isoform 1 of Complement factor H IPI00029739 139 170 37 

Isoform 1 of C-reactive protein IPI00022389 25 8 2 

Isoform 1 of Ficolin-2 IPI00017530 (+2) 34 3 2 

Isoform 1 of Ficolin-3 IPI00293925 (+1) 33 42 7 

Isoform 1 of Haptoglobin-related 

protein 
IPI00477597 39 12 3 

Isoform 1 of Pregnancy zone 

protein 
IPI00025426 164 28 9 
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Isoform 1 of Serum albumin IPI00745872 69 121 27 

Isoform 2 of Apolipoprotein L1 IPI00186903 (+2) 46 10 3 

Isoform 2 of Inter-alpha-trypsin 

inhibitor heavy chain H4 
IPI00218192 (+3) 101 17 5 

Isoform D of Fibulin-1 IPI00296534 77 67 13 

Mannan-binding lectin serine 

protease 1 isoform 2 precursor 
IPI00290283 (+1) 82 3 2 

Phosphatidylcholine-sterol 

acyltransferase 
IPI00022331 50 13 4 

Plasminogen IPI00019580 91 11 4 

Properdin IPI00021364 51 10 3 

Protein Z-dependent protease 

inhibitor 
IPI00007199 55 5 2 

Prothrombin (Fragment) IPI00019568 70 201 29 

SERPINC1 protein IPI00844156 29 66 3 

Serum amyloid A-4 protein IPI00019399 15 3 2 

Serum amyloid P-component IPI00022391 25 37 11 

Serum paraoxonase/arylesterase 1 IPI00218732 40 57 11 

Transthyretin IPI00022432 (+1) 16 35 6 

Vitamin K-dependent protein S IPI00294004 (+2) 75 20 5 

Vitronectin IPI00298971 54 80 13 
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the benefit of further fractionating the serum treated with peptide beads, a small fraction 

of the concentrated proteins by the ProteoMiner™ were tryptically digested and subjected 

to LC-MS/MS. This yielded 66 identified proteins that are listed in Table 1. 

In the strategy developed here, the fractions collected from the three IMAC 

columns and the RPC column were subjected to solution digest and subsequently to LC-

MS/MS analysis.  The number of identified proteins in the collected fractions totaled 183 

proteins corresponding to 66, 29, 55 and 33 proteins for the fractions from the IDA-Zn
2+

, 

IDA-Ni
2+

, IDA-Cu
2+

 and RPC columns, respectively, and are listed in Table 2.  The 

number of proteins identified in the IDA-metal fractions increased in the order IDA-Zn
2+

 

> IDA-Cu
2+

 > IDA-Ni
2+

.  The total number of non-redundant proteins identified from the 

solution digests of the four fractions was 82 proteins.  In these fractions, the high 

abundance proteins identified were complement C3, serotransferrin, isoforms of 1-

antitrypsin and serum albumin.  The other high abundance proteins, such as haptoglobin, 

2-macroglobulins and the majority of immunoglobulins, were not identified, which 

indicates that the peptide beads may not capture certain proteins for which no partner 

peptide ligands are present in the library or the number of beads having the particular 

peptide partner is low (i.e., low copy number) requiring for more beads to capture 

sufficient amount of the particular target protein.  This finding is in agreement with the 

observation reported earlier by Sennels et al. [16]. As will be shown below, not only were 

some high abundance proteins were not captured by the peptide beads but also some 

other proteins passed through when only 1.0 mL serum was treated by 100 µL peptide 

beads, as is the case in this study.   
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To further monitor the effectiveness of the strategy described here, aliquots of 

concentrated fractions from the IMAC and the RPC columns were analyzed by 2-DE, and 

the corresponding 2-DE electropherograms of each fraction are shown in Figs. 1A, 1B, 

1C and 1D.  When the gels were stained with SYPRO fluorescent stain, the number of 

protein spots detected in the 2-DE for the IDA-Zn
2+

, IDA-Ni
2+

, IDA-Cu
2+

 and RPC 

fractions were 207, 159, 187 and 33, respectively, totaling 586 detected protein spots.  

But when the gels were stained with less sensitive Coomassie Blue, only 156 protein 

spots were detected.  In the 156 proteins spots detected, 81 were from IDA-Zn
2+

column, 

17 were from IDA-Ni
2+ 

column, 48 were from IDA-Cu
2+

 column and 10 were from the 

RPC column.  Thus, the 183 proteins identified by LC-MS/MS in the solution digests of 

the 4 fractions obtained from the 4 tandem columns portray a sensitivity for LC-MS/MS 

that is at least 3.2 folds lower than the SYPRO staining but 1.2 fold more sensitive than 

the Coomassie Blue staining, assuming that each spot is a single protein. Although the 

ProteoMiner™ as used in this study was conducted at the microscale level using only 100 

µL peptide beads and 1.00 mL of human serum, the relatively high number of protein 

spots detected using SYPRO fluorescent stain indicates that indeed the ProteoMiner™ 

beads effectively concentrate low abundance proteins. However, many of these spots are 

below the detection threshold of the LC-MS/MS and thus do not allow accurate 

identification of their proteins content. 

 

Evaluation of the ProteoMiner™ and comparison with the depletion approach  

  The number of the identified proteins in serum that was subjected to the 

combinatorial peptide library beads (i.e., ProteoMiner™ treated serum) but without any 
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further fractionation was found to be 66 proteins (see Table 1) as opposed to 82 identified 

proteins with post IMAC/RPC columns fractionation (see Table 2).  In the 66 identified 

proteins, 53 were also identified in the IMAC/RPC columns post fractionation while the 

remaining 13 proteins were not identified in the IMAC/RPC post fractionation.  This 

results in 29 (82 - 53 = 29) proteins unique to IMAC and RPC fractionation, which 

correspond to a 35% increase in the number of non-redundant proteins [(29/82)*100 = 

35%].  In comparison to a recent study by Sihlbom et al. [15], where the ProteoMiner™ 

treated serum was analyzed by differential gel electrophoresis, the number of identified 

non-redundant proteins was only 49, whereas in the present investigation, which involved 

the fractionation of the ProteoMiner™ treated serum on three IMAC columns and one 

RPC column, 82 non-redundant proteins were readily identified.   

In a recent study from our laboratory [9], an albumin depleted serum sample was 

injected onto a series of tandem depletion columns to remove the next seven abundant 

proteins (i.e., 1-antitrypsin, transferrin, IgG, IgA, IgM, haptoglobin, and 2-

macroglobulin), followed by a series of tandem IDA-metal chelate columns (Zn
2+

, Ni
2+

, 

and Cu
2+

) and RPC column for online fractionation and concentration. This resulted in 

identification of 58 non-redundant protein from 2-DE gels with protein identification 

probability greater than 99%, peptide identification greater than 80% and at least 2 

unique identified peptides.  The number of proteins spots identified from the IDA-Zn
2+

, 

IDA-Ni
2+

, IDA-Cu
2+

 and the RPC columns were 14, 32, 37 and 10 respectively totaling 

up to 93 proteins (including the overall 58 non-redundant proteins). In the present study, 

and as mentioned earlier, the number of identified non-redundant proteins from the direct  
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TABLE 2 

LC-MS/MS RESULTS OF THE PROTEINS IDENTIFIED FROM THE SOLUTION DIGEST 

 OF FRACTIONS FROM IMAC AND RPC COLUMNS 

Identified Proteins  Accession # 

Mol. 

Wt. 

KDa 

Zn Ni Cu RP 

Spectra 

count 

Unique 

peptide 

Spectra 

count 

Unique 

peptide 

Spectra 

count 

Unique 

peptide 

Spectra 

count 

Unique 

peptide 

252 kDa protein 
IPI00022937 

(+1) 
252 7 2             

Alpha-1-acid glycoprotein 1 
IPI00022429 

(+1) 
24             27 6 

Alpha-1-acid glycoprotein 2 IPI00020091 24             13 2 

Alpha-2-HS-glycoprotein IPI00022431 39 17 5             

Antithrombin III variant IPI00032179 53 98 21 52 9 57 11 25 7 

Apolipoprotein A1 IPI00853525 28         120 2     

Apolipoprotein A-I IPI00021841 31 110 20 26 6 165 30 53 16 

Apolipoprotein A-II IPI00021854 11 35 8     29 8 17 5 

Apolipoprotein A-IV IPI00304273 45 39 16 7 3 60 20 58 14 

Apolipoprotein B-100 IPI00022229 516 155 43     10 5 35 9 

Apolipoprotein C-II IPI00021856 11 9 3         2 2 
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Apolipoprotein C-III IPI00021857 11 11 2     11 2 14 3 

Apolipoprotein D IPI00006662 21 9 4     40 8 19 4 

Apolipoprotein E IPI00021842 36 99 21 47 10 52 15 49 11 

C4b-binding protein alpha 

chain 
IPI00021727 67 114 24             

CD5 antigen-like IPI00025204 38 47 9 6 2 9 3     

cDNA FLJ58413, highly 

similar to Complement 

component C7 

IPI00909594 54         29 2     

Ceruloplasmin IPI00017601 122 12 5     9 3     

Clusterin IPI00291262 52 237 30 61 14 122 25 18 5 

Complement C1q 

subcomponent subunit A 
IPI00022392 26 8 3             

Complement C1q 

subcomponent subunit C 
IPI00022394 26 25 5 4 2         

Complement C1s 

subcomponent 

IPI00017696 

(+1) 
77 6 3     32 7     

Complement C3 (Fragment) IPI00783987 187 428 92 85 25 138 38 156 28 

Complement C5 IPI00032291 188 23 11             

complement component 1, q 

subcomponent, B chain 

precursor 

IPI00477992 

(+1) 
27 19 5             

Complement component 4B IPI00887154 193 590 92 198 47 228 49 50 15 
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Complement component 6 

precursor 
IPI00879709 106 41 14             

Complement component C7 IPI00296608 94     10 3 44 12     

Complement component C9 IPI00022395 63 16 4     23 7 11 3 

Complement factor H-

related protein 1 

IPI00011264 

(+1) 
38 50 7             

Complement factor H-

related protein 4A 
IPI00644977 65         43 9     

Complement-activating 

component of Ra-reactive 

factor 

IPI00299307 

(+1) 
79 3 2     2 2     

Fibronectin 1 isoform 4 

preproprotein 

IPI00414283 

(+1) 
257 583 97 33 8 41 10     

FLJ00385 protein 

(Fragment) 

IPI00168728 

(+6) 
56 70 6 29 5 48 5     

Galectin-3-binding protein IPI00023673 65 40 12     28 8 7 2 

Glutathione peroxidase 3 IPI00026199 26 7 3 11 2 16 4     

IGHA1 protein IPI00430842 53 24 6 20 5 41 8     

IGHM protein IPI00477090 67 120 24 44 10 71 16     

IGHM protein IPI00472610 53 70 14 35 10 75 12     

IGKV1-5 protein 
IPI00419424 

(+2) 
26 51 8 27 4 53 8     

IGL@ protein IPI00154742 25 46 7 16 4 50 7     
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IGL@ protein 
IPI00719373 

(+6) 
23         26 2     

immunoglobulin J chain IPI00178926 18 13 3 9 2 11 3     

Inter-alpha-trypsin inhibitor 

heavy chain H1 
IPI00292530 101 19 5         9 2 

Inter-alpha-trypsin inhibitor 

heavy chain H2 

IPI00305461 

(+1) 
106 38 11     4 3 12 4 

Isoform 1 of Alpha-1-

antitrypsin 

IPI00553177 

(+1) 
47         8 3     

Isoform 1 of C4b-binding 

protein beta chain 

IPI00025862 

(+1) 
28 9 3             

Isoform 1 of Complement 

factor H 
IPI00029739 139 196 42             

Isoform 1 of Extracellular 

matrix protein 1 

IPI00003351 

(+1) 
61 21 7             

Isoform 1 of Ficolin-2 
IPI00017530 

(+2) 
34 17 4     7 2     

Isoform 1 of Ficolin-3 IPI00293925 33 46 9             

Isoform 1 of Inter-alpha-

trypsin inhibitor heavy chain 

H3 

IPI00028413 

(+3) 
100             5 2 

Isoform 1 of Pregnancy 

zone protein 

IPI00025426 

(+2) 
164 15 6     13 3     

Isoform 1 of Serum albumin IPI00745872 69 92 24 16 6 237 45 174 41 

Isoform 2 of Apolipoprotein 

L1 

IPI00186903 

(+2) 
46             14 2 

Isoform 2 of Inter-alpha-

trypsin inhibitor heavy chain 

IPI00218192 

(+4) 
101         5 2     
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H4 

Isoform C of Fibulin-1 IPI00296537 74 96 4             

Isoform D of Fibulin-1 IPI00296534 77 97 20 30 9 11 3     

Isoform Long of 

Complement factor H-

related protein 2 

IPI00006154 

(+1) 
31 20 2             

Keratin, type I cytoskeletal 

10 
IPI00009865 60 41 14 45 17 43 12 85 21 

Keratin, type I cytoskeletal 

9 
IPI00019359 62 25 6 45 15 16 5 36 11 

Keratin, type II cytoskeletal 

1 
IPI00220327 66 52 13 65 17 36 10 51 17 

Keratin, type II cytoskeletal 

2 epidermal 
IPI00021304 66 23 5 33 5 31 4 37 9 

Keratin, type II cytoskeletal 

5 

IPI00009867 

(+1) 
62             8 2 

Lipopolysaccharide-binding 

protein 
IPI00032311 53 17 3             

Plasminogen IPI00019580 91 18 7     36 12     

Properdin IPI00021364 51 61 14             

Protein AMBP IPI00022426 39 13 3     7 4 7 2 

Protein Z-dependent 

protease inhibitor 
IPI00007199 55 12 2             

Prothrombin (Fragment) IPI00019568 70 131 24 43 9 115 25 162 26 
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Putative uncharacterized 

protein DKFZp686C15213 
IPI00426051 51 35 3     30 3     

Secreted phosphoprotein 24 IPI00011832 24 10 2     6 2     

Serotransferrin IPI00022463 77         31 9     

Serpin peptidase inhibitor, 

clade D (Heparin cofactor), 

member 1 

IPI00292950 

(+1) 
60 6 2             

SERPINC1 protein IPI00844156 29 53 3 27 3 36 4 11 2 

Serum amyloid A-4 protein IPI00019399 15         14 2     

Serum amyloid P-

component 
IPI00022391 25 33 8 15 5 14 7 19 3 

Serum 

paraoxonase/arylesterase 1 
IPI00218732 40 26 8     11 2     

Transthyretin 
IPI00022432 

(+1) 
16 13 3     30 7 11 2 

Vitamin K-dependent 

protein C 

IPI00021817 

(+2) 
52         16 4     

Vitamin K-dependent 

protein S 

IPI00294004 

(+1) 
75             7 2 

Vitronectin IPI00298971 54 133 19 77 15 92 14 55 10 
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Figure 1. 2-DE electropherograms of the serum after treatment with the hexapeptide 

beads and fractionation/concentration on (A) IDA-Zn
2+

, (B) IDA-Ni
2+

, (C) IDA-Cu
2+

 and 

(D) the RPC-column.  2-DE experiments were performed on a 7 cm IPG strip (pH 4-7) in 

D 

C 
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the first dimension and subsequently on a 10-20% Tris-HCl 8.6 x 6.8 cm gels in the 

second dimension. The gels were stained with SYPRO fluorescent stain.  

 

solution digest of the fractions from the IDA-Zn
2+

, IDA-Ni
2+

, IDA-Cu
2+

 and the RPC 

columns increased to 66, 29, 55 and 33 respectively which totaled to 183 proteins 

(including the overall 82 non-redundant proteins). Although the number of non-redundant 

proteins identified by the depletion approach is about 30% less than those identified by 

the ProteoMiner™ approach, 22 identified proteins were common to both approaches 

while 36 identified proteins were unique to depletion and 60 identified proteins were 

unique to ProteoMiner™ (see Table 3).  Whereas the 60 identified proteins unique to 

ProteoMiner™ is a significant gain over the depletion approach, the 36 identified proteins 

unique to depletion reflects a significant number of proteins that the ProteoMiner™ 

approach failed to capture them in sufficient amount in addition to some high abundance 

proteins (see above) to allow their identification by LC-MS/MS.  In this investigation, 

only 100 µL peptide beads were used to treat 1.0 mL of serum. These 36 identified 

proteins were captured and identified by ProteoMiner™ when 1.0 mL of peptide beads 

was used to treat 300 mL of pooled serum [16].  However, 300 mL of pooled serum may 

available to obtain from species other than human. In fact, only 0.20 mL of serum can be 

obtained from small mice [18].  On the other hand, in the depletion approach, even 

though the high abundance proteins were depleted, the remaining medium abundant 

proteins may mask or suppress the low concentrated proteins in 2-DE and also in mass 

analysis, a fact that contributed to the inability of the depletion approach to allow the 

detection of the 60 identified proteins unique to the ProteoMiner™.  In the case of 
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ProteoMiner™, since the high abundance proteins are diluted and the low abundant 

proteins are concentrated simultaneously the problem of masking or suppressing does not 

happen in this case. 

 

Highlights of the retention of some typical proteins on the different fractionation columns 

Although our aim in this work is mainly to evaluate the strategy under 

investigation in the capturing efficiency of low abundance proteins in conjunction with 

fractionation/concentration on three IMAC and one RPC columns, the discussion of the 

retention behaviors of some representative proteins would highlight at least in part the 

underlying retention mechanism.  Also, due to the fact that a large number of proteins is 

involved, a highlight of the retention of some captured proteins on the various columns 

would be the most appropriate.  

 The IDA-Zn
2+

 column, which was placed first in the tandem column series, 

selectively captured some of the serum proteins such as 252 KDa protein, -2-HS-

glycoprotein, C4b-binding protein alpha chain, complement C1q subcomponent subunit 

A, complement C5, complement component 1q subcomponent B chain precursor, 

complement component 6 precursor, complement factor H-related protein 1, isoform 1 of 

C4b-binding protein beta, isoform 1 of complement factor H, isoform 1 of extracellular 

matrix protein, isoform 1 of ficolin-3, isoform C of fibulin-1, isoform long of 

complement factor H related protein 2, liposaccharide binding protein, properdin, protein 

Z-dependent protease inhibitor and serpin peptidase inhibitor clade D (Heparin cofactor) 

member 1.  As shown by Sulkowski [19],  IDA-Zn
2+

 column can retain proteins that have 

proximal His residues on the protein surface. As a typical example, -2-HS-glycoprotein
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TABLE 3 

COMPILATION OF IDENTIFIED PROTEINS UNIQUE TO PROTEOMINER™-POST FRACTIONATION TREATED SERUM, 

IDENTIFIED PROTEINS UNIQUE TO DEPLETION-POST FRACTIONATION TREATED SERUM AND IDENTIFIED 

PROTEINS COMMON TO BOTH PROTEOMINER™- AND DEPLETION-POST FRACTIONATION TREATED SERUM 

60 Identified Proteins Unique to ProteoMiner™ 

252 kDa protein 

Complement-activating component 

of Ra-reactive factor Isoform 2 of Apolipoprotein L1 

Alpha-1-acid glycoprotein 1 

Fibronectin 1 isoform 4 

preproprotein 

Isoform 2 of Inter-alpha-trypsin inhibitor 

heavy chain H4 

Apolipoprotein A1 FLJ00385 protein (Fragment) Isoform C of Fibulin-1 

Apolipoprotein B-100 Galectin-3-binding protein Isoform D of Fibulin-1 

Apolipoprotein C-II Glutathione peroxidase 3 

Isoform Long of Complement factor H-related 

protein 2 

Apolipoprotein C-III IGHA1 protein Keratin, type II cytoskeletal 2 epidermal 

Apolipoprotein D IGHM protein Keratin, type II cytoskeletal 5 

Apolipoprotein E IGHM protein Lipopolysaccharide-binding protein 

C4b-binding protein alpha chain IGKV1-5 protein Plasminogen 

CD5 antigen-like IGL@ protein Properdin 

cDNA FLJ58413, highly similar to 

Complement component C7 IGL@ protein Protein AMBP 

Clusterin Isoform 1 of Alpha-1-antitrypsin Protein Z-dependent protease inhibitor 

Complement C1q subcomponent subunit A 

Isoform 1 of C4b-binding protein 

beta chain 

Putative uncharacterized protein 

DKFZp686C15213 

Complement C1q subcomponent subunit C Isoform 1 of Complement factor H Secreted phosphoprotein 24 
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Complement C1s subcomponent 

Isoform 1 of Extracellular matrix 

protein 1 

Serpin peptidase inhibitor, clade D (Heparin 

cofactor), member 1 

Complement C5 Isoform 1 of Ficolin-2 SERPINC1 protein 

complement component 1, q 

subcomponent, B chain precursor Isoform 1 of Ficolin-3 Serum amyloid A-4 protein 

Complement component 4B 

Isoform 1 of Inter-alpha-trypsin 

inhibitor heavy chain H3 Serum paraoxonase/arylesterase 1 

Complement factor H-related protein 1 Isoform 1 of Pregnancy zone protein Vitamin K-dependent protein C 

Complement factor H-related protein 4A Isoform 1 of Serum albumin Vitamin K-dependent protein S 

36 Identified Proteins Unique to Depletion 

 22 Identified Proteins Common to 

Depletion and ProteoMiner™ 

Afamin  Heparin cofactor 2  Alpha-1-acid glycoprotein 2 

Alpha-1-antichymotrypsin  Hyaluronan-binding protein 2 Alpha-2-HS-glycoprotein 

Alpha-1-antitrypsin  Ig alpha-1 chain C region  Antithrombin-III  

Alpha-1B-glycoprotein  Ig gamma-1 chain C region  Apolipoprotein A-I  

Angiotensinogen  Ig kappa chain C region  Apolipoprotein A-II  

Beta-2-glycoprotein 1  Ig kappa chain V-III region B6  Apolipoprotein A-IV 

Complement C4-A  Ig lambda chain C regions  Ceruloplasmin  

Complement component C8 alpha 

chain  Ig mu chain C region  Complement component C6  

Complement component C8 beta chain  

Inter-alpha-trypsin inhibitor heavy chain 

H4  Complement component C7  

Complement factor B  Kininogen-1  Complement component C9  

Complement factor H  Leucine-rich alpha-2-glycoprotein  Immunoglobulin J chain  

Complement factor I  Lumican  Inter-alpha-trypsin inhibitor heavy chain H1  

Corticosteroid-binding globulin  Pigment epithelium-derived factor  Inter-alpha-trypsin inhibitor heavy chain H2  

C-reactive protein  Plasma protease C1 inhibitor  Keratin, type I cytoskeletal 10 

Fibronectin  Retinol-binding protein 4  Keratin, type I cytoskeletal 9  

Ficolin-3  Thyroxine-binding globulin  Keratin, type II cytoskeletal 1  
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Gelsolin  Vitamin D-binding protein  Prothrombin  

Hemopexin  Zinc-alpha-2-glycoprotein  Serotransferrin  

  Serum amyloid P-component  

  Transthyretin  

  Vitronectin  
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is a protein which was completely retained by the IDA-Zn
2+

 column, and this retention 

behavior is in agreement with the previous findings reported in ref. [20] in the sense that 

-2-HS-glycoprotein has His residues that are favorable for its retention on IDA-Zn
2+

. 

Also, it was reported that -2-HS-glycoprotein has similar dissociation constants for 

IDA-Zn
2+

 and IDA-Cu
2+

 columns [20].  However, since it was placed first in the tandem 

series, the IDA-Zn
2+

 column captured all of the -2-HS-glycoprotein, thus allowing more 

affinity sites on the IDA-Cu
2+

 column to be available for the retention of other proteins.  

Another protein whose retention on IDA-Zn
2+

 column merits discussion is 

isoform C of fibulin-1.  This protein, which contains 18 His residues with a protein length 

of 683 amino acid residues [21] was detected only in the IDA-Zn
2+

 fraction whereas 

isoform D of fibulin-1 (protein length of 703 amino acid residues including 20 His 

residues [22] was also detected in the fractions of the other 2 IDA-metal chelate columns.  

This may be due to the difference in the relative concentrations of  isoform C and isoform 

D, which can be assessed from the 4 unique peptides of isoform C of fibulin-1 versus 20 

unique peptides of isoform D of fibulin-1 in the IDA-Zn
2+

 fraction.  The number of 

unique peptides for isoform D of fibulin-1 captured by the IDA-Ni
2+

 and IDA-Cu
2+

 

columns were 9 and 3, respectively.  The fact that the isoforms of fibulin-1 were retained 

primarily on the IDA-Zn
2+

 column may be indicative of the presence of vicinal His 

residue which favor their retention on the IDA-Zn
2+

 column that is the first column in the 

tandem column format. The isoform D of fibulin-1, which seems to be in larger 

concentration than isoform C would then overflow the sites of the IDA-Zn
2+

 column and 

retain on the other IMAC columns. In another example, complement factor H-related 

protein 1, a glycosylated protein with either one or two carbohydrate chains attached 
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[23], was captured by the IDA-Zn
2+

 column alone, whereas another protein from the 

same factor H protein family, complement factor H-related 4A, was captured only on the 

IDA-Cu
2+

 column.  This might be due to the difference in the glycosylation at the metal 

binding site.   

As listed in Table 2, complement component C7 was captured by both IDA-Ni
2+

 

and IDA-Cu
2+

 columns, but was not captured by the IDA-Zn
+2

column.  This protein has 

17 His residues and since it was not captured by the IDA-Zn
2+

, one can envision that the 

protein lacks the presence of vicinal His residue on its surface. However, the spectra 

count in Table 2 indicates that most of the protein was captured by the IDA-Cu
2+

 column 

rather than by the IDA-Ni
2+

 column. Ceruloplasmin and transferrin were not captured by 

IDA-Ni
2+

 but were captured by the other IDA-metal columns and the RPC column. 

Similar results on tris(carboxymethyl)ethylenediamine (TED)-agarose columns loaded 

with Ni
2+ 

(TED-Ni
2+

) were reported in the sense that the TED-Ni
2+

 column did not have 

any affinity towards both ceruloplasmin and transferrin [24].  It was suggested [24], that 

the His residues on the proteins were not accessible for interactions with the Ni chelate 

column. 

As reported by Sulkowski [19], the presence of a single His residue on the surface 

of a given protein is sufficient for its retention on an IDA-Cu
2+

 column. This selectivity is 

illustrated in the case of serum amyloid A-4 protein that was captured by the IDA-Cu
2+

 

column alone.  This protein has 130 amino acids in the protein sequence and has only one 

His residue, which is necessary for its retention on an IDA-Cu
2+

 column.  This protein 

was neither captured by IDA-Zn
2+

 nor by the IDA-Ni
2+

 columns, which were placed 

before the IDA-Cu
2+

 column in the tandem series.  The RPC column, which followed the 
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IDA-Cu
2+

 in the tandem column series captured some of the serum amyloid A-4 protein 

that escaped from the IDA-Cu
2+

 column.  Furthermore, proteins captured by IDA-Cu
2+

 

column alone were apolipoprotein A1, complement factor H-related protein 4A, 

IGL@protein, serotransferrin, isoform 1 of alpha-1-antitrypsin, isoform 2 of inter-alpha-

trypsin inhibitor heavy chain H4, and vitamin K-dependent protein C.  Previously, it was 

observed by Wu and Bruley that vitamin K-dependent protein C has high affinity towards 

IDA-Cu
2+

 [25].  This phenomenon is also seen in the present study where it was not 

captured by other IDA-metal columns but only by IDA-Cu
2+

 column with a small amount 

of the protein that escaped was captured by the RPC column.  Apolipoprotein A1 protein 

was not captured by IDA-Zn
2+

 or IDA-Ni
2+

 columns, but was captured only by the IDA-

Cu
2+

 column.  This could be due to the less number of accessible His residues present on 

the surface of the protein.   

Only the RPC column captured the proteins alpha-1-acid glycoprotein 1 and 

alpha-1-acid glycoprotein 2.  Both proteins have only three His residues with a protein 

length of 201 amino acids.  Also, 40% of these proteins contain carbohydrates [26] which 

might mask the His groups, and that could explain why these proteins were not retained 

on the IMAC columns but were retained by the RPC column.  

 The protein apolipoprotein A-II does not have any His group on its surface to 

have retention on the IDA-metal columns.  But as can be seen in Table 2, the IDA-metal 

and the RPC columns captured this protein.  As indicated by Blanco-Vaca, et al [27], 

apolipoproteins containing cysteine residues can form disulfide bonds with the other 

cysteine containing apolipoproteins.  For example, apolipoprotein A-II can form a 

heterodimer with apolipoprotein D, which has His groups in its protein sequence [27].  
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This formation of dimers would enable the retention of apolipoproteins even if they lack 

the presence of His residues. 

 

Conclusions 

 ProteoMiner™ and immuno-subtraction treatments of biological fluids can be 

viewed as complementary approaches for facilitating the comprehensive profiling of 

proteomics samples.  As shown in this report, for a limited sample size of a given 

biological fluid, the ProteoMiner™ allows the detection of a large number of low 

abundance proteins whereas the immuno-subtraction permits the detection of medium 

abundance proteins for which the peptide beads may not have the partner peptide beads in 

large copy number when a limited size of peptide beads are used such as 100 µL. Both 

immuno-subtraction and ProteoMiner™ approaches may require post fractionation for 

comprehensive sample proteomics profiling.  
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CHAPTER III 

 

 

LECTIN AFFINITY CHROMATOGRAPHY USING LECTINS OF BROAD 

SPECIFICITY FOR CAPTURING SUB-GLYCOPROTEOMICS FROM  

BREAST CANCER AND DISEASE FREE HUMAN SERA USING  

TANDEM MONOLITHIC COLUMNS WITH SURFACE 

 IMMOBILIZED CONCANAVALIN A, WHEAT  

GERM AGGLUTININ AND RICINUS 

 COMMUNIS AGGLUTININ-I   

 

Introduction 

 

In many aspects, glycosylation is one of the most important post-translational 

modifications of proteins. In one biological implication, glycosylation undergoes 

significant alteration in many diseases, especially in cancer [1, 2].  More than 50% of 

human serum proteins are glycosylated, thus making this easily accessible biological 

fluid a rich source of information about the patho-physiological state of a person.  

Identification of serum proteins that are up or down regulated, as a result of disease or 

response to a given treatment in comparison to the disease-free serum represent an 

important undertaking in clinical studies. Since a few cancer biomarkers such as 
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carcinoembryonic antigen, cancer antigen 125 and prostate-specific antigen, which are 

serum glycoproteins, are currently reliable markers in clinical diagnosis, the search of 

other glycoprotein-based cancer biomarkers is an intensive theme of investigation by 

researchers.  

Based on the above consideration, the availability of well-developed and tested 

analytical approaches for specific capturing of the glycoprotein information represent an 

important theme of research in the biological and biomedical areas.  In particular, the 

development of liquid phase separation methods for fractionating and concentrating 

glycoproteins that are differentially expressed in cancerous serum relative to disease-free 

serum are badly needed in the area of glycoprotein biomarkers.  However, the wide 

dynamic range of protein concentration and the many thousands of proteins present in 

serum poses a major challenge to analyze the differentially expressed glycoproteins.   

In this chapter, the complexity of human serum was addressed by using lectin-

based affinity pre-fractionation before identifying the proteins using LC-MS/MS.  Even 

though depletion of high abundance proteins serves to be a good pre-fractionation 

approach it has the disadvantage that it can result in co-depletion of some of the low 

abundance proteins that might have valuable information about the disease in question 

[3].   

In addition to enrichment of glycoproteins using a single lectin column [4], both 

serial-lectin affinity chromatography (LAC) [5-8] and multi-LAC (M-LAC) [9-13] have 

been reported for the enrichment of glycoproteins in human serum/plasma. Serial-LAC is 

a separation approach where multiple lectin columns are used in series or in a sequential 

order to capture glycoproteins, whereas in M-LAC, the lectins to be used are mixed in 
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proportions and immobilized onto a given stationary phase.  Thereafter, the lectin column 

is eluted with the specific displacer required or the so-called haptenic sugar for each 

lectin.  Madera et al. [14] used 4 different lectins immobilized on macroporous silica for 

enrichment of the glycoproteins from serum.  The immobilized lectins were 

Concanavalin A (Con A), Sambuccus nigra agglutinin (SNA), Ulex europaaeus 

agglutinin-I (UEA-I) and Phaseolus vulgaris agglutinin-L (PHA-L). An evaluation of 

serial-LAC and M-LAC was made, and it was found that serial-LAC resulted in the 

identification of higher number of proteins than M-LAC [14].  Some of the serial-LAC 

studies performed so far targeted specific types of glycoconjugates such as the O-linked 

glycopeptides, sialic acid containing N-linked complex-type glycoforms and fucosylated 

glycoproteins that are present in human serum [6-8].  However, other glycoforms are also 

involved in most of the diseases, thus a method that will capture a broad range of 

glycoforms of both N-linked and O-linked glycoproteins from human serum is required.  

With this objective in mind, a serial-LAC (referred to as tandem lectin columns here) 

using three broad specificity lectins, including Con A, wheat germ agglutinin (WGA) and 

Ricinus communis agglutinin-I (RCA-I) was performed using human serum to 

specifically capture a range of glycoforms thus reducing the glycoproteome complexity.  

This platform was demonstrated in identifying the serum proteins that were altered in 

their glycosylation due to breast cancer. 

 The chromatographic separation media used in proteomics/glycoproteomics is an 

important factor for rapid analysis of samples.  In most of the lectin enrichment studies, 

the solid supports used have been agarose, macroporous silica and polyhydroxylated 

polymer (POROS).  Even though agarose has been frequently used, it has certain 
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disadvantages like high backpressure and low flow rate, which leads to increased analysis 

time whereas silica has limitations due to its pH compatibility.  Polymer based monolithic 

supports for LAC offer high flow rates, low backpressure, and consequently reduced 

analysis time.  Bedair and El Rassi reported lectins immobilized on polymethacrylate 

monoliths for rapid and nano-scale separation of glycoproteins [15].  In this study 

polymethacrylate based monolith was used as the chromatographic separation medium in 

LAC.  

This study involved the immobilization of three different lectins of the broad 

specificity type on the surface of glyceryl methacrylate (GMM)/ethylene glycol 

dimethacrylate (EDMA) monolith. They were WGA, Con A and RCA-I. While WGA 

and Con A have specificities directed toward the core portion of N-glycans, RCA-I 

specifically interacts with the non-reducing terminal moieties of the outer chain structures 

of N-glycans.  Immobilized WGA interacts strongly with N,N’-diacetylchitobiose, 

bisected hybrid type and complex type N-glycans and glycoproteins with clustered sialic 

acid residues. Oligosaccharides with poly-N-acetyllactosamine chains have weak affinity 

and are retarded in the column (see Fig. 1) [16, 17].  The haptenic monosaccharide for 

WGA is N-acetyl-D-glucosamine (GlcNAc). Immobilized Con A binds strongly to high 

mannose type and hybrid type N-glycans. Presence of bisecting GlcNAc markedly 

changes the conformation of the trimannosyl core and weakens the interaction with a Con 

A column. Presence of 1 3 linked fucose at the GlcNAc residue of Gal1  4 

GlcNAc group or NeuNAc2  6 at the GlcNAc of the Gal1  3 GlcNAc group in the 

outer chain moieties interferes with the binding of N-glycans to a Con A column by steric 

hindrance. Con A has weak binding to biantennary complex type N-glycans (see Fig. 2) 
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[16, 17].  The haptenic monosaccharide for Con A is methyl--D-mannopyranoside (Me-

-D-Man). RCA-I interacts with oligosaccharide chains by recognizing the -galactosyl 

residue of N- and O-glycans. The Gal1  4 GlcNAc group strongly binds to 

immobilized RCA-I and is eluted with 10 mM lactose in the eluting mobile phase (see 

Fig. 3) whereas oligosaccharides with Gal1  3 GlcNAc1  6 or Gal1  6 residues 

at their non-reducing termini are only retarded in the column (i.e., weak binding affinity) 

[16, 18, 19]. The haptenic sugar for RCA-I is lactose. 

 

 

Figure 1. Affinity of immobilized WGA toward N-glycan structures.  
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Figure 2. Affinity of immobilized Con A toward N-glycan structures.  

 

Figure 3. Sugars binding specificities of immobilized RCA-I. 

Man1
6Man1
3

Man1 6Man1-4GlcNAc1-4GlcNAc
3

Man1

(Man1-2)0-4

±Man1
6Man1
3

Man1 6Man1-4GlcNAc1-4GlcNAc
3

R-Gal1-4GlcNAc1-2Man1

4

±GlcNAc1

(High mannose type)

(Hybrid type)

6Man1-4GlcNAc1-4GlcNAc
3

R-Gal1-4GlcNAc1-2Man1

R-Gal1-4GlcNAc1-2Man1

(Complex type)

Structures exhibiting strong binding and requiring 0.2 M methyl--D-mannopyranoside for elution

Structures possessing weak binding and requiring 5 mM methyl--D-glucopyranoside for elution

Man1
6Man1
3

Man1 6Man1-4GlcNAc1-4GlcNAc
3

Gal1-4GlcNAc1-2Man1

4

GlcNAc1

(Bisected hybrid type)

6Man1-4GlcNAc1-4GlcNAc
3

Gal1-4GlcNAc1-2Man1

Gal1-4GlcNAc1-2Man1
4

±GlcNAc1

(Biantennary complex type)

±Fuc

6

6Man1
2

6Man1-4GlcNAc1-4GlcNAc
3

Gal1-4GlcNAc1-2Man1

4

±GlcNAc1Gal1-4GlcNAc1

Gal1-4GlcNAc1

±Fuc

6

(Triantennary complex type)

Man12
6Man1-4GlcNAc1-4GlcNAc
32Man1

4

±GlcNAc1 ±Fuc

6

(Triantennary complex type)

Gal1-4GlcNAc1-

4
Gal1-4GlcNAc1

Gal1-4GlcNAc1

6Man1-4GlcNAc1-4GlcNAc
3

2Man1

±Fuc

6

(Tetrantennary complex type)
4

Gal1-4GlcNAc1

Gal1-4GlcNAc1

6Man1
2

Gal1-4GlcNAc1

Gal1-4GlcNAc1



86 
 

Experimental 

Instrumentation 

The instrumental setup was made using a solvent delivery system Model CM3500 

and CM4000 and two metering pumps Model III CM from Milton Roy, LDC division 

(Riviera Beach, FL, USA) with a Rheodyne injector Model 7010 (Cotati, CA, USA) 

equipped with a 100 L loop and a Model 200 UV-Vis variable wavelength detector 

from Linear Instruments (Reno, NV, USA).  All mass spectra were obtained using a 

hybrid LTQ-Orbitrap mass spectrometer (Thermo Fisher Scientific, Waltham, MA, 

USA).   

 

Reagents and Materials 

Breast cancer of infiltrating ductal carcinoma (IDC) type cancer from one donor 

and pooled disease-free human serum from 3 different donors (same age group and race 

as the cancer serum) was purchased from Innovative Research (Southfield, MI, USA).  

GMM, EDMA, 2,2´-azobis(isobutyronitrile) (AIBN), 1-dodecanol, sodium periodate, 

sodium cyanoborohydride, N-acetyl-D-glucosamine and methyl -D-mannopyranoside 

were purchased from Aldrich Chemical Co. (Milwaukee, WI, USA). Cyclohexanol and 

HPLC grade acetonitrile were obtained from Fisher Scientific (Fair Lawn, NJ, USA).  

Bio-safe Coomassie stain and a Bradford protein assay kit were purchased from Bio-Rad 

(Hercules, CA).  The three unconjugated lectins namely, Con A, RCA-I and WGA were 

purchased from Vector Laboratories (Burlingame, CA, USA) 
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Monolithic Affinity Columns 

A well mixed and degassed polymerization mixture of 18% GMM, 12% EDMA, 

35% cyclohexanol and 35% dodecanol containing 1.0% (w/w) AIBN with respect to the 

monomers [20] was introduced into a 25.0 cm x 4.6 mm ID stainless steel column that 

functions as a mold for the monolith and was heated at 50 ˚C for 24 h.  The resulting 

monolithic column was washed extensively with acetonitrile followed by water.  The 

monolithic support was transferred from the 25.0 cm column to a shorter column (10 cm) 

by connecting the two columns with a ¼”-union and running water through the columns 

at flow rate of 3.0 mL/min until the modified monolithic support is transferred.   

 

Immobilization of  Lectins 

The 10-cm monolithic columns were allowed to react with freshly prepared 0.1 M 

NaIO4 for 7 h at room temperature.  The columns were washed with water and the lectins 

were immobilized immediately.  The immobilization was done on the column by passing 

a solution of 10 mg of Con A in 1 mL of 0.1 M sodium acetate at pH 6.4 containing 1mM 

of CaCl2, 1mM MgCl2, 1 mM MnCl2, 0.1 M Me--D-Man and 50 mM sodium 

cyanoborohydride through the column for overnight at room temperature.  WGA was 

immobilized using the same procedure by passing 1 mL of a solution containing 10 mg of 

WGA in 0.1 M sodium acetate at pH 6.4 containing 50 mM sodium cyanoborohydride 

and 0.1 M GlcNAc.  RCA-I was immobilized by passing 3 mL of solution containing 10 

mg of RCA-I in 0.1 M sodium acetate at pH 6.4 containing 50 mM sodium 

cyanoborohydride and 0.1 M lactose.  To the resulting column, reductive amination of 

any unreacted aldehyde group was done by passing a solution of 0.4 M Tris-HCl, pH 7.2 
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containing 50 mM sodium cyanoborohydride for 3 h at room temperature.  These 

immobilized lectin columns were stored with the mobile phase containing 20 mM Tris-

HCl containing 100 mM NaCl, 1 mM MgCl2, 1 mM MnCl2, 1 mM CaCl2, pH 6.0 and 

0.08% NaN3 at 4 C until use.   

 

Fractionation of Glycoproteins from Human Serum - Chromatographic Conditions 

 The lectin columns were arranged in tandem series.  In all the experiments, serum 

was used in 1:3 dilution ratio and a total of 100 L (2 x 50 L) was injected for the 

investigation of effect of serial order of the lectin columns or 250L (5 x 50 L) was 

injected for comparison of disease-free and breast cancer.  The columns were first 

equilibrated with 10 column volumes of the binding mobile phase consisting 20 mM 

Tris-HCl containing 100 mM NaCl, 1 mM MgCl2, 1 mM MnCl2, 1 mM CaCl2, pH 6.0.  

Then, 50 L of the diluted serum was injected onto the tandem columns and the unbound 

serum proteins were washed away with the binding mobile phase at flow rate 1 mL/min 

until the absorbance reached zero.  Then, the bound fractions from the RCA-I, Con A and 

the WGA were eluted using the hapten sugars 0.1 M lactose, 0.1 M Me--D-Man and 0.1 

M GlcNAc in the binding mobile phase, respectively.  The lectin columns were again 

equilibrated with 30 column volumes of the binding mobile phase to prepare them for the 

next injection.  The experiments were conducted at ambient temperature at a flow rate of 

1.0 mL/min and the baseline was monitored at = 280 nm.  The chromatograms were 

recorded using a digital recorder.  The bound fractions from the lectin columns were 

subjected to dialysis using Spectra/Por dialysis bag from Spectrum Laboratories, Inc. 

(Houston, TX, USA) and the dialysis was done against water at 4 °C for 24 h. 
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1D SDS-PAGE Analysis 

 The SDS-PAGE analysis of the lectin bound fractions was performed on 10% 

Tris-glycine home case gels [21] (14 × 16 cm, 1.5 mm thickness) for 50 min at 200 V.  

After the completion of the electrophoresis, the gel was rinsed with water for 3 × 5 min 

and stained with Bio-safe Coomassie blue stain for 2h.  Later the gel was washed with 

water to remove the background staining. 

 

Protein Assay 

 The amount of protein that was captured by the lectin columns was determined 

using Bradford protein assay kit. The assay was done according to the manufacturer’s 

protocol. Briefly, the standard or the sample were mixed with Coomassie protein assay 

reagent and incubated at room temperature for 10 min.  The absorbances of the samples 

were then measured at a wavelength of 595 nm using a UV spectrophotometer. 

 

LC-MS/MS Methodology 

The conditions were same as in Chapter II. 

 

LC-MS/MS Data Analysis 

Mascot and X! Tandem were set up to search the SwissProt_082510 database 

(selected for Homo sapiens, 20359 entries) assuming the digestion enzyme trypsin.  Other 

conditions were same as in Chapter II. 



90 
 

Scaffold (version Scaffold-3-00-07, Proteome Software Inc., Portland, OR) was 

used to validate MS/MS-based peptide and protein identifications.  Peptide identifications 

were accepted only if they could be established at greater than 95% probability as 

specified by the Peptide Prophet algorithm.  Protein identifications were accepted if they 

could be established at greater than 99% probability and contained at least 2 unique 

identified peptides.  Protein probabilities were assigned by the Protein Prophet algorithm. 

Proteins that contained similar peptides and could not be differentiated based on MS/MS 

analysis alone were grouped to satisfy the principles of parsimony. 

 

Results and Discussion 

Evaluation of the Monolithic Lectin Columns 

 The lectins under investigation were immobilized onto a monolithic support 

according to the procedure discussed earlier (see Experimental). The monolithic support 

was prepared from a pre-polymerization solution containing 30 wt% monomers to 70 

wt% porogens and 1 wt% initiator with respect to the monomers.  This composition was 

chosen as it has been shown that this composition yields sufficiently moderate specific 

surface area, which can afford moderate and sufficient retention towards large bio-

macromolecules such as glycoproteins [20].  

The lectin columns thus prepared were evaluated for their specific and non-

specific binding toward proteins.  To verify that the lectin columns specifically capture  

glycoproteins, they were tested with standard glycoproteins and non-glycoproteins.  The 

WGA column did not capture any of the injected myoglobin, which is a non-glycoprotein 

(Fig. 4A) but the column completely retained the -1-acid glycoprotein that was eluted 
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only in the presence of the eluting haptenic sugar (Fig. 4B).  Also, myoglobin was not at 

all retained by the Con A column (Fig. 5A), but when excess peroxidase (a glycoprotein) 

was injected onto the column, the excess was seen in the pass through fraction and the 

remaining retained peroxidase was eluted only in the presence of the haptenic sugar (Fig 

5B).  The RCA-I column also showed similar behaviors.  When myoglobin was injected 

into the lectin column everything eluted in the pass through fraction (Fig. 6A) whereas 

when transferrin (a glycoprotein) was injected the excess amount was seen in the pass 

through fraction but the remaining eluted in presence of the eluting mobile phase (Fig. 

6B).  Therefore, the lectin columns did not have any non-specific binding due to the 

support with the standard proteins tested.   
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Figure 4. Chromatograms of myoglobin (A) and -1-acid glycoprotein (B) injected into 

the WGA column (50 mm × 4.6 mm ID). Binding mobile phase, 20 mM Tris containing 

100 mM NaCl, 1mM of Mn
2+

, Mg
2+

 and Ca
2+

, pH = 6.0; eluting mobile phase, 0.1 M 

GlcNAc in the binding mobile phase; flow rate, 1 mL/min; wavelength, 280 nm. The, 

arrow indicates the change to eluting phase. 
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Figure 5.  Chromatograms of myoglobin (A) and peroxidase (B) injected into the Con A 

column (50 mm × 4.6 mm ID). Binding mobile phase, 20 mM Tris containing 100 mM 

NaCl, 1mM of Mn
2+

, Mg
2+

 and Ca
2+

, pH = 6.0; eluting mobile phase, 0.1 M Me--D-

Man in the binding mobile phase; flow rate, 1 mL/min; wavelength, 210 nm. The arrow 

indicates the change to eluting phase. 
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Figure 6. Chromatograms of myoglobin (A) and transferrin (B) injected into the RCA-I 

column (50 mm × 4.6 mm ID). Binding mobile phase, 20 mM Tris containing 100 mM 

NaCl, 1mM of Mn
2+

, Mg
2+

 and Ca
2+

, pH = 6.0; eluting mobile phase, 0.1 M lactose in 

the binding mobile phase; flow rate, 1 mL/min; wavelength, 280 nm. The arrow indicates 

the change to eluting phase. 

 

The reproducibility of the immobilization process of the lectin was evaluated by 

preparing two sets of monolithic columns for each lectin. Each set of lectin columns thus 

obtained was tested under similar conditions using standard glycoproteins.  It was found 

that the peak areas were reproducible from column-to-column. For instance, the WGA 

column yielded a peak area of 0.25 Vsec for the first column and 0.26 Vsec for the 

second column.  The same was observed in the case of the Con A column with the peak 

areas for first and second column being 5.55 and 5.32 Vsec, respectively.  The RCA-I 
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column also showed similar behavior with the peak areas being 0.23 and 0.24 Vsec for 

the first and second column, respectively. 

In order to test their loading capacity, different amounts of human serum were 

injected onto the lectin columns.  For instance, the elution profiles of the WGA column 

when 50 L and 250 L of diluted serum (1:3 ratio) were injected into the lectin column 

are shown in Figs. 7 and 8.  The areas under the peaks were 0.43 Vsec and 2.38 Vsec for 

50 and 250 µL diluted serum injected, respectively, showing an increase in peak area by a 

factor of 5.5. Also, the height of the peak increased by a factor of 4.3 from ~ 0.015 AU 

for 50 L to ~ 0.065 AU for 250 L of the diluted serum.  Clearly, the column was able  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.  Elution profile of the bound proteins from the WGA column (100 mm × 4.6 

ID) when 50 L of diluted serum (1:3 ratio) was injected. Conditions are the same as in 

Fig. 4. 
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Figure 8. Elution profile of the bound proteins from the WGA column (100 mm × 4.6 ID) 

when 250 L of diluted serum (1:3 ratio) was injected.  Conditions are the same as in 

Fig. 4. 

to capture a commensurate amount of serum proteins when the amount of serum injected 

onto the lectin column was increased by 5 fold from 50 µL to 250 L.  Despite the fact 

that the loading capacity of the lectin columns was quite high only 50 L serum were 

injected in further experiments in order to keep the column operating in the loading 

range, and to avoid a false identification of the differentially expressed proteins in the 

cancer serum with respect to disease-free serum. 

 

Effect of the Serial Order of the Lectin Columns in the Tandem Format 

 To investigate the effects of the order in which the lectin columns are arranged in 

the tandem series on the number of captured proteins by each lectin column, three 

different arrangements were considered including WGA  Con A  RCA-I (denoted as 
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WCR hereafter), Con A  WGA  RCA-I (CWR) and RCA-I  Con A  WGA 

(RCW).  Fifty microliter of the 1:3 diluted human serum were injected consecutively 

twice onto the tandem lectin columns and the bound fractions were eluted, desalted, 

concentrated and analyzed by LC-MS/MS to identify the proteins captured by each lectin 

column in the three different series.  The chromatographic setup is shown in Fig. 9.  

A Venn diagram, which indicates the numbers of unique and common proteins 

that were captured by the three series, is shown in Fig. 10.  A comparison of number of 

proteins that were captured by each lectin column in the three different column series is 

listed in Table 1.  The WCR series has 9 proteins that were not identified in the other two 

series and also this series has the maximum number of identified non-redundant proteins.  

The proteins that were unique to each series are listed in Tables 2, 3 and 4.  There were 

60 non-redundant proteins that were common to all the series, and these are listed in 

Table 5. 

 

TABLE 1 

COMPARISON OF NUMBER OF PROTEINS THAT WERE IDENTIFIED ON 

DIFFERENTLY ORDERED SERIAL LECTIN COLUMNS 

Series WGA Con A RCA-I 
Total 

proteins 

# non-

redundant 

proteins 

# of 

unique 

proteins 

WCR 70 40 30 140 80 9 

CWR 52 60 31 143 73 6 

RCW 5 22 73 100 74 4 

 

 

 

 

 



98 
 

TABLE 2 

LIST OF PROTEINS THAT WERE UNIQUE TO WGA-CON A-RCA-I SERIES 

Identified Proteins Accession Number 
Molecular 

Weight 

Apolipoprotein D  APOD_HUMAN 21 kDa 

Carboxypeptidase N subunit 2 CPN2_HUMAN 61 kDa 

Clusterin CLUS_HUMAN 52 kDa 

Complement C1q subcomponent subunit C  C1QC_HUMAN 26 kDa 

Complement component C9  CO9_HUMAN 63 kDa 

Fibronectin  FINC_HUMAN 263 kDa 

Ficolin-3  FCN3_HUMAN 33 kDa 

Kallistatin  KAIN_HUMAN 49 kDa 

Serum paraoxonase/arylesterase 1  PON1_HUMAN 40 kDa 

 

TABLE 3 

LIST OF PROTEINS THAT WERE UNIQUE TO CON A – WGA - RCA-I SERIES 

Identified Proteins Accession Number 
Molecular 

Weight 

Ig heavy chain V-III region BRO * HV305_HUMAN 13kDa 

Ig kappa chain V-III region POM * KV306_HUMAN (+1) 12kDa 

Keratin, type I cytoskeletal 14*  K1C14_HUMAN (+1) 52 kDa 

Keratin, type II cytoskeletal 6B*  K2C6B_HUMAN 60 kDa 

L-selectin LYAM1_HUMAN 42 kDa 

Semenogelin-1*  SEMG1_HUMAN 52 kDa 

* Non-glycoproteins 

TABLE 4 

LIST OF PROTEINS THAT WERE UNIQUE TO RCA-I - CON A - WGA SERIES 

Identified Proteins Accession Number 
Molecular 

Weight 

Heparin cofactor 2 HEP2_HUMAN 57 kDa 

Ig heavy chain V-III region GAL * HV320_HUMAN 13 kDa 

Xin actin-binding repeat-containing protein 2* XIRP2_HUMAN 382 kDa 

Ig lambda chain V-I region WAH * LV106_HUMAN 12 kDa 

*Non-glycoproteins 
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TABLE 5 

LIST OF PROTEINS THAT WERE COMMON TO ALL THE THREE SERIES 

Identified Proteins Accession Number 
Molecular 

Weight 

Afamin  AFAM_HUMAN 69 kDa 

Alpha-1-acid glycoprotein 1  A1AG1_HUMAN 24 kDa 

Alpha-1-acid glycoprotein 2  A1AG2_HUMAN 24 kDa 

Alpha-1-antichymotrypsin  AACT_HUMAN 48 kDa 

Alpha-1-antitrypsin  A1AT_HUMAN 47 kDa 

Alpha-1B-glycoprotein  A1BG_HUMAN 54 kDa 

Alpha-2-HS-glycoprotein  FETUA_HUMAN 39 kDa 

Alpha-2-macroglobulin  A2MG_HUMAN 163 kDa 

Angiotensinogen  ANGT_HUMAN 53 kDa 

Antithrombin-III  ANT3_HUMAN 53 kDa 

Apolipoprotein A-I  APOA1_HUMAN 31 kDa 

Apolipoprotein A-II*  APOA2_HUMAN 11 kDa 

Attractin  ATRN_HUMAN 159 kDa 

Beta-2-glycoprotein 1  APOH_HUMAN 38 kDa 

CD5 antigen-like*  CD5L_HUMAN 38 kDa 

Ceruloplasmin  CERU_HUMAN 122 kDa 

Complement C3  CO3_HUMAN 187 kDa 

Complement C4-B  CO4B_HUMAN 193 kDa 

Complement C5  CO5_HUMAN 188 kDa 

Complement factor B  CFAB_HUMAN 86 kDa 

Complement factor H  CFAH_HUMAN 139 kDa 

Complement factor I  CFAI_HUMAN 66 kDa 

Corticosteroid-binding globulin  CBG_HUMAN 45 kDa 

Haptoglobin  HPT_HUMAN 45 kDa 

Hemoglobin subunit alpha  HBA_HUMAN 15 kDa 

Hemoglobin subunit beta  HBB_HUMAN 16 kDa 

Hemopexin  HEMO_HUMAN 52 kDa 

Histidine-rich glycoprotein  HRG_HUMAN 60 kDa 

Ig alpha-1 chain C region  IGHA1_HUMAN 38 kDa 

Ig alpha-2 chain C region  IGHA2_HUMAN 37 kDa 

Ig gamma-1 chain C region  IGHG1_HUMAN 36 kDa 

Ig gamma-2 chain C region  IGHG2_HUMAN 36 kDa 

Ig gamma-3 chain C region  IGHG3_HUMAN 41 kDa 

Ig gamma-4 chain C region  IGHG4_HUMAN 36 kDa 

Ig kappa chain C region*  IGKC_HUMAN 12 kDa 

Ig kappa chain V-II region RPMI 6410*    
 

KV206_HUMAN 15 kDa 

Ig kappa chain V-III region WOL* KV305_HUMAN (+2) 12kDa 

Ig lambda-2 chain C regions*  LAC2_HUMAN 11 kDa 

Ig lambda chain V-III region LOI*  LV302_HUMAN 12 kDa 
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Ig lambda chain V-III region SH * LV301_HUMAN 11 kDa 

Ig mu chain C region  IGHM_HUMAN 49 kDa 

Immunoglobulin J chain  IGJ_HUMAN 18 kDa 

Inter-alpha-trypsin inhibitor heavy chain H1  ITIH1_HUMAN 101 kDa 

Inter-alpha-trypsin inhibitor heavy chain H2  ITIH2_HUMAN 106 kDa 

Inter-alpha-trypsin inhibitor heavy chain H4  ITIH4_HUMAN 103 kDa 

Keratin, type I cytoskeletal 10*  K1C10_HUMAN 59 kDa 

Keratin, type I cytoskeletal 9*  K1C9_HUMAN 62 kDa 

Keratin, type II cytoskeletal 1*  K2C1_HUMAN 66 kDa 

Keratin, type II cytoskeletal 2 epidermal*  K22E_HUMAN 65 kDa 

Kininogen-1  KNG1_HUMAN 72 kDa 

Leucine-rich alpha-2-glycoprotein  A2GL_HUMAN 38 kDa 

N-acetylmuramoyl-L-alanine amidase  PGRP2_HUMAN 62 kDa 

Plasma protease C1 inhibitor  IC1_HUMAN 55 kDa 

Protein AMBP  AMBP_HUMAN 39 kDa 

Prothrombin  THRB_HUMAN 70 kDa 

Serotransferrin  TRFE_HUMAN 77 kDa 

Serum albumin*  ALBU_HUMAN 69 kDa 

Thyroxine-binding globulin  THBG_HUMAN 46 kDa 

Transthyretin  TTHY_HUMAN 16 kDa 

Zinc-alpha-2-glycoprotein  ZA2G_HUMAN 34 kDa 

*Non-glycoproteins 
 

Figure 9. Chromatographic setup for the concentration of the serum proteins using 

tandem lectin columns.  When the diluted serum was injecte,d the 3-way valve was in 1-

position.  The two-way valves (A and B) are in positions 3 and 5, so that the binding 
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mobile phase (20 mM Tris-HCl (pH 6.0) containing 100 mM NaCl, 1 mM MgCl2, 1mM 

MnCl2, 1 mM CaCl2) flows through the three lectin columns.  Under this condition the 

unbound proteins are washed away.  The Lectin 1 column was eluted when the three-way 

valve was in position 2 and the two-way valve (A) is in position 4, where it by-passes the 

other two columns and directly reaches the detector.  After complete elution the position 

of two-way valve (A) was again changed to 3.  To elute the lectin 2 column, the two-way 

valve was in position 6, so that the bound fraction reaches the detector by-passing lectin 

3 column.  The lectin 3 column was eluted when the two-way valve was in position 5 and 

the bound fraction was collected from the detector. 

 

 

 

 

 

 

 

 

 

Figure 10. Venn diagram showing the number of proteins identified in each series.  The 

total numbers of non-redundant proteins for each series are written in parentheses. 

 

The number of proteins captured by the last lectin column (which is the RCA-I 

column) in the WCR and CWR series were 30 and 31 proteins, respectively, whereas 

only 5 proteins were identified in the last column (which is the WGA column) in the 
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RCW series.  This is due to the fact that the RCA-I column offers a wider sugar 

recognition than the other two lectin columns (see Figs. 1 – 3) in the sense that any 

glycoprotein that has a higher amount of complex type tri- and tetrantennary glycoforms 

will pass through the WGA and the Con A columns and be preferentially retained by the 

RCA-I column that was placed at the end of the series. In the WCR and CWR 

arrangements, the RCA-I column would have more binding sites available for highly 

branched glycans.  In the case of the RCW series, the RCA-I column, which was placed 

first in the series, will offer all of its binding sites to the complex type biantennary 

structures and to hybrid structures in addition to the tri- and tetrantennary glycans, and 

consequently captured the majority of proteins.  In this serial set up, only the 

glycoproteins that carry the sugar determinants that are not recognized by RCA-I are able 

to pass through and be captured either by the Con A or the WGA that follows the RCA-I 

column.  This might be one of the possible reasons why RCW series had the lowest 

number of total proteins. 

 Based on the above results, the WCR tandem arrangement was found to be better 

than the other two series. In fact, by placing the WGA column first, the glycoproteins 

with bisected complex and hybrid type glycans will bind to the WGA thus freeing the 

sites of the Con A column for the non-bisected hybrid type as well as for the high 

mannose type. In addition, by placing the WGA column first followed by the Con A 

column, the binding sites of the RCA-I column would be saved in major part for the 

binding of tri- and tetraantennary glycans. 

 Furthermore, the 9 unique proteins that were captured by the WCR series were all 

glycoproteins, whereas in the CWR series, out of the 6 unique proteins, only one was 
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found to be a glycoprotein, and in the RCW series, only 1 out of 4 was a glycoprotein. In 

the 9 glycoproteins that were captured by the WCR series, some were reported to be 

clinically important.  For example, the glycoprotein kallistatin has been reported to be up-

regulated in type 1 diabetic patients with microvascular complications and with 

hypertension [22].  On the other hand, the proteins that were unique to CWR series were 

mostly immunoglobulin chains and keratin and had two low abundance proteins namely, 

L-selectin and semenogelin-1, where only L-selectin was a glycoprotein.  In summary, 

the WCR series gave better results and this series was used in further work. 

 

LC-MS/MS Analysis of the Lectin Enriched Fractions from Cancer and Disease-free Sera 

The WCR series was investigated for its usefulness in capturing specific 

glycoproteins from both disease-free and breast cancer serum for their subsequent 

identification by LC-MS/MS.  The advantage of using broad specificity lectins is that 

they should in principle allow the enrichment/capturing of glycoproteins with the widest 

aberrant glycosylation possible in a given cancerous serum sample.  This should allow 

the determination of the differentially expressed glycoproteins in cancer serum with 

respect to disease-free serum.  In this regard, cancer serum (n = 1) and disease-free serum 

(n = 3) were enriched by the tandem WCR columns.  As mentioned in the Experimental, 

only proteins that exhibited identification probability greater than 99% with peptide 

identification probability greater than 95% containing at least two unique peptides were 

considered, and they are reported in Table 6.  The total number of non-redundant proteins 

that were identified from the disease-free serum using the three tandem lectin columns
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TABLE 6 

LIST OF PROTEINS IDENTIFIED IN THE LECTIN-BOUND FRACTIONS 

# Identified Proteins 
Accession 

Number 
Mol Wt. 

Disease-free serum Breast cancer serum 

WGA Con A RCA-I WGA Con A RCA-I 

Avg SC
a
/ 

Avg UP
b
 

Avg SC
a
/ 

Avg UP
b
 

Avg SC
a
/ 

Avg UP
b
 

Avg SC
a
/ 

Avg  UP
b
 

Avg SC
a
/ 

Avg  

UP
b
 

Avg SC
a
/ 

Avg UP
b
 

1 Afamin AFAM_HUMAN 69 kDa 8/5 C  6/4 11/7  

2 Alpha-1-acid glycoprotein 1 
A1AG1_HUMA

N 
24 kDa 66/12  19/8 62/12  9/4 

3 Alpha-1-acid glycoprotein 2 
A1AG2_HUMA

N 
24kDa 31/5  11/3 30/5  8/3 

4 Alpha-1-antichymotrypsin AACT_HUMAN 48 kDa 40/15   39/16   

5 Alpha-1-antitrypsin A1AT_HUMAN 47 kDa 50/19 61/20 54/21 52/21 70/28 54/22 

6 Alpha-1B-glycoprotein A1BG_HUMAN 54 kDa 9/6 31/14 12/7 10/6 33/14 6/3 

7 Alpha-2-antiplasmin A2AP_HUMAN 55 kDa 4/2   W   

8 Alpha-2-HS-glycoprotein 
FETUA_HUMA

N 
39 kDa 25/12   22/11   

9 Alpha-2-macroglobulin A2MG_HUMAN 163 kDa 234/75 2/1 6/4 291/85 2/2 10/6 

10 Angiotensinogen ANGT_HUMAN 53 kDa 12/7 5/3 3/3 4/3 2/2 R 
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11 Antithrombin-III ANT3_HUMAN 53 kDa  9/4 1/1  11/7 2/1 

12 Apolipoprotein A-I 
APOA1_HUMA

N 
31 kDa 18/10  15/9 11/6  2/1 

13 Apolipoprotein A-II* 
APOA2_HUMA

N 
11 kDa 8/5  1/1 4/3  R 

14 Apolipoprotein B-100 APOB_HUMAN 516 kDa 66/39   35/22   

15 Apolipoprotein D APOD_HUMAN 21 kDa 5/3   7/5   

16 Attractin ATRN_HUMAN 159 kDa 8/4   5/3   

17 Beta-2-glycoprotein 1 APOH_HUMAN 38 kDa 24/12 4/3  7/4 11/5  

18 
Carboxypeptidase N subunit 

2 
CPN2_HUMAN 61 kDa 4/2      

19 CD5 antigen-like* CD5L_HUMAN 38 kDa 20/11   7/4   

20 Ceruloplasmin CERU_HUMAN 122 kDa 87/36 7/3 21/11 69/31 14/8 25/13 

21 Complement C2 CO2_HUMAN 83 kDa 2/1   4/2   

22 Complement C3 CO3_HUMAN 187 kDa  48/26   41/24  

23 Complement C4-B CO4B_HUMAN 193 kDa 13/8 3/2 2/2 15/8 4/2 4/2 

24 Complement C5 CO5_HUMAN 188 kDa   3/2   R 

25 Complement factor B CFAB_HUMAN 86 kDa 6/3 7/5 25/16 2/2 3/3 R 
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26 Complement factor H CFAH_HUMAN 139 kDa 52/28   48/27   

27 Complement factor I CFAI_HUMAN 66 kDa 13/8   6/4   

28 
Corticosteroid-binding 

globulin 
CBG_HUMAN 45 kDa 7/5   W   

29 Fibrinogen alpha chain FIBA_HUMAN 95 kDa W   2/1   

30 Fibrinogen beta chain FIBB_HUMAN 56 kDa W   1/1   

31 Fibrinogen gamma chain FIBG_HUMAN 52 kDa W   3/1   

32 Haptoglobin HPT_HUMAN 45 kDa 130/31 C 11/6 144/27 8/6 16/10 

33 Haptoglobin-related protein* HPTR_HUMAN 39 kDa 50/4   45/3   

34 Hemoglobin subunit alpha HBA_HUMAN 15 kDa 11/4 C  37/11 7/3  

35 Hemoglobin subunit beta HBB_HUMAN 16 kDa 13/8 C R 59/17 3/2 3/2 

36 Hemoglobin subunit delta* HBD_HUMAN 16 kDa W   33/4   

37 Hemopexin HEMO_HUMAN 52 kDa 72/17 C 6/5 69/20 2/1 24/12 

38 Heparin cofactor 2 HEP2_HUMAN 57 kDa 3/2   W   

39 Histidine-rich glycoprotein HRG_HUMAN 60 kDa W   4/3   

40 Ig alpha-1 chain C region IGHA1_HUMAN 38 kDa 56/14 C 5/4 50/15 4/3 5/3 
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41 Ig alpha-2 chain C region IGHA2_HUMAN 37 kDa 42/3   W   

42 Ig gamma-1 chain C region IGHG1_HUMAN 36 kDa 10/6 15/7 43/16 5/4 22/9 45/15 

43 Ig gamma-2 chain C region IGHG2_HUMAN 36 kDa  C 32/3  11/2 27/2 

44 Ig gamma-3 chain C region IGHG3_HUMAN 41 kDa  3/1 38/6  16/4 35/6 

45 Ig gamma-4 chain C region IGHG4_HUMAN 36 kDa  3/1 30/6  10/4 25/5 

46 
Ig heavy chain V-III region 

BRO* 
HV305_HUMAN 13 kDa 5/2   W   

47 
Ig heavy chain V-III region 

GAL* 
HV320_HUMAN 13 kDa 4/2   1/1   

48 
Ig heavy chain V-III region 

VH26* 
HV303_HUMAN 13 kDa 5/2   W   

49 Ig kappa chain C region* IGKC_HUMAN 12 kDa 33/8 4/3 21/7 13/5 2/1 14/4 

50 
Ig kappa chain V-I region 

AG* 
KV101_HUMAN 12 kDa   2/1   R 

51 
Ig kappa chain V-I region 

EU* 
KV106_HUMAN 12 kDa 4/2   W   

52 
Ig kappa chain V-III region 

HAH* 
KV312_HUMAN 14 kDa 5/3  6/4 W  2/2 

53 
Ig kappa chain V-III region 

POM* 

KV306_HUMAN 

(+1) 
12 kDa 1/1  1/1 1/1  R 

54 
Ig lambda chain V-I region 

WAH* 
LV106_HUMAN 12 kDa 3/2   W   

55 
Ig lambda chain V-III region 

LOI* 
LV302_HUMAN 12 kDa 6/3   6/3   
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56 Ig lambda-1 chain C regions* LAC1_HUMAN 11 kDa 16/2  8/2 9/1  2/1 

57 Ig lambda-2 chain C regions* LAC2_HUMAN 11 kDa 24/6 8/3 16/6 21/5 5/3 12/4 

58 Ig mu chain C region IGHM_HUMAN 49 kDa 82/19   40/15   

59 Immunoglobulin J chain IGJ_HUMAN 18 kDa 7/4   8/4   

60 
Inter-alpha-trypsin inhibitor 

heavy chain H1 
ITIH1_HUMAN 101 kDa 34/17   13/8   

61 
Inter-alpha-trypsin inhibitor 

heavy chain H2 
ITIH2_HUMAN 106 kDa 51/23   26/16   

62 
Inter-alpha-trypsin inhibitor 

heavy chain H4 
ITIH4_HUMAN 103 kDa 36/19   24/15   

63 
Keratin, type I cytoskeletal 

10* 
K1C10_HUMAN 59 kDa W  56/26 5/4  6/4 

64 
Keratin, type I cytoskeletal 

14* 
K1C14_HUMAN 52 kDa   12/4   R 

65 
Keratin, type I cytoskeletal 

9* 
K1C9_HUMAN 62 kDa   35/17   3/2 

66 
Keratin, type II cytoskeletal 

1* 
K2C1_HUMAN 66 kDa W  62/27 5/3  8/5 

67 
Keratin, type II cytoskeletal 2 

epidermal* 
K22E_HUMAN 65 kDa   53/25   5/2 

68 
Keratin, type II cytoskeletal 

5* 
K2C5_HUMAN 62 kDa   18/6   R 

69 Kininogen-1 KNG1_HUMAN 72 kDa 19/13   13/9   

70 
Leucine-rich alpha-2-

glycoprotein 
A2GL_HUMAN 38 kDa 27/13   19/11   
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71 
N-acetylmuramoyl-L-alanine 

amidase 
PGRP2_HUMAN 62 kDa 7/3   W   

72 Plasma kallikrein 
KLKB1_HUMA

N 
71 kDa 3/2   4/2   

73 Plasma protease C1 inhibitor IC1_HUMAN 55 kDa 2/1   5/4   

74 Pregnancy zone protein PZP_HUMAN 164 kDa 56/10   W   

75 Protein AMBP AMBP_HUMAN 39 kDa 11/8 C  3/2 1/1  

76 Serotransferrin TRFE_HUMAN 77 kDa 7/5 168/52 147/58 3/2 128/44 166/57 

77 Serum albumin* ALBU_HUMAN 69 kDa 43/24 C 4/3 37/22 6/4 13/7 

78 Serum amyloid P-component SAMP_HUMAN 25 kDa 3/2  R 4/2  3/2 

79 Thyroxine-binding globulin THBG_HUMAN 46 kDa W C  2/1 1/1  

80 Vitronectin VTNC_HUMAN 54 kDa 3/2   W   

81 Zinc-alpha-2-glycoprotein ZA2G_HUMAN 34 kDa  29/14 10/7  23/12 20/10 

 
a
 Average of spectral counts in triplicate runs  

b 
Average of number of unique peptides from triplicate runs 

* Non-glycoproteins 

 

W, C and R represents that the protein was only present in either disease-free or cancer serum for the WGA, Con A and RCA-I 

columns respectively 
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(WCR) was 75 proteins.  The WGA column captured 61 proteins whereas the Con A and 

the RCA-I columns captured 17 and 35 proteins, respectively, which totaled 113 proteins.  

The percentages of glycoproteins that were captured by each lectin column were 72%, 

88% and 60% for the WGA, Con A and RCA-I columns, respectively, corresponding to 

28%, 12% and 40% non-glycosylated proteins, respectively.  There were 11 common 

proteins among all the three lectin columns.  A Venn diagram listing the number of 

identified proteins on the three lectin columns is shown in Fig. 11.  The number of 

proteins captured by the WGA, Con A and the RCA-I columns from the cancer serum 

was 56, 27 and 29, respectively, totaling 112 proteins.  A Venn diagram indicating the 

number of common proteins and unique proteins is shown in Fig. 12.  The percentages of 

glycoproteins that were captured by each lectin column were 77%, 89% and 69%, for the 

WGA, Con A and RCA-I columns, respectively, corresponding to 27%, 11% and 31% 

non-glycosylated proteins, respectively.  The total number of non-redundant proteins 

identified from three lectin columns using the cancer serum was 65 proteins.  The number 

of common proteins among the three lectin columns was 14.  Although, some proteins 

were found to be common among all the three lectins, it should be noted that the proteins 

did not overflow due to overloading from one column to another as all the three columns 

were operated belowf their capacities.  This overlap between the lectin columns might be 

due to the presence of different glycoforms present in a single protein that has affinity 

towards all the three lectins.  For example, afamin was detected in both disease-free and 

cancer serum by the WGA column but it was over-expressed only in the cancer serum 

fraction from the Con A column which was placed right after the WGA column in the 

tandem column format.  
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As mentioned above the percentage of glycoproteins captured in each lectin 

column is in the range of 69-89%.  This non-specific binding of the lectin column may 

possibly be due to the glycoprotein and non-glycoprotein interactions.  For example, 

transferrin which is one of the high abundant glycoproteins can interact with some of the 

other proteins such as apolipoprotein-I, fibrinonectin, immunoglobulin kappa light chain, 

transthyretin and albumin. This non-specific binding to lectin columns has been also 

reported with other solid supports. For example, agarose bound lectin column also has 

been reported to capture non-glycoproteins [23], and another report which used POROS 

20-AL support resulted in only 75% of glycoprotein capture [12].  In the current study, 

the major portion of the non-glycoproteins consisted of some immunoglobulin chains and 

keratin, which were also observed in some of the other reports that involved lectin 

capturing of glycoproteins from blood plasma and serum [14, 23].  

 

Figure 11. Venn diagram showing the number of proteins in common and number of 

proteins unique to each lectin captured from the disease-free serum. 
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Figure 12. Venn diagram showing the number of proteins in common and number of 

proteins unique to each lectin captured from the breast cancer serum. 

 

There were 6 unique proteins in the cancer serum including fibrinogen-chain, 

fibrinogen--chain, fibrinogen--chain, hemoglobin subunit delta, histidine-rich 

glycoprotein and thyroxine-binding globulin.  An elevated level of fibrinogen was found 

in 44% of the early stage and 22 % of the advanced stage breast cancer patients [24]. It 

should be noted that the spectrum count of the fibrinogen was less than 4 (see Table 6), a 

value that may not be significant.  There were 16 unique proteins in disease-free serum 

but not in cancer serum. These unique proteins present in the disease-free and the cancer 

serum, indicate that certain proteins were differentially expressed in both sera, see Fig. 

13. The number of identified proteins common to the disease-free and the cancer serum 

was 59 non-redundant proteins.  As can be seen in Fig. 13, there were no differentially
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Figure 13. Venn diagram for the differentially expressed proteins found in the lectin 

fractions. 

 

expressed proteins common to the three lectin columns. There were two common 

proteins between WGA and Con A, 2 common proteins between WGA and RCA-I and 1 

common protein between WGA and RCA-I.   

 

Specificity of the Lectin Columns 

The specificity of the lectin columns can be illustrated with some captured 

glycoproteins.  For instance, -1-acid glycoprotein is one of the medium abundance 

proteins present in serum.  It contains a higher amount of sialylated tri- and 

tetraantennary complex type compared to the biantennary complex type glycans.  It is 

also known that Con A has very weak binding towards the bianntenary complex type 

glycans, whereas WGA has affinity towards the sialic acid residue and RCA-I has affinity 
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towards the tri- and the tetrantennary complex type glycan.  Both -1-acid glycoprotein 1 

and -1-acid glycoprotein 2 were captured only by the WGA and RCA-I columns in both 

disease-free and the cancer serum, but not captured by the Con A column.  Clearly, the 

specificity of the lectins is well obeyed here.  Another protein that merits discussion is 

complement C3.  This was the only protein that was unique to the Con A column in both 

the disease-free and cancer serum.  The  chain of the protein has the glycan 

compositions (Man)9(GlcNAc)2-Asn and (Man)8(GlcNAc)2-Asn while the chain has 

(Man)5(GlcNAc)2-Asn and (Man)6(GlcNAc)2-Asn [25].  The high mannose content of 

complement C3  reported [25, 26], made it specific towards Con A column and was thus 

retained only by the Con A column and not the other two columns.  It has to be noted that 

even though complement C3 is one of high abundance proteins, it was specifically 

captured by the Con A and not by WGA or RCA-I columns indicating the absence of any 

non-specific binding. 

 

Visual Differential Expression of Proteins Using SDS-PAGE Analysis of the Cancer and 

the Disease-free Sera 

 Aliquots of equal volumes taken from each lectin column bound fraction of 

disease-free and cancer sera were further analyzed by SDS-PAGE and the results are 

shown in Fig. 14.  By visually examining the SDS-PAGE gel, it can be seen that some 

proteins (marked in circles) were either over-expressed or down-expressed in cancer 

serum. By comparing the WGA lanes (lanes 1 and 2) and the Con A lanes (lanes 3 and 4) 

lanes, it can be seen that some gel bands (shown by arrows) were observed in only that 

particular lectin, indicating that each lectin captured glycoproteins that were only specific 
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to it (see Figs. 1 - 3 for details of the three lectin specificities).  Also, some of the bands 

that are common to Con A and WGA indicate the overlapping in their affinity towards 

some of the glycoforms.  Since RCA-I lanes (lanes 5 and 6) were too faint they were not 

considered for comparison with the other two lectins.   

 

Figure 14. Analysis of bound glycoprotein fractions from the tandem lectin series on 1D 

SDS-PAGE.  Lanes 1, 3 and 5 represent the fractions from WGA, Con A and RCA-I from 

disease-free serum, respectively, whereas 2, 4, 6 represents the fractions from WGA, Con 

A and RCA-I from the breast cancer serum, respectively.  Lane 7 represents the 

molecular weight markers.  

 

Spectral Count as a Means to Assess the Differentially Expressed Proteins  

 The spectral count is the total number of spectra that were obtained for an 

identified protein from LC-MS/MS analysis.  The spectral count allows the determination 
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of the differentially expressed proteins between the disease-free and the cancer samples 

without any labeling techniques. The spectral count has been used in a number of 

comparative proteomic studies and shown to perform better than stable-isotope labeling 

methods [27, 28]. 

In this study, an average spectral count of less than 4 was not considered to make 

comparison between the disease-free and the cancer serum.  A t-test was performed and 

only those that had a p-value < 0.05 were listed in tables 7, 8 and 9. Only those proteins 

that showed at least two fold changes in their spectral count ratios were considered as 

significantly changed.   

 

TABLE 7 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN WGA FRACTION 

Identified proteins  

Average spectral count Ratio 

Disease-free Cancer 

Cancer/ 

Disease-

free 

Disea

se-

free 

/Canc

er 

Alpha-2-antiplasmin   4 0 L H 

Angiotensinogen  12 4 0.37 2.69 

Beta-2-glycoprotein 1  24 7 0.27 3.65 

Carboxypeptidase N subunit 2   4 0 L H 

CD5 antigen-like* 20 7 0.37 2.68 

Complement factor I  13 6 0.48 2.11 

Corticosteroid-binding globulin  7 0 L H 

Hemoglobin subunit alpha   11 37 3.39 0.29 

Hemoglobin subunit beta  13 59 4.56 0.22 

Hemoglobin subunit delta*   0 33 H L 

Histidine-rich glycoprotein  0 4 H L 

Ig alpha-2 chain C region   42 0 L H 

Ig heavy chain V-III region BRO*  5 0 L H 

Ig heavy chain V-III region VH26*   5 0 L H 

Ig kappa chain C region*   33 13 0.38 2.63 

Ig kappa chain V-I region EU*   4 0 L H 
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Ig kappa chain V-III region HAH*   5 0 L H 

Ig mu chain C region   82 40 0.48 2.08 

Inter-alpha-trypsin inhibitor heavy chain 

H1   34 13 
0.38 2.62 

Keratin, type I cytoskeletal 10*  0 5 H L 

Keratin, type II cytoskeletal 1*   0 5 H L 

N-acetylmuramoyl-L-alanine amidase  7 0 L H 

Pregnancy zone protein   56 0 L H 

 

*Non-glycoproteins  

H and L represents that the protein is either present in high or low amount, either in 

disease-free or cancer serum. 

. 

 

 

The proteins hemoglobin subunit delta, histidine-rich protein, keratin type I 

cytoskeletal 10 and keratin type II cytoskeletal 1 were identified in the WGA cancer 

serum fraction but not from the WGA fraction from the disease-free serum (see Table 7).  

Histidine-rich glycoprotein has been reported to have elevated levels of sialylation and 

fucosylation that can distinguish colorectal cancer from adenoma and disease-free human 

plasma [29].  This was also observed in the current study where histidine-rich-protein was 

over-expressed in the cancer serum only in the WGA fraction, indicating its elevated 

level of sialylation. 

The proteins that were either up- or down-regulated by more than two fold were 

not common for the three-lectin columns (see Fig. 13), thus allowing the detection of 

more differentially expressed glycoproteins than one could detect by using only a single 

lectin column.  A recent article states that high-mannose glycans which has affinity 

towards Con A are elevated in the progression of breast cancer [30].  Table 8 shows the 

differentially expressed proteins in the Con A fractions where one can see that all the 

proteins were over-expressed by more than two-fold change in the cancer serum. -2-

glycoprotein has already been reported to have altered glycosylation and over expressed 
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in breast cancer and pancreatic cancer [31, 32]. The same was observed in the current 

study were it was found to be over expressed by 2.6 fold in the cancer serum. Also, the 

Con A column captured six other proteins only from the cancer serum but not from the 

disease-free serum as shown in Table 8.  Out of these, afamin was reported to be down-

expressed in ovarian cancer serum and also was reported as a potential biomarker for 

ovarian cancer [33].  But in the current study afamin was found to be more than two-fold 

over expressed in the breast cancer serum, this might be due to the difference in the 

localization of the tumor.  Surprisingly, serum albumin a non-glycoprotein was also 

found to be elevated in the breast cancer serum.  Since albumin was observed only in the 

breast cancer serum and not in the normal serum of the Con A fraction, the elevated level 

could be due its interaction with other highly elevated glycoproteins present in the breast 

cancer serum.  This elevated level of albumin in breast cancer serum is in agreement with 

the findings reported [23] where different lectins were used to make comparison between 

breast cancer and disease-free sera. 

TABLE 8 

 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN CON A FRACTION 

 

Identified proteins  

Average spectral count Ratio 

Disease-free Cancer 

Cancer/ 

Disease-

free 

Disease-

free 

/Cancer 

Afamin  0 11 H L 

Beta-2-glycoprotein 1   4 11 2.67 0.38 

Haptoglobin   0 8 H L 

Hemoglobin subunit alpha   0 7 H L 

Ig alpha-1 chain C region   0 4 H L 

Ig gamma-2 chain C region  0 11 H L 

Serum albumin*  0 6 H L 

*Non-glycoproteins  

H and L represents that the protein is either present in high or low amount, either in 

disease-free or cancer serum. 
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The proteins that were differentially expressed in the RCA-I column are listed in 

Table 9.  As can be seen in this table, the proteins that were over expressed by two-fold in 

the RCA-I fraction were hemopexin, serum albumin and zinc--2-glycoprotein.  

Recently, hemopexin glycan has been shown to have altered glycosylation in patients 

with hepatocellular carcinoma and it can serve as a complementary test to -fetoprotein 

to identify hepatocellular carcinoma with cirrhosis [34].  In the present study, hemopexin 

was found to be four times over expressed in the RCA-I fraction of the cancer serum. 

Zinc--2-glycoprotein was reported to be a potential biomarker for breast cancer and 

prostate cancer [35, 36].  It has also been reported to be in elevated levels in urinary 

bladder cancer [37].  The elevated level of serum albumin has been already discussed in 

the preceding section. 

TABLE 9 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN RCA-I FRACTION 

Identified proteins  

Average spectral count Ratio 

Disease-

free 
Cancer 

Cancer/ 

Disease-free 

Disease-

free 

/Cancer 

Alpha-1-acid glycoprotein 1   19 9 0.50 2.00 

Complement factor B   25 0 L H 

Hemopexin   6 24 4.29 0.23 

Keratin, type I cytoskeletal 10*   56 6 0.11 8.84 

Keratin, type I cytoskeletal 14*  12 0 L H 

Keratin, type II cytoskeletal 1* 62 8 0.12 8.04 

Keratin, type II cytoskeletal 2 

epidermal*   
53 5 0.10 9.88 

Keratin, type II cytoskeletal 5* 18 0 L H 

Serum albumin*   4 13 3.17 0.32 

Zinc-alpha-2-glycoprotein   10 20 2.03 0.49 

*Non-glycoproteins 

H and L represents that the protein is either present in high or low amount, either in 

disease-free or cancer serum. 



120 
 

 Hemoglobin subunit  and   Hemoglobin subunits  and  were found to be 

over expressed in the cancer serum (3.39 and 4.56 fold change) fraction of the WGA 

column.  Also, the subunit of hemoglobin was found to be over-expressed in the cancer 

serum fraction from the Con A column.  These two proteins have been reported to be 

potential biomarkers for ovarian cancer [38].  Another article reported that α- and β 

hemoglobin to be as putative markers for ovarian and head and neck cancer [39].  The 

high level of  and subunits of hemoglobin in the current study is in agreement with the 

results of a recent article, in which the ductal carcinoma in situ (DCIS) type cancer serum 

was compared with the control samples using SELDI-TOF [40].  Also, the level of 

hemoglobin chain isoforms in nipple aspirate fluid have been found to be correlated to 

breast cancer [41].  As reported [42] hemoglobin can form an irreversible and non-

covalent complex with haptoglobin in the presence of sialic acid and galactose present in 

the carbohydrate moiety of haptoglobin.  The elevated level of hemoglobin (in WGA and 

Con A) and haptoglobin (in Con A) suggest that the hemoglobin can serve as a potential 

indicator of the breast cancer. Thus, the high-elevated level of hemoglobin subunits  and 

can be attributed to the changes taking place in blood serum as a result of tumor 

progression.   

 

Conclusions  

 The strategy introduced here to capture the wide range of glycoproteins allowed 

the enrichment of several glycoproteins, which were differentially expressed in cancer 

sera with respect to disease free sera.  Even though, the number of human subjects used 

by the supplier to obtain the breast cancer serum was very small, the strategy discussed 
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here allows identification of the differentially expressed proteins in breast cancer serum 

with respect to the disease-free serum by avoiding the depletion of high abundance 

proteins.  Also, by using spectral counts as a tool to identify the differentially expressed 

proteins in serum, other expensive and laborious techniques such as isotope labeling 

methods were avoided.  Since the strategy investigated here is a proof-of-concept for 

enrichment of glycoproteins from a complex mixture such as serum, further validation 

needs to be done to validate the biomarker candidates identified in this study.  
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CHAPTER IV 

 

 

LECTIN AFFINITY CHROMATOGRAPHY USING NARROW SPECIFICITY 

LECTINS FOR CAPTURING FUCOSYLATED AND SIALYLATED 

GLYCOPROTEINS FROM BREAST CANCER AND DISEASE FREE  

HUMAN SERA USING TANDEM MONOLITHIC COLUMNS WITH  

SURFACE IMMOBILIZED ALEURIA AURANTIA LECTIN,  

SAMBUCCUS NIGRA AGGLUTININ AND LOTUS  

TETRAGONOLOBUS AGGLUTININ 

 

Introduction  

 

According to recent statistics, about 1 in 8 women in USA will develop invasive 

breast cancer and there were about 2.5 million breast cancer survivors in the year 2010 in 

the USA [1].  Detection of cancer at early stage can profoundly increase the survival rate 

of cancer patients.  But early stage detection remains a major challenge as only minimal 

symptoms are observed at that stage of cancer.  During metastasis, tumor cells dissociate 

from a primary site, enter blood stream and proliferate in another site.  During this 

process, the tumor-associated proteins can shed from the cell surface and enter the blood 

stream.  Thus, blood can reflect the patho-physiological state of a person [2]. Even 

though, the Food and Drug Administration (FDA) has approved the proteins CA 15.3 and 
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Her-2/neu as cancer biomarkers for breast cancer, to decrease the death rate and to detect 

cancer at an early stage, more biomarker candidates are needed using an easily accessible 

clinical sample such as human serum. 

It is well known that the alteration in glycosylation of proteins takes place in 

several diseases including cancer [3-5].  Especially aberrations in sialylation and 

fucosylation of glycoproteins are thought to be associated with tumor progression.  For 

example, Warren et al. [6], proposed that sialylation is an important step that leads to the 

alteration of cell surface sugar chains as a result of malignant transformations.  Also, 

sialyl Lewis x (Le
x
) glycans have been identified in tumor cells [7].  Sialyltransferase is 

an enzyme that is involved in addition of sialic acid to sugars, and an increased activity of 

this enzyme can lead to an increase in sialylation of tumor cell surfaces [2].  Increase in 

fucosylation is another observed change in the tumor.  For example, increased activity of 

-(1,3)-fucosyl transferase was observed in tumor, and that resulted in elevation of 

fucosylation in haptoglobin [8].  Also, changes in fucosylation of glycoproteins in breast 

cancer tissues have been reported [9].  

There have been some reports in the literature regarding the targeting of specific 

type of glycoproteins [10-14] to identify differentially expressed glycoproteins in cancer 

serum as compared to disease-free serum.  In one report, sialylated serum glycoproteins 

were targeted using wheat germ agglutinin, Sambuccus nigra agglutinin (SNA) and 

Maackia amurensis lectin [11], which have specificity toward sialylated glycoproteins.  

In other reports, fucosylated proteins were targeted using the lectins Aleuria aurantia 

lectin (AAL) [12] and Lotus tetragonolobus agglutinin (LTA) [13], whereas the (1,6)-

branched glycoforms of N-linked glycoproteins were captured by L-phytohemagglutinin 
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lectin [10].  None of these methods targeted both fucosylated and sialylated glycoproteins 

simultaneously.  Since both fucosylation and sialylation of glycoprotein can be altered as 

a result of malignant transformations, a method to selectively enrich both fucosylated and 

sialylated serum glycoproteins is urgently needed.   

With the intention of capturing the fucosylated and the sialylated serum 

glycoproteins, three narrow specificity lectins namely, AAL, LTA and SNA were 

immobilized onto the surface of a glyceryl methacrylate (GMM)/ethylene glycol 

dimethacrylate (EDMA) monolith.  AAL has a strong affinity towards core fucosylated 

glycans (i.e.,) where a fucose residue is attached to the innermost N-acetyl-D-

glucosamine (GlcNAc) of the N-linked-core structure represented as Fuc 

16GlcNAcR and has weak binding towards fucose in the outer arm such as Fuc 

12Gal14GlcNAc1R, Gal14(Fuc13)GlcNAcR and 

Gal13(Fuc14)GlcNAcR, where R = H or sugar [15].  LTA can bind to glycans 

having fucose present in the outer arm Fuc13/14GlcNAc and Fuc12Gal.  LTA 

also has an affinity for glycans containing the Le
x
 determinant represented as 

Gal14(Fuc13)GlcNAc 1R [16].  The haptenic sugar for AAL and LTA is -L-

fucose.  SNA lectin has strong binding towards NeuAc6Gal14GlcNAc1R in 

N-glycans and NeuAc26GalNAcSer(Thr) in O-glycans, where R = H or sugar. The 

haptenic sugar for SNA is lactose [15].  In this current study depletion of high abundance 

proteins was not done as it is known that depletion might result in co-depletion of other 

clinically important proteins.  For, example, one study states that 210 proteins were 

removed with the depletion of six high abundant proteins [17].   
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Experimental 

Instrumentation 

The instruments used were same as those described in Chapter III. 

 

Reagents and Materials 

The three unconjugated lectins namely, AAL, LTA and SNA were purchased 

from Vector Laboratories (Burlingame, CA, USA). All other chemicals and reagents used 

are the same as in Chapter III.  

 

Monolithic Affinity Columns 

The monolith preparation was prepared as described in Chapter III and the 

monolithic support was transferred from the 25.0 cm column to a 3 cm column. 

 

Immobilization of the Lectins 

The immobilization process was similar to that described in Chapter III.  The 3 

cm monolithic columns were allowed to react with freshly prepared 0.1 M NaIO4 for 2 h 

at room temperature.  The immobilization was done on the column by passing a solution 

of 1 mg of AAL or LTA in 0.5 mL of 0.1 M sodium acetate at pH 6.4 containing 0.1 mM 

of Ca
2+

, 0.1 M of fucose and 50 mM of sodium cyanoborohydride through the column for 

12 h at room temperature.  SNA was immobilized using the same procedure, but in 

absence of Ca
2+

 and using lactose as the haptenic sugar.  These immobilized lectin 

columns were stored with the mobile phase containing 20 mM of Tris-HCl (pH 6.0) 

containing 100 mM of NaCl, 0.1 mM of Ca
2+

 and 0.08% of NaN3 at 4 C until use. 
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Fractionation of Glycoproteins From Human Serum - Chromatographic Conditions 

  In all the experiments, serum was used in 1:3 dilution ratio and a total of 600L 

was injected into the tandem lectin columns.  The columns were first equilibrated with 10 

column volumes of the binding mobile phase consisting of 20 mM of Tris-HCl (pH 6.0) 

containing 100 mM of NaCl, 0.1 mM of Ca
2+

.  The diluted serum (600 L) was injected 

onto the tandem columns and the unbound serum proteins were washed with the binding 

mobile phase at flow rate 1 mL/min.  The bound fractions from the LTA and AAL 

columns were eluted using 5 mM fucose in the binding mobile phase.  The SNA column 

was eluted using 0.1 M lactose in the binding mobile phase.  The chromatographic setup 

was same as in Chapter III. 

 

Protein Assay 

 The procedure was same as that described in Chapter III.  

 

LC-MS/MS Methodology   

The conditions were same as in Chapter III, except that in this analysis, the six 

most intense ions were analyzed via MS/MS in the linear ion trap.  

 

LC-MS/MS Data Analysis 

Conditions were same as in Chapter III, except for the parent ion tolerance, which 

was 20 ppm. 
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Results and Discussion 

Analysis of Proteins in the Lectin Fractions 

 The lectins LTA, AAL and SNA which have narrow selectivity towards glycans 

were used in this investigation to identify the differentially expressed proteins in breast 

cancer serum relative to disease-free serum.  These lectins were selected based on the fact 

the LTA and AAL can capture the fucosylated glycoproteins at different sugar residues 

while the SNA column can capture the sialylated glycoproteins.  The lectin columns were 

arranged in the tandem series in the order LTAAALSNA.  This order was chosen 

based on the fact that LTA is more specific in its affinity than AAL in the sense that LTA 

recognizes glycans with fucose residues in the outer arm whereas AAL binds to glycans 

with fucose residues in the inner core and to a lesser extent in the outer arm. Thus, by 

placing LTA first in the tandem column format, the AAL will have all its binding sites 

available for the glycoproteins bearing glycans with inner core fucosylation.  On the other 

hand, SNA will capture the sialylated glycoproteins that pass through the first two lectin 

columns.  The chromatographic set-up containing the tandem lectin columns was the 

same as in Chapter III (see Fig. 9).   

Disease-free serum (n = 3) and cancer serum (n = 1) were injected into the tandem 

lectin columns and the bound fractions were eluted with the haptenic sugars, and 

subsequently subjected to dialysis.  An aliquot of the dialyzed fractions thus obtained 

were analyzed using LC-MS/MS.  As mentioned in Experimental, only proteins that 

exhibited identification probability greater than 99% with peptide identification 

probability greater than 95% containing at least two unique peptides were considered, 

and they are reported in Table 1. 
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. TABLE 1 

LIST OF PROTEINS IDENTIFIED IN THE LECTIN-BOUND FRACTIONS 

Identified Proteins Accession Number Mol. Wt. 

Disease-free serum Breast cancer serum  

LTA AAL SNA  LTA AAL SNA  

Avg 

SC
a
/ 

Avg 

UP
b
 

Avg SC
a
/ 

Avg UP
b
 

Avg 

SC
a
/ 

Avg 

UP
b
 

Avg SC
a
/ 

Avg UP
b
 

Avg SC
a
/ 

Avg UP
b
 

Avg 

SC
a
/ 

Avg 

UP
b
 

6-phosphofructokinase, muscle type*  K6PF_HUMAN 85 kDa     S     2/2 

Actin, alpha skeletal muscle*  ACTS_HUMAN 42 kDa     S     61/16 

Afamin AFAM_HUMAN 69 kDa 4/2     L     

Alpha-1-acid glycoprotein 1  A1AG1_HUMAN 24 kDa 16/7 26/11 4/2 15/7 10/6 S 

Alpha-1-acid glycoprotein 2  A1AG2_HUMAN 24 kDa 9/2 21/6   6/1 8/3   

Alpha-1-antichymotrypsin  AACT_HUMAN 48 kDa 7/5 9/6 S 9/6 9/5 3/1 

Alpha-1-antitrypsin  A1AT_HUMAN 47 kDa 52/20 23/14 10/8 48/21 21/13 12/8 

Alpha-1B-glycoprotein A1BG_HUMAN 54 kDa 9/6   2/1 8/6   2/2 

Alpha-2-HS-glycoprotein  FETUA_HUMAN 39 kDa 2/2 A S 6/4 2/1 2/2 

Alpha-2-macroglobulin  A2MG_HUMAN 163 kDa 99/44 196/73 16/10 101/47 183/69 40/25 

Alpha-actinin-2*  ACTN2_HUMAN 104 kDa     S     11/6 

Alpha-actinin-3* ACTN3_HUMAN 103 kDa     S     14/9 

Angiotensinogen  ANGT_HUMAN 53 kDa 10/6 A S 6/5 1/1 1/1 

Antithrombin-III  ANT3_HUMAN 53 kDa 4/3     8/5     

Apolipoprotein A-I  APOA1_HUMAN 31 kDa 46/20 28/14 S 50/21 28/16 9/8 

Apolipoprotein A-II*  APOA2_HUMAN 11 kDa 7/4 6/3   10/4 5/3   

Apolipoprotein A-IV*  APOA4_HUMAN 45 kDa L     2/1     

Apolipoprotein B-100  APOB_HUMAN 516 kDa 25/18 56/40 10/9 46/32 62/42 65/49 

Apolipoprotein C-I*  APOC1_HUMAN 9 kDa 0     1     

Apolipoprotein D  APOD_HUMAN 21 kDa 3/2 1 S 4/3 2/2 3/2 
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Apolipoprotein E  APOE_HUMAN 36 kDa L A   6/5 2/2   

Apolipoprotein L1  APOL1_HUMAN 44 kDa   A     4/2   

Apolipoprotein(a)  APOA_HUMAN 501 kDa   2/1 3/2   4/2 5/2 

Attractin  ATRN_HUMAN 159 kDa   6/5     A   

Beta-2-glycoprotein 1 APOH_HUMAN 38 kDa 22/11   S 17/9   3/2 

Beta-enolase*  ENOB_HUMAN 47 kDa     S     13/8 

Carboxypeptidase N catalytic chain  CBPN_HUMAN 52 kDa   7/3     1/1   

Carboxypeptidase N subunit 2  CPN2_HUMAN 61 kDa   9/6     5/3   

CD44 antigen  CD44_HUMAN 82 kDa   A     1/1   

CD5 antigen-like*  CD5L_HUMAN 38 kDa 11/7 22/13 4/2 2/2 14/9 5/4 

Ceruloplasmin  CERU_HUMAN 122 kDa 25/14 38/21 5/4 24/14 43/24 21/12 

Clusterin CLUS_HUMAN 52 kDa 2/1  16/8   2/1 12 /6   

Coagulation factor X  FA10_HUMAN 55 kDa   1/1     2/2   

Complement C1q subcomponent 

subunit C  
C1QC_HUMAN 26 kDa   1/1     A   

Complement C1r subcomponent  C1R_HUMAN 80 kDa   1/1 2/2   4/3 6/5 

Complement C1r subcomponent-like 

protein  
C1RL_HUMAN 53 kDa   1/1     A   

Complement C1s subcomponent C1S_HUMAN 77 kDa L 4/3 7/5 1/1 5/3 8/6 

Complement C2  CO2_HUMAN 83 kDa     S     1/1 

Complement C3  CO3_HUMAN 187 kDa 97/52 12/8 S 117/62 64/38 35/24 

Complement C4-A  
CO4A_HUMAN 

(+1) 
193 kDa 16/11   14/10 27/18   39/23 

Complement C4-B  CO4B_HUMAN 193 kDa   13/10     41/28   

Complement C5  CO5_HUMAN 188 kDa 1/1     L     

Complement component C6 CO6_HUMAN 105 kDa     S     1/1 

Complement factor B  CFAB_HUMAN 86 kDa 18/12   7/5 17/10   14/10 

Complement factor H  CFAH_HUMAN 139 kDa 26/17 5/5 19/13 37/26 13/10 66/37 

Complement factor H-related protein 1  FHR1_HUMAN 38 kDa     S     9/3 
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Complement factor H-related protein 3 FHR3_HUMAN 37 kDa   A     1/1   

Corticosteroid-binding globulin  CBG_HUMAN 45 kDa 1/1 1   L A   

Creatine kinase M-type*  KCRM_HUMAN 43 kDa     S     19/10 

Cryptochrome-1*  CRY1_HUMAN 66 kDa   1/1     A   

Desmin*  DESM_HUMAN 54 kDa     S     5/5 

Fibrinogen alpha chain  FIBA_HUMAN 95 kDa L A S 14/7 9/7 16/8 

Fibrinogen beta chain  FIBB_HUMAN 56 kDa L A S 22/12 14/9 16/9 

Fibrinogen gamma chain  FIBG_HUMAN 52 kDa L A S 25/13 11/7 21/12 

Fibronectin  FINC_HUMAN 263 kDa     S     1/1 

Ficolin-3 FCN3_HUMAN 33 kDa   16/8 1/1   26/11 4/3 

Filamin-C*  FLNC_HUMAN 291 kDa     S     5/4 

Fructose-bisphosphate aldolase A*  ALDOA_HUMAN 39 kDa     S     17/12 

Gelsolin*  GELS_HUMAN 86 kDa 1/1     L     

Glyceraldehyde-3-phosphate 

dehydrogenase* 
G3P_HUMAN 36 kDa     S     6/2 

Glycogen phosphorylase, muscle 

form*  
PYGM_HUMAN 97 kDa     S     11/8 

Haptoglobin  HPT_HUMAN 45 kDa 67/25 89/29 40/20 59/22 30/16 43/20 

Haptoglobin-related protein*  HPTR_HUMAN 39 kDa   41/2     11/2   

Hemoglobin subunit alpha  HBA_HUMAN 15 kDa 1/1 8/3 S 24/8 7/3 6/2 

Hemoglobin subunit beta  HBB_HUMAN 16 kDa 5/3 10/5 S 39/15 8/4 10/6 

Hemopexin  HEMO_HUMAN 52 kDa 29/14 17/10 6/4 28/13 21/11 20/8 

Heparin cofactor 2 HEP2_HUMAN 57 kDa 1/1   1/1 1/1   8/5 

Histidine-rich glycoprotein  HRG_HUMAN 60 kDa   6/3 S   12/7 3/2 

Ig alpha-1 chain C region  IGHA1_HUMAN 38 kDa 28/11 46/17 15/7 28/13 50/18 18/8 

Ig alpha-2 chain C region  IGHA2_HUMAN 37 kDa   34/3     36/3   

Ig gamma-1 chain C region  IGHG1_HUMAN 36 kDa 45/16 24/11 5/4 47/16 32/14 20/10 

Ig gamma-2 chain C region  IGHG2_HUMAN 36 kDa 47/10 16/6 6/2 50/10 18/6 15/4 

Ig gamma-3 chain C region  IGHG3_HUMAN 41 kDa 40/5   5/1 41/5   16/4 
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Ig gamma-4 chain C region  IGHG4_HUMAN 36 kDa 29/4 A   28/4 17/2   

Ig heavy chain V-I region HG3* HV102_HUMAN 13 kDa 2/1 1/1 S 5/2 4/2 1/1 

Ig heavy chain V-II region ARH-77* HV209_HUMAN 16 kDa 2/2 A   3/2 2/1   

Ig heavy chain V-II region WAH  HV206_HUMAN 14 kDa   A     1/1   

Ig heavy chain V-III region BRO*  HV305_HUMAN 13 kDa 8/2   2/2 7/2   4/2 

Ig heavy chain V-III region BUT*  HV306_HUMAN 12 kDa   4/2     4/2   

Ig heavy chain V-III region GA*  HV308_HUMAN 13 kDa 1/1 A   L 2/1   

Ig heavy chain V-III region GAL* HV320_HUMAN 13 kDa 3/2 3/2 1/1 2/2 6/2 2/1 

Ig heavy chain V-III region KOL*  HV311_HUMAN 14 kDa L     1/1     

Ig heavy chain V-III region VH26*  HV303_HUMAN 13 kDa 2/2 2 2/2 3/2 2/1 3/2 

Ig kappa chain C region*  IGKC_HUMAN 12 kDa 30/7 28/8 7/3 22/6 23/7 19/5 

Ig kappa chain V-I region EU* KV106_HUMAN 12 kDa 5/2 5/2 S 4/2 4/2 2/1 

Ig kappa chain V-I region WEA*  KV118_HUMAN 12 kDa 2/1     L     

Ig kappa chain V-III region HAH*  
KV312_HUMAN 

(+1) 
14 kDa 5/3 8/4   7/4 9/4   

Ig kappa chain V-III region POM*  
KV306_HUMAN 

(+1) 
12 kDa     S     1/1 

Ig kappa chain V-III region SIE*  
KV302_HUMAN 

(+3) 
12 kDa     3/2     1/1 

Ig kappa chain V-III region VG 

(Fragment) *  
KV309_HUMAN 13 kDa L 1   4/3 2/1   

Ig kappa chain V-III region VH 

(Fragment) *  
KV310_HUMAN 13 kDa   1     1/1   

Ig kappa chain V-IV region 

(Fragment) *  

KV401_HUMAN 

(+1) 
13 kDa 3/2 5/3   L 4/3   

Ig lambda chain V-I region NEWM*  LV105_HUMAN 11 kDa   A     1/1   

Ig lambda chain V-I region WAH*  LV106_HUMAN 12 kDa 1/1 1/1 S 1/1 2/2 1/1 

Ig lambda chain V-III region LOI*  LV302_HUMAN 12 kDa 6/3 4/3 S 8/4 7/3 2/1 

Ig lambda chain V-III region SH*  LV301_HUMAN 11 kDa 2/1 2/2   1/1 1/1   

Ig lambda-1 chain C regions*  LAC1_HUMAN 11 kDa 10/2 15/2   13/2 16/2   
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Ig lambda-2 chain C regions*  LAC2_HUMAN 11 kDa 21/6 18/5 9/5 19/5 19/6 13/5 

Ig lambda-7 chain C region*  LAC7_HUMAN 11 kDa L     4/1     

Ig mu chain C region  IGHM_HUMAN 49 kDa 38/14 68/21 30/13 24/13 57/16 42/13 

Ig mu heavy chain disease protein  MUCB_HUMAN 43 kDa   A     12/1   

IgGFc-binding protein  FCGBP_HUMAN 572 kDa   7/6     2/1   

Immunoglobulin J chain  IGJ_HUMAN 18 kDa 5/3 8/4 4/3 5/3 9/5 6/4 

Insulin-like growth factor-binding 

protein 3 
IBP3_HUMAN 32 kDa   A     1/1   

Insulin-like growth factor-binding 

protein complex acid labile subunit  
ALS_HUMAN 66 kDa   15/10     21/14   

Inter-alpha-trypsin inhibitor heavy 

chain H1 
ITIH1_HUMAN 101 kDa 4/3   S 3/2   4/3 

Inter-alpha-trypsin inhibitor heavy 

chain H2 
ITIH2_HUMAN 106 kDa 8/5 A S 9/7 3/3 14/8 

Inter-alpha-trypsin inhibitor heavy 

chain H4 
ITIH4_HUMAN 103 kDa 6/4 7/4 4/3 117 5/3 11/8 

Intercellular adhesion molecule 2  ICAM2_HUMAN 31 kDa   A     2/1   

Kallistatin  KAIN_HUMAN 49 kDa   2/2     A   

Keratin, type I cytoskeletal 10*  K1C10_HUMAN 59 kDa 25/14 41/18 33/19 24/15 56/23 37/20 

Keratin, type I cytoskeletal 14*  K1C14_HUMAN 52 kDa   9/2 21/9   44/6 10/2 

Keratin, type I cytoskeletal 16* K1C16_HUMAN 51 kDa   11/6 8/1   73/21 S 

Keratin, type I cytoskeletal 17*  K1C17_HUMAN 48 kDa   A     30/32   

Keratin, type I cytoskeletal 9*  K1C9_HUMAN 62 kDa 19/12 38/19 28/15 14/9 41/21 31/15 

Keratin, type II cytoskeletal 1  K2C1_HUMAN 66 kDa 34/21 55/26 45/21 28/16 76/32 48/24 

Keratin, type II cytoskeletal 2 

epidermal*  
K22E_HUMAN 65 kDa 17/9 27/12 30/4 21/11 45/16 24/13 

Keratin, type II cytoskeletal 5*  K2C5_HUMAN 62 kDa   8/2 18/4   35/7 7/1 

Keratin, type II cytoskeletal 6A*  K2C6A_HUMAN 60 kDa   10/8     75/38   

Keratin, type II cytoskeletal 6B*  K2C6B_HUMAN 60 kDa L A   7/1 73/3   

Keratin, type II cytoskeletal 6C*  K2C6C_HUMAN 60 kDa   A 18/10   50/1 9/2 
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Kininogen-1  KNG1_HUMAN 72 kDa 8/5 29/18 S 10/6 18/13 9/6 

Leucine-rich alpha-2-glycoprotein  A2GL_HUMAN 38 kDa 5/3 1/1   6/5 A   

Lipopolysaccharide-binding protein  LBP_HUMAN 53 kDa     S     1/1 

L-lactate dehydrogenase A chain*  LDHA_HUMAN 37 kDa     S     5/3 

Low affinity immunoglobulin gamma 

Fc region receptor III-B 
FCG3B_HUMAN 26 kDa   1/1     1/1   

L-selectin  LYAM1_HUMAN 42 kDa   104     8/4   

Myosin light chain 1/3, skeletal 

muscle isoform * 
MYL1_HUMAN 21 kDa     S     11/5 

Myosin regulatory light chain 2, 

skeletal muscle isoform*  
MLRS_HUMAN 19 kDa     S     12/8 

Myosin-1*  MYH1_HUMAN 223 kDa     S     
148/7

1 

Myosin-2*  MYH2_HUMAN 223 kDa     S     118/4 

Myosin-4*  MYH4_HUMAN 223 kDa     S     89/3 

Myosin-8 * MYH8_HUMAN 223 kDa     S     86/3 

Myosin-binding protein C, fast-type* MYPC2_HUMAN 128 kDa     S     2/2 

Neutrophil defensin 1*  
DEF1_HUMAN 

(+1) 
10 kDa L     3//2     

Phosphoglucomutase-1*  PGM1_HUMAN 61 kDa     S     2/1 

Plasma kallikrein  KLKB1_HUMAN 71 kDa 1/5 2/2 5/3 1/1 3/2 13/8 

Plasma protease C1 inhibitor  IC1_HUMAN 55 kDa 6/4 21/10 3/3 11/8 39/16 12/7 

Plasminogen  PLMN_HUMAN 91 kDa 5/4     9/7     

Platelet glycoprotein Ib alpha chain  GP1BA_HUMAN 69 kDa   3/2     4/3   

Protein AMBP AMBP_HUMAN 39 kDa 5/4 3/3 S 5/4 4/3 1/1 

Prothrombin  THRB_HUMAN 70 kDa 5/3 7/5 1/1 6/4 85 20/13 

Pyruvate kinase isozymes M1/M2*  KPYM_HUMAN 58 kDa     S     11/8 

Retinol-binding protein 4*  RET4_HUMAN 23 kDa 1/1     6/4     

Sarcoplasmic/endoplasmic reticulum 

calcium ATPase 1*  
AT2A1_HUMAN 110 kDa     S     8/5 
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Scavenger receptor cysteine-rich type 

1 protein M130 
C163A_HUMAN 125 kDa   A     7/6   

Serotransferrin  TRFE_HUMAN 77 kDa 
151/5

4 
11/8 14/9 143/53 9/7 17/12 

Serum albumin*  ALBU_HUMAN 69 kDa 
248/6

2 
46/25 13/10 219/57 67/32 42/22 

Serum amyloid A-4 protein  SAA4_HUMAN 15 kDa L A   3/1 1/1   

Serum amyloid P-component SAMP_HUMAN 25 kDa 13/7 20/8 9/5 5/4 A 9/6 

Serum paraoxonase/arylesterase 1  PON1_HUMAN 40 kDa 1/1     L     

Sulfhydryl oxidase 1  QSOX1_HUMAN 83 kDa   2/2     8/6   

Thyroxine-binding globulin  THBG_HUMAN 46 kDa 2/1     2/2     

Titin*  TITIN_HUMAN 3816 kDa     S     9/7 

Transthyretin  TTHY_HUMAN 16 kDa 3/2 A   8/4 1/1   

Triosephosphate isomerase*  TPIS_HUMAN 27 kDa     S     5/3 

Tropomyosin alpha-1 chain*  TPM1_HUMAN 33 kDa     S     21/4 

Tropomyosin beta chain*  TPM2_HUMAN 33 kDa     S     31/16 

Troponin C, skeletal muscle*  TNNC2_HUMAN 18 kDa     S     3/2 

Vitamin D-binding protein  VTDB_HUMAN 53 kDa 37/18     20/13     

Vitronectin VTNC_HUMAN 54 kDa L 2/2 S 2/2 5/3 5/3 

Von Willebrand factor  VWF_HUMAN 309 kDa   A     1/1   

Zinc-alpha-2-glycoprotein  ZA2G_HUMAN 34 kDa 12/7 2/2 0 13/7 7/5 5/4 
a
 Average of spectral counts in triplicate runs  

b 
Average of number of unique peptides from triplicate runs 

* Non-glycoproteins 

L, A and S represents that the protein was only present in either disease-free or cancer serum for the LTA, AAL and SNA columns, 

respectively 

.
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The number of proteins identified in the bound fractions of LTA, AAL and SNA from the 

pooled disease-free sera were 76, 81 and 44 proteins, respectively, totaling 201 proteins of which 

108 proteins were non-redundant proteins. The Venn diagram shown in Fig. 1 indicates the 

numbers of common and unique proteins identified from the pooled disease-free sera.  The 

percentages of glycoproteins captured by each lectin column were 67%, 65% and 63% for LTA, 

AAL and SNA columns, respectively, which corresponded to 33%, 35% and 37% of non-

glycoproteins, respectively.  From the breast cancer serum, 82, 98 and 98 proteins were 

identified from the LTA, AAL and SNA columns, respectively, thus totaling 278 proteins of 

which 153 proteins were non-redundant proteins. The numbers of common and unique proteins 

from the breast cancer serum are shown in the Venn diagram in Fig. 2.  The percentages of 

glycoproteins captured by each lectin column were 66%, 66% and 52% for LTA, AAL and SNA 

columns, respectively, which corresponded to 34%, 34% and 48% of non-glycoproteins, 

respectively.  The number of common proteins for all the three-lectin columns was 48 in the case 

of cancer serum versus 29 common proteins for disease-free serum.  There was an increase in the 

number of proteins identified in LTA (76 vs. 82), AAL (81 vs. 98) and SNA (44 vs. 98) columns 

when going from disease-free serum to cancer serum indicating that many proteins were altered 

in their expression in cancer serum as compared to disease-free sera. The percentages of 

glycoproteins identified in disease-free and cancer serum in LTA (67% vs. 66%) and in AAL 

(65% vs. 66%) remained similar, but in the case of SNA the glycoprotein percentage decreased 

greatly (63% vs. 52%).  Although SNA column captured more proteins from cancer serum (54 

proteins in excess), many of these proteins were non-glycoproteins.  This may indicate that some 

of the non-glycoproteins captured by the SNA column interact with the glycoproteins that are 
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altered in the cancer serum. As mentioned in Chapter III, the non-specific binding of the non-

glycoproteins might be due to protein-protein interaction.  

 

 

 

 

 

 

 

 

Figure 1. Venn diagram showing the number of proteins in common and number of proteins 

unique to each lectin captured from the disease-free serum. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Venn diagram showing the number of proteins in common and number of proteins 

unique to each lectin captured from the breast cancer serum. 
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Identification of Differentially Expressed Proteins in the Lectin Fractions Using MS Spectral 

Count 

 The comparison between the regulation of proteins in disease-free serum and the cancer 

serum was made using spectral counts obtained from the LC-MS/MS analysis results.  A 

statistical analysis was made using Student’s t-test, and only those with p-values < 0.05 are listed 

in Tables 2, 3 and 4.  Moreover, only those proteins with more than 4 average spectral counts 

were considered for the differential analysis.  The numbers of differentially expressed proteins 

that were common between the columns and unique to each column are indicated in the Venn 

diagram shown in Fig.3.  It can be seen that the number of common proteins between LTA and 

AAL was 1, LTA and SNA was also 1 and there were 3 common proteins between AAL and 

SNA.  Some of the differentially expressed proteins are discussed in the following sections.  

 

 Fibrinogens Fibrinogens are heavily sialylated N-linked glycoproteins and the 

fibrinogen chain is also core fucosylated [18].  Therefore, they should exhibit affinity towards 

SNA and AAL columns.  Also, fibrinogen,  and  chains contain Le
x
 glycan types [14] which 

make them interact with the LTA column.  In fact, fibrinogen ,  and  chains were found to be 

over-expressed in all the three lectin columns.  In a study done by Cho et al. [14], to identify the 

Le
x
 containing glycoproteins in breast serum plasma, it was observed that the fibrinogen  and 

chains were altered in their concentration by more than 3-fold in breast cancer plasma as 

compared to the disease-free plasma. An elevated level of fibrinogen was found in 44% of the 

early stage and 22% of the advanced stage breast cancer patients [19].  Also, it has been 

suggested that plasma fibrinogen can be a useful marker for gastric cancer progression [20].  

According to a recent article that has a compiled list of proteins [21] that are differentially 
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expressed in human cancer, the protein fibrinogen chain has been listed as a cancer biomarker 

candidate that has more than 500 citations. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Venn diagram for the differentially expressed proteins found in the lectin fractions. 

 

 Differentially expressed proteins captured by the LTA column There were 19 and 12 

unique proteins captured by the LTA column from the normal and the cancer serum, respectively 

(see Table 1).  Some of these unique proteins were reported as cancer biomarker candidates, 

namely apolipoprotein C-I, neutrophil defensin 1 and serum paraoxonase/arylesterase 1 [21].  

Apart from some of the fucosylated proteins, some of the Le
x
 determinant containing proteins 

such as plasminogen, kininogen-1, Ig gamma-2 chain C region, Ig gamma-3 chain C region, Ig 

mu chain C region, apolipoprotein E, vitronectin, clusterin and the fibrinogen chains were also 

identified in the LTA columns.   

There were 9 differentially expressed proteins in cancer serum as compared to the 

disease-free serum in the LTA column fraction (see Table 2). Fibrinogen ,  and  chain, 

hemoglobin subunit , antithrombin-III, apolipoprotein E and Ig kappa chain V-III region VG 
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(Fragment) were over-expressed while afamin and serum amyloid P-component were down-

expressed in the LTA fraction of the cancer serum.  Antithrombin-III, which is an important 

serine protease inhibitor in the plasma, was found to be over-expressed by more than two-fold.  

According to a recent report [22], it was observed that thrombin-antithrombin complex was 

significantly over-expressed in breast cancer plasma and the levels of this complex significantly 

correlated with the levels of CA 15-3, which is an FDA approved cancer biomarker.  

 Hemoglobin subunit , which was over-expressed in both LTA and the SNA column 

fractions, is known for its involvement in oxygen transport from the lung to the various 

peripheral tissues [23].  The high level of subunit of hemoglobin found in the current study is 

in good agreement with the results reported in ref. [24], where SELDI-TOF analysis was done to 

compare the ductal carcinoma in situ (DCIS) type breast cancer serum with the disease-free 

serum.    

TABLE 2 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN LTA FRACTION 

Identified Proteins  

Average spectral count Ratio 

Disease-free Cancer 

Cancer/ 

Disease-

free 

Disease-

free 

/Cancer 

Afamin 4 0 L H 

Antithrombin-III  4 8 2.27 0.44 

Apolipoprotein E  0 6 H L 

Fibrinogen alpha chain  0 14 H L 

Fibrinogen beta chain  0 22 H L 

Fibrinogen gamma chain  0 25 H L 

Hemoglobin subunit beta  5 39 8.29 0.12 

Ig kappa chain V-III region VG (Fragment)  0 4 H L 

Serum amyloid P-component  13 5 0.35 2.86 

H and L represents that the protein is either present in high or low amount, either in disease-free 

or cancer serum. 
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Differentially expressed proteins captured by the AAL column  There were 23 and 30 

unique proteins (see Table 1) captured by the AAL column from the normal and the cancer 

serum, respectively. 15 of these unique proteins were found to be common to both normal and 

the cancer serum.  Some of these unique proteins that were identified in both control and cancer 

such as attractin, complement C1r subcomponent-like protein, Ig alpha-2 chain C region, insulin 

like growth factor-binding protein 3, kallistatin, sulfhydryl oxidase 1, vitronectin, IgGFc-binding 

protein, von Willebrand factor and scavenger receptor cysteine-rich type 1 protein M130 are 

known to have core fucosylation [18]. 

 There were 16 and 5 proteins that were found to be over-expressed and down-expressed, 

respectively, in the cancer serum relative to the disease-free serum in the AAL fraction (see 

Table 3).  According to the findings reported in a recent study [14], some of the core fucosylated 

glycoproteins that include attractin, complement factor H and scavenger receptor cysteine-rich 

type 1 protein M130 were identified only in the hepatocellular carcinoma (HCC) serum, 

indicating that these proteins were present at elevated level in the HCC serum.  In our current 

study also, these core fucosylated proteins were found at elevated levels except for attractin.  The 

protein complement C3, which was elevated in both AAL and SNA fractions may indicate that 

there were changes in both fucosylation and sialylation of the protein.  This finding corroborates 

with that observed in another study [25] as far as elevated levels of sialylation and fucosylation 

of complement C3 are concerned.  Also, complement C3 was identified as a potential marker of 

colorectal cancer [25].   
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TABLE 3 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN AAL FRACTION 

Identified Proteins  

Average spectral 

count 
Ratio 

Disease-

free 
Cancer 

Cancer/ 

Disease-free 

Disease-

free 

/Cancer 

Alpha-1-acid glycoprotein 1  26 10 0.40 2.48 

Alpha-1-acid glycoprotein 2  21 8 0.39 2.56 

Apolipoprotein L1  0 4 H L 

Attractin  6 0 L H 

Complement C3  12 64 5.36 0.19 

Complement C4-B  13 41 3.13 0.32 

Complement factor H  5 13 2.53 0.39 

Fibrinogen alpha chain  0 9 H L 

Fibrinogen beta chain  0 14 H L 

Fibrinogen gamma chain  0 11 H L 

Haptoglobin  89 30 0.34 2.98 

Haptoglobin-related protein*  41 11 0.28 3.62 

Ig gamma-4 chain C region  0 17 H L 

Keratin, type I cytoskeletal 14*  9 44 5.08 0.20 

Keratin, type I cytoskeletal 16*  11 73 6.47 0.15 

Keratin, type I cytoskeletal 17*  0 30 H L 

Keratin, type II cytoskeletal 5*  8 35 4.42 0.23 

Keratin, type II cytoskeletal 6B*  0 73 H L 

Keratin, type II cytoskeletal 6C*  0 50 H L 

Scavenger receptor cysteine-rich type 1 

protein M130 
0 7 H L 

Serum amyloid P-component  20 0 L H 

*Non-glycoproteins 

H and L represents that the protein is either present in high or low amount, either in disease-free 

or cancer serum. 

 

 Differentially expressed proteins captured by the SNA column  Fifty one differentially 

expressed proteins were captured by the SNA column.  Some of the sialylated Le
x
 glycan 

containing proteins such as Ig gamma-2 chain C region, apolipoprotein A-I, fibrinogen , and 

chains, inter-alpha-trypsin inhibitor heavy chain H4 and vitronectin [14] were differentially 
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expressed in the fraction obtained from the SNA column.  With the exception of fibrinogen  

and chains, all these proteins have been shown previously to contain elevated levels of 

sialylated Le
x
 glycan in breast cancer plasma [14].  Also, a recent report states that higher levels 

of sialylated Le
x
 glycans were observed in the breast cancer sera, which might be a indicator of 

metastasis of cancer [26].  Some of the over-expressed proteins such as fibrinogen chain, 

desmin and -2-macroglobulin, have been listed as candidate cancer biomarkers with more than 

500 citations in a list that has compiled the differentially expressed proteins in human cancer 

[21].  Also, it has been reported that kininogen-1 and complement C3 show changes in 

sialylation in breast cancer serum [27], which is in agreement with the findings reported in this 

study where they were found to be elevated in the SNA column fraction indicating the changes in 

sialylation.  Also, in the current study, the protein plasma kallikrein was elevated in the cancer 

serum which agreed with the report that plasma kallikrein was at elevated levels in 25 out of 28 

lung adenocarcinoma patients [28].  The protein haptoglobin did not show any significant 

differences in the spectral count in either the disease-free or the cancer serum of the SNA 

fraction.  It should be noted that the number of unique peptides for haptoglobin in both disease-

free and cancer serum was 20.  This indicates that the 26 sialic acid was unchanged in its 

composition in breast cancer serum.  It has been reported that a glycoform of haptoglobin that 

contains both the 13 and 26 fucosylated was at elevated level in lung cancer [29], but it is 

not clear whether the alteration is specifically in the 13 or 26 fucosylation.  The protein 

hemopexin is a fucosylated and sialylated protein [30].  Although hemopexin was captured by all 

three columns, it was found to be in elevated levels (3.2 times) only in the SNA column. This 

may indicate that there was an increase in sialylation of the protein but there was no increase in 

the fucosylation of the protein.  Pyruvate kinase isozymes M1/M2 (tumor P2-MK) is an enzyme 
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which is known to be in high levels in tumor tissue and body fluids [31].  It has been reported to 

be at high levels in ductal invasive breast cancer sera [10].  In the current study also, it was found 

at elevated levels in the cancer serum. 

 

TABLE 4 

PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN SNA FRACTION 

Identified Proteins  

Average spectral 

count 
Ratio 

Disease-

free 
Cancer 

Cancer/ 

Disease-

free 

Disea

se-

free 

/Canc

er 

Actin, alpha skeletal muscle*  0 61 H L 

Alpha-2-macroglobulin  16 40 2.50 0.40 

Alpha-actinin-2*  0 11 H L 

Alpha-actinin-3*  0 14 H L 

Apolipoprotein A-I  0 9 H L 

Apolipoprotein B-100  10 65 6.29 0.16 

Beta-enolase*  0 13 H L 

Ceruloplasmin  5 21 4.43 0.23 

Complement C3  0 35 H L 

Complement C4-A  14 39 2.72 0.37 

Complement factor B  7 14 2.15 0.47 

Complement factor H  19 66 3.46 0.29 

Complement factor H-related protein 1  0 9 H L 

Creatine kinase M-type*  0 19 H L 

Desmin*  0 5 H L 

Fibrinogen alpha chain  0 16 H L 

Fibrinogen beta chain  0 16 H L 

Fibrinogen gamma chain  0 21 H L 

Filamin-C*  0 5 H L 

Fructose-bisphosphate aldolase A*  0 17 H L 

Glyceraldehyde-3-phosphate dehydrogenase* 0 6 H L 

Glycogen phosphorylase, muscle form*  0 11 H L 

Hemoglobin subunit alpha 0 6 H L 

Hemoglobin subunit beta  0 10 H L 
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Hemopexin  6 20 3.21 0.31 

Ig gamma-1 chain C region  5 20 3.69 0.27 

Ig gamma-2 chain C region  6 15 2.32 0.43 

Ig gamma-3 chain C region  5 16 3.27 0.31 

Ig kappa chain C region*  7 19 2.85 0.35 

Inter-alpha-trypsin inhibitor heavy chain H1  0 4 H L 

Inter-alpha-trypsin inhibitor heavy chain H2  0 14 H L 

Inter-alpha-trypsin inhibitor heavy chain H4  4 11 3.09 0.32 

Keratin, type I cytoskeletal 14*  21 10 0.47 2.14 

Kininogen-1  0 9 H L 

L-lactate dehydrogenase A chain*  0 5 H L 

Myosin light chain 1/3, skeletal muscle isoform*  0 11 H L 

Myosin regulatory light chain 2, skeletal muscle 

isoform*  0 12 H L 

Myosin-1*  0 148 H L 

Myosin-2*  0 118 H L 

Myosin-4*  0 89 H L 

Myosin-8*  0 86 H L 

Plasma kallikrein  5 13 2.44 0.41 

Pyruvate kinase isozymes M1/M2*  0 11 H L 

Sarcoplasmic/endoplasmic reticulum calcium 

ATPase 1*  0 8 H L 

Serum albumin*  13 42 3.18 0.31 

Titin*  0 9 H L 

Triosephosphate isomerase*  0 5 H L 

Tropomyosin alpha-1 chain*  0 21 H L 

Tropomyosin beta chain*  0 31 H L 

Vitronectin 0 5 H L 

Zinc-alpha-2-glycoprotein  0 5 H   L 

*Non-glycoproteins 

H and L represents that the protein is either present in high or low amount, either in disease-free 

or cancer serum. 

 

Narrowing on Candidate Biomarkers – A Panel of Biomarkers  

By comparing the results of the narrow selectivity lectins series (LTAAALSNA or 

LAS series) to those of the broad selectivity lectins series (WGACon ARCA or WCR series, 

see Chapter III), one can readily find out that 13 proteins were either up- or down-regulated in 

both of the studies (see Table 5).  This perhaps establishes a “panel” of candidate biomarkers, 
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which in principle should provide greater sensitivity and accuracy than any of the markers used 

alone as pointed out by Xiao et al. [32] in their recent study of lung cancer related proteins. Out 

of these 13 proteins, 5 were oppositely regulated in both studies including afamin, complement 

factor B, haptoglobin, Ig kappa chain C region and Keratin, type I cytoskeletal 14.  With the 

exception of albumin, keratin, type I cytoskeletal 14 and Ig kappa chain C region, which are not 

glycoproteins, the fact that different lectins with different glycan selectivity were involved in the 

capturing the other 10 glycoproteins would suggest that different glycoforms of the same 

glycoproteins underwent alteration in their glycosylation in breast cancer. More meaningful in 

this regard are the glycoproteins that were oppositely regulated in the two series. For illustration, 

alpha-1-acid glycoprotein which contains more of the sialylated tri- and tetraantennary than the 

bi-antennary N-glycans with outer arm fucosylation [33] in disease-free serum, was down 

regulated in the fraction of RCA and AAL may be due to a decrease in branching during breast 

cancer progression [34], an event that results from incompletion of the glycosylation process that 

normally leads to elevation in high mannose type glycans. In this decrease of branching, 

fucosylation in outer arms is lost, thus decreasing the affinity of AAL towards the altered 

glycoprotein.  Another illustration of alteration in glycosylation can be provided by the case of 

haptoglobin, which is a sialylated, fucosylated glycoprotein having triantennary glycans in 

disease-free serum [35, 36].  In breast cancer serum, the glycosylation of this glycoprotein is also 

altered in the sense that branching is decreased resulting in more high mannose glycans, thus 

increasing its binding to Con A, and at the same time decreasing its binding to AAL, which 

correspond to up-regulation of the protein in the WCR series and down-regulation in the LAS 

series, respectively. 
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TABLE 5 

LIST OF COMMON PROTEINS THAT WERE DIFFERENTIALLY EXPRESSED IN BOTH 

BROAD AND NARROW SPECIFICITY LECTINS 

Identified proteins 

Regulation in cancer 

serum (WGACon 

ARCA series) 

Regulation in cancer serum 

(LTAAALSNA 

series) 

Afamin
#
 Up (Con A) Down (LTA) 

Alpha-1-acid glycoprotein 1 Down (RCA) Down (AAL) 

Complement factor B
#
 Down (RCA) Up (SNA) 

Haptoglobin
#
 Up (Con A) Down (AAL) 

Hemoglobin subunit alpha Up (WGA, Con A) Up (SNA) 

Hemoglobin subunit beta Up (WGA) Up (SNA, LTA) 

Hemopexin Up (RCA) Up (SNA) 

Ig gamma-2 chain C region Up (Con A) Up (SNA) 

Ig kappa chain C region
#
* Down (WGA) Up (SNA) 

Inter-alpha-trypsin inhibitor 

heavy chain H1
#
 

Down (WGA) Up (SNA) 

Keratin, type I cytoskeletal 14* Down (RCA) Up (AAL), Down (SNA) 

Serum albumin* Up (Con A, RCA) Up (SNA) 

Zinc-alpha-2-glycoprotein Up (RCA) Up (SNA) 

# Oppositely regulated proteins 

* Non-glycoproteins 

  

In summary, the combination of the results from a lectins series of broad specificity with 

those obtained from a lectins series of narrow specificity narrow down the number of altered 

glycoproteins to a more representative panel of protein biomarkers. This may contribute to 

facilitating the development of future panels of candidate biomarkers that may find effective use 

in clinical laboratories for detecting and following the progression of breast cancer and other 

diseases.  
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Conclusions 

Even though further studies have to be done to validate the differentially expressed 

proteins, the glycoproteomic approach provided here has been demonstrated as a useful method 

to reduce the complexity of the serum and to identify the fucosylated and sialylated 

glycoproteins that show alteration in their glycosylation pattern in breast cancer serum.  The 

strategy investigated here would be a proof-of-concept for an efficient tool in analyzing targeted 

glycoproteins.
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CHAPTER V 

 

 

 

 

TANDEM LECTIN AFFINITY CHROMATOGRAPHY FOR IN-DEPTH 

GLYCOPROTEOMIC ANALYSIS BY COMBINING NARROW 

 AND BROAD SPECIFICITY LECTINS 

 

Introduction 

The analysis of serum glycoproteome is a clinically important and necessary task.  

It is one of the major human serum sub-proteomes.  Among more than 100 post-

translational modifications (PTMs) known so far, glycosylation is one of the most 

important PTM [1].  In fact, about 50% of the plasma proteins are glycosylated [2].  

Serum glycoproteome is a highly complex mixture.  The complexity arises from the 

complex microheterogeneity of glycoproteins that result from different glycosylated 

variants or glycoforms of glycoproteins.  Analysis of this largely complex glycoproteome 

requires separation approaches that can separate a wide range of glycoforms.  To achieve 

this, six lectins namely, Lotus tetragonolobus agglutinin (LTA), Aleuria aurantia lectin 

(AAL), Sambucus nigra (SNA), wheat germ agglutinin (WGA), concanavalin A (Con A) 

and Ricinus communis agglutinin-I (RCA-I) were used in this study.  LTA, AAL and 

SNA have narrow specificity towards glycoproteins (see Chapter IV Introduction) and 

WGA, Con A and RCA-I have relatively broader specificity towards glycoproteins (see 
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Chapter III Introduction) as compared to the former set of lectins.  

Apart from the microheterogeneity of glycoproteins, there exists another 

complexity arising from the wide dynamic concentration range of serum proteins.  

Depletion of high abundance proteins using immunoaffinity methods has been a common 

approach to reduce the concentration range [3].  But it has been reported that by depleting 

the high abundance proteins many other valuable proteins are also co-depleted [4].  Thus, 

in this study serum was used as is without any prior depletion.   

Although an initial study by Madera et al [5] has investigated the potentials of 

combining broad and narrow specificity lectins in glycoproteomics, the lectins studied 

were limited to only four immobilized lectins namely Con A, SNA, Ulex europaaeus 

agglutinin-I (UEA-I) and Phaseolus vulgaris agglutinin-L (PHA-L). Due to its excessive 

nonspecific interactions, the macroporous silica support material used in the 

immobilization of the four lectins led to enriching glycoproteins as well as non-

glycosylated proteins.  In fact, 54 proteins were non glycosylated out of the 108 proteins 

that were captured that is 50% were non glycosylated. This is a strong indication of 

nonspecific interactions with the support matrix. In order to alleviate this drawback and 

also provide a more in-depth glycoproteomics, the investigation in this Chapter is 

concerned with 6 immobilized lectins on a novel monolithic matrix with much less 

nonspecific interactions and whose specificity spans a much wider range.   

 

Experimental 

 The experimental design was the same as in previous Chapters: 

- The instruments used were the same as those described in Chapter III 
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- Reagents are the same as in Chapters III and IV. 

- The monolithic columns were prepared as described in Chapter IV. 

- The immobilization of lectins was the same as described in Chapters III and IV.   

- The protein assay procedure was same as that described in Chapter III.  

- The LC-MS/MS conditions were same as in Chapter IV.  

- LC-MS/MS data analysis conditions were same as in Chapter III, except for the 

parent ion tolerance, which was 10 ppm. 

- Fractionation of Human Serum Glycoproteins - Chromatographic Conditions 

  The LTAAALSNA series involves the use of Ca
2+

 ions in the binding 

mobile phase which is 20 mM Tris containing 100 mM NaCl at pH 6.0, whereas the 

WGACon ARCA series involves the use of Ca
2+

, Mg
2+

 and Mn
2+

 ions in the same 

binding mobile phase.  Since this study combines both lectin column tandem series, the 

binding mobile phase contained Ca
2+

, Mg
2+

 and Mn
2+

 ions so that it can be compatible 

with both lectin series.  The chromatographic fractionation conditions were same as in 

Chapter IV.  The lectin columns were arranged in tandem series, and each column was 

removed from the series and eluted individually. 

 

Results and Discussion 

Overall Strategy 

The primary objective of the present study was to enrich a wide range of 

glycoforms of the glycoproteins present in human serum using serial lectin affinity 

chromatography.  To achieve this, six lectin columns were arranged in tandem series.  

Out of the six-lectin columns, three columns have narrow specificity and the other three 
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have broad specificity towards the glycoproteins.  The narrow specificity columns 

(hereafter referred to as LAS columns) include the LTA, AAL and SNA columns, 

whereas the broad specificity columns (hereafter designated as WCR columns) included 

the WGA, Con A and RCA-I.  The tandem columns were arranged in the following 

order: LTAAALSNAWGACon ARCA-I.  In this arrangement, the LAS 

columns were followed by the WCR columns so that the pass through glycoproteins from 

the narrow selectivity columns would be captured by the broad specificity columns.  This 

arrangement should facilitate the selective capturing of (i) the fucosylated glycoproteins 

by LTA and AAL columns, (ii) the sialylated glycoproteins by SNA and WGA columns, 

(iii) the high-mannose glycoproteins by the Con A column, (iv) the biantennary bisected 

hybrid types by the WGA column and (iv) the tri- and tetraantennary branched 

glycoproteins that pass through all the preceding columns by the RCA-I column. 

 

Analysis of the Proteins Captured by the Lectin Columns 

 As mentioned in the Experimental section, the fractions that were captured and 

subsequently eluted from each of the lectin columns were dialyzed against water, 

concentrated and an aliquot of each lectin fraction was analyzed by LC-MS/MS.  Only 

the proteins that exhibited identification probability greater than 99% with peptide 

identification probability greater than 95% containing at least two unique peptides were 

considered and they are reported in Table 1.  The number of proteins identified in the 

fractions from LTA, AAL, SNA columns was 79, 98 and 60, respectively, and that 

totaled 237 proteins.  The number of proteins identified in WGA, Con A and RCA-I 
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TABLE 1 

LIST OF PROTEINS IDENTIFIED IN THE LECTIN-BOUND FRACTIONS 

Identified Proteins  Accession Number Mol. Wt. 

Spectral count Lectin(s) 

column(s) 

that 

retained the 

protein
a
  

LTA AAL SNA WGA 
Con 

A 

RCA-

I 

Adiponectin  ADIPO_HUMAN 26 kDa 0 0 0 11 0 0 W 

Afamin AFAM_HUMAN 69 kDa 0 0 0 5 144 20 WCR 

Alpha-1-acid glycoprotein 1  A1AG1_HUMAN 24 kDa 15 80 4 141 33 43 LASWCR 

Alpha-1-acid glycoprotein 2  A1AG2_HUMAN 24 kDa 12 50 0 112 21 26 LAWCR 

Alpha-1-antichymotrypsin  AACT_HUMAN 48 kDa 10 18 2 91 44 39 LASWCR 

Alpha-1-antitrypsin  A1AT_HUMAN 47 kDa 57 31 11 62 190 79 LASWCR 

Alpha-1B-glycoprotein  A1BG_HUMAN 54 kDa 23 0 3 0 115 23 LSCR 

Alpha-2-antiplasmin  A2AP_HUMAN 55 kDa 0 0 0 14 30 14 WCR 

Alpha-2-HS-glycoprotein  FETUA_HUMAN 39 kDa 12 7 0 66 8 14 LAWCR 

Alpha-2-macroglobulin  A2MG_HUMAN 163 kDa 106 238 36 713 746 960 LASWCR 

Aminopeptidase N  AMPN_HUMAN 110 kDa 0 0 0 5 0 0 W 

Angiotensinogen  ANGT_HUMAN 53 kDa 10 6 0 19 61 26 LAWCR 

Antithrombin-III  ANT3_HUMAN 53 kDa 8 0 0 0 59 0 LC 

Apolipoprotein A-I  APOA1_HUMAN 31 kDa 44 29 7 81 5 99 LASWCR 

Apolipoprotein A-II*  APOA2_HUMAN 11 kDa 7 5 2 11 0 15 LASWR 

Apolipoprotein A-IV*  APOA4_HUMAN 45 kDa 9 0 0 0 0 0 L 

Apolipoprotein B-100  APOB_HUMAN 516 kDa 80 40 56 161 0 242 LASWR 

Apolipoprotein C-II*  APOC2_HUMAN 11 kDa 3 0 0 0 0 0 L 

Apolipoprotein C-III  APOC3_HUMAN 11 kDa 3 5 0 0 0 0 LA 

Apolipoprotein D  APOD_HUMAN 21 kDa 13 16 4 17 16 7 LASWCR 
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Apolipoprotein E  APOE_HUMAN 36 kDa 5 9 3 0 0 0 LAS 

Apolipoprotein L1  APOL1_HUMAN 44 kDa 0 0 0 6 0 37 WR 

Apolipoprotein(a)  APOA_HUMAN 501 kDa 6 2 3 21 0 0 LASW 

Attractin  ATRN_HUMAN 159 kDa 0 36 0 166 176 41 AWCR 

Beta-2-glycoprotein 1 APOH_HUMAN 38 kDa 18 25 0 9 110 54 LAWCR 

Beta-Ala-His dipeptidase  CNDP1_HUMAN 57 kDa 0 0 0 14 0 0 W 

Biotinidase  BTD_HUMAN 61 kDa 0 0 0 9 4 0 WC 

C4b-binding protein alpha 

chain  
C4BPA_HUMAN 67 kDa 3 3 0 0 0 0 LA 

Carboxypeptidase B2  CBPB2_HUMAN 48 kDa 0 0 0 4 0 0 W 

Carboxypeptidase N catalytic 

chain  
CBPN_HUMAN 52 kDa 0 7 0 35 0 0 AW 

Carboxypeptidase N subunit 2 CPN2_HUMAN 61 kDa 0 9 0 49 0 27 AWR 

CD44 antigen  CD44_HUMAN 82 kDa 0 8 0 15 0 0 AW 

CD5 antigen-like*  CD5L_HUMAN 38 kDa 13 31 5 29 15 129 LASWCR 

Ceruloplasmin  CERU_HUMAN 122 kDa 39 75 13 47 467 55 LASWCR 

Cholinesterase  CHLE_HUMAN 68 kDa 0 5 0 70 43 20 AWCR 

Clusterin  CLUS_HUMAN 52 kDa 11 12 0 16 0 0 LAW 

Coagulation factor V FA5_HUMAN 252 kDa 0 3 0 0 0 0 A 

Coagulation factor X  FA10_HUMAN 55 kDa 0 0 0 32 0 0 W 

Coagulation factor XII  FA12_HUMAN 68 kDa 0 0 0 145 0 0 W 

Coagulation factor XIII B 

chain  
F13B_HUMAN 76 kDa 0 4 0 0 0 0 A 

Complement C1q 

subcomponent subunit A 
C1QA_HUMAN 26 kDa 0 0 0 15 0 0 W 

Complement C1q 

subcomponent subunit B  
C1QB_HUMAN 27 kDa 5 7 2 31 0 3 LASWR 

Complement C1q 

subcomponent subunit C  
C1QC_HUMAN 26 kDa 11 4 7 24 0 10 LASWR 

Complement C1r C1R_HUMAN 80 kDa 8 10 2 93 0 14 LASWR 
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subcomponent  

Complement C1r 

subcomponent-like protein  
C1RL_HUMAN 53 kDa 0 0 0 16 0 8 WR 

Complement C1s 

subcomponent 
C1S_HUMAN 77 kDa 5 4 4 47 0 13 LASWR 

Complement C2 CO2_HUMAN 83 kDa 0 0 0 0 66 10 CR 

Complement C3 CO3_HUMAN 187 kDa 135 11 3 36 405 33 LASWCR 

Complement C4-B  CO4B_HUMAN 193 kDa 46 16 20 89 50 141 LASWCR 

Complement C5 CO5_HUMAN 188 kDa 4 0 0 0 0 5 LR 

Complement component C6 CO6_HUMAN 105 kDa 0 0 4 0 0 0 S 

Complement component C7  CO7_HUMAN 94 kDa 0 0 0 0 5 0 C 

Complement factor B  CFAB_HUMAN 86 kDa 16 0 10 0 35 31 LSCR 

Complement factor H  CFAH_HUMAN 139 kDa 24 22 44 173 212 327 LASWCR 

Complement factor H-related 

protein 1  
FHR1_HUMAN 38 kDa 0 0 9 0 52 0 SC 

Complement factor H-related 

protein 3  
FHR3_HUMAN 37 kDa 0 5 0 0 0 0 A 

Complement factor I  CFAI_HUMAN 66 kDa 0 0 0 35 37 54 WCR 

Corticosteroid-binding 

globulin  
CBG_HUMAN 45 kDa 0 6 0 25 50 14 AWCR 

Cysteine-rich secretory protein 

3  
CRIS3_HUMAN 28 kDa 0 0 0 0 11 0 C 

Desmoplakin*  DESP_HUMAN 332 kDa 0 0 7 0 0 0 S 

Dopamine beta-hydroxylase  DOPO_HUMAN 69 kDa 0 0 0 0 29 0 C 

Extracellular matrix protein 1  ECM1_HUMAN 61 kDa 0 0 0 29 0 0 W 

Fibrinogen alpha chain  FIBA_HUMAN 95 kDa 3 0 0 0 0 0 L 

Fibronectin FINC_HUMAN 263 kDa 5 0 0 0 0 0 L 

Ficolin-3  FCN3_HUMAN 33 kDa 0 18 0 74 0 12 AWR 

Gamma-glutamyl hydrolase  GGH_HUMAN 36 kDa 0 0 0 0 10 0 C 

Haptoglobin  HPT_HUMAN 45 kDa 73 91 60 521 345 426 LASWCR 
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Haptoglobin-related protein*  HPTR_HUMAN 39 kDa 33 48 0 242 0 215 LAWR 

Hemoglobin subunit alpha HBA_HUMAN 15 kDa 0 9 0 63 59 74 AWCR 

Hemoglobin subunit beta  HBB_HUMAN 16 kDa 3 4 0 93 46 70 LAWCR 

Hemopexin  HEMO_HUMAN 52 kDa 39 32 9 512 345 176 LASWCR 

Heparin cofactor 2  HEP2_HUMAN 57 kDa 0 0 2 0 0 26 SR 

Hepatocyte growth factor 

activator  
HGFA_HUMAN 71 kDa 0 0 0 50 0 0 W 

Histidine-rich glycoprotein HRG_HUMAN 60 kDa 17 15 6 63 10 17 LASWCR 

Hornerin*  HORN_HUMAN 282 kDa 0 0 7 0 0 0 S 

Ig alpha-1 chain C region  IGHA1_HUMAN 38 kDa 25 47 18 100 121 167 LASWCR 

Ig alpha-2 chain C region  IGHA2_HUMAN 37 kDa 0 44 0 0 105 128 ACR 

Ig delta chain C region  IGHD_HUMAN 42 kDa 0 0 0 31 0 0 W 

Ig gamma-1 chain C region  IGHG1_HUMAN 36 kDa 51 33 20 32 99 153 LASWCR 

Ig gamma-2 chain C region  IGHG2_HUMAN 36 kDa 40 23 16 13 54 102 LASWCR 

Ig gamma-3 chain C region  IGHG3_HUMAN 41 kDa 34 17 14 0 46 94 LASCR 

Ig gamma-4 chain C region IGHG4_HUMAN 36 kDa 22 14 0 0 42 71 LACR 

Ig heavy chain V-I region 

V35*  
HV103_HUMAN 13 kDa 0 4 0 0 0 11 AR 

Ig heavy chain V-II region 

ARH-77* 
HV209_HUMAN 16 kDa 0 0 0 0 0 18 R 

Ig heavy chain V-III region 

BUT*  
HV306_HUMAN 12 kDa 0 10 0 7 8 47 AWCR 

Ig heavy chain V-III region 

GA*  
HV308_HUMAN 13 kDa 0 0 0 0 0 11 R 

Ig heavy chain V-III region 

GAL* 
HV320_HUMAN 13 kDa 0 0 0 0 7 17 CR 

Ig heavy chain V-III region 

VH26*  
HV303_HUMAN 13 kDa 5 5 3 10 10 46 LASWCR 

Ig kappa chain C region*  IGKC_HUMAN 12 kDa 27 38 15 60 79 151 LASWCR 

Ig kappa chain V-I region KV109_HUMAN 13 kDa 0 0 0 0 0 8 R 
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HK101 (Fragment)*  

Ig kappa chain V-I region 

HK102 (Fragment)*  
KV110_HUMAN 13 kDa 0 5 0 0 4 18 ACR 

Ig kappa chain V-III region 

B6*  
KV301_HUMAN 12 kDa 0 0 0 0 0 9 R 

Ig kappa chain V-III region 

HAH* 

KV312_HUMAN 

(+1) 
14 kDa 9 10 0 7 18 43 LAWCR 

Ig kappa chain V-III region 

VG (Fragment)* 
KV309_HUMAN 13 kDa 0 3 0 0 5 26 SCR 

Ig kappa chain V-III region 

VH (Fragment)*  
KV310_HUMAN 13 kDa 0 0 2 0 0 13 SR 

Ig kappa chain V-IV region 

(Fragment)*  

KV401_HUMAN 

(+1) 
13 kDa 7 7 0 4 13 26 LAWCR 

Ig lambda chain V region 4A*  LV001_HUMAN 12 kDa 0 4 0 0 0 29 AR 

Ig lambda chain V-I region 

BL2*  
LV107_HUMAN 14 kDa 0 0 0 0 0 9 R 

Ig lambda chain V-I region 

WAH*  
LV106_HUMAN 12 kDa 0 3 0 0 10 11 ACR 

Ig lambda chain V-II region 

BUR* 
LV205_HUMAN 12 kDa 0 0 0 0 0 13 R 

Ig lambda chain V-III region 

LOI*  
LV302_HUMAN 12 kDa 5 4 4 18 18 16 LASWCR 

Ig lambda chain V-III region 

SH*  
LV301_HUMAN 11 kDa 4 0 0 0 0 20 LR 

Ig lambda-1 chain C regions* LAC1_HUMAN 11 kDa 8 17 0 19 0 60 LAWR 

Ig lambda-2 chain C regions*  LAC2_HUMAN 11 kDa 11 16 8 32 45 72 LASWCR 

Ig mu chain C region  IGHM_HUMAN 49 kDa 44 66 29 118 86 410 LASWCR 

Ig mu heavy chain disease 

protein 
MUCB_HUMAN 43 kDa 0 0 0 0 0 283 R 

IgGFc-binding protein FCGBP_HUMAN 572 kDa 0 12 0 0 0 0 A 

Immunoglobulin J chain  IGJ_HUMAN 18 kDa 5 7 6 28 12 41 LASWCR 
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Insulin-like growth factor II IGF2_HUMAN 20 kDa 0 3 0 0 0 0 A 

Insulin-like growth factor-

binding protein 3  
IBP3_HUMAN 32 kDa 0 6 0 21 0 0 AW 

Insulin-like growth factor-

binding protein complex acid 

labile subunit 

ALS_HUMAN 66 kDa 0 15 0 77 10 13 AWCR 

Inter-alpha-trypsin inhibitor 

heavy chain H1 
ITIH1_HUMAN 101 kDa 4 0 5 149 0 20 LSWR 

Inter-alpha-trypsin inhibitor 

heavy chain H2 
ITIH2_HUMAN 106 kDa 10 0 6 213 0 9 LSWR 

Inter-alpha-trypsin inhibitor 

heavy chain H3 
ITIH3_HUMAN 100 kDa 0 0 4 5 0 7 SWR 

Inter-alpha-trypsin inhibitor 

heavy chain H4 
ITIH4_HUMAN 103 kDa 10 17 31 357 6 32 LASWCR 

Intercellular adhesion molecule 

2  
ICAM2_HUMAN 31 kDa 0 3 0 0 0 0 A 

Junction plakoglobin*  PLAK_HUMAN 82 kDa 0 0 2 0 0 0 S 

Kallistatin  KAIN_HUMAN 49 kDa 0 5 0 27 0 0 AW 

Keratin, type I cuticular Ha1*  K1H1_HUMAN (+1) 47 kDa 0 4 0 0 0 0 A 

Keratin, type I cytoskeletal 10*  K1C10_HUMAN 59 kDa 75 74 54 14 60 10 LASWCR 

Keratin, type I cytoskeletal 14*  K1C14_HUMAN 52 kDa 20 23 39 0 0 0 LAS 

Keratin, type I cytoskeletal 16*  K1C16_HUMAN 51 kDa 0 21 28 0 0 0 AS 

Keratin, type I cytoskeletal 9*  K1C9_HUMAN 62 kDa 27 31 64 24 23 15 LASWCR 

Keratin, type II cuticular Hb3*  KRT83_HUMAN 54 kDa 0 10 0 0 0 0 A 

Keratin, type II cytoskeletal 1*  K2C1_HUMAN 66 kDa 57 72 83 28 31 0 LASWC 

Keratin, type II cytoskeletal 2 

epidermal*  
K22E_HUMAN 65 kDa 56 50 58 18 58 0 LASWC 

Keratin, type II cytoskeletal 5*  K2C5_HUMAN 62 kDa 16 23 34 0 0 0 LAS 

Keratin, type II cytoskeletal 

6A* 

K2C6A_HUMAN 

(+1) 
60 kDa 0 23 22 0 0 0 AS 
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Keratinocyte proline-rich 

protein*  
KPRP_HUMAN 64 kDa 2 6 0 0 0 0 LA 

Kininogen-1  KNG1_HUMAN 72 kDa 12 51 11 121 10 82 LASWCR 

Leucine-rich alpha-2-

glycoprotein 
A2GL_HUMAN 38 kDa 0 0 0 38 60 0 WC 

Low affinity immunoglobulin 

gamma Fc region receptor III-

B  

FCG3B_HUMAN 26 kDa 0 5 0 20 0 0 AW 

L-selectin LYAM1_HUMAN 42 kDa 0 11 0 19 0 0 AW 

Lumican  LUM_HUMAN 38 kDa 0 2 0 52 0 0 AW 

Lymphatic vessel endothelial 

hyaluronic acid receptor 1  
LYVE1_HUMAN 35 kDa 0 0 0 13 0 0 W 

Lysosome-associated 

membrane glycoprotein 1  
LAMP1_HUMAN 45 kDa 0 0 0 3 0 0 W 

N-acetylmuramoyl-L-alanine 

amidase 
PGRP2_HUMAN 62 kDa 0 0 0 21 0 0 W 

Peptidase inhibitor 16  PI16_HUMAN 49 kDa 0 0 0 9 0 0 W 

Phosphatidylinositol-glycan-

specific phospholipase D 
PHLD_HUMAN 92 kDa 0 0 0 43 0 0 W 

Plasma kallikrein  KLKB1_HUMAN 71 kDa 3 0 16 34 45 56 LSWCR 

Plasma protease C1 inhibitor  IC1_HUMAN 55 kDa 8 30 0 234 0 0 LAW 

Plasminogen  PLMN_HUMAN 91 kDa 17 0 0 0 0 0 L 

Platelet glycoprotein Ib alpha 

chain  
GP1BA_HUMAN 69 kDa 0 0 0 6 0 0 W 

Plexin domain-containing 

protein 2  
PXDC2_HUMAN 60 kDa 0 0 0 8 0 0 W 

Polymeric immunoglobulin 

receptor  
PIGR_HUMAN 83 kDa 0 0 0 0 0 7 R 

Pregnancy zone protein  PZP_HUMAN 164 kDa 34 29 0 138 159 246 LAWCR 

Protein AMBP  AMBP_HUMAN 39 kDa 2 11 3 43 31 27 LASWCR 

Protein Z-dependent protease ZPI_HUMAN 51 kDa 0 0 0 14 0 0 W 
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inhibitor  

Proteoglycan 4  PRG4_HUMAN 151 kDa 0 0 0 26 0 0 W 

Prothrombin THRB_HUMAN 70 kDa 8 5 0 0 53 23 LACR 

Putative V-set and 

immunoglobulin domain-

containing protein 6*  

VSIG6_HUMAN 14 kDa 0 0 0 0 0 6 R 

Scavenger receptor cysteine-

rich type 1 protein M130  
C163A_HUMAN 125 kDa 0 7 0 7 4 0 AWC 

Selenoprotein P SEPP1_HUMAN 43 kDa 0 6 0 16 0 0 AW 

Serotransferrin  TRFE_HUMAN 77 kDa 152 41 51 13 639 146 LASWCR 

Serum albumin*  ALBU_HUMAN 69 kDa 221 70 26 181 177 177 LASWCR 

Serum amyloid P-component  SAMP_HUMAN 25 kDa 20 9 14 0 26 5 LASCR 

Serum 

paraoxonase/arylesterase 1 
PON1_HUMAN 40 kDa 6 0 0 0 0 0 L 

Sex hormone-binding globulin  SHBG_HUMAN 44 kDa 0 0 0 8 0 0 W 

Sulfhydryl oxidase 1  QSOX1_HUMAN 83 kDa 0 2 0 15 0 0 AW 

Thyroxine-binding globulin THBG_HUMAN 46 kDa 0 0 0 0 54 0 C 

Transthyretin  TTHY_HUMAN 16 kDa 16 6 0 2 0 5 LAWR 

Vasorin  VASN_HUMAN 72 kDa 0 0 0 9 0 0 W 

Vitamin D-binding protein  VTDB_HUMAN 53 kDa 37 0 0 0 0 0 L 

Vitronectin  VTNC_HUMAN 54 kDa 3 13 5 18 0 15 LASWR 

Zinc-alpha-2-glycoprotein ZA2G_HUMAN 34 kDa 5 13 0 0 130 9 LACR 

* Non-glycoproteins 

a
 L-LTA; A- AAL; S-SNA; W-WGA; C- CON A; R-RCA-I
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column fractions were 103, 73 and 93, respectively, and that totaled 269 proteins.  The 

identified proteins captured by all the six-lectin columns totaled 506 proteins. The 

number of non-redundant proteins that were identified in all six column fractions was 

165.  There were 31 proteins common to all the six columns, indicating that only 19% 

[(31/165)*100 = 19%] of the proteins showed overlap between the six columns, a result 

that is comparable to the result obtained by others [5] where 15% overlap was seen with 4 

different lectin columns.  The number of proteins that were unique to LTA, AAL, SNA, 

WGA, Con A and RCA-I were 7, 8, 4, 21, 5 and 9, respectively.  The number of common 

and unique proteins captured by the LTA, AAL and SNA columns are shown in the Venn 

diagram in Fig. 1.  The number of common and unique proteins captured by the WGA, 

Con A and RCA-I are shown in the Venn diagram in Fig. 2.  The percentage of 

glycoproteins identified from LTA, AAL, SNA, WGA, Con A and RCA-I were 73%, 

71%, 68%, 84%, 77% and 69%, respectively, which correspond to 27%, 29%, 32%, 16%, 

23% and 31% of non-glycosylated proteins, respectively.  As was shown and discussed in 

Chapters III and IV most of the non-glycoproteins were keratin and some of the 

immunoglobulin chains.  The overall percentage of glycoproteins obtained from all six 

columns was 73%.   

 

Benefits of Combining Broad and Narrow Specificity Lectins in a Six Tandem Columns 

Format  

As shown in the Venn diagram of Fig. 3, there were 94 common and non-redundant 

proteins captured by the LAS and WCR columns (operated in the combined LAS-WCR 
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format) as well as 27 and 44 unique and non-redundant proteins were found in the LAS 

and WCR column fractions, respectively.  When compared to each of 3 lectin column  

 

 

 
 

 

 

 

 

 

 

 

Figure 1. Venn diagram showing the number of proteins in common and number of 

proteins unique to each lectin captured from the narrow specificity lectin columns. 

 

 

 

 

 

 

 

 

 

Figure 2. Venn diagram showing the number of proteins in common and number of 

proteins unique to each lectin captured from the broad specificity lectin columns. 
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6 

WCR series alone (75 

proteins) 

 WCR series in the 

combined LAS-WCR 

series (138 proteins) 
69 69 

 

series operated alone (discussed in Chapters III and IV), the total proteins as well as the 

unique and common proteins captured by the six tandem lectin columns series increased 

significantly.  As shown in Fig. 4, the WCR series operated alone captured a total of 75 

proteins whereas it captured 138 proteins when it was used in the combined LAS-WCR 

tandem column series. This represents an increase of 84%.  This can be attributed to the  

 

 

 

 

 

 

 

Figure 3. Venn diagram showing the number of proteins in common and unique to 

narrow and broad specificity lectin columns. 

 

 

 

 

 

 

 

 

Figure 4. Comparison of the WCR series alone to the WCR series in the combined LAS-

WCR series. 

 

Narrow specificity lectin 

columns (121 proteins) 94 27 
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columns (138 proteins) 44 
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Figure 5. Comparison of the LAS series alone to the LAS series in the combined LAS-

WAR series. 

 

fact that the LAS series, which was placed first in the six tandem columns, has captured 

some of the proteins that would otherwise bind to the WCR series, thus freeing up some 

sites in the WCR series to capture additional proteins. This is further confirmed by the 

number of proteins captured by the LAS series operated alone when compared to the 

number of proteins captured by the LAS series operated in the combined LAS-WCR 

series, see Fig 5.  As can be seen in Fig. 5, the LAS series alone captured 108 proteins, 

which was very close to the 121 proteins captured by the same three-column series 

operated in the tandem six columns series.  Here, the combination is not very beneficial 

to the series that is placed first in the chain of the 6-column tandem series. The difference 

is only 121 – 108 = 13 proteins which represent an increase of only 12%.  

Another observation for the WCR series can be made as follows. In the 75 

proteins obtained from the WCR series operated alone as was found in Chapter III and 

the 138 proteins obtained from the WCR columns operated in the combined format (i.e., 

LAS-WCR) as shown in this Chapter, it was found that 69 proteins of the 138 proteins 
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were identified only in the WCR columns of the 6-column tandem series but not in the 

WCR series operated alone (refer to Chapter III).  Out of these 69 proteins, 37 proteins 

were unique to the WCR columns in the LAS-WCR series.  The remaining 32 proteins 

(69 - 37 = 32) were identified in the LAS columns.  The gain of these new 37 proteins, 

which were obtained from the WCR columns only when combining the LAS and WCR 

columns series is a sizable gain of identified proteins.  Out of these 37 proteins only six 

were non-glycoproteins (see Table 2).  Even though both columns set ups (i.e., WCR 

series operated alone as in Chapter III and WCR series operated in the combined LAS-

WCR format) had different mass spectrometric analysis conditions, it can be concluded 

(as just mentioned above) that the gain in the number of identified proteins was due to the 

fact that LAS column were placed before the WCR columns in the combined series.  It is 

also worth mentioning that when a mass analysis was done under the same conditions for 

both columns set ups still 55 new proteins were identified by the WCR columns in the 

combined columns set up.  Out of these 55 new proteins 30 proteins were specifically 

found only in the WCR columns and not in the LAS columns.  This new gain of 

identified proteins indicates that placing the WCR columns behind the LAS columns 

allows for identification of many new proteins that would have not been identified by 

using the WCR series alone.   

The gain of 63 proteins (138 – 75 = 63 proteins), which represents 84% increase, 

indicates very well that the combination of the LAS series with the WCR columns in the 

six tandem columns series allowed the identification of a largerer number of proteins. On 

this basis, it is interesting to take a closer look at the unique proteins that were captured 

by the WCR series alone and not common with the LAS series in the combined LAS-
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WCR series. As can be seen in Fig. 6, 56 proteins were unique to the WCR of the LAS-

WCR series, whereby WGA, Con A and RCA-I captured 28, 12 and 16 proteins, 

respectively. Some of these were found to be low abundance proteins and clinically 

important proteins as discussed in the next section.   

 

 

 

 

 

 

 

 

 

Figure 6. Venn diagram showing the distribution of the unique proteins of the WCR 

series among the three lectins 

 

Returning to the LAS series, the following observation can be made. In the 108 

proteins captured by the LAS series operated alone (refer to Chapter IV), it was found 

that about 89 out of 108 proteins identified in the LAS series (that is 82% of the proteins) 

were also identified in the LAS series operated in the six-column tandem series. The 

remaining 19 proteins (i.e., 18% of the total identified proteins) were not identified in the 

LAS series operated in the six-column tandem series.  It needs to be mentioned that out 

of these 19 proteins, 13 proteins were non-glycoproteins.  This mismatch among the LAS 

columns whether operated alone or within the combined LAS-WCR columns series could 
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be due to technical biases in the chromatographic and mass spectrometric analysis.  It 

should also to be mentioned that the LC-MS/MS analysis of the LAS series operated 

alone was done in triplicates while the same analysis of the LAS columns operated within 

the combined format was done only once. 

  

TABLE 2 

PROTEINS THAT WERE IDENTIFIED IN WCR COLUMNS ONLY IN THE 

COMBINED LAS-WCR COLUMNS 

Adiponectin  

Aminopeptidase N  

Apolipoprotein L1  

Beta-Ala-His dipeptidase  

Biotinidase  

Carboxypeptidase B2  

Coagulation factor X  

Coagulation factor XII  

Complement C1q subcomponent subunit A 

Complement C1r subcomponent-like protein  

Complement component C7  

Cysteine-rich secretory protein 3  

Dopamine beta-hydroxylase  

Extracellular matrix protein 1  

Gamma-glutamyl hydrolase  

Hepatocyte growth factor activator  

Ig delta chain C region  

Ig heavy chain V-II region ARH-77 

Ig heavy chain V-III region GA  

Ig kappa chain V-I region HK101 (Fragment)  

Ig kappa chain V-III region B6  

Ig lambda chain V-I region BL2  

Ig lambda chain V-II region BUR  

Ig mu heavy chain disease protein 

Lymphatic vessel endothelial hyaluronic acid receptor 1  

Lysosome-associated membrane glycoprotein 1  
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Peptidase inhibitor 16  

Phosphatidylinositol-glycan-specific phospholipase D 

Platelet glycoprotein Ib alpha chain  

Plexin domain-containing protein 2  

Polymeric immunoglobulin receptor  

Protein Z-dependent protease inhibitor  

Proteoglycan 4  

Putative V-set and immunoglobulin domain-containing 

protein 6  

Sex hormone-binding globulin  

Thyroxine-binding globulin 

Vasorin  

*Non-glycoproteins 

 

Some of the Clinically Important Proteins Identified in the Fractions Captured by the 

Lectin Columns 

 In the current study, out of the 165 identified proteins many were found to be 

clinically important proteins.  The proteins CD44 antigen, haptoglobin and serotransferrin 

were captured by both narrow and broad specificity columns.  According to a recent 

compilation of proteins that are differentially expressed in human cancer [6], these 

proteins have been listed as candidate cancer biomarkers with more than 500 citations.  

Also, both LAS and WCR columns captured some of the other proteins such as -1-acid 

glycoprotein, -1-antitrypsin, -2-HS-glycoprotein, -2-macroglobulin, apolipoprotein 

A1, apolipoprotein A-II, apolipoprotein C-III, ceruloplasmin, coagulation factor XII B 

chain, complement C3, complement factor H related protein 1, fibronectin, L-selectin, 

pregnancy zone protein, transthyretin and vitronectin that have been listed as candidate 

cancer biomarkers [6].   



176 
 

 Some of the proteins that were identified only in the LAS column fractions are 

discussed in this section.  The protein apolipoprotein C-III (Apo C-III) was captured by 

LTA and AAL columns alone.  It has been reported that Apo C-III can induce destruction 

of -cell leading to insulin deficiency in type 1 diabetes.  Thus, an increased level of Apo 

C-III has been correlated to type 1 diabetes in children [7, 8].  In the current study, serum 

paraoxonase/arylesterase and fibrinogen alpha chain were captured only by LTA column.  

In a recent study, it was reported that serum paraoxonase/arylesterase activity was at 

elevated levels in stage 2 esophageal cancer as compared to stages 3 and 4 [9].  In another 

report, it was found that the levels of the protein cancer antigen-125 in epithelial ovarian 

cancer are associated with higher lipid peroxidation, which in turn is associated with 

reduced paraoxonase activity [10]. Fibrinogen alpha chain has been listed as candidate 

cancer biomarker with more than 500 citations [6]. 

  Clinical importance of some of the proteins that were unique to the WCR 

columns are discussed here.  The protein complement component 7 (C7) was captured 

only by the Con A column. It has been found that there is a possible relationship between 

esophageal tumorigenesis and reduced expression C7 mRNAs and similar reduction of 

C7 mRNAs was also observed in kidney and colon cancers [11].  Aminopeptidase N 

(APN) has been reported to play key a role in tumor progression.  From the glycan 

analysis of APN obtained from Manduca sexta (which is a type of insect), it was found 

that APN contains two core fucosylated N-glycans and 13 probable O-glycosylation sites 

[12].  As the binding sites present in the AAL column (which has affinity towards the 

core fucosylated glycans) were occupied by other proteins, APN passed through the AAL 

column and was captured by the WGA column, which has affinity towards N-linked 
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glycans.  APN is a zinc-binding type 2 transmembrane ectopeptidase [13].  Differential 

expression of certain ectopeptidases in human malignancies has made them valuable 

clinical markers [14].  It has been reported that APN expression in tumor tissue has been 

associated with a poor prognosis for patients with pancreatic and colon cancer [15, 16].  

Also, elevated levels of APN have been found in different solid tumors [17-19].   

 It is clear from the above discussion that the combined use of both narrow and 

broad specificity lectins is a useful method to capture a wide range of glycoproteins from 

serum.  In the absence of either the narrow or broad specificity lectins, information about 

many clinically important proteins that were unique to either narrow or broad specificity 

lectins would have been lost.  

 

Access to a Wider Protein Concentration Range 

 In the 165 identified proteins, there were proteins belonging to the high, medium 

and low abundance categories.  High abundance glycoproteins such as serotransferrin, 

complement C3, -2-macroglobulin, -1-antitrypsin and haptoglobin and medium 

abundance proteins such as ceruloplasmin, complement factor B, complement C4, C1q, 

-1-acid glycoprotein, apolipoprotein B and apolipoprotein A1 were also captured by the 

lectin columns.  Except for some of the immunoglobulin chains, most of the other 

proteins were present at low concentration.  Some of the representative proteins are -2-

glycoprotein and angiotensinogen (1 × 10
-6

 g/L serum), apolipoprotein (a), antithrombin 

III and vitronectin (1 × 10
-4

 g/L serum), plasminogen (1 × 10
-3

 g/L serum) and 

complement C2 and kininogen-1 (1 × 10
-2

 g/L serum). 
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Conclusions 

 In this research, serial lectin affinity chromatography was used to capture the 

glycoproteins and LC-MS/MS was used to identify the proteins.  This strategy of 

combining both narrow and broad specificity lectins allowed capturing a wide range of 

glycoproteins.  Since the strategy reported here could capture high, medium and low 

abundance proteins, the process of depletion of high abundance proteins can be avoided.   

Also, since the specificities of the lectin used in this study are well known, this strategy 

could be applied to diseased serum.  By doing so proteins that have specific alteration in 

glycosylation in the diseased serum could be determined and thus can be used in 

discovery of biomarker candidates. 
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Findings and Conclusions:   

 

The investigation described in this dissertation has significantly contributed to the 

in-depth proteomics analysis of human serum.  The equalization/IMAC strategy allowed 

the identification of 82 non-redundant proteins, which was facilitated by the IMAC post-

fractionation process after equalization.  The tandem-lectin affinity based platforms 

developed in this investigation selectively captured glycoproteins from breast cancer 

serum and disease-free serum and many proteins that were differentially expressed in the 

cancer serum were identified.  In a platform where a combination of broad and narrow 

specificity lectins were evaluated in tandem series, 165 non-redundant proteins were 

identified.  The platforms developed in this investigation are expected to be of general 

use and to facilitate the identification of additional candidate biomarkers for various 

diseases in the future. 

 

 


