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I The Problem and its Setting

1.1 Introduction

One of the key factors for a successful organization is the efficient scheduling of

activities. An activity is any step required to produce and deliver a product or service. In

today's diverse economy, scheduling problems are not limited to manufacturing

environments; they can occur in any situation that requires prioritization of activities. It

can range from a machining process in a manufacturing environment to processing a

customer request in a service environment. In this research, the investigation is limited to

manufacturing systems, keeping in mind that the results may also apply to other systems.

One of the most common models for manufacturing systems is the job shop

model. Job shop models can be applied to a wide range of manufacturing systems. The

assumptions required to apply a job shop model are usually easily justified. A job shop

model can be used to describe systems ranging from a machine shop with its steel chips

and oil to a hospital with its beds and rooms. Job shops have been an active area of

research since people started to study manufacturing as a science. Scheduling activities in

job shop systems attract most of the research in this field. Attention to improving job

shop scheduling can be justified with the economic benefits realized.

In recent years, Just In Time (lIT) has become a major trend in industry, pushing

scheduling research to a new area, Forbidden Early Shipment (FES). Forbidden early



shipment requires that if a job tinishes early it must wait until its due date before being

shipped to the customer. Abu-Suleiman (1997) proposed a modification of a well-known

dispatching rule, Critical Ratio (CR), and applied the new rule to a job shop model with

forbidden early shipment. The new rule was called the Modified Critical Ratio rule (CRz).

Abu-Suleiman showed that CRz outperformed other dispatching rules due to its ability to

adapt to system conditions using the factor z.

Abu-Suleiman stated in his research that the new proposed rule had a

shortcoming; the best value of the factor z was determined empirically. The current

research attempts to fiJI this gap by developing a prediction methodology for the factor z

using the function approximation capabilities of neural networks. The proposed

methodology will use system configuration parameters as inputs for the neural network

and the outcome will be an estimate of the best z factor for the system in question with

regard to the performance measure used. Neural networks are known for their superior

performance in function approximation compared to regression-based techniques

(Haykin, 1999). The purpose of this research is to determine whether neural networks

hold promise for addressing the shortcoming identified by Abu-SuJeiman in the

estimation ofz in the CRz methodology.

This research studies job shops in which the jobs arrive at the shop with pre

assigned due dates in a make-to-order environment. The pre-assigned due date will be

used to establish system performance measures. The system will be at the peak of its

performance if all the due dates are met without excessive early completions since
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forbidden early shipment will be included as a system characteristic. The efficient

scheduling of the incoming jobs will be the primary concern of this research.

1.2 Finding the "Best" Versus "Optimal" Value ofz

In literature, the phrase "optimal value" corresponds to an optimality that can be

proven mathematically. In this research, a methodology for predicting an unknown

function with unknown characteristics is investigated. This fact prevents a mathematical

proof as to the existence of optimality for this function. Thus, this research will only

attempt to improve on the current solution in an attempt to push the solution closer to the

optimal solution. In doing so the methodology will find the "best value" of z.

1.3 Problem Statement

The selection of a dispatching rule in previous research efforts and in practice is

primarily determined by experimentation or relying on previous experience. This

research attempts to take a different approach. Using Abu-Suleiman's modified Critical

Ratio (CRz.), an attempt will be made to predict the factor z using job shop system

configuration parameters. Changing z is equivalent to changing the dispatching rule.

Therefore, the objective of this research can be stated as "approximating the best value in

the output domain of the Modified CRz. rule using a set of shop configuration parameters

for the input range, to facilitate the use of CRz. in manufacturing systems, which is

expected to result in better system performance".
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II Literature Review

11.1 Introduction

In this chapter, literature in fields related to this research are reviewed. In

particular, research in the fields of job scheduling, scheduling in a forbidden early

shipment environment, due date assignment, scheduling rules, performance measures,

system configuration parameters, and neural networks is examined.

11.2 Literature Review on Types of Job Shops Studied

Scheduling jobs in a job shop environment has been an interest for researchers

since the early beginnings of manufacturing science. This can be attributed to the fact that

none of the proposed solutions represents an optimal solution under all circumstance .

Eilon and Chowdhury (1976) studied a job shop which consisted of five non

identical machines. Jobs arrived at the job shop in regular batches of ]0 jobs. The number

of operations required was uniformly distributed between 1 and 5. Operation times were

normally distributed with a mean of 20 minutes and a standard deviation of 6 minutes.

Routing of a job through the machines was random. A job could have several, but not

consecutive, operations on a given machine.

Kanet and Hayya (1982) studied a job shop which consisted of eight unique

machines. Random routings were used for the job sequence with each machine being

4
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equally likely to be the next machine on a job's routing, repeated operations on a given

machine were permitted but no job could have two consecutive operations performed by

the same machine. The number of operations was uniformly distributed between 1 and 8.

The inter-arrival time of jobs and their operation processing times both followed

exponential distributions. The arrival rate was adjusted to produce a 90% nominal

utilization level for the job shop.

Rohleder and Scudder (1991) studied a job shop which consisted of nine work

centers each with a single machine performing a unique processing fun·ction. Random

routings were used for the job sequence. The number of operations was uniformly

distributed between 2 and 7. The arrival distribution was assumed to be Poisson, with a

rate that produced a 90% nominal utilization level for the job shop. Pre-emption,

breakdowns, and maintenance times were not considered. Due dates were set using the

Total Work Content (TWK) rule with allowances of 3, 6, and 9. Processing times were

distributed normally with a mean of 9 hours and a standard deviation of 3 hour . Setup

times were included in the processing time with an independent uniform distribution

between 0.25 and 2.5 hours.

Philipoom, Rees, and Wiegmann (1994) studied a job shop which consisted of

five work centers in sequential order with each work center consisting of two different

machines. Processing times were drawn from an exponential distribution with a mean of

1.8 time units. Job inter-arrival times were also selected from an exponential distribution,

but with a mean of 1 time unit. This resulted in a shop utilization of 90%.
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Abu-Suleiman (1997) studied a job shop which consisted of seven machines.

Orders arrived for one unit of each product. Each product was unique. Setup times were

included in the processing time, which followed a uniform distribution between 3.5 and

6.5 time units. The number of operations for each job was uniformly distributed between

3 and 7. Routing of jobs was set randomly such that a job had the same chance of visiting

any machine except the machine just completed. Inter-arrival times were exponentially

distributed. The mean of the exponential distribution was set so that a desired utilization

level was achieved.

Sabuncuoglu and Lejmi (1999) studied a job shop that consisted of ten machines.

Jobs arrived at the job shop according to a Poisson distribution. The number of operations

required for each job was uniformly distributed between I and 10. Each operation was

equally likely to be performed on any of the ten machines. Processing times were

uniformly distributed between 1 and 30 minutes.

Most of the literature in this area studies job shop models with 5 to 10 work

centers, with 90% nominal utilization level, and an exponential distribution for the inter

arrival times of jobs. As for the number of operations required for each job to finish, the

majority used uniform distributions but they differed on the range, with most using a

range similar to [3,7]. Processing times were different from one researcher to another.

Also. most literature used random routing, unique machines, and all permitted machine

revisiting for a single job, but without visiting the most recently used machine.



-

II.3 Literature Review on Forbidden Early Shipment

Forbidden Early Shipment (FES) is defined as not allowing an order to be shipped

until its pre-established due date has been reached or surpassed (Rohleder and Scudder,

1991). With today's interest in Just In Time (llT) systems where orders are delivered

only when needed, finishing a product early is not desirable. This desire leads to the

redefinition of the objectives of the scheduling problem, the new objectives are to

minimize both earliness and tardiness in time-based performance measures. Additionally,

different objectives are defined for the monetary-based performance measures to

incorporate the penalty of holding early finished product.

Rohleder and Scudder (1991) used monetary-based performance measures,

specifically Net Present Value (NPV) and Inventory, to schedule jobs in an early

forbidden shipment environment. They showed that monetary-based scheduling rules out

perform time-based scheduling rules in achieving the economic goals in a manufacturing

environment.

Leu (1994) investigated group-scheduling heuristics in a flow shop cellular

system with work center sharing for the forbidden early shipment environment. Leu used

an extended list of monetary and time based performance measures.

Another approach to modeling the forbidden early shipment problem is to use the

due window approach. Sabuncuoglu and Lejrni (1999) used this approach. The research

used time-based performance measures. The main idea behind this approach is to

redefine the due date point to be a due date interval, this allows for a limited amount of
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earliness or tardiness without being penalized. In order to facilitate this approach a

window function must be defined. A general function is shown in Figure 1.

I
I

Job is early :
I

Job is on time
(Due Window)

Lfunctton

I I
I I
I I

: Job is tardy :
I ,

Time

-

Figure 1 - Due Date Window Approach function (adaptedfrom Sabuncuoglu & Lejmi, /999)

IIA Literature Review on Due Date Assignment

A standard approach for scheduling jobs in a job shop environment is the use of

dispatching rules. Dispatching rules arc widely used in scheduling because they are

simple and effective heuristics that enable job prioritizing. Research in this area shows

that selection of a dispatching rule is highly dependent on the selection of performance

measures. Selecting a certain dispatching rule might maximize some set of performance

measures, while selecting another dispatching rule might maximize another set of

perfonnance measures.

The majority of literature found in this field uses the Total Work Content rule

(TWK) to assign due dates to jobs. Eilon and Chowdhury (1976) compared the

perfonnance of fOUI due date assignment rules. They studied rules which relied on

combinations of the following inputs to generate due dates: job arrival time, expected
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processmg time, expected wait time, and number of jobs waiting m queue to be

processed.

Philipoom, Rees, and Wiegmann (1994) proposed a new method that utilizes

neural networks to find the best due date assignment. The method computes due dates

according to an extended list of inputs which describe the status of the shop. Philipoom,

Rees, and Wiegmann also compared the proposed method to conventional regression

based methods found in literature. They concluded that out of three shops studied, neural

networks out performed conventional regression-based methods in two shops, and it

compared favorably at larger sample sizes in the third.

Sabuncuoglu and Lejmi (1999) stated that there is evidence that the relative

performance of priority (scheduling) rules is also affected by the due date tightness, at

least for Portion of Tardy jobs (PT) and for Mean Tardiness (MT). This suggests the

existence of so called cross over points, with one rule performing best for tighter due

dates and another performing best for looser due date. It was found that TWK is the most

efficient rule to reduce the cross over effect (Baker, 1984).

In this research we will follow the major trend in research, therefore, the Total

Work Content (TWK) due date assignment rule with several tightness levels will be used.

11.5 Literature Review on Scheduling Rules

Scheduling rules, also known as sequencing rules, are heuristics that facilitate the

task of scheduling jobs on machines in a manufacturing environment. Researchers have

proposed hundreds of scheduling rules that could be used for different situations, and

9



under different conditions and assumptions. A few of the most common, according to

Vollmann (1997), are shown in Table 1.

Scheduling Rule Description

Random Pick any job in the queue with equal probability

FCFS First job comes to the queue, is fLrSt served

SPT The Job with Shortest processing time is served first

EDD The job with the earliest due date is processed first

LWR The job with the least work remaining is served first

FOR The job with the fewest operations remaining is served first

CR Critical Ratio, Priority index = (due date - now) / lead time remaining

Table 1 - Scheduling Rules (adapted/rom Vol/mann, Berry & Whybark, /997)

Rohleder and Scudder (1991) showed in their research that different scheduling

rules could be preferred depending on the performance measures used in evaluation.

Rohleder and Scudder used Net Present Value (NPV) and inventory to demon trate the

above conclusion. Rohleder and Scudder also examined the relatively poor performance

of operation-based due date rules.

Abu-Suleiman (1997) stated that in general, the Critical Ratio rule (CR) has been

found to be the rule that performs best in forbidden early shipment in most shop

structures. Abu-Suleiman also proposed a modification of the CR rule. The new rule was

called the Modified Critical Ratio rule (CRz). The proposed rule had both continuous

range and continuous domain; he used the system configuration as the continuous input

range, while the continuous output domain was provided by the output of the CRz rule as

z changed. Abu-Suleiman showed that CRz out performed other dispatching rules due to
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its ability to adapt to system conditions using the factor z. This criterion minimized the

effect of cross over points found in other dispatching rules. The continuous range was

introduced by the z factor, as sho\·\TI in Equation 1. The z factor can take any real value.

Abu-Suleiman showed that the new modification enhanced the scheduling performance

for ajob shop in a forbidden early shipment environment.

CR z
DD·-tJ

z
rpj

Equation I

L

Where:

CRz : The modified critical ratio

DDj : The due date for job j

rpj: The remaining processing time for job j

t: The current time

z: The power factor

According to the CRz rule, a job with a lower priority index has a higher priority,

and should be processed first. The following example demonstrates the effect of using

different values for the z factor on the behavior of the selection rule CRz. Consider the

following two values of z: zero and one.

- When z is set to zero, the CRz rule will behave exactly like the Earliest

Due Date (EDD) rule, as shown below:

DD·-t
}

--'--0- = DD . - t
rPj }

Equation 2

11



- When z is set to one, the CRz rule will behave exactly like the Critical

Ratio (CR) rule, as shown below:

DDj-1

'Jl j

Equation 3

The above example shows that using appropriate values for the z factor will yield

decisions consistent with the EDD and CR rules. Using other values of the z factor yields

different decision rules.

Abu-Suleiman used a simulation based search to determine the best z value for a

gIven set of job shop system configuration parameters with regard to a specific

performance measure. In this research we will study Abu-Suleiman's modified critical

ratio rule, specifically we propose a prediction methodology to predict the z factor based

on specific system configurations to improve a specific performance measure. This

prediction method should eliminate the need for the simulation based search to determine

an appropriate value for the z factor.

II.6 Literature Review on Performance Measures

People use different performance measures for different systems. These measures

may have interaction between them, but optimizing one performance measure does not

necessarily optimize other performance measures. Because the main goal of this research

is to reach the best operating system in order to maximize the economical return, a trade

off between performance measures may be necessary to achieve such a system.
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Generally, performance measures are classified into two major categories: time

based and monetary based. Time based performance measures are used to optimize with

regard to throughput, flow time, time in the system, or meeting due dates. Monetary

based measures are used to optimize with regard to net present value, total cost per

period, system inventory, or relative cost. Monetary performance measures have more

obvious economical interpretation, while time based performance measures are easier to

translate into physical manufacturing terms.

Philipoom, Recs and Wiegmann (1994) used Mean Absolute Deviation (MAD)

and Standard Deviation (SD) of lateness for due dates. Rohleder and Scudder (1991) used

Net Present Value (NPV) and inventory performance measures. Kanet and Hayya (1982)

used a list of performance measures which included: mean and standard deviation of

lateness, fraction of tardy jobs, mean and standard deviation of flow time, maximum job

tardiness.

Sabuncuoglu and Lejmi (1999) used Mean Absolute Deviation from due date.

They showed that it can be used effectively to optimize job shop systems that apply the

due window approach. MAD from due dates out performed Mean Earliness (ME) and

Mean Tardiness (MT) for that particular problem.

Abu-Suleiman (1997) used a monetary-based performance measure known as

Relative Cost (RC) in addition to other time-based measures, which included: average

tardiness and earliness, and average absolute deviation from due date.

Other performance measures found in the literature according to French (1982)

included:

13



- Mean, standard deviation, and max of Make-Span,

- Mean, standard deviation, and max of Tardiness and Earliness,

- Mean, standard deviation, and max of Fraction and Number of Tardy Jobs.

Most of the recent literature in this area studies mean absolute deviation and

standard deviation of due date. This is due to the recent growth in interest in Just In Time

(JIT) systems. Several researchers used the NPV, which is appropriate when a job's

completion time horizon is relatively long.

Monetary based performance measure definitions vary between researchers. This

is due to personal preferences in defining costs associated with activities in the job shop.

Time based performance measures tend to have agreed definitions among researchers.

11.7 Literature Review on System Parameters

In order to analytically model a job shop system, a set of system configuration

parameters must be defined. This allows for distinguishing between different job shop

systems using quantitative values associated with system parameters. All system

parameters describe manufacturing system conditions.

Most of the literature in the area of job shop scheduling considers only a limited

set of system parameters to describe and quantify the change in a proposed system model.

The due date tightness factor is one of the most commonly used in literature. System

utilization is also widely used in literature.
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Lee and Kim (1993) used the following input parameters to quantify the change in

their model: due date tightness factor, due date range factor, setup time severity factor,

and "number ofjobs to number of machines" factor.

Philipoom, Rees and Wiegmann (1994) used an extended list of parameters to

describe their proposed model. The list included number of operations required for each

job, sum of processing times for each job, sum of jobs currently at the queue on each

job"s routing, number of operations required to empty the shop of its current workload,

and processing time for operations.

Sabuncuoglu and Lejmi (1999) used system utilization and due date tightness in

their model. Utilization levels were between 60% and 95%, which is very common in the

literature.

In this research a variety of system configuration parameters are utilized. These

parameters represent the physical state in the job shop system. These parameters will also

be used in the z factor selection for CRz.

II.S Literature Review on Neural Networks

The sale inspiration for the invention of artificial neural networks was the fact

that the human brain operates in an entirely different way from the conventional digital

computer (Haykin, 1999). This profound difference is responsible for the human brain's

ability to perform certain computations many times faster than the fastest digital

computer available today. Haykin defined a neural network as follows:
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"A neural network is a massively parallel distributed processor made

up ofsimple processing units, which has a neural propensity for storing

experientiaL knowledge and making it available for use. It resembles

the brain in two respects:

1. Knowledge is acquired by the network from its environment

through a learning process,

2. Inter-neuron connection strengths, known as synaptic weights.

are used to store the acquired knowledge." [Haykin, p. 2J

Caudill (1989) defined a neural network as follows:

"A neural network or parallel distributed processing model is a system.

consisting of a number of simple, highly interconnected processing

elements. The network process information by dynamic response to

external inputs, " [CaudillJ

In neural networks, knowledge IS not stored within individual processmg

elements, but is represented by the strengths of the connections between elements. Each

piece of knowledge is a pattern of activity spread among many processing elements and

each processing element can be involved in the partial representation of many pieces of

information (Bauer, 1988).

The most common type of Neural Networks according to Hinton (1992) consists

of three groups or "layers" of processing elements or "nodes". The first layer is an input

layer, which is connected to the hidden layer, which in turn is connected to the output

layer. The input layer serves the purpose of feeding raw information to the network,

while the output layer produces the outputs. The hidden layer maps input into output

using network weights. Weights are the product of the learning process, also known as

16



the training process, in which the neural network is trained using a relatively large sample

of data. Figure 2 illustrates the general design of a neural network.

Still, certain precautions should be made, as Billings et aI. (1992) points out:

"Because the network has been trained by minimizing a cost function ...

the output ofthe network will most probably provide a good prediction

over the data set used for estimation. Whilst this is almost universally

used as a metric of network performance it does not mean that the

network is a good model of the underlying system ... physically this

means that whilst the network will provide good predictions over the

data used in training it is validfor that one particular data set and may

not provide good predictions for different data sets. " [Billings, p. 202

203]

-

Output. Layer

HitJden Layer

In:put. Layer

••••

••••
Figure 2 - General Neural Network Design
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A relatively new type neural networks is the Radial Basis Network (RBNN).

According to Hagan, Demuth, and Beale (1996), it was first introduced in the solution of

multi-variable interpolation problems. A radial basis network consists of two layers, the

output of first-layer neurons, each representing a basis function, are determined by the

distance between the networks input and the "center" of the basis function. As the input

moves away from a given center, the neuron output drops off rapidly to zero. The second

layer is linear and produces a weighted sum of the outputs of the first layer.

Another one of the well-known neural networks designs is the Backpropagation

Network (BPNN). Backpropagation networks are known for their flexibility, accuracy

and wide implementation in different scientific fields. The backpropagation design can

use multiple layers with linear and nonlinear transfer functions, which render the design

more flexible than the radial basis design.

Neural Networks is a relatively new field, but the application of Neural Networks

in the field of scheduling is a trend that is rapidly increasing. Neural Networks are used

as a tool for classification and system modeling. Neural networks have been successfully

applied in classification problems such as optical recognition, voice recognition, and

cancer cells early detection. As for applications in system modeling, neural networks

have been successfully applied as an approximation tool where high dimensionality of

approximated function prevents the application of classical approximation methods.

Cook and Shannon (1992) applied both regression analysis and neural networks to

predict the condition of the end product in a wooden composite board manufacturing

process using the manufacturing process parameters as inputs for both techniques.
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Regression models could account for only 25% of the variation of these parameters, in

contrast to 70% using neural networks. Cook and Shannon stated that the sample first

order autocorrelation coefficients of the inputs were high, pointing to the violation of the

uncorrelated regression error assumption. This gave an advantage to neural networks over

regression analysis. Cook and Shannon used the SAS regression procedure (PROCREG)

and the Backpropagation (BPNN) method, as tools for multi-variable regression analysis

and neural network, respectively.

Lee and Kim (1993) proposed a method for scheduling jobs on parallel machines

using neural networks. The proposed method makes use of the function approximation

properties of backpropagation neural networks to estimate the scaling parameters for a

function proposed by Lee and Pinedo (1992). The function calculates a job priority index,

which is used to schedule jobs. Input parameters for the neural network included: due

date tightness factor, due date range factor, setup time severity factor, and "number of

jobs to number of machines" factor.

Philipoom, Rees and Wiegmann (1994) proposed a due date assignment method

using neural networks. The new method out performed conventional regression-based

due date assigrunent rules according to the Mean Absolute Deviation (MAD) from due

date criterion, but results were mixed for the Standard Deviation of Lateness (SLD)

criterion. The conventional rules included Total Work Content (TWK), Number of

Operations (NOP), Total Work Content and Number of Operations (TWK+NOP), Jobs in

Queue (JIQ), Work in Queue (WIQ), and Response Mapping Rule (RMR). PhiJipoom,
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Rees and Wiegmann used SAS in their paper for the regression analysis. Regression

analysis was used for comparison purposes.

II.9 Conclusion

In this research, we consider a new job shop scheduling approach for the

forbidden early shipment environment. The new approach utilizes the CRz rule's

capability of adapting to different manufacturing situations. This research proposes a new

methodology to facilitate the use of CRz rule in different environments by predicting the

z factor based on the system configuration parameters to improve a given perfonnance

measure. Literature suggests that neural networks will outperfonn regression-based

prediction techniques. However, multi-variable regression technique will be applied to

analyze the data set for comparison purposes.

20



III Research Goals and Objectives

III.t Introduction

The modified critical ratio rule CRz has been shown to perform better than other

dispatching rules in most of the cases studied (Abu-Suleiman, 1997). The improvement

realized by the use of CRz rule was up to 5% of the relative cost performance measure.

However, a shortcoming of applying the rule was the estimation of the z factor. The

approach taken by Abu-Suleiman relied on empirical search methods for each case. This

rendered the rule difficult to implement for practical use.

The objective of this research is to find a methodology that will facilitate the use

of the Modified Critical Ratio rule (CRz) in practice. Such a methodology will allow a

structured and scientific approach of finding the best z value according to the current job

shop conditions. The main goal of this research is to estimate the value of the power

factor z as a function of the system configuration parameters, (see Equation 4). The goal

is that the estimated value of the z factor will result in the best job shop schedule using

the modified critical ratio rule CRz based on a given performance measure. In addition,

more insight into the system configuration parameters interactions and effect:s on the job

shop under question will be realized. Knowing the effects of such interactions on the job

shop will help job shop designers focus their improvement efforts where benefits can be

maximized.
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z == f (s.vstem _ configuration _ parameters)

Equation 4

111.2 Tasks

The following tasks are required to accomplish the objective:

- Develop the job shop model.

- Develop, validate, and verify the simulation model.

- Determine using pilot runs the range and the combination of the system

configuration parameters to study (i.e. the experimental design).

- Determine the performance measures.

- Perform simulation on the entire range of parameters.

- Analyze the simulation result and determine the best power factor for each

combination of system parameters using search methods.

- Develop the neural network model, and perform pilot runs to determine the best

neural network configuration for estimating the z factor.

- Train the neural network design of choice for estimating z as a function of system

parameters.

- Develop a multiple regression model for estimating z for comparison

(benchmarking) purposes.

- Verify the z estimation method by comparing estimates to actual values.

- Compare results of neural networks with results of multiple regression.

- Develop conclusions and recommendations.

- Document the research.

- Propose future areas of research.
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IV Research Methodology

IV.! Introduction

This research uses a variety of tools to accomplish the desired objectives. In this

chapter specific details of the proposed methodology are discussed. Research fields that

benefited this research include: simulation, neural networks, and multiple regression.

IV.2 Methodology Overview

This section outlines the proposed methodology. The first step in building the

proposed methodology is to define the job shop model to be studied. The second step is

to build a simulation model of the job shop model. The model will include yst m

configuration parameters as input to the simulation and performance measures as the

outputs from the simulation. The next step is to validate and verify the simulation model.

Next. the defined set of syst~m parameters combinations is passed into the simulation

model to generate the required output performance measures. The generated output is

then analyzed, and a z factor is assigned for each of the job shop cases studied using the

search method described in Abu-Suleiman's thesis.

When the input dataset is finalized, the approximation part of the methodology is

conducted. A neural network is designed, trained, and tested. The next step is to apply the

neural network and obtain estimates of z. Th~ estimations are then compared to values
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obtained usmg search methods. The final step is to develop the multiple regression

model, and compare it to neural networks results, in addition to the search results. The

quality of the estimates will be judged by the percentage of cases justified by the

approximation method, as Cook and Shannon (1992) used in their research.

After companng results, drawing conclusions, and making adjustments, the

methodology will be ready to apply in day-to-day real worJd application of the studied

job shop model. The following sections describe in more detail the different parts of the

proposed methodology.

IV.3 Job Shop Description

The job shop model used in this research was developed to be consistent with

similar models found in the literature, especially Abu-Suleiman's thesis. The model

consists of seven unique machines. Jobs arrive at the job shop in batches of one job per

batch. The inter-arrival time for jobs is exponentially distributed. The mean of the inter

arrival time is set so that a predetermined nominal utilization level is achieved. Each job

is unique, and therefore requires a setup time, which is included in the processing time.

The number of operations required for each job to complete its route is sampled from a

discrete unifonn distribution between 3 and 7 operations. Job routing is random; each

machine is equally likely to be the next machine on a job's routing. A job can visit the

same machine more than once on its route, but no job can have two consecutive

operations performed by the same machine. Processing time is sampled from several

uniform distributions in which means vary between 5 and 20 time units, and interval

widths vary between 10% and 40% of the distribution mean based on the experimental
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design. The processmg time distribution is varied to aJlow the modeling of various

variability levels in the system. All jobs are scheduled using the modified critical ratio

rule CRz. Nominal utilization levels are achieved by setting the mean of the inter-arrival

time for jobs using Equation 5 (Abu-Suleiman, 1997). Equation 5 takes into consideration

the special routing condition stated earlier. The condition prohibits jobs from revisiting

the same machine consecutively, hence the factor 1A. A complete derivation for

Equation 5 can be found in Ahu-SuJeiman's thesis.

A
o

lAp

Jl

Equation 5

..

Where:

~: The order inter-arriva] time

p: Desired nominal system utilization

J.!: Average processing time

Job due date assignment is accomplished using the Total Work Content method

(TWK). The total work content method is common in related literature. This research will

use a wide range of tightness levels in addition to other system parameters to describe the

different job shops. The Total Work Content rule (TWK) is defined as follows:

n

DDi = a i + k Ip;,j
i=!

Equation 6
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Where:

DDj : Due date of job j

aj: Arrival time ofjob j

Pij : Processing time of operation i for job j

k: Allowance factor

n: Number of operations

IV.3.t Assumptions

The following assumption are made throughout this research:

- Each job is an entity; no two operations on the same job may be processed

simultaneously,

- No machine can process more than one job at a time,

- No blocking; in process inventory is allowed,

- No machine breakdowns, preemption, scrap, rework, or job cancellation.

- Time to move between jobs is negligible,

- There is no delay between the receipt of product orders and job releases,

- Due date is set at job release,

- Time Value of Money (TVM) is not considered.

IV.3.2 System Parameters

...

The set of system configuration parameters is one of the key factors for this

research. It is common knowledge that the best approximating method can only perform

as well as the quality of the provided input. Therefore, selecting the correct combination

of system configuration parameters becomes a critical step in this research. The selected

system configuration parameters will be the inputs for the approximation stage in this
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research. The approximation stage includes neural network and multiple regressIOn

analysis. The following is a list ofthe system parameters to be considered:

This research will use a list of benchmarks that will consist of both inventory

based and time-based performance measures. The reason for including both types of

measures is to generalize the proposed methodology as much as possible. The

performance measures used in this research will include the following:

- System utilization (u): system utilization will be used to determine the arrival rate

of jobs into the system, based on Equation 5.

- Due date allowance factor (k): k is the factor used in Equation 6 to determine the

tightness level used for determining the due date assignment.

- Processing time distribution average (Pa): Pa will be used In Equation 5 to

determine the arrival rate of jobs into the system (Il in Equation 5). It will also

describe the flexibility of the system in terms of scheduling jobs; large values of

Pa will result in smaller number of jobs and longer processing times, which will

result in less flexibility in scheduling jobs.

- Processing time distribution width (Pw): Pw will determine the variability of the

system. A large Pw value will result in large differences between processing times

of different jobs, the result will be a highly variable system with larger number of

jobs waiting in queues and longer flow times.

IV.3.3 Performance Measures

..

- Average flow time (FT),

- Average fraction of tardy jobs (j),

- Average system inventory (Sl), and

- Mean absolute deviation from due date (MAD).
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IV.4 The Simulation Model

ARENA will be the simulation tool of choice for this research. ARENA is a

graphical user interface for the popular simulation language, SIMAN. In order to build

the simulation model, the job shop model that will be used in this research needs to be

developed. This was described in the previous section. Simulation will be used to provide

the necessary input for the neural network training process which is a part of the

proposed methodology. Specifically, simulation will generate the system performance

measures associated with a specific set of system configuration parameters. By varying

the value of z for each combination of system parameters, the best corresponding z value

according to a given performance measure will be found with the help of a search

method. Appendix A contains a detailed discussion of the simulation model.

After building the simulation model, validation and verification is performed to

insure accurate representation of the actual job shop model. The val idation process of the

simulation model includes a comparlson with Abu-Suleiman' s results as well as

performing load analysis on the system. As for the companson of result, three

performance measures were included due to their availability In Abu-Suleiman's

research, the measures are: average earliness, average tardiness, and mean absolute

deviation from due date.

After a comprehensive study it was found that some discrepancies exist in trends

when comparing average tardiness and mean absolute deviation of due date with Abu

Suleiman's results. However, ranges of values are comparable in both cases, and a very

close match was noticed when comparing average earliness. The discrepancies can be
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attributed to the fact that Abu-Suleiman used a different method to measure average

tardiness and average earliness. Abu-Suleiman used the total number of jobs finished at

the end of the simulation to calculate averages, where in this research only the total

number of tardy jobs is used to calculate average conditional tardiness (only jobs that are

tardy are included in the average), as well as using total number of early jobs to calculate

average conditional earliness. Due to the unavailability of the simulation code in Abu

Suleiman's research, further investigation in this issue was not an option. Instead

additional verification and load analysis was done to insure a representative simulation

model. The load analysis verified that the simulation model outputs and statistics were

accurate and correct.

The verification process included a full trace of several entities (jobs). The trace

of variables and attributes was checked against hand-calculated results to insure

correctness of the model. The route of each job and the behavior of each station were

observed to insure accurate depiction of the job shop model. Appendix B contains an

example trace record for a tardy job.

There are three important characteristics for a simulation model: the warm-up

period, the run length, and the number of replications. The latter two characteristics

determine the simulation statistics precision. Increasing the number of replications will

increase the statistical sample size, while increasing the run length decreases the

variability of each within-run average. In hoth cases more precision is achieved,

therefore, only the run length was investigated. and number of replications was fixed at

five replications per case.



In this research flow time IS used to detennine the simulation model

characteristics. To detennine the wann-up period, the procedure discussed in Law and

Kelton (1991) was used. Both Abu-Suleiman (1997) and Widjaja (1997) used this

method in their research. Figure 3 shows the moving average of flow time in the most

extreme job shop case:

- Processing time distribution average, Pa = 20 time units

- Processing time distribution interval width, Pw = 8 time units

- Due date allowance factor, K = 3

- Nominal system utilization, U = 90%

The listed parameters insure that the worst case In the range of system

configuration parameters is used for wann-up analysis. The list describes a high

utilization job shop with high variability, and tight due date allowance factor. The Critical

Ratio (CR) scheduling rule was used for both warm-up and run length analyses.

Figure 4 shows an enlarged version of Figure 3 for the first 4000 jobs. The graph

illustrates how the flow time stabilizes after the first 700 jobs (approximately) are

finished. Therefore, the warm-up period was set to the first 900 jobs to include a safety

factor. This corresponds to approximately 15,000 time units.

As for the run length analysis, it was achieved by plotting weighted errors of

average flow time versus the number of jobs simulated. The weighted average was

achieved by dividing the 95% half-width confidence interval over the average flow time

as illustrated in Figure 5. The number of finished jobs detennined the simulation run

length. This approach eliminated the effect of the job processing time on simulation time.
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Simulation Run Length Analysis
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Figure 5 - Weighted error of average now time Vs. run length
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number of cases studied, an error level of 4% will be allowed. This will correspond to

simulating 45,000 johs. The solid line represents the average flow time statistic using the

simulation time. Because the simulation time in this research is critical due to the large

to the large number of cases simulated, any small increase in the individual case

the ranges of each system configuration parameter used in this research. By forming all

simulation time meant a very large increase in the total simulation time. Table 2 shows

possible combinations from the listed values, Table 3 shows the total number of cases



simulated and the time needed for the total simulation to finish. It was found that on an

Intel Pentium III PC, it required more than 10 days to finish the simulation runs. The full

list of cases were broken into 5 groups, and simulated on 5 machines, this procedure

reduced the total simulation time to a little over 2 days.

MIN MAX Step Number of cases

Processing Time Average (Time Units) 5 20 7.5 3

Processing time width (% of Avg.) 10% 40% 15% 3

Due Date Allowance Factor k 3 9 I 7

Nominal System Utilization u 60% 90% 2.5% 13

Power Factor z -I
-

2.5 0.2.'\ 1.'\

Table 2 - Ranges of system configuration parameters used

Total number of unique cases 12285

Number of replications per case 5

Total number of simulations 61425

Total number of unique job shops 819

Simulation time per replication (min) 0.24

Total time required (Days) 10.17

Number of parallel PCs 5

Total time required per PC (Days) 2.03

Table 3 - Total number of cases simulated and simulation time requirements

After obtaining the simulation results, the results were analyzed and the best z

values were selected using an exhaustive search method. The search produced the best
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values of z for each perfonnance measure. A sample of the results can be found III

Appendix E, Table 10.

The next step is the prediction process, in which multiple regression and neural

networks are evaluated.

IV.S Regression Analysis

Multiple rcgrcsslOn analysis was applied usmg SAS software (SAS, 1990).

SAS/STAT is the research standard software in the field of statistical analysis. Multiple

regression analysis using a polynomial of the fourth degree was used to provide a

benchmark for the overall performance of the neural network analysis proposed in this

research. Using a fourth order polynomial to regress four different variables (K, U, Pa,

Pw) provided 69 degrees of freedom. For the regression process, only 40% of the data

was used, and the rest of the data (60%) was left to test the quality of the regre sion

model. This division was used to ensure generalization of the regression model over non

regressed data points. The SAS code and the resulting regression model can be found in

Appl:ndix C.

IV.6 Neural Network

In this research two neural network designs were investigated. After comparing

the performance of both designs, only one neural network design was selected, trained,

tested, and applied to the simulation results. The next step was to verify the estimating

methodology by comparing predicted z values to actual z values for all system parameter

combinations on the four performance measures studied.
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Neural networks were used to model the behavior of z as a function of system

parameters. Specifically, Radial-Basis Neural Networks (RBNN) and Backpropagation

Neural Networks (BPNN) were used to approximat~ the function f (see Equation 4).

Neural networks have several advantages over other function approximation methods.

One advantage is the superiority of neural networks when dealing with higher dimension

problems, like the one studied in this research. When several system parameters are

included, many approximation methods work poorly or not at all for such problems.

RBNNs are known to perfonn better than other neural networks and numerical methods

when used in approximating functions because they are immune to the curse of

dimensionality; the rate of convergence is independent of the input dimensionality

(Haykin, p. 291-292). Still, RBNN are difficult to generalize over the entire input range;

RBNNs tend to "over-fit" the approximated function resulting in an almost perfect

approximation over the training range, but with poor generalization over the testing

range. On the other hand, BPNNs are a more flexible design. Using the generalization

techniques described in the "Neural Networks Toolbox for use with Mat Lab" reference

results in a good generalization over the entire data set. The disadvantage to using the

BPNN design was that training the network took more time than RBNN. Furthermore,

there are more design parameters to be considered. than RBNN.

MatLab is the tool for applying neural network analysis. MatLab is a high

perfonnance language for technical computing. It also includes many Toolboxes, which

eliminate most of the overhead tied to programming. MatLab also includ.es a very

flexible neural network toolbox that will facil itate the use of neural networks in this

research. Appendix D includes MatLab code, results, and a technique discussion.
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Because BPNN proved to outperfonn RBNN in the pilot runs, code and

discussion of code is limited to BPNN. A comparison between RBNN and BPNN results

is presented in Chapter V.
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V Results

In this chapter results of the regression and neural network approximation

methods are presented and discussed.

V.I Multiple Polynomial Regression Approximation

The regression model used in this research included a polynomial function of the

fourth order with four independent variables (U, K, Pa, Pw). This model insures that full

interaction between the four different system parameters is taken into consideration.

Table 4 shows a summary of the results of the regression analysis.

The simulation data was divided into two sets: a training set and a testing set,

which consisted of 40% and 60% of the entire data, respectively. This division allows the

measurement of generalization of the regression model; that is how well the model

predicts z values over non-regressed data points. It is obvious that the regression model is

not adequate for either SI or FT based on the I.ow values for r2
, Furthermore, ~ values for

MAD and f are not acceptable for practical use; the model explained only 65.0% and

53.7% of the predictions for MAD and,f, respectively.
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1"" for training set (40%) 1"" for testing set (60%)

MAD from Due Date (MAD) 0.779 0.650

System Inventory (Sf) 0.316 0.136

Flow Time (F7) 0.388 0.045

Fraction of Tardy Jobs (f) 0.733 0.537

Table 4 - Multiple polynomial regression analysis results

V.2 Neural Networks Approximation

Two neural network designs were used in this research, RBNN and BPNN. For

the RBNN design, there are two parameters that determined the architecture: the spread

of neurons and the maximum number of neurons allowed. The spread parameter

determines the bias radius of the radial basis function, this allows the adjustment of the

function sensitivity to inputs. A higher spread value means that the radial basis function

will respond to a larger range of inputs. The maximum number of neurons parameter

determines the size of the network. A large network will perform better on the training set

but might generalize poorly on the testing set, and a trade-off is necessary to obtain a

well-generalized solution.

Although there are general guidelines for designing neural networks, there are no

specific rules of thumb for neural networks design. Neural network design is an iteratiw

process of trial and error, in which experience plays an important rule. Table 5 shows the

results of applying RBNN for the prediction of z values for different performance

measures.
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r for training set r~ for testing set Max

(40%) (60%)
Spread

Neurons

MAD from Due Date (MAD) 0.796 0.759 10 30

System Inventory (Sf) 0.269 0.197 1.1 16

Flow Time (F7) 0.286 0.140 6 19

Fraction of Tardy Jobs (j) 0.636 0.640 25 2

Table 5 - RBNN results and architecture parameters

It is obvious that RBNN outperformed regression prediction by comparing the ~

values in Table 4 and Table 5. This is especially true in the case of MAD and! As for SI

andfthere was a slight improvement, but still not enough to justify the use of RBNN.

The next step was to apply the BPNN design. BPNNs usually have more

flexibility than RBNNs, but at the added cost of more architecture parameters to be

determined. BPNNs can be designed with different numbers of hidden layers, in which

the number of neurons can also vary. There are several algorithms available to train

BPNNs. Finally, BPNNs can be designed with different transfer functions for each

hidden layer, which adds more flexibility to the neural network architecture. Refer to

Appendix D for more information about the BPNN design and architectures used in this

research.

All the BPNN architectures used in this research consisted of two hidden layers,

in which the "tansig" transfer function was used. As for the output layer a "purelin"

transfer function was used (Math Works, 2000). Table 6 shows the BPNN results and

hidden layers architecture parameter.
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BPNNs proved to outperfonn both the RBNNs and multiple regression methods.

BPNNs could predict MAD with a high accuracy of 86.5%. As for FT and f BPNN

predicted z values with a conservative accuracy. Still BPNNs predicted FT with an

accuracy of 52.6% in contrast with 14.0% using RBNNs. In the case of Sf, the accuracy

was too Low to be accepted, although it was higher than regression and RBNN.

r for entire data Hidden layers architecture

MAD from Due Date (MAD) 0.865 4-3-1

System Inventory (Sf) 0.208 3-3-1

Flow Time (FT) 0.526 6-3-1

Fraction of Tardy Jobs (f) 0.655 3-2-1

Table 6 - BPNN results and hidden layers architecture parameter

Further analysis of the results was only conducted on BPNN results because of its

superior perfonnance over regression and RBNN methods. BPNN results were

investigated to discover the sensitivity of each perfonnance measure to prediction error in

z estimations. Performance measures were obtained by linear interpolation performed on

simulation data. The interpolated performance measures corresponding to the predicted z

values were then compared to actual performance measures, which corresponded to the

best z values. The comparison process was done by calculating and normalizing absolute

errors in z values and performance measures. The normalization was done to provide an

unbiased picture of the error in estimates. Table 7 shows the error statistics for predicting
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z values. Table 7 shows that BPNN predicted z value for f with small error average and

small standard deviation. As for predicting z values for MAD, the error average and

standard deviation came second to those off Error in predicting z values from Ff and SI

followed. Minimum and maximum errors provide a worse caselbest case measure for the

prediction methodology. The normalized error in z prediction was defined as the absolute

difference between the best z value and the predicted value, divided by the studied z

range, which was equal to 3.5 in this research.

Statistics of absolute normalized error

in prediction of z values

MAD I SI
I

FT I f
Minimum error 0.0% 0.0% 0.0% 0.0%

Maximum error 32.5% 80.6% 71.4% 25.2%

Average error 8.0% 12.3% 9.4% 5.0%

Standard deviation of error 6.7% 10.5% 8.0% 4.1%

Table 7 - Error statistics for predicting z values

It was found that having a low error in predicting z values does not neces arily

guarantee low error in achieved performance measures. This is due to the fact that

different performance measures have different sensitivity levels to errors in z value

predictions. This fact required further investigation of errors found in performance

measures corresponding to predicted z values. Table 8 shows the error statistics in

performance measures due to errors in predicting z values. Although predicted z values
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for MAD came second to those for jjudging by the error statistics, the corresponding

error in MAD was significantly lower. This is due to the relatively low sensitivity of MAD

to errors in predicted z values, and the relatively high sensitivity ofjto errors in predicted

z values. Table 8 also shows that errors in predicting z values have a cascading effect on

both Sf and FT. In the case of f, it was found that most of the predictions had low

normalized absolute error, still there were few cases with large normalized absolute error,

hence the low average with high standard deviation and maximum statistics.

Statistics of absolute nonnalized error in perfonnance

measures due to error in prediction of z values

MAD I
SI

I
FT I f

Minimum error 0.0% 0.1% 0.1% 0.0%

Maximum error 7.4% 99.8% 99.9% 54.8%

Average error 0.4% 51.3% 48.3% 3.7%

Standard deviation of error 0.7% 27.9% 33.4% 8.3%

Table 8 - Error statistics in performance measures due to error in predicting z values

The next step in results analysis was to determine the feasibility of applying the

neural network approximation method. In other words, what is the performance

improvement realized by applying CRz coupled with the neural network z approximation

method?

In order to answer this question, a comparison based on the same job shop model

hut ""ith different sequencing rules was carried out. CRz results were compared to CR and
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SPT results using the same parameters and the same simulation model. This comparison

was restricted to extreme cases; only the maximum and the minimum of each system

configuration parameter were considered. There are 16 different combinations resulting

from the described parameters list.

Appendix E contains a full listing of the parameters of the compared cases and the

corresponding performance measures using the CRz, CR, and SPT sequencing rules. In

addition, Appendix E contains a comparison between CRz, CR and SPT. Table 9

Table 9 - Comparison results between CRz, CR, and SPT sequencing rules

summarizes the results of this comparison.

Statistics of Normalized difference

in performance measures due to

change of sequencing rule to CR.

(Per-Perl)/Pcrl

MAD I SI I FT
I

f
Minimum error I 0.2% 0.2% 0.1% 0.0%

Maximum error 33.6% 16.1% 15.8% 9.7%

Average error 10.8% 6.8% 6.6% 3.80.'0

Standard deviation of error 11.6% 6.2% 6.2% 3.6%

Statistics ofNorrnalized difference in

performance measures due to change

of sequencing rule to SPT.

(Pspt-Pcrz)/Pcrz

MAD I SI
I

FT I f
1.5% 0.2% 0.1% -17.4%

24.2% 7.5% 7.3% 2.8%

8.3% 2.4% 2.2% -3.4%

7.5% 2.4% 2.4% 8.1%

It is obvious from Table 9 that CRz performance was superior to both CR and SPT

in all performance measures studied except f SPT performed slightly better than CRz in

this case. This can be attributed to the fact that extremely high system utilization
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produced relatively large va]ues of f, which have a biased effect on the average and

standard deviation due to their large magnitude although they are only a few cases.

Finally, best case/worse case analysis was conducted. This analysis approach

attempts to give a general overview of the previously presented results. Best case/worst

case values correspond to minimum and maximum values found in the previously

mentioned 16 cases. Error range was calculated using 3 standard deviation intervals; this

results in a range that includes 99.7% of the data based on a normal distribution. Figure 6

through Figure 9 illustrate these results by fixing performance measures obtained using

CR or SPT sequencing rules at 100%, and then adding improvement introduced by the

use of the CRz rule, then adding 3-sigma error intervals.

44

•



116.1%1oo.2"A,

r96eno: 1 f1glIeno; 2

Pef1CJr1M1lCl1l1ll1l1SU'e: MAD Performence~..e: Sf

Siglne • 3 svna· 3
ErrorAverege- 0.44% Error Average- 51.27%

E{for SleI- 0.75% Error SlCI- 27.87%
Imprgvemert Average • 10.85% Irrfltoveoneri "verage • 6.82%

ImprllYWllel'f m •. 0.18% ImprovemiIri m - 0.20%

Mq'ovemert IIl!Il( - 3360% ImprllYWllel'f IllIX • 16.06%

Figure 6 - Best case/worse case analysis for CRz improvement over CR, using MAD and SJ



Flgu'e no: 3 F1gI.re no; 4
Pef10l'111l1f'lCe measure: FT Per10nnence measure: f

SIgma- 3 svns- 3
ElTorAveroge. 48.34% ErrcrAverage. 3.69%

Error SId. 33.36% Error SId. 8.27%
inprovemert Average • 6.65% ~ovemert Average • 3.83%

~ovemertm- 0.10% ftlIlrovemeRm- 0.04%
~npOVlli'lllI t max - 15.78% ~OvemenllMX • 9.74%

100.O"A>

Figure 7 - Best case/worse case analysis for CRz improvement over CR, using FT and!

109.7%



107.5%100.2%

FWel1O: 5 Fv.reno: 6
ParfOfl!lWtCll m8a1Ke: MAD Parformance meesure: Sf

Slgmo. 3 SigmlI. 3
Error AvenQ!l • 0.44% Errew Aver.· 51.27%

Error SId. 0.75% Error SId. 27.87%
imj:)rD'ielneri Averege • 8,34% ~\'ellllriAv••• 2.35%

ft1lrovemert m • 1.53% lrrcltovemertm· 0.20%

~ovemertlll\lX· 2421% ft1lr1Mlllllllt max • 7.51%

Figure 8 - Best case/worse case analysis for CRz improvement over SPT, using MAD and Sf



102.8"1082.6%

~lIno; 7 ~lIno: 8

Performroce mell$ure: PT Per1orlllllllC1I -.rll: f
SIgmlI- 3 S9lllI- 3

ErrorAVllf8!ll!l- 48.34% Error AvrJltel,lJ!J- 3.69%

Error std- 33.36% Error std- 8.27%

I'nprovemeri AVllf8!ll!l - 2.21 % ~vemeri Aver.- -3.38%

~ovemert mil - 010% Irnpl'ovlllllllri"*, - -17.44%

~max· 7.28% Improvemert rMX • 276%

Figure 9 - Best case/worse case analysis for CRz improvement over SPT, using FTandf

.
I



-
It is obvious that using neural network approximation to determine z values for

mean absolute deviation from due date (MAD) proved to be successful. Considering the

two extreme cases. the performance of CRz would be in between 98% and 136% of CR,

and between 99% and 127% of SPT. As for fraction of tardy jobs (f) only limited success

was achieved. Considering the two extreme cases, the performance of CRz would be

between 72% and 138% of CR, and between 54% and 131 % of SPT.

As for system inventory (Sf) and flow time (F1) the methodology did not predict

the best z values successfully. Further investigation and research might uncover more

information into the reasons for this result. Other neural networks designs or architectures

might show improvement over the current results.
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VI Conclusion

This chapter discusses the conclusions, findings, and insights of this research.

Research contribution and future directions are also presented in this chapter.

VI.I Research Findings and Insights

A significant finding of this research was the fact that selecting a sequencing rule

in a particular job shop is directly influenced by the system configuration parameters that

describe the studied job shop. Therefore, this research deployed this finding in predicting

the best power factor (z) as a function of system configuration parameters. This finding

complements earlier research findings which suggest that the selection of sequencing

rules is affected by the performance measure used in the job shop studied. The indicated

relationship between sequencing rules and system parameters suggests that differ nt

interaction levels do exist between sequencing rules and system parameters. Given the

previous findings, job shop designers and researchers can now focus their improvement

efforts where benefits can be maximized.

It should be noted that the methodology performance for predicting the best

power factors when using!was quite acceptable except in the few cases where extremely

high system utilization and tight due date allowance factor forced CRz to fall behind SPT,

hence the relatively low performance in the worst case scenarios. Still, when the
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methodology was deployed using MAD, it exceed both CR and SPT in all cases, which

indicates that it should perfonn just as well (possibly better) under nonnal circumstances.

Another important finding was the fact that different perfonnance measures have

different sensitivity levels to errors in predicting z. This finding suggests that

perfonnance measures have different response sensitivity levels to system configuration

parameters changes, which in tum means that perfonnance measures have different

dependency levels to specific job shop characteristics.

The above finding might be the reason behind the poor perfonnance in the cases

of Sf and FT. It is quite possible that the sensitivity level in both cases was much lower

than the error level in the proposed methodology; errors are inherently associated with

approximation methods as well as in simulation based methods. Therefore, the interaction

between perfonnance measures and system parameters still exists, but may not be

obvious due to the relatively high approximation error noise. Further investigation into

this phenomenon may generate more insight into the problem.

As for the technical part of this research, a comparison between two neural

network designs and a multiple regression model showed that regression does not hold

much potential in such complicated research areas. The research also reinforced a well

known shortcoming to Radial Basis Neural Networks (RBNN) approximation method,

which is its poor generalization over non-training cases.

Finally, the current research introduced a new robust methodology that allows the

accommodation of certain types of disruption to the job shop system studied. For

example, if the production plan required a system utilization increase, or the marketing
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department required tighter due dates, the new methodology accommodates the change

by adjusting z to a new value that provides the best performance level in light of the new

changes. In contrast, traditional sequencing rules and methodologies required the

initiation of an analytical process that will determine the best sequencing rule, this is

often an iterative and lengthy process which might affect the system robustness to

external changes.

It should be noted that certain types of disruptions to the job shop system studied

would require the methodology to be re-run to determine a new value for z. An example

of such disruptions is the violation of the job shop definition (i.e. adding a machine or

changing the route).

VI.2 Contribution

This research follows a different paradigm to solve an old problem, job shop

scheduling. The new paradigm escapes the traditional method of selecting Lhe best

sequencing rule for a particular job shop by using a single sequencing rule that possesses

the capability of adjusting to particular system conditions by the means of a factor. This

research focuses on the determination of this factor using approximation methods.

Basically, this research introduced a methodology to facilitate the application of

the Modified Critical Ratio Rule (CRz). As a result, the best job shop performance could

be achieved using a z factor determined by the system configuration parameters. This

allows the system to dynamically accommodate external disruptions, simply by adjusting

the z factor. Furthermore, the methodology can be used as a tool for exploring
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interaction, response sensitivity, and dependency levels between system parameters and

performance measures. The exploration of such characteristics would lead to a deeper

understanding of manufacturing science.

VI.3 Future Directions

This research combined different fields of knowledge for the sake of providing

the proposed methodology. Because of that, there are multiple connected yet different

ways to further advance this research in the future. Future directions in this research

could be divided into two groups: further generalization of the methodology, and further

investigation into the methodology. The following arc some of the proposed future

directions to further generalize the methodology.

1. This research considered only a limited set of system configuration

parameters, and performance measures. Future research may investi.gate a

more comprehensive list of system configuration parameters that might

include job shop characteristics (i.e. number of machines, job routing) and

workcenter-specific characteristics (i.e. number of jobs currently in queue,

scrap). Other performance measures could also be included in future

research to further generalize the proposed methodology. One aspect that

could extend the methodology is to include job shop model specifications

in the list of system configuration parameters in order to include a wider

base for applying the proposed methodology.
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2. Because of simulation execution time restrictions, this research limited the

power factor (z) to a relatively limited range, which might exclude feasible

solutions from the methodology. Future research should not exclude such

solutions, if possible.

3. Neural networks could include multiple outputs in one design; this feature

could be used to advance the proposed methodology so that more

integrated models analysis is available. This design considers the effect of

inputs on several outputs in the same model. Future research may include

further modifications to the CRz rule, or to even to apply the proposed

methodology to new parameterized sequencing rules.

The following are some of the proposed future directions to further investigation

in the methodology:

]. One possible use of the proposed methodology is to explore the effect of

system configuration parameters on interaction, sensitivity, and

d~pendency levels for different performance measures.

2. High error levels in predicting SI and FT may be the reason of poor

performance of the methodology with regard to those two performance

measures. It is quite possible that the response sensitivity level in both

cases was much lower than the error level in the proposed methodology.

Therefore, the interaction between performance measures and system

parameters still exists, but are not obvious due to relatively high
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approximation error nOise. Further investigation into this matter may

provide more insight into the problem.
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Appendix A - Simulation Model Description

The simulation model used in this research was built using Arena software. While

Arena is only a graphical representation of the actual SIMAN code, this Appendix will

include both of the graphical model and the SIMAN code behind the model. In addition,

a discussion of the model is presented.

The simulation model is divided into two groups of blocks: main control blocks

(Figure 10), and job shop model blocks (Figure 11). The main control blocks are

responsible for the major simulation events such as collecting statistics, reading inputs,

writing outputs, defining variables, defining expressions, and starting and terminating

replications.

The job shop model blocks are responsible for representing the actual job shop

model. Entities (jobs) arrive at the ARRlVE block with a pre-determined arrival rate.

Attributes are assigned to entities in the two !\SSING blocks, the CRz value will be

assigned in the second ASSIGN block for later use. System variables are also updated in

these blocks. Next, entities are randomly routed to one of the SERVER blocks using the

CHOOSE block, in each SERVER block entities are delayed for the assigned processing

time. When the delay is over, entities go through an ASSING block to update system

variables and entity attributes. Next, a CHOOSE block determines weather the entity has

finished the required number of processes, if not, a new machine is randomly assigned as

the next machine, taking into consideration the restrictions defined in the actual job shop

model. If the entity has finished all required processes, it is Touted to a statistics

collecting stage. The statistics collecting stage starts with a CHOOSE block to determine
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if the entity is early or tardy, in either case earliness or tardiness in addition to absolute

deviation from due date are recorded. In the case of being early, the entity waits until it's

due date using a DELAY block. Finally, flow time statistics are recorded and the number

of finished jobs, fraction of tardy jobs, and system inventory variables are updated using

the TALLY, COUNT, and ASSIGN blocks. Entities are disposed of using the DEPART

block.

It's important to note that entities are prioritized in the server block queue

according to their assigned CRz values; lower values have higher priority. Calculating

CRz values uses some of the predefined expressions found in the main control blocks.

The CRz value of an entity is recalculated each time the entity loops back to the next

machine.

In the following pages pictures of the graphical models are represented. In

addition, the contents of the expression file and the SIMAN code are presented in this

Appendix.
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The following is the experiment file:

PROJECT,

ATTRIBUTES:

rILES:

VARIABLES:

QUEUES:

PICTURES:

RESOURCES:

STATIONS:

COUNTERS:

TALLIES:

Job Shop Model,Sinan Salman,03/30/200l,No;

Job Number:
Previous Machine:
number of operations completed:
Processing Time:
Critical Ratio Rule z value:
Due Date:
Arrival Time:
QueueTime:
Machine Number:
Total Number of Operations;

output file,"output.txt", (),Free format:
input file,"input.txt", (),Free Format,Dispose;

Power Factor z:
System Inventory:
Number of Tardy Jobs:
Processing time Average:
Fraction of Tardy Jobs:
Processing time width:
Due Date Allowance Factor:
Nominal Utilization:
Exp number:
EXP Start,O;

Machine 4_R_Q,LVF(Critical Ratio Rule z value):
Machine 5_R_Q,LVF(Critical Ratio Rule z value):
Machine 6_R_Q,LVF(Critical Ratio Rule z value):
Machine 7 R O,LVF(Critical Ratio Rule z value):
Machine l-R-O,LVF(Critical Ratio Rule z value):
Machine 2-R-Q,LVF(Cri ical Ratio Rule z value):
Machine 3-R- ,LVF(Critical Ratio R le z value);

Default;

Machine 3 R,Capac1ty(l,),-,Stat1onary:
Machine 4_R,Capacity(1,),-,Stationary:
Machine 5 R,Capac1ty(1, ),-,Stat10nary:
Machine 6 R,Capacity(l, ),-,Stat1onary:
Machine 7_R,Capacity(1,),-,Stationary:
Machine l_R,Capacity(l,),-,Stationary:
Machine 2 R,Capaclty(1,),-,Stat1onary;

Machine 3:
Machine 4:
Machine 5:
Machine 6:
Machine 7:
Depart:
Arrive:
Machine 1:
Machine 2;

Finished Jobs, ,Replicate:
Number of Jobs"Replicate;

Machine 4 R Q Queue Time:
Tardiness7 -
MAD from Due Date:
Machine 5_R_Q Queue Time:
Machine l_R_O ueue Time:
Machine 6_R_Q Queue Time:
Machine 2 R ueue Time:
Flow Time:
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DSTATS:

REPLICATE,

Machine 7_R_Q Queue Time:
Earliness:
Machine 3_R_Q Queue Time;

MR(Machine 2_R) ,Machine 2 R Available:
System Inventory,System Inventory output:
MR(Machine l_R) ,Machine l_R Available:
NQ(Machine 7_R_Q),# in Machine 7_R_Q:
NQ(Machine 6_R_Q),# in Machine 6_R_Q:
NQ(Machine 5_R_Q),# in Machine 5_R_Q:
NQ(Machine 4 R Q),# in Machine 4 R Q:
NR(Machine 7=R),Machine 7_R BUsy~ 
NQ(Machine 3_R_Q),# in Machine 3_R_Q:
NR(Machine 6_R) ,Machine 6_R Busy:
NQ(Machine 2_R_Q),# in Machine 2_R_Q:
NR(Machine 5 R),Machine 5_R Busy:
NR(Machine 4 R),Machine 4 R Busy:
NQ(Machine l=R_Q),# in Machine l_R_Q:
NR(Machine 3_R),Machine 3_R Busy:
traction of Tardy Jobs,Fraction of Tardy Jobs output:
NR(Machine 2_R),Machine 2_R Busy:
NR(Machine l_R),Machine l_R Busy:
MR(Machine 7_Rl,Machine 7_R Available:
MR(Machine 6_R) ,Machine 6_R Available:
MR(Machine 5_R),Machine 5_R Available:
MR(Machine 4_R) ,Machine 4_R Available:
MR(Machine 3_R) ,Machine 3 R Available;

61425,O.O"Yes,Yes,l5000,NC(tinished jobs)~~45000;

EXPRESSIONS: Job Processing Time Distribution,
UNIt(Processing time average-(Processing time width/2) ,Processing time

average+(Processing time width/2),l):
Next Machine Distribution,AINT(UNIF(l,8,3»):
Total Number of Operations Distribution,AINT(UNIF(3,8,2)):
Mean Interarrival Time,l/(l.4 • Nominal Utilization / Processing time

average) :
Critical Ratio Rule z,
(Due Date - TNOW) / (Processing time average' number of remainin

Processes)··Power Factor z:
number of remaining Processes,Total Number of Operations - Number of

Operations Completed;
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The following is the SIMAN code generated by Arena:

Model statements for module: Arrive 1

Distribution:
Due Date=TNOW + (Due Date Allowance "actor' To al NQmber of

Operations • Processing Time Averagel
: NEXT (17$) ;

Model statements for module: Assign 11

1, .0002:EXPO(Mean Interarrival Time,4) : MARK (Arrival Time);

Arrive;
-1, "-Arrived to system at station Arrive\n":;
Picture=Default;
O. ;
Number of Jobs,l;
-1,"-Transferred to next module\n"::NEXT(O$);

-1,"-Making assignments\n":;
System Inventory=System Inventory+l:
Job Number=NC(Number of Jobs) :
Machine Number=Next Machine Distribution:
Total Number of Operations=Total NQrnber of Operations

-1,"-Making ssignments\n":;
Critical Ratio Rule z value=Critical Ratio Rule z:
Processing Time=Job Processing Time Distribution:NEXT(I$);

TRACE,
ASSIGN:

TRACE,
ASSIGN:

Model statements for module: Assign 1

77$ CREATE,

38$ STATION,
86$ TRACE,
41$ ASSIGN:
62$ DELAY:
101$ COUNT:
90$ TRACE,

0$
117S

17$
118S

..
)

Model statements for module: Choose 2

1$
119$

TRACE,
BRANCH,

-1,"-Choosing from 7 options\n":;
1 :
If,Machine Number==1,2$,Yes:
If,Machine Number==2,4S,Yes:
If,Machine Number==3,6$,Yes:
If,Machine Number==4,8S,Yes:
If,Machine Number==5,11$,Yes:
If,Machine Number==6,13$,Yes:
If,Machine Number==7,15$,Yes;

Model statements for module: Server 1

2$
196$
159$
203$
120$
121$

STATION,
TRACE,
DELAY:
TRACE,
QUEUE,
SEIZE,

Machine 1;
-1,"-Arrived to station Machine l\n":;
O. ;
-1,"-Waiting for resource Machine I_R\n":;
Machine I_R_Q:MARK(QueueTime);
1:
Machine 1 R, 1;
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230$ BRANCH,

231$ MOVE:
133$ TALLY:
240$ DELAY:

TRACE,
122$ DELAY:
204$ TRACE,
123$ RELEASE:
187$ DELAY:
210$ TRACE,

1:
If,RTYP(Machine l_R) .eq.2,23l$,Yes:
If,RTYP(Machine 1_R).eq.1,133$,Yes;
Machine l_R,Machine 1;
Machine l_R_Q Queue Time, INT(QueueTime) ,1;
0.0;
-l/"-Delay for processing time Processing Time\n":;
Processing Time;
-l,"-Re1easing resource\n":;
Machine l_R,l;
O. ;
-1, "-Transferred to next module \n" : : NEXT (l0$) ;

Model statements for module: Assign 6

10$
241$
Completed+1:

TRACE,
ASSIGN:

-l,"-Making assignrnents\n":;
number of operations completed=Nurnber of Operations

Previous Machine=Machine Number:NEXT(30$);

Model statements for module: Choose 10

30$ TRACE, -1, " -Choosing from 2 options \n" : ;
242$ BRANCH, 1 :

If,number of remaining Processes>0,32$,Yes:
Else,29$,Yes;

Model statements for module: Assign 14

32$ TRACE, -I, "-Making assignments\n":;
243$ ASSIGN: Machine Number=Next Machine Distribution:NEXT(31$);

Model statements for module: Choose 9

31$ -1, " -Choosing from 2 options\l.": ;
.

TRACE, ••244$ BRANCH, 1 :
If,Machine Number==Previous Machine,32$,Yes:
Else,17$,Yes;

Model statements for module: Choose 6

29$ TRACE, -1, " -Choosing from 2 options\n": ;
245$ BRANCH, 1 :

If,Due Date>Tnow,27$,Yes:
E1se,28$,Yes;

t~odel statements for module: Tally 3

27$ TRACE, -l,"-Updating Tally Earliness \n": ;
246$ TALLY: Earliness, Due Date- TNOW,1:NEXT(34$);

Model statements for module: Tally 5
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34$
248$

TRACE,
TALLY:

-l,"-Updating Tally MAD from Due Date \n":;
MAD from Due Date,Due Date- TNOW,1:NEXT(33$);

Model statements for module: Delay 1

33$
250$

TRACE,
DELAY:

-l,"-Delaying for time Due Date- TNOW\n":;
Due Date- TNOW: EXT(25$);

Model statements for module: Tally 2

25$
251$

TRACE,
TALLY:

-l/"-Updating Tally flow Time \n":;
flow Time, Interval (Arrival Time),1:NEXT(19$);

Model statements for module: Count 2

Model statements for module: Assign 12

Model s atements for module: Assign 1

-1, "-Updating counter Finished Jobs \n":;
Finished Jobs,1:NEXT(37$);

-1, "-Making assignments\n":;
Frac ion of Tardy Jobs;Number of tar y jobs!NC(Finished

-l,"-Making assignments\n":;
System Inventory=System Inventory-l:NEXT(24$);

TRACE,
COUNT:

TRACE,
ASSIGN:

24$
254$

19$
253$

37$ TRACE,
256$ ASSIGN:
Jobs) :NEXT(18$);

Model statements for module: Depart 1

18$
287$
257$
294$
286$

STATION,
TRACE,
DELAY:
TRACE,
DISPOSE;

Depart;
-l,"-Arrived to station Depart\n":;
O. ;
-l,"-Disposing entity\n":;

Model statements for module: Tally 4

28$
296$

TRACE,
TALLY:

-l,"-Updating Tally Tardiness \n":;
Tardiness,TNOW - Due Date,1:NEXT(35S);

Model statements for module: Tally 6
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35$
298$

TRACE,
TALLY:

-l,"-Updating Tally MAD from Due Date \n":;
MAD from Due Date,TNOW - Due Date,l:NEXT(36$);

Model statements for module: Assign 16

36$
300$

TRACE,
ASSIGN:

-l,"-Making assignments\n":;
Number of Tardy Jobs=Number of Tardy Jobs+l:NEXT(2S$);

Model statements for module: Server 2

Model statements for module: Server 3

4$ STATION,
377$ TRACE,
340$ DELAY:
384$ TRACE,
301$ QUEUE,
302$ SEIZE,

411$ BRANCH,

412$ MOVE:
314$ TALLY:
421$ DELAY:

TRACE,
303$ DELAY:
385$ TRACE,
304$ RELEASE:
368$ DELAY:
391$ TRACE,

6$ STATION,
498$ TRACE,
461$ DELAY:
505$ TRACE,
422$ UEUE,
423$ SEl ZE,

532$ BRANCH,

533$ MOVE:
435$ TALLY:
S42S DELAY:

TRACE,
424$ DELAY:
S06S TRACE,
42SS RELEASE:
489$ DELAY:
512$ TRACE,

Machine 2;
-1, "-Arrived to station Machine 2\n":;
0.;
-1, "-Waiting for resource Machine 2 R n'" .
Machine 2_R_Q:MARK(QueueTime);
1 :
Machine 2_R, 1;

1 :
If,RTYP(Machine 2 R) .eq.2,412$,Yes:
If,RTYP(Machine 2 R) .eq.l,314$,Yes;
Machine 2_R,Machine 2;
Machine 2_R_Q Queue Time,lNT(QueueTime),l;
0.0;
-l,"-Delay for processing time Processing Time\n":;
Processing Time;
-l,"-Releasing resource\n":;
Machine 2_R,l;
O. ;
-l,"-Transferred to next module n"::NEXT(lO$);

Machine 3;
-l,"-Arrived to station Machine 3\n":;
O. ;
-l,"-Wai ing for resource Machine 3 R\n":
Machine 3_R_Q:MARK(QueueTirne);
1 :
Machine 3_R, 1;
1:
If,RTYP(Machine 3 R) .eq.2,S33S,Yes:
If,RTYP(Machine 3 R) .eq.l,435$,Yes;
Machine 3_R,Machine 3;
Machine 3 R_Q Queue Time,INT(QueueTime) ,1;
0.0;
-1, "-Delay for processing time processing time\n":;
processing time;
-l,"-Releasing resource\n":;
Machine 3_R,l;
O. ;
-1, "-Transferred to next module\n": :NEXT (lOS);

Model statements for module: Server 4

8S STATION, Machine 4;
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619$ TRACE,
582$ DELAY:
626$ TRACE,
543$ QUEUE,
544$ SEIZE,

653$ BRANCH,

654$ MOVE:
556$ TALLY:
663$ DELAY:

TRACE,
545$ DELAY:
627$ TRACE,
546$ RELEASE:
610$ DELAY:
633$ TRACE,

-l,"-Arrived to station Machine 4\n":;
O. ;
-l,"-Waiting for resource Machine 4_R\n":;
Machine 4_R_Q:MARK{QueueTime);
1 :
Machine 4 R, 1;
1 :
If,RTYP{Machine 4_R).eq.2,654$,Yes:
If,RTYP(Machine 4 R) .eq.1,556S,Yes;
Machine 4_R,Machine 4;
Machine 4 R_Q Queue Time,INT{QueueTimel,l;
0.0;
-1,"-De1ay for processing time Processing Time\n":;
Processing Time;
-l,"-Releasing resource\n":;
Machine 4_R,l;
O. ;
-l,"-Transferred to next module\n"::NEXT(10S);

Model statements for module: Server 5

11$ STATION,
740$ TRACE,
703$ DELAY:
747$ TRACE,
664$ QUEUE,
665$ SEIZE,

774$ BRANCH,

775$ MOVE:
677$ TALLY:
784$ DELAY:

TRACE,
666$ DELAY:
748$ TRACE,
667$ RELEASE:
731$ DELAY:
754$ TRACE,

Machine 5;
-1,"-Arrived to station Machine 5\n":;
O. ;
-l,"-waiting for resource Machine 5_R\n":;
Machine 5_R_Q:MARKIQueueTime);
1 :
Machine 5_R,1;

If,RTYP(Machine 5 R) .eq.2,775$,Yes:
If,RTYP(Machine 5=R).eq.1,67 7 S,Yes;
Machine 5 R,Machine 5;
Machine 5=R_Q Queue Time,INT{QueueTime),l;
0.0;
-1,"-De1ay for processing time Processing Time\n":;
Processing Time;
-l,"-Releasing r sourc \n":;
Machine 5_R,1;
O. ;
-l,"-Transferr d 0 nex module\n"::NEXT(lO$);

Model statements for module: Server 6

13$ STATION,
861$ TRACE,
824$ DELAY:
868$ TRACE,
785$ QUEUE,
786$ SEIZE,

895$ BRANCH,

896$ MOVE:
798$ TALLY:
905S DELAY:

TRACE,
787$ DELAY:
869$ TRACE,
788$ RELEASE:
852$ DELAY:
875S TRACE,

Machine 6;
-l,"-Arrived to station Machine 6\n":;
O. ;
-l,"-Waiting for resource Machine 6_R\n":;
Machine 6_R_Q:MARK(QueueTime);
1:
Machine 6_R,1;
l:
If,RTYP(Machine 6_R).eq.2,896$,Yes:
If,RTYP(Machine 6 R) .eq.1,798$,Yes;
Machine 6 R,Machine 6;
Machine 6=R_Q Queue Time,INTIQueueTime) ,1;
0.0;
-1,"-De1ay for processing time Processing Time\n":;
processing Time;
-1, "-Releasing resource\n":;
Machine 6_R,l;
O. ;
-1, "-Transferred to next module\n": :NEXT(10$);
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Model statements for module: Server 7

15$ STATION.
982$ TRACE,
945$ DELAY:
989S TRACE,
906S QUEUE,
907$ SEI ZE,

1016$ BRANCH,

1017$ MOVE:
919S TALLV:
1026$ DELAY:

TRACE,
908$ DELAY:
990S TRACE.
909$ RELEASE:
973$ DELAY:
996$ TRACE,

Machine 7;
-l.n-Arrived to station Machine 7\n":;
O. ;
-1. "-Waiting for resource Machine 7 R\nn:;
Machine 7_R_Q:MARK(QueueTime);
1 :
Machine 7_R, 1;
1 :
If.RTYP(Machine 7_R) .eq.2,1017$,Ves:
If.RTYP(Machine 7 R) .eq.l,919$,Ves;
Machine 7_R,Machine 7;
Machine 7_R_Q Queue Time,INT(QueueTime),I;
0.0;
-l."-Delay for processing time Processing Time\nn:;
Processing Time;
-l."-Releasing resource\nn:;
Machine 7 R, 1;
O. ;
-l."-Transferred to next module\nn::NEXT(lO$);

Model statements for module: Create 1

Model statements for module: Read I

1027$
1034$
1031$

20$
1035$

CREATE,
TRACE,
ASSIGN:

TRACE,
READ,

1•. 0001:.1;
-l,n-Entity Created\n":;
Picture=Default:NEXT(20$);

-l,n-Reading from input file \n":;
inpu file:
Exp number.
Processing time Average.
Processing time width,
Due Date Allowance Factor,
Nominal Utilization,

ower Fac or z:NEXT(21$);

..
i
i

Model statements for module: Choose 5

21$
1036$

26$

TRACE.
BRANCH,

SCAN:

-l,n-Choosing from 2 options\n":;
1 :
If,NREP+Exp Start==Exp Number.26$.Ves:
Else,20$,Yes;
NC(finished jobsj==45000:NEXT(23$);

Model statements for module: Write

23$
1037$

TRACE,
WRITE,

-1. "-Writing to File outp
output file,
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--

" (i5, lx, f5. 2, lx, f5. 3, lx, i2, lx, f5. 3, lx, f7 . 3, lx, f8. 4, lx, f8. 4, lx, f8. 4, lx, f8. 4, lx, f8. 4, lx, f6.
4)" :

NREP+exp start,
Processing time Average,
Processing time width,
Due Date Allowance Factor,
Nominal Utilization,
Power Factor z,
TAVG(Earliness) ,
TAVG(Tardiness) ,
TAVG(MAD from Due Date),
DAVG(System inventory output),
TAVG(Flow Time),
Fraction of Tardy Jobs:NEXT(22$);

Model statements for module: Dispose 1

22$
1038$

TRACE,
DISPOSE;

-l,"-Disposing entity\n":;
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Appendix B - Verification of The Simulation Model

In this Appendix the full trace record is presented, this trace record ensures that

simulation variables, entity's parameters, entity's routes, and stations behaviors are

accurate representation of the actual job shop model. The following is a list of the system

configuration parameters used in this trace:

- Due date allowance factor (k) = 3,

- Nominal system utilization (u) = 85%,

- Processing time distribution average (Pa) = 5,

- Processing time distribution interval width (Pw) = 3,

- CRz Power factor (z) = -1.

The following is a trace of a tardy joh throughout the simulation model:

Time: 1750.94 Entity: 31
1 75$ CREATE

ARRIVAL TIME set to 1750.94
Next creation scheduled at time 1763.19

2 36$ STATION

:f.
,I

3 84$
4 39$

5 60$

6 99$

7 88$
8 0$
9 115$

10 17$
11 116$

12 1$
13 117$

95 8$

TRACE
ASSIGN

DELAY

COUNT

TRACE
TRACE
ASSIGN

TRACE
ASSIGN

TRACE
BRANCH

STATION

Entity 31 entered station ARRIVE

Entity 31 picture changed to DEFAULT

Delayed by 0.0 until time 1750.94

Counter NUMBER OF JOBS incremented by 1 to 438

SYSTEM INVENTORY set to 24.0
JOB NUMBER set to 438.0
MACHINE NUMBER set to 4.0
TOTAL NUMBER OF OPERATIONS set to 4.0
DUE DATE set to 1810.94

CRITICAL RATIO RULE Z VALUE set to 1200.0
PROCESSING TIME set to 5.38175

Selecting at most 1 of 7 branches
IF: Branch not selected
IF: Branch not selected
IF: Branch not selected
IF: Entity 31 sent to 8$
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96 616$
97 579$

98 623$
99 540$

100 541$

Time: 1782.9
101 650$

103 553$

104 660$

105
106 542$

Time: 1788.28
107 624 $
108 543$

109 607$

11 0 630$

30 10$
31 239$

32 29$
33 240$

34 31$
35 241$

36 30$
37 242$

10 17$
11 116$

12 1$
13 117$

63 4$

64 374$
65 337$

66 381$
67 298$

68 299$

TRACE
DELAY

TRACE
QUEUE

SEIZE

Entity: 31
BRANCH

TALLY

DELAY

TRACE
DELAY

E:ntity: 31
TRACE
RELE:ASE

DELAY

TRACE

TRACE:
ASSIGN

TRACE:
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

STATION

TRACE
DELAY

TRACE
QUEUE

SEIZE

Entity 31 entered station MACHINE 4

Delayed by 0.0 until time 1750.94

QUEUETIME set to 1750.94
Entity 31 sent to next block

Entity 31 added to queue MACHINE 4_R_Q at rank 2

Selecting at most 1 of 2 branches
IF: Branch not selected
IF: Entity 31 sent to 553$

Tally MACHINE 4_R_Q QUEUE TIME recorded 31.9564

Delayed by 0.0 until time 1782.9

Delayed by 5.38175 until time 1788.28

~~CHINE 4 R available increased by 1 to 1
Entity 8 removed from queue MACHINE 4_R_Q
Resource allocated to entity 8
Seized 1 unit(s) of resource MACHINE 4 R

Delayed by 0.0 until time 1788.28

Entity transferred to block 10$

NUMBER OF OPERATIONS COMPLETED set to 1.0
PREVIOUS MACHINE set to 4.0

Selecting at most 1 of 2 branches
IF: Entity 31 sent to 31$

MACHINE NUMBER set to 2.0

Selecting at most 1 of 2 branches
IF: Branch not selected
ELSE: Entity 31 sent to 17$

CRITICAL RATIO RULE Z VALUE set to 339.928
PROCESSING TIME set to 5.66441

Selecting at most 1 of 7 branches
IF: Branch not selected
IF: Entity 31 sent to 4$

Entity 31 entered station MACHINE 2

Delayed by 0.0 until time 1788.28

QUEUETIME set to 1788.28
Entity 31 sent to next block

Could not seize resource MACHINE 2 R
Entity 31 added to queue MACHINE 2 R Q at rank 1
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Time: 1796.38
69 408$

71 311$

72 418$

73
74 300$

Time: 1802.05
75 382$
76 301$

77 365$

78 388$

30 10$
31 239$

32 29$
33 240$

34 31$
35 241$

36 30$
37 242$

10 17$
11 116$

12 1$
13 117$

14 2$

15 194$
16 157$

17 201$
18 118$

19 119$

Time: 1803.97
20 228$

22 131$

23 238$

24
25 120$

Entity: 31
BRANCH

TALLY

DELAY

TRACE
DELAY

Entity: 31
TRACE
RELEASE

DELAY

TRACE

TRACE
ASSIGN

TRACE
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

STATION

TRACE
DELAY

TRACE
QUEUE

SEIZE

Entity: 31
BRANCH

TALLY

DELAY

TRACE
DELAY

Selecting at most 1 of 2 branches
IF: Branch not selected
IF: Entity 31 sent to 311$

Tally MACHINE 2_R_Q QUEUE TIME recorded 8.10611

Delayed by 0.0 until time 1796.38

Delayed by 5.66441 until time 1802.05

MACHINE 2_R available increased by 1 to 1
Entity 39 removed from queue MACHINE 2_R_Q
Resource allocated to entity 39
Seized 1 unit(s) of resource MACHINE 2 R

Delayed by 0.0 until time 1802.05

Entity transferred to block 10$

NUMBER OF OPERATIONS COMPLETED set to 2.0
PREVIOUS MACHINE set to 2.0

Selecting at most 1 of 2 branches
IF: Entity 31 sent to 31$

MACHINE NUMBER set to 1.0

Selecting at most 1 of 2 branches
IF: Branch not selected
ELSE: Entity 31 sent to 17$

CRITICAL RATIO RULE Z VALUE set to 88.9138
PROCESSING TIME set to 4.963 2

Selecting at most 1 of 7 branches
IF: Entity 31 sent to 2$

Entity 31 entered station MACHINE 1

Delayed by 0.0 until time 1802.05

QUEUETIME set to 1802.05
Entity 31 sent to next block

Could not seize resource MACHINE 1 R
Enti y 31 added to queue 11ACHINE 1 R Q at rank 1

Selecting at most 1 of 2 branches
IF: Branch not selected
IF: Entity 31 sent to 131$

Tally MACHINE l_R_Q QUEUE TIME recorded 1.92171

Delayed by 0.0 until time 1803.97
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Time: 1808.93
26 202$
27 121$

28 185$

29 208$
30 10$
31 239$

32 29$
33 240$

34 31$
35 241$

36 30$
37 242$

10 17$
11 116$

12 1$
13 117$

95 8S

96 616S
97 579$

98 623$
99 540$

100 541$

Time: 1814.58
101 650S

103 553$

104 660$

105
106 542$

Time: 1818.36
107 624$
108 543$

109 607$

110 630S

30 10$

Entity: 31
TRACE
RELEASE

DELAY

TRACE
TRACE
ASSIGN

TRACE
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

TRACE
ASSIGN

TRACE
BRANCH

STATION

TRACE
DELAY

TRACE
QUE:UE

SEIZE

Entity: 31
BRANCH

TALLY

DELAY

TRACE
DELAY

Entity: 31
TRACE
RELEASE

DELAY

TRACE

TRACE

Delayed by 4.96332 until time 1808.93

MACHINE l_R available increased by 1 to 1

Delayed by 0.0 until time 1808.93

NUMBER OF OPERATIONS COMPLETED set to 3.0
PREVIOUS MACHINE set to 1.0

Selecting at most 1 of 2 branches
IF: Entity 31 sent to 31$

MACHINE NUMBER set to 4.0

Selecting at most 1 of 2 branches
IF: Branch not selected
ELSE: Entity 31 sent to 17S

CRITICAL RATIO RULE Z VALUE set to 10.0317
PROCESSING TIME set to 3.77704

Selecting at most 1 of 7 branches
IF: Branch not selected
IF: Branch not selected
IF: Branch not selected
IF: Entity 31 sent to 8S

Entity 31 entered station MACHINE 4

Delayed by 0.0 until time 1BOB. 3

QUEUETIME set to lBOB.9
Entity 31 sent to next block

Entity 31 added to queue MACHINE 4_R_Q at rank 2

Selecting at most 1 of 2 branches
IF: Branch not selected
IF: Entity 31 sent to 553$

Tally MACHINE 4_R_Q QUEUE TIME recorded 5.65019

Delayed by 0.0 until time 1814.58

Delayed by 3.77704 until time 1818.36

MACHINE 4_R available increased by 1 to 1
Entity 29 removed from queue MACHINE 4_R_Q
Resource allocated to entity 29
Seized 1 unit(s) of resource MACHINE 4 R

Delayed by 0.0 until time 1818.36

Entity transferred to block 10$
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31 239$

32 29$
33 240$

38 28$
39 243$

57 test
58 293$

59 34$
60 295$

61 35$
62 297$

46 25$
47 249$

48 24$
49 251$

50 19$
51 253$

52 18$

53 284$
54 254$

55 291$
56 283$

ASSIGN

TRACE
BRANCH

TRACE
BRANCH

TRACE
TALLY

TRACE
TALLY

TRACE
ASSIGN

TRACE
TALLY

TRACE
COUNT

TRACE
ASSIGN

STATION

TRACE
DELAY

TRACE
DISPOSE

NUMBER OF OPERATIONS COMPLETED set to 4.0
PREVIOUS MACHINE set to 4.0

Selecting at most 1 of 2 branches
IF: Branch not selected
ELSE: Entity 31 sent to 28$

Selecting at most 1 of 2 branches
IF: Branch not selected
ELSE: Entity 31 sent to TEST

Tally TARDINESS recorded 7.42088

Tally MAD FROM DUE DATE recorded 7.42088

NUMBER OF TARDY JOBS set to 230.0
Entity transferred to block 25$

Tally FLOW TIME recorded 67.4209

Counter FINISHED JOBS incremented by 1 to 431

FRACTION OF TARDY JOBS set to 0.533643
SYSTEM INVENTORY set to 21.0

Entity 31 entered station DEPART

Delayed by 0.0 until time 1818.36

Disposed entity 31
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Appendix C - Regression Code and Model

The regression code was developed in SAS using the PROCREG command. Four

separate regression models were developed for each of the performance measures. The

following is the code.

data work.new; set work.i40;
f01 k
f02 k*k
f03 k*k*k
f04 k*k*k*k;
fOs pa
f06 pa*k
f07 pa*k*k
f08 pa*k*k*k
f09 pa*pa
flO pa*pa* k ;
f11 pa*pa*k*k
f12 pa*pa*pa
f13 pa*pa*pa*k
f14 pa*pa*pa*pa
f15 pa'pa'pa*pw
f16 pa'pa*pa*u
f17 pa'pa*pw
f18 pa'pa'pw'k
f19 pa*pa'pw'pw
f20 pa*pa*pw*u
f21 pa*pa*u;
f22 pa*pa*u*k
f23 pa*pa*u*u
f24 pa*pw
f25 pa*pw*k;
f26 pa*pw*k*k
f27 pa*pw*pw
f28 pa*pw*pw*k
f29 pa*pw*pw*pw
f30 pa*pw*pw*u
f31 pa *pw*u ;
f32 pa*pw*u*k
f33 pa*pw*u*u
f34 pa*u
f35 pa *u *k ;
f36 pa*u*k*k
f37 pa*u*u ;
f38 pa'u*u*k
f39 pa*u'u'u
f40 pw
f41 pw*k
f42 pw*k*k
f43 pW*k*k*k
f44 pw*pw
f45 pW'pw*k;
f46 pW'pw*k*k
f47 pw*pw*pw
f48 pw*pw*pw*k
f49 pw*pw*pw*pw
fsO pw*pw*pw*u
f51 pw*pw*u ;
fs2 pw*pw*u*k
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f53
f54
f55
f56
f57
f58
f59
f60
f61
f62
f63
f64
f65
f66
f67
f68
f69

pw*pw*u*u
pw*u
pw*u*k ;
pw*u*k*k
pw*u*u ;
pw*u*u*k
pw*u*u*u
u
u*k
u*k*k
u*k*k*k;
u*u
u*u*k
u*u*k*k;
u*u*u
u*u*u*k;
u*u*u*u;

run;
proc reg data=work.new;

model MAO = fOl f02 f03 f04 f05 f06 f07 f08 f09 flO fll f12 f13 f14 f15 f16 f17 f18
f19 f20 f21 f22 f23 f24 f25 f26 f27 f2 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39 f40
f41 f42 f43 f44 f45 f46 f47 f48 f49 f50 f51 f52 f53 f54 f55 f56 f57 f58 f59 f60 f61 f62
f63 f64 f65 f66 f67 f68 f69;

output out=resultl p=pred r=resid;
run;
proc reg data=work.new;

model S1 fOl f02 f03 f04 f05 f06 f07 f08 f09 flO fll f12 f13 f14 f15 f16 f17 f18
f19 f20 f21 f22 f23 f24 f25 f26 f27 f2 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39 f40
f41 f42 f43 f44 f45 f46 f47 f48 f49 f50 f51 f52 f53 f54 f55 f56 f57 f58 f59 f60 f61 f62
f63 f64 f65 f66 f67 f68 f69;

output out=result2 p=pred r=resid;
run;
proc reg data=work.new;

model FT fOl f02 f03 f04 f05 f06 f07 f08 f09 flO fll f12 f13 f14 f15 f16 f17 f18
f19 f20 f21 f22 f23 f24 f25 f26 f27 f2 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39 f40
f41 f42 f43 f44 f45 f46 f47 f48 f49 f50 f51 f52 f53 f54 f55 f56 f57 f58 f59 f60 f61 f62
f63 f64 f65 f66 f67 f68 f69;

output out=result3 p=pred r=resid;
run;
proc reg data=work.new;

model f = f01 f02 f03 f04 f05 f06 f07 f08 f09 flO f11 f12 f1 f14 f15 f16 f17 f18
f19 f20 f21 f22 f23 f24 f25 f26 f27 f2 f29 f30 f31 f32 f33 f34 f35 f36 f37 f38 f39 f40
f41 f42 f43 f44 f45 f46 f47 f48 f49 f50 f51 f52 f53 f54 f55 f56 f57 f58 f59 f60 f61 E 2
f63 f64 f65 f66 f67 f68 f69;

output out=result4 p=pred r=resid;
run;

The following is the regression model generated by the code above

The REG Procedure
Model: MODELl

Dependent Variable: MAO

Analysis of Variance

Source

Model
Error
Corrected Total

OF

59
265
324

Sum of
Squares

250.43070
70.88161

321.31231

Mean
Square

4.24459
0.26748

F Value

15.87

Pr > F

<.0001

Root MSE
Dependent Mean
Coeff Var

0.51718
0.96077

53.83005
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NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique.
Some
statistics will be misleading. A repor ed OF of o or B means that the estimate is biased.
NOTE: The following parameters have been set o 0, since the variables are a linear
combination of other variables as shown.

Parameter Standard
variable OF Estimate Error t Value Pr > I t I

Intercept B 506.25221 202.86491 2.50 0.01 2
fOl B 12.96639 13 .18628 0.98 0.3263
f02 B -3.12220 1.26766 -2.46 0.0144
f03 B 0.19499 0.09797 1. 99 0.0476
f04 B -0.00508 0.00362 -1. 40 0.1616
f05 B 2.24395 4.93612 0.45 0.6498
f06 B -0.10690 0.34887 -0.31 0.7595
f07 B -0.03430 0.02766 -1.24 0.2160
f08 B 0.00086972 0.00117 0.75 0.4564
f09 B -0.00037676 0.12043 -0.00 0.9975
flO B -0.00209 0.00821 -0.25 0.7995
fll B 0.00028715 0.00045884 0.63 0.5320
fl2 0 0
f13 0 0
fl4 0 0
fl5 B -0.00614 0.01087 -0.56 0.5729
fl6 B -2.29584 0.86169 -2.66 0.0082
fl7 B 0.21553 0.40678 0.53 0.5967
fl8 B 0.00116 0.00115 1. 01 0.3115
fl9 B -0.00077573 0.00190 -0.41 0.6837
f20 B 0.01429 0.02412 0.59 0.5541
f21 B 86.15680 32.32902 2.66 0.0082
f22 B -0.00625 0.00814 -0.77 0.4435
f23 B -0.03847 0.20652 -0.19 0.8524
f24 B -2.14359 4.33996 -0.49 0.6218
f25 B -0.01254 0.04766 -0.26 0.7927
f26 B -0.00014070 0.00226 -0.06 0.9504
f27 B 0.04091 0.07063 0.58 0.5629
f28 B -0.00113 0.00214 -0.53 0.5973
f29 0 0
f30 B -0.01029 0.04527 -0.23 0.8204
f31 B -0.56153 1. 52003 -0.37 0.7121
f32 B -0.00917 0.03919 -0.23 0.8153
f33 B 0.11066 0.92048 0.12 O. 044
f34 B -956.51193 354.66748 -2.70 0.0074

f35 B 0.90110 0.67752 1. 33 0.1847

f36 B 0.01677 0.02103 0.80 0.4258
f37 B 9.24784 23.35640 0.40 0.6925
f38 B -0.59540 0.41094 -1. 45 0.1486
f39 B -2.39624 10.17084 -0.24 0.8139
f40 0 0
f41 B -0.12427 0.93791 -0.13 0.8 47

f42 B 0.15977 0.07486 2.13 0.0337
f43 B -0.00551 0.00316 -1.74 0.0826
f44 B -0.60914 1.22197 -0.50 0.6186
f45 B 0.00622 0.07712 0.08 0.9358
f46 B -0.00214 0.00371 -0.58 0.5639
f47 0 0
f48 0 0
f49 0 0
f50 0 0
f51 B 0.56507 2.42720 0.23 0.8161

f52 B 0.03588 0.06567 0.55 0.5853

f53 B -0.28312 1.45931 -0.19 0.8463
f54 B 28.68591 50.46476 0.57 0.5702

f55 B -1. 84233 1. 77950 -1. 04 0.3015
f56 B -0.05955 0.05707 -1. 04 0.2977

f57 B -28.76265 64.33604 -0.45 0.6552
f58 B 1.51076 1.10733 1. 36 0.1736

f59 B 9.41627 27.97431 0.34 0.7367

f60 0 0
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f61 B -4.58030 46.52632 -0.10 0.9217
f62 B 3.25814 2.01495 1. 62 0.1071
f63 B -0.09827 0.06015 -1.63 0.1035
f64 B 5896.75475 2150.49715 2.74 0.0065
f65 B -12.45251 58.76844 -0.21 0.8324
f66 B -0.66694 1. 15550 -0.58 0.5643
f67 B -5318.32105 1908.94811 -2.79 0.0057
f68 B 3.41778 25.72203 0.13 0.8944
f69 B 1795.28775 635.43502 2.83 0.0051

The REG Procedure
Model: MODELl

Dependent Variable: SI

Analysis of Variance

SUlll of Mean
Source Dr Squares Square F Value Pr > F

Model 59 37.91911 0.64270 2.07 <.0001
Error 265 82.23166 0.31031
Corrected Total 324 120.15077

Root MSE
Dependent Mean
Coeff Var

0.55705
-0.22769

-244.65170

R-Square
Adj R-Sq

0.3156
0.1632

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique.
Some statistics will be misleading. A reported Dr of 0 or B means that the estimate is
biased.
NOTE: The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

Parameter
Variable DF Estimate

Intercept B 19.98174
fOl B 3.29651
f02 B -0.15827
f03 B -0.00215
f04 B -0.00225
f05 B -11.90379
f06 B -0.18398
f07 B 0.01317
f08 B -0.00049636
f09 B 0.32147
flO B -0.00502
fll B 0.00036996
fl2 0 0
fl3 0 0
f14 0 0
fl5 B 0.01632
fl6 B 0.01326
fl7 B -0.58793
fi8 B -0.00003091
fl9 B -0.00091962
f20 B -0.02464
f21 B -1.34912
f22 B 0.00054013
f23 B 0.56865
f24 B 5.01969
f25 B -0.00442
f26 B -0.00301
f27 B -0.02016
f28 B -0.00026106
f29 0 0
f30 B 0.06166
f31 B 3.75952
f32 B 0.05996

Standard
Error t Value Pr > I I

218.50415 0.09 0.9272
14.20284 0.23 0.8166

1.36538 -0.12 0.9078
0.10552 -0.02 0.9837
0.00390 -0.58 0.5644
5.31665 -2.24 0.0260
0.37577 -0.49 0.6248
0.02979 0.44 0.6587
0.00126 -0.40 0.6930
0.12972 2.48 0.0138
0.00884 -0.57 0.5708

0.00049422 0.75 0.4548

0.01171 1. 39 0.1 46
0.92812 0.01 0.9886
0.43814 -1.34 0.1808
0.00124 -0.02 0.9801
0.00205 -0.45 0.6539
0.02598 -0.95 0.3438

34.82132 -0.04 0.9691
0.00877 0.06 0.9509
0.22244 2.56 0.0111
4.67454 1. 07 0.2839
0.05133 -0.09 0.9315
0.00243 -1. 24 0.2172
0.07607 -0.26 0.7912
0.00231 -0.11 0.9100

0.04876 1. 26 0.2071
1.63722 2.30 0.0224
0.04221 1. 42 0.1566
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f33
f34
f35
f36
f37
f38
f39
f40
f41
f42
f43
f44
f45
f46
f47
f48
f49
f50
f51
f52
f53
f54
f55
f56
f57
f58
f59
f60
f61
f62
f63
f64
f65
f66
f67
f68
f69

B
B
B
B
B
B
B
o
B
B
B
B
B
B
o
o
o
o
B
B
B
B
B
B
B
B
B
o
B
B
B
B
B
B
B
B
B

-2.40046
47.97015
0.47652

-0.00746
-48.96879

-0.36694
18.57616

o
-0.20268
-0.01471

0.00198
1.75888
0.04452
0.00347

o
o
o
o

-4.34574
-0.11327

2.58302
-61.46528

0.21958
0.00232

62.61137
-0.13403

-19.72957
o

-2.20202
0.63805
0.06404

-330.62675
-13.38516

-1.14608
588.94315

16.11785
-306.61411

0.99144 -2.42 0.0161
382.00946 0.13 0.9002

0.72975 0.65 0.5143
0.02265 -0.33 0.7422

25.15699 -1. 95 0.0526
0.44262 -0.83 0.4078

10.95493 1. 70 0.0911

1.01021 -0.20 0.8411
0.08063 -0.18 0.8554
0.00340 0.58 0.5606
1. 31618 1. 34 0.1826
0.08306 0.54 0.5924
0.00399 0.87 0.3858

2.61432 -1. 66 0.0976
0.07074 -1.60 0.1105
1.57181 1. 64 0.1015

54.35518 -1.13 0.2592
1. 91669 0.11 0.9089
0.06147 0.04 0.9699

69.29583 0.90 0.3671
1.19270 -0.11 0.9106

30.13090 -0.65 0.5132

50.11312 -0.04 0.9650
2.17028 0.29 0.7690
0.06479 0.99 0.3238

2316.28303 -0.14 0.8866
63.29901 -0.21 0.8327
1. 24458 -0.92 0.3580

2056.11252 0.29 0.7748
27.70499 0.58 0.5612

684.42191 -0.45 0.6545

The REG Procedure
Model: MODELl

Dependen Variable: <T

Analysis of Variance

Source

Model
Error
Corrected Total

D<

59
265
324

Sum of
Squares

32.64596
51.54635
84.19231

Mean
Square

0.55 32
0.19451

< value

2.84

Pr > F

<.0001

Root MSE
Dependent Mean
Coeff Var

0.44104
-0.26923

-163.81412

R-Square
Adj R-Sq

0.3878
0.2514

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique.
Some statistics will be misleading. A reported D< of 0 or B means that the estimate is
biased.
NOTE: The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

Variable D<

Intercept B
fOl B
f02 B

f03 B
f04 B

Parameter
Estimate

-32.75104
-5.76783

1.10484
0.09826

-0.00249

81

Standard
Error

172.99722
11.24487

1.08102
0.08354
0.00309

Value

-0.19
-0.51

1. 02
1.18

-0.81

Pr > It I

0.8500
0.6084
0.3077
0.2406
0.4203
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f05 B -2.43940 4.20938 -0.58 0.5627
f06 B -0.14750 0.29751 -0.50 0.6204
f07 B 0.01134 0.02359 0.48 0.6310
f08 B -0.00087461 0.00099435 -0.88 0.3799
f09 B -0.02540 0.10270 -0.25 0.8049
flO B -0.00231 0.00700 -0.33 0.7419
fll B -0.00009536 0.00039129 -0.24 0.8076
fl2 0 0
fl3 0 0
fl4 0 0
fl5 B 0.00648 0.00927 0.70 0.4852
fl6 B 0.19759 0.73482 0.27 0.7882
fl7 B -0.23331 0.34689 -0.67 0.5018
fl8 B 0.00025469 0.00097949 0.26 0.7950
fl9 B -0.00009969 0.00162 -0.06 0.9510
f20 B -0.01136 0.02057 -0.55 0.5812
f21 B -7.37315 27.56923 -0.27 0.7893
f22 B 0.00345 0.00694 0.50 0.6198
f23 B -0.00994 0.17611 -0.06 0.9550
f24 B 2.13853 3.70099 0.58 0.5639
f25 B -0.03712 0.04064 -0.91 0.3619
f26 B 0.00001406 0.00193 0.01 0.9942
f27 B -0.03039 0.06023 -0.50 0.6143
f28 B -0.00010339 0.00183 -0.06 0.9549
f29 0 0
f30 B 0.04139 0.03860 1. 07 0.2846
f31 B 1.52834 1. 29624 1. 18 0.2394
f32 B 0.04044 0.03342 1. 21 0.2273
f33 B -1.11390 0.78495 -1.42 0.1571
f34 B 96.44187 302.44997 0.32 0.7501
f35 B 0.45027 0.57777 0.78 0.4365
f36 B 0.01143 0.01793 0.64 0.5244
f37 B -26.31382 19.91765 -1. 32 0.1876
f38 B -0.53599 0.35043 -1. 53 0.1273
f39 B 14.87500 8.67340 1.72 0.0875
f40 0 0
f41 B 1.12907 0.79982 1. 41 0.1592
f42 B -0.09058 0.06384 -1.42 0.1571
f43 B 0.00215 0.00270 0.80 0.4250
f44 B 1.03994 1.04206 1. 00 0.3192
f45 B 0.03118 0.06576 0.47 0.6358
f46 B 0.00145 0.00316 0.46 0.6464
f47 0 0
f48 0 0
f49 0 0
f50 0 0
f51 B -2.14594 2.06985 -1. 04 0.3008
f52 B -0.05972 0.05601 -1.07 0.2873
f53 B 1.11518 1.24446 0.90 0.3710
f54 B -41.67565 43.03486 -0.97 0.3337
f55 B -1.17396 1.51751 -0.77 0.4399
f56 B 0.04171 0.04867 0.86 0.3923
f57 B 56.70533 54.86388 1. 03 0.3023
f58 B 0.39735 0.94430 0.42 0.6742

f59 B -22.96856 23.85567 -0.96 0.3365
f60 0 0
f61 B 3.38167 39.67627 0.09 0.9321
f62 B -4.68571 1. 71829 -2.73 0.0068
f63 B -0.04338 0.05129 -0.85 0.3985
f64 B -598.20065 1833.88058 -0.33 0.7445

f65 B 27.07930 50.11600 0.54 0.5894

f66 B 3.20747 0.98538 3.26 0.0013
f67 B 592.05105 1627.89468 0.36 0.7164

f68 B -23.56779 21.93499 -1.07 0.2836

f69 B -215.16249 541.88026 -0.40 0.6916
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The REG Procedure
Model: MODELl

Dependent Variable: f

Analysis of Variance

Source

Model
Error
Corrected Total

DF

59
265
324

Sum of
Squares

36.67750
13.32173
49.99923

Mean
Square

0.62165
0.05027

F Value

12.37

Pr > F

<.0001

Root MSE
Dependent Mean
Coeff Var

0.22421
-0.07846

-285.75939

R-Square
Adj R-Sq

0.7336
0.6742

NOTE: Model is not full rank. Least-squares solutions for the parameters are not unique.
Some statistics will be misleading. A reported DF of 0 or B means that the estimate is
biased.
NOTE: The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

Parameter Estimates

Parameter
variable DF Estimate

Intercept B -67.29895
fOl B -3.35824
f02 B -0.62736
f03 B 0.09297
f04 B -0.00347
f05 B -4.70276
f06 B -0.02907
f07 B -0.01540
f08 B 0.00062622
f09 B 0.10186
flO B 0.00300
fll B -0.00018541
fl2 0 0
fl3 0 0
£14 0 0
£15 B 0.00574
£16 B 0.35340
£17 B -0.21569
£18 B -0.00005574
£19 B -0.00077144
f20 B 0.00468
f21 B -13.54748
f22 B -0.00051071
f23 B 0.19018
f24 B 1.87481
f25 B -0.00164
f26 B 0.00067648
f27 B 0.02580
f28 B -0.00033653
f29 0 0
£30 B -0.00178
£31 B 1.19875
f32 B -0.00371
£33 B -0.84342
f34 B 162.97434
£35 B 0.16865
f36 B 0.01057
£37 B -20.14391
£38 B -0.16071
f39 B 7.81589
f40 0 0

Standard
Error t Value Pr > I t I

87.94688 -0.77 0.4448
5.71658 -0.59 0.5574
0.54956 -1. 14 0.2547
0.04247 2.19 0.0295
0.00157 -2.21 0.0281
2.13993 -2.20 0.0288
0.15124 -0.19 0.8477
0.01199 -1. 28 0.2002

0.00050550 1. 24 0.2165
0.05221 1. 95 0.0521
0.00356 0.84 0.4003

0.00019892 -0.93 0.3521

0.00471 1.22 0.2241
0.37356 0.95 0.3450
0.17635 -1. 22 0.2224

0.00049794 -0.11 0.9110
0.00082459 -0.94 0.3504

0.01046 0.45 0.6551
14.01542 -0.97 0.3346

0.00353 -0.14 0.8851
0.08953 2.12 0.0346
1.88148 1. 00 0.3199
0.02066 -0.08 0.9368

0.00097941 0.69 0.4904
0.03062 0.84 0.4002

0.00092824 -0.36 0.7172

0.01962 -0.09 0.9277
0.65897 1. 82 0.0700
0.01699 -0.22 0.8274
0.39905 -2.11 0.0355

153.75698 1. 06 0.2901
0.29372 0.57 0.5663
0.00912 1. 16 0.2472

10.12557 -1.99 0.0477
0.17815 -0.90 0.3678
4.40931 1. 77 0.0774
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f41 B 0.39068 0.40661 0.96 0.3375
f42 B 0.01687 0.03245 0.52 0.6036
f43 B -0.00147 0.00137 -1. 07 0.2841
f44 B 0.04426 0.52976 0.08 0.9335
f45 B -0.00050703 0.03343 -0.02 0.9879
f46 B -0.00138 0.00161 -0.86 0.3902
f47 0 0
f48 0 0
f49 0 0
f50 0 0
f51 B -0.54159 1.05225 -0.51 0.6072
f52 B 0.02718 0.02847 0.95 0.3407
f53 B 0.25811 0.63265 0.41 0.6836
f54 B -21.88552 21. 87770 -1. 00 0.3181
f55 B -1.19217 0.77146 -1. 55 0.1235
f56 B 0.01010 0.02474 0.41 0.6834
f57 B 22.25920 27.89124 0.80 0.4255
f58 B 0.62318 0.48005 1. 30 O. 1954
f59 B -6.03367 12.12754 -0.50 0.6192
f60 0 0
f61 B 18.62496 20.17029 0.92 0.3566
f62 B -0.09718 0.87353 -0.11 0.9115
f63 B -0.02447 0.02608 -0.94 0.3489
f,,4 B -1054.12306 932.29286 -1.13 0.2592
f65 B -21.40445 25.47755 -0.84 0.4016
f66 B 0.23046 0.50094 0.46 0.6459
f67 B 1067.60732 827.57547 1. 29 0.1982
f68 B 7.58121 11.15113 0.68 0.4972
f69 B -390.67133 275.47655 -1. 42 0.1573
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Appendix D - Neural Network MatLab Code and Results

Backpropagation neural networks can be designed in MatLab using many

different algorithms, but because of the generalization importance to this research, an

automated regularization process was used, the "trainbr" algorithm. The "trainbr"

algorithm was built on the Bayesian framework of MacKay (1992). Combining this

process with Levenberg-Marquardt training produced the best results compared with

other training algorithms. In order to improve the generalization of the estimation method

further, a technique called "early stopping" was implemented. A full discussion of early

stopping can be found in neural network toolbox manual.

After investigating several neural networks architectures it was found that BPNN

usmg 2 hidden layers with the use of the "tansig" transfer function produced more

accurate estimates than other architectures. As for the output layer, the "purdin" transfer

function produced better estimates. A full description of both transfer functions can be

found in neural network toolbox manual.

The following is the MatLab code for the approximation process using BPNN.

Three data sets were generated from the simulation output: training set, validation set,

and testing set which used 50%, 25%, and 25% of the simulation data respectively.

function bpnn(p,t,e,a,b,c)
% usage:
% bpnn(p,t,e,a,n1,n2)
% p: nn input
% t: nn targets
% e: early stoping (0,1) ===> (no, yes)
% a: (1,2,3,4) ===> (mad, si, ft, f)
% n1: number of neurons in hidden layer 1
% n2: number of neurons in hidden layer 2

t-t la, :);
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[pn,meanp,stdp,tn,meant,stdt]-prestd(p,t);

q=819;
if e==l

iitr=(1:4:q 3:4:q);iival=4:4:q;iitst=2:4:q;
train_P=pn(:,iitr);valid.P=pn(:,iival);test.P=pn(:,iitst);
train_T=tn(:,iitr);valid.T=tn(:,iival);test.T=tn(:,iitst);

else
iitr=1:2:q;
train_P=pn(:,iitr);train_T=tn(:,iitr);

end

%ereat the neural network
net = newff(minmax(train_P),[b e l),('tansig' 'tansig' 'purelin'j,'trainbr');
net.trainparam.show 25;
net. trainParam. epochs 200;
net. trainParam. goal 1e-5;

if e==l
(net,tr] = train (net, train_P, train_T, (), [],valid,test);
print (gcf, [num2str (a) 'plot1' J , '-djpeg99' , '-rO' ) ;
figure(l);
plot(tr.epoch,tr.perf,tr.epoch,tr.vperf,tr.epoch,tr.tperf);grid;
legend('Training', 'validation', 'Test',-l);
ylabel('Square Error');xlabel('Epoeh');
print(gcf, [num2str(a) 'plot2'], '-djpeg99', '-rO');

else
[net,tr] = train(net,tcain P,train T);
print (gcf, [num2stc(a) 'plot1'], '-dJpeg99', '-rO');
figure(l);
plot(tr.epoch,tr.perf);gcid;
legend('Tcaining',-l);
ylabel('Squace Error');xlabel('Epoch');
print (get, [num2str (a) 'plot2'),' -djpeg99', '-rO');

end

sim tn = sim(net,pn);
t_r-= poststd(sim_tn,meant,stdt);

b= [-1: .25: 2.5 0; histe ( (t-t_c) , , -1. 125: .25: 2.625) , ; histc ( (t -t_c) , , 

1.125: .25:2.625) '/8.19)'
b(4, 3)+b(5, 3)+b(6, 3)
figure (2) ; his t ( (t-t_r) , , -1 : .25: 2.5) ;
print(gcf, (num2str(a) 'plot3'], '-djpeg99', '-rO');
figure(3);test_results(t,t_r);grid;
print (gef, [num2str (a) 'plot4'],' -djpeg99', • -rO' l;

fhd=fopen([num2str(a) 'pred.txt'], 'w');
for i=l:q

fprintf(fhd,'%f %f %f %f %f \n',p(:,il,t_r(i);
end
felose (fhd) ;

ret rn

function [r_sqrdl = test results(t,sim_t)
[a,b) size(t);
t bar sum(t)/b;
SSE sum( (t-sim t) . ~2);
SSTO sum( (t-t_bar) . ~2);
c sqrd= l-(SSE/SSTO);

[d e fJ=postreg(t,sim_t);

fprintf(l, 'r squared for the whole set is %f\n',c_sqrd);
fprintf(l, 'slope=%f, intercept=%f, r=%f',d,e,f);
return
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The above code generates four graphs: training curves, square error graph, error

histogram, and linear regression fitness test. Training curves and error histogram are

useful in selecting the best neural network architectures. The square error graph and

linear regression fitness tests give better indication of the accuracy for the architecture.

The later two graphs are presented for each performance measure in Figure 12 through

Figure 19.

Square error graphs present the error as a function of the training time. It is

apparent that the training error is almost twice the validation and testing errors, this is due

to the fact that the training set is twice the size of the validation and training sets. This

graph is used for the early stopping technique; training is stopped once the validation

error increases for a specified number of iterations.

The linear regression fitness test is useful to investigate the network response.

Regression analysis between the network response and the corresponding targets is

performed. The goal is to have a perfect fit that wilJ have a slope of one and an intercept

of zero and most of the values lie on the regression line. "A" is the predicted values, "T"

is the target value.

A complete electronic copy of the programs, designs, and network weights can be

obtained by contacting the Industrial Engineering & Management Department, Oklahoma

State University, Stillwater, Ok.
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Figure 17 - Linear regression fitness tests for FT
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Appendix E - CRz, CR, and SPT Comparison Results

In order to perform compansons between CRz and both CR and SPT, the

simulation model had to be modified to include adjustments in prioritizing rules. The 16

extreme cases were fed into the simulation model and the results were recorded in two

separate runs; one for each sequencing rule.

Table 10 shows the full result of the neural networks and the two simulation runs.

In order to avoid the perfonnance measure's magnitude difference from one case to

another improvement percentages were normalized using Equation 7.

Performance measure (CR)-Performance measure (CRz)
Normalized _ Error = -~---=-P--e-rfi-:-o-rm~an:"-c-e"":"_-m-e-a"::"su-r-e-_--:-(C=Rz==)----'=-.:..--..:...

Equation 7

Table II shows the normalized improvement percentages due to the change of

sequencing rules from CR / SPT to CRz. It should be noted that changing the due date

allowance factor (k) directly affect both SI and FT, this is due to the fact that early jobs

are delayed until their due date which have an inflating effect on both SI and FT.
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Parameters

Num Pa Ipwl K \UO/O

I 5 0.5 3 60

2 5 0.5 3 90

3 5 0.5 9 60

4 5 0.5 9 90

5 5 2 " 60J

6 5 2 3 90

7 5 2 9 60

8 5 2 9 90

9 20 2 3 60

10 20 2 3 90

II 20 2 9 60

12 20 2 9 90

13 20 8 3 60

14 20 8 " 90.'

15 20 8 9 60

16 20 8 9 90

Performance measures using CRz

(BPNN predicted z values)

MAD I S1 I FT I f
33.6 12.7 75.5 0.025

6 \.9 33.0 130.9 0.636

180.0 37.6 224.8 0.000

132.5 60.7 241.1 0.084

33.3 12.7 75.5 0.027

60.8 32.4 128.9 0.650

179.6 37.6 224.7 0.000

1318 60.9 2415 0.085

133.9 12.7 301.9 0.024

246.6 32.8 521.1 0.604

719.3 37.6 899.1 0.000

528.6 60.7 963.4 0.077

132.9 12.7 301.8 0.028

246.4 32.9 522.9 0.625

718.5 37.6 899.3 0.000

525.2 59.8 953.2 0.074

Performance measures using CR

MAD I Sf I FT I f
33.8 12.9 76.7 0.067

73.3 35.5 141.5 0.651

180.4 37.7 225.0 0.000

153.9 67.9 269.9 0.174

33.5 12.9 76.7 0.070

76.9 36.8 145.8 0.673

180.0 37.8 224.9 0.000

156.3 69.6 275.0 0.183

134.5 12.9 306.8 0.066

306.8 36.6 580.9 0.625

722.6 37.8 901.0 0.000

609.8 67.6 1072.4 0.161

134.2 12.9 306.6 0.066

329.2 38.2 605.4 0.643

720.6 37.8 900.8 0.001

612.2 68.3 1083.1 0.172

--------...-;,~

Performance measures using SPT

MAD I Sf I FT I .r
34.4 12.7 75.8 0.038

69.6 33.4 132.9 0.467

182.9 37.7 225.0 0.000

145.1 62.0 246.8 0.101

34.2 12.7 75.9 0.041

73.4 34.6 137.1 0.477

182.4 37.8 224.9 0.000

145.9 63.6 251.2 0.113

137.4 12.8 303.6 0.037

293.6 34.4 547.1 0.443

732.3 37.8 900.9 0.000

578.9 62.2 987.4 0.096

136.9 12.7 303.3 0.037

306.1 35.4 560.9 0.450

730.9 37.8 900.7 0.000

574.8 62.2 986.9 0.099

Table 10 - The full list of parameters of the compared cases and tbe corresponding performance measures using CRz, CR, and SPT sequencing rules
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