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CHAPTER! 

BACKGROUND 

Introduction 

Automorphic forms on GL(3,R) can be thought of as a generalization of the more 

classical and familiar automorphic forms on GL(2, R). The aspects which generalize to 

GL(3, R) are outlined in Chapter 1 of (Bl] and are reproduced here for comparison to the 

GL(3,R) case. Automorphic forms on GL(2,R) are functions on the upper half plane 

H. In particular, there are two general types of automorphic forms on GL(2,R); namely, 

holomorphic or modular forms and Maass forms. It is the Maass forms which generalize to 

GL(3,R). 

In order to generalize Maass forms to automorphic forms on GL(3,R) we consider H 

as GL(2,R)/ZK where Z is the center of GL(2,R) and K is the subgroup of orthogonal 

matrices. Thus we have 

In this way the natural action of S L(2, Z) on H is given by matrix multiplication. With 

this action we define the automorphic forms of Maass. A complex-valued function f on H 

is a Maass form if 

(a) f(gz) = J(z) for all g E SL(2,Z) and z EH, 

(b) f is an eigenfunction of the G-invariant differential operators on H, and 

( c) there exists an n such that f ( ( y 1)) yn is bounded for y > 1. 

1 
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We say f is a cusp form, if in addition 

Condition (b) in this definition can be made more precise. That is, the space of 

G-invariant differential operators on 1{ is generated by 

( <12 d2) 
A = -y2 dx2 + dy2 . 

Therefore, condition (b) implies A/ = ')..J for some eigenvalue A E C. Thus associated to f 

is a complex number Ai however, a more natural parameter to associate with f is v where 

').. = v(l - v). In this situation we say f is a Maass form (or respectively cusp form) of 

type v. In the GL(3, R) case it is known that the space of differential operators is generated 

by two elements. Thus the type is given by two complex numbers. 

Condition (a) in the definition of a Maass form implies that 

is periodic in x. This, along with the other conditions, gives a Fourier expansion of the form 

where 

and Kv(z) is the standard K-Bessel function. If f is a cusp form then ao = 0, and we can 

write 

f ( ( Y ~)) = Lan wv ( ( ny n;)) . 
n¢0 

Thus associated to a cusp form is a sequence { an}n¢O· This sequence is used to define the 

L-function associated with /. For fa cusp form, the £-function associated with f is 

L an 
L(s,f) = -. ns 

n¢0 
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It is known that this series is absolutely convergent in a right half pane, extends to an entire 

function of s, and satisfies a functional equation of the form 

,r-•r ( s; v) r (1 + ;-v) L(s,f) = ,r•-tr (1-; + v) r (2-;-v) L(l- s,f). 

A similar functional equation for the L-function associated with a cusp form on GL(3, R) 

was first proven by Godement and Jacquet ([GJ]). A more direct proof using the machinery 

ofrepresentation theory was given by Jacquet, Piatetski-Shapiro, and Shalika ([JPS]); how­

ever the gamma factors were not explicitly evaluated. Later, following methods of [JPS], a 

classical proof was given by Bump ([Bl]). In this work the gamma factors were specifically 

evaluated, but the method relied on the introduction of Eisenstein series. Finally, by intro­

ducing an auxiliary variable, a classical and direct method was presented by Hoffstein and 

Murty ([HMl]). 

Jacquet, Piatetski-Shapiro, and Shalika ([JPS]) go much further and prove the converse 

theorem in the more general setting of automorphic forms on the Adele group. The G L(2, R) 

analog had previously been proven by Weil ([W]) (See the appendix for remarks on Weil's 

converse theorem). The converse theorem states that a function is a cusp form if and only 

if all twists by characters of the L-function associated- with the form have an Euler product, 

are entire and bounded in every vertical strip, and satisfy a similar functional equation. 

_ In the following work, the exact form of the functional equation for the L-function 

associated with a cusp form on GL(3, R) which has been twisted by a primitive Dirichlet 

character will be established. The methods of [Bl] will be used while incorporating the 

methods of [HMl]. We will also be relying on the handwritten notes of Hoffstein and Murty 

([HM2]), which were provided by Hoffstein. In these notes they work out the functional 

equation for the L-function twisted by an additive character of prime modulus. Their results 

were easily extended to the case of a primitive Dirichlet character of prime modulus and 
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by a modification of their argument the result was obtained for even primitive Dirichlet 

characters with any modulus. Finally, by introducing an auxiliary variable, the result was 

obtained for all primitive Dirichlet characters. It is hoped that by interpreting the results 

of [JPS] into classical language more insight may be obtained regarding the behavior of the 

cusp forms themselves. 

GL(3, R) Preliminaries 

We can now define an automorphic form on G = GL(3,R). Let K denote the subgroup 

of orthogonal matrices in G, let Z denote the center of G, and let 1i = G / Z K. It is this space 

'Ji which plays the role of the upper half plane. We note, by the Iwasawa decomposition, 

that each coset in 'Ji has a unique representative of the form 

T = ( !/11/2 !/1;2 
:; ) where !/1,Ya > 0 and z1,z2,z3 ER. 

We also introduce an auxiliary coordinate x4 given by the relation 

which will greatly simplify some of the formulas. Finally, we let r = GL(3, Z). A GL(3, R) 

automorphic form is a complex-valued function Fon 1i such that 

(a) F(gr) = F(r) for all g Er and TE 'Ii, 

(b) F is an eigenfunction of the G-invariant differential operators on 'Ji, and 

( c) there exist constants ni, n, such that F ( ( !/11/2 !/1 
1 

) ) yf' y," is bounded 

on the subset of 1i determined by Y1, Y2 > 1. 

We say F is a cusp form if in addition 

J.' J.' F ( C 1 =n T) dz1dz3 = 0 

J.' J.' F ( C ·; ·: ) T) dz2dz3 = 0 

for all T E 'Ji, 
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As in the GL(2,R) case, condition (b) can be made more precise. The space of 

G-invariant differential operators on 1{ is generated by two elements ([Bl] 2.33 and 2.37); 

namely, 

and 

However, more natural parameters to associate with F are v1 , v2 E C which are given by 

the relations ([Bl] p. 33) 

and ([Bl] p. 34) 

In this situation we say F is an automorphic form ( or respectively cusp form) of type 

Also of particular interest in the theory of automorphic forms for GL(3, R) is the 

involution 

'r = w, •,-•.,, where w1 = ( _1 -1 -l) . 

We use this involution to define the dual f of any function f on 1{, which is given by 

l(r) = J('r). 

If Fis an automorphic form of type (v1, v2) then F' is an automorphic form of type (v2, v1) 

([Bl] p. 71). 
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We now recall the expansion of an automorphic form in terms of Whittaker functions 

([Bl] Chapter 4). This will give the coefficients used to define the L-function for GL(3, R). 

We first must define several subgroups of r = GL(3, Z). We let 

r~={rer:r=C f 0} 
r'={rer:r=(i ~ J} 
r~ = { r e r 2 : det( r) = 1} 

r~ = r2 n roo. 
We now let F be an automorphic form of type (111,112), Since Fis invariant under 

( 
1 

1 ~ ) we have the Fourier expansion 

F(r) = . I: F;:;(r) 
.... 

where 

r.::(r) = J.' J.' F ( C 1 =n T) e(-n1•1 - n,x,)dx,dz,. 

We also note ([Bl] 4.5) that for A, B, C, D, m E Z with AD - BC= l and m > 0 we have 

Thus we have that 
00 

F(r) = .Fg(r) + ~ ~ ~(gr). 
9eri \r~ m=l 

. (1 1 ) Noting that~ is invariant under 1 1 we see that we have the Fourier expansion 

~(r) = ~ Fm,n(r) 
nEZ 

where 
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Hence, 
00 

F(r) = L Fo,n2 (r) + L L L Fn1 ,n2 (gr). 
n:iEZ uer;, \q n1=l n:iEZ 

We observe that 

and if we assume that F is a cusp form we see that Fo,n2 = 0 and Fn1 ,o = O, whence 

00 00 

F(r) = L L L Fn1 ,n:i(gr). 
uer~ \r 2 n1=l n2=l 

There exist ani,n:i ([Bl] 4.12) such that 

where 

with T written in the standard coordinates and 66 = 6 +!4 • With this we have established 

Lemma 1.1. [Bl] If F is a cusp form of type (111,112) then there exist coefficients an1 ,n2 

such that 

The array an1 ,n2 is called the matrix of Fourier coefficients of F and we have 

It is this array which will be used to define the L-functions. For convenience of notation, if 

an1 ,n2 is the matrix of coefficients for F then we let <Ln1 ,n2 be the matrix of coefficients for 

the dual F. We have ([Bl] 4.15) that 
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It is now possible to define the L-function for GL(3, R). Let F be an automorphic form 

of type ( 111, 112) and an1 ,n2 be its matrix of Fourier coefficients. The L-function associated 

with F is given by 
00 

L(w,F) = ~ a1,n. 
LJ nW 
n=l 

We see for the dual. form F that 

00 - 00 

L(w,F') = ~ a1,n = ~ an,1. 
LJ nw LJ nw 
n=l n=l 

We have an1 ,n2 = O(ln1n21) ([Bl] 8.4); thus the L-functions converge absolutely for 

Re( w) > 2. Also, for x a Dirichlet character we define the twisted L-function associated 

with Fby 

L (w F) = ~ a1,nx(n) 
X ' LJ nw ' 

n=l 

which is al.so absolutely convergent for Re( w) > 2. 

It is the L-function for which Bump [Bl] established a functional. equation. Later, 

Ho:ffstein and Murty [HMl] gave a more direct proof of this functional. equation. It will 

be their method which will be used in this paper to develop a functional. equation for the 

twisted L-function. We now, very briefly, state Ho:ffstein and Murty's results. They begin 

by introducing an auxiliary variable s and considering the two Mellin transforms 

i(s,w)= ff W ( C v t v--) )
. u, 8 dt dV 

1 t V 

and -

loo loo 100 
( ( tv ) ) dt d 9(s,w) = Jo Jo -oo W yv v 1 . t10v8dyt: 

where 

W( T) = Wi;'i'"1 ( T) 

and 



It is now possible to show 

00 - 100 100 ( ( t L(w,F)i(s-1,w-1) = L ~:i,'1 W v 
n=l O 0 

) ) 
tw-lvs-1 dt dv 

l t V 

= i roo 10() L A,n ( (t 
Jo Jo nEZ 

) ) tw-1 s-1 dt dv 
V V --

l t V 

= ~ r r FJ ( C . J) 1w-···-·~d:. 
Exploiting the fact that 

the above equals 

) ) t-w s-ld dt dv 
V V y--

l t V 

= L(l - w,F)cI>(s - 1, -w). 

So we have by meromorphic continuation that 

L(w,F)i(s -1,w-1) = L(l - w,F)cI>(s- 1,-w). 

Evaluating the Mellin transforms we obtain 

_ r (~) r ( ~) r (~) r (wtsz-a-1) r ( w+s;-f3-1) r (w+s;-1-1) 
cI>(s-1,w-1) = . 47r2w+s-1r (2wv-1) 

and 

9 

r (1-~-a) r (1-~-P) r (1-~-1) r (w+s2a-1) r ( w+s2p-1) r (w+s21-1) 
cI>(s -1 -w) = ---~-----------......--,=--------------.' . 47rs-w+!r ( s+2;i-1) 
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where 

'Y = 2111 + l/2 _. 1. 

Combining these facts and noting that 

r rn(C ) ) tw-l a-l dt dv 
V V --

1 t V 

converges for Re( s + w) sufficiently large we obtain 

Theorem 1.2. [Bl] The L-function of an automorpbic form F converges for large values 

of w. If F is a cusp form then L( w, F) bas an analytic continuation to all values of w and 

satisfies 

1r-~"' L(w,F)r (w;a) r (w;/3) r (w;1) 
-30-w> (1-w-a) (1-w-/3) (1-W-"() = 1r 2 . L(l - w, F)r . 2 r 2 r 2 . 



CHAPTER II 

SOME BASIC LEMMAS 

In this chapter we will present some basic lemmas which will be useful in the develop­

ment of the functional equation of the twisted L-function. Throughout this chapter we let F 

be an automorphic form of type (111,112), We will use the notation of Chapter 1, specifically 

for F;:', W, <), and i. We first recall ([B 1] 4.4) that if n2 E Z then 

F.:': ( C ~, J r) = F.':+,.,.,(r). 

We also need a similar result. 

Lemma 2.1. If n3 E Z then 

r.:: ( ( ;, 1 l) T) = r.::+•,n,(r). 

Proof: We have by the definition of F;:f that 

r.-: ( ( ! 1 J ,) 
= J.' J.' F ( C 1 =n e, 1 J ,) e(-n1•1 - n,z,)dz1d•2 

= J.' J.' F ( U· 1 =n r) e(-n, •• - n,z,)dz1dz, 

= J.' J.' F ( ( J, 1 J C 1 •, ~1~•,) ,) e(-n1•1-n,z,)dz1dz,. 

By a change of variables and the fact that F is invariant on the left by r, the above equals 

J.' (::., F ( C 1 ;: ) r) e(-n1 ( •.+ n2z3) - n3z3)dz1 dz3 

11 
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which by periodicity equals 

I 

We now need a simple result about an integral of a Whittaker function. 

Lemma 2.2. 

Proof: Since Wis invariant on the right under ZK we have 

Now by a change of variables the above equals 

I 

Next we compute the coordinates of a certain matrix in order to calculate a certain 

partial derivative of W. 

Lemma 2.3. For a, b, c, d E R 

abd2 

ac ) c2+d2 

be 
c2+d2 

1 

differ by multiplication on the right by an element of Z !( and hence have the coordinates 

c2 + d2 

ad,vc2 + d2 

Y2 = b2d2 + c2 + d2 

be 
X1 = c2 + d2 

abd2 

X2 = b2d2 + c2 + d2 

ac 
X3 = c2 + d2 • 



/ 

13 

Proof: We first note 

G 1 d) Cc N + d' :) ("c~ti d' v)! d' v'b2d2 + c2 + d') 

= (:~ y'c2+d2 :~ ) (v'c~-:id
2 

Jc:~d2 ) 
c2 + d2 y'b2d2 + c2 + d2 

( 
adv' c2 + d2 abd2 acy'b2 d2 + c2 + d2 ) 

= b2d2 + c2 + d2 bcv'b2d2 + c2 + d2 . 
(c2 + d2)y'b2d2 + c2 + d2 

Multiplying by 1 I, where I is the identity matrix, we obtain 
(c2 + d2)y'b2d2 + c2 + d2 

( JdJ+,n:f,•+"+" 

and comparing thls to ( Yi 1/2 ~:' I 

We use this to obtain: 

Lemma 2.4. For a, b, c, d E R with d > 0 we have 

Proof: From the definition of W, the previous lemma, and letting 

we see that 



14 

We also note 

{) ( ( abd2 be )) 
{Jc e b2d2 + c2 + d2 + c2 + d2 

c=O 

( . ( -2abcd2 b(c2 + d2)- 2bc2) ( abd2 be )) 
= 21ri (b2d2 + c2 + d2)2 + (c2 + d2)2 e b2d2 + c2 + d2 + c2 + d2 c=O 

_ 21rib (~) 
- d2 e b2+1 
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Thus, by the product rule 

Now using the previous lemma with c = 0 and the definition of W, the above equals 

I 

In the next chapter we will be interested in twisting the L-function of an automorphic 

form F by a Dirichlet character mod q. In the following work we will follow the structure 

of [HM2]. We define a function 

which depends on q and another integer u. This function will be used to simplify some of 

the formulas in the next chapter. Several relationships involving G will be useful. 
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We first note that for n1, n3 E Z we have 

= G(T) 

(
1 n3 + un1) 

since 1 nf q E r. From this fact we have the Fourier expansion 

G(T) = 2: G~~(T) 
n1,n3EZ 

where 

G::(r) = i J.' J.' G ( C I ;: ) r) e (- n,qx, - n,x,) dx,dx,. 

With this we have the following lemmas. 

Lemma 2.5. [HM2) For 6, e3 E R we have 

G~ ( C 1 ~n ,) =•(6+m6)G~(r). 

Proof: By the definition of G~ we have 



which by periodicity equals 

Lemma 2.6. [HM2] 

.~5'(r) =if.' a ( (1 1 r) ,) e(-y)dy. 

Proof: We have by the Fourier expansion 

H' G ( (1 1 r) }c-y)dy 

= ! 1q L a:~(( 1 
1 y1) r) e(-y)dy. 

q O n1,n3EZ 

= \ r L r 1 r a ( ( 1 
1 :~) ( 

1 
1 y) T) 

q lo n1,n3EZ lo lo 1 1 

Now by a change of variables and periodicity, the above equals 

We observe that 

thus the above equals 

and by the definition, the above equals L a;3 (r). 
n3EZ 

if n1 = q 
if n1 # q; 

17 

I 

I 
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Lemma 2.7. If(u,q) = 1 then 

Proof: Since we have assumed that ( u, q) = 1, there exist u, a E Z such that uu + aq = l. 

We observe 

We observe from the definition of a3m that · 

Noting that (: -.u 
1 

) e r and using the matrix fact above we obta.in 

1 r1 r ( ( 1 qa:3 ) ( q q lo lo F 1 UZ3 : 7 u 

which by a change of variables equals 

J.' (~ F ( C 1 ~,3) ( ii t J T) e(-q•, + qu,3 - qmz3 )dz1d,3 . 

By periodicity this equals 

Now, by another change of variables we obtain_ 

which by periodicity equals 
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and by the definition this equals P,"-• ( ( ! t i) T) . I 

Before we can proceed to develop the functional equation for the twisted L-function, 

we must evaluate the two Mellin transforms introduced in Chapter 1, along with another 

related Mellin transform. Before we do that, we will give a proof of equation 10.1 of [Bl], 

for which Bump had admittedly not worked out all of the details, following the methods of 

[BF]. We begin with a rather technical result. 

Lemma 2.8. For Re{11i) > l, Re(112) > l, -1 < Re(s1 - II]. - 2112) < 0, and -1 < 

Re{ s2 - 211]. - 112) < 0 we have 

Proof: Let 

whence 



Replacing e. by e16 - ea we obtain 

We consider 

and introduce a family of integrals that depend on (J by replacing 

e1 - -ei86 
e2 -i, -:e'8e2 

ea -1- e218ea 
Y1 -1- e18Y1 

Y2 -1- ei8Y2 

6 -1- -ei86 
e2 -i, e-18e2 

ea - -ea 
Y1 -1- e18y1 

Y2 -1- e-18Y2 

in each of the summands, respectively. We let Is equal 

6 - e-i9e1 

e2 -1- e-18e2 

ea - e-2i9ea 

Yl -1- e-18 Y1 

Y2 -1- e-'6Y2 

20 
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which in turn equals 

l°" l°"f 00 100 100 (e~ + e~Yi + YiY~)-!?-((66 - 6)2 + !iY~ + YiY~)-~ Jo Jo -oo Jo Jo 
x ( e( e's6 + e's 6)e(-3111-3.112+s1+s2+2)iS + e(-e-iS 6 + e's 6)e(-111 +112-s1 +s2)i9 

+ e(e'S6 _ e-i96)e(111-112+s1-s2)i9 + e(-e-i96 _ e-il16)e(3111+3112-s1-s2-2)i9) 

x Yi111+112+s1-ty21+2112+s2 -td6d6d!3 dy1 dy2, 
Yt Y2 

which equals 

X ( e( ei9 6)e(-111 -2112+s1 +I)iS + e( -e-i9 6)e(111 +2112-s1-l)i9) 

X ( e( eiS e2)e(-2111 -112+s2+I)i9 + e( -e-i9 e2)e<2111 +vrs2-l)ill) 

X Yi111+112+s1-ly21+2112+srld6d6d6 dy1 dy2, 
Y1 Y2 

We see from the definition of Is that 

and since 

x ( e( ei9 6)e(-111 -2112+s1 +I)i9 + e( -e-i8 6 )e(111 +2112-s1 -l)ie) 

X ( e( ei8 6)e(-2111-112+s2+I)ill + e(-e-ill e2)e(2111 +11rsrl)i8) 

X Yi111+112+s1-1y?+2112+s2 -1d6d6des dy1 dy2 
Y1 Y2 

we see le is absolutely convergent for O < (} < J. 

We now want to integrate along the contours given by first integrating each variable 

along the real axis out to a value M, then integrating along M eitf> for </> E [O, 8), and finally 

going back to the origin along xe18 • Cauchy's theorem gives that the integral along these 



contours is zero. We first let 

/(6, 6,6, Y1, Y2, </J) = 

( e( eitf>6)e(-111-2112+s1 +l)it/> + e( -e-itf> 6)e(111 +211:i-s1-l)it/>) 

( e( eitf>6)e(-2111 -112+s2+1)it/> + e( -e-itf> 6)e(2111 +11:i-s:i-l)it/>) 

and observe that for O ~ </> ~ 1r and as M -+ oo we have 

IMJ(M,6,!3,Yt,Y2,'P)I < IM ((M6 - 6)2 + M2Yi + YiYi)-~ I 
X le( ei<J, M)e(-111-2112+s1 +l)i<Pe(-e-i<J, M)e<"1 +2112-s1-l)i<J, I 

< Ml-3Re(v2) (1e21rie;,i, Ml+ le-21rie-i</I Ml) 

< Ml-3Re(112), 

22 

2 2 2 2 -~ 2 2 2 2 2 -~ IMJ(6,M,{3,y1,y2,</>)I <:: IM(6 + M Y1 + Y1Y2) 2 ((6M - {3) + !1Y2 + Y1Y2) 2 I 

x le( ei<J, M)e(-2111-112+s2+l)i<J, + e( -e-itf> M)e<2111 +112-s2 -l)it/> I 
< Ml-3Re(111 +112) (1e211"ie""' Ml + le-hie-•"' Ml) 
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and 

Now since Re(111), Re(112) > l and Re(s1 -111 -2112), Re(s2 -2111 -112) < 0, we observe that 

as M - oo the integral along the path M ei,J, for </> E [O, O] goes to zero. Thus by Cauchy's 

theorem we have 

[9 = Io for O ~ 0 ~ i, 
or 

We now must evaluate [9. Since [9 is absolutely convergent for O < 0 < f we are free 

to interchange the order of integration as necessary, so 

X ( e(ei8 e~)e(-111-2112+s1 +l)i8 + e(-e-i8 6)e(111 +211:a-s1 -l)i8) 

X ( e( ei8 e2)e(-2111-112+s2+l)i6 + e(-e-i8 e2 )e(2111 +112-s2 -l)i8) 

X 1lf"i+11:a+s1-1 1121 +2112+s2-ld{a d111 d112 deid6, 
111 112 

We now make the change of variables 111 - 111e1, 112 - 1126, and 6 - 6e2e3 and obtain 

X ( e( ei8 ei)e(-111-2112+s1 +l)i8 + e( -e-i8 6 )e(111+2112-B1 -l)i8) 

X ( e( ei8 e2)e(-2111-112+s2+1)i8 + e(-e-i8 e2)e(2111 +112-s2-l)i8) 

X (e1111)2111+11:1+si-1(e2112)"1+2112+s:1-le1E2dE3 d1ll d112 dE1dE2 
111 112 



24 

which simplifies to 

x ( e( ei8 {l )e<-111 -2112+s1 +l)i8 + e( -e-i8 6 )eC111 +2112-s1-l)i8) 

· x ( e( e•B e2)e(-2111-112+s2+1)i8 + e( -e-i8 {2 )e(2111 +112-s:i-l)iB) 

X e:1-111 -2112 {2:i-2111 -112 Yi"1 +112+s~ -1 1121 +2112+s:i-l d{a dy1 dy2 d{i d{2. 
. ~ ~ 

We now interchange the order of integration again and split up the integrals to obtain 

Loo ( e( ei8 e1 )e<-111-2112+s1 +l)i8 + e( -e-i8 ei )eC"1 +2112-s1-l)i8) e:1-111-2112 d{i 

X Loo (e(i8e2)e(-2111-112+s2+l)i8 + e(-e-i86)eC2111+112-s2-l)i8) e22-2111-ll2d6 

X L00 L00 L: ({~+Yi+ 11?YD-~((l -{a)2 + 11! + 11blr~ 

X Yi"1 +112+s1 -1 1121 +2112+s:i-l d{a dy1 dy2 . 
Y1 Y2 

Thus for O < fJ < f we have 

{°" foo W ((1/11/2 Y1 )) 11:1-1y;2-1d111 dy2 
lo lo 1 . Y1 Y2 

= k(vi,v2) 100 (e(ei86)e<-111..;.2112+s1+l)i8 +e(-e-i8{1)e(111+2112-s1.:..1)i8) e:i-111-2"2d6 

X Loo ( e(ei8{2)e(-2111-112+s2+l)i8 + e(-e-i86)eC2111+112-s:i-l)i8) e22-2111-112d6 

XL°" L00 L: ({~+Yi.+ y?1JJr~((l-{a)2 + yJ + YiYJ)-~ 

X Yi"1+112+s1-1 1121+2112+s2 -ld{a dy1 d112. 
1/1 1/2 

We will now evaluate these first two integrals by letting O-+ f and observing they are 

both of the form 

or 



Now noting that 

and recalling that e(t) + e(-t) = 2 cos(21rt), we have 

. i0 + i-0 = 2 cos(~;). 

We also observe that for Re( a) > 0 we have 

thus 

foo e(it)tadt = loo e-21rttadt 
lo t lo t 

= 100 e-t (.!._) 0 dt 
lo 21r t 

fo 00 
(e(it)i0 + e(it)i-0 ) t0 - 1dt = (2!)0 cos (a;) r(a) for Re(a) > 0. 

We note ([GR] 8.334.2) that 

thus we have 

2 (a1r). . r(a) . 
(21r)1J cos 2 r(a) = (21r)a-1r (1tlJ) r (1;1J). 

We also recall the doubling formula ([GR] 8.335.1) 

22:c-l ( 1) 
r(2x) = y'i r(x)r X + 2 

so 

20-1 (a) (a 1) r(a) = -r - r - + -..fi 2 2 2 

or 

25 
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which then gives 

100 r (~) 
(e(it)ia + e(it)i-a) ta-1dt = 2 

0 7ra-ir (1·t) 
for Re(a) > 0. 

Hence for Re( s1 - 111 - 2112+ 1) > 0 we have 

100 
( e(ei9e1)e<-111-2112+•1+1)i9 + e(-e-i9 6)e<"1 +211:i-•1...,.l)iB) ei1-111-2"2d6 

_ r ( •1 -111 22112±1) 

- 7rB1-IIJ -2112+ ! f ( IIJ±2~a-B1 ) 

and for Re( s2 ...;. 2111 - 112 + 1) > 0 we have 

Loo ( e( e•B e2)eC-2ll1-112+•2+l)i6 + e( -e-i9 {2 )eC2111 +112-•2-l)iB) e;:i-2111-112 d6 

r ( •2-2111 -112+1) 
- 2 
- 1r•2-2111-112+!r (211Jt~r•a). 

Thus for Re(111) > i, Re(112) > i, -1 < Re(s1 - 111 - 2112) < 0, and -1 < Re(s2 -

211], - 112) < 0 we have that 

X Y2111 +112+•1-l y111+2112+•2-l ,1c dy1 dy2 
1 2 ""-3~~ 

Y1 Y2 
- r ( ~) r (~) r ( 311Jt~11rl) r ( •1-111 22112+1) r ( •a-211~ -112+1) 

- 1r•1+•2+!r (11Jt2~r•1) f (211Jt;-2-•2) 

X L00 L00 1-: (e: + yf + Yhi)-~ ((1 - ea)2 + Yi + yf Yi)-~ 

X yf 111 +112+•1-l y~l +2112+•:i-l d6 dy1 dy2 . I 
Y1 Y2 

We now want to concern ourselves with the integral 

For this integral we have the following lemma: 
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Lemma 2.9. For Re(111) > f, Re(112) > f, -1 < Re(81 - 111 - 2112) < O, and -1 < 

Re( 82 - 2111 - 112) < 0 we have 

r ( 3~) r ( 3:) Loo Loo L: (t2+ Yi+ YiYi>-!r((1-e)2 +Yi+ YiYi)-~ 

X yf "1 +112+a1-ly;1 +2112+a:i-l dt dy1 dy2 
Yi Y2 

- ,virr (!'a-ff BJ ) r ( II] -1+811) r ( 211Jt111+a1-:-l) r ( 11J±211~f a,-l) 

- . . 4r ( ~) r (3"i±~11,-1) 

x r ( 2111 + : ~ 82 ) r ( 111 + 2;2 - 81 ) • 

Proof: We observe that by the definition of the gamma function, 

r ( 3; 1 ) r ( 3; 2 ) Loo fo 00 L: (e2 +Yi+ YiYi)-!r((1-e)2 +Yi+ yfyi)-~ 

X yf"1+112+a1-ly;1+211:i+srldfdy1 dy2 
· Y1 Y2 

= 100 100 f 00 (t2 +Yi+ YiYi)-~((1- e)2 +Yi+ YiYi)-~ lo lo -oo 

X yf"i+112+a1-1y;1 +211~+a:i-ldtdy1 dy21 00 t:r e-t1 dt1 1 00 t;?" e-t2 dt2 
'Vl 'V2 O t1 O t2 

which in turn equals 

We make the change of variables 

and obtain 

t. . t1(e2 + yf + Ybn 
1-+ 2 

Yi 

t t2((1 - e>2 + y~ + yf'Vn 
2-+ . 2 

Y2 
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which equals 

Since we have assumed that Re(II].) > f and Re(v2) > f, the inner integrals are absolutely 

convergent, so we can interchange the order of integration and proceed to do the e integral. 

We observe L: e-Aa:2-B(t-a:)2 dx = L: e-CA+B){a:2-:fft+rlir )dz 

Thus 

So, the above equals 

which equals 

= L: e-(A+B)((a:-~ )2+xh--cA!~,2) dx 

= e~ L: e-(A+B}(:i:-::tb- )2 dx 

= e i!: loo e-(A+B)a:2 dx 
-oo 

=ei!Z ~­VA+B 

-1112 
e 1111g+1211~ e-t1(t+y~)-t2(t+y~) dt1 dt2 dy1 dy2 

X. ---
Jt1y~ + t2111 ti t2 1/1 1/2 
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We now observe Re(v2 - 111 + s1) = Re(s1 - 111 -2112) + 3Re(112) > -1 + 2 = 1 and similarly 

Re(v1 - "2 + s2) > 1, so the above integral is absolutely convergent. We now interchange 

the order of integration, make the change ofvariables y1 -+- fii, Y2 -+- · fii., and obtain \/ t; \/ ~ 

which equals 

So we need to evaluate 

for Re( A) > ! , Re( B) > ! , and .C any positive real number. We note that in this region 

the integrals are absolutely convergent. Under the change of variables Y1 -+- YI - Y2 the 

above equals 

Since we are in the region of absolute convergence we can interchange the order of integration 

to obtain 

Letting Y2 -+- Y1 Y2 this becomes 
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which in tum equals 

Recalling ([GR] 3.191.3) that 

/1 tz-1 (1- t)w-1dt = r(z)r(w) for Re(z), Re(w) > 0 
lo r(z+w) 

the above equals 

Thus using the fact ([GR] 3.471.12) that 

we obtain 

for Re(A) > l, Re(B) > l, and C any positive real number. So we have 

whence 
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t2 
Under the change of variables t1 -+ t~ we have 

Since we have the exponential function and 

Re 211i+u ... +-----( 
81 82 1) 

. -~ 2 2 2 

= ~ (Re(s1 - 111 -112) + Re(2111 + 112 - s2) + Re(3111 + 3112 - 1)) 
> -1 + 0 + 2 + 2 - 1 = l 

2 

both of the integrals are absolutely convergent. So we can interchange the order of integra-

. d 1 tl b • t1on an et t2 -+ - to o tam 
t2 

Using the fact that 

the above becomes 

Now, we recall ([GR] 6.576.4) that for Re(a + b) > 0 and Re(.l.) + IRe(µ)I + IRe(11)I < 1 we 

have 

fo00 x->. Kµ(ax)K 11(bx)dx 

= 2_2_.>. -v+.>.-lb" F (1- ..\ + µ + 11 1- ..\ + µ - 11. 1 _ ..\· l- 62) 
a . 2 ' 2 ' ' a2 

r (1-.>.1e+11) r ( 1-.>.2e+11) r (1-.>.ie-11) r (1-.>.2e-11) 
X . . . r(l- ..\) 
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where F is the hypergeometric function. We observe 

Re ( 3 - 3v; -3v2) + I Re ( v1 - v2 : 81 - 82) I + IRe ( 81 + ~2 - 1) I 
= Re ( 3 - 3v; -3v2) + JIRe(81 - v1 - 2v2) + Re(2v1 + v2 - .s2)I 

+ JIRe(81 - v1 ""'.'. 2112) + Re(82 - 2v1 - 112) + 3Re(v1) + 3Re(v2)- 11. 
Since 

the above equals 

which by our hypotheses is less than 1. Thus we can apply the above identity, and using 

the fact that F( a, b; c; 0) = 1 we obtain 

Thus 

( 3v1) (3v2) 100 100100 2 2 2 2· ~ 2 2 2 2 ~ r 2 r 2 Jo Jo _
00 

({ + Y1 + Y1Y2r ((1- {) + Y2 + Y1Y2)-

x yf "1 +112+s1 -1 Y:i'1 +2112+srl d{ dy1 dy2 
Y1 Y2 

- ../if ( v;i-iq fs1 ) r ( VJ -1+s2) f ( 2VJ±,fs1 -1) r ( VJ±2,fs;i-l) 

- 4f ( ~) r (3vJt~112-l) 

x r ( 2vi + ;2 - 82) r ( vi + 2;2 - 81) . 1 

Combining Lemmas 2.8 and 2.9 we obtain: 

Corollary 2.10. For.Re(vi) > f, Re(v2) > f, -1 < Re(81 - vi - 2v2) < 0, and -1 < 

Re(82 - 2vi - v2) < 0 we have 

) ) 
•1-l •2-l dy1 dy2 

Y1 Y2 --
1 Y1 Y2 

r(~)r(~)r(~)r(~)r(~)r(~) 
= . . 411"•1+•2r (~) . 
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where, as before, 

'Y = 211t + 112 - 1. 

We now recall Theorem 2.1 of [Bl]. 

is bounded on rt. 

By analytic continuation we obtain equation 10.1 of [Bl], namely 

) ) 
81-l 8:z-1 dy1 dy2 

Y1 Y2 --
1 Y1 Y2 

r(~)r(~)r(~)r(T)r(¥)r(~) 
= 41l"B1+s2f ( ~) 

and the integral is absolutely convergent. 

By the Mellin inversion formula we have a correction ([BF] p. 208) to equation 10.2 of [Bl] 

which should read 

w((n~ n J) 
= 1 r+ioo r·+ioo r (~) r ( ~) r (-,b) r (T) r ( ¥) r (.!afl) 

411"2(211"i)2 ] <1-ioo ] <1-ioo f ( ~) 

X (11"Y1)1-'1 (11"Y2)1-'2 ds1ds2 

where CT is sufficiently large. 
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We can now evaluate the Mellin transforms occurring in Chapter 1. We recall that if 

W is of type ( 111, 112) then W is of type ( 112, 111). Thus 

So we see 

a=-"(, p = -/3, and 'Y = -a. 

With this we now have 

Lemma 2.14. [HMl] i(s, w) is absolutely convergent for Re(w + s) > N1 (11i, 112) and 

Re(w) > N2(11i,112) and 

_ f (w±stl-a) f ( wtstl-/j) f (wtstl-1) f (~) f ( ~) f (~) 

~( s, w) = 47r'2w+s+2r ( 2wt±2) . . 

Proof: We have by a change of variables 

Now applying Corollary 2.12, we obtain 

r ( w+•tl±;) r ( w+•tl+@) r ( w+sti+l) r ( w+~.;.;) r ( ~) r ( ~) 
47r'2w+s+2r ( 2wt±2) 

which in turn equals 

r (w±•tl-~) r ( w+stl-@) f (w+•tl-7) f (~) r ( ~) r (~) 
47r'2w+•+2r ( 2wtt2) I 
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For the other Mellin transform of Chapter 1 we have 

Lemma 2.15 .. [HMl] ~(s,w) is absolutely convergent forRe(s) > N1(11J.,112) and Re(w) > 

N2{11t, 112) and 

~ _ r(~)r(.!!!::ft!)r(~)r(~)r(~)r(-9=2) 
( s, w) - 411'•+111+f r ( ·-22111) . . • 

Proof: We first note 

(
tv - ) (~ 
'UV V ~ 

1 yl+z,2 
v'1tt12 1) = (1 1r. 
v'1+112 

( 
tv ) ~ J •v'l+!I' 1 . 

Thus, by invariance under Z K and using the fact that 

we have 

4i(s,w)= ff 1-: w((!: • 
=ff (w(( ,A, 

) ) . t 111 v" dy dt dv 
l . t V 

· ) ) ( ty ) 111 "d dt dv 
vvfl+y2 1 e y2+1 t v Y7-;· 

By Theorem 2.11, for n1 > N1{11t, 112) and n2 > N2(11J., 112) we have that 

is bounded. Thus 

((
. tv )) ~ 

W vvfl+y2 1 

is bounded as y -+ 0. Taking n1 large we see this function is rapidly decreasing as y -+ ±oo 

and v -+ oo, and taking n2 large it is rapidly decreasing as t -+ oo. Thus t( s, w) is 

absolutely convergent for Re(s) > N1{111,112) and Re{w) > N2(v1,v2). 
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Now by a change of variables we have 

100100 100 ((~ . ·)) ·( ty ) w 8 dtdv · W · ~+ 2 e -- t V dy--
0 0 -oo Vy J. T y- y2 + 1 t V 

. 1 . 

=·100100100 W ((tv. v . )) e(ty~-2 .. twv"dydtdv. 
O O . -oo · · 1 (1 + y2)-:i- t V 

We recall the fact that, for the K-Bessel function, we have 

So the above equals 

21r~ /00 /00 ( (tv 
r ( a-;w) lo lo w ) ) 

.!=-l II dt dV 
V . K.c:hcl(21rt)t 2 V dy--. 

1 2 t V 

As in [B2] we let 

Ka,13,..,(Y1, Y2) 

= _1_1ioo lioo r(~)r(~)r(~)r(?)r(¥)r(,=1) 
(21ri)2 -ioo -ioo f ( ~) 

( Y1 )-8 1 (Y2 )-8 2 X 2 2 ds1ds2, 

By Corollary 2.13 we have 

w((~~ ~ J) 
= 1 1u+ioo 1u+ioo r ( ~) r (~) r ( ~) r ( ~) r ( ¥) r (?) 

41r2(21ri)2 O'-ioo u-ioo r ( ~) 

X (1ry1)l-81 (1ry2)l-82 ds1ds2 

which in turn equals 

y1y2 1u+i00 1u+ioo f ( ~) f ( ~) f ( !.lfI) f ( ¥) r ( ~) f ( ,2) 
4(21ri)2 O'-ioo u-ioo f ( ~) 

Thus we have 
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and so 

By a change of variables this equals 

•-:a.. 00 00 . 

11'-,- 1 1 !.±! s+l dt dv ~ ( 2 ) Ka,fJ,-r(v,t)K~(t)t 2 v --. 
2(21r)--rr s-2 w O O 2 t 'I) 

By examining [B2] we see equation 1.2 should read 

100 100 
( ) ( )( 2 ) 8 dy1 dy2 lo lo Ka,/J,-r 'Vl, 'V2 K,,, 'V2 'V1'V2 'Vl 'V2 _ 

= 2as-1r ( 8 -;- ") r ( 8 - ~ - ") r ( 8 -;- ") 

x r ( s- ~ + ") r ( 8 - ~ + ") r ( s -; + "). 

So the above double integral equals 

1r~2¥r ( 10-~±1) r (~) r (~) r (~) r ( 9='!) r (.!.::.f=2) 
2(21r) 3•f3 r ( s-:w) I 

We now must introduce one more Mellin transform which will appear in the functional 

equation for the twisted L-function. We let 

For this function we have 

Lemma 2.16. i(s,w) is absolutely convergent for Re(s) > N1(v1,v2 ) and Re(w) > 

... f ( w-~+2) r ( w-g +2) r ( w-?+2) r ( s-w;a-1) f ( s-w;@-1) r ( s-w;:r-1 ) 
~(s,w) = 3 • 

4 · s+w+-r( s-2w) . - i1r 2 -2-
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Proof: As in the proof of Lemma 2.15 we have 

).) 
W sd dt dV yt V y--

l t V 
i(s,w)= ff ( W ( u: • 

= r r 1-:w(c· v ) ·) e (ty) twv"d dt dv 
1 (1 + y2)°-22w y y t V 

which is absolutely convergent for Re(s) > N1(v1,v2) and Re(w) > N2(v1,v2), So we need 

to evaluate 

J
oo ye(ty) d 

-oo (1 + y2)" y. 

We observe that differentiating the identity in Lemma 2.15 yields 

. Joo ye (ty) 21r11 d ( 11_ 1 ) 

21ri -oo(l+y2)"dy=r(v)dt t 2](11-4(21rt). 

We see from equation 8.486.12 of [GR] that 

so 

Thus 

So we have 

100100 Joo W ( (tv ) ) e (ty) tw sd dt dv 
V •-2w y V y t 

O O -oo 1 (l+y2)-2- V. 

= -211" •-;w loo roo ( (tv 
if(~) lo lo W 

) ) 
,-2w-1 w 8 dt dv 

V ](~(21rt)t_2_t V dy--. 
1 2 t V 

As in the proof of Lemma 2.15 this equals 

•-2w 00 00 d d 
-1r-,- f f I( (v t)K •-2w-3 (t)t~ vs+l _!~. 

2i(21r)¥rcs-;w) lo lo a,f3,"Y ' - 2- t V 

Now applying the corrected version of equation 1.2 of [B2] we obtain 

-1r~2¥r (~) f (~) f (~) f (s-w2a-1) f ( s-w2@-1) f (s-w2:y-1) 

2i(21r) 3 't3r(8-;w) . ·I 



CHAPTER ill 

FUNCTIONAL EQUATION 

Before we can begin to derive the functional equation for the twisted 1-function we 

must prove a result about characters. For x a Dirichlet character, we let x( n) be the 

complex conjugate of x(n); Since lx(n)I is O or 1 we have x(n)x(n) = 1 if x(n) -:/= o. In 

particular, we have x(-1) = ±1. If x(-1) = 1 we say xis even and if x(-1) = -1 we say 

xis odd. For any Dirichlet character x mod q, the Gauss sum associated with xis 

. q 

r(x) =·~x(n)e(~). 
n=l q 

Finally a Dirichlet character mod q is primitive if for each positive integer dlq, there exists 

a= 1 mod d, (a,q) = 1 such that x(a)-:/= 1. With this we have 

Lemma 3.1. If x is a primitive character mod q then 

x(n) = r(x)x(-1) tx(a)e(~) 
q · a=l q 

where r(x) is the Gauss sum. 

Proof: By finite Fourier expansion we have 

q (an) 1 q ( am) x(n) = :E f(a)e - where /(a)= - :E x(m)e ~ . 
a=l q q m=l q 

We now must consider the sum in the expression for /(a) in two separate cases. 

39 
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H (a,q) = 1 then we have 

q (-am) q (n) L x(m)e - = :Ex(-an)e -
m=l q n=l q 

= x(a)x(-1) tx(n)e(~) 
n=l q 

= x(a)x(-l)T(X) 

where aa = 1 mod q. Otherwise we have (a,q) > 1. In this case we let da = (a,q) and 

kda = q. Now for any b e Z such that (b, q) = 1 and b = 1 mod k we have 

.q (-am) · q (-abn) 
:Ex(m)e - = :Ex(bn)e -
m=l q n=l q 

q ( abn) = x(b) :Ex(n)e =-- . 
n=l q 

. abn an anz anz 
Choosing z e Z such that b = kz + 1, we have q = q + -;r· But dla, sod e Z, 

( -abn) (-an) whence e -q- = e -q-- . Thus 

q ( am) q ( an) L x(m)e =- = x(b) :Ex(n)e =- . 
m=l q n=l q 

q . 

H we assume L x(m)e(~)-:/; 0 then x(b) = 1, so we have kjq. Since d > 1 we have a 
m=l q · ·· 

k < q such that for all b = 1 mod k with (b,q) = 1 we have x(b) = 1. This contradicts the 

fact that x is primitive, whence 

q (-am) :Ex(m)e --- =0. 
m=l q 

Since (a,q) > 1 we havex(a) = o, so 

q (-am) L x(m)e - = x(a)x(-l)T(x). 
m=l q 

Thus in either case 

x(n) = T(X)X(-1) tx(a)e(~). 
q a=l q I 
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We can now proceed to derive the functional equation for the twisted L-function. As 

in the untwisted case ( Chapter 1) we would like to begin with 

Lx( w, F)i(s - 1, w - 1) 

and express the L-function as a sum over both the positive and negative integers instead of 

just the positive integers. However, recalling that an1 ,n2 = alnil,ln2 1, we have 

~ <ii,nx(n) = ~ a1,n (x(n) + x(-n)) 
LJ lnlw LJ nw 
n¢0 n=l 

= { 2Lx( w, F) if xis even 
0 if xis odd. 

We take our idea from the derivation of the functional equation for 

Lx(s) = f X~~) 
n=l 

which is worked out in Chapter 9 of [D] and consider 

~ na1,nx(n) = ~ a1,n (x(n) - x(-n)) 
LJ lnlw LJ nw-1 
n¢0 n=l 

{ 0 if x is even 
= 2Lx(w -1,.F) if xis odd. 

. { 1 if x is even . Introducmg the parameter 8! = .f . dd we obtam n 1 x1so 

L a1,nx(:)o~ = { 2Lx(w,F) _ if Xis even 
n¢O lnl 2Lx( w - 1, F) if X is odd. 

Thus we will take as our starting point 

For this we observe: 

Lemma 3.2. Let F be a cusp form and x a character mod q with (a,q) = da and 

aa' = -da mod q. If xis even, we have, for Re(s + w - 2) > .N1(v1,v2) and Re(w) > 
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tw-1 s-1 dt dv 
X '/J --t 'I) 

and in this region all of the integrals and sums are absolutely convergent. If x is odd, we 

have, for Re(s + w - 2) > N1(111, 112) and Re( w) > max ( .N2(111, 112) + 1, 3 ), 

and in this region all of the sums and integrals are absolutely convergent. 

Proof: We :first observe, that by equations 4. 7 and 4.8 of [B 1] we have 

= L e(nz)Fd,n (r). 
nEZ 

Thus, 

= :z (L e(nz)Fd,n (r)) 
z=O nEZ z=O 

= 27ri 1: n.Fd,n (r) 
nEZ 

and 

= ~ Fd,n(T), 
z=O nEZ 



43 

Since F is a cusp form, we have that Fd,O ( T) = 0, so 

if Xis even 

L o~Fd,n (r) = 
n¢0 

if xis odd. 

Thus, in either case, we are interested in 

~ 'I) 'I) --- ) ( ~ ) ) tw-1 s-1 dt dv 
9f" . 1 t 'I) 

which by a change of variables equals 

and in turn equals 

Now applying equations 4.8 and 4.12 of [Bl} we obtain 

( au na'da) tw-1 s-1 dt dv xe -+-- v --q q t 'I) 

which by interchanging the order of integration and summation equals 

q3w-3 L . ad,. ,n n W . loo loo - sx ( (tnd! 

n¢O o o dalnl 
) ) ( au na'da) w-I 8 _ 1 dt dv 

v e - + -- t v --. 
1 q q t 'I) 

We observe 



Thus the above equals 

qaw-3 L loo loo ad .. ,no~w ((tlnld! 
n#O lo lo dalnl 

With a change of variables this equals 

44 

V e - + -- t V --, ) ) ( au na'da) w-l s-1 dt dv 
l q q t V 

q3w-3 L 100 
/

00 
7id .. ,no~w ( (t V 

n#O lo lo dalnl 
) ) ( au na'da) ( t ) w-l 8 _ 1 dt dv 

e -+-·-- -- V --
l q q lnld~ t V 

which in turn equals 

q3w-3 L :;::;6~ we (au+ na'da) 100 100 W ( (t 
n¢O da lnl q q lo lo ) ) tw-1 s-1 dt dv 

V V --. 
l t V 

By Lemma 2.14 this double integral is absolutely convergent for Re(s + w - 2) > N1(v1 , v2 ) 

and Re(w-1) > .N2(v1, v2), and since 7in1 ,n2 = O(ln1n21) the sum is absolutely convergent 

for Re(w) > 2 if xis even and for Re(w) > 3 if xis odd. 

Thus we have shown 

LX(u) Lo~Fd .. ,n q 100100 ((~ 
u=l o O n:¢0 

is absolutely convergent for Re(s+w-2) > .N1(v1, v2) and Re(w) > max ( .N2(v1, v2) + 1, 2) 

if Xis even, and for Re(s + w - 2) > N1(v1, v2) and Re( w) > max (.N2(v1, v2) + 1, 3) if X 

is odd. In either case it equals 

- ~ ~ ad nOX (au na'da) q3w-3q;(s -1,w-1) L..,X(u) L.., d2w:'1 nwe - + --
u=l n,¢0 a lnl q q 

which is absolutely convergent in this region. 

Now by applying Lemma 3.1 to the sum over u we have 
:I 

~-c )~~ ad .. ,no~ (au na'da) 
L.., X U L.., L.., d2w-1 I 1w e + 
u=l a=l n,¢0 a n q q 

2 

= t L d:~:·;~~we (na'da) tx(u)e (au) 
a=I n,¢0 a I I q u=l q 

2 

q ~ ~ ad nb'~ (na'da)-
= r(x)x(-l) ~~ d~w"-'11n1we -q- x(a). 
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Now since x(a) = 0 unless (a,q) = 1, in which case da = 1 and aa' = -1 mod q, this equals 

q f. ~ a1,n8~ ( na) _ 
r(x)x(-1) ~ ~ Tnfwe -q x(a), 

a=l n¢0 
(a,q):1 

which by interchanging the order of summation and by periodicity equals 

q2 ~ a1,n8~ ~ ( na) _ 
(x)x(-1) ~ Tnfw ~ e -q x(a). 

n¢0 a=l 
(a,q)=l 

Finally, applying Lemma 3.1, we obtain 

Hence, from Lemma 3.2 we are interested in expressing 

I 

in terms of F. If xis even we will simply evaluate this function at z = 0. Whereas if xis 

odd we will first differentiate this function with respect to z and then evaluate it at z = 0. 

In either case, for this function we have 

Lemma 3.3. For t,v,z ER, (u,q) = 1, da = (a,q), uu = 1 inod q, aa' = -da mod q, and 

dk = (k, q) we have 

qt.~.(c~J 
=t.L:tr.((ii ! 

Proof: We first observe, by equation 4.2 of [BlJ, that 
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We have aa' = -du. mod q, so there exists k E Z such that kq- aa' = da, Thus by a change 

of variables, the above equals 

1:~-., 1.'p(c ~ y+y:::)c· 1. :;)(~. J) 
xe( -xda)dxdy 

which by periodicity equals 

Integrating over the region 

{( ) 0 < < q xdaa' < < xdaa' da} 
xy: X --- y --+-

' - - da ' q - - q q 

we obtain 

...L ~+~ ((1 faa f 9 9 -

lo J~t1.9"1 F 
9 

Z Y + ku _ auz) (da q qd,. q 
1 X I 

1 d,. 

xe(-xda)dydx. 

By a change of variables, the above equals 

t t F ( (1 ~ y + •: + t' -::: ) ( d, i :t: ) ( ~ • J) 
X e( -xda)dxdy 

= t tF(C' 
= t tF(C' 

!£ + 2.. Y + ku + xd4 a' ) ( t q ~ q q ? 
..1... x+...!!.!L 
d,. qd,. 

. 1 

!£ ku ) (1 z q q ~ 
..1... ail 1 
d,. qd,. 

1 

f) (f xda 
1 

v J) e(-xd,)dxdy 

v J) e( -xd,)dxdy. 

Again, by a change of variables, the above equals 

1 :i) (1 d; 
d,. qd,. 

1 
?) (:3 )) 1 v 1 e(-x)dxdy. 
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We note that 

(d, 9!.. 1)(1 z !) (~ J = (~ 

sl 

:~) C zq~v 

0 q d2 q 
d" ..l. r V 1 V d,. qd,. d" qd" 

1 1 

and 

(~ -a' J (~ a' 

") ( i ;). q q q2 

k 1 
qat~ = - q~ 

1 
d,. d" q 

Now, since (-1 -;- J er, the above integral equals 

1 q q_ ~ "q t dT Y 2 ( ( 1 U ). ( zq3 V ) ) 

q3 lo lo F -ffe ! 1 . v ~ e(-x)dxdy. 

We are in the situation that uii = 1 mod q, so there exists m such that uii - mq = 1, and 

we note that 

Since (-1 : : ) er, and after multiplying by ql, the above integral becomes 

0) e(-x)dxdy. 

We note that 



and 

"(t zq
3

t1 ) (1 -~ ~ -11.) d2 y ti td,. t 
" ·1 3 V X = - _q-z 

. ti 7cf1' 
1 1 " 

t 
so the above integral equals 

~-11.)) td,. t 

_g e(-x)dxdy. 
td,. 
l 
t 

Noting 

-; 7clf - i) ( V 
l _g 
ti td,. 

1 -v 
t 

and since ( _. • -•) E ZK, the integral equals 

Thus we have shown 
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In order to simplify the computations, we recall from Chapter 2 the function G( T) = 

F ( C i J r) . We first obs=e 

C t ffe) (Y-1-=af 
1 -¢ 

d,. 

) ( l 1 X) ( l 1 ') ( ~3 1 ) , 
1 1 1 -Y 1 

a 
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whence 

q q•q --::7 3 -

2 n ( (·1 U a ) ( 1 ) ( V ) ) 'f,/. J. F ! '1 Y=t' 1 : ' • 1 e(-x)dzdy 

q
2 

1q2 q ( ( 1 ) ( 1 ~ ) ( 1 ) ( .l! ) ) = I: 1 G 1 x . 1 q Y3 z 1 . t v e( -x )dxdy. 
a=l O O 1 1 -7 1 1 

0 

Applying Lemma 2.6 we obtain 

and with Lemma 2.5 we have 

Writing a= hq + k and soda= (a, q) = (hq + k, q) = (k, q) = dk, we obtain 

We can now do the sum on h and obtain 

I: e (m(hq/ k)) = e (m2k) I: e (mh) 
h=O q q h=O q 

= { qe ( ~) if qlm 
0 otherwise. 

So we are only interested in the case where qlm. In this case we replace m by qm, whence 

the above sum equals 

Thus we have 
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Since ( u, q) = 1 we can apply Lemma 2. 7 and obtain 

t 1q2 L agm ( ( !, , I ) ( 7 v ) ) e ( mk) dy 
k=l O mEZ -7 1 1 q ,. 

= t lq2 L F;1- 0 ((ii ; ) ( !,, I ) ( 1 v )) e (mk) dy. 
k=l O mEZ 1 -7 1 1 q ,. 

Now replacing m by m + u we obtain 

We now let m = aq + b so the above equals 

( k(aq+b+u)) d Xe y. 
q 

Applying Lemma 2.1 the above equals 

q q2 q-1 ( ( 1 ~1 ~~F; a 1 

( k(b+ u)) d 
Xe y. 

q 

We now note that 

thus the above equals 

Interchanging the sum and integral and with a change of variables the above equals 

q 1q
2
+aq

2 
q-I ((q ) ( 1 ) (1 )) (k(b+ u)) LL L pb u l Y 1 v e dy 

k=l aEZ aq2 b=O q q 1 -9 1 1 q ,. 
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which equals 

In the region of absolute convergence for Lemma 3.2 we can interchange the order 

of integration and summation, and applying Lemma 3.3 we see that we are interested in 

writing 

in terms of W, which we do in the following lemma. 

Lemma 3.4. For x a primitive character mod q, F a cusp form, and t, v > 0 we have 

2 oo ( ) T _ _ q_ ~ a1,nX n W 1LE. (( 

nv 

- T(X) J_= n,;o JnJ _ q~;' 

where dk = (k, q). Both integrals and the sum are absolutely convergent. 

Proof: We begin by letting db= (b,q), Cb= :b, and Db= db. Since (Cb,Db) = 1 there 

exist integers Ab, Bb such that AbDb - BbCb = 1. Thus by equation 4.5 of (Bl] we have 

( k(b+ u)) d 
Xe y. 

q 

Expanding this we have 

t.1-:~~F4,n ( ( ~: ~: 
( k(b+ u)) d 

Xe y. 
q 



52 

We note that 

C -r-

Thus, by equation 4.8 of [Bl] and noting that since Fis a cusp form we have Fd6 ,o = 0, the 

above sum equals 

Writing this in terms of W we obtain 

q 100 q-1 I: I: I: ad6 ,n 

k=l -oo b=O n¢0 jndbl 

X w ( ( d,n d, J ( C,q ~ D,u 

x e ( ~;) e ( k(b: u)) dy. 

Observing 

JC. J) 
(Bbn) (k(b + u)) d xe D e y. 

b q 

I. J ( _~ 1 J C v J) 
" 

JC. J) 
(Bbn) (k(b + u)) d xe D e y. 

b q 

Now, interchanging the integral with the finite sum over b and with a change of variables 

we obtain 

(( ~ q q-1 00 t I:I: I: ad6 ,nw 1y 
i=U=O L~ .,,. lnd,I -•'v 

td,. 



Thus we have shown 

We observe by Lemma 3.1 that 

- u e - - qx . q (ku) -ck) 
~ x( ) q - r(x)x( -1)' 

thus the above equals 

Since x(k) = 0 unless (k,q) = 1 we can take dk = 1 in the above and obtain 

Again, by Lemma 3.1 we have 

f.. _(k)e (kb) _ qx(b) 
L.J x q - r(x)x(-1)' 
k=l 

(k,q)=l 

so using the facts that xx= 1 and r(x)r(x) = q the above equals 

1 (( ~ )) q I:x(b) Joo L al:dnlw * v e (~n) dy. 
b=O -oo n¢0 b _ q3zv 1 b 

t 
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Again, x(b) = 0 unless (b,q) = 1, in which case Db= q and Cb= b. So Abq - Bbb = 1 or 

Bbb = -1 mod q, thus we have 

q 5= x(b) rooLa~nw(( t V l))e(-qbn)dy. 
b=O J _oo n¢0 I I - i:..!! 

(b,q)=l t 



Finally 

q-1 -'°' (-bn) qx(-n) 6 x(b)e -q- = r(x)x(-1)' 
(b,q)=l 

so using the facts that (x(-1))2 = 1 and x(-l)x(-n) = x(n) we have 

2 00 ( ) t _q_ L a1,nX n W 1'f v dy 
(( mL )) 

r(x) 1-~ n#O lnl _ o'," I . 

We observe 

( 
n ) 
t 
{ 1 . 

-9 i 
By Lemma 2.3 the coordinates of this matrix are 

. I y'J q6 z2 1 v~+t2+v2 
Yi = 9e~2 1 

t +~ 
n. /ge;2 1 

_ rvy t + ~ 
Y2 - y'J + 9e t + 1 
~ t ~ 

or, since t, v > O, we have 

- tvy'y2 + q6z2v2 + t2 
Yi - q6z2v2 + t2 

ny'q6z2v2 + t2 
Y2 -- y2 + q6z2v2 + t2 

Thus, by using the fact that 

~ X - -=-,,...t __ 
1 - q6t 1 

t +~ 
~ X - t V 

2 - y2 + q6 t + 1 
~ t ~ 

-n~3 z 
X - -=-,,...t __ 

3 - q6t 1 
t +~ 

-yq3zv2 
Xt = q6z2v2 + t2 

ny 
X2=-----­

y2 + q6z2v2 + t2 

-nq3zv2 
X3 = . q6z2v2 + t2 

54 
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we have 

(( 

n11 
T w 113!. _q~:" . J) 

(
tv..jy2 + q6z2v2 + t2) n1 ( n..jq6z2v2 + t2 ) n~ 

X q6z2v2 + t2 y2 + q6z2v2 + t2 

is bounded for n1 > N1(v1,v2) and n2 > N2(v1,v2), Thus, taking n1 large, we see that 

w((_i V J) 
is rapidly decreasing as y-+ ±oo. Taking n2 large, we see that this function is bounded as 

y -+ 0 and that 

L a1,nx(n)W (( 1 v )) 
n¢0 lnl _.9:..,:E. 1 

t 
is absolutely convergent. I 

Combining Lemmas 3.3 and 3.4 we obtain: 

Corollary 8.5. Let x be a primitive character mod q and Fa cusp form, then for z ER, 

t,v > 0 

t.x(u)f n. ( C ; J c· 1 :r: )(; • J) 
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where (a,q) = da, uil = 1 mod q, and aa' = -da mod q. The integral and sum are both 

absolutely convergent. 

We can extend, at least in terms of w, the region for Lemma 3.2. We observe 

Lemma 3.6. 

tw-1 s-1 dt dv 
V --

t V 
z=O 

is absolutely convergent for Re(s + w - 2) > .N1(v1, i.12) and Re(s - 1) > N1(v1, v2); and 

ff:.(t,~.((1; J( 1 :r:)(~ · J)) 
z=O 

is absolutely convergent for Re(s + w - 2) > .N1(v1,v2) and Re(s + 1) > N1(v1,v2), 

Proof: From Lemma 3.2 we have that 

tw-1 s-1 dt dv 
V --

t V 
z=O 

isabsolutelyconvergentforRe(s+w-2) > .N1(v1,v2)andRe(w) > max(.N2(v1,v2)+ 1,2), 

and thus 

100 100 q
2 

( ( 1 
0 1 ?;~G 

z=O 

is absolutely convergent for Re(s + w -2) > .N1(v1,v2), Similarly 

tw-1 s-1 dt dv 
V -­t V 

w-1 s-1 dt dv t V --
t V 

z=O 

isabsolutelyconvergentforRe(s+w-2) > .N1(v1,v2)andRe(w) > max(.N2(v1,v2)+ 1,3), 

and thus 
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is absolutely convergent for Re(s + w -2) > .N1(v1,v2). So we are left to consider 

and 

We have, by Corollary 3.5, that 

U
L=q 1 X( u) at=

2

1 
~ 0 ( ( 

1 
; ) ( da f au ) ( :

3 
V ) ) 1 d., qi.. 1 

Thus 

and by Lemma 2.4 we have 

= _q 100 L a1,nx(n)W ((* 
T(X) -oo n#O lnl 

) ) 
-21riyv2q3 d 

V 2 y. 
l t 

So in either case, we are interested in 

w((4 • J)· 



and the coordinates of this matrix are, by Lemma 2.3, 

J~ + ~ vJy2 +t2 
Yt = 1 = 

Xt = 0 

~ t 
n Ii rvv ;,- nt 

Y2 = y2 + .1.. = y2 + t2 
~ v2 

Thus using the fact that 

we have 

X3 = 0, 

nt 
y2+t2 

nt 
y2+t:i 
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W (( ~ nt )) (vJy2 + t2)ni ( nt )n2 
7,2+t2 t y2 + t2 

1 

is bounded. So, taking n1 large, we see 

w((4 • J) 
is rapidly decreasing as y-+ ±oo and v-+ oo. Whereas taking n2 large we see this function 

is bounded as y-+ O, t-+ O, and that 

is absolutely convergent. 

Thus 

f J.' t,x(u)t,Ji ( (1 1 
=-q /oo f1j00La1,nx(n)w((* 

r(x) lo lo -oo n:;,!o lnl 

tw-1 s-1 dt dv 
V -­

t V 
z=O 

) ) tw-1 s-ld dt dv 
V V y--

l t V 



is absolutely convergent for Re(s -1) > N1(v1 ,v2 ) and 

oo 1 {J q q _ 1 Z . a q 
( 

2 (( ) (d a' 11 OZ ~x(u)~}t . 1 1 . JG 

= -211'iq4 100 /1 Joo I: a1,nx(n)W ( ( 4 
r(x) lo lo -oo n#O lnl 

is absolutely convergent for Re(s + 1) > N1(v1, 112), 

We can now prove: 
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z:O 

I 

Theorem 3. 7. For x a primitive character mod q and F a cusp form, Lx( w, F) extends 

to an entire function of w. If x is even, we have 

q3w-lr(x) __ 
(r(x))2 Lx(w,F)~(s -1,w-1) = Lx(l - w,F)~(s-1,-w), 

and if x is odd, we have 

q3w-lr(x) - - . .... 
(r(x))2 Lx(w,F)t(s -1,w) = Lx(l- w,F)~(s + 1,-w). 

Proof: We can use Lemma 3.6 to extend the L-function. Recall that 

I: 'ii1,nx(:)8~ = { 2Lx( w, F) _ if Xis even 
n#O lnl 2Lx( w - 1, F) if x is odd. 

We first assume that x is even. By Lemma 3.2, 

2q3w x( -1) - . -
(r(x))2 ~(s-1,w-l)Lx(w,F) 

q loo loo q
2 

( ( 1 Z 

= ~x(u) lo lo ~~a 1 

tw-1 s-1 dt dv 
X V ~-

t V ' 

z=O 

and by Lemma 3.6 the integrals are absolutely convergent for Re(s + w - 2) > .N1(v1,v2) 

and Re(s-1) > N1(v1,v2). Thus for any choice of w we can chooses large enough so that 
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we can extend Lx:( w, F), and by Lemma 2.14, i(s -1, w-1) only has isolated zeros. So by 

choosing s to miss the zeros of i(s -1,w -1), we see that Lx(w,F) extends to an entire 

function of w. Now applying Corollary 3.5 we obtain 

00 00 00 (·) t 
q I: a1,nX n W ~ ( ( 

fill 

r(x) J. J. Loo .~o lnl _ 2\» 
In this case, we are interested in 

loo /oo loo L a1,nx(n)W (( 4 
lo lo -oo #O lnl 

which by a change of variables equals 

[
00 

[
00100 I: a1,nx(n)W ( ( ;t: 

lo lo -oo n¢o lnl 

Applying Lemma 2.2 we obtain 

foo foo loo I: a1,nx(n)W ((1. 
lo lo -oo n¢O lnl 

. J) tw-1 s-ld dt dv 
V y--, 

t V 
z=O 

) ) 
w-1 s-ld dt dv 

V t V y--
l t V 

)) t
w s-ld dtdv 

V V y--. 
l t V 

)) 
w s-ld dtdv 

V t V y--, 
l t V 

Now by interchanging the order of summation and integration, which may change the region 

of convergence, and a change of variables, the above equals 

L {00 100100 a1,nx(n)w ((!: V )) (~)w vs-Idydtdv 
lo lo -oo lnl 1 t t v n¢0 

or 

2Lx(l - w, F)q,(s - 1, -w ). 

By Lemma 2.15 and the fact that a1,n = O(lnl), this function is absolutely convergent for 

Re(s - 1) > N 1 (111 , 112 ), Re(-w) > N2(111, 112), and Re(l - w) > 2. Thus we have 

2q3wx(-1)- -
( r(x))2 q,( s - 1, w - 1 )L-x( w, F) 

q { 00 { 00 q
2 

( ( 1 Z 

= ~x(u) lo lo ~~a 1 
z=O 

w-1 s-1 dtdv 
Xt V --

t V 
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tx(u) ff f n_ (( 1 ~ ) (d• J. ;,~) (? v )) 
u=l O O a=l 1 1 1 

tw-1 s-1 dt dv 
V -­

t V 
z=O 

2q = r(x)Lx(l - w,F)~(s -1,-w) 

for Re(s - 1) > N1(111, 112) and Re( w) < min(-1, -N2(111, 112)). Thus, since x(-1) = 1, we 

have 

q3w-1r(x)- _ 
(r(x))2 !I>(s -1,w- l)Lx-(w,F) = Lx(l - w,F)!l>(s-1,-w) 

for Re( w) < min(-1, -N2(111, 112)), Re(s-1) > N1(111, 112), and Re(s + w-2) > .N1(111, 112); 

and by meromorphic continuation this completes the case where x is even. 

If x is odd, we have 

2q3wx(-l)- -
(r(x))2 ~(s-1,w- l)Lx-(w -1,F) 

= ~ tx(u) loo loo 
21ri u=l lo lo 

X :, (t.n. ( c ~ J c· 
q loo loo 

- 21rir(x) lo lo 

x !_ (1 00 L a1,nx(n)W (( 4 
{)z -oo n¢O lnl _ q3 zv 

t z=O 

z=O 

tw-1 s-1 dt dv 
V -­

t V 

tw-1 s-1 dt dv 
V --

t V 

and the sum and integrals are absolutely convergent for Re(s + w - 2) > .N1(111,112) and 

Re(s + 1) > N1(111 ,112). Again, just as in the even case, Lx-(w - 1,.F) extends to an entire 

function of w. Since the sums and integrals are absolutely convergent, the above equals 

q 100 100100 L a1,nx(n) ~ (w ( ( 4 v ) ) ) tw-Ivs-~dydtt dvv· 
21riT(X) lo lo -oo n¢O lnl {)z _ q3t 1 z=O 

In this case, we observe, by Lemma 2.4 that 

( (( 

nv 

_1_ 00 00 00 I: a1,nx(n) {) w * 
2ri !. !. L00 qo lnl 8z _i':• . J)) w-1 s-ld dt dv t V y--

t V 
z=O 
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= ~ ('° {00 100 L a1,nX( n) 21riyv2 W ( ( * v 
2n lo lo -oo n;i!O lnl t 

) ) 
-q3 tw-1 s-ld dt dv 
- V y--

l t t V 

which in turn equals 

-q3 { 00 100100 L a1,nx(n)w ((* V )) ytw-3vs+ldydtdv. 
lo lo -oo n;i!O lnl 1 t v 

Now, by a change of variables this equals 

-qa { 00 
{

00100 L a1,nx(n)W ((J: 
lo lo -oo n;i!O lnl 

Again, we interchange the order of integration and summation, which may change the region 

of convergence, and applying Lemma 2.2 we have 

-q3 L a1,nX(n) { 00 
{

00 Joo W ( ( j. 
n¢o n lo lo -oo 

) ) tw-1 s+ld dt dv 
V Y V y--. , 

l t V 

which by a change of variables equals 

-q3 L a1,n~~~ {oo {oo loo W ( ( ;: 
n:¢o nlnl lo lo -oo 

V yt1-wvs+ldy--. ) ) 
dt dv 

l t V 

We observe, since x is odd that 

So the above equals 

"'a1,nx(n) = ~ a1,n (x(n) - x(-n)) 
L.,; njnjl-w L.,; n2-w n¢0 . n=l 

= 2 ~ a1,nx(n) 
L.,; n2-w 
n=l 

= 2Lx(2 - w ), F). 

-2q3 Lx(2 - w), F)i(s + 1, 1- w). 

By Lemma 2.16 and the fact that a1,n = O(lnl), this function is absolutely convergent for 

Re(s + 1) > N1(111, 112), Re(l - w) > N2(111, 112), and Re(2 - w) > 2. Thus we have 

2q3w x( -1) - -
(r(x))2 ~(s- 1,w- l)Lx(w-1,F) 

= ~ tx(u) roo roo 
21ri u=l lo lo 

X :. (t.it ( c 1 J c· 1 z=O 

w-1 s-1 dt dv t V --
t V 
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for Re(s + w -2) > N1(111,112) and Re(s + 1) > N1(111,112), and 

2~i t.x(u) ff:. (t.12. ( C 1 J r· 1 :i: )( ~ V J) ).=, 
w-1 s-1 dt dv 

Xt V --
t V 

-2q4 ..... 
= r(x) Lx(2 - w), F)q,(s + 1, 1- w) 

for Re(s + 1) > N1(111,112) and Re(w) < min(l - N2(111,112),o). Thus, since x(-1) = -1, 

we have 

q3w-4r(x)- _ ..... 
(r(x))2 q,(s - 1, w - l)Lx(w - l, F) = Lx(2 - w),F)q,(s + 1, 1- w) 

for Re(w) < min( l-N2(111,112), 0 ), Re(s+ 1) > N1(111, 112), and Re(s+ w-2) > N1(111, 112), 

So by meromorphic continuation and replacing w by w + l we are done. I 

Now applying Lemmas 2.14, 2.15, and 2.16, Theorem 3.7 becomes, for x even 

q3w-1r(x) L-(w .F)r (w + a) r (w + /3) r (w + ') 
,r3w-! ( r(x))2 X ' 2 2 2 

= Lx(l - w,F)r ( 1 - ~ - 0 ) r ( 1 - ~ - /3) r ( 1-;- ') 

and for X odd 

q3w-1r(x) k(w .F)r (1 + w + a) r (1 + w + ,8) r (1 + w + ') 
i,r3w-! ( r(x))2 X ' 2 2 2 

= Lx(l - w, F)r ( 2 - ~ - a) r ( 2 - ~ - ,8) r ( 2 - ;- ') . 

Thus letting 

.I 
( r(x) )2 if X is even 

E _ r(x)y"q 
" - . c c-))2 

i TX 'f . dd 
r(x)y"q 1 X is o 

and 

rq ( )=(!!..)~r(~)r(w-,B)r(w-,) 
V1 ,V2 W ,r 2 2 2 l 

so 

we have: 
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Corollary 3.8. For x a primitive character mod q and F a cusp form, Lx( w, F) extends 

to an entire function of w. If x is even, we have 

and if x is odd, we have 
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APPENDIX 

REMARKS ON WEIL'S THEOREM 

In this appendix we will present some remarks on Weil's converse theorem for GL(2, R) 

modular forms. We let G = GL(2, R)+ be the subgroup of GL(2, R) with positive deter­

minant. In the introduction we considered H, the upper half plane, as a quotient space; 

however, here we will consider it in the classic sense. We define the action of G on H as 

follows: 

( a b) az + b ( a b) 
c d z = cz + d for c d E G and z E H. 

With this action we define the stroke of a function on H. Let f be a function on H and 

define, for k E Z, 

Before we can define a modular form we must define a subgroup of r = SL(2, Z). For 

a positive integer N, the principal congruence subgroup of level N is given by 

r(N)= {(: :) Er: a::d::lmodNandb::c::OmodN}. 

With this we can define a modular form. Let k be any integer and let r' be any subgroup 

of r containing r(N). A function</> on His a modular form of weight k on r' if 

(a) <p is analytic on H, 

(b) </>lb]k =</>for all 1 Er', and 
00 

( c) for each "'f E r, </>(z)l[,]k can be written in the form Lane c;). 
n=O 

66 
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We say</> is a cusp form of weight k on r 1, if in addition a0 = 0 for all, E r. We let Mk(r') 

denote the set of all modular forms of weight k on r' and Sk(r') denote the set of all cusp 

forms of weight k on r'. 

let 

In order to state Weil's theorem we must define a restricted set of modular forms. We 

ro(N) = { (: : ) E r : c = O mod N} and 

r1(N) = { (: : ) E ro(N) : a= 1 mod N} 

and note that trivally we have r(N) C r1(N) C ro(N) Cr. Since T = ( l 

condition (b) in the definition of a modular form implies that for any</> E Mk (r1 (N)) 

<p(z) = <p(z)l[T]k = <p ( ( 1 i) z) = <p(z + 1). 

Thus </> has an expansion of the form 
00 

<p(z) = L ane(nz). 
n=O 

In fact, lanl = O(nc) for some c E R ([O] p. IV-43). For any function f which can be 
00 

written in the form J(z) = L ane(nz), the L-function associated with f is given by 
n=O 

00 

L(s,f) =~an. 
~nB 
n=l 

Also, for any character x we have the twist off by x 
00 

fx(z) = L anx(n)e(nz) 
n=O 

and the twisted L-function associated with f 

Lx(s,f) = f an:~n), 
n=l 

Finally, for x a character mod N we let 

and 



68 

With this we can now state Weil's converse theorem. 

Theorem A.1. (W] Fix N and k positive integers and ea character mod N. Let {an}~=O 

be a sequence of complex numbers with lanl = O(nc) for some c E R and let </>(z) = 

~ 1 (N -1). L,, ane(nz). Further suppose </>l[HN]k = ~</> for w = 1 or -1 and HN = 
n=O wi 

If</> E ~Mk(N,x) we have the following: 

(a) The function 

( ~) • r(,)L(,,I') + •o G + k: ,) 
extends to an entire function which is bounded in every vertical strip and we have the 

functional equation 

(-./N) s (-./N) k-s 
2: r(s)L(s,</>) = w 2: r(k- s)L(k- s,</>). 

(b) For every character x mod q where (q, N) = 1 we have 

( q~)' r(,)L,(s,\?) 

extends to an entire function which is bounded in every vertical strip and we have the 

functional equation 

( -./N) s ( -/N) k-s 
q 2: r(s)Lx(s,</>) = Cx \: r(k - s)Lx;(k- s,</>) 

where 

C _ we(q)x(-N)r(x) 
X - T(X) • 

Conversely, let Z be a subset of the integers meeting every arithmetic progression of the form 

{ u + nv }nez with ( u, v) = 1. If condition ( a) is satisfied and if for all q E Z condition (b) is 

satisfied, then </> E Mk(N, x). If in addition, L( s, </>) converges absolutely for Re( s) > k - a 

for some a> 0, then</> E Sk(N,x). 
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The goal of the following work is to establish a functional equation for the L-function 

twisted by a character mod q, where q and N are not necessarily coprime. In Theorem A.6 

we will prove a portion of this theorem which demonstrates the necessity of the requirement 

that (q, N) = l in this setting. The remainder of the proof of Theorem A.1 is not related 

to this matter and will not be reproduced. A proof can be found in [O). 

Before we can prove Theorem A.6 we need to establish several lemmas. We begin with 

an easy result. 

Lemma A.2. If x is a primitive character mod q and f is any function which can be 
00 

written in the form J(z) = I: ane(nz) where lanl = O(nc) for some c ER, then 
n=l 

fx(z) = r(x)x(-l) tx(b)I (z + ~) , 
q b=l q 

Proof: By the definition of Ix and Lemma 3.1 we have 

00 

fx(z) = I: anx(n)e(nz) 
n=l 

= f ane(nz((x)x(-1) tx(b)e (bn). 
n=l q b=l q 

Since lanl = O(nc) the sum is absolutely convergent so we can rearrange the sum and obtain 

r(x)x(-l) 'tx(b) f ane (n (z + ~)) 
q b=l n=l q 

which clearly equals 

r(x)x(-1) tx(b)f (z+ ~) . 
q b=l q I 

With this result we can express r(s)Lx(s,f) as a Mellin transform of Ix· 

Lemma A.3. If x is a primitive character mod q and and I is any function which can be 
00 

written in the form f(z) = I: ane(nz) where lanl = O(nc) for some c ER, then 
n=l 

100 dr 
(211')-sr(s)Lx(s,f) = lx(ir)r8 - for Re(s) > max(c+ 1,0). 

o r 
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Proof: In the region Re(s) > max(c + 1,0) the L-function is absolutely convergent as is 

r( s )Lx( s, f) = f oo e-r rs dr ~ anx( n) 
loo r L..,; ns 

n=l 

00 100 
( r) s dr = L anx(n) e-r - -

n=l o n r 

which by a change of variables equals 

00 100 d L anx(n) e-211"nr (21rr) 8 ; • 

n=l O 

Since we are in the region in which the integral and the sum are absolutely convergent we 

can interchange the order of summation and integration and obtain 

/00 00 d 
(21r)8 lo L anx(n)e(irn)r8 ; 

0 n=l 

which equals 

I 

If, as before, we let H N = ( N -l ) we have 

Lemma A.4. Let <p be a function on H such that for some c, a character mod N, we have 

</,j[,]k = c(d)</, for all "f = (: :) E ro(N) and cpl[HN]k = w~kcp where w = 1 or -1. If 

( q, N) = 1, (b, q) = 1 and u and v are integers such that qv - bN u = 1, then 

Proof: We first note that such u and v exist since we have 

(q, N) = 1 (b ) 
(b,q) = 1 => N,q = 1. 
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We let 'Y = (-1u -,,b) and evaluate <t>(z+!)l[HN'Y]k in two ways. First noting 

'Y E ro(N) we have 

( b) (Nqv-N2ub)! ( Nu(z+!)-v) 
¢, z + q l[HN'Y]k = (N qz)k ¢, N q(z + !) - Nb 

_ (N(qv - Nub))! (Nuz + i(Nub- qv)) 
- (Nqz)k </> Nqz +Nb-Nb 

- </> q 
N! (Nuz- l) 

- (Nqz)k Nqz 

1 (u 1 ) = (.../Nqz)k </> q - Nq2z . 

Combining these two equations we obtain 

Since qv - bNu = 1 we have qv = 1 mod N, so e(q)e(v) = 1. Thus 

</> (z + !) _ wike(q) </> (! __ 1 ) 
q - (.../Nqz)k q Nq2z · I 

Lemma A.5. Let N and k be positive integers, e be a character mod N, and </>(z) E 

1 
Sk(N,e). Further suppose </>l[HN]k = ~</> for w = 1 or -1. Then for every character x 

wi 

mod q where (q, N) = 1 

</> (z) = wx(-N)e(q)r(x) (-i-) k <fry(_::.!._) . 
X r(x) .../Nqz X Nq2z 
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Proof: As noted earlier, since if> E S1c(N,x) we have 

00 

</>(z) = L ane(nz) 
n=l 

where lanl = O(nc) for some c ER. Thus, by Lemma A.2 

<l>x(z) = r(x)x(-1) tx(b)</> (z + ~) . 
q b=l q 

Since x(b) = 1 unless (b, q) = 1 we have by Lemma A.4 

x(b)</> (z + ~) = wike(q) x(b)</> (:!!:. - _1_) 
q (v'N qz)k q N q2z 

where -bNu = 1 mod.q. Thus x(b) = x(-Nu) and as b runs through a complete set of 

residues modulo q so does u. Thus 

¢, (z) = r(x)x(-1) wike(q)x(-N) ~ (u)</, (:!!:. __ 1_). 
x q (v'Nqz)k ~X q Nq2z 

Finally, applying Lemma A.2 again this equals 

r(x)x(-1) wike(q)x(-N) <h (--2-) . 
r(x)x(-1) (y1Nqz)k x Nq2z I 

With this we can now prove the part of Theorem A.1 which will be investigated. We 

restrict our attention to cusp forms in order to simplify the computations. 

Theorem A.6. Let N and k be positive integers, e be a character mod N, and <f>(z) E 

1 
Sk(N,e). Further suppose <f>l[HN]k = -:-;;¢ for w = 1 or -1. Then for every character x 

wi 

mod q where (q,N) = 1 

( qv'N)" ~ r(s)Lx(s, </>) 

extends to an entire function and satisfies the functional equation 

qy1N qy1N 
( ) 

s ( ) k-s 
~ r(s)Lx(s,¢) = Cx ~ r(k- s)Lx:(k- s,¢) 



where 

C = wc:(q)x(-N)r(x). 
X T(X) 

Proof: Since <p E Sk(N,c:) we can apply Lemma A.3 and obtain 

For the integral we observe 

l 

100 • dr 1-;:r,; . dr Joo . dr <f,x(ir)r8 - = <f,x(ir)r8 - + <l>x(ir)r8-. 

0 r O r ----1-. r 
qYN 

Applying Lemma A.5 to the first summand we have 

Making the change of variables r -+ Nl 2 this becomes 
r q 

which equals 

Cx Joo </>x(ir)rk-sdr. 
( . riif) 2s-.k 1 x r 
qvN ;:n 

Thus 

100 dr ( ) k-2s Joo dr Joo dr <l>x(ir)r8 - = Cx qv'N <frx:(ir)rk-s_ + <f,x(ir)r8 -
o r 1 r _1_ r 

-;:rr:t q ,IN 

and so we have 
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00 

These integrals converge for all values of s since <f,(ir) = ~ ane(nir) decays exponentially 
n=l 

as r-+ oo. Thus ( q"f:) 8 f(s)Lx(s) extends to an entire funcion of s. Also, replacing s by 

k - s, X by X, and multiplying by Cx we obtain 

q./N ( )
k-s 

Cx 21r f(k- s)£x(k - s) 

( )s Joo dr ( )k-s Joo dr = CxCx. q'VN --1-- <l>x(ir)r8 -:; + Cx q'VN _1_ <f>x(ir)rk-s-:;· 
9../N q../N 

Thus the proof will be complete if we show CxCx = 1. We observe 

CxCx = w2 (e(q))2 x(-N)x(-N) = (e(q))2, 

So it will suffice to show ( e( q) )2 = 1. 

For any ; = (: : ) E r0 (N) we have ad - be = 1 with clN which implies ad = 

1 mod N. Also HN;n·;/ = (-tb -}r) E fo(N). With this we evaluate <f>l[HNi]k in 

two ways. First 

On the other hand 

Thus e(a) = e(d), which implies, since ad = 1 mod N, that e(a) = e(a). In particular, 

(e(q))2 = 1. I 

Relaxing the restriction that (q, N) = 1 in the hypothesis of this theorem is our goal. 

Most of the following results have been proven using representation theory ([L]). However, 

all of the following proofs will be done classically. Note that in the previous discourse the 

significance of (q, N) = 1 appeared in the proof of Lemma A.4. More precisely in the 

choice of;. We will first prove a simple version of Lemma A.4 where (q, N) > 1 and the 

transformation law for the action of HN on</> is not required. 
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Theorem A.7. Let</> be a function on H such that for some e, a character mod N, we 

have </>lb]k = e(d)</> for all,= (: ~) E I'0 (N). If for q, b, b E Z we have Nlq, (b, q) = 1, 

and bb = 1 mod q then 

( b) e(.,..b) (-1 b) 
</> z + q = ( qz )k </> q2 z - q . 

Proof: Since bb = 1 mod N there exists a v E Z such that bb - qv = 1. We let 'Y = 

( ~b ~b) and as in the proof of Lemma A.4 we evaluate </> (z + !) 1[,]k in two ways. 

First, we observe that , E r0(N) since Nlq, Thus 

<t>(z+~) l[,]k=e(-b)<t>(z+~). 

On the other hand, we observe 

¢ (z+ n lhl· = (qzi-•¢ ( ~~<::N:b·) 
= (qz)-k</> ---=-q ---
. (-bz - l(bb - qv)) 

qz 

-bz- -( - 1) 
= (qz)-k</> qz q . 

1 (-1 b) = ( qz )k </> . q2 z - q . 
Thus 

1 (-1 ;;) ( b) -</> ·- - - = e(-b)</> z +- . (qz)k q2z q q I 

Note that this is not quite the form which is needed since e( -b) depends on b. This problem 

is eliminated by taking e to be the trivial character. Thus our hypothesis becomes </>l[,]k = </> 

for all, E r0 (N). Noting that -IE r0 (N) and </>l[-J]k = (-l)k<t, we observe that k must 

be even. So we have 

Corollary A.8. Let </> be a function on H such that </>1[,hk = </> for all , E I'o(N). If for 

q, b, b E Z we have Nlq, (b, q) = 1, and bb = 1 mod q, then 

With this result we have the analogs of Lemma A.5 and Theorem A.6. 
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Lemma A.9. Let N and k be positive integers and </>(z) E S2k(N, 1) = S2k (ro(N)). If x 

is a character mod q, where Nlq, then 

</> z = x(-l)r(x) ( 2 ) 
xC ) C qz )2kr(x) <l>x q2 z · 

Proof: Since <I> E S2k(N, 1) we have, by Lemma A.2 

<l>x(z) = x(-l)r(x) tx(b)</> (z + ~) . 
q b=l q 

Observing x(b) = 0 unless (b,q) = 1 we can apply Corollary A.8 and obtain 

x(-l)r(x) ~. x(b) <I> (2 _ !) 
q ~ (qz)2k q2z q 

b=l 

which in turn equals 

r(x) ~ - . (-1 b) 
q(qz)2k ;;;_ x(-b)</> q2z - q · 

Again, applying Lemma A.2 we obtain 

r(x) . ( 1 ) 
(qz)2kr(x)x(-1)</>x - q2z ' I 

By using this lemma and the methods used in the proof of Theorem A.6, mutatis 

mutandis, one can show 

Corollary A.10. Let N and k be positive integers and </>(z) E S2k(N, 1) = S2k(r0 (N)). 

If xis a character mod q, where Nlq, then 

( 2~) 8 r( s )Lx(s, </>) 

extends to an entire function and satisfies the functional equation 

( q ) s - ( q ) 2k-s 
211" r(s)Lx(s,</>) = Cx 211" r(2k- s)Lx;(2k- s,</>) 

where 

c = x(-l)r(x). 
X i2kr(x) 
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Up to this point we have established a functional equation for the L-function twisted 

by characters mod q, where (q,N) = 1 and (q,N) = N. In order to reduce the restrictions 
00 

on q and N further we recall a result of Atkin and Lehner ([AL]). For <p(z) = L ane(nz), 
n=l 

we extend an to Q by setting aa = 0 for a ~ Z. We define Atkin and Lehner's Hecke 

operators T,, and Uq as follows: 

00 

(T,,¢) (z) = L(anp + p2k-Iat)e(nz) 
n=l 

00 

(Uq<f,) (z) = L anqe(nz). 
n=l 

For cp E S2k (r0(N)) we say cp is a newform of weight 2k and level N if for primes (p, N) = 1 

and qlN, there exist a, /3, A,µ E C such that Tpcp = acp, Uqcp = f3cp, cpl[HNhk = Acp, and 

cp(-z) = µcp(z). This definition is equivalent to that of Atkin and Lehner ([L] Theorem 9). 
00 

We say cp(z) = I: ane(nz)is normalized if a1 = 1. Let N2k (r0{N)) denote the set of all 
n=l 

normalized newforms of weight 2k and level N. Finally, if q is a prime dividing N such that 

qallN, we let Wq denote any matrix of the form 

where x, y, u, v E Z such that det Wq = qa. 

We now state, without proof, a theorem of Atkin and Lehner. 

00 

Theorem A.11. [AL] If cp(z) = I: ane(nz) E N'2k (r0 (N)), pis a prime with (p, N) = 1 
n=l 

and q is a prime dividing N such that qallN, then 

(c) cpl[Wq]2k = A(q)cp where >.(q) = ±1. 

With this result we can relax the condition on q and N by assuming cp is a newform of 

even weight. We begin with 
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Lemma A.12. Let cp E N2k (ro(N)), let q be a prime dividing N, and let a be an integer 

such that qallN, Further suppose that cp satisfies cpj[HNhk = wi2i, cp where w = 1 or -1. 

Then if (b, q) = 1 and f3 is a nonnegative integer we have 

( b ) wi2k ( u 1 ) 
cp Z + qa+{J = A(q) ( VN qa+/Jz f k cp qa+{J - Nq2(a+fJ)z 

where N = qa N, qa+/Jv.,.... ubN = 1 and A is from Theorem A.ll(c). 

Proof: We are under the hypothesis that (b,q) = 1 and (q,N) = 1, thus we can find 

+fJ - ( qa+/J -b ) u, v E Z such that qa v - ubN = 1. Letting Wq = aN- a , we will evaluate -q u q 'V 

cp ( z + q"~/J) l[HNWqhk in two ways. By Theorem A.11 we have 

cp (z+ qa:/J) l[HNWq]2k = (cp (z+ qa:/J) l[HNhk) l[Wq]2k 

== w:2k 'P (z + qa:{J) l[Wqhk 

= ~~;lcp (z + qa:{J) · 

On the other hand, we observe 

Thus 

( b ) (q2aNl ( qaiJu(z+?)-qav ) 
cp z+-- l[HNWq]2k = - cp - -

qet+/J (q20t+/J N z)2k q2a+{J N ( Z + qa~/J) - qabN 

_ 1 (qa Nuz + f,r(bNu - qa+/Jv)) 
- 2kcp -

( qa+{J VN z) q20t+/J NZ 

1 ( u 1 ) 
= ( qet+{J 'VN Z) 2k cp qet+{J - q2a+2{J NZ . 

Whence 

( b ) wi2k ( u 1 ) 
cp z+ qet+{J = A(q) (../Nqet+f3zfkcp q°' - q2(a+f3)Nz . I 

We could now proceed to prove the analogs of Lemma A.5 and Theorem A.6, however 

we will first generalize Lemma A.12 further. First we need to establish the following result. 
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00 

Lemma A.13. If cp(z) = L ane(nz) E N2k (fo(N)) and q is a prime dividing N, then 
n=l 

and 

Proof: By Theorem A.ll(b) we observe 

00 

aqcp(z) = (Uqcp) (z) = L anqe(nz). 
n=l 

But trivially 
00 

aqcp(z) = L aqane(nz). 
n=l 

So by the uniqueness of the Fourier expansion 

We prove the remaining statement by induction. We first note that the result is trivial for 

m = O. However, we must prove the result form= 1 which is used in the general case. 

If m = 1 we have 

Now since 

q-1 ( ) q-1 oo ( ( )) L cp . z + ~ = LL ane n z + ~ 
r=O q r=O n=l q 

~e (nr) = {6 
r=O q 

if qln 
otherwise, 

we have the above equals 
00 

q I: anqe(nqz) = qaqcp(qz). 
n=O 



Now assuming the result is true for m we have 

<.p(qm+la;) = <.p(qm(qz)) 

Applying the result for m = 1 we have that this equals 

1 q~l 1 ~ ( , s r) 1 q~l ~ ( s + qmr) 
(qaq)m ~ qaq f:'o <.p z + qm+1 + q = (qaq)m+l ~ f:'o 'P z + qm+l 

qm+l_l I 

= (qaq~m+l ]; <.p (z + q;+l) · 

So by induction we have the desired result for all m ~ 0. 

With this we prove the following lemma. 
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I 

Lemma A.14. Let <.p E .N2k (ro(N)) and let q be a prime such that q°'IN. Further suppose 

that <.p satisfies 'Pl[HNhk = wf21o <.p where w = 1 or -1. Then if (b, q) = 1 we have 

( b ) wi2k ( u 1 ) 
<.p z+ q°' = ,\(q) (q°'VNzfk'P q°' - q2°'Nz 

where ubN = -1 mod q°', q°'+.BIIN and N = q°'+.B N. 

Proof: By Lemma A.13 

<.p (z + ~·) = <.p (l (~ +-b )) q°' q.B q°'+ .e 

1 q~l (z b r) 
= (qaq ).B f:'o <.p q.B + qa+.B + q.B 

1 q~l ( z rq°' + b) 
= ( qaq ).B f:'o <.p q.B + q°'+ .B • 

Now since (b,q) = 1 and q is a prime we have (rq°' + b,q) = 1, so we apply Lemma A.12 

and obtain that the above equals 

____ w_i_2k __ --2-k qI:1 <.p ( a:.e - - 2~+.B ) 
(qaq).B,\(q) ( VNq°'z) r=O q Nq z 
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where u(rqa + b)N = -1 mod qa+f3 and). is from Theorem A.ll(c). Thus, we can replace 

u by -rqa + bN where (rqa + b)rqa + b = 1 mod qa+f3 and N N = modq0+f3, Since we are 

summing over O ::; r ::;; qf3 - 1, an elementary number theory argument implies the above 

equals 

wi2k q~l (-(rqa + b)N _ 1 ) 

( ~ ) 2k LJ cp a+f3 - 2a+f3 
(qaq)f3>.(q) V Nqaz r=O q . Nq Z 

wi2k q.B-i (-rN bN 1 ) 
= (. ~ ) 2k L cp -r - qa+f3 - jj 2a+f3 ' 

(qaq)f3>.(q) V Nqaz r=O q z 

Now as r runs through {O, ... ,qf3-1} so does -rN modulo qf3. Thus, the above equals 

wi2k q.B-i ( r' bN 1 ) 
-----(-~----)-2-k L cp qf3 - qa+f3 - N 2a+f3 
(qaq)f3).(q) V Nqaz r'=O q z 

which by Lemma A.13 equals 

_wi--,,.,-2k 2k cp (qf3 (--bN _ _ 1 ) ) = wi2k 2k cp (--bN _ _ 1 ) . 
>.(q) ( VNqaz) qa+f3 N q2a+f3z >.(q) (v'Nqaz) qa Nq2az 

Since -bNbN = -1 mod qa+f3 implies -bNbN = -1 mod qa we have the desired results.I 

Before we proceed, we combine Lemma A.12 and Lemma A.14. 

Corollary A.15. Let cp E N2k (ro(N)) and let q be a prime dividing N such that qallN, 

and write N = qa N. Further suppose that cp satisfies cpl[HNhk = w:'J,. cp where w = 1 or 

-1. Then if(b,q) = 1 and Q is any power of q we have 

where u is such that ubN = -1 mod Q and>. comes from Theorem A.ll(c). 

We can now prove the analog of Lemma A.5 in this generality. 
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Lemma A.16. Let <.p E Mk (ro(N)) and let q be a prime dividing N such that qallN. 

Further suppose that <.p satisfies 1.pl[HNhk = wf2,. <.p where w = l or -1. If Q is any power 

of q and x is a primitive character mod Q we have 

- ( )2k wx(-N)r(x) i ( -1 ) 
'Px(z) = .X(q)r(x) VNQz 'Px NQ2z 

where N = q<~N and.Xis from Theorem A.ll(c). 

Proof: By Lemma A.2 and Corollary A.15 

'Px(z) = ,(x)~(-l) t,x(b)<p (• + ~) 

= r(x)x(-1) "tx(b) . wi2k <.p (~ __ 1_) 
Q b=1 .X(q) ( VNQz) 2k Q NQ2z 

where ubN = -l mod Q and .Xis from Theorem A.ll(c). Thus x(b)x(-uN) = 1 which 

implies x(b) = x(-u.N). Also, as b runs through a complete set of representatives modulo 

Q, so does u. Therefore, the above equals 

wr(x)x( N) ( ~ ) 2
k 'f, x( u )1.p (~ _ ~) 

.X(q)Q VNQz u=l Q NQ2z 

which by Lemma A.2 equals 

wr(x)x(N) i . Q . -1 - ( )2k 
.X(q)Q J'°NQz. x(-l)r(x) 'Px (JiQ2z) 

wr(x)x(-N) i . . -1 - ( )2k 
= .X(q)r(x) VNQz l.{)x (NQ2z). I 

By using this lemma and the methods used in the proof of Theorem A.6, mutatis 

mutandis, one can show our desired goal. 

Theorem A.17. Let <.p C N2k (r0 (N)) and let q be a prime dividing N such that qallN, 

and write N = q0t .N. Further suppose that <.p satisfies 1.pl[HNhk = wf2,. <.p where w = l or 

-1. If Q is any power of q and x is a primitive character mod Q we have 

( JN)s Q 21rN r( s )Lx( s, <.p) 
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extends to an entire function of s and satisfies 

( J"N) • ( J"N) 2k-• 
. Q21rN T(s)Lx(s,cp) = Cx Q 21rN T(2k - s)Lx(2k- s,cp) 

where 

C = wx(-N)r(x). 
X .\(q)T(X) 
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