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ABSTRACT  
Most theoretical models for the thermal response of geothermal heat exchangers assume the mean azimuthal borehole wall temperature to be uniform along 
the boreholes. This simplifying assumption, closely related to the g-functions introduced by Eskilson in 1987, has dominated the research field for the past 
30 years, allowing the analysis of large geothermal heat exchangers in reasonable amounts of time. The assumption, however, is not physically correct, which 
hinders the attainable accuracy. By using matched asymptotic expansion techniques, analytical models for the thermal response of geothermal heat exchangers 
are derived, which do not require the aforementioned simplification. The resulting expressions, applicable to geothermal heat exchangers with irregularly 
placed heterogeneous boreholes, show accuracy and flexibility levels comparable to SBM, but with a computational cost in line with the use of g-functions. 

INTRODUCTION 

Geothermal heat exchangers have an increasingly fundamental role in the design and construction of sustainable 
buildings. An HVAC system based on geothermal energy can only be considered truly renewable, however, if the 
geothermal heat exchanger and the heat injection/extraction strategy are properly designed. Otherwise, thermal 
exhaustion of the ground occurs, and the geothermal heat pump’s efficiency decreases over time. 

To ensure the long-term efficiency of geothermal HVAC systems, its thermal behavior after 25, 50, or even 100 
years of operation must be known, reason why their theoretical and numerical modeling is extremely relevant to the 
industry. Extensive literature exists on this topic, being the contributions by the research group at Lund University the 
most influential ones (Bennet et al. 1987; Claesson and Hellström 2011; Eskilson 1986, Eskilson 1987; Eskilson and 
Claesson 1988; Hellström 1991). They proposed two models. The Superposition Borehole Model (SBM) solved numerically 
the governing equation in the ground and the one-dimensional energy conservation equations for the transfer of heat 
along the pipes. In order to connect both, a network of thermal resistances was used to describe the quasi-steady two-
dimensional thermal response of the grout and of the ground close to the borehole (Eskilson 1986). The extension to 
borehole fields was done by superposing the exerted temperature perturbation of neighboring boreholes. This approach 
rendered the model very accurate but also very slow, especially for large borehole fields. The second one, the g-function 
model, assumed a uniform mean azimuthal borehole wall temperature along the boreholes (Eskilson 1987). This 
simplification allowed the uncoupling of the heat conduction problem in the ground from the heat transfer problem 
inside the boreholes. For the former problem, a large database of precomputed borehole field configurations, the so 
called g-functions, was obtained using a tailored version of SBM, while the latter problem was solved analytically thanks 
to the introduced simplifying assumption. The result was a less accurate and less flexible model than SBM, but an 
extremely fast one.  



 
 

A lot of effort has been made to develop efficient but accurate methods to calculate the g-functions (Li and Lai 
2015). In recent years, g-functions have been obtained using a commercial finite-element simulation tool (Monzó et al. 
2016), but this approach is very time consuming. On the other hand, a family of models assimilates the borehole to a 
line of heat sources of uniform intensity (Eskilson 1987). The infinite line source (ILS) (Ingersoll et al. 1954), the infinite 
cylindrical-surface source (ICS) (Ingersoll et al. 1954) and the finite line source (FLS) (Zeng et al. 2002; Lamarche and 
Beauchamp 2007) models have been used respectively to model the borehole for increasing values of the characteristic 
injection time. All these models assume that the heat injection rate per unit borehole length 𝑞𝑞 is uniform along the 
borehole, contrary to the original g-function definition proposed by Eskilson that assumes a uniform mean azimuthal 
borehole wall temperature 𝑇𝑇𝑏𝑏 along the borehole. As the resulting value of 𝑇𝑇𝑏𝑏 is not uniform along the borehole, its 
mean value is used instead to define the g-functions (Zeng et al. 2002; Lamarche and Beauchamp 2007; Claesson and 
Javed 2011; Cimmino and Bernier 2014; Cimmino et al. 2013) and its calculation can be reduced to a single integral 
(Lamarche and Beauchamp 2007; Claesson and Javed 2011) that is discretized using the midpoint rule with one 
(Cimmino et al. 2013) or more segments (Cimmino and Bernier 2014; Lazzarotto and Björk 2016) or the trapezoidal 
rule with multiple segments along the boreholes (Lamarche 2017). Furthermore, a primitive function for the integral 
can be obtained for the steady-state and time-harmonic cases (Hermanns and Ibáñez 2018) leading to simple analytical 
expressions. This alternative g-function definition results in very efficient methods. However, discrepancies up to 30% 
have been reported between Eskilson’s original definition with uniform 𝑇𝑇𝑏𝑏 and the alternative definition with uniform 
𝑞𝑞 (Cimmino and Bernier 2014; Malayappan and Spitler 2013) that grow as the number of thermally interacting boreholes 
increases (Cimmino and Bernier 2014; Cimmino et al. 2013).  

Those two simplifications that assume uniform values along the borehole are inherently limited in accuracy as 
shown in Malayappan and Spitler (2013), Hermanns and Ibáñez (2017), and Ibáñez and Hermanns (2018) among others. 
Besides these accuracy problems, the mathematical problem that the original Eskilson’s definition of the g-function gives 
rise to, becomes ill-posed under certain circumstances (Hermanns and Ibáñez 2018). Therefore, a well-posed theoretical 
model that can retain axial variations of the mean azimuthal borehole wall temperature and the heat injection rate per 
unit borehole length is needed. 

Using matched asymptotic expansion techniques (Lagerstrom 1988), the leading author and his research group 
have derived analytical expressions for the thermal response of geothermal heat exchangers without requiring the 
aforementioned simplifications. The resulting model is comparable to SBM in terms of flexibility and accuracy, but with 
a computational cost in line with the g-function model. Despite being also an analytical method, the proposed method 
clearly differs from the g-function model in that the thermal responses of the pipes and the liquid inside it, the grout, and 
the ground, all are tackled at once without assuming neither 𝑇𝑇𝑏𝑏 nor 𝑞𝑞 to be uniform along the borehole, that is, the 
developed solutions directly give the thermal response of the geothermal heat exchanger. 

The present conference paper is a summary of the work done so far by the leading author and his research group. 
First, a description of the characteristic times that appear in the problem is given. The resulting inner and outer regions 
and the asymptotic matching process that weaves them are then described. An overview of the process carried out to 
obtain an asymptotic solution is given afterwards. The extension of the proposed model from one to multiple boreholes 
is discussed here for the first time. The proposed model is compared against existing models for a test case of a time-
harmonic sub-annual excitation applied to a borehole field comprised by two coaxial probes of different lengths. These 
preliminary results state clearly the differences between the g-function model and the asymptotic model developed by the 
authors. Finally, conclusions and indications on the expected achievements to accomplish in the coming years are given. 

SLENDER GEOTHERMAL BOREHOLES 

A vertical geothermal borehole consists of a set of pipes placed in a vertical drilling, filled with grout, and through which 
a liquid flows and exchanges heat with the surrounding ground. Typical boreholes present depths 𝐻𝐻 of the order of 
hundreds of meters and radii 𝑟𝑟𝑏𝑏 of the order of tens of centimeters, leading to aspect ratios 𝛬𝛬 ~ 𝐻𝐻 / 𝑟𝑟𝑏𝑏 of the order of 
thousands. This extreme slenderness is responsible for the appearance of two distinct regions, an inner one located at 



radial distances to the borehole of order 𝑟𝑟𝑏𝑏, and an outer one located further away. To obtain the thermal response of 
the borehole, the solutions to these two regions need to be combined, something that is accomplished through 
asymptotic matching at an intermediate scale (Lagerstrom 1988). 

Closely related to the previous two length scales are the characteristic transversal diffusion time, 𝑡𝑡𝑏𝑏 ~ 𝑟𝑟𝑏𝑏2/𝛼𝛼, and 
the characteristic longitudinal diffusion time, 𝑡𝑡𝐻𝐻 ~ 𝐻𝐻2/𝛼𝛼, where 𝛼𝛼 is the thermal diffusivity of the ground. Considering 
the typical values attained by the different parameters, these two characteristic times are respectively of the order of 
hours and centuries (Hermanns and Pérez 2014). Two additional characteristic times can be identified in the problem. 
The first one is the residence time of the liquid in the pipes, 𝑡𝑡𝑟𝑟 ~ 𝑉𝑉/𝐻𝐻, with 𝑉𝑉 being the mean flow velocity of the 
liquid. Due to the requirement of turbulent flow regime to enhance the heat exchange between the liquid and the pipe 
wall, this characteristic time is of the order of tens of minutes, so that 𝑡𝑡𝑟𝑟 ≪  𝑡𝑡𝑏𝑏 ≪ 𝑡𝑡𝐻𝐻 (Hermanns and Pérez 2014). The 
second one is the characteristic heat injection time 𝑡𝑡𝑞𝑞. Since the heat injection/extraction from the ground depends on 
the cooling/heating needs of the building, this characteristic time varies from minutes to months. Also, characteristic 
values of years or even decades are common, as certain heat injections/extractions are sustained over time.  

The thermal problems to solve in the inner and outer regions depend on the relationship between 𝑡𝑡𝑞𝑞 and the 
other three characteristic times. The following discussion will focus on the realistic case in which 𝑡𝑡𝑟𝑟 ≪  𝑡𝑡𝑏𝑏 ≪  𝑡𝑡𝑞𝑞 ≪ 𝑡𝑡𝐻𝐻. 
For the sake of simplicity, the presentation will be limited to simple U-pipe or coaxial pipe configurations with two 
pipes connected at the bottom, one with the flow downwards (pipe 1) and one with the flow upwards (pipe 2). A 
straightforward extension to other borehole configurations, like double U-pipes and energy piles, is possible if certain 
thermal symmetries are preserved (Hermanns and Ibáñez 2017; Ibáñez and Hermanns 2018). 

Inner region 

The inner region encompasses the pipes and grout inside the borehole, and the ground located at radial distances to the 
borehole of order 𝑟𝑟𝑏𝑏. In the pipes, the convective transport of heat by the liquid prevails, while heat conduction takes 
place in the pipe walls, grout, and ground. 

In the heat conduction equation to solve, the vertical heat conduction terms are of order Λ−2 times smaller than 
the radial ones, rendering them negligible. Additionally, when the characteristic heat injection time 𝑡𝑡𝑞𝑞  is large compared 
to the characteristic transversal diffusion time 𝑡𝑡𝑏𝑏, the thermal inertia in the heat conduction equation is of order 𝑡𝑡𝑏𝑏/𝑡𝑡𝑞𝑞  
times smaller than the radial heat conduction terms, rendering it also negligible. All this allows the heat conduction 
problem in the inner region to be interpreted as taking place in two-dimensional planes perpendicular to the borehole, 
only coupled to each other through the pipes and the outer region, and in which a quasi-steady two-dimensional heat 
conduction problem must be solved. 

Far from the borehole, at large radial distances compared to 𝑟𝑟𝑏𝑏, the behavior of the inner and outer regions must 
coincide. The boundary condition to impose there, when solving the aforementioned quasi-steady two-dimensional heat 
conduction problem, is given by the first two terms of the asymptotic expansion of the inner solution for 𝑟𝑟 ≫ 𝑟𝑟𝑏𝑏 
(Hermanns and Pérez 2014): 

 

𝑟𝑟 ≫ 𝑟𝑟𝑏𝑏:    𝑇𝑇(𝑟𝑟, 𝑧𝑧, 𝑡𝑡) =  −
𝑞𝑞(𝑧𝑧, 𝑡𝑡)
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�+ 𝑇𝑇𝑎𝑎(𝑧𝑧, 𝑡𝑡) + 𝑜𝑜(1),                                               (1) 

 
where 𝑞𝑞 is the heat injection rate per unit borehole length and 𝑇𝑇𝑎𝑎 is the apparent temperature at which the inner region 
perceives the ground. This temperature, whose value results from the asymptotic matching with the outer region, differs 
from the unperturbed ground temperature due to the presence of the borehole and its operation. 

It was shown by Hermanns and Pérez (2014), that the heat injection rates per unit pipe length 𝑞𝑞𝑖𝑖, obtained as 
part of the solution to the quasi-steady heat conduction problem in the inner region, must obey the very specific 
mathematical structure 
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where 𝑅𝑅𝑎𝑎 and 𝑅𝑅𝑏𝑏 are respectively the thermal resistance between the pipes and the thermal resistance between the 
borehole and the ground. The thermal skewness parameter 𝑆𝑆, introduced for the first time by Ibáñez and Hermanns 
(2018), represents how the borehole's thermal resistance 𝑅𝑅𝑏𝑏 is distributed among the pipes. Its value lies in the range 
[-1,1], corresponding the extreme values to coaxial probes.  

The weighted mean fluid temperature 𝑇𝑇𝑚𝑚, given in terms of the temperatures 𝑇𝑇𝑖𝑖 of the liquid in the pipes by 
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,                                                                       (3) 

 
was introduced for the first time by Hermanns and Pérez (2014) and represents the temperature at which the borehole 
exchanges heat with the ground. This interpretation can easily be inferred from adding 𝑞𝑞1 to 𝑞𝑞2: 
 

𝑞𝑞 = 𝑞𝑞1 + 𝑞𝑞2 =
𝑇𝑇𝑚𝑚 − 𝑇𝑇𝑎𝑎
𝑅𝑅𝑏𝑏

.                                                                         (4) 

 
The use of 𝑇𝑇𝑚𝑚 and 𝑆𝑆 is very convenient, because several different borehole configurations can be described using 

the same system of equations. For instance, single U-pipes and coaxial pipes, which in the literature are treated using 
different sets of equations, are treated in a unified manner here. 

By substituting the expressions for 𝑞𝑞𝑖𝑖 into the energy conservation equations for the pipes, which are quasi-steady 
because of the characteristic residence time 𝑡𝑡𝑟𝑟 being small compared to the characteristic heat injection time 𝑡𝑡𝑞𝑞, a set of 
ordinary differential equations for 𝑇𝑇1 − 𝑇𝑇2 and 𝑇𝑇𝑚𝑚 can be obtained, which combined with (4) constitutes the 
mathematical problem to solve in the inner region. Using the nondimensional variables 
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in which 𝑄𝑄𝑐𝑐 is the characteristic heat injection rate, 𝑚̇𝑚 the mass flow rate in the pipes, 𝑐𝑐 the specific heat capacity of the 
liquid, 𝑘𝑘 the thermal conductivity of the ground, and 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 the mean annual temperature at the considered geographical 
location, the following system of differential and algebraic equations results (Hermanns and Ibáñez 2017; Ibáñez and 
Hermanns 2018): 
 

𝑑𝑑Δ
𝑑𝑑𝑑𝑑
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𝑑𝑑Θ
𝑑𝑑𝑑𝑑

=  Ω𝑆𝑆𝑞𝑞 −
Ω2

𝐴𝐴
Δ,                     Θ − Θ𝑎𝑎 =  𝑞𝑞𝐵𝐵,                                    (6) 

 
where 𝐴𝐴 = 𝑘𝑘𝑅𝑅𝑎𝑎 and 𝐵𝐵 = 𝑘𝑘𝑅𝑅𝑏𝑏 are the nondimensional thermal resistances of the borehole, Ω = 𝑘𝑘𝑘𝑘/(𝑚̇𝑚𝑐𝑐) is a 
nondimensional parameter that compares the characteristic temperature difference 𝑄𝑄𝑐𝑐/(𝑚̇𝑚𝑐𝑐) between the pipes with 
the characteristic temperature difference 𝑄𝑄𝑐𝑐/(𝑘𝑘𝑘𝑘) between the borehole and the ground located at radial distances of 
order �𝛼𝛼𝑡𝑡𝑞𝑞, and 𝜉𝜉 = 𝑧𝑧/𝐻𝐻 is the nondimensional vertical coordinate. 

The boundary conditions to impose at the top, 𝜉𝜉 = 0, and bottom, 𝜉𝜉 = 1, of the borehole are 
 

𝜉𝜉 = 0:   Δ = 𝑓𝑓(𝜏𝜏),                                  𝜉𝜉 = 1:   Δ = 0,                                                   (7) 



 
being 𝑓𝑓 = 𝑄𝑄(𝑡𝑡)/𝑄𝑄𝑐𝑐 the nondimensional heat injection rate and 𝜏𝜏 = 𝑡𝑡/𝑡𝑡𝑞𝑞 the nondimensional time. 

The formulated mathematical problem requires an additional relationship between the four unknowns, Δ, Θ, 𝑞𝑞, 
and Θ𝑎𝑎, to be solvable. This relationship is supplied by the outer region and its asymptotic matching with the inner 
region.  

Outer region 

Far from the borehole, at radial distances of order �𝛼𝛼𝑡𝑡𝑞𝑞, the thermal inertia of the ground becomes important, and a 
slender borehole is perceived in first approximation as a finite line source of heat, as inferred from the behavior of the 
inner region far from the borehole, given in (1) (Hermanns and Pérez 2014; Ibáñez and Hermanns 2018). Thus, the 
unsteady outer region is in first approximation axisymmetric, and an analytical solution for the nondimensional ground 
temperature, Θ𝑔𝑔 = �𝑇𝑇𝑔𝑔 − 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�/(𝑄𝑄𝑐𝑐/(𝑘𝑘𝑘𝑘)), can be obtained by superposition of point sources of heat (Carslaw and 
Jaeger 1959): 

Θ𝑔𝑔(𝜉𝜉, 𝜂𝜂, 𝜏𝜏) = Θ∞(𝜉𝜉, 𝜏𝜏) +
1
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where 𝜂𝜂 = 𝑟𝑟/�𝛼𝛼𝑡𝑡𝑞𝑞, 𝜖𝜖 = �𝛼𝛼𝑡𝑡𝑞𝑞/𝐻𝐻, and Θ∞ is the nondimensional unperturbed ground temperature: 
 

Θ∞(𝜉𝜉, 𝜏𝜏) = 𝐺𝐺𝐺𝐺 + � 𝑇𝑇�𝑠𝑠𝑠𝑠e𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑞𝑞𝜏𝜏e−�𝑖𝑖𝜔𝜔𝑛𝑛𝑡𝑡𝑞𝑞
𝜉𝜉
𝜖𝜖 

∞

𝑛𝑛=−∞

,                                                      (9) 

 
being 𝐺𝐺 = 𝑞𝑞𝑔𝑔𝑔𝑔𝑔𝑔𝐻𝐻2/𝑄𝑄𝑐𝑐 the nondimensional geothermal heat flux at the considered geographical location and 𝑇𝑇�𝑠𝑠𝑠𝑠 the 
nondimensional harmonic modes, with nondimensional angular frequency 𝜔𝜔𝑛𝑛𝑡𝑡𝑞𝑞, of the ground surface temperature 
oscillations with respect to the mean annual temperature 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.  

Asymptotic matching 

The asymptotic matching procedure states that both the inner and outer solutions are valid in an intermediate region 
defined by 𝑟𝑟𝑏𝑏 ≪ 𝑟𝑟 ≪ �𝛼𝛼𝑡𝑡𝑞𝑞, or expressed in non-dimensional variables (𝜖𝜖𝜖𝜖)−1 ≪ 𝜂𝜂 ≪ 1, in which their asymptotic 
expansions must coincide. The asymptotic behavior of the outer solution close to the borehole can be obtained by 
taking the limit 𝜂𝜂 ≪ 1 in (8). The resulting expression depends on the position along the borehole. Near the top and 
the bottom of the borehole, asymptotic boundary layers appear that must be analyzed separately. Also, the logarithmic 
singular behavior near the borehole must be extracted carefully before comparing with expression (1). Thus, the 
remaining non-logarithmic terms that appear in the outer solution near the borehole correspond to the nondimensional 
apparent temperature Θ𝑎𝑎 that expressed in compact form in terms of the nondimensional heat injection rate per unit 
borehole length 𝑞𝑞 is 

 
Θ𝑎𝑎 = 𝐹𝐹(𝜉𝜉, 𝜏𝜏, 𝑞𝑞).                                                                                   (10) 

 
All the details for the cases of steady-state excitation and time-harmonic sub-annual excitation have already been 

completed and submitted for publication (Hermanns and Ibáñez 2017; Ibánez and Hermanns 2018) while the case of 
arbitrarily time-varying heat injection rate is still under development. 



 
 

Solution procedure 

The solution to the integro-differential problem formed by (6), (10), and the boundary conditions given in (7) is obtained 
through asymptotic expansions of the unknown variables in terms of the small parameter 𝛿𝛿 present in the problem 
(Hermanns and Ibáñez 2017; Ibáñez and Hermanns 2018): 

 
                  Δ = Δ0 + 𝛿𝛿Δ1 + 𝑜𝑜(𝛿𝛿),                    𝛿𝛿Θ = Θ0 + 𝛿𝛿Θ1 + 𝑜𝑜(𝛿𝛿),                    𝑞𝑞� = 𝑞𝑞�0 + 𝛿𝛿𝑞𝑞�1 + 𝑜𝑜(𝛿𝛿).              (11) 
 

The small parameter 𝛿𝛿 is proportional to 𝑙𝑙𝑙𝑙𝑙𝑙(𝜖𝜖𝜖𝜖)−1 ≪ 1 and its exact value depends on the case studied. In this 
expansion, the nondimensional weighted mean fluid temperature Θ is preceded by a factor 𝛿𝛿 that is foreseen by analyzing 
the order of magnitude of that variable in (6) (Hermanns and Ibáñez 2017; Ibáñez and Hermanns 2018). The expansions 
in (11) are introduced in (6) and similar order terms are grouped to obtain simpler systems of equations to be solved for 
each order of the expansions. The resulting analytical expressions for Δ, Θ, and 𝑞𝑞 describe the thermal response of 
vertical geothermal boreholes and are computationally inexpensive to evaluate. 

Worth to mention that the obtained apparent temperature is not uniform along the borehole, presenting 
deviations of around ±20% with respect to a mean value. This result is important, as the mean azimuthal borehole wall 
temperature coincides in value with the apparent temperature (Hermanns and Pérez 2014), showing that the simplifying 
assumption introduced by the g-function model, that the mean azimuthal borehole wall temperature is uniform along the 
borehole, is not accurate. 

EXTENSION TO BOREHOLE FIELDS 

Although most of the work done so far has been on single boreholes, the extension to geothermal heat exchangers 
comprised of tens or hundreds of boreholes has already been initiated, and preliminary results for the case of a time-
harmonic sub-annual excitation will be presented for the first time in this conference. 

When a time-harmonic excitation is imposed at the top of the borehole, the characteristic time of variation of the 
heat injection rate becomes 𝑡𝑡𝑞𝑞 = 1/𝜔𝜔, where 𝜔𝜔 is the angular frequency of the oscillation. The total heat injection rate 
can then be expressed as 𝑄𝑄(𝜏𝜏) = Re�𝑄𝑄�𝑒𝑒𝑖𝑖𝑖𝑖�. Consequently, all variables can be expressed as harmonic functions, 

 
          Δ(𝜉𝜉, 𝜏𝜏) = Re�Δ�(𝜉𝜉) 𝑒𝑒𝑖𝑖𝑖𝑖�,                     Θ(𝜉𝜉, 𝜏𝜏) = Re�Θ�(𝜉𝜉) 𝑒𝑒𝑖𝑖𝑖𝑖�,                    𝑞𝑞�(𝜉𝜉, 𝜏𝜏) = Re�𝑞𝑞�(𝜉𝜉) 𝑒𝑒𝑖𝑖𝑖𝑖�,                  (12) 

 
and only the complex-valued harmonic modes Δ�, Θ�, and 𝑞𝑞� need to be obtained. These complex values, that are functions 
of the nondimensional vertical coordinate 𝜉𝜉, include information of the amplitude of the oscillation as well as of the 
phase difference with respect to the total heat injection rate at any section of the borehole. A system of equations 
equivalent to (6) must be solved now for each borehole, and additional conditions fix the total heat injection rate 𝑄𝑄 
transferred to the ground by the 𝑁𝑁𝑏𝑏 boreholes and the common inlet temperature of the boreholes. The apparent 
temperature of each borehole contains now 𝑁𝑁𝑏𝑏 − 1 new terms which correspond to the temperature perturbations 
exerted by the remaining boreholes. These contributions are obtained by setting 𝜂𝜂 = 𝐵𝐵𝑖𝑖𝑖𝑖/�𝛼𝛼𝑡𝑡𝑞𝑞 in (8), where 𝐵𝐵𝑖𝑖𝑖𝑖 is the 
distance between the borehole and the remaining boreholes. Finally, the solution of the problem is obtained by 
expanding Δ�, Θ�, and 𝑞𝑞� in terms of a set of 𝑁𝑁𝑏𝑏 small parameters as in (11). Details of the solution procedure and the 
resulting expansions can be found in Hermanns and Ibáñez (2018b).  
A first implementation of the developed model in a computer program shows that the solution to a geothermal heat 
exchanger comprised of 100 boreholes can be obtained in 30 milliseconds using a single CPU core on an Intel Core i7-
7700K PC. Thus, the advantage of having analytical expressions for the thermal response of geothermal heat exchangers 
is that they can be used for the analysis of heterogeneous borehole fields with irregular placement of the boreholes 
without requiring the excessive computational cost of SBM or the loss in accuracy of the g-function model. 



 
     

Ground 
(Granite) 

Conductivity 3.7 W/(m K) 
Diffusivity 1.5 ∙ 10−6 m2/s 

Grout 
Conductivity 2.2 W/(m K) 
Diffusivity 6.79 ∙ 10−7 m2/s 

Liquid 

Density 997.2 kg/m3 
Specific heat 
capacity 4180 J/(kg K) 

Conductivity 0.608 W/(m K) 
Dynamic 
viscosity 8.9 ∙ 10−4 kg/(m s) 

Mass flow rate 
(per borehole) 0.168 kg/s  

Pipes Conductivity 0.42 W/(m K) 

 
Figure 1 Diagram of the configuration used for the comparison of the derived asymptotic model with three existing 

models. (Left) Cross section of the coaxial borehole. The liquid flows downwards through the pipe shown in red 
and upwards through the pipe shown in cyan. The grout is shown in grey and the ground in brown. (Middle) 
Longitudinal section of the borehole field. Borehole 1 is at left and Borehole 2 is at right. (Right) Table of 
properties of the different materials used in the simulation. 

COMPARISON WITH EXISTING MODELS 

To assess the accuracy of the derived asymptotic expressions, comparisons with three existing models with different 
levels of accuracy are carried out. The first and most accurate model is a detailed numerical simulation (DNS) of the 
governing equations using a commercial finite-element simulation tool. The second model is the Superposition Borehole 
Model (SBM) developed by Eskilson and Claesson (Eskilson 1986; Eskilson and Claesson 1988). Since the original 
implementation is not meant for steady-state or time-harmonic excitations, a reimplementation of the method has been 
performed (Hermanns and Ibáñez 2017; Ibáñez and Hermanns 2018). The third model is the g-function model proposed 
by Eskilson (Eskilson 1987). For the steady-state case, the g-functions have been taken from the literature (Eskilson 1987; 
Zeng, et al. 2003; Conti 2016), while for the other regimes they have been computed using the reimplemented SBM and 
following the specifications given in the literature (Eskilson 1987; Eskilson and Claesson 1988; Hellström 1991; 
Blomberg, et al. 2017). The g-function solution has been implemented using an equally-spaced discretization with 20 
segments along the boreholes, as in Cimmino and Bernier (2014). 

The results from all the comparisons performed so far can be found in the work submitted for publication 
(Hermanns and Ibáñez 2017; Ibáñez and Hermanns 2018). Here, some preliminary results are shown for the time-
harmonic sub-annual excitation of a geothermal heat exchanger comprised by two parallel coaxial boreholes of different 
lengths. Figure 1 contains a diagram of the borehole field studied as well as a table including the properties of all materials 
involved in the simulation. A total heat injection rate of modulus �𝑄𝑄�� = 2100 W and period of one year (365.25 days) 
is distributed among the boreholes through which a mass flow rate of 𝑚̇𝑚 = 0.168 kg/s per borehole is supplied. 

Figure 2 shows the modulus and argument of the complex-valued harmonic modes Δ�, Θ�, and 𝑞𝑞� for each of the 
two boreholes as functions of 𝜉𝜉 = 𝑧𝑧/𝐻𝐻�, where 𝐻𝐻� = 50 m is the mean depth of the boreholes. The modulus of each 
harmonic mode is a measure of the maximum value attained as it oscillates. On the other hand, the argument of each 
harmonic mode is a measure of the difference in phase that appears between that variable and the total heat injection 
rate. 



 
 

 

 
Figure 2 Time-harmonic thermal response of a geothermal heat exchanger, comprised of two heterogeneous coaxial 

boreholes with nondimensional depths ℎ equal to 0.8 and 1.2, to a time-harmonic heat injection rate with a one-
year period. (Left) modulus and (right) argument of the (top) nondimensional temperature difference Δ�, (middle) 
nondimensional weighted mean temperature Θ�, and (bottom) nondimensional heat injection rate per unit 
borehole length 𝑞𝑞� of the two boreholes as functions of the nondimensional axial coordinate 𝜉𝜉 and for the 
considered models. 

 



 

 
Figure 3 Time-harmonic thermal response of a geothermal heat exchanger, comprised of two heterogeneous coaxial 

boreholes with nondimensional depths ℎ equal to 0.8 and 1.2, to a time-harmonic heat injection rate with a one-
year period. (Left) modulus and (right) argument of the nondimensional apparent temperature Θ�𝑎𝑎 of the two 
boreholes as functions of the nondimensional axial coordinate 𝜉𝜉 and for the considered models. 

While the developed asymptotic model, SBM, and DNS present small differences, the g-function model is unable 
to correctly represent the temperature and heat injection rate distributions along the boreholes. The g-function model 
predicts a uniform zero value of the argument of both Δ� and Θ� while the remaining models display notable axial 
variations and non-zero mean values of those variables. The most noticeable discrepancies between the g-function model 
and the remaining models arise in the modulus of the nondimensional heat injection rate per unit borehole 𝑞𝑞�. In a small 
region near the top and the bottom of each borehole, the nondimensional heat injection rate per unit borehole 𝑞𝑞� 
increases abruptly (Hermanns and Ibáñez 2017). These regions, which coincide with the asymptotic boundary layers 
mentioned before, are correctly represented by all models except the g-function one.  

Figure 3 shows the nondimensional apparent temperature Θ�𝑎𝑎 for the same configuration. The developed 
asymptotic model, SBM, and DNS deliver very similar results, with deviations of up to ±23% with respect to a mean 
value. These results confirm that neither the nondimensional apparent temperature Θ�𝑎𝑎 on Figure 3, nor the 
nondimensional heat injection rate per unit borehole length 𝑞𝑞� on Figure 2, are uniform along the borehole. Hence, the 
simplifying assumptions made by Eskilson’s definition of the g-function (uniform mean azimuthal borehole wall 
temperature) and the alternative definition found in the literature (uniform heat injection rate per unit borehole length) 
are not justified by the physics of the problem. 

CONCLUSIONS AND FUTURE WORK 

By means of scale analysis and matched asymptotic expansion techniques, a new approach for the modeling of the 
thermal response of geothermal heat exchangers was initiated in 2011. A first publication, whose main focus was the 
asymptotic matching process and the structure of the solution to the quasi-steady heat conduction problem in the inner 
region, was published in 2014 (Hermanns and Pérez 2014), followed by a recent extension of that analysis to the steady-
state thermal response of complete boreholes (Ibáñez and Hermanns 2018). Further work related to the time-harmonic 
thermal response of single boreholes (Hermanns and Ibáñez 2017) and its extension to whole borehole fields (Hermanns 
and Ibáñez 2018b) is in reviewing process at the moment. Also, a critical analysis of the g-function model and its different 
versions was recently sent for publication (Hermanns and Ibáñez 2018). In it, a mathematical explanation is given to 
the ill-posedness that appears in the original definition of the g-function model when no initial insulated length is used. 



 
 

Still in the present year, the analysis of the thermal response of single boreholes to arbitrarily time-varying heat 
injection rates will be finished and sent for publication. Then, in the next year, the case in which the characteristic heat 
injection time 𝑡𝑡𝑞𝑞 is comparable to the characteristic transversal diffusion time 𝑡𝑡𝑏𝑏 will be addressed. This regime of 
operation is relevant for peak loads, in which the inner region is unsteady. The same applies to the flow in the pipes in 
case the characteristic heat injection time 𝑡𝑡𝑞𝑞 is comparable to the characteristic residence time 𝑡𝑡𝑟𝑟. Also, the extension 
to borehole fields of the thermal response to arbitrarily time-varying heat injection rates will be performed. 

The outcome of all this work will ultimately be a coherent theoretical framework for the thermal response of 
geothermal heat exchangers with irregularly placed heterogeneous boreholes, in which extensions such as stratified 
grounds, time-varying mass flow rates, and groundwater flow will be possible, and whose reduced computational cost 
will allow the implementation of automatic optimization strategies at borehole field level. 
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