
i

 ENHANCING DATA SECURITY BY

MAKING DATA DISAPPEAR IN A P2P

SYSTEM

 By

 PRASHANT PILLA

Bachelor of Technology in Electronics and Communications

Engineering

 Acharya Nagarjuna University

 Guntur, AP, India

 2008

 Submitted to the Faculty of the

 Graduate College of the

 Oklahoma State University

 in partial fulfillment of

 the requirements for

 the Degree of

 MASTER OF SCIENCE

 December, 2011

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SHAREOK repository

https://core.ac.uk/display/215297508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

 ENHANCING DATA SECURITY BY MAKING

DATA DISAPPEAR IN A P2P SYSTEM

 Thesis Approved:

 Dr. Subhash Kak

 Thesis Adviser

 Dr. Johnson P Thomas

 Dr. Michel Toulouse

 Dr. Sheryl A. Tucker

 Dean of the Graduate College

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION ..1

II. REVIEW OF LITERATURE..5

 2.1 Vanish system ..5

 2.2 Ephemerizer ...8

 2.3 Recursive secret sharing ..10

 2.4 DHT (Distributed hash table)...11

III. PROBLEM DESCRIPTION ..13

IV. PROPOSED ARCHITECTURE ...16

 4.1 Encapsulation ...17

 4.2 Decapsulation ...18

 4.3 On Timeout ..19

 4.4 Extending lifetime of the data ..20

 4.5 Overcoming drawbacks ...20

V. SIMULATION AND RESULTS ..22

 5.1 Simulation ..22

 5.1.1 Data Encryption ..23

 5.1.2 Ephemerizer server ...24

 Hashing ..24

 5.1.3 Recursive secret sharing ...25

 5.1.4 DHT ..25

 Open Chord ..26

 5.2 Results ..27

 5.2.1 Encapsulation ..27

 5.2.2 Decapsulation ..37

CONCLUSION ..30

REFERENCES ..31

iv

LIST OF FIGURES

Figure Page

1. Vanish system ...5

2. Vanish encapsulation ..6

3. Vanish decapsulation ..8

4. Ephemerizer architecture ..9

5. Proposed architecture encapsulation ...17

6. Proposed architecture decapsulation ...19

7. Proposed architecture timeout ..20

8. Proposed architecture block diagram ..23

9. Encapsulation time performance graph ..27

10. Decapsulation time performance graph ..27

11. Encapsulation and decapsulation time performance graph28

12. Encapsulation and decapsulation execution time ...28

v

ABSTRACT

This thesis describes the problem of securing data by making it disappear after

some time limit, making it impossible for it to be recovered by an unauthorized party.

This method is in response to the need to keep the data secured and to protect the privacy

of archived data on the servers, Cloud and Peer-to-Peer architectures. Due to the

distributed nature of these architectures, it is impossible to destroy the data completely.

So, we store the data by applying encryption and then manage the key. It is easy to

handle the key rather than the data itself, as the key is small and it can be hidden in places

where no one can trace it. This research helps in protecting the privacy of the data

without deleting the original data, instead making the keys disappear in the DHT

(Distributed hash table). Even if the keys in the DHT and the encrypted data were

compromised, the data would still be secure.

This thesis describes existing solutions, points to their limitations and suggests

improvements with a new secure architecture. We evaluated and executed this

architecture on the Java platform and proved that it is more secure than other

architectures.

1

CHAPTER I

INTRODUCTION

The storage in Cloud and in P2P networks is different from that of data stored on

personal machines. Data in Cloud and in P2P networks is distributed over many servers

and could be compromised at any time if not properly secured.

Trusting Cloud and P2P systems for securing confidential data is risky. A simple

solution is to encrypt the data and store it in a database to avoid archiving and caching.

But, even after encryption the data can be decrypted by the service provider, because the

service provider has access to all the data, keys and it may have been cached. A simple

encryption is not enough to keep the data secure.

If the data is available for a fixed time, the possibility of attacking the data can be

minimized. But it is difficult to ensure that the data is deleted completely after the

timeout, as there might be copies. A solution to this problem is to store data in an

encrypted form and delete the key after the timeout. It is easier to manage keys rather

than the data.

2

Our main objective is to protect data from malicious, legal, and illegal attackers.

R. Geambasu, T. Kohno, A. A. Levy and H. M. Levy from the University of Washington

have proposed the Vanish system [1] that follows the timeout concept for keeping the

data secure in the Cloud. The objective of the Vanish system is to create data that self-

destructs or simply vanishes after a fixed time, and it occurs without any external actions,

so that the data is no longer accessible to anyone, even to the user. Initially the Vanish

system encrypts the data using a random key K and then uses Shamir’s secret sharing

technique [2] to split the key into n shares, where collecting k (threshold) shares can

reconstruct the original key. Vanish later stores these random n shares in the DHT

(Distributed hash table) [3].

The DHT takes on a central role in making data disappear, where the data in the

nodes of the DHT will naturally disappear due to the churn effect, arising out of new

nodes joining and old nodes leaving the network dynamically over time, making it

impossible to determine which node is responsible for storing data. It is possible to

construct the original key or VDO (Vanish Data Object) if the Vanish system collects at

least k of n shares before the time expires. If the time expires, the nodes will

automatically vanish making it impossible to extract the k shares, and hence no one can

reconstruct the original key, making the data inaccessible.

Although it provides many advantages, Vanish has shortcomings, which are

described below:

1. The minimum timeout is fixed

2. In order to extend the lifetime of a VDO, Vanish system extracts the key shares,

generates another set of key shares and distributes them to the nodes.

3

3. Key shares are available at the node after the timeout.

4. Sybil attacks [4]: Sybil attacks works by continuously crawling the DHT and

saving each storage value before timeout.

5. The key shares can be recognized by their key length.

Based on the above shortcomings, we construct a secure Cloud or P2P storage

service on top of a public DHT and server infrastructure, where we store the encrypted

data in the database and then delete the keys after a specific timeout mentioned by the

user. In this architecture we apply centralized and decentralized techniques to make the

system more robust against powerful adversaries. We apply the decentralizing technique

by using the DHT, and the centralized technique using the Ephemerizer [5], which is a

central server. Key K is a combination of two keys: one is stored on the central server

Ephemerizer, and the other is stored in the DHT. Similarly, in order to reconstruct

original key K for decryption, the system has to gather both of the keys, one from the

Ephemerizer server and the other from the DHT. This centralized and decentralized

approach makes the system more robust, as they share risks and threats. This self-

destructive data is best used in email systems and in Cloud storage, and IAAS

(infrastructure as a service). Using this system, the data can be protected against legal

attackers.

In order to implement this architecture, we use encryption techniques like AES

[6], recursive secret sharing [7], [8], [9], [10], and hashing [11] and perform key

management techniques using the Open Chord DHT [12], and global scale P2P.

4

This architecture is capable of keeping data secure and destroys it after time out

even:

 If attacker has a copy of the data and keys.

 Without any explicit delete action by user.

 Without modifying the data or keys.

Our method uses Vanish system as the base architecture but we modify it to

improve performance and security to avoid low cost Sybil attacks.

.

5

CHAPTER II

REVIEW OF LITERATURE

This chapter presents a brief overview of the Vanish system, DHT, recursive

secret sharing, and Ephemerizer.

2.1 Vanish System

It is known that the threat for a data can be reduced if data was available for a

limited time. But it is impossible to remove data completely. A simple solution for this

problem is to encrypt data before saving it on the database or server and then control the

lifetime of the decryption key. Keys are small in size they are easy to manage than the

huge data.

Figure 1: Vanish system

6

In the Vanish system, keys are placed in the nodes of DHT as shown in figure 1.

These nodes have a tendency of disappearing after a period of time, leading to

disappearance of decryption keys. Vanish system can be described in two steps,

encapsulation, and decapsulation.

Encapsulation:

Figure 2: Vanish encapsulation

Alice wishes to send a data to Bob.

1. Alice makes a data object D and encapsulates it into a VDO (Vanish data object)

V. In order to encapsulate D Alice selects a random key K and encrypts the D to

obtain a cipher text C. (Figure 2)

2. Later, Alice uses the threshold secret sharing and splits the data key K into n

pieces of shares K1, K2, K3…Kn.

7

3. Once Alice has computed the key shares K1, K2, K3….Kn she picks a random

access key I, and selects a pseudorandom number generator keyed by L and

derives n indices into the DHT I1,I2,I3…In.

4. Alice then sprinkles the n shares K1, K2, K3…Kn at these pseudorandom location

throughout the DHT, specifically for each I belongs to {1,2,..n}.

5. Alice stores the shares Ki at the index Ii in the DHT.

6. Finally Alice sends a VDO V consists of (L,C,n,threshold) where

L: Key to derive the indices related to that C.

C: Cipher text.

n: number of partitions or shares.

threshold: minimum number of shares to create the key K.

Decapsulation:

1. On receiving VDO, Bob extracts the access key L and derives the location of the

shares. (Figure 3)

2. Bob retrieves the threshold number of shares to reconstruct the key K and

decrypts the cipher text C to get the data D.

The main objective of Vanish is to secure the data by not deleting the original data,

but by making keys disappear in DHT. Vanish was released in August 2009 and it

consists of encapsulation and decapsulation functions, and a firefox plugin [14]. The

user selects the text data and converts it into a VDO by right clicking it and selecting

the VDO option. It breaks encryption keys into 10 shares with a threshold of 7. These

8

shares are pushed into Vuze DHT [13], which has a default time out of eight hours.

After 8 hours, keys are vanished unless the keys are periodically reposted in DHT.

Figure 3: Vanish decapsulation

2.2 Ephemerizer:

This system also uses same principle as that of Vanish, keeping data available for

a finite time and making it unrecoverable after a specific time. In this system, instead of

distributing the decryption keys into the DHT, an external server is used to store the

decryption key with their time out. During decryption the server provides user with

decryption keys till timeout. The Ephemerizer server takes care of key management tasks

like key creation, advertising, and deletion. It creates keys for encryption and stores them

on the server and checks them periodically for their timeout. It also sends keys for

decryption only if their time is not expired.

9

Figure 4: Ephemerizer architecture

This system can be explained in detail using an example as shown below:

Alice wishes to send a data to Bob.

1. Alice sends a request to the Ephemerizer server for a key K which will be used to

encrypt the data D given the expiration time T. (Figure 4)

2. The Ephemerizer generated a random secrets key K, ID for that request.

3. The Ephemerizer sends (K, ID) to Alice and stores the key K and the timeout T in

its database.

4. Alice encrypts the data D with the key K, and sends (C, ID) to Bob.

5. On receiving Bob requests the Ephemerizer for the decryption key K for that

particular ID.

6. The Ephemerizer searches its database for the secret key K for that particular ID

and checks its timeout T, if expired return an error message to Bob else return K.

10

7. If valid Bob decrypts the cypher text C and extracts the data D.

2.3 Recursive Secret Sharing:

A recursive secret sharing is like an ordinary secret sharing system except that it

makes it possible to store additional secrets. The recursive computational multi secret

sharing technique hides k - 2 secrets of size b each into n shares of a single secret S of

size b, such that any k of the n shares sufficient to recreate the secret S. It also makes it

possible to store additional secret messages s1,s2,s3… along with the main secret S, so that

on combining the shares K1, K2,K3…Kk of the key K the main secret S and the additional

secret messages s1,s2,s3… can be extracted. This technique does not require any

encryption key. The recursive secret sharing is mainly used for:

 Hiding additional secrets, which are recursively stored within the shares

 Validation and authentication of shares during the reconstruction phase, which

provides cheating detection. The hidden secret share is usually checked for

authentication.

The recursive secret sharing algorithm is as follows. There are two phases: the

dealing phase – the process of making shares with the secret and hidden information; and

the reconstruction phase – the process of combing the shares producing secrets and

hidden information.

Dealing Phase

1. Consider k - 2 secrets si ∈ Zp, 1 ≤ i ≤ (k - 2).

2. Choose prime p = max(si , S), for all 1 ≤ i ≤ (k - 2).

11

3. Randomly and uniformly choose a number y11 ∈ Zp and map it as point (1, y11).

4. Do for 1 ≤ i ≤ (k - 2)

a) Interpolate points (0, si) and (j, yij), for all 1 ≤ j ≤ i to generate a i
th

 degree

polynomial pi(x).

b) Sample the polynomial pi(x) at i + 1 points: y(i+1)j = pi(j + i), for all 1 ≤ j ≤ (i +

1).

c) Map the i + 1 points as: (j; y(i+1)j), for all 1 ≤ j ≤ (i + 1).

5. Interpolate points (0, S) and (j, y(k-1)j), for all 1≤ i ≤ (k - 1) to generate (k-1)
th

degree polynomial pk-1(x).

6. Sample pk-1(x) at n points to generate n shares :(i, pk-1(i)), for all k ≤ i ≤ k + n - 1.

Reconstruction Phase

1) Interpolate any k shares to generate (k - 1)
th

 degree polynomial

pk-1(x) = S+a1x+a2(x
2
)+…..+ak-1x

k-1
.

2) Evaluate S = pk-1(0).

3) Do for i = k - 2 down to 1

a) Map the coefficients of polynomial pi(x) as points:

(j, aj), for all (i + 1) ≤ j ≤ 2(i + 1).

b) Interpolate (j, aj), for all (i + 1) ≤ j ≤ 2(i + 1), to generate polynomial pi(x) of

degree i.

c) Evaluate si = pi(0).

2.4 DHT:

A DHT distributes data over a large P2P network, so that we can quickly find any

given item and distribute responsibility for data storage. The design of a DHT varies like

12

Apache Cassandra, BitTorrent DHT, CAN, Chord, Kademlia, Pastry. The basic

operations of a DHT are Store(key; val), val = Retrieve(key), where a key controls which

node(s) stores the value val, and each node is responsible for some section of the space.

Vanish stores keys in Vuze DHT nodes which consists of million nodes, and it is

modified Kademlia [15] DHT. Every key and node is assigned to an ID of 160 bit, where

each key is stored in the node whose ID is closer to its key ID. Although Store, Retrieve

are the basic operations, the root principle operation that guides these functions is the

lookup operation. Lookup operation searches for the node that holds a specific ID. In

Kademlia each node will lookup 20 other closest nodes for the ID it is searching for.

To store or retrieve a key, the requesting node hashes the key to get its ID of the

key. This ID is used to map key to the desired node. The requesting node sends a request

to 20 other nodes that are close to the ID. After finding node closest to the ID, the

requesting node contacts it directly. If a node wants to join the Vuze DHT, it contacts a

peer it knows and requests for a lookup for its own ID. After the lookup it finds nodes

that are close to its ID. When this new node contacts the new peer with the ID among the

20 closest, they replicate all the stored keys to that node.

http://en.wikipedia.org/wiki/BitTorrent_(protocol)
http://en.wikipedia.org/wiki/Kademlia

13

CHAPTER III

PROBLEM DESCRIPTION

The main drawback of the Ephemerizer architecture is that it is centralized. This

third party may not be trustworthy, as the Ephemerizer may still keep some copies of the

keys in its cache memory. This calls for a decentralized approach with fewer risks.

The decentralized Vanish approach has drawbacks

1. The minimum timeout is fixed.

 For Vuze architecture, the timeout is 8 hours and for OpenDHT [16] it is about a

week. Timeout varies with different DHT architectures. So the data or the key

shares remain active in the node for a minimum of 8 hours. This timeout window

is sufficient for attackers to steal the keys before they expire. what if a user wants

it for one hour?

2. If a user wants the timeout to be of 20 hours, Vanish extend the life of a VDO by

a refresh mechanism. The refresh mechanism retrieves original data key K from

the DHT before its timeout and re-splits it, obtain a fresh new shares and derives a

new DHT indices I1, I2,..IN and redistributes them in the DHT. The cost of this

operation is high, as the Vanish has to decapsulate the shares and

14

generate a new shares and encapsulate them again. In order to perform this action,

periodic internet connectivity to a PC is required which is not possible for the

users who are mobile.

3. Even after 8 hours (for Vuze) or the timeout the key shares are still available at

the node. Only the IP of the node changes, but the data in them remains the same.

These nodes may reappear with a different IP but they hold the same share.

4. The Key shares can be recognized by their key length. As per the Vanish design

code the default key is a 128-bit encryption key and all shares holds the same size,

which can be easily recognized and cached.

5. Sybil attacks: Sybil attacks work by continuously crawling the DHT and saving

each storage value before timeout.

Vanish utilizes public DHT Vuze Bit-Torrent. The Vuze DHT clients periodically

replicates keys they store to other peers that are close to it in order to extend the life of a

VDO. Each Vuze client manages a routing table that categorizes peers into a number of

“K-buckets” by their distance from its own ID.

 The replication properties of the Vuze make the Sybil attack much easier.

1. To increase availability, Vuze replicates the keys to new clients as soon as they

join the network.

2. To ensure resiliency as node joins and leave, Vuze node replicates data they know

to their neighbors at frequent intervals, usually for every 30 minutes.

A node joins the Vuze DHT by contacting a known peer and starting a lookup for its

own ID. It uses a lookup to build its own list of peers and eventually find node that is

closest to its ID.

15

Using the above replication properties, Sybil node takes very less time to gain

majority of keys active at that time. It filters necessary to unnecessary keys by measuring

its size. A Sybil simply hops from one IP to another, through the available identities, thus

gaining almost all keys stored at different locations. Vuze considers these new fake nodes

which act as a new natural node and provides them with replicated keys. It takes 3

minutes to hop from one IP to another. For an 8 hour period the each Sybil can hop 160

node ID’s with a minimal loss in coverage. Sybil attack is optimized by considering

default key share size. The Vanish architecture has a default share of 128 bit encryption

key. Sybil considers only those keys with the default size fixed by the Vanish code and

leaves rest of the keys or data that does not match default key length.

Even in decentralized approach privacy of data is not guaranteed. It is unsafe for

data or keys to be handled by only one source (Ephemerizer) or by everyone (DHT). In

centralized Ephemerizer approach the control or the secret is handled by a third party

holder, who is considered to be untrustworthy. In the decentralized Vanish approach, it

distributes the secret to public DHT which is also unreliable as data is placed in public

nodes. This decentralized approach gives many opening for hackers to steal, cache or

record the keys and use them to decrypt the encrypted data.

16

CHAPTER IV

PROPOSED ARCHITECTURE

In order to overcome the drawbacks, we require a new secure architecture where

data is secure and control over the keys are neither completely under centralized nor

decentralized sources. The responsibility over the keys is managed by centralized as well

as decentralized sources. Sharing responsibilities over the keys will help in building a

more secure architecture where data can be secure till expiration.

In these new architecture we use centralized and decentralized approach along

with a new secret sharing method, which is recusrsive secret sharing. A third party server

is introduced in this architecture, which is used to create, advertise and destroy keys and a

public DHT is used which also distributes keys to public nodes. Types of encryption that

occurs in this method are data encryption and secret sharing encryption. Data encryption

is applied to data and secret sharing encryption is applied to secret Nt. The new

architecture can be explained in two steps, encapsulation and decapsulation.

17

4.1 Encapsulation:

Alice wants to send a data or message to Bob.

1. Alice sends a request to Ephemerizer server for a key H to encrypt data into

cyphertext C for a timeout T. (Figure 5)

2. Ephemerizer stores timeout T and generates a random nonce Nt, an ID IDt and a

secret St for that request. Then calculates hash H = (Nt, St) and stores {T, St, IDt}.

3. The server sends {Ht, IDt,Nt} to Alice through a secured “SSL” channel and

deletes H.

Figure 5: Proposed architecture encapsulation

4. Alice encrypts data with key H giving rise to C the ciphertext and forgets H, now

Alice has (C, Nt, IDt). It sends Ephemerizer an acknowledgment saying that the

file is encrypted.

18

5. Ephemerizer then picks up an access key L then use it in the cryptographic secure

pseudorandom number generator to derive n indices into DHT I1,I2,I3….In.

6. Ephemerizer then performs the recursive secret sharing on (Nt, IDt), where secrets

are S = Nt, s1 = IDt, S is the main secret and s1 are the additional secret messages.

It generates n shares H1,H2,H3….Hn where k is the threshold.

7. Ephemerizer sprinkles n shares H1,H2,H3….Hn at these pseudorandom locations Ii

in DHT. Then deletes Nt, and sends L and k to Alice.

8. The Ephemerizer stores the L values if the requested T is greater than DHT’s

fixed timeout, else it deletes it.

9. Finally Alice sends {L, C, k}

L: Key to derive the indices related to that C.

C: Cipher text.

k: threshold minimum number of shares.

4.2 Decapsulation:

1. On receiving {L, C, k}, Bob extracts the access key L. And derives the location of

the shares. (Figure 6)

2. Bob retrieves the threshold k number of shares using the indices I1,I2,I3….In,

reconstructs the secret S and additional secrets S1. Where S= Nt, s1 = IDt.

3. When Bob wants to decrypt the cypher text C, he sends (Nt, IDt) to the centralized

server.

4. The centralized server checks if the St, IDt are valid or expired by checking the T.

If it finds expired it sends an error message, else it finds St that is associated with

the IDt that is still valid, calculates H = h(Nt, St) and sends H to Bob through a

19

secured SSL channel. And the server forgets the (T, St, IDt) and H (if the code is

designed to read only once).

5. On receiving H Bob decrypts the cyphertext C and gets the original data.

Figure 6: Proposed architecture decapsulations

4.3 On Timeout:

For Vuze the timeout is 8 hour, and as per the churn effect key shares at nodes

vanishes automatically after the timeout. If the timeout is less than 8 hours, Vanish will

still retain key shares for eight hours. In the proposed architecture centralized server

erases IDt and St from the table as shown in figure 7, making cipher text C completely

unavailable to access, as key H to decrypt the cipher text C cannot be constructed without

H and St.

20

Figure 7: Proposed architecture timeout

4.4 Extending the lifetime of data:

Some users want their data to be available for more than 8 hours (considering the

Vuze DHT). In such cases we use same technique as that of Vanish system, that is the

refresh mechanism. Here just before timeout, Ephemerizer collects all the shares

H1,H2,H3…Hk from the DHT and gets the secret S = Nt and s1 = IDt. It resplits them

getting new shares and redistributes them with a new L.

4.5 Overcoming Drawbacks:

The presented architecture can handle most drawbacks in Vanish and in

Ephemerizer architecture. This architecture can handle Sybil attacks too. Using this

architecture a minimum timeout can be any number of hours specified by the user. If the

specified timeout is 2 hours, after 2 hours centralized server will delete IDt, St from the

table, which makes the key H unrecoverable. If the timeout specified is 8 hours, the keys

are lost automatically by churn effect in DHT, unless life of encrypted data is extended.

Even after 8 hours for Vuze, key shares are still available at the node, but they cannot be

used to recover the key even though they are hacked. If the hacker was successfull in

retrieving key shares, he still won’t be able to reconstruct the original key.

21

As mentioned before, the Sybil attack works by continuously crawling DHT and

saving each key share before timeout and makes a log caching all the key shares. But

Sybil attacker does not know that the key H is encrypted, which cannot be acquired by

just getting Nt and IDt. If Sybil attacker was successful in extracting all the additional

secret messages and Nt, it still won’t be able to access centralized server to get secret St.

22

CHAPTER V

SIMULATION AND RESULTS

5.1 Simulation

The simulation for the proposed method is done using Java 1.6 with extensive

Java library functions. Here we have considered a 10 MB file as data D. Initially the user

who holds data D performs data encryption. Here we use AES to encrypt the data using a

128 bit hash key H. The hash key H is derived from the Ephemerizer server, which is a

simple multithreaded function that performs SHA-1 hashing on random numbers (Nt, St)

to generate hash key H. This hash key H along with additional secret IDt are secret shared

using recursive secret sharing algorithm, which is programmed in Java. We distributed

the shares into the nodes of the Open Chord DHT. The simulation is described in four

sections.(figure 8)

1. Data encryption

2. Ephemerizer server

3. Recursive secret sharing

4. Distributed hash table

23

Figure 8: Proposed architecture block diagram

5.1.1 Data Encryption:

The proposed architecture is designed in a way that, it can be used in Cloud,

external server storage and to transfer data securely. Data is encrypted using the AES

encryption technique.

Advanced Encryption Standard (AES):

AES is a federal standard for private-key or symmetric cryptography, used for the

encryption of electronic data. It was first introduced by the U.S. government, now used

word wide. There are many packages of AES encryption. AES was used by the National

Security Agency (NSA) for storing top secret data. AES was originally called Rijndael,

the cipher was developed by two Belgian cryptographers, J. Daemen and V. Rijmen.

AES is based on substitution permutation network as the design principle. It

works efficiently and fast in both software and hardware. AES has a fixed block size of

128 bits and a key size of 128, 192, or 256 bits. The block size of the AES has a

maximum limit of 256 bits, but the key size has no maximum limits. AES operates on a

4×4 column-major order matrix of bytes, termed the state. Most of the AES calculations

are performed in a special finite field.

24

AES in Java

The AES standard has been incorporated into several Java technology offerings.

Beginning with Java 2 SDK (software development kit), Standard Edition (J2SE) v

1.4.0, JCE (Java cryptography extension) [18] was integrated with the SDK and JRE

(Java runtime environment). JCE provides framework and implementation

for encryption, key generation and agreement. JCE supplements the Java platform, which

already includes interfaces and implementations of message digests and digital

signatures.

5.1.2 Ephemerizer server:

As discussed earlier, Ephemerizer is simple server external to the user. It performs

simple operations like creation, deletion and distribution of keys. In this simulation, we

have considered Ephemerizer server as a multithreaded function that performs all the

above operations. The Java threading makes it look like a server that runs constantly in a

loop. Each thread performs a separate task. One thread performs the creation and

distribution of keys while the other checks the T- timeout periodically. If the thread finds

T expired, it simply deletes St. All the variables ID, St, T are stored in JTables (Java

Tables).

Hashing SHA-1:

In this simulation we have used SHA-1 hashing technique in Java. This hashing

technique is used in calculating the hash key H, H = (Nt, St). SHA-1 is a cryptographic

message digest algorithm similar to MD5. SHA-1 hash is considered to be one of the

most secure hashing functions, producing a 160-bit digest from any data with a maximum

size of 2
64

 bits. We used Java built in classes to compute SHA-1 hash.

25

 5.1.3 Recursive Secret Sharing

The recursive secret sharing was programed using simple Java programming,

In this simulation Lagrange’s interpolation was performed using Aitkens method [19].

We have recursively secret shared the key Nt (nonce) of size 128 bit and IDt 16 bit to

generate various numbers of shares. For efficient results, we have considered the

threshold ratio of 100%.

5.1.4 DHT:

In this simulation we used Open Chord as the DHT. Open Chord is an open

source implementation of Chord distributed hash table using Java-based implementation

of Chord DHT. Open Chord provides the possibility to use Chord distributed hash table

within Java applications by providing an API to store all serializable Java objects within

the distributed hash table.

It provides an interface for Java applications to take part as a peer within a DHT

and to store and retrieve arbitrary data from this DHT. Open Chord is called open, as it is

distributed under GNU General Public License (GPL), so that it can be used and

extended for own purposes for free as desired. The Open Chord libraries are extracted

from Open Chord package zip file [20].

Important Features of the Open Chord

 It can store any serializable JO (Java object) within the DHT.

 It can create own key implementations used along with DHT by implementing an

interface of Open Chord API.

 Facilitates configurable replication of entries in DHT.

 Provides two protocols for communicating in between the chord nodes:

26

o Local method calls: This protocol is used to create a DHT within one JVM

(Java Virtual Machine) for testing and visualization purposes.

o Java Sockets: This protocol creates a DHT, distributed over different

nodes (JVMs).

We used local method call protocol for communicating between 200 chord nodes.

The basic operations of a DHT are Store(key, val), val = Retrieve(key). A key

value controls which node(s) stores the value val. Each node is responsible for some

section of the space. In Open Chord these operations are performed using the following

methods

public void retrieve (Key key , ChordCallback callback);

public void insert (Key key , Serializable entry , ChordCallback callback);

A new network can be created with help of the methods create(), create(URL

localURL), and create(URL localURL, ID localID). The join methods allow a peer to join

an existing Open Chord network

public void join (URL localURL , URL bootstrapURL)

 throws ServiceException ;

5.2 Results:

We measure the performance of the new architecture by measuring time elapsed

to encapsulate and decapsulate. Our main purpose is to measure the time and determine

whether the new system is fast enough for daily usage. In simulation, we have used a

Intel Core 2 Duo with 2.00GHz processor speed and 4 GB RAM. We measure the time of

27

encapsulation and decapsulation, considering a 10 MB files with various shares. In this

simulation we have considered a threshold ratio of 100%.

5.2.1Encapsulation

Figure 9: Encapsulation time performance graph

5.2.2 Decapsulation

Figure 10: Decapsulation time performance graph

28

Figure.11: Encapsulation and decapsulation performance graph

N Time (sec)

Encapsulation Decapsulation

10 5.78 1.68

20 10.56 3.56

50 31.043 24.444

100 29.719 32.183

150 48.394 29.74

200 108.187 91.178

Figure.12: Encapsulation and decapsulation execution time

We executed encapsulation and de-capsulation operations and measured the time

spent in the four main runtime components: DHT operation (storing and retrieving

shares), recursive secret sharing operation (splitting and combining shares), Ephemerizer

server (storing and creating hash keys), and encryption/decryption operation. We

observed that the DHT component accounted for over 99% of execution time for

29

encapsulation and de-capsulation operations on data of small and medium size. For data

of much larger size, encryption and decryption became a dominant component. For

recursive secret sharing, we tried various other Lagrange’s interpolation methods like the

upwards/downward correction method [21] and Apaches Lagrange’s interpolation classes

[22], and they yielded same results.

Executing DHT component using local call protocol, which created the DHT

within the system’s Java Virtual Machine (JVM), we observed that systems with different

configurations exhibit different results. Figure 10, 11 shows operation time scale with

different number of shares for a fixed threshold ration of 100%. Scaling with n (number

of shares) is important, as data’s security relies on this parameter. Figure 11 shows that

time for encapsulation and de-capsulation grows linearly with the number of shares. De-

capsulation took somewhat less time than encapsulation, because of DHT. Based on these

results, we believe that parameters of n = 50 and the threshold of 90% provide an

excellent tradeoff for security and performance.

30

CONCLUSION

In this thesis I have designed a new architecture to enhance data security by making the

data disappear after a time limit. This was done by simply encrypting the data with a key

and later making the key disappear after timeout, ultimately making the data inaccessible.

We consider key management in centralized as well as decentralized environments. We

have successfully implemented this architecture.

This system is more secure and efficient than the earlier system called Vanish. This

system can be used for storing data on the Cloud or on other servers, or in a database.

31

REFERENCES

[1] R. Geambasu, T. Kohno, A. Levy, and H. M. Levy. “Vanish: Increasing data privacy

with self-destructing data”. 18th USENIX Security Symposium, 2009

[2] A. Shamir, “How to share a secret”, Commun. ACM, 22(11):612–613, 1979.

[3] R. Steinmetz, K. Wehrle, Peer-to-Peer Systems and Applications, Berlin, Heidelberg:

Springer, 2005.

[4] S. Wolchoky, O. S. Hofmanny, N. Heninger, E. W. Felten, J. A. Halderman, C. J.

Rossbach, B. Waters, and E. Witchel, “Defeating Vanish with Low-Cost Sybil Attacks

Against Large DHTs”, 17th Network and Distributed System Security Symposium (NDSS

'10), February-March 2010.

[5] R. Perlman. “The Ephemerizer: Making data disappear”. Journal of Information

System Security, 1(1), 2005.

[6] H. Dobbertin, V. Rijmen, A. Sowa, “Advanced encryption standard”, AES: 4th

international conference, 2004.

[7] A. Parakh and S. Kak, “Space efficient secret sharing for implicit data security”.

Information Sciences, vol. 181, pp. 335-341, 2011.

[8] A. Parakh and S. Kak, “Recursive secret sharing for distributed storage and

information hiding”. 3rd IEEE International Symposium on Advanced Networks and

Telecommunication Systems (ANTS), New Delhi, India, Dec 14-16, 2009.

32

[9] A. Parakh and S. Kak, “A tree based recursive information hiding scheme”. IEEE ICC

2010 - Communication and Information System Security Symposium, Cape Town, May

2010.

[10] M. Gnanaguruparan and S. Kak, “Recursive hiding of secrets in visual

cryptography”. Cryptologia, vol. 26, pp. 68-76, 2002.

[11] A. G. Konheim, Hashing in Computer Science: Fifty Years of Slicing and Dicing,

New Jersey: NewJohn Wiley & sons 2010.

[12] Open Chord version 1.0.4, manual,

http://www.unibamberg.de/fileadmin/uni/fakultaeten/wiai_lehrstuehle/praktische_inform

atik/Dateien/Forschung/open-chord_1.0.4_manual.pdf (Date last accessed 10/25/2011)

[13] Vuze http://www.Vuze.com/. (Date last accessed 6/15/2011)

[14] R. Geambasu, A. Levy, P. Gardner, T. Kohno, A. Krishnamurthy, and H. M. Levy.

Vanish website, http://vanish.cs.washington.edu/

[15] Kademlia, http://en.wikipedia.org/wiki/Kademlia. (Date last accessed 8/19/2011)

[16] Open DHT, http://opendht.org/. (Date last accessed 7/10/2011)

[17] AES Java,

http://Java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html . (Date last

accessed 7/2/2011)

[18] JCE, http://en.wikipedia.org/wiki/Java_Cryptography_Extension. (Date last accessed

7/2/2011)

 [19] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas,

Graphs, and Mathematical Tables. New York: Dover, p. 879, 1972.

http://www.vuze.com/
http://en.wikipedia.org/wiki/Kademlia
http://opendht.org/
http://java.sun.com/developer/technicalArticles/Security/AES/AES_v1.html
http://en.wikipedia.org/wiki/Java_Cryptography_Extension
http://www.amazon.com/exec/obidos/ASIN/0486612724/ref=nosim/weisstein-20
http://www.amazon.com/exec/obidos/ASIN/0486612724/ref=nosim/weisstein-20

33

[20] Open Chord source files, http://sourceforge.net/projects/open-chord/. (Date last

accessed 10/25/2011)

[21] Upwards/downwards correction method,

http://www.physics.unlv.edu/~pang/cp2_j.html. (Date last accessed 7/21/2011)

[22] Apaches Lagrange’s interpolation classes, http://commons.apache.org/math/api-

1.2/org/apache/commons/math/analysis/PolynomialFunctionLagrangeForm.html (Date

last accessed 7/21/2011)

http://sourceforge.net/projects/open-chord/
http://www.physics.unlv.edu/~pang/cp2_j.html
http://commons.apache.org/math/api-1.2/org/apache/commons/math/analysis/PolynomialFunctionLagrangeForm.html
http://commons.apache.org/math/api-1.2/org/apache/commons/math/analysis/PolynomialFunctionLagrangeForm.html

VITA

PRASHANT PILLA

Candidate for the Degree of

Master of Science

Thesis: ENHANCING DATA SECURITY BY MAKING DATA DISAPPEAR IN A

P2P SYSTEM

Major Field: Computer Science

Biographical:

Education:

Completed the requirements for the Master of Science in Computer Science at

Oklahoma State University, Stillwater, Oklahoma in December, 2011.

Completed the requirements for the Bachelors in Electronics and

Communications Engineering Acharya Nagarjuna University, Guntur, AP, India

in 2008.

Experience:

Graduate Assistant in Institute for Teaching & Learning Excellence

Oklahoma State University, Stillwater, OK August’10 – December 11

Web Development and Lab Assistant in Department of Statistics

Oklahoma State University, Stillwater, OK August’09 – February 10

Professional Memberships:

ADVISER’S APPROVAL: Dr. Subhash Kak

Name: Prashant Pilla Date of Degree: December, 2011

Institution: Oklahoma State University Location: Stillwater, Oklahoma

Title of Study: ENHANCING DATA SECURITY BY MAKING DATA DISAPPEAR

IN A P2P SYSTEM

Pages in Study: 33 Candidate for the Degree of Master of Science

Major Field: Computer Science

Scope and Method of Study:

This thesis describes the problem of securing data by making it disappear after some time

limit, making it impossible for it to be recovered by an unauthorized party. This method

is in response to the need to keep the data secured and to protect the privacy of archived

data on the servers, as required in Cloud and Peer-to-Peer architectures. Due to the

distributed nature of these architectures, it is impossible to destroy the data completely.

So, we store the data by applying encryption and then manage the key. It is easy to

handle the key rather than the data itself, as the key is small and it can be hidden in places

where no one can trace it. This research helps in protecting the privacy of the data

without deleting the original data, instead making the keys disappear in the DHT

(Distributed hash table). Even if the keys in the DHT and the encrypted data were

compromised, the data would still be secure.

Findings and Conclusions:

In this thesis I have designed a new architecture to enhance data security by making the

data disappear after a time limit. This was done by encrypting the data with a key and

making the key disappear after timeout, thereby making the data inaccessible. We

consider key management in centralized and decentralized environments. We have

successfully implemented this architecture.

This system is more secure and efficient than the earlier system called Vanish. This

system can be used for storing data on the Cloud, Peer-to-Peer systems, and standalone

servers or in a database.

