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CHAPTER 1
BACKGROUND
Introduction

Automorphic forms on GL(3,R) can be thought of as a generalization of the more
classical and familiar automorphic forms on GL(2,R). The aspects which generalize to
GL(3,R) are outlined in Chapter 1 of [B1] and are reproduced here for comparison to the
GL(3,R) case. Automorphic forms on GL(2,R) are functions on the upper half plane
H. In particular, there are two general types of automorphic forms on GL(2,R); namely,
holomorphic or modular forms and Maass forms. It is the Maass forms which generalize to
GL(3,R).

In order to generalize Maass forms to automorphic forms on GL(3,R) we consider H
as GL(2,R)/ZK where Z is the center of GL(2,R) and K is the subgroup of orthogonal

matrices. Thus we have

HE{(y :;) 12,y € R, y>0}.

In this way the natural action of SL(2,2Z) on H is given by matrix multiplication. With
this action we define the automorphic fofrr;s of Maass. A complex-valued function f on H
is a Maass form if

(a) f(g9z)= f(z)forall g€ SL(2,Z)and z € H,

(b) fis an eigenfunction of the G-invariant differential operators on H, and

(c) there exists an n such that f ((y 1)) y™ is bounded for y > 1.
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We say f is a cusp form, if in addition

/olf((y a{))dz:O for all y > 0.

Condition - (b) in this definition can be made more precise. That is, the space of

G-invariant differential operators on H is generated by

' £ @
Y S ALY
A==y (dw”dy?)

Therefore, condition (b) implies Af = Af for some eigenvalue A € C. Thus associated to f
is a complex number A; however, a moré naiﬁral parameter to associate with f is ¥ where

= y(1 — v). In this situation we say f is a Maass form (or respectively cusp form) of
typev. In the GL(3, R) case it is known that the space of differential operators is generated
by two elements. Thus the type is given by two complex numbers.

Condition (a) in the definition of a Maass form implies that

A(("3))

is periodic in z. This, along with the other conditions, gives a Fourier expansion of the form

(1) =g (7))

w (Y %)) =2k s eriete)

where

and K,(z) is the standard K-Bessel function. If f is a cusp form then ap = 0, and we can

(1) =g (™ 7))

- Thus associated to a cusp form is a sequence {@n}n0. This sequence is used to define the

write

L-function associated with f. For f a cusp form, the L-function associated with fis

Gn
L(S,f) = ;{;.
n#0
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It is known that this series is absolutely convergent in a right half pane, extends to an entire

function of s, and satisfies a functional equation of the form

r'r(s';”)r(l"';"”) L(s,f):7}°-lr(1“;+”)r<2';"’)L(1-s,f).

A similar functional equation for the L-function associated with a cusp form on GL(3,R)

was first proven by Godement and Jacquet ([GJ]). A more direct proof using the machinery
of representation theory was given by Jacquet, Piatetski-Shapiro, and Shalika ([JPS]); how-
ever the gamma factors were not explicitly evaluated. Later, following methods of [JPS], a
classical proof was given by Bump ([B1]). In this work the gamma factors were specifically
evaluated, but the method relied on the introduction of Eisenstein series. Finally, by intro-
ducing an auxiliary variable, a classical and direct method was presented by Hoffstein and
Murty ([HM1]).

Jacquet, Piatetski-Shapiro, and Shalika ([JPS]) go much further and prove the converse
theorem in the more general setting of automorphic forms on the Adele group. The GL(2,R)
analog had previously been proven by Weil ([W]) (See the appendix for remarks on Weil’s
converse theorem). The converse theorem states that a function is a cusp form if and only
if all twists by characters of the L-function associated with the form have an Euler product,
are entire and bounded in every vertical strip, and satisfy a similar functional equation.

In the following work, the exact form of the functional equation for the L-function
associated with a cusp form on GL(3,R) which has been twisted by a primitive Dirichlet
character will be established. The methods of [B1] will be used while incorporating the
methods of [HM1]. We will also be relying on the handwritten notes of Hoffstein and Murty
([HMZ2]), which were provided by Hoffstein. In these notes they work out the functional
equation for the L-function twisted by an additive character of prime modulus. Their results

were easily extended to the case of a primitive Dirichlet character of prime modulus and
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by a modification of their argument the result was obtained for even primitive Dirichlet
characters with any modulus. Finally, by introducing an auxiliary variable, the result was
obtained for all primitive Dirichlet characters. It is hoped that by interpreting the results
of [JPS] into classical language more insight may be obtained regarding the behavior of the

cusp forms themselves.
GL(3,R) Preliminaries

We can now define an automorphic form on G = GL(3,R). Let K denote the subgroup
of orthogonal matrices in G, let Z denote the center of G, and let H = G/Z K. It is this space
H which plays the role of the upper half plane. We note, by the Iwasawa decomposition,

that each coset in H has a unique representative of the form

By T2 T3
T= n o where y1,y2 > 0 and z;,29,23 € R.
1

We also introduce an auxiliary coordinate z4 given by the relation
1T = T3+ T4

which Wi]i greatly simplify some of the formulas. Finally, we let I' = GL(3, Z). AGL(3,R)
automorphic form is a complex-valued function F on H such that

(a) F(gr)=F(r)forallgeT and T € H,

(b) F is an eigenfunction of the G-invariant differential operators on H, and

Y1Y2
(c) there exist constants nj,ns such that F (( Y )) y1r1ys? is bounded
1 :
on the subset of H determined by y1,y2 > 1.

We say F is a cusp form if in addition

1 ,1 1 T3
/ / F 1 1} T d:vld:v;; =0
0o Jo 1
forall T € H.
1,1 1 2z =z3
/ / F 1 T d:vzdiv;; =0
o Jo 1
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As in the GL(2,R) case, condition (b) can be made more precise. The space of
G-invariant differential operators on H is generated by two elements ([B1] 2.33 and 2.37);

namely,

A—z_a_z..+'2_3_2.._ i_+ 2($2+. 2582+262+2 2+22m-——32—-
1=% ay% yZayg yly?ayla Nz rY amg /1 am% | Yo 627% h 23(1)13(1)3

Y2

and
3 3 3 3 53

g
Ao = —y2 10 —mee— y SAY: FY SN, 2 _9y? -
2 Y192 ay%ayz + 1Y, aylay% V1% azgayl + Ny, az%ayl Y1Y222 azlazaayz
2 2 2 ik 2 & 2,2 & 2 ik
- —_— — _— 49 —_
+ ¥192(y — 23) 52305~ V1V 5220y, + 29193 To10m,0a, T g, o2

+ 2_@1_ 2_‘__2_+22z__2_2__+ 2(2)2-}- 2)62 n 282 _ 262
3/133/% y28y§ n 252,02 N\Tz2 T Y2 23 3/18:0% Y2 927"

Therefore, condition (b) implies A; F = AF and AyF = pF for some eigenvalues A, € C.
However, more natural parameters to associate with F' are v;,v, € C which are given by
the relations ([B1] p. 33)

A= 3(1/12 + v + V22 - - Vg)
and ([B1] p. 34)
p=-203 — 30k 4+ 302 4+ 208 + 307 — 312 — vy + 1.

In this situation we say F is an automorphic form (or respectively cusp form) of type

(VI,V2)'

Also of particular interest in the theory of automorphic forms for GL(3,R) is the

-1
‘r=wirlw; where w; = ( -1 ) .
-1

We use this involution to define the dual fof any function f on H, which is given by

involution

fr) = (7).
If F is an automorphic form of type (v1,v2) then F is an automorphic form of type (vz,v1)

([B1] p. 71).
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We now recall the expansion of an automorphic form in terms of Whittaker functions
([B1] Chapter 4). This will give the coefficients used to define the L-function for GL(3,R).

We first must define several subgroups of I' = GL(3,Z). We let

1 A B
I‘oo_—_{reI‘n': 1 C }
1
A B
P2={T€F:T= C D }
1

I? = {r € I?:det(r) = 1}
Il =TNT,.

We now let F be an automorphic form of type (v1,1;). Since F is invariant under
(1 1

1 1) we have the Fourier expansion
1

F= Y F3(r)

n1,n3 €Z

1,1 1 T3
F:f(7)=/o /0 F(( 1 371)7') e(—n1z1 — n3z3)dzides.

1
We also note ([B1] 4.5) that for A, B,C,D,m € Z with AD — BC =1 and m > 0 we have

‘(A B
Fﬁﬁ(r):Fg((c D )r)
1

F=RO+ S Y B

ger‘go \1“3 m=1

where

Thus we have that

1

1
Noting that FQ is invariant under ( 1 ) we see that we have the Fourier expansion
1

Fo(r) =) Fna(r)

nezZ

1 1 41 1 z9 23 |
Fm,ﬂz:/o/o/oF 1 a7 e(—n1$1-—n2x2)dm1dm2dw3.

1

where



Hence,

F(r)= Z Fon, () + Z Z Z Foyina(97)-

n3€Z g€r2 \r'f n1=1nz€Z

-1
Fn11n2 (( 1 ) T) = Fnlv-nﬁ(r)
1

~and if we assume that F is a cusp form we see that Fy , = 0 and F;,, o = 0, whence

We observe that

o o0

F(r)= Z Z Z Fry ina(97).

geETZ \I'? n1=1nz=1
There exist an, 5, ([B1] 4.12) such that

Qny 0 V1,V e
Fnl,nn(r) = . Wl,ll' : ni T
|n1n2l . 1
Woima(7)

= ﬂ,;—aul-smr (%) T (ig_z_) r (i’ii%"’___l) yf”l'*'"’y;”z"’e(nl:h + n2$2)

o0 o0 o= 3 3
[ @it e € €l + i) (s - ma)dEadendes

where

with 7 written in the standard coordinates and & &2 = £3+&4. With this we have established

Lemma 1.1. [Bl] If F is a cusp form of type (v1,v2) then there exist coefficients an, n,

such that

=~ > anlvnQ V1,V2 mnz
F(r)= Z Z ZWWLf n . grl.

geEr2 \I'? n1=1ny=1

The array ay, n, is called the matrix of Fourier coefficients of F and we have

Gny,ng = Qiny,|nz|-

It is this array which will be used to define the L-functions. For convenience of notation, if
@n, n, 18 the matrix of coefficients for F' then we let @y, 5, be the matrix of coefficients for

the dual . We have ([B1] 4.15) that

~
a’ﬂnnn - a’ﬂz,ﬂr
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It is now possible to define the L-function for GL(3,R). Let F be an automorphic form
of type (v1,v2) and ap, n, be its matrix of Fourier coefficients. The L-function associated

with F is given by

o0
Lw,F)=Y ==
n=1
We see for the dual form F that
Fy= 3~ Gn _ - Ot
Lw,F) =) = > —
n=1 n=1

We have an,,n, = O(|nine|) ([B1] 8.4); thus the L-functions converge absolutely for

Re(w) > 2. Also, for x a Dirichlet character we define the twisted L-function associated

with F by
™ _ - al,nX(n)
Lx('w, F) = Z T,
n=1

which is also absolutely convergent for Re(w) > 2.

It is the L-function for which Bump [B1] established a functional equation. Later,
Hoffstein and Murty [HM1] gave a more direct proof of this functiona.l equation. It will
be their method which will be used in this paper to develop a functional equation for the
twisted L-function. We now, very briefly, state Hoffstein and Murty’s results. They begin

by introducing an auxiliary variable s and considering the two Mellin transforms

0 poo t
3(s,w) = w v twv’ﬂﬂ
t v
0o Jo 1

and
O(s,w) = /000 /:o/::W ((;"1)) v 1)) t“"v"’(l:yiit-t-i':i
where
W(r) = Wiy (r)
and

W(r) = Wiy (n).



It is now possible to show

0o poo i
Lw, F)3(s - 1,w—1) = E G / / W . gu=10-1 8 00
n=1 0 Y 1 t v

1 [® X N t
- 5/ / EFl,n v tw—lvs—lﬂgg

oo t
20 0 1 t’D

the above equals
-1— / / / F(} y 1 v
2/ Jo J-o 1 1
1 ¥ dt dv
= —/ / f EFl,n Y 1 v tw—l s—-ld

X neZ 1 1 t ’D

al"’ / / / t—wvs—ld it_@

n_l —co 1 t v

- =I(1-w,F)%s-1,-w).

~— o
~——
o~
g
A
-
<
']

1
—
oY
)
L Y
I&.
<

So we have by meromorphic continuation that
L(w, P)®(s - 1,w—1) = L(1 — w, F)®(s - 1, —w).

Evaluating the Mellin transforms we obtain

r (Eﬂ) r (w;-g) r (w;ﬁ) T (“"1‘3;0!—1) T (w+s;ﬁ—l) T (W+s—t1)

~ 2 2
@(8 - 1, w—- 1) = 4q2wts—~1T (2w;|:23—1)

and

(s—1,-w) = L= F,(l_tg—ﬁ) I (:=42) 1 (wteze=l)T (“"""’;ﬁ—l) T (wte=y=l)

7oV T (222
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where
a=-1r—-21n+1

B=-n+uv

y=2+vy-1.

Combining these facts and noting that

0 oo 1 .
/ / F v adate v"“lit-@-
o Jo 1 v
converges for Re(s + w) sufficiently large we obtain
Theorem 1.2. [B1] The L-function of an automorphic form F converges for large values

of w. If F is a cusp form then L(w, F) has an analytic continuation to all values of w and

satisfies

e (52)r (37) 7 (%37)
=i () () (),

2



CHAPTER II
SOME BASIC LEMMAS

In this chapter we will present some basic lemmas which will be useful in the develop-
ment of the functional equation of the twisted L-function. Throughout this chapter we let F°
be an automorphic form of type (v1,v;). We will use the notation of Chapter 1, specifically

for F™, W, ®, and ®. We first recall ([B1] 4.4) that if n, € Z then

1 2
F‘::f 1 1 T n1+n2n3(T)

We also need a similar result.

Lemma 2.1. Ifng € Z then

1
L4y ((ng 1 )‘r) = Fpatmne(r),
1

Proof: We have by the definition of F? that

#(.))
1
) (n2 1 ) T) e(—nl:vl - n3:v3)d:v1d:v2
1

(( 1 T
(( 1 xl) 1') e(—nyz; — n3zs)drides
1 T3
1 21 —mngzs | 7| e(—mzy — ngz3)deide,.
1

By a change of variables and the fact that F is invariant on the left by I, the above equals

-'ng:ta x3
/ / 1 z | 7] e(—ni(x1 + nox3) — n3z3)dedes
-N2T3 1 .

11
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which by periodicity equals

F::13+m nz (T)

We now need a simple result about an integral of a Whittaker function.
Lemma 2.2.
(e o] _% (e o]
/ w z 1 zhdz = (—1)"/ w 1 z*dz
~00 1 =0 1
Proof: Since W is invariant on the right under ZK we have

Lr(( e () ()

Now by a change of variables the above equals

e e

Next we compute the coordinates of a certain matrix in order to calculate a certain

8«3

]

8 =3

partial derivative of W.

Lemma 2.3. Fora,b,c,de R

ad abd? ac
a VTPV tcatd?  (cA+d?)V/biditcitd?  citd?
b 1 an VB2 d:_+c-:—+d5 2bc \
c d c+d ¢ -Iid

differ by multiplication on the right by an element of ZK and hence have the coordinates

be
 VEETITE nTorae
= C2+d2 oo = abd2
adV + d2 27 b2d? § ¢ + 42
“ErErat & ac

$3=m.
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Proof: We first note

a d c Ve + d? bd
b 1 Ve +d? —bd Vel +d?
c d —c d ' VOidE 2+ d°

ad ac Vet + d? bd
= | bd Vet+4d? be —bd Vet + d?
¢’ + d? b*d? +c?+d
adv/c? + d? abd? acVb?d? + c? + d?
= b d? + ¢ + d? bevbid? + c? + d?
(2 + d®)Wh2d? + c? + d?
Multiplying by @+ &) b21d2 5 I, where I is the identity matrix, we obtain

ad abd? ac
Ve tdJbiditoatds  (c2+d?)VbideFoi+dZ  ci+d?

zbgd;}%;d% be
ct4d c24-d?

1 .
Ny Hhr2 T3
and comparing this to 1 Z1 | we have the coordinates as stated. |
1

We use this to obtain:

Lemma 2.4. Fora,b,c,d € R with d > 0 we have

el I )

Proof: From the definition of W, the previous lemma, and letting

k(v1,1) = md—Sn =3y (E;—l) \ (ﬂ) T (Ql_if’ﬁi'_:l)

2 2
we see that
: a
w b 1
c d
PEraT @) " (_ayIxE "
= k) | —a PET I+ &

“ be + abd?
\eTd " Pt + @
[=] [o) o] b2d2+c2+d2 a2d2 - ;
2 2
S (e+e (CEEE) e P

242( 2 2 2,72 p)
9 . .9 a‘d®(c? + d%) a‘d
X (64 +& ((bzd2 + c? + d?)? t (b%d? + c? + d?)(c? + d?)

X e(—fl - fg)dfldfgd&g.
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We also note

2v14+v;
o ((VPETaTe
Oc c? + d?

e=0

R T T\ Tt
= (21/1 + 1/2) o

c(c? + d2)(b2d? + c? + d?)~} — 2¢(b2d? + ¢? + d2)}
X
(c2 + d2)2

c=0

=0

_8_ adv/c? + d? vitive
dc b2d? 4 2 + d? -

' vi+2v3—-1
adv/c? + d? ?
= (l/1 + 2112) __b2d2 ot &

 aed(VPd? + & + d?)(c? + d?)~3 - 2cad(c? + d?)?
(B2d? + ¢ + d2)?

c=0

9 (e abd? + be )

Oc b2d? +c2+d? 2 +d? o
_{ons —2abed? + b(c? + d?) — 2bc? . abd? + be
- (b2d2 +c2+ d2)2 (c2 + d2)2 Bd2+c2+d? ¢+ d?

_ 27ribe ab
T d2 b2 +1

c=0

0 g .o (VP2 4+ P+ d° a*d? -
(& +& + 2 2 2\( o2 2
Oc (c? +d?)? (b2d? + ¢ + d?)(c? + d?) o

=3 (e, bd? + ¢ +a%) a’d? -
= ) 31+ & (62 + dz)z (bzdz +c2 4 d2)(c2 + dz)

o 2¢(c? + d?) — 4c(b2d? + % + d2)) € + —2a%d?c(b?d? + 2¢? + 2d?)
(c? + d?)3 2 (b2d? + ¢® + d2)?(c? + d2)?

e=0
=0
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ald? 2 272 _3_;2
(E4+E1 (¢ +d?%) + a’d’
(B2d + 2 + 22 | (B3d2 + ¢ + d?)(c? + d7) .

| 3 (6 P i G + d?) a?d? -1
- 4 1 (b2d2 - dz)z (b2d2 + c2 + d2)(c2 + d"’)

9 ((2(12412c(b2d2 +c? + d?) — 4a%e(c? + d?) €+ —2(12¢12c(b2d2 + 2¢% + 2d2)
(62d? + c? + d2)3 1 (b2d? + c? + d2)%(c? + d2)?

c=0
=0.

Thus, by the product rule

JG(a))

= k(v1,v3) | — PETE\ a0 \t Zrib, (_ab
- ML d? b2 + 1 a2 \p2+1

/_oo /_”/ (63 e (bzdt 1) bzd::- d?) -

3

a? 2 2
(64 +€1 ((b2 + 1)2> + b2d2a+ d2) e(—€1 _62)d€ld§2d§3'

e=0

Now using the prévious lemma with ¢ = 0 and the definition of W, the above equals

. a
d2
d ]

In the next chapter we will be interested in twisting the L-function of an automorphic

form F by a Dirichlet character mod ¢. In the following work we will follow the structure
of [HM2]. We define a function

(1)

which depends on ¢ and another integer u. This function will be used to simplify some of

— g

the formulas in the next chapter. Several relationships involving G will be useful.



We first note that for ny,n3 € Z we have

)

by
/N
.0—‘
—=ha je

0 )
"))
() (1))
J)

1 n3 + un
since 1 ni1q € I'. From this fact we have the Fourier expansion
1

o
—
T e

—=ha e

I

e
NN
P
[u—y
—=ha i

Gr)= ), Gu(r)

n1,n3€Z

where

GR (1) = / / (( 1 a:l::) 1') e (— nlqwl - nawa) dzidzs.

With this we have the following lemmas.

Lemma 2.5. [HM2] For §;,£&3 € R we have

1 &
Gy (( 1 & ) T) = e(&1 + m&)Gy (7).
1

Proof: By the definition of G7* we have

(1)

=L [ (( 1 wlf) (1 . %))(_%_m)w

1 1 (¢ 1 3+ &3
= —/ / G 1 21+4+& | 7)e(—z1 — mz3)dzides
q2Jo Jo 1

16

146 pgt+éa T3
== / / (( 1 :1:11) 1') e(—(z1 — &) — m(z3 — &)) dzrdag
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which by periodicity equals

e(§1+m£3)/ / (( 1 a:lz:) )e(—m—mwa)d%dwa- .

Lemma 2.6. [HM2]

> G"’(T)——/ ((1 1 glj> 1') e(—~y)dy.

n3 Gz

Proof: We have by the Fourier expansion

%/oqa((l 1 11/) f)e(—y)dy
hge (0 f)f—”‘f"
/Zez// (( 1 ”‘11)( 1 31,>T)

x e(—y)e (——1—1 - n3a:3) dzidz.dy

/ 2 / / (( 1y jfm1> r) e (—y - "‘q‘”‘ - n3:v3> dzydeydy.

n1,n3€Z

Now by a change of variables and periodicity, the above equals

[ [[e (( 1 {I) )e(—y—?l(fl?:—yl—nama)dmld:vzdy.

n31,n3€Z

We observe that »
| ? (my ) {q ifn; =¢q
——= —yldy= .
/oe(q VJUE\0 iEm#g

thus the above equals

BLLA( D)t

and by the definition, the above equals Z G (7). |
na€Z
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Lemma 2.7, If (u,q) =1 then

q
GI™(r)=Fp" ((’E : ) T) .
1

Proof: Since we have assumed that (u,gq) = 1, there exist %,a € Z such that u&% + ag = 1.

We observe

'y} 1 & 1 T3 1 qT3 q
1 1 1 1 1

We observe from the definition of Gg"‘ that

q 1 ¢ 1 T
Gim(r) = %/01/0 F (( { 1) ( 1 :cl::) 1-) e(=z1 — gmz3)dz des.

—-Uu .
a ) € T’ and using the matrix fact above we obtain
1

1 1 q 1 qx3 q
- / / F 1 tzs + iql i -;— T | e(—21 — gmz3)dz1dzs
qJo Jo 1 _ 1

which by a change of variables equals

p1 pltazs 1 qz3 q
/ / F 1 = a % T | e(—qzy + qlizs — gmzs)dz dzs.
0 Jaz; 1 1

By periodicity this equals

1 41 1 qz3 q
/ / F 1 = i % T | e(—qz1 + qiz3 — gmz3)dz1dzs.
0 Jo 1 1

Now, by another change of variables we obtain

q 1 T q
%/o /olF(( 1 271?) (ﬁ % 1) T) e(—gz1 ~ (m — 2)z3)dz1dz3

which by periodicity equals

1,1 1 z3 q |
/ / F (( 1 x1) (ﬁ % ) 7') e(—gzy1 — (m — @)z3)dzdzs,
0o Jo 1 1

1

821 W

Noting that (
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and by the definition this equals F"~% ((g -;— ) -r) . |

Before we can proceed to develop the functionlal equation for the twisted L-function,
we must evaluate the two Mellin transforms introduced in Chapter 1, along with another
related Mellin transform. Before we do that, we will give a proof of equation 10.1 of [B1],
for which Bump had admittedly not worked out all of the details, following the methods of

[BF]. We begin with a rather technical result.

Lemma 2.8. For Re(v;) > %, Re(rs) > %, —1 < Re(s; —v; — 21) < 0, and -1 <
Re(s2 — 211 — 12) < 0 we have

/00 /00 w ht 1 81 -1 32—1 dyl dy?
0 0 1 B} )

I (ST ()T (2a83m1) T (23t 1 (acfntt
7ra1+az+%r (VL+2;2-31 ) T (ZVL+12’2-32)

x / / / (€ + 92 +93)" P (- &) + 93 +13)" %

X y2V1+V3+81—lyV1+2V2+82—1d£ dyl dy2
Y2

k(l/],l/g) = 7r%_3"1 =3v2p E’_/l T 311_2_ T 3_1/_}._+_§£_l .
| 2 2 2
So

RCp)
w % = k(v1, 1)y gy R

/ / / (8 + &y + 3/11/2) (54 + &y + yz)-%ze(—fl — &3)d&1d€rdés,

Proof: Let

whence

/ / e yl yn=lyga=1 1 002
1 2 1 Y

= k(v1, 1) (6 + €32 + v1ud) " F (€ + €84 + oded)
LIS

x e( =€y — &)y3ritvatai=lyntdvaten=lge, de, des 4y d;”



Replacing &4 by &€& — &3 we obtain

k(Vl,Vz)/ / / / / (E+&84+ 3/13/2) ((5152 -&)} + &y + 3/13/2)-_2

Xe(_£1 62)y2V1+V2+81—1yV1+2V2+82—1d€ d€ dfaizl lj/?;z

We consider

NN NNy,

and introduce a family of integrals that depend on 6 by replacing

& — —€ifg £ — e £ — —e'ig & — e g
& — €' £ — —e'&, £ — 7Y, & — e,
& — 62'953 & — & €3 — —&3 & — e g
y — € yl y1 — e~y y1 — €'y y — ey
y2 — €'y, oy ey ey y2 — ey,

in each of the summands, respectively. We let Iy equal

o0 o0 o0 o0 o0
LhLL
&+ &yl +4id)” -,le-smw((&& - &) + 51 v + viv3 ) g=8vait
xe(ewfl + eiggz)y%lq-*-llg-*-s;l—1y;1+2l/2+-92—1e(3l/1+3l/g+.91+83+2)t'9
. ) 3
+EE+ 8y +viud)” ((53“5152)2+€1?/2 +yiy3)” =

Xe(—e'w& + 66062)y§u1+u2+31—1 y§1+2u2+32—1 e(—u1+ug—.91+sg)i6

_¥

+(E+ &yl +8ud) _il((fs - a6+ &yl +ivd)

xe(et9€1 - e—:9£2)y§u1+u2+31—1y§q+2vz+ag—le(v1-u2+31—83)49

+(E + &3 +48u3) _’lesv“g((&& &) + &893 + yiyd)” 5 buait

s _. _ 5 1 (—3b —3be—sr —sn2)i
Xe(-e '961_6 '962)y%V1+V2+31 ly{ﬁ- va+sz e( 3y, —3yg—8; —~33—2)i6

dy; d
d§1d€2d€3 % ;/22
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which in turn equals

//,/ / /(fa+fz311+yfy§)—%L((€1fz—£3)2+£y2+y1y2)-51

X (e(e;ofl +69962)6(—3111—3yg+31+sg+2)l;0 +e(_e-59€1 +ei9€2)e(—ul+u2—sl+sg)i8
+ e(e"afl _ e—iofz)e(ul—ug+s;—sg)io + e(—e""’fl _ e—i9€2)6(3u1+3u2—31—32—2)1'0)
R T

which equals

/ ./ / ./ / B+ 89 +vin)” ((5152—63)2+£fy§+yfy§)—'3-?

X (e(ewé-l)e(—vl—2u2+31+1)i0 _I_e(_e—iafl)e(v1+2ug—al—1)1'8)

X% (e(eio&)e(-zul-u2+ag+1)ia +e(_e-i0€2)6(2v1+u2—ag—l)i@)

X yfw +vata1-1 y;‘ +2v34082~1 dfl dfzdfa %@ .

We see from the definition of Iy that

?/1?/2
/ / % yfl-lygz_ldyl-q&—k(l/1,l/2)Io,
1 . 1 Y2

and since

fo= /// / / (& + 892 +1393)" T ((16a — &) + 84 + 39d)~ 7

X (e(ezofl)e(—vl—2vz+s1+1)io _I_e(_e-—iﬂfl)e(v1+2|/3—s1—1)i9

X (e(eiefz)e(—mq—u2+sg+1)i8 _I_e(_e—59€2)6(2v1+u2—-az—l)ia)

X y2V1+V3+81 —lyl/1+2l/2+82-1d€ d€ d£3 dyl dy2

we see Iy is absolutely convergent for 0 < 6 < %
We now want to integrate along the contours given by first integrating each variable
along the real axis out to a value M, then integrating along Me'? for ¢ € [0, 6], and finally

going back to the origin along ze’®. Cauchy’s theorem gives that the integral along these
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contours is zero. We first let

f(£1’£2,£3’ n, y2,¢)'=
(@ + 697 + 22)" 5 ((616s — &a)? + E83 + gyd)~ T grrtratn—lyntdiata-1
(e(ewfl )e(-yl ~2uatetl)ie 4 e(—e“¢£l)e(ul+2ug—sl —1)i¢)

(e(ei¢£2)e(-2u,-u2+sg+1)i¢ + e(_e—id)é-z)e(2u1+ug—sg-—l)i¢)

and observe that for 0 < ¢ < 7 and as M — oo we have

IMf(M,£2,£3, 1,2, ¢)I < IM ((Mfg - 63)2 + szg + y%yg)_%zl

x |e(e‘¢M)e(_"‘ -2Vz+01+1)i¢e(_e—i¢M)e(V1+2V2-01—1)i¢

< Ml—3Re(V2) (|621r€e‘4’M, + ,e—Zm'e'“’Ml)

~

< M1—3Re(Vg)e—21rMsin ¢

< M1 —3Re(vz.)’

3y v

|M f(61, M, 63,91, 92, 8)| < [ M (6 + M2y + 9393) ™ 7 (M - &)° + €93 +9ded) 7 |
¢ le(ei¢M)e(-2u1—u2+ag+1)i¢ + e(_e-i¢M)e(2u1+u2—a,—1)i¢|
< M1-3Re(v1+va) (|e21n'e"“M| + Ie-zm'e-""Ml)
& M1-3Re(m+vz) ~2nMsin $
& M1=Re(ntr)

31y

T (6162 — M)+ 392 + 4242)”

(<]
%

IM f(&1, &2, M,y 31,92, 0)| < |M (M2 + &3y3 + yiyd)”

< M1-3Re(v1+v=)

|Mf(£1aE2aESaM,y2’¢)| < |M(£§ + £§M2 + szg)_a_;]-

l((£1£2 - 63)2 + 51!/2 + M ) a_;zM2v1+y,+al_1

< M1+Re( —v1—2v2+91—1)

Re(s1-v1-2
=M e(s1—-11 vz),
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and

3
2

IMF(61, 62 600, M, 9)] < M (€] + €03 + 4207

v
"_32 M’V1+2V2+83-1

x |((6162 = &0)° + EM? + g2 ?)
& MIFRe(=2v1—va+az-1)
— pfRe(ss—2v1—va)
Now since Re(v;),Re(1s) > % and Re(s; — V- 21,), Re(s2 — 21 — 1) < 0, we observe that
as M — oo the integral along the path Me*® for ¢ € [0, 4] goes to zero. Thus by Cauchy’s

theorem we have

Iy =1, for osogg,

or

ol

00 poo Ny dur d
/ / 14 g |yt B k), for 0<6<
0o Jo 1 LAY

We now must evaluate Jy. Since Iy is absolutely convergent for 0 < § < 7 we are free

to interchange the order of integration as necessary, so
AT T [T 02 L 22,2 4 22,002 2, 2,2 4 2.2y
I = / / / / / B+ +938) T (Lo - &)+ &8 + i)
o Jo Jo Jo J-x
% (e(eio&)e(-ul-2u2+31+1)io +e(_e-io&)e(u1+2u,—31-1)io)
X (e(659€2)e(—2v1—vz+sg+1)i9 + e(_e—t’9€2)e(2v1+vz—sz—-1)i9)

%y1+|/2+81—1y;1+2y2+32_1 dé'ad_yl dy2 dfldfz-

x ———
y 1 Y

We now make the change of variables y; — y1£1, y2 — 282, and &3 — £1£2€3 and obtain
S Rl Ratll Ratll Rt U S 2,2\—3% 2 4 .2 4 2,22 ~3u1—3u
/ / / / / (G+u+yy) T (1-86) +y +yy) 7 (L&)
0 0 0 0 -0
% (e(eio&)e(-ul-2u9+s1+1)io +e(_e—i0€1)e(v1+2vz—s1-1)£9)
% (e(eio&)e(-zm-u2+s,+1)io +e(_e-i9€2)6(2v1+vz—sg—1)i6)

- dyy d
X (E1y1)Prtuata=l(gyy, ativetes lelszdssf—yyz—zdad&
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which simplifies to
Y Aot Rt Ragll Radpge 2 2,2\ 2 2 2,2 —22
/ / / / / (Gru+yiy) 7 (A-86) +y: +1y) 2
0 0 0 0 —-00 : »
x (e(ewél)e(—m—2u2+.91+1)1'9 +e(_e—i9€l)e(u1+2u2—al-l)iO)
% (e(ew&)e(—mq—ug+sg+l)i9 +e(_e-i0£2)6(2ul+ug-ag—l)w)
X 6181-1'1-21’2652—21’1-VzyfV1+V2+8i—1y5/1+21'2+82-1d£3@lﬁ%d&d&.
' Y1 Y
We now interchange the order of integration again and split up the integrals to obtain
g gr g p g
[o o]
/ (e(etﬂél)e(—u1—2u;+31+1)19 +e(_e-iaé-l)e(u1+2ug—sl—1)3'0) £f1—u1—2ugd€1
0
« /oo (e(ew&)e(—2u1-uz+sz+l)i9 + e(_e—i0£2)e(2u1+ug—sz—l)ia) 6;3—21/1 —Ugd£2
0°° Y e 2 2, 2\—241 2 2 2, 2\~
X A /0 / (E3+9+yiy) 7 (1-8&) + w3 '+’?/1’!/2)"—sz
)

2vi+va+s1—1
1

X y

y;1+2vz+82—1d€3_d_y1_£312.

N Y

Thus for 0 < # <  we have

/oo/ooW Ny " yfl"lygz-l@l@
] ] 1 B ¥

)
_ k(lll,llz)‘/(; (e(ezaé-l)e(—ul'—2ug+s1+1)10 +e(_e—so€l)e(u1+2ug-—s1—l)so) £f1—u1—2ugd£1
oo
X/O (e(659€2)e(—2u1-—u2+32+1)19 +e(_e—19€2)e(2v1+uz—32—1)10) 6233—2u1—u3d€2
Y Rl Rt P S 2, 2\ 2, .2 2, 2\—22
X A /0 / G+ui+3y2) 2 (L=-&) +y: +9y;) 7
- .
2v1+va+s1—-1 u1+2u2+32—1d£3_‘_1}/_1_£?L2_.

ad % i Y2

We will now evaluate these first two integrals by letting # — 5 and observing they are

both of the form

/ ” (e(it)i® + e(it)i~®) t*dt
0

(¢ +i™?) / e(it)t“-dt—t.
0



Now noting that

—axi

z'°+z"°=e’a'?ri+e K2

-+ (@) o)

and recalling that e(t) + e(—t) = 2 cos(27t), we have
o | ima am
i+ —.2cos(‘2).

We also observe that for Re(a) > 0 we have

[> <] ; [> <]
/ e(it)t“ﬂ= / ¢-2mtyadt
0 t 0 3
YA
- 0 27r 14
= (27m)™°T(a);
thus _
2
(2m)e

/Ooo (e(it)i® + e(it)i~®) t*~1dt = cos (%) I'(a) for Re(a)> 0.

We note ([GR] 8.334.2) that

1 1 T
T (5 + :c) T (5 - :v) " cos(mz)’
thus we have
I'(a)

2 aw
G (2) 70 = Gy (g ()

We also recall the doubling formula ([GR] 8.335.1)

I'(2z) = 23; I'(z)r (:c + %)

50
@ =2r (5)r(5+3)

or
@ _2r(3)
T v

25
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which then gives

(oo}
/ (e(it)i® + e(it)i™®) 12~ 1dt = for Re(a) > 0.
0

)
L (5)

7o

Hence for Re(s; — v; — 215+ 1) > 0 we have

/oo (e(e.-a&)e(—m—2uz+a1+1)ia +e(_e—iafl)e(u1+2yg—sl—-1);'0) f{,,_ul_gu,d&
0

T (31 = ;21/2;{:1)
= 7r31—u1—2u;+%1'\ (V]ilelz—s] )

and for Re(sy — 21 — 15 + 1) > 0 we have

/OO (e(eia&)e(—hl-u2+sg+1)i8 +e(_e—ia£Z)C(ZU1+U3—82—1)1'9) 6;2’-21’1—1’2‘1&2
0

T (32—21/12—112;};1)
7r82-2l11—l13+%1'\ (21’]:‘:1212—3; ) .

Thus for Re(v;) > 3, Re(ry) > 3, —1. < Re(s; — 11 — 21n) < 0, and —1 < Re(s; —

2vy — 13) < 0 we have that

/oo /OOW ny2 " yi‘u—ly;z—ldﬂ@_z_
o Jo : 1 1 Y2

) T 81—v1—2ve+1 T so—2v—va+1
=k(V1’V2) s ._( - 2 V2+2£2—81 2 2&-{)—1/2-82
mertea—dus—3u, T (Ldlpama ) 1 (adiaze )
0 foo foo 2 2 2.,,2y-2%1 2 2 2 i
X/; /0 / (& + 1 +yiy2) 2 (L&) +v3 +yi) 7
-0

% y%u1+l/2+81"1 y;'1+2l/2+82—1 dfs%%

()T () T (gt 1 (it [ (ot
- 7r31+82+%1" (u1+2;2—31) T (2u1+;2-31)
o0 o0 o0
<[ [ @+ttt (- e+t R

X y%l/1+l/z+81 -1

y;1+2V2+82—1d£3d_y_1_£1_y_2. (|
N b
We now want to concern ourselves with the integral

®[® [ 2 2 2, 2 -1 2 2 2,2\-3%2
/; /0 / EG+yi+vye) 2 (1-&) +y+yy) 2
-00

_ ey, dyr d
xy§"1+uz+81 ly;1+2Vz+82 ld&?yll__f_

For this integral we have the following lemma:
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Lemma 2.9. For Re(v1) > £, Re(»n) > %, =1 < Re(s; — v — 21) < 0, and -1 <

Re(s; — 211 — v2) < 0 we have

P(5)r() [ e it st e sty

2V1+V2+31—1 V1+2w+sa—1d£ dy d?/z

x4 Y nh Y ‘
ﬁr(V2-112L+.n)11(v1—1;2+sg)r(2u u2 3 —1)11(1/ 21/2 ] —1)
AT () T (2T

xP(2V1+I2/2-82)I‘(V1+2;2_81).

Proof: We observe that by the definition of the gamma function,

r(3V1> (3V2)/ / _w(52+ﬂ1 +9)F (-7 +of +uled)

u1+2u3+ag—1d€ dy, dyz

214 vy+8; -1

X
n Y 1 ¥
AT 222 -3 24 2 422 R
=/0 /0 / E+v+vi4) ((A-86"+v2 +viv3)
~00
X y2l11+l12+01—1ylll+2l12+83—1d€dy1 dy2 oot:—;Le—tl dtl i :—Zze_tgiiﬁ
n v Jo t1 Jo 12}

which in turn equals

3va

/// / / (£2+yl+y1y2)—?((1—6)2i2y2+y1y2)2

xy2l11+l13+81—1yl11+2l12+82-—1 —t1—tp 7701 dtl dtzd gﬂ@.
1 t2 "y e

We make the change of variables

tl(f2 + 311 + 13y3)
yl
(1 =€) + ¥3 + 121)
2

and obtain

v v

: 2\ % ouituetsi—1, vi+2u0+82-1
) % Yo
~00 ?/1 Y2

'1(£2+v1+v2L@ 12((1-6)% +92+v242) dts d
- v? y3 11 diy
Xe 1 2

dt dty ;. dy1 dyy
t1 12 n oy
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which equals

R Rt Rt Ratl A t%Lta—?‘ vo=n1+81—-1, v1—va+sz-1
1" 2" Ya
0 0 -0 VO 0

1162 1a-e)? '
e T AT ettt -t S A ) A dyy
t1 B2 T W1 Y2

Since we have assumed that Re(r1) > % and Re(1;) > £, the inner integrals are absolutely

convergent, so we can interchange the order of integration and proceed to do the £ integral.

We observe
Tl I G T
-—00 -0
_ /°° o~4+B) (e~ + ko~ ) 4y
= ei'%g e—(A+B)(z_T-€'F)2dz
- ei% oo e-(A+B)z2dz
)
-
Thus :
-31t
0o _ 1162 _1p0-¢)? vzvaz 1} )
/ e d{:=612;¥+;§ t7rt
—oo A
1 2

- 6'1;2"'.:2”1 .__ﬂ.g_%_y%—__
193 + tayf
So, the above equals

00 pOO  poO  pOO "
/ / / / tli;lt:‘iz' yila—l/1+81—1y;1—l/2+82-—1
0 0 0 0

2,2 -t
o] —TYYE TR —ta(1hd)—ta(r4ed) Sl G2 D dYs
tyE +tay? 2 1 Y2
which equals

0 0 0 0

=111

ef1vatiar: g—ti(1+y3)—t2(1+43) dty dty dy; dys

X —— ——— . St

Vg + 6yl oty
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We now observe Re(vy — v + 81) = Re(s; —v1 — 212) + 3Re(12) > —~1+2 = 1 and similarly

Re(v; — v2 + 83) > 1, so the above integral is absolutely convergent. We now interchange

Y

the order of integration, make the change of variables y; — \ ﬁt/l’ Yy — t2 and obtain
2 1

YOO
4 Jo Jo Jo Jo T t2 31

41t

ev_fhz:'e“l —¥a—ta—n dyy dy, dty dt,

Vviz+hn 7N -yT-t—;—t;—

which equals

oo O Juy 4y —s Vg +Vy =8
VT / / t:—‘—f’—u t:_Lfl_H e—t1—13

vz—V]+u] "] -"2+'2 =t3ig

/ /‘ 72 pratis —va—n dy dy, dty diy
Viz o1 v Y2 t ot

So we need to evaluate

/ / * s yP T dyy dy
V¥t 1w
for Re(4) > 3, Re(B) > 1, and C any positive real number. We note that in this region

the integrals are absolutely convergent. Under the change of variables y; — y; — g2 the

=c _
/°° /°° (31— 92)4 1y e ¥ dyndyy
0 Y2 \/?/_1

Since we are in the region of absolute convergence we can interchange the order of integration

above equals

to obtain

N A-1,B-1
/0 m o (y] —yZ) - y2 dyZdyl-

Letting y2 — 31y this becomes

Ooev1

- 192)2 " (192) B Ly dya du,

0
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which in turn equals

/0 -'/:B-I‘A_§ /(1-?/2)A 1(?/2)3 ldy,dy;.

Recalling ([GR] 3.191.3) that

. w-1g, _ L(2)T(w)
/0 -l -t ldt = T 1 o) for Re(z),Re(w) >0

the above equals

I'(A)r(B) B+A-

2 i hn
ragy ), # e

Thus using the fact ([GR] 3.471.12) that

0 2
/ 2" le "% de =2 (g)y K, (u) for |arg(u)| < % and Re(y?) > 0
0

we obtain

®© yd Be—T»_yz-c;: VTV 4y dy, BLlA_1 L(A)T(B)
el Bl LN TOR T 2t ¥ ¢ 1 {2VC ) =——==
/ / Vit u oY Btd ;( ) I'(A+ B)

for Re(4) > 1, Re(B) > 1,and C any positive real number. So we have

Vi tu u yz
21 480=1 T Vvo—11431 T Vi—Vo48a
= 2(t1tg)” "TZ—K,,+;2-1 (2vHEs) ( 2I‘(2 s() 2 ),
7>
whence

3V 3V e had o 3 3
c(3)e () [C [ [ @ st et - or i+t ¥

V1+2V2+62—1d£dy1 d:‘/2
L)

X y2V1+V2+81—1y

e N

oT (23

‘ oo +% s a v 32 _ dt 't
x/ / DA I el Bt P R It e PR Y it (2vT2) tldtz
0 0 1 L2
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2

t
Under the change of variables ¢; — t_l we have
2

o0 o0 v » ] v 3 L)
/0 /0 PRI S Rt PO Bt i LSS iy (gm)ﬁ_‘?_tz

1
v v L] 12

. _2] / RICAE T Bt Pk R e th. s (211) 2 di; titz

. L t

Since we have the exponential function and

s s 1
Re(2v1+vz+?l—?2--2-)

1
= 5 (Re(sl -V - Vz) + Re(2z/1 + vy — 82) + Re(3v1 + 3 — 1))

S -140+4242-1

2 =1

both of the integrals are absolutely convergent. So we can interchange the order of integra-

11
tion and let ¢, — t_ to obtain

/ / I e - (2t1)dt2 a4,
ty t1

Using the fact that

w

o]
K(o)=j [ eterdy
2 /o
the above becomes

o0 3v1 +3vg—1
2

d
Kvl—u2+a]—az (2t1)I(nl+32—1 (2t1) tl
151

Now, we recall ([GR] 6.576.4) that for Re(a + b) > 0 and Re()) + |Re(p)| + |Re(v)| < 1 we

have

/w 272K (az)K,(bz)dz
0

:2_2_Aa_u+x-1buF(1—/\;u+v’1—/\+2-u— Y l_ﬁ)

T (I—A-{z-p+u) T (1—/\;}1.+u) T (1—/\~{2-p—u) T (?—A;p—u)

TI-X)

X
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where F is the hypergeometric function. We observe

Re(3—3l/1'-3l/2)+Re(lﬁ—l/z+81-82> Re(81+-;2—1)l

2 2
- f3~-3 -3 1
= Re (-————%———ﬁ) + §|Re(s1 ~ v —2v3)+ Re(2vy + 15 - .sz)l

+

1
-t ElRe(.ﬁ —v1 — 213) + Re(s3 — 21 — 1p) + 3Re(v1) + 3Re(r2) — 1'.

Since
Re(s1 —v1 — 21p) + Re(sz — 211 —v2) + 3Re(v1) + 3Re(1p) - 1> 1

the above equals
1 1
2 Re(s1 —v1 — 21) + Re(21y + 15 — sz)l + 3 (Re(s1 — v —213) + Re(sy — 211 — 1) + 2)

which by our hypotheses is less than 1. Thus we can apply the above identity, and using
the fact that F(a,b;c;0) = 1 we obtain

dt
imragzas (1) K s (20) 2

_ T (2u u2 8 —1) T (Vl-t2V22+82—1) T (2u1+;2—32) T (u1+2;2—sl)
oT (31/] +:23u2—1) .

O 3uy +3ug—-1
4 ] L
0

Thus
' (f’%) ' (3%) /0°° /0°° /_2(52 +od A F (- + o+ ohud)F
% y%u1+u2+sl-1y;1+2u2+32-1d£%1%3_/2_2_
_ /7T (ﬁ%li’;’-) T (21;"5&*22) T (2v uz s —1) T (”Jﬂ:2V22:i:82—1)
_ )T ()

xI‘(2V1+12/2—82)I‘(V1+2;2—81). I

Combining Lemmas 2.8 and 2.9 we obtain:

Corollary 2.10. For Re(v;) > £, Re(v2) > £, —1 < Re(s; —v1 — 21) < 0, and -1 <

Re(sg — 2v1 — 1v3) < 0 we have

o poo Y1y2 duy d
/ / w (( g )) gyl 2L
(] (] 1 1 Y

P (sf2)T (3F2) T (352) T (2572) T (252) T (25
droriaT (24m) |
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where, as before,
a=-v1 -2 +1

B=-n+um

y=21r +1vp ~ 1.
We now recall Theorem 2.1 of [B1].

Theorem 2.11. There exist Ny(v1,v;) and Ny(vq,v;) which depend on vy and v, in a

continuous fashion such that if ny > Nq1(v1,17) and ny > Na(vy,v;) then
Y192
w 1 ¥ ye
1

By analytic continuation we obtain equation 10.1 of [B1], namely

is bounded on H.

Corollary 2.12. For Re(s; — 1) > Ny(v1,v2) and Re(sy — 1) > Na(v1,v2)

/OO /oo - Y1Y2 " yfl—ly;g—lfiﬂl‘_iy}_
0 0 1 Y1 Y2

D (efe)T (42 T (242 T (55=) T (272 T (557)
T (545)

and the integral is absolutely convergent.

By the Mellin inversion formula we have a correction ([BF] p. 208) to equation 10.2 of [B1]

which should read

Corollary 2.13. For Re(s; — 1) > N1(v1,12) and Re(sg — 1) > Na(v1,14)

(")

1 [otieo rowioo T (8f2) T (842) T (242) T (4352) T (472) T (%52)
= (2 /,,_m / T (23%2)

X (7:'3/1)1-’1 (7ry2) % dsidsy

—{00

where o is sufficiently large.
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We can now evaluate the Mellin transforms occurring in Chapter 1. We recall that if

W is of type (v1,12) then W is of type (v2,v1). Thus

N

=—V2—2V1+1

™l

=-1n+¥
7=2V2+V1—1.

So we see

With this we now ha,ve

Lemma 2.14. [HM1] &(s,w) is absolutely convergent for Re(w + s) > Ni(11,v2) and

Re('w) > ﬁg(V]_,Vg) and

I (kefl=e) [ (hef1=f) | (mbefloy) [ (wpte) | (540) T (24

@(3’ w) = 47r2w+3+21-\ (2W:t2-‘7:t2)

Proof: We have by a change of variables

5(3,w)=/0°°/0ww<(t v 1))15"’1,8%2.‘1_”

3
= /oo /“W ’ v t"’v"""’ﬂﬂ,v
0 0 1 t v

Now applying Corollary 2.12, we obtain
T (W+a-2l-l+Z) T (w+s;-1+ﬁ) T (w+a;1+§) T (wt;-&') r (w+;—ﬁ) T (w+;—:})

4r2w+s+2] ( ij:zsj;z )

which in turn equals

T (w+s-;1—a) T (w+s;—l—ﬁ) T (w+s;—l—1) T (w+%+a) T (w+;+ﬁ) T (w+;+’y)
4r2w+s+2] (2wj;2.si2) :
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For the other Mellin transform of Chapter 1 we have

Lemma 2.15. [HM1] &(s, w) is absolutely convergent for Re(s) > Ny(v1,v;) and Re(w) >

Ny(v1,v2) and

T (45g4) T (2578) T (2572) T (=4=2) T (=9=2) 1 (=24)

2
47T (1)

B(s,w) =

Proof: We first note

tv

_ 1 Yy
ww VIS iy 7 Wrer
v —, = 1
1 1

WITP

v
y Vit /1442 .

Thus, by invariance under ZK and using the fact that

1 Ty I3
w 1 2z 7] =e(z1+z2)W(7)
1
we have

0 poO  poo tv
<I>(.s,'w)=/ / / w yv v t""u"'dyﬁﬂ
0 0 -0 1 _ i v

tu
e [* Vite ty w s, dtdv
LI L (7 )t

By Theorem 2.11, for ny > Ny(v1,2) and ng > N2(v1,v;) we have that

iy
Vi+y? n1 t \™
lW v/1+ 92 (V1) (1+y2)

1

is bounded. Thus

/ ty
V1+?
4 vy/1+ y?

1

is bounded as y — 0. Taking n; large we see this function is rapidly decreasing as y — oo
and v — oo, and taking n, large it is rapidly decreasing as ¢ — oo. Thus &(s,w) is

absolutely convergent for Re(s) > Ny(v1,v2) and Re(w) > Na(v1,12).
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Now by a change of variables we have

1+V’ ty w. s, Gt dv
R ()

LI () et

We recall the fact that, for the K-Bessel function, we have

© ety) , _ 2 Vi
~/—oo (1+y2)vdy I\( )t .,..%(27!1).

So the above equals

:21: / / (( 1))K a—2w-1(27rt)t_ ’dyﬂgvg

As in [B2] we let

Ka,ﬁﬂ(yhyZ)
o T (822) T s1+ﬁ) T (252) T (259)T (_gaz;g) T (252)
(27rz) _m/

r{)
() (5) ot

2
By Corollary 2.13 we have

(")

ok [ P (sf=) T (5F2) T (5 T (42) T (4272 T (252
47r2(27rz) o~ico Jo—i0o r (ﬂ:z&z)
X (7!‘:(/1)1-8'1 (7[':(/2)1_32 d81d82

which in turn equals

ppn [orioe porio T (SF9)T (S2) T (5 T (7)1 (s272) 1 (557)
4(27”:)2 oc—ic0 /-wo 1“(11_'12:92)

X (7y1) " (my2) ™" dsids,.

tv .
w v = zKa,p,.,(27rv, 2rt),
1

Thus we have
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and so

o @ fo . s=1 dt dv
s=3w~—1 2 8 —
I‘(’“zz'”)/o /(; W(( v 1))1( 2 (2nt)t 3 dyt "

a=2w

3 (e <) o} i;'_l
| = WUT’/O L Ka'ﬁ'ay(27r'v,27rt)I(a-22w—1(27rt)t v

2

s+1ﬂ_‘_i_"_7
t v’

By a change of variables this equals

a—2w

T3

2(2r) T (£52%)

1dtd'v
t v

/ / Koy p(0,8) K szggms (0
By examining [B2] we see equation 1.2 should read

/ / K ,pn(m,yz)K,,(yz)(ylyz),dm dy2
_ gemip (222 8=B-v\p(s—-1-v
=2 11“( : )1‘( 2 )I‘( ] )
STetv)\p(sZhtv)p szt
«r (29t p (Lm0t p (2212),

W'—‘;—"’-2ﬁ;—‘r (w-g+1) T (w—Jg+1) T (w-;/+1) T (s-—tg—a) T (8—1;1—»@) T (8—1;1—’!)

2(27m) T (2522) , T

So the above double integral equals

We now must introduce one more Mellin transform which will appear in the functional

equation for the twisted L-function. We let

00 00 0O tv
o(s,w) = / / / w yv v ytwvsdy%i:-.
0 0 —00 1

For this function we have

Lemma 2.18. &(s,w) is absolutely convergent for Re(s) > Ni(v1,v;) and Re(w) >

Ng(l/],l/z) and

T (w—2a+2) T (w-—zﬂ+2) T (w—;H-Z) T (s—w;a—-l) T (s-—w;ﬁ—l) T (s—w-z—'y--l)

Q(S, 'w) = _4i7rs+w+%r( .9—-22w)
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Proof: As in the proof of Lemma 2.15 we have

00 pOO  poO v
d(s, w) =/ / / w yv v yt“’v’dyi?iig
0 0 —00 1/ : v
o poo oo tv
= / / / w v AL ) (ty),_zw yt"’v’dygi-‘-iﬁ
0o Jo J-oo 1+y?) = t v

which is absolutely convergent for Re(s) > .Nl(l/l,l/z) and Re(w) > Na(v1,12). So we need

*  ye(ty)
qu+wy@

We observe that differentiating the identity in Lemma 2.15 yields

. [ ye(ty) 21 d v-1
2mi /—oo (lTy'f)_‘;dy I‘(V) 7 (t K,,__(21rt))

to evaluate

We see from equation 8.486.12 of [GR] that

d
zE;K,,(z) +vK,(2) = —2K,_1(2),

80
p .
pr (t"K,,(21rt))‘ = -21t* K, _1(27t).
Thué
® _ye(ty) =27 -}
d tVTIK -3 2nt
[ a5 st = gyt -t
So we have

FLL((" ) o eats

—2r* Tt [ [» v
(")) s

As in the proof of Lemma 2.15 this equals

=1, 24y 8t dtdv

s—2w

-

2i(2m) 52 T(

sr1dt dv
s—2w)/ / Ka,ﬁ,q(v t)-K’ 2W—3(t)t+ +1 t —

" «

Now applying the corrected version of equation 1.2 of [B2] we obtain
—n*F g (umpet) T () 1 (o) 1 (smugasl) | (asuplel ) p (ssupac)
2i(27) 8 T(2=22) L




CHAPTER III
FUNCTIONAL EQUATION

Before we can begin to derive the functional equation for the twisted L-function we
must prove a result about characters. For x a Dirichlet character, we let X(n) be the
complex conjugate of x(n). Since |x(n)| is 0 or 1 we have x(n)x(n) = 1if x(n) # 0. In
particular, we have x(~1) = £1. If x(-1) = 1 we say x is even and if x(—1) = —1 we say

x is odd. For any Dirichlet character x mod ¢, the Gauss sum associated with x is

9
n
)= x(me(%).
n=1 q
Finally a Dirichlet character mod ¢ is primitive if for each positive integer d|q, there exists

a = 1 mod d, (a,q) = 1 such that x(a) # 1. With this we have

Lemma 8.1. If x is a primitive character mod q then

r0X(=1) o  fan
x(n) = S gx(a)e(%)

where 1(x) is the Gauss sum.

Proof: By finite Fourier expansion we have

g

x(n) = if(a)e(f‘f) where f(a) = % > x(me(=~)-
a=1

m=1

We now must consider the sum in the expression for f(a) in two separate cases.

39
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If (a,q) = 1 then we have

i:x(m)e( ) Ex( an)e( )

m=1 n=1

= x(@x(- 1)Ex(n)e( )

n=1

=X(a)x(-1)7(x)
where a7 = 1 mod g. Otherwise we have (a,q) > 1. In this case we let d; = (a,q) and

kd, = q. Now for any b € Z such that (b,q) = 1 and b = 1 mod k we have

£ o)« (2

m=t
—x(b)Zx(n)e( abn)
Choosing z € Z such that b = kz + 1, we have lqm _an a—zf- But dlo. o 1’5’3 .
whence e(“;”") - e(-—;zn). hue
,,,ix(m)e(“;’") = X<b>§x(n)e(‘;”‘).

If we assume i x(m)e(_am) # 0 then x(b) = 1, so we have k|g. Since d > 1 we have a
k < g such th:t=;or all 5 = 1 mod % with (b,q) = 1 we have x(b) = 1. This contradicts the-
fact that x is primitive, whence

g

E x(m)e(—zm) =0.

m=1

Since (a,q) > 1 we have X(a) = 0, so
q

E x(m)e(-am

m=1

) = X(@x(-1)r()-
Thus in either case

x(n) = T(X)X( 1) Z:lx(a)e( ) .
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We can now proceed to derive the functional equation for the twisted L-function. As

in the untwisted case (Chapter 1) we would like to begin with
L(w, F)®(s — 1,w - 1)

and express the L-function as a sum over both the positive and negative integers instead of

.Just the positive integers. However, recalling that an, n, = ajn,|,jn,|> We have

Z al,nx(n) Z 1,0 (X(n) + X(=n))

n#0 Inlw n=1 n¥
- { 2Lx(w, F) if y is even
0 if x is odd.

We take our idea from the derivation of the functional equation for

Ly(s) = Z x(n)

which is worked out in Chapter 9 of [D] and consider

Z ndy nX(n) _ Z @1, (X(n) = X(=n))

n#0 |n|w n=1 =l
_Jo » if x is even
2L%(w -1, F) if x is odd.

1 if xis even

n if x is odd we obtain

Introducing the parameter 6% = {

) a1,nX(n)6% _ {2L§(W,F) if x is even
n#0 Inl¥ 2Lx(w—1,F) if x is odd.

Thus we will take as our starting point

—Lw-1)) 2l GnX(m)of

n#0 |n|w

For this we observe:

Lemma 3.2. Let F be a cusp form and x a character mod ¢ with (a,q) = d, and

ad' = —d, mod q. If x is even, we have, for Re(s + w — 2) > Ny(v1,1,) and Re(w) >
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max (JVZ(”hVZ) + 1,2),

x(-Dz . @1,nX(n)6%
G ) P T

]

e
1=
’>ﬂ
[

j —
o
8
o\\.8
2
i [M]=
el
N
TN
—
— N
—
~—
TN
39
2
,p-lrd-a e
H;g"lg'
~————
/\
-cul.*
<
—
~————
~——

and in this region all of the integrals and sums are absolutely convergent. If x is odd, we

have, for Re(s + w — 2) > Jvl(ul,ug) and Re(w) > max (ﬁg(ul,ug) +1, 3),

qan( 1) <I>(s 1L, w~— 1) Z al,njz(n)ér%

&) 2 Jnfe
1 9 o0 pOO
= — X(u
271 ;X( ) /0 /;
2 a’ t
0[S [(F 2 da g @ dt dv
X o= F 1 1 as v vl
az (; (( 1 dg Qiu 1 220 t v
and in this region all of the sums and integrals are absolutely convergent.
Proof: We first observe, that by equations 4.7 and 4.8 of [B1] we have
_ 1 2 _ 1 =z
F3 1 T] = Z Fyn 1 T
1 nez 1
= Z e(nz)i’d,n ().
neZ »
Thus,
1 =

0 [ = 0 =~

— | F? 1 T = — (Z e(nz)Fyn (T))

0z ( v 1 z=0 0z n€Z 2=0

= 27 Z nf’d,n (7)
n€z

and

= Z fd,n (T) .

2=0 nEZ
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Since F is a cusp form, we have that I‘Fd’g (r)=0,s0

o
. F’g (( ) ) if x is even
n#0 . .
5755 ( (( 1 1) T)) if x is odd.
\ z=0

Thus, in either case, we are interested in

[z (("

n#0

é‘-lo—-n Ie.
o
&

t
a] (T o))l
qgo 1 t v

t
AR | v \ (-tqla.)"-"lvs—l#i?_’_
9 . s
and in turn equals

1 2da td,
w5 2) (e )t
1

Now applying equations 4.8 and 4.12 of [B1] we obtain

don td,
() (7))

TR PR
q q i v

which by a change of va.riables equals

[ [z F((

Shale.
2
=

n#0

" which by interchanging the order of integration and summation equals

tnd? o
3w—3 Z / / a:lio ,n v e (23"_ + n_a,da) fw—1,s-1 ‘it dv
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Thus the above equals

t|n|d§ = '
Fv-3 Ga, % at | na'da\ oy 14t dv
z// “dafn[ (( - e(q+ q)t ST

n#0
With a change of variables this equals

t — ) w—1
FP-3 Gdg 0% ai na'd, i s—1dt dv
i Z// dalnl (( i ))e(q+ q'")<|nld2) T
n#0 1 e

which in turn equals

_ t
x ! o o
31.0—3 § 2“30_;]’:" (au + na da') / / W v t‘w_l ,vﬁ‘l_d_t_ d__v_ .
720 da |"|w q q o Jo 1 t v

By Lemma 2.14 this double integral is absolutely convergent for Re(s +w — 2) > Ny(vy,v2)

and Re(w — 1) > Ny(v1, ), and since @p, n, = O(|nyn2|) the sum is absolutely convergent
for Re(w) > 2 if x is even and for Re(w) > 3 if x is odd.

Thus we have shown

o g s dtd
@ g ail 7 w—-1, s-1 v

foo [ e ((* £ ) (P ) mees

u=1 n#0 1 1
is absolutely convergent for Re(s+w—2) > ﬁl(ul, v;) and Re(w) > max (ﬁz(lll, )+ 1, 2)
if x is even, and for Re(s + w — 2) > Ny(v1,%,) and Re(w) > max (ﬁz(vl,ug) + 1,3) if x

is odd. In either case it equals

- aq,, ai  nad'd
3w 3@(8—1 ’w—l)zx( )zdz‘”—flnlw (__q_+ a)

n#0 q

which is absolutely convergent in this region.

Now by applying Lemma 3.1 to the sum over u we have
Zx(u)Z S el (22, 20L)
2w-~1 w
a=1n#0 da*"|n| 7 7
Gg, né na'd,
-£rd e (57) T (3)

e=1n#0

ad.,,n na'dy\ _
= TR )szzw e (M5) 70

a=1n#0
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Now since ¥(a) = 0 unless (a,¢) = 1, in which case d;, = 1 and aa’ = —1 mod ¢, this equals

aln na\ _
X (‘T)(% 5;7 nf* (‘7) X(a)
a,9)=1

which by interchanging the order of summation and by periodicity equals

G1,n6% na\ _
T(X)X( I)Z [n[¥ Z e(—?) x(a).

#0 a=1
" (a,9)=1

Finally, applying Lemma 3.1, we obtain

Ex(=1) = @1,.X(n)6%
(7'(7))2,;, DE |

Hence, from Lemma 3.2 we are interested in expressing
!

()T R)E )

in terms of F. If x is even we will simply evaluate this function at z = 0. Whereas if x is

,n'lo--n |

odd we will first differentiate this function with respect to z and then evaluate it at z = 0.

In either case, for this function we have

Lemma 38.3. Fort,v,z € R, (u,q) =1, d, = (a,9), v& = 1 mod ¢, aa’ = —d, mod ¢, and

di = (k,q) we have

i 70 1 =z d, “7' Etg

q ds 1 L ag v

=1 1 das qt{u 1
q

il

o

] -
-
P
g 8
o oy
™M

<2
N
N

(]

o =
Pt
\-——/
N
|
n&{:“"e =

Pt

Pt
~—
VS

e

@

Pt
~———
~———

TN

Lol
P
=

-

[~
S
—

5 1 2 dg -‘;—' (&
r(( Lall”
1 a qlu 1
1 1 _ 1 y 1 = d, %, Etg
=/ / F 1 =z 1 L on v e(—zd,)dzdy
o Jo 1 1 * 9 1
1 a_ff(1 2z y do %' i
= / / F 1 =z di. 4':1_“'_ v e(—zd,)dzdy.
0 0 1 a qla 1

)



46
We have aa’ = —d, mod g, so there exists k¥ € Z such that kg —aa’ = d,. Thus by a change

of variables, the above equals ‘
wageg o (12 v -G (g ) [

/a ke /(; F 1 z = ;a% v
eda ¢ 1 1 1

which by periodicity equals

// ((1 2oyl ? ;g;) (da

Integrating over the region

Sl e

L~}

S
~————
TN

-Q“I .
<
i
~——
~—
®
~~
|
8
.

"

<9

8

[~
<

{(z9):0g 0 L, 200

we obtain

__“.+zd.a
/ /‘d “I

/"\
/-\
—t
— N
<
+
- 8 ° Ig
{
a [e
e
\—/
P
o,
a
f-l-—nn e
Qla
'_‘pn'llia
SN
N
Q@l"‘
<
—t
SN——
\_/

By a change of variables, the above equals

1 z y+"“+—“—““—%‘f do & 5
VAL : )
1 a qla 1

X e(—zd,)dzdy

a z ku zdga'
ok (4 THE VETEEEN (&
=/ / F dL ‘”+£L v e(—zd,)dzdy
0 0 e _ e 1

Lot ([ 5 T\(*E E\(F
=/ / F 63 1 zd, v e(—zd,)dzdy.
0 0 qi“ 1 1

Again, by a change of variables, the above equals
2t
q3
) ( v )) e(—z)dzdy.
1

1 @ re ~ d"' k_:' 1 d% ?1%
Y / / F id'l f =z
7 Jo Jo N 1

‘F-Io-nn e

e o



We note that

-

and

S=a e

£
. da
Now, since { —

1 7 19~ Elf 7
(3
e Jo Jo -9

1

1

1.
k

2

J=

—
SN———
TN

-nuLn.
,“-l.-ne e

d
1

Qla x>

3 :n""c-

\_/
!

) € T, the above integral equals

v

-8 <

Rz

L~
Yy

Q (=

— < fe
v

) ) e(—z)dzdy.
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We are in the situation that % = 1 mod ¢, so there exists m such that @ — mq = 1, and

we note that

(_1
7]
Since | -1
q

L0 ((

We note that

([t -%
F 1 -

) )0

) € I, and after multiplying by ¢I, the above integral becomes

1 -3 1 v
1 -1

11 _
: | =
1
q

-1
q

1
Pl
_a
7

1
q

a et

—

) .

y
z e(—~z)dzdy.
)
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and

so the above integral equals -

14 332
T 1\ (1 -5 -
F/o /oF { 1 i —&z e(—z)dzdy.
-1

1

1

Noting
3
-1\ (! - -4 v
1 8 -
1 i _g?é v
-1 1 -v
t

1 q’ q 1 ¢ ?ai 1 3 %
——/ / F { y- 1z v e(—z)dzdy.
¢ Jo Jo 1 | _ga;g 1 1

Thus we have shown

e

2 u a 1
q qﬂ q 1 = - 3z .
= E / / F f ! y- 5'3’5_ 1
a=170 o 1 9-372-
In order to simplify the computations, we recall from Chapter 2 the function G(7) =

1 ‘
F (( i ) -r) . We first observe
1

v ) e(—z)dzdy.
1
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whence
'l 3 1 ¢ & 1
Z/q /qF i ¢ y"ig’? 1 e(—z)dzdy
a=1 Y Y 1 o 1
%
v
1

1
@ e 1 1 i 1
= G 1 =z 1 1 e(—z)dzdy.
() )G ) )

Applying Lemma 2.6 we obtain
v dy
1

@ L 1 5 1
q G™ 1 y 1
Erne (D))

$5 (G ) - ))a0e

Writing @ = hg + k and so d; = (a,9) = (hg + k,q) = (k,q) = d, we obtain
D& [ m(hg+ k
X3 [ S| v, ? o] )e (RO 4.
h=0k=1"0 mez -%25 1 1 9
We can now do the sum on hv and obtain
g-1 g-1
Te (____’"(hq; 1) = (z'zg.) e (1"_’1)
h=0 9 q h=0 q

- {qe (%g’i) if glm
0 otherwise.

el

—

ol

So we are only interested in the case where g|m. In this case we replace m by gm, whence

the above sum equals

Thus we have

@ 1
¢y R, ((
a=1

- N
—
SN—
N
.,
0
f-'i—l.q lﬂ‘
H?ﬁ,
N——
N
-Qul,,_
<
—
N——
~—
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Since (u,q) =1 we can apply Lemma 2.7 and obtain

e g((G)( - )

k

E0E () )0 )

Now replacing m by m + % we obtain

! ’ ‘ . _. ¥ m+ 14
R () (g )0 ) e

We now let m = aq + b so the above equals

q ¢ g-1 q 1 %
Fouth g 1 Y 1

Xe (Eﬁ&:ﬁ_@) dy'

Applying Lemma 2.1 the above equals

g 14 g-1 1 q
/ E Z F;’ a 1 u
k=1Y0 aeZb=0 1

o

—
N
TN

|
a-n..'alQ“Q- =
nN
—

—
SN———
TN

e
S

—

~———

We now note that

1 q 1 q . 1
a 1 i y 1 ={a { y+ag® 1 ;
1 1 —%EE 1 1 —9325 1

thus the above equals

1 ¢ _ 172 q 1 L -
FPlla & y+ag® 1 Yy e (FOED) 4y
;/22(( ql)(_agfz 1)( 1))( )

Interchanging the sum and integral and with a change of variables the above equals

q g*+ag? 41 q 1 ¥ k(b + )
Fb U i Y 1 v — 7 )d
;z;/wz ; ’ (( ’ 1) (—95; 1)( 1))6( q ) !

k

o =
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which eqlials

LER(( ) (g )0 )0

In the region of absolute convergence for Lemma 3.2 we can interchange the order

'%rnov: —
nN

of integration and summation, and applying Lemma 3.3 we see that we are interested in

. )) ()

writing

S8 ((F ) (0 ) (

in terms of W, which we do in the following lemma.

o+je

Lemma 3.4. For x a primitive character mod q, F a cusp form, and t,v > 0 we have

ot 1 v _
U = Fb l y 1 f v M d
Erop () (50 ) (e )00
_ ¢ [Tyanmy, ((E
o L ((_g_ 1))"y

t

where dy = (k,q). Both integrals and the sum are absolutely convergent.

Proof: We begin by letting dy = (b,¢q), Cy = : , and Dy = Eq- Since (Cp, Dp) = 1 there
b b

exist integers Ay, By such that A, Dy — ByCy = 1. Thus by equation 4.5 of [B1] we have

Z/ EFb l Y, 1 : v e(lc_(b_'*'i))dy
k=17 =% b=0 1 -Lf 1 1 1
k

oo ¢-1 Ay, By q

/ Z ng Cy Dy i
1 = p=g 1
. (k(b ;- ﬂ)) dy

Expanding this we have

¢ oo 4-1 Ay By | q 1 . \ [ %
Fuallc, D a 1 v,
Z;/“Z%r;z : S ‘e 1) \-%# 1 ’ 1

o e
fay
~—
TN
|
G
&
fay
—
~—
NN
e
]
—
~———
~——
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We note that -

1 —%% Ab Bb g L le g L
1 Cb Db U E = Cb Db U E
1 1 1 1 1

Thus, by equation 4.8 of [B1} and noting that since F is a cusp form we have Fy, o = 0, the

above sum equals

ELEgre (oo s ) (5 )( )

() ()

s

Writing this in terms of W we obtain
-1
—17/-% b—O n#0 ‘nd"l

dyn . ds 1 L
xXW dp Cvg+ Dyt d%, ya 1 v
1 1)\ 1 1
Byn k(b-}-ﬂ)
<(3) (5 0)

Observing

dyn d 1 d2n
dy Cog+ Dot 3 y 1 v+ C’qub + Dyiidy 1
1 1) \-%2 1 g 1

the above equals

) 9—1 d2 . “tl
Z / ad""‘W y+ C’qub + Dyidy 1 v
k=1Y~—% p=0 n;eo |nds| —9-;- 1 1
B,,n) (k(b+ a))
X d
¢ ( D, ) ° q v

Now, interchanging the integral with fhe finite sum over b and with a change of variables

(30)- (5w

we obtain
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Thus we have shown

g Ee(( 1 )G ) (1 s

g 9-1 din
Gdy,n P Byn k(b + a)
"EX(U)EE/ Z —=W 7 v e( )e( dy
u=1 k=1 b=0 Y =% nzp |nds| - :;” 1 Dy q
(]
We observe by Lemma 3.1 that
gx(k)
X(u)e ( ) = o1
,,2_:1 m(X)x(-1)’
thus the above equals
= A B kb
ad R ¥ N
Erz((F )@@
T(x)x( 1) EX( )§ ,;, mds] " _g;%z!g 1 Dy )
k
Since X(k) = 0 unless (k,q) = 1 we can take dy = 1 in the above and obtain
2
9 g—1 il
q adb,ﬂ ztg (-an) (kb)
—_— Y(k / v el — el — ]dy.
T(OX(-1) ,; X )g Z;, sl . Dy q

(k9)=1 t
Again, by Lemma 3.1 we have
9
ax(b)
k e( ) =
2, X 0x(=D’
(k,q)=1

so using the facts that x¥ = 1 and 7(x)7(X) = ¢ the above equals

dinv
Qdyn 17 by Byn
QEX(I’)/ E B e (—) dy.
b=0 ® 10 lnd”l —La 1 Dy

t

Again, x(b) = 0 unless (b,q) = 1, in which case Dy = g and Cy, = b. So Apyg~ Byb=1or

Byb = —1 mod ¢, thus we have

Sl gL )G

(b,g)=1



Finally

L -bn\ _ gx(=n)
2 X@e( q )_ rO0)x(-1)’

b=0
(bsQ)=1

so using the facts that (x(—1))* = 1 and x(—1)x(-n) = x(n) we have

ny
£ / Ty aax®y ([, dy.
T(X) -—00 n#0 lnl - gszv 1
t

We observe

TN
.;[ﬁwlﬁ«*ls
<
<
—
N——
N
@ |-
@ e
e
~——
Il
TN
i
H’%ﬂhﬂlﬁ
N
—
@ s
\—/

By Lemma 2.3 the coordinates of this matrix are

—ygz
3 62 | 1 o=
. Vowr +ti +w L+
1=
Gt oy = —r B
- 2 8 22 1
ESYFTINE dat 5t
Y2 =73 6,3 1 —_ngi{
Frtito za’—'—e?;'zt——{
Gt
or, since t,v > 0, we have
3,2
_ —yg’zy
/Pt AR+ P 1T Bt 2
b= 5720 + 12 ny
PRI T2 = 6202 4 12
_ nyge2tvt 4+t Y+ qPzevi +t
V= it _ —ng®z?
—q622v2+t2'

Thus, by using the fact that

1 z, z3
w (( 1 a:1> r) = e(zy + z2)W (1)
1

54
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we have
ny
Py
w 7 v
_# 1

tv y9+q629v9+t2n q622v2+t2
° 22 ¥z viF12 l

= lW . tu /2 +q° 2203+ 12

PLEDL A=)
1
« le -—yq3z'02 ny
q622v2 + 12 y2 + q622'02 + 12
tv\/y°+q°z3v9+t3 n\/q923v3+t9
a°23v3F i3 AL P Pe- ]
=|W tua/y2 +g°z3v3 412
q622v2+t2

Now, by Theorem 2.11,

tuy /12 +9%22v2+12 n4/q822 02412
PLr I TRy P A

w . tvy/y3+¢82202 412

° 22

o (tv y? + ¢8z202 +t2>n1 ( 14/ 22v° + 12 )"2

q622112 + 12 y2 + q6z21)2 + 12

is bounded for ny > Ny(1q,12) and ny > Na(vy,v2). Thus, taking ny large, we see that
ny
w 7 v
3

zZv
-2 1

is rapidly decreasing as y — *oo. Taking n; large, we see that this function is bounded as

o]

y — 0 and that

ny
E a1,nx(n) W %tz v
SRR\ S
is absolutely convergent. |

Combining Lemmas 3.3 and 3.4 we obtain:

Corollary 3.5. Let x be a primitive character mod q and F' a cusp form, then for z € R,

t,v>0 ,

q @ 1 =z do %' 71%
X)) F, 1 i m v
u=1 a=1 1 1 1

___‘l_ * a'l,'n.X(n)
")z A &

sru~|°é~|§
<
I3
<
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where (a,q) = d,, v = 1 mod ¢, and aa’ = —d, mod q. The integral and sum are both

absolutely convergent.
We can extend, at least in terms of w, the region for Lemma 3.2. We observe

Lemma 8.6.

ooooq2~ 1 2z da%' qﬂt;
Fres(Ch)Ce)(:)

is absolutely convergent for Re(s + w — 2) > Ni(v1,14) and Re(s — 1) > Ny(v1,2); and

CraEa(( )0 )0 )

is absolutely convergent for Re(s + w —2) > Ni(v1,v;) and Re(s+ 1) > N1(w1,12).

tw—i ,&a—l fi_t_‘_i_'?_
t v

2=0

14t dv
t v

tw—l,vs

z=0

Proof: From Lemma 3.2 we have that

fore) fore) 92 f-,o 1 =z da Eq_' ‘ -q;tg
1 ald
~/(; ~/0 ; do 1 1 -‘E q‘]i.a v 1

is absolutely convergent for Re(s+w—2) > N1 (v1, 1) and Re(w) > max (ﬁz(ul, V) + 1, 2),

tw—l ,vs—l fﬁﬂ
t v

and thus
w oo & 1 2z d, & 3
./ / Zf»o 1 ’ i T et v""lﬂ(—i2
0 1 a=1 ’ 1 % ql]i_“ 1 z= 1 v
is absolutely convergent for Re(s + w —2) > ﬁl(ul ,V2). Similarly
oo 2 1 d a_' 1
Frea((t )51 ) (P )| s
0 0 0z poact ot 1 da ql]i.a 1 =0 t v

is absolutely convergent for Re(s+w—2) > N1(1,v2) and Re(w) > max (ﬁg(yl,ug) +1, 3),

and thus
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tw-—l ,03—'1 _d_t__dﬁ
t v

[

Craa(C )20 )

is absolutely convergent for Re(s + w — 2) > Ny(v1,v3). So we are left to consider

z=0

w-1 ,Us—l ngiﬁ

FLEn(( ) Ee)(F )L mmss
and :
L)L) - e

We have, by Corollary 3.5, that

q @ 1 2 da & | &
> X(w)} R, 1 el v
u=1 a=1 1 1 1

al,nX(n) ZE v
r(x)/m 2l W((_;_s_z_u 1))dy‘

t

Qe

!

g ? 1 2 da% ';ts
o (1) (" fd«)( )
u= a= 1 1 1

ny
a nXx(n 3
/ 1: X( ) }%_ P dy
and by Lemma 2.4 we have

sEogn(( )1 )( - )

So in either case, we are interested in

1

[

2z=0

I
/-_"\
TN

<

—
~———
~——
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and the coordinates of this matrix are, by Lemma 2.3,

V v u ‘v\/y +t2 z1=0

1
Pl _ P ny

.’Bz— 3 2
tv 111’ ni ?g;f-i-;lf yit+i
y2= — -
s VAT 29=0.

Thus using the fact that

and by Theorem 2.11, for ny > Nyi(v1,v2) and ng > Ny(v1,v,) we have that

e ) t y2 +1?

is bounded. So, taking n; large, we see

(5

is rapidly decreasing as y — £00 and v — co. Whereas taldng nq large we see this function

)

is bounded as y — 0, ¢t — 0, and that

al,nX(n)
D P ((

nFo0

is absolutely convergent.

Thus
o e ([ d g i dt dv
/ / ZY(U)ZF& 1 dL., qadﬁ v o=l n-1_t___v_
° ° v=1 =1 1 10 1 z=0

r(x)/ / /_w ¢0a11‘17)l(|(n)W((z;_: v 1))t‘”"1 01 titdvv
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is absolutely convergent for Re(s — 1) > Ny(v1,72) and

/ / E f:i»o 1 = da %‘ ;ts
x(v) ) Fa, 1 | r T v
3z u=1 a=1 1 e qg“ 1 z=0
tw—lvs—lﬂi’g
t v
- =2rig / / / a.1 nx(n)W @ v yrv=3ys+1 g, 2 dt dv
T(X) oo} n#0 Inl 1 t v

is absolutely convergent for Re(s + 1) > Ni(v1,12).

We can now prove:
Theorem 3.7. For x a primitive character mod ¢ and F a cusp form, L,(w, F) extends

to an entire function of w. If x is even, we have

w—w~~s— w—-1)= -w s—1,—w
(7(7))2 Lx( ’F)@( la 1)"Lx(1 aF)@( 1, ),

and if x is odd, we have

¢vir (X) Ly(w, F)q)(,g 1,w) = Ly(1 - w, F)®(s + 1, -w).

()
Proof: We can use Lemma 3.6 to extend the L-function. Recall that

{2L7(w, f‘) if x is even

E El,n?(n)&f =
2Ly (w - 1,F) if x is odd.

n#o0 Inlw

We first assume that x is even. By Lemma 3.2,

293wX( 1)= @(s 1,w—1)Lx(w, ﬁ)

(r(x))?
i o oo§~ 1 2 dq _a; Ets
=) X(u) / Fga 1 1 en v
u=1 0 0 g=1 1 da qi, 1 z=0
w-1,0-1 dt dv
t v’

and by Lemma 3.6 the integrals are absolutely convergent for Re(s + w — 2) > Ny(vq,v2)

and Re(s~ 1) > Ny(v1,v2). Thus for any choice of w we can choose s large enough so that
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we can extend Ly(w, f),» and by Lemma 2.14, 5(3 —1,w—1) only has isolated zeros. So by
choosing s to miss the zeros of ®(s — 1,w — 1), we see that Ls(w, F') extends to an entire

function of w. Now applying Corollary 3.5 we obtain

ny

q /oo /00 /°° a1 nX(n)W y:l v tw_l 3_1d dt d'U

T(X) 0 0 —Oo,n#O ‘n‘ _M 1 2==0 t 'U
7 =

In this case, we are interested in

nv
/ / / Z alvﬂX(n) _y:£ v t'w—l a-ld dt dv
= |z 1 t v

which by a change of variables equals

ny
/ / / alrﬂX(n) AP w yt,v v Wyl d it. .‘ﬁ’.
-0 #0 |n| 1 t v

Applying Lemma 2.2 we obtain

e R

® nso

Now by interchanging the order of summation and integration, which may change the region
of convergence, and a change of variables, the above equals

R0 L)) () et

n#0

or

2L,(1 - w, F)®(s—1,-w).

By Lemma 2.15 and the fact that a1, = O(|n]), this function is absolutely convergent for

Re(s — 1) > Ny(v1,12), Re(—w) > No(v1,v2), and Re(l — w) > 2. Thus we have

20X D) F 5~ 1,0 — 1) In(w, F)

(r(X))?
) q o0 poo 9 1 =z da. L 't’é.'
= b FO i ati !
gl [En(( 7)) )L
t'w—l a—l_‘i{dv
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for Re(s + w — 2) > Ny(v1,v;) and Re(s — 1) > Ny (v, 17), and

e[ [ER((F)(Ee) (7))

29
'r( )Lx(l -w, F)®(s-1,-w)

for Re(s — 1) > Ny(v1,1,) and Re(w) < min(—l, —Nz(lll,llz)). Thus, since x(-1) = 1, we

1dtdv
T v

tw—l L}

z=0

have

U r(x) = . ) = w R
(T(—))z 'I’(s - 1)Lx( ,F) = Lx(l 7F)'I’( 1, )

for Re(w) < min(—l, -Nz(l/1,l/2)), Re(s—-1) > Ny(v1,1,), and Re(s+w—2) > ﬁl(ll],l/z);
and by meromorphic continuation this completes the case where x is even.

If x is odd, we have

20x(-1) 3 ' ~
L tI)(s -1 Ix(w-1,F)

“mET of

r
(& () (

' X
a qla 1 220 t v
sk |
2rir(x) Jo Jo
o ae
x _2 / Z a) nX(n) }lt_'-i v dy tw—lvs—lﬂﬂ
0z —o0 2 |n| P 1 o t v
T

and the sum and integrals are absolutely convergent for Re(s + w — 2) > ]Vl(ul,uz) and
Re(s + 1) > Ny(v1,v2). Again, just as in the even case, Ly(w — 1,f’) extends to an entire

function of w. Since the sums and integrals are absolutely convergent, the above equals

/ / / al,nx(n) 0 W }L:L' v fo=1yo=14y dt dv..
21rz‘r(x) ~o0 £26 T ln| 0z _ g% ] o t v
In this case, we observe, by Lemma 2.4 that

/ / / a1 nX(n) d w -}_L_:: ) tw—l s—ld ii__t_ﬂ
ori —co ¢o " In] 0z _g% 1 o t v
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. g ne
/ / / al,nx(n) 2wiyv W P, -¢ T g1y gy O dt dv
= omi —o0 g {n| t t 1 t T v
which in turn equals

—q / / / Z alv”X(n) v ytw—3 a+1d dtt dv .

® n#0 In] 1 v
Now, by a change of variables this equals
ny

¢ / ] / 01 nX(n)W yt'v v =1y s+1d ‘it @
Again, we interchange the order of integration and summation, which may change the region
of convergence, and applying Lemma 2.2 we have

g LR - et

which by a change of variables equals

egaR LI )t

We observe, since x is odd that

E a1,nX(n) _ i ai,n (Xv(n) - x(=n))

nlnll—w gt n2—w

=9 Z a nX(n)

n2—w

n#0

n=1
So the above equals

—2¢°Ly(2 - w), P)®(s+1,1-w).
By Lemma 2.16 and the fact that a;,, = O(|n|), this function is absolutely convergent for

Re(s + 1) > Ny(v1, 1), Re(1 — w) > N3(vq,v2), and Re(2 — w) > 2. Thus we have

2¢°x(-1) =
(T(‘))2

= 5= Ex(u) / /

H{gn ()0

®(s - - 1) Ly(w -1, F)

w-—1 ,vs-l ﬂ@
t v

an'l"“Q |e
oH
S
TN
-Qul,,_
[

—t
N
SN’
Se—
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for Re(s +w —-2) > ﬁl(ul,uz) and Re(s +1) > Ny(1q,12), and

2 ' a t
1 g oo oo a q - 1 =z da ? qj'
— Y(u)/ / — ng 1 1 ez v _
2m: 1; 0 0 (92 ; 1 da qfa 1 220
v % w1 s-1ﬂ dv
’ t v
_ (2-w), F)®s+1,1-w)
T(x) ’ ’
for Re(s + 1) > Ny(v1,1,) and Re(w) < min(i - Nz(Vl,Vz),O). Thus, since x(-1) = -1,
we have )
Sw-4
@Y r(x)
— ®(s
Ry

—Lw-1)Ig(w-1,F) = L,(2 - w), F)®s +1,1 - w)

for Re(w) < min(l —N2(1/1,V2),0), Re(s+1) > Ni(v4,1,), and Re(s+w—2) > ﬁl(ul,ug).
So by meromorphic continuation and replacing w by w + 1 we are done.

|
Now applying Lemmas 2.14, 2.15, and 2.16, Theorem 3.7 becomes, for x even

e P (5591 (59) 1 (%52

2
1—w— 1-w-— 1—-w-—
e (5 () (B5)
and for x odd |
¥ 1r(x) ~ (1+uw+a) (1+uw+ﬂ) (1+uw+7)
o s e TG W ) R G ) R
2—w-— 2 —w— 2—w-—
=Lﬂl—mFﬁ( z a)r( Z ﬂ)r( z 7).
Thus letting . |
5'1(-335 if x is even
€Ex = . =112
37—_((1;5——;—(—)\/-)_5 if x is odd
and
(¥ (w-a w—f w—7
T4, a(0) = () r( 2 )r( 2 )r( 2 )’
50
~ _(\ ¥ (wta w+ 6 w4y
T4, (w) = (F) r( 2 )r( 2 )r( 2 )
we have:
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Corollary 3.8. For x a primitive character mod ¢q and F a cusp form, L,(w, F) extends

to an entire function of w. If x is even, we have -

LY(w’F’)fsl,u:(w) = €X'[’X(l - w’F)I‘q (1 - w)’

V1,02

and if x is odd, we have

Lf(w’ﬁ)—fsl,ua(l + ’UJ) = e_XLX(l - ’w,F)Fq (2 - ’UJ).

V142
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APPENDIX
REMARKS ON WEIL’S THEOREM

In this appendix we will present some remarks on Weil’s converse theorem for GL(2,R)
modular forms. We let G = GL(2,R)* be the subgroup of GL(2,R) with positive deter-
minant. In the introduction we considered H, the upper half plane, as a quotient space;
however, here we will consider it in the classic sense. We define the action of G on H as
follows:

(Z 3)z=-:—j—j__—g for (Z Z) € Gand z € H.
With this action we define the stroke of a function on H. Let f be a function on H and

define, for k € Z,

Hlle = et (es+ ) f(rm) torv= (2 2) ec.

[+

Before we can define a modular form we must define a subgroup of I' = SL(2,Z). For

a positive integer N, the principal congruence subgroup of level N is given by

I‘(N):{(Z 3) €T : asdslmodNa.ndb—:—cEOmodN}.

With this we can define a modular form. Let & be any integer and let I'' be any subgroup
of I' containing I'(V). A function ¢ on H is a modular form of weight k on I' if

(a) ¢ is analytic on H,

(b) ¢l[7lk = ¢ for all y € I', and

0
. . nz
(c) for each v € T, ¢(2)|[7]x can be written in the form E ane (_JV) .

n=0

66
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We say ¢ is a cusp form of weight k on I, if in addition ag = 0 for all v € T'. We let M (I")
denote the set of all modular forms of weight k on IV and Sx(T') denote the set of all cusp
forms of weight k on I'.

In order to state Weil’s theorem we must define a restricted set of modular forms. We

let

I‘Q(N)={<(cZ Z) €Tl : cEOmodN} and

I‘1(N)={(Z' Z) € To(N) : aElmodN}

and note that trivally we have I(N) C I'y(N) C To(N) CT. Since T = (1 i) € I'1(N),

condition (b) in the definition of a modular form implies that for any ¢ € My (I'y(N))

s =s@Nm=¢((* 1)7) =sc+0.

Thus ¢ has an expansion of the form

#(z) = Z ane(nz).

n=0

In fact, |an| = O(n®) for some ¢ € R ([O] p. IV-43). For any function f which can be

o0
written in the form f(z) = Z ane(nz), the L-function associated with f is given by
n=0
o0

Ay
L(s, f) = 7{;.
n=1

Also, for any character x we have the twist of f by x
o0 .
fx(2) = Z anX(n)e(nz)
n=0

and the twisted L-function associated with f

o0

Ls.f)= Y =X

s
n=l n

Finally, for x a character mod N we let

M) = {9 € Me(Ti(V) s dllole = x(@ forall = (] ) e Tul)}
and

Sk(N,x) = Mi(N,x)N Sk (T1(N)).
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With this we can now state Weil’s converse theorem.

Theorem A.l. [W] Fix N and k positive integers and ¢ a character mod N. Let {an}3%,
be a sequence of complex numbers with |an| = O(n¢) for some ¢ € R and let ¢(z) =

- ,
Zane(nz). Further suppose @|[HN]x = 5%;‘15 forw =1or~-1and Hy = (N _1)'

n=0

If $ € My(N,x) we have the following:

(a) The function

8

VN ’ 1 w
('5; T(s)L(s,¢) + ao (; +1 )
extends to an entire function which is bounded in every vertical strip and we have the

functional equation

s k—s
(—\g—g) T(s)L(s,¢) =w (—2@) T(k — s)L(k - s,9).

(b) For every character x mod q where (¢, N) =1 we have

(%) D(s)Lx(3,9)

extends to an entire function which is bounded in every vertical strip and we have the

functional equation

(i‘_/_;) T(s)Ly(s,9) = Cy (q\/—) T(k — 8)Lx(k ~ 3,9)

where

we(@x(~N)7(x)
="""®

Conversely, let Z be a subset of the integers meeting every arithmetic progression of the form
{u+nv}nez with (u,v) = 1. If condition (a) is satisfied and if for all ¢ € Z condition (b) is
satisfied, then ¢ € My(N,x). If in addition, L(s,¢) converges absolutely for Re(s) > k — a

for some a > 0, then ¢ € Sk(N,x).
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The goal of the following work is to establish a functional equation for the L-function

twisted by a character mod ¢, where ¢ and N are not necessarily coprime. In Theorem A.6

we will prove a portion of this theorem which demonstrates the necessity of the requirement

that (¢, N) = 1 in this setting. The remainder of the proof of Theorem A.1l is not related
to this matter and will not be reprodu.ced‘ A proof can be found in [O].

Before we can prove Theorem A.6 we need to establish several lemmas. We begin with

an easy result.

Lemma A.2. If x is a primitive character mod q and f is any function which can be

o0
written in the form f(2) = Z ane(nz) where |a,| = O(n®) for some c € R, then

n=1
T -1) & b
1) = P S xyr (+42)).
q b=1 g
Proof: By the definition of f, and Lemma 3.1 we have

S =3 anx(n)e(nz)

n=1
N g e TOOX(D) S (b
= 3 encln) T gx(b)(q)-

Since a,| = O(n°) the sum is absolutely convergent so we can rearrange the sum and obtain

@%ﬁgy(b)iane (n (z+ g))

n=1

which clearly equals
T 1), b
0)x(=1) ZY(b)f (z + _) i 1
q b=1 q
With this result we can express I'(s)Ly (s, f) as a Mellin transform of f,.

Lemma A.3. If x is a primitive character mod q and and f is any function which can be

written in the form f(z) = Z ane(nz) where |a,| = O(n®) for some c € R, then

n=1

(27)7°T(s)Ly(s, f) = /0°° fx(ir)r"-‘g} for Re(s) > max(c + 1,0).
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Proof: In the region Re(s) > max(c + 1,0) the L-function is absolutely convergent as is

o
I'(2) = / e"’r’gl. Thus
0 ] T

T(s)Ly(s, f) = /0 % gmr ",‘-i,.z > an:ffn)
= Zanx(n) /

n=l1
which by a change of variables equals
E anXx(n) / g2 (27rr)
n=1

Since we are in the region in which the integral and the sum are absolutely convergent we

can interchange the order of summation and integration and obtain

(2#)’/ Eanx(n)e(zm)r —

which equals
8 *® : Bdr
(27) / Fx(ir)r®—.
0 T

H, as before, we let Hy = ( _1) we have

N

Lemma A.4. Let ¢ be a function on H such that for some ¢, a character mod N, we have

%

Sk = e(d)¢ for all ¥ = (*

(¢, N)=1,(b,q) =1 and u and v are integers such that qv — bNu = 1, then

o(++7) _%E))W(L N$2z>'

Proof: We first note that such u and v exist since we have

* 1
d) € To(N) and ¢|[HNlk = mqﬁ wherew =1 or —1. If

(¢, N)=1

(b,q) =1 = (bN,q)=1.
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We let v = (—g\’u _vb) and evaluate ¢ (z+ %) {HN7]x in two ways. First noting

6 (x+3) = (o (o +2) w1
= 250 (5+2) 1o
(1),
We also observe Hyy = (1‘3, ‘01) (_qu.u . ) ( _Nb) Thus
N

(Nqv— NZub)s u(z + b)_”
¢( ) [Hn7]k = (Ngz)* (Nq(z+ ) Nb)

_(N(gv— Nub))d [ Nuz+ %(Nub— qu)
- (Ngz)k Nqz+ Nb— Nb

: N% Nuz—%
_(qu)"¢ Ngz

v € To(N) we have

'S~

Combining these two equations we obtain

¢(++2) = imer? (o~ i)

Since qv — bNu = 1 we have gv = 1 mod N, so0 €(¢)e(v) = 1. Thus
b) wike(q) (u 1 )
=) =—t g2 :
¢ ( q (\/_qz)"¢ Ng*z I

Lemma A.5. Let N and k be positive integers, ¢ be a character mod N, and ¢(2) €

1
Sk(N,e). Further suppose ¢|[HN]x = ;{Ed’ forw = 1 or —1. Then for every character x

mod q where (¢,N)=1

- ) (' ().
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Proof: As noted earlier, since ¢ € Si(N, x) we have

#(z) = i ane(nz)

n=1

where [a,,| = O(n°) for some ¢ € R. Thus, by Lemma A.2

-1) G b
$x(2) = ——————T(")’;( ) gx(b)dg (’_* 3) :

Since x(b) = 1 unless (b,q) = 1 we have by Lemma A.4

o +4) - Sk (- )

where —bNu = 1 mod ¢g. Thus X(b) = x(—Nu) and as b runs through a complete set of

residues modulo ¢ so does u. Thus

_ 1(0)x(=1) wike(g)x(=N) ¢ v 1
o) = TREEDTRCD S o )¢(q qu)

Finally, applying Lemma A.2 again this equals

r(x)x(=1) wife(q)x(=N) ( -1 )

Ox(-1)  (VNgz)* Ngiz |

With this we can now prove the part of Theorem A.1 which will be investigated. We

restrict our attention to cusp forms in order to simplify the computations.

Theorem A.6. Let N and k be positive integers, ¢ be a character mod N, and ¢(z) €
Sk(N,e). Further suppose ¢|[Hn]x = :}i;qb for w = 1 or —1. Then for every character x
mod g where (¢,N)=1

(%) OIN)

extends to an entire function and satisfies the functional equation

s k—
(?_Z‘Cr_ﬁ.) T'(s)Ly(s,¢) = Cyx (%/FN-) I'(k - s)Lx(k - s,¢)



where

0. = YE@x(=Nr(x)
x= (%)

Proof: Since ¢ € Si(N,¢e) we can apply Lemma A.3 and obtain

(?—‘/;_-) I‘(s)Lx(s)— q\/_ / ¢x(zr)r ar

For the integral we observe

/ ¢x(zr)r & / o ox(inr L 4 / ¢x(zr)r dr

Applying Lemma A.5 to the first summand we have

[ i - [ () )

1
VN i dr
—_——x rs-k_.
(e /—N)k/o X (Nq2r> r

Making the change of variables r —

—1—5 this becomes

rNg
CX /oo ] ‘ 1 s—k dr
e [ i ()
k X 2
(q\/JV) F}ﬁ‘ Ngr r
which equals

_—x ir)rF- "
(qm)“'" / x(ir)

Thus

/ ¢x("’)7' — =0Cx (q\/_ k 28/ x(ir)r* > — '*'/ ¢x("’)7' -
and so we have

=)

r
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—2?) T()Lyls) = Ox (avF) /_:_ sx(inyr= L 4 (ovN)’ ]_:_ oxlinyr .
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(> <]
These integrals converge for all values of s since ¢(ir) = Z ane(nir) decays exponentially
n=1

3
as r — 00. Thus (%—‘{rﬁ) I'(s)Ly(s) extends to an entire funcion of s. Also, replacing s by

k — s, x by X, and multiplying by C; we obtain

k—s
Cy (%‘/g) T'(k — 8)Lx(k — s)
s [ .\ gdr k—s [0 .\ pg@T
=C\Cx (q\/N) /_L_ qu(zr)r’T + Cy (q\/ﬁ) /_1_ bx(ir)rk "’—T—.
N : N
Thus the proof will be complete if we show C,Cx = 1. We observe
CxCx = (e(@)) x(~N)X(-N) = (e(@))" -

So it will suffice to show (e(g))* = 1.

For any v = (Z 3) € T'o(N) we have ad — bc = 1 with ¢|N which implies ad =
—<
l1mod N. Also HyyHR = (—7Vb aN) € To(N). With this we evaluate @¢|[Hn7]i in

two ways. First
1 e(d)
AHENY]E = (AIHEN] Y]k = —z lirle = — 4.
On the other hand

HEN = GIHENTER]) [Enls = (@)l Hnls = S5y,

Thus e(a) = e(d), which implies, since ad = 1 mod N, that Z(a) = &(a). In particular,

(e(g))? = 1. I
Relaxing the restriction that (¢, N) = 1 in the hypothesis of this theorem is our goal.

Most of the following results have been proven using representation theory ([L]). However,

all of the following proofs will be done classically. Note that in the previous discourse the

significance of (¢,N) = 1 appeared in the proof of Lemma A.4. More precisely in the

choice of v. We will first prove a simple version of Lemma A.4 where (¢, N) > 1 and the

transformation law for the action of Hy on ¢ is not required.
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Theorem A.7. Let ¢ be a function on H such that for some €, a character mod N, we

have ¢|[v]x = e(d)¢ for all y = (* ;) € To(N). If for q,b,b € Z we have N|gq, (b,q) = 1,

*

"’(+3)=%¢(§‘Z)

Proof: Since Eb‘E 1 mod N there exists a v € Z such that bb — gv = 1. Welet v =

and bb = 1 mod ¢ then

(-—qb -fb) and as in the proof of Lemma A.4 we evaluate ¢ (z + %) 7]k in two ways.

First, we observe that 4 € T'o(V) since N|g. Thus

b b
plz+=)lvk=e(-b)p(2+-).
q q
On the other hand, we observe
b - ~b(z + %) +v
Z4+ - = (g2 —_—
6(+5) I = @7 (

Thus

1 -1 3) ’ ( b)
—l = —=)=e(-b)¢|2+-]).
@r’ (qzz g) =09 q i
Note that this is not quite the form which is needed since ¢(—b) depends on b. This problem
is eliminated by taking ¢ to be the trivial character. Thus our hypothesis becomes ¢|[v]x = ¢

for all ¥ € Ty(N). Noting that —I € To(N) and ¢|[—1]; = (—1)*¢ we observe that k must

be even. So we have

Corollary A.8. Let ¢ be a function on H such that ¢|[y])sx = ¢ for all v € To(N). If for

¢,b,b € Z we have Nlq, (b,q) = 1, and bb = 1 mod ¢, then

o(+3) @ (@ 3)

With this result we have the analogs of Lemma A.5 and Theorem A.6.
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Lemma A.9. Let N and k be positive integers and ¢(z) € Sax(N,1) = Soi (To(N)). If x

is a character mod g, where N|q, then

XD, (1
#x(2) = (gayokr () x(q%)'

Proof: Since ¢ € §3x(N, 1) we have, by Lemma A.2

N XEDTOO S (b
#ule) = = ;x(b)sb( +q).

Observing x(b) = 0 unless (b,¢) = 1 we can apply Corollary A.8 and obtain

x(1)7(x) <~ X(b) b
q Z(qz)“ (q_z—a)

=1

which in turn equals
T b
q(q(j;)z;e 2 XD (72)

Again, applying Lemma A.2 we obtain

7(x) ¢_( 1 )
(g2)*r()X(-1) ¥\ ¢?= |
By using this lemma and the methods used in the proof of Theorem A.6, mutatis

mutandis, one can show

Corollary A.10. Let N and k be positive integers and ¢(2) € Sax(N,1) = Sk (To(N)).

If x is a character mod g, where N|q, then

() T)Lx(s,9)

extends to an entire function and satisfies the functional equation

(%)s I'(s)Ly(s, ) = Cyx (5'17;)% T(2k — 8)Lx(2k - 3,¢)

where

_ x(=Dr(x)

*Tar(x)
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Up to this point we have established a functional equation for the L-function twisted

by characters mod ¢, where (¢, N) = 1 and (¢,N) = N. In order to reduce the restrictions

on ¢ and N further we recall a result of Atkin and Lehner ([AL]). For ¢(2) = i ane(nz),

we extend a, to Q by setting a, = 0 for a ¢ Z. We define Atkin and Lelrr:r’s Hecke
operators T, and U, as follows:

(Tp#)(2) = E(anp + PZk_la%)e(nz)

n=1

(Ug9) (2) = Z anqge(nz).

n=1

For ¢ € S2x (To(N)) we say ¢ is a newform ofweight 2k and level N if for primes (p, N) =1

and g|N, there exist a,8,A, u € C such that Tpp = ap, Uyp = By, ¢|[HN]2k = Ap, and

©(=%) = pep(2). This definition is equivalent to that of Atkin and Lehner ([L] Theorem 9).

We say ¢(2) = i ane(nz) is normalized if a; = 1. Let Ny (To(V)) denote the set of all
n=1

normalized newforms of weight 2k and level N. Finally, if ¢ is a prime dividing N such that

q%||N, we let W, denote any matrix of the form

Wq = (%Vu qgv) where T,Y, U,V € Z such that det Wq = qa.

We now state, without proof, a theorem of Atkin and Lehner.

Theorem A.11. [AL] If p(z) = f: ane(nz) € Ny (To(N)), p is a prime with (p,N) =1
and q is a prime dividing N such :Zelzt q°||N, then

(a) Tyo=app

(b) Ugp = agp

() #lWelak = Mg)p where A(g) = +1.

With this result we can relax the condition on ¢ and N by assuming ¢ is a newform of

even weight. We begin with
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Lemma A.12. Let ¢ € Ny, (To(N)), let ¢ be a prime dividing N, and let o be an integer
such that q°®||N. Further suppose that ¢ satisfies ¢|[HN]zx = Shee where w = 1 or —1.

Then if (b,q) = 1 and § is a nonnegative integer we have

90(2+ b )_ wik (p('u 1 )
at8 ] T - 2k at+B 7 2
1 210)) (V N qa+ﬁz) 9 Ng¥(e+h)z
where N = ¢*N, ¢®*Pv — ubN = 1 and X is from Theorem A.11(c).

Proof: We are under the hypothesis that (b,¢q) = 1 and (¢, N) = 1, thus we can find

qa+ﬁ -}
—¢“Nu ¢%v
® (z + #) [[HNWg)2k in two ways. By Theorem A.11 we have

o (4 g ) W Walae = (i (2 + i) (e ) [Pl

1 b
= ® (2 + W) {Welzx

_ M9 b
=t (s )

u,v € Z such that ¢*+Py — ubN = 1. Letting W, = ( ), we will evaluate

On the other hand, we observe

HoW,. = ¢°Nu_  —¢*v
N = (q2a+ﬁﬁ “bN)
Thus

~ AT b o
b 2aN k q"‘Nu z+ =57 ) —q 0
@ (2‘*' —a+p) [[HNWql2k = 2(q p~) 2 ~( 1 ) =
q (g?«tAN2) g?etAN <z+ qa—b+zr) — qobN

¢*Nuz + ;lg(blvu - q"'”’v))

1
(s a+p\/'ﬁz)““” ( g2+l 2

U 1
( a+ﬁ\/_ )2,,<p( - qz"“"ﬁz) '
Whence

wi

o) e ()
) o) (\/—qa+ﬁ2) FNGE T @eraNz) L

We could now proceed to prove the analogs of Lemma A.5 and Theorem A.6, however

we will first generalize Lemma A.12 further. First we need to establish the following result.
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o]
Lemma A.13. If p(z) = Z ane(nz) € Ny (To(V)) and g is a prime dividing N, then

n=1

Qgtn, = Gng foralln>1

and
g™ -1

tp(q’"z);. @ ,Z:O ( -—;) ~for all m > 0.

Proof: By Theorem A.11(b) we observe

agp(2) = (Ugp) (2) = E Gnge(n2).

But trivially

agp(2) = E agqane(nz).

n=1

So by the uniqueness of the Fourier expansion
Gq0, = ang foralln > 1.

We prove the remaining statement by induction. We first note that the result is trivial for
m = 0. However, we must prove the result for m = 1 which is used in the general case.

If m =1 we have

E‘P(z+ ) zf;((+q))

r=0 r=0n=1

,,i::l ane(nz) ge (%) .

Now since
ge nry_Jq ifgn

g ) |0 otherwise,
we have the above equals

oo
g ange(ngz) = qagp(gz).

n=0
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Now assuming the result is true for m we have

e(q™z) = ¢ (¢™(92))

Applying the result for m = 1 we have that this equals

! r et s+ q™r
Yo (e gom ) = o s+ )
(qa i § qeq 1 g/ " (qa, )’"+1 2_: 2_:0 gmt!
m+1_1
1 ¢ r
G 3 0 )
r= .
So by induction we have the desired result for all m > 0. |

With this we prove the following lemma.

Lemma A.14. Let ¢ € Ny (To(N)) and let q be a prime such that ¢*|N. Further suppose

that o satisfies p|[HN)ak = —l ¢ wherew =1 or —1. Then if (b,q) = 1 we have

2k

’ <z+qia) =,A(¢1( \/_z)%(p(z: q“lﬁz)

where ubN = —1 mod ¢%, ¢*TP||N and N = qa+ﬁﬁ.

Proof: By Lemma A.13

b\ _ sf # b
% 2+q—a' =p\9q EE-I-(I“'H@

qaq)" 2 ¥ ( zq_“g"_b)

r=0

Now since (b,¢) = 1 and ¢ is a prime we have (r¢® + b,¢) = 1, so we apply Lemma A.12

and obtain that the above equals

B _
wiZk qzl , ( . . )
VN 2k otf ~ 77
(904)PA(9) ( N q“z) =0 \d Ngotby
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where u(rg® + b)N = —1 mod ¢+ and A is from Theorem A.11(c). Thus, we can replace
u by —m}z\;— where (r¢* +b)r¢® + b = 1 mod ¢°+# and NN = mod g®*P, Since we are
summing over 0 < r < ¢° — 1, an elementary number thebry argument implies the above

equals

wik —(r¢® + b)N 1
= 2k Z a+ﬁ Nq2°‘+f’z

(gaq)PA(q) (\/J—Vq“z) =0
= wi?k | qz—l o (—rN W _ 1 )
(ga4)PA(q) (ﬁq“z) * r=0 ? g+l Nglatfy

Now as r runs through {0,...,¢° — 1} so does ~+N modulo ¢°. Thus, the above equals

. A1
wik q

—% D w( - a+ﬁ 21 )
(994)°M(9) (\/J—Vq"‘z) =0 q Nq atfy

which by Lemma A.13 equals

with w(qﬁ(_m 1 )) ik ¢<_m 1 )
2k a8 T .2 2% a T -
M) (VNge2) ONGHE] ) AN (VFeme)T T Nes

Since —mbf\; = ~1 mod ¢**? implies —.b_ﬁbf\" = —1 mod ¢ we have the desired results.ll

Before we proceed, we combine Lemma A.12 and Lemma A.14.

Corollary A.15. Let ¢ € Ny, (To(N)) and let ¢ be a prime dividing N such that ¢°||N,
and write N = ¢®N. Further suppose that o satisfies @|[HN]2r = —wp wherew = 1 or

—1. Then if (b,q) = 1 and Q is any power of ¢ we have

wi

d) e

where u is such that ubN = —1 mod Q and X comes from Theorem A.11(c).

We can now prove the analog of Lemma A.5 in this generality.
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Lemma A.16. Let ¢ € Ny (To(N)) and let ¢ be a prime dividing N such that ¢*||N.
Further suppose that ¢ satisfies ¢|[Hn)ak = w—};,,—go where w = 1 or —1. If Q is any power

of ¢ and x is a primitive character mod @ we have

wx(=N)r(x)

2k
] -1
)= @ ('\/—'Jv"q_) W(“‘“ﬁqzz)

where N = ¢®N and ) is from Theorem A.11(c).
Proof: By Lemma A.2 and Corollary A.15
Q
T(x)x(-1 _ b
outa) = DD S 50y (54 5)
b=1

_ T0Ox(=) s witk w_ 1
v Q ;X(b),\(q). (\/_ﬁQz)%(p (Q NQ2z)

where ubN = —1 mod Q and A is from Theorem A.11(c). Thus x(b)x(—uf\/: ) = 1 which
implies X(b) = x(—uﬁ ). Also, as b runs through a complete set of representatives modulo

@, so does u. Therefore, the above equals

wrOx(V) [ '
@)@ ( Vo )Z"( 9 (5 - qu)

u=l

which by Lemma A.2 equals

~ 2k
wrOOx(W) (i Q =
X0)@ (\/ﬁQ) 7(-1)r(7)‘°7(ﬁgzz)

~ 2k
_wrQx(=F) [ -1
= M0r® (ﬁgz) #x (ﬁqzz)'l

By using this lemma and the methods used in the proof of Theorem A.6, mutatis

mutandis, one can show our desired goal.

Theorem A.17. Let ¢ C Nk (To(IN)) and let ¢ be a prime dividing N such that ¢%||N,
and write N = q®N. Further suppose that ¢ satisfies o|[Hnlax = = Wherew = 1 or

—1. If Q is any power of ¢ and X is a primitive character mod ¢ we have

(0_2@) T(&)Lx(5,9)



extends to an entire function of s and satisfies

=\ 3 =\ 2k—38
M T(s)Ly (s, ) = Cy Q\/N I'(2k — s)Lx(2k — 3, )
v 27 27 v

where

& - wx=Mr(x)
T Mo
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