A DIRECT METHOD FOR THE DETER MINATION
OF EARTH PRESSURES ON RETAINING WALLS

By

ASSAD F. ABDUL-BAKI
it

Bachelor of Science
Oklahoma State University
Stillwater, Oklahoma
1955

Master of Science
Oklahoma State University
Stillwater, Oklahoma
1956

Submitted to the Faculty of the Graduate
School of the Oklahoma State University
in partial fulfillment of the
requirements for the degree of
DOCTOR OF PHILOSOPHY
May, 1966



OKLAHOMA
STATE UNIVERSITY
LIBRARY

JUN 10 1968

A DIRECT METHOD FOR THE DETERMINATION
OF EARTH PRESSURES ON RETAINING WALLS

Thesis Approved

//ﬂmﬁé/y

Thesis Adviser

Dean of the Graduate School

510209



ACKNOWLEDGEMENT

- The author, in completing the final phase of his work, wishes
to express his gratitude and sincere appreciation to the following
individuals:

To his major professor and adviser, Professor J. V. Parcher,
for his valuable suggestions and his inspiring method of teaching.

To his committee members, Professors R. L. Flanders,
M. Abdel-Hady and R. G. MclIntyre.

To Professors J. J. Tuma and D. M. MacAlpine for their
assistance and encouragement to pursue graduate work,

To his uncle and aunt, Mr. and Mrs. J. M. Abdul-Baki, who
fully supported his undergraduate education,

To his brother, Showky, for his financial help during the last
three years.

To his friends, Mr. W. G. Henderson and Mr. E, Citipitioglu.

To his parents and to his wife, Wafiah, to his daughters, Ghada
and Feriale, for the many sacrifices which they have made over the
past several years to enable the author to continue his work to com-
pletion. This represents a personal debt which the author will never
be able to repay.

To Mrs. Peggy Harrison for her careful typing of this dissertation,

May, 1965

Stillwater, Oklahoma A.A. B,

iii



TABLE OF CONTENTS

Chapter
I. INTRODUCTION . . v v v v v vt e e e e oe e .
II. METHODS OF CALCULATING EARTH
PRESSURES ON RETAINING WALLS . . .. . ...
2.1. Extreme Method . . . . . . . ¢ . v oo v v v
2.2 Theories of Plasticity . . . . . . . . ... ...
2,3 Empirical Methods. . . . . « . ¢« o v o v v . ..
2,4 Limitations of Known Methods . . . .. . ...
1. Extreme Method. . . . . .. .. ... ...
2. Theories of Plasticity. . . . . . . e e e
3. Empirical Methods . . . . . . . . .. ..

111,

Iv.

NEW METHOD FOR A DIRECT SOLUTION FOR
LLOCATION OF CRITICAL. SI,IP SURFACES IN
IDEAL SAND .+ & v v v it e o v et e e e e e e

3.1 General . . . . . 0t et e e e e e e e e
3.2 Basic Assumptions . . . e h e e o e e e
3.3 Slip Line for Active Pres sure Due to

Backfill with Horizontal Surface. . . . . « . . .
3.4 Slip Line for Passive Pressure Due to

Backfill with Horizontal Surface. . . . . . . . .
3.5 Slip Lines in Semi-Infinite Inclined

Cohesionless MasSS€S . v v v v v v o v v s o 4 &

1. Application to the Slip Lines for
Backfills Behind Retaining Walls in
the Active Case . . . . . . . . ..

2. Application to the Slip Liines for
Backfills Behind Retaining Walls in
the Pagsive Case . . . . . . . .. . . ...

NEW METHOD FOR A DIRECT SOLUTION FOR
LOCATION OF CRITICAL SLIP SURFACES IN :
COHESIVE SOILS. « v v v v v v v v v e v e o e v v o s

4,1 Basgic Assumptions . . . . . . . 00 000 ..
4.2 Slip Line for Active Pressure Due to
‘Backfill with Horizontal Surface. . . ... . . . .

iv

w

OOV W

~ 3o

17

24
29
31‘
33

33

33



4,3 Slip Line for Passive Pressure Due to

Backfill with Horizontal Surface . . . . . . . . 45

4.4 Slip Lines in Semi-Infinite Inclined Cohesive
MasSSeS v v v ¢ v v o o o o 6 o e 5 6 4 e e e 49
V. NUMERICAL EXAMPLES . . . ¢ ¢ v v o v v o o v o & 59

5.1 Problem No. 1 - Calculation of Active
Earth Pressure Exerted by a Cohesionless

Levelled Backfill on Retaining Walls . . . . . . 59
1. Coulomb's Method . . . . .. . .. .. .. 59
2. Slip Line Method . . . . . . .. .. c e e 60

5.2 Problem No. 2 - Calculation of Active Earth
Pressure Exerted by a Cohesionless Sloping

Backfill on Retaining Walls . . . . . . . Coe e 63
1. Coulomb's Method . . . . .. .. ... .. 63
2, Slip Line Method . . . . « « v « ¢« « v v « 64
5.3 Problem No., 3 - Calculation of Passive

Earth Pressure Exerted by a Cohesionless

Levelled Backfill on Retaining Walls . . . . . . 66
1. Friction Circle Method., . . . . . . . . .. 66
2., Slip Line Method . . . . . . . . .. e e s 74

5.4 Problem No. 4 - Calculation of Active Earth
Pressure Exerted by a Cohesive Levelled

Backfill on Retaining Walls . . . . . . . . . .. 75

1. Wedge Theory . .. .. e e e e e e e e 75

2, Slip Line Method . . . . . . . . . . .. .. 80

5.5 Problem No. 5 - Calculation of Passive

Earth Pressure Exerted by a Cohesive

Levelled Backfill on Retaining Walls . . . . . . 85

1. Friction Circle Method., . . . . . . . . . . 85

2, Slip Line Method . . . . . . . . .. .. .. 93
VI. CONCLUSIONS . ¢ v v v v v v v v o v e o v o v v o 94
BIBLIOGRAPHY . . v v v v v v v e v oo vt v v o e o s o 96
APPENDIX . . . v .t v o v v & 98
CHARTS . . . . ¢ o v v 114



Figure

3.

1

(B33

.10

LIST OF ILLUSTRATIONS

() Slip Line in Cohesionless Backfill Due to
Active Case of Failure
(b} Stresses Acting on an Element of Scil
at PointB. . . ... .. © e s 6 s o s s s w e e e

Cohesionless Soil: Mohr's Circle Solution for
Active Resistance at the Bottom of the Wall . . .

Method of Constructing the Slip Line for the Case
of Active Pressure on a Retaining Wall with
Cohesionless Backfill . . . « « « ¢ & v v o v o o

(a) Slip Line in Cohesicnless Backfill Due to
Passive Case of Failure

(b) Stresses Acting on an Element of Soil at
PointB . .. . ..

Cohesionless Soil: Mohr's Circle Solution for
Passive Resistance at the Bottom of the Wall

Method of Constructing the Slip Line for the Case

of Passive Pressure on a Retaining Wall with
Cohesionless Horizontal Backfill, Where 1l1

Is Positive . . . . o . ¢ o v o o o e e e e e e

Method of Constructing the Slip Line for the Case of
Passive Pressure on a Retaining Wall with Cohesion-
less Horizontal Backfill, Where wp 20 o . e e e e e

Method of Constructing the Slip Line for the Case of
Pagssive Pressure on a Retaining Wall with
Cohesionless Horizontal Backfill, Where LLr Is
Negatlve..,nou.,.o.u..,,.. oooooo

Semi-Infinite Cohesionless Mass with Inclined

Surface

{a) Stresses at Boundaries of Prismatic Element

(b) Graphic Representationof State of Stress at
Failure . . . . . . . © e e s e s s e e e e e e e

Method of Constructing the Slip Line for the Case
of Active Pressure on a Retaining Wall with
Cohesionless Sloping Backfill . . . . . .. . ..

vi

Page

11

15

18

19

23

25

30



Figure Page

3.11  Method of Constructing the Slip Line for
the Case of Passive Pressure on a Retaining
Wall with Cohesionless Sloping Backfill . . . . . . . 32

4,1 (a) Slip Line in Cohesive Backfill Due to Active
Case of Failure
(b) Stresses Acting on an Element of Soil at

Point B . . v ¢« v & ¢« ¢ ¢ 6 o o 6 s o 5 6 o o o e 34
4,2 Cohesive Soil: Mohr's Circle Solution for Active
Resistance at the Bottom of the Wall . . . . . . . . 35
4.3 Geometric Properties of the Horizontal Projections
of the Points of Intersection of the §-Line with
Mohr's Circles, (Active Case) . . . . « ¢« v ¢ o o & 42

4.4 Method of Drawing the Unique Mohr's Circle
Representing the State of Active Failure at the
Bottom of the Wall . . . . . .. ... ... e e e 43

4.5 (a) Slip Line in Cohesive Backfill Due to
Passive Case of Failure
(b) Stresses Acting on an Element of Soil at
Peint B o ¢ o ¢« o v o v o6 o v v v o o v o o 45

4,86 Cohesive Soil: Mohr's Circle Solution for
Passive Resistance at the Bottom of the Wall , . . . 46

4,7 Method of Drawing the Unique Mohr's Circle
Representing the State of Passive Failure at
the Bottom of the Wall . . . . . . . . . ¢« . o ¢ o o 438

4.8 Semi-Infinite Cohesive Mass with Inclined
Surface
(a) Stresses at Boundaries of Prismatic Element
(b) Graphic Representation of Active State of
Stress at Failure . . . .. ... ... ... ol

4.9 Shear Pattern for Active State in a Sloping
Semi~Infinite Cohesive Mass. . . . . . « « « o « « & 51

4,10 (a) Graphical Determination of the Slope of the
Slip Line at Points D and E . .
(b) Method of Constructing the Slip Line for the
Case of Active Pressure on a Retaining Wall
with Cohesive Sloping Backfill, . . . . . . . . . 53

vii



Figure Page

4,11 Semi-Infinite Cohesgive Mass with Inclined
Surface
() Stresses at Boundaries of Prismatic Element
(b) Graphic Representation of Passive State of
Stress at Failure . . . . « « v o ¢ o o ¢ v o 0 . 55

4,12 Shear Pattern for Passive State in a Sloping Semi-
Infinite Cohesive MaSs o ¢« ¢ v o ¢« o ¢ o ¢« ¢ o o o o o 55

4,13 (a) Graphical Determination of the Slope of the
Slip Line at Points A', B' and C' . . . R 57
(b} Method of Constr uotmg the Slip Line for the
Case of Passive Pressure on a Retaining Wall
with Cchesive Sloping Backfill . . . . . . . . . 58

5.1 Calculation of Lateral Earth Pressure of
Cohesionless Backfill by the Slip Line Approach . . 61

5.2 Calculation of Lateral Earth Pressure of Sloping
Cochesionless Backfill by the Slip Line Apprcach . . 685

9.3 Friction Circle Method of Determining Passive
Earth Pressure of Sand (Trial No, 1) . . . . . . . . 69

5.4 Friction Circle Method of Determining Passive
FEarth Pressure of Sand (Trial No. 2) . . . . . . . . 71

9.5 Friction Circle Method of Determining Passive
Earth Pressure of Sand (Trial No. 3 and the
Slip Line Approach) . o ¢ & v o v ¢ o ¢ o o a o o o o 73
3.6 (a) Active Earth Pressure on Retaining Wall
Backfilled with Cohesive Soil by the
Wedge Method . . . . . .. ... ...+ .. .. 78
(b) Force Polygon Diagrams for the Various
Trials Investigated in Fig., 5.6a . « « « « o o + & 79
5.7 Active Earth Pressure on Retaining Wall
Backfilled with Cohésive Soil, by the Use of Slip
Line Method
(2) Proper Slip Line
(b, ) Force Polygons « o o ¢ ¢ o v o v o o o o o o s 82
9.8 Passive Earth Pressure on Retaining Wall with
Cohesive Soil, by the Friction Circle Method
(Trial No. 1) . . . . . e o e a e e s e o o 4 6 4 s @ o 87
5.9 Passive Earth Pressure on Retaining Wall with
Cohesive Soil by the Friction Circle Method _
(Trial No. 2) o v o v v v e o v 6 v o o ¢ 0 o s o o » . 90

viii



Figure

[$1])

II

IIT

VI

VII

VIII

XI

.10

.1

o2

.3

Page

Passive Earth Pressure on Retaining Wall
with Cohesive Soil by the Use of Slip Line Method
(Also Trial No, 3) . . . v v v 0 v v v v v v v v . o . 92

Cohesive Soil, Active Case: Graphical Deter-

mination of the Locus of the Shearing Stresses

Acting on the Vertical and Horizontal Planes of

Elements Taken at the Toes of Different Height

Retaining Walls . . . . . ¢ ¢« v ¢« v v v v o v 0 o o o 99

Cohesive Soil: Mohr's Circle Representation for the
Active State of Stress at the Toe of the Wall . . . . . 101

Cohesive Soil, Passive Case: Graphical Deter-
mination of the Locus of the Shearing Stresses

Acting on the Vertical and Horizontal Planes of
Elements Taken at the Toes of Different Height

Retaining Walls . . . . . . . . ¢ v v v v v v o v v o 113
6 ~w Relation for Cohesionless Soil . . . . .. . . . 114
&~ LIJAI Relation for Cohesionless Soil . . . . . . . . 115
6 - llip Relation for Cohesionless Soil . . . . . . . . . 116

B~ af'ﬂl1 Relation for Semi-Infinite Sloping

Cohesionless MaSs . . v & v v o v v v o v o v v o o W 117
B~ a/pz1 Relation for Semi-Infinite Sloping
Cohesionless Mass . & & v v v v v o v v v 0 o o 0 o s 118
B - afl) Relation for Semi-Infinite Sloping
Cohesionless MasSS . + ¢« v ¢ v v v v v o v v 0 o o o 119
g- Q/l;) Relation for Semi-Infinite Sloping

Cohesionless MasSs v v v v v v ¢ v o o o o o o = o o 120

Graphs for Determining Y, in Cohesive Soil when
5 121

Graphg for Determining dIA in Cohesive Soil when
e 122

Graphs for Determining LIJA in Cohesive Soil when
T I e e e 123

Graphs for Determining UIA in Cohesive Soil when
O 124



Figure ' Page

XII Graphs for Determmmg IIJA in Cohesive Soil
when © = 257 e e e e e 125

XTI Graphs for Determmmg ¥ in Cohesive Soil
when ®©=5" .. ... .. D . 126

XV Graphs for Determining ¥ in Cohesive Soil
when ©=10", . ... .. D 127

XV Graphs for Determmmg ¥ in Cohesive Soil :
when ©= 15", .. .. .. D 128

CXVI Graphs for Determlnmg ¢  in Cohesive Soil
’ when ©=20". . ... .. D . 129

XVII Graphs for Determmmg ¥ in Cohesive Soil
when ©=25", ... ...5 ... .. .. . ... . 130



NOMENCLATURE

C o v o v 6 o o oo o o o Resultant cohesive force along the
curved portion of the slip line.

C ...... © e e e o e e Resultant adhesive force along the back
of the retaining wall.

C 6 v o o o o e e e e e s Cohesion in Coulomb's equation

C. o o s o o o a0 s o o s o Adhesion between cohesive soil and the
a back of the wall

S A IR Cohesion equal to 100 psf

EA’ E_'A: .......... Active force exerted by the wedge

E_'A nnnnnnn e e o o o e Active resistance due to cohesion and

surcharge

D Passive force exerted by the wedge
E:P ............ . Passive resistance due to cbhesion

F . ...... e e e e e . Total internal force due to friction in

cohesionless backfill

o s e s e e e e e e e Internal force due to cohesion in cohesive
backfill '

F'Ule o v oo v v o o v o Internal force due to friction in cohesive
backfill

,h ... .........  Heightof retaining wall

H

K ......... c e e Ratio between <, and c¢

K Coefficient in Coulomb's equation
P

Active earth pressure on retaining walls
with cohesionless backfill or sum of
Pl and P_'Al in cohesive backfill.

P! o s s e s e e e e s e - Component of active earth pressure on

retaining walls due to cohesion and
adhesion

xi



Pt

W
Z

s o o e

oooooo

------

ooooo

-------

a, Ay -

A A P P

Cl/l,

Uos @15 Qg o o o o s

oooooo

) u © e o © o e @ 0 o

oooooooooo

Component of active earth pressure on
retaining walls due to friction

Passive earth pressure on retaining
walls with cohesionless backfill or sum
of P%) and Pb’ in cohesive backfill

Component of passive earth pressure
on retaining walls due to friction

Component of passive earth pressure
on retaining walls due to adhesion and
cohesion

Active stress on an element adjacent
to the wall

Passive stress on an element adjacent
to the wall

Surcharge
Weight per unit of length
Arbitrary depth

Angles

Inclinations of the slip line and its con-
jugate with respect to the surface of a
sloping semi-infinite cohesionless
mass, in the active and passive cases.

Inclination of semi-infinite soil mass
with respect to the horizontal

Unit weight of soil
Angle of wall friction
Unit strain

Angles

Total normal stress
Shearing stress

Angle of internal friction or of shearing
resistance

xii



-------------

-------------

------------

ooooooooooooo

.............

Slope of the slip line with respect to
the horizontal in a simi~infinite slop-
ing cohesionless mass

Slope of the slip line at the toe of the
wall, with cohesive backfill, in the
active case

Slope of the slip line at the toe of the
wall, with cohesionless backfill, in
the active case

Slope of the slip line at the toe of the
wall, in the passive case

Angle

‘xiii



CHAPTER I

INTRODUCTION

Earth pressure problems encountered in engineering practice
are concerned with the determination of internal stresses acting on the
soil masses or the stresses between the soils and the contiguous
structures.

The major purpose of this thesis is to deal with a direct solu-
tion of the lateral earth pressure on retaining walls holding either
cohesionless or cohesive soils. The work will be limited to the case
of a rigid wall that will undergo only rotation about its toe.

A historical review of the concepts of earth pressure theory
will be helpful in bringing up a wider and clearer picture of its present
state of development; also analyses and comparisons of the advantages
and disadvantages of the various methods will be facilitated.

The first classical method in earth pressure theory was pre-

(1)

sented by Coulomb'™’, 1776, who assumed that the lines of rupture
are straight, and that the shearing resistance: T = c + po, where u
equals the tangent of thg apparent angle of friction.

In 1857, Rankine(z) investigated the conditions of equilibrium
by considering an element from a semi-infinite soil mass which is
subjected to uniform deformation in a direction parallel to the surface
of the mass. A‘lssuming a straight strength line, he was able to form-

ulate the state of failure (plastic equilibrium) for active and passive

pressures.



Kb'tter(?’), in 1892, derived a differential equation expressing
the stresses along a curved surface of sliding in cohesionless masses.
But the difficulties encountered in solving this equation under specific
boundary conditions madé its application rather impractical.

Jaky(4) (1936) showed that Kotter's equation is also valid for
cohesive soil, whereas Ohde(5) (1938) and Hansen(e) (1953) used
the equation to determine the distribution of horizontal soil pressure
on a yielding vertical wall.

The theory of plasticity was first applied to soil by Prandtl(”)
(1920); using Kotter's equation and assuming the soil to be weightless,
he found the rupture-figure consists of a system of straight lines
through the apex and a system of logarithmic spirals with the apex
as their pole. Recently, with the progress accomplished in the field
of plasticity, many investigators, including Sokolovski(g) (1960),
Freudenthal(g) (1950), Nadai(lo) (1950), Drucker and Prager(ll)
(1950-51), have applied the theory of plasticity to earth pressure and
foundation problems.

The work mentioned in the preceeding paragraphs was theoretical,
For experimental studies much credit should be accorded the remark~-

. able work done by Terzaghi(lz) (1934, 1936), Tschebotarioff(l?’)
(1948-51) and Rowe® (1952),

In the literature of earth pressure theory, the names of many
other contributors appear, but much of the work was inspired by the
efforts of those mentioned above, who made important contributions

in the area of study embraced by this thesis.



CHAPTER 1II

METHODS OF CALCULATING EARTH PRESSURES
ON RETAINING WALLS

The different methods used in earth pressure calculations can
be classified into three major groups:

1. Extreme method

2. Theories of plasticity

3. Empirical methods

2-1. Extreme Method

The extreme method is based on the conditions of static equi-
librium of a sliding wedge, with the assumption that the inclined
boundary of the sliding wedge is straight, or a circular or spiral
curve.

In the extreme method, the active pressure is the maximum

lateral pressure obtained from the many trials investigated for failing

wedges involving different assumed failure surfaces as the wall yields;

while the passive pressure is the minimum lateral pressure obtained
similarly as the wall rotates toward the soil, attempting to displace it.
It is essential to note that the unknown stresses along the
failure line do not enter into the moment equilibrium equation when
assuming a spiral failure line because the lines of action of these
stresses pass through the pole of the spiral and thus the number of

unknowns is reduced to make the determination of lateral pressure

3



possible, Rendulic (15).

In the case of an infinitely distant pole, the spiral will tend
to become a straight line; this condition is essentially that considered
by Coulombt 1),

If the angle of apparent friction, ¥, is equal to zero, Fellenius(m)
postulated that the failure line will be a circular arc for which the
instanteneous center is the center of that circle.

(7 postulated that the failure

In the case where @ # 0, Krey
line will be partly a circle and the lines of action of the resultant
stresses arising from the normal and frictional components and
acting on this circular failure line, will be tangent to a circle, called

the friction circle, that has a common center with the circular line

of failure, and a radius of R sin .,

2,2. Theories of Plasticity

The principle is based on setting a criterion of failure in
addition to the two equilibrium equations of a stressed earth element.

(12) criterion of failure is based on a straight line

Rankine's
of failure, Pran.dtl( ) assumed spiral and straight failure lines.

Kotter was able to derive from the two equilibrium equations
and from Coulomb's( 1) criterion of failure, a general equation
expressing the variation of the stress at any given point on the failure
line, The possibility of making use of this equation depends mainly
on the boundary conditions at the ends of the failure line.

Jaky(4), Ohde(5) and Frontard(ls) made use of Kotter's equation

in solving some particular problems.



Drucker and Prager(ll) proposed a special theory of plasticity
where the actual stresses should fall within a certain interval, the
limits of which can be determined by means of a stress fieid called
a statically admissible stress field and a velocity field (strain rate

field) called a kinematically admissible velocity field,

2.3. Empirical Methods

These are based on model testing, where the pressure on the
wall could be measured and the shape of the rupture line could be
observed under actual loading conditions. Also some charts for the
calculation of earth pressure were suggested by P'eck(zo) having a

partly theoretical, partly empirical basis.

2.4, Limitations of Known Methods

2.4.1, Extreme Method'

The error introduced by using Coulomb's method, which
assumes a straight line of failure, is small when calculating the active
pressure; but the error becomes large and on the critical side when
dealing with the passive pressure.* Moreover, Coulomb's method
does not allow the location of the pressure center nor that of the
instantaneous center to be determained,

16)

The method proposed by'Fellenius( is based on the assump-
tion that the angle of apparent friction is zero and that the line of

failure is a circle. The instantaneous center of the earth wedge is

¥K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956)
p. 107.



the center of the circle x}vhereas the center of rotation of the wall is
assumed to be the projection of the instantaneous center on the plane
of the wall. This method will allow the‘ location of the pressure center
but it is limited by the major assumption that © = 0, and by the fact
that the pressure distribution cannot be determined.

Rendulic's method differs from that of Fellenius in that
Rendulic considered the case of © # 0 and used a spiral curve for
the line of failure. Thus, he was able to eliminate the moment of the
resuitant normal stress and frictional component; and the moment

due to the cohesion along the spiral curve was determined to be:

_ C 2 _ 2
Mc T 2tan® (rl I'O)

where r., and r, are the radial distances from the pole to the two

1
extreme points on the spiral.

.The disadvantage of this method is that it does not establish
any definite relation between the spiral failure line and the center of
rotation of the wall, Also the pressure distribution on the wall is
not well determined.

The three methods described above are trial methods in which
the active pressure is determined from the maximum point of a curve
formed by plotting the results of all trials, While the passive pressure
is similarly determined from the minimum point of the curve derived

from passive pressure trials. These procedures are reliable, but they

are lengthy and time consuming.



2.4.2. Theories of Plasticity

rI.‘he drawback in the theory of limit analysis presented by
Drucker, Hodge and Prager(lg) is that the result obtained doés not agree
at all with the actual pressure. This discrepancy is due to the fact
that small movement of the earth wedge will cause the shear strains
along the rupture line to be so large that the kinematically admissible
velocity field condition cannot possibly be satisfied.

However, the solutions by means of Kotter's equation as
treated by Prandtl, Jaky(4) and Ohde(5) are exact and valuable for
certain problems under specific boundary conditions. But in general

this method is so cumbersome that it is frequently impractical.

2.4.3. Empirical Methods

These methods are limited. 'They can be helpful in research;
but the fact that a laboratory model should be built for every specific
case, makes their use costly and impracticable.

It may be concluded that none of the present methods for the
determination of earth pressure is perfectly satisfactory. Each has
its advantages and‘ disadvantages. In practice an engineer will generally
prefer to use the Coulomb's method, the friction circle rﬁ'ethod or the

logarithmic spiral method due to their simplicity.



CHAPTER III

NEW METHOD FOR A DIRECT SOLUTION FOR LOCATION
OF CRITICAL SLIP SURFACES IN IDEAL SAND

3.1, General

In the calculation of active and passive earth pressures, the
soils engineer has, in the past, adopted a trial and error procedure.
This has been necessitated by the fact that the location of the critical
surface of potential failure is not known. Thus, the procedure con-
sists of determining the earth pressure associated with various
assumed failure surfaces and determining from the value so obtained
the maximum value indicated for the active pressure and the mini-
mum value indicated for the passive pressure.

The purpose of this study is to provide simple procedures
for eSta’blishing the most critical surface without resorting to trial
and error procedures. The methods to be used in accomplishing
this are theoretical in nature and based on certain simplifying
assumptions; but the derivations are, in some instances, tempered
by practical considerations. Once the configuration of the most
critical surface has been established, the friction circle method
may be applied in the customary manner to determine the magnitude

of the active or passive earth pressure,



3.2, DBasic Assumptions

The backfill is assumed to be homogeneous and isotropic,
and the horizontal strain, €, is assumed to be constant and indepen-
dent of depth in a wedge of soil adjacent to the wall. This will be
the case when a lateral support yields by tilting about its lower

edge, allowing the sand to fail in every point of the slidiﬁg wedge.

3,3, Slip Line for Active Pressure Due to Backfill with Horizontal

Surface

In the following investigations the case of a cohesionless
backfill with a horizontal surface will be studied first., An element
at the bottom of the .wall will be considered, and the orientation
of the failure plane will be determined at that point. From Rankine's
theory it‘is known that the slip line makes an angle with the horizontal
@

/2 in the case of active

pressure, The stresses acting on a soil element adjacent to the

surface of the backfill equal to 45° +

bottom of the wall will be as shown in Fig. 3.1b, where Pp is
the active stress on that element, 6§ is the angle of friction between
the wall and the soil, and Y is the unit weight of the soil,

If these stresses are plotted on a Mohr's circle, tbhe orien-
tation of the angle of failure at the bottom of the wall may be
readily determined.

The equation of the line of rupture OM  1is given by:

T=0tan ® (3.1) |
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Fig, 3.1 - (a) Slip Line in Cohesionless Backfill Due to Active Case
of Failure
(b) Stresses Acting on an Element of Soil at Point B

The following relations can be easily noted, Fig. 3.2:

OD:pA cos &

BD::pA sin 6

AD = OD tan @ = pp cos 6 tan @ (3.2)
while

OA = sAlr]?CP = pp cos 5 sec © (3. 3)

AB = AD - BD = pA((cosatanf;O - sin 6) (3.4)



A
" P, sin 8
A
| 5 Ka
0 E
‘PA Si.n 8
K
pl cos 8

- F1G. 3.2

COHESIONLESS SOIL: MOHR'S CIRCLE SOLUTION FOR ACTIVE
RESISTANCE AT THE BOTTOM OF THE WALL.

T1



since a tangent AG and a secant AC are drawn to the Mohr's circle
from the same point A, it is known that the tangent is the mean pro-

portional between the whole secant and its external segment. Thus:

AGZ = AB x AC

AC = AD+DC = AD+ BD
= pA(cos 5 tan ® + sin §)
Therefore,
AG = p, |/c0526 tan® o - sin’s (3. 5)
Now,
- - 2 2 .2
OG = OA + AG = pp(cos &6 sec @ +l/cos 5 tan™® - sin™ 6

and the radius of the circle, O'G, becomes after simplification:

o'G OG tan ©@

1

Li

Pa tan ® sec ® (cos & +-|/00526 - cosZQD ) (3.6)

Since point B  is the active pole the direction of the slip line at the
bottom of the wall is given by the slope of line BG.

-Considering triangle O'BE, it can be said that wAl’ the angle

of inclination of the failure plane at the bottom of the wall, is equal to:

bay = B- o (3. 7)

12

),
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But
%
B = 90 - - (3. 8)
and
sin o, = BD Pa ™ °
1 .
1 O'B Pp tan ® sec ¥ (cos 6 + \/cosé o - cosé ®)
Therefore,
a, = sin_l sin & cos QS > (3. 9)
tan @ (cos & +Veos 5 - cos O)
But
a + afz = 90 -0
then
a, = 90 - © - sin ' sin 6 cos — (3.10)

tan @ (cos 6 +Vcos26 - cos ¥)

Substituting @, from (3.10) in Eq. (3. 8) and substituting the

2
value obtained for f into Eq. (3.7) and solving for ¢A1:

=1 sin & cos ©

1
Uy, o= (45 +%) - = si : (3. 72)
Al 2 2 tan @ {cos & +lfcosdé - coszqo)
Let:
o = 5 sin ! Sin 6 cos © (3.11)

tan ® (cos & +Vcos2 5 ~ cos2®)
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then

Uy = (45+°32)-w (3. Tb)

A few important conclusions can be drawn from Eq. (3. 7a):

1. If the angle of wall friction, &, is equal to zero, the angle

®
Ua1 %

line and the Rankine value of the earth pressure becomes identical

is equal to 45 + which means that the slip line is a straight

with the Coulomb value.

@
79

line can no longer be a straight line. It is actually composed of a

2. If 6 #0, then tIIAl is less than 45 + and the slip

straight portion CD, and a circular portion BC as shown in Fig. 3.1a
3. Referring to the graphs in Fig. I¥ it can be observed that

the relation between w and & is approximately linear for values of

®
<
6 /2

the rate of change of w increases when & increases. Therefore,

Beyond that, the relation becomes nonlinear, indicating that

when & exceeds about -;)-CP , tIIAl begins to decrease rapidly. Terzaghi®**
has called attention to the fact that when & gets large the failure sur-
face cannot be approximated by a straight line. If Coulomb's method
is used to determine the active earth pressure when & is large, the
results will be inaccurate. According to Terzaghi, the results will
be on the unsafe side and the error may exceed five per-
cent.

4, It can be observed for cohesionless soil that the slope of

the slip line at the bottom of the wall is independent of the depth of

3%*
All figures with Roman numerals are presented at the end of

of the thesis.
*#K. Terzaghi., Theoretical Soil Mechanics. (New York, 1956)

p. 107



the wall., This invariant property will allow the pressure distribution

on the wall to be accurately determined.

Method for Constructing the Slip Line

Referring to Fig. 3.3, the known properties of the slip line
are as follows:

1.  The angle that the slip line DC makes with the horizontal

is equal to 45 + % s

the same angle with the horizontal.

and the conjugate of the slip line, AC, makes

2. The portion of the slip line above AC is always straight

since the zone of plastic equilibrium includes an active Rankine Zone

15

whose inclined boundaries rise at an angle of 45°+ % to the horizontal.

2
3. The angle wAl’ that the slip line makes with the horizontal

at the boftom of the wall is known irrespective of the height of the wall,

A D

5 S

o <+ 45+/2
E'\ \ -
AN

\ ~
VAL \\ C M
T\ -
\ X w —
- 15+ 9
B 'Alp‘ /9

Fig. 3.3 - Method of Constructing the Slip Line for the Case of
Active Pressure on a Retaining Wall with Cohesionless
Backfill
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Thus, the problem is to find a slip line that fulfills these
specific requirements:

1. The straight portion DC should be tangent to the curve
BC at point C.

2. Point C should be on the conjugate of the slip line, where
AC 1is a unique line of a constant slope because A is a fixed point.

3. The curved portion of the slip line will have BM for a
tangent at point B, where the inclination lel of BM is already
determined.

For the curved portion of the slip surface, there will be only
one circle that satisfies the above conditions. Even though an infinite
number of circles may be passed through two points, there will be
only one for which the tangents at B and C, respectively, have the
slope angles lerl and 45° + %

The location of point C can be determined quite easily from

the geometry of the problem.
/DEM = 45 + % -
substituting for lel from (3. Tb):

V=45 e = a

LDEM = 45 + 5

Since EC and EB are tangents to the circle they are equal in length;
thus, triangle EBC is isosceles and the two angles EBC and ECB
are equal,

Then, since

/CBE = /BCE = 3, (3. 12)
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point C can be located on AC by drawing line BC that makes an

angle 92— with the tangent BM.

The center of the unique circle can be located by finding graph-
ically the point of intersection of the bisector of chord BC and the
perpendicular to the tangent at point B.

Mathematically, the value of the radius of the circle can be
determined from triangle OBC, Fig. 3. 3:

R = —BC_ (3. 13a)

. w
281n—2-

But it can be proved that

sin (45 - %)
BC = h————=
CcOSs (CP "g)

Therefore:

L sin (45 - %)
R = o (3. 13b)
2 ) LW
cos (¢ - 5) sm-z

3.4. Slip Line for Passive Pressure Due to Backfill with Horizontal

Surface

The case of a cohesionless backfill with a horizontal surface
will be first investigated. From Rankine's theory it is known that
the slip line makes an angle with the horizontal equal to 45 - C%
in the case of passive pressure,

If a soil element adjacent to the bottom of the wall (Fig. 3. 4a)

is taken, the stresses acting on it are as shown in (Fig.. 3.4b), where
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pp is the passive siress and 6 is the positive angle of friction bet-

ween the wall and the soil.

I TR

. _ @
45 /2

Slip line —
YH

+8 %: -l Sliding wedge

cos 6 —-——-r-‘
pp

e - sin 6
Pp

i
| et anmrimne cos 6
\ | pp

B (a) p.. sin & <=

P T (b)
o

Fig., 3.4 ~ (a) Slip Line in Cchesionless Backfill Due to Passive Case
eof Failure
(b) Stresses Acting on an Element of Soil at Point B

If the siresses are plotted on a Mohr's circle, as shown in
(Fig. 3.95), the orientation of the angle of failure at the bottom of the
wall may be determined.

From Equations (3.9) and (3.10), it can be noted that a; and
a, are independent of the depth 2z, and they are only dependent on
® and 6.

Point Pp is the pole of the circle and thus PpF is the fangent
to the slip curve at the bottom of the wall, and, indeed, at every point

along the wall for which z > 0, From the geometry of the Mohr's

circle, it can be stated that:
%
LCP F =
P 2

whereas A.C PpD = §.
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-
A \ —
% G \\\
. A
\ A
/ | \
/ |
B
7 .
¢ / T hy “ |
Od 6 1 1 ﬁ . \ l n -G
o
1 A /01 g
/
‘ ,:/
r/
\ ) |/
\D / ! S
N/ X P
— | - -
YH
pp cosl|d
Fig. 3.5 - Cohesionless Soil: Mohr's Circle Solution for Passive
Resistance at the Bottom of the Wall
“2
Therefore, llfp =5 -0
Substituting for a, from Equation (3. 10), it follows that
- ©
1lfp-(45--2)—6-w (3. 14)

where llfp is the inclination of the tangent to the slip line at the
bottom of the wall for the state of passive pressure, and w is the

angle obtained from Eq. (3.11)., From Eq. (3.14), it may be observed



that dfp can have either a positive value (i.e. the slip line is above

©
3

slip line at the bottom of the wall swings below the horizontal) when

the horizontal) when 45 - > & + w, or a negative value (i.e., the

45—92<6+w.

When 45 - %

slope at the bottom of the wall. If dip, equation (3. 14), is plotted

=8 +w, dfp = 0, and the slip line has a zero

versus 6, for every ®, as in Fig. III, it may be seen that the curve
is a straight line when & is less than about C% and then the curve

" becomes nonlinear. This may explain why Coulomb's method in the
case of passive pressure yields result having increasingly excessive
error on the critical ;side, when 6 is larger than C% According to

Terzaghi, the percentage of error may become as great as thirty

percent,

Method for Constructing the Slip Line

The general procedure used in Article 3. 3.1 for the state of
active pressure will be followed, except that dfp replaces dIAl,
and the:inclination of the slip line with the horizontal surface is

o]

45" - C% Figures 3.6, 3.7 and 3. 8 illustrate the procedure.

Case 1: dlp Positive

LMED=45—g-¢p=5+w

Therefore:

£ EBC =% (5 +w)

Angle dfp can be obtained from Fig. IIIl and point C can be located on

AN by measuring from BM an angle equal to %(6 + w).

20
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¥45-_ 45>-f_2P 7y
\\
\ ‘

e <45 - % - 4M

Fig. 3.6 - Method of Constructing the Slip Line for the Case of Passive
Pressure on a Retaining Wall with Cohesionless Horizontal
Backfill, Where lhp Is Positive

The radius of the circular curve is

BC

R =
2 sin (252

(3. 15)
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Method of Constructing the Slip Line for the Case of Passive

Fig, 3.7 -
Pressure on a Retaining Wall with Cohesionless Horizontal

Backfill, Where llip =0

Case 2: ¢p Equal to Zero

BC (3.16)

.1
2 sm-2-(45 —%)

R =
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Fig. 3.8 - Method of Constructing the Slip Line for the Case of Passive
Pressure on a Retaining Wall with Cohesionless Horizontal

Backfill, Where lpr Is Negative

Case 3: llfp Negative

= @
LCEN—45 /2+lbp

(90 - ®) - (5 + w) (See Fig. 3.8)

Therefore:
/_ CBE = %LCEN = (45 - %) - -;—(6 + ©)

The radius of the circular curve is

_ BC
R = 5T
2 sin {(45-/2 - 3 (5 +w)]

(3. 17
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3.5.  Slip lLines in Semi-Infinite Inclined Cohesionless Masses

To investigate the Rankine states in an inclined semi-infinite
cohesionless mass where [ < ®, the conditions for equilibrium of
the prismatic element shown in Fig. 3. 9a should be examined.

The total vertical force acting on the base of the element is
equal to Yz cos B and its normal and tangential stress components
are respectively equal to Yz cos2 B and vz sin B cos B.

In Mohr's diagram (Fig. 3. 9b), the lines OM and OM' repre-
sent the lines of rupture. The state of stress on the base of the element
at a depth z below the surface is represented by the point C where
OB = vz coszB and CB = vz sin 8 cos B, then line OC will make
with the horizontal axis an angle equal to f.

There are only two circles that can pass through C and be
tangent to the rupture lines.

The circle with center O1 will represent the state of stress
at the instant of active failure, while the circle with center 02 will
represent the state of stress at the instant of passive failure.

Point PA will be the active pole, while Pp will be the passive
one.

For the active case the surfaces of shear will be parallel to
PAE and PAG, while for the passive case they will be parallel to
PpF and PpH.

The analytical solutions which follow yield expressions for

A P

the angles oz‘?, @y, @ and dls, between the slope surface and the

slip surfaces, independently of z.



A P
al az

YZ sin Scos 3 ’ o

o3

Y2 cos’ 3

Fl6. 3.9

SEMI-INFINITE COHESIONLESS MASS WITH INCLINED SURFACE. (a)STRESSES AT
BOUNDARIES OF PRISMATIC ELEMENT. (b) GRAPHIC REPRESENTATION OF STATE OF
STRESS AT FAILURE.

G¢
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The lines AE and AF are tangent, respectively, to circle

O, and 02, and they are equal, since each is equal to VAC x AD.

1
AC = vz cos B(cos Btan ® - sin fB)
AD = vz cos B(cos B tan ¥ + sin B)
Therefore,
AE = AF = \/(Yz coS B)2 (coszﬁ tan2 P - s:'Ln2 B)
= vz cosz B l/’can2 P - tan2 B (3.18)
But:
OA = Yz%g—:——chg
Then, OE = OA - AE
_ coszﬁ - 2 V 2., _ 2
Yzcos % vz .cos” B |tan"® - tan” 8
= vz coszﬁ[sec ©® - Vtan2 P - ’can2 B ] (3.19)
and

1E = OE tan .® = vz cos2B tan Cp[sec ®© - ‘/tanch - tan2 B]

A_1-x_1 i |
d) =5 EC —.i(AEolB /BO,C)
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LetZ_BOlc = Vv, it follows from triangles 01CB and OEO1 that:

v = sin—l . Yz sin B c:osﬁ2 :
Yz cos” B tan CP]:sec 0 - Vtan ¥ - tan B:l
- sin” ! fan 8 (3. 20)

tan CpLsec P - Vtan26p~-tan2 BJ
andLEolB = 90 + O

Therefore:

aAl %(90 + @ - sin” ! tan B

tan CpLsec ¢ - Wanz ¢ - tan® B:]

A tan B

oy = (45 +£—2p)——;-sin-1 ; (3.21a)
tan Cp[sec P - [H:an2 ® - tan B]

But:

A A

al + a2 =90 + ¢
Therefore:

=45+ 8+l ] tan 5

2 2 2 tan Cp-l_sec Q- Vtan2 Q- tan2 B

(3.22a)

since both a‘? and a% are independent of z, it is obvious that CF
makes with OPp an angle equal to a‘?. Therefore, it is easy to pro-

ceed to consideration of the passive case.

LOFC=>\=d1I
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because in the same circle, if inscribed angles have the same arc,

they are equal. Also,

X=a‘?+3—cp

Therefore:
aI1)=(45—%)+B——;-sin tan B
tan CpLsec ® - l/’can2 ® - tan B]
(3.23a)
and
a§=(45-%0)—3+%s1n_1 tan B s >
tan Cp[sec ® - %an ® - tan B]
(3.24a)

Referring to Fig. 3.9b it may be seen that the angle 4!1

that PAE makes with the horizontal is constant, being independent

of the location of P, on.line OC. By reasoning identical to that

A
- which led to the expression in Eq. (3. 7b), except that 8 replaces §,

it is found that

-1 sin B cos @

= (45 + Cp) in - -
tan @ (cos B + Vcos B - cos™ ©)

-g (3.25)

Referring to triangle OPAK, 411 is an external angle, and

thus it is equal to the sum of non-adjacent internal angles

a‘? =V, -8 (3.21b)

)
il
©
o
+
S
1
S)

(3. 22b)

P
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Equation (3. 23a) may be written in the following form:

+§=(45 +-c22)--;—sin_1 tan § =5 5
tan q{sec Q- Vtan ®-tan B

a/P
1

"4
in which the first three terms on the right side represent the expression

for afp{ as shown in expression (3. 21a).

Therefore:
P A _
al - al + B Cp:

and substituting for aA

; from (3. 21b)

P

q

=V, - BHB-0=4-0 (3.23b)

Also, from Fig. 3.9b

P _ P
a/2—90 $-ay,

from which (using Eqg. 3.23b)
o

P _oon o an -
5 =90-9p-{ +9=00-4 (3. 24D)

Studying Fig., IV to 'VII,one can observe that the angles of
failure are linearly related to B up to about B = c% , whereas beyond

that 1limit the relation becomes nonlinear.

3.5.1. Application to the Slip Lines for.Backfills Behind Retaining . Walls

in the Active Case
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The procedure used previously will be followed, with only two
modifications:
(1) The angle that the slip line makes with the sloping surface

of the backfill should be equal to aA

1 which can be obtained from

Fig. IV.

(2) The angle that the conjugate of the slip line makes with
the sloping surface should be equal to afé which can be obtained from
Fig. V. |

The procedure used to plot.the slip line is illustrated in

Fig. 3. 10.

F1

Fig. 3.10 - Method of Constructing the Slip Line for the Case of Active
Pressure on a Retaining Wall with Cohesionless Sloping
Backfill
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A
t = -
L. F'EM=a +8 Yaq

Through point E' draw the bisector E'S', and then through B draw
BS parallel to E'S'. The point of intersection of BS with AN is
C which is located at the juncture of the straight portion of the slip

line with the circular curved portion.

BC
251“%@‘? tB- q’Al]

R = (3.26)

3.5.2. Application to the Slip Lines For Backfill Behind:Retaining Walls

in the Passive Case

In Article 3.5, expressions for al_; (3.24a, b) and its conjugate
alzl) (3.23a, b) were developed. These above angles can be obtained
respectively from Fig. VI*and VII.¥

The procedure for drawing the slip line is similar to that dis-
cussed for the case of a horizontal backfill surface. Since QJP may
be either positive, zero, or negative, the expression for R varies

accordingly as follows:

R = BC when V>0 (3. 27a)

. L P
2s1r1-2—(a/2 + B - QJP)

R - BC when Up =0 (3. 27b)

.1, P
2s1n-§(a/2 + B)

_ BC _
2sin-;-[a12° B+ Iqxpu

when QJP <9 (3.27c)

* AL figures in Roman numerals are presented at the end of
the thesis.
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Fig. 3.11 - Method of Constrﬁcting the Slip Line for the Case of Passive
Pressure on a Retaining Wall with Cohesionless Sloping
Backfill



CHAPTER IV

NEW METHOD FOR A DIRECT SOLUTION FOR LOCATION OF
CRITICAL SLIP SURFACES IN COHESIVE SOILS

4.1, Basic Assumptions

The cohesive backfill is assumed to be homogeneous and iso-
tropic, and the horizontal strain, €, is assumed to be constant and
independent of depth in a wedge of soil adjacent to the wall, This will
be the case when a lateral supportyields by tilting about its lower
edge, allowing the clay to fail in every point of the sliding wedge.
Also, it is assumed that the adhesion between the back of the wall and
the soil is equal to the cohesion of clay. In case the cohesion is
larger than 1000 psf, it would be reasonable to limit the adhesion to
1000 psf, as suggested by the British Civil Engineering Code of
Practice No. 2; this could be explained as a result of less intimate
adhesion between the wall and the clay as the clay gets stiffer. Also,

#*

according to Terzaghi , in the case of active pressure, the maximum

stable height of an unsupported vertical bank which has been weakened

C

@
T tan (45 + %).

by tension cracks is 2.67

4.2, Slip Line for Active Pressure Due to Backfill with Horizontal

Surface

A soil element taken at the bottom of the wall is considered to

3
K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956),
p. 154.
33
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be in equilibrium, see Fig. 4.1la, b, and the stresses are plotted on
a Mohr's circle diagram as shown in Fig, 4.2. Tﬁe orientétion of the
failure surface at‘ the bottom of the wall will be determined mathe-
matically, but in practical problems a graphical solution is recom-
mended for reasons that will be mentioned later.

c, is the adhesion between the clay and the back of the wall
and it is equal to ¢, Pa is the active stress, and 6 is the angle of
friction between the wall and the soil.

The equation of the line of rupture MN is given by:
T= ctotan ® 4.1)

The following relations can be easily noted:

ED

:pAsmé ,

B Yh
h Sliding wedge
& c, t P sin 6 =¥
TP cos &
A Slip line Pp cos b Pa

——7\'_’ca+pA sin &

Yh
(@) (b)
Fig. 4.1 - (a) Slip Line in Cohesive Backfill Due to Active Case of

Failure
(b) Stresses Acting on an Element of Soil at Point B
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£

c/tan ©
Fig. 4.2 - Cohesive Soil: Mohr's Circle Solution for Active Resistance
at the Bottom of the Wall
EB =c¢
Therefore:
BD =

c + pAsiné

AD = (ﬁ%_ﬂﬁ + p, cos 8) tan ¢
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whereas:
AB = AD - BD
= Py (cos & tan ® - sin §)
and |

1

_ C
MA = (————tan 5 + Pa cos 6)————COSCp

If a tangent and a secant are drawn to a circle from the same point,
the tangent is the mean proportional between the whole secant and its

external segment. Thus:

AG? = AB x AC

where
AC = c + pp COS & tan @ +c +pAsin6
=2c+ Pp (co‘s & tan ©® + sin &)
Then
AG = VZpA ¢(cos & tan ® - sin §) + 'p‘j(cosz 5 tan2 ® - sin2 )

After simplifying:

AG = sec Cpl/pAé‘(sin 2 cos & - 2 cosch sin 6) + 'p'z(cosz 6 -~ cosch)
(4.2)
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MG = MA + AG

=S cosb
sin® = PA Cos®

2 : 2
L V’pAc”(sin 2¢p cos & - 2cos ¥ sin 6) +p§(cos 5 - cos2 )

* cos ¥
(4. 3)
Let
o 2 . o2 2 2
B = |/ p c(sin 29 cos & - 2 cos ¥ sin 8)+ pj(cos & - cos ¥)
(4. 4a)
. Then:
O'G = MG tan @
c ., cos b sin® sin ©®
=S — +p + B (4.9)

cos P A cosztp cos @

Sj_n o = .E.Q
1 O'B
A . . 2
(c + B, sin 6)cos™ @
T Véos ® + 'p’A cos 6 sSin ®+ B sin o
Therefore:
o . 2

o (c + p, sin 6) cos @

@ TP TGs o F pA COS 6 Sin ® + B sin @ (4. 6a)

From Fig. 4.2 it is observed that:

90+Cp=2¢A+a1
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Therefore:

¢A=45+%-%a,1 (4.7)
But

O'M = —= 1 cosé+yh)= MG

tan® +t5(Py cos ©

Substituting for MG from Equation(4. 3k

c c cos 6

1, )
—tanﬁp + 5 (pA cos & + vh) = SIn® cos® c052Cp A

——1—2— VpAc(sm 2 cos 6 - 2cos ® sin 6) + pA(c0526 - cos Cp)
cos

Rearrange terms, and write the above equation in the following form:

2 cos2
P [ (3 + sin cp)(l - sm ®) - cos CP]

A
4
+ pA [sm (2¢ - 6) - sin 6 - -(ﬁ%—s—lg—ch (1 +: sm ®») +-Y—h cos §6(1 - sin Cp)]
Yh 2 C 2
- [—2— cos @ - = sin ZCp] =0 (4. 8a)
Denoting:

2
2
= C—045——6 (3 +sin ®)(1 - sin2 ®) - cos2 ¢p

op
1

4
sin(ch - 8) - sind - EQiiszsf—i—w (1 + sin’ )+1Ecos 5(1 - sin ©) §(4.0a)

d = (Y—h cos Cp——z— sin ZCp)
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Equation(4. 8a)may be presented in the following form:
2
apA+cpr-d=0

Solving for Pa’

_ 2
-cb + Vcb + 4 ad
Py = ga ) (4. 10a)

For physical reasons the positive root should be used. Therefore:

2
-cb + l/cb + 4ad
Pp = 2(5 ) (4. 10b)

Pp calculated from (4. 10b) may be substituted in Equation 4. 6a
to determine @, - Then the problem of getting QJA can be easily
handled by Equation {4. 7).

Equations (4. 9a) may be expanded in series form; neglecting
terms of the third power and above since in cohesive soils, the angles

® and & are small, usually less than 30°, Thus:

~

a =g (207 -3 - 1)
- - Yh
b=~ 26+ 2 > (4. 9b)
Yh)? 2 2. 2
= (1-20%) - yhe (1-9%) + ¢

Also, Equation (4. 4a)may be expanded in series form:

B-= |/2 pp c(®-6)+ pi(cp2 - 62) (4. 4b)
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Then, from (4.6a), @, can be written in the following form:

_; (e + po)1 - 97
ol = sin > (4. 6b)

c(1—cPT)+(%+B)w

Note that ® and 6 should be expressed in radians.

It is apparent that the numerical calculation for le are tedious
and cumbersome, but with the use of the computer a solution may be
obtained quite easily. Another mathematical solution- for‘AIA is pre-
sented in the Appendix.

A graphical solution for le will be discussed, as a background
for the method followed to tabuléte values of dJA. The problem encoun-
tered is that, starting from the stresses acting on the particle shown
iﬁ Fig. 4.1b, the equivalent Méhr's circle cannot be drawn directly
to satisfy the failure conditions. This is due to the fact that Pp is
unknown. The stress Yh is known, and it can be located on the hori-
zontal axis, while c + Pp sin 6 1is unknown but mwst correspond to
the ordinate at the intersection of Mohr's circle and line QS which
makes an angle & with the horizontal, see Fig. 4.2. Point L., which
represents the state of stress on the horizontal faces of the particle,
Fig. 4.1b, is antisymmetrical to point C, which represents the state
of stress on the vertical faces of the particle. Point B, which is the
image of points L. and C, is thbe active pole and has to be simultaneously
on the Mohr's circle and on line QS.

There will be an infinite number of Mohr's circles that satisfy
the following conditions:

() Their centers are located on the horizontal o-axis.
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(b) r.I‘hey are all tangent to the rupture lines.

(c) Point J falls within the circles.

From all of these circles there is one and only one Mohr's
circle satisfying the above conditions which also fulfills the condition
that point B is the image of point L. Point B, as previously stated,
has to lie on the line QS.

However, in spite of the fact that there exists a unique Mohr's
circle that represents the state of failure for the known stress Yh,
this circle cannot be readily drawn.

A general method will be presented to illustrate the construc-
tion of the circle for any value of Yh.

Through point M, Fig. 4.3, draw the two rupture lines MN
and MN' making angle ® with the horizontal and draw three circles
far apart and tangent to the rupture lines. The center of the smallest
of the three circles should be chosen such that this circle does not
iintersect the 7-axis. The reason of this condition will be clarified in
the Appendix.. Through point A (where OA = c) draw line AD such
that it makes angle & with the horizontal; this line cuts the three
circles respectively at B, C and D. The respective images of these
three points on the circles will be point E, F and G.

The line joining E, F and G is extremely close to a straight
line. An analytical proof with a numerical illustration are presented in
the Appendix. This locus of the images of the points of intersection
of the 6-line with the Mohr's circles deviates negligibly from a straight

line when it gets very close to the T-axis.
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FiG. 4.4

METHOD OF DRAWING THE UNIQUE MOHR'S CIRCLE REPRESENTING
THE STATE OF ACTIVE FAILURE AT THE BOTTOM OF THE WALL.
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If, for given soil properties, the rupture lines MN and MN',
and the line AS, are drawn as shown in Fig. 4.4, it will be enough
to draw two circles far apart, tangent to the rupture lines. On these
two circles locate the images of B and C, which are points D and
E. The line connecting D to E is the locus of all the images of Yz
on the corresponding circles,

Let a certain stress Yz be given, locate that value on the
horizontal axis, e.g., point F. Then the vertical projection of F on
line DE will be point F' and the horizontal projection of F' on line
AS is point G.

Now, the unique Mohr's circle that passes through G and F!
and is tangent to the rupture line may be drawn. This circle is con-
stru\cted by extending the bisector of line GF' until it intersects the
horizontal axis at point O'. Point O' will be the center of the
required circle whose radius is O'G. The angle QJA that the tangent
to the slip line makes at the bottom of the wall in the active case can
be measured directly from the sketch, as shown.

Referring to Fig. VIII to XII, it may be observed that QJA is
affected directly by the height of the wéll and the adhesion of clay.
The effect of these two variables becomes negligible if the height of
the wall exceeds about twenty-five feet. Also, in the case of large 6
the QJA-curve becomes quite flat and the rate of change of IJJA with
respect to the height becomes almost zero.

Once ¢A is obtained from the graph, the. method of plotting
the slip line is as explained previously in section 3. 3, except that the
slip line should start from the bottom of the tension crack, see

Section 5. 4. 2.

44
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4,3. BSlip Line for Passive Pressure Due to Backfill with Horizontal

Surface

A mathematical derivation for V¥, where 11JP | is the inclina-
tion of the failure surfaces adjacent to the wall for the passive condi-
tion, can be accomplished in a manner similar to that used for the
active case. However, the resulting expression is so complex that
it is of no practical use; and a graphical solution for the procblem may
be made as simply as for the active case,

To get the angle of failure at the bottom of a retaining wall sub-
jected to passive pressure, an elem‘en_t of soil adjacent to point B can
be isolated. The -stresses acting on the element are shown in Fig. 4.5b.

A Mohr's circle representing the state of stress cannot be

drawn directly because pp is unknown. However, the problem may

. Yh
_l_—-L
+ sin 6
P Sliding wedge €a pp n
h| P P.. COS §———ie -————p_ cOS §
% P p
Ca +pp sin 6 T
oL | vh

(a) (b)

Fig. 4.5 - (a) Slip Line in Cohesive Backfill Dﬁe to Passive Case
of Failure; :
(b) Stresses Acting on an Element of Soil at Point B.
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pp cos &

Fig. 4.6 - Cohesive Soil: Mohr's Circle Solution for Passive
Resistance at the Bottom of the Wall

be solved in a manner similar to that used for the active pressure.

L.et MN and MN' be the rupture lines and let AS be the
line on which the shearing stress cy + Py sin 6 falls, see Fig. 4.6.
The line AS has an inclination & with the horizontal. The point on
the horizontal axis representing Yh has to fall within the respective
Mohr's circle. There exists an .infinite number of Mohr's circles
that satisfy the following conditions:

(a) Their centers are located on the horizontal o-axis.

(b) They are all tangent to the rupture lines.

(c) Point D falls within these circles.
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But there will be one and only one Mohr's circle that satisfies, in
addition to the above conditions, the property that the projection

of D on the Mohr's circle, that is D', is the image of B' with res-
pect to a vertical passing through the center of the circle. Point B',
the reflection of point B, is located on line A'S'. This additional
requirement is necessitated by the fact that equal shearing stresses
must act on.the vertical and horizontal planes, corresponding to D'
and B.

Though the Mohr's circle for a specific state of stress is unique,
its analytical construction .is difficult. Therefore, a graphical method
gimilar to the one described for the active case will be developed.

Through point M, Fig. 4.7, the two rupture lines MN and
MN' are drawn making angle ® with the horizontal. Then two widely
spaced arbitrary circles (i.e. circles O2 and 03) are drawn tangent

to MN and MN'. The smallest of the two, circle O should be

37
drawn such that it does not intersect the 7-axis. It can be 'found, as
shown in the Appendix, that if, through the points of intersection of

the &-line and the right side of the Mohr's circles, horizontal lines
are drawn to intersect the left side of these circles, the line joining
these left points is very closely a straight line. In the Appendix, an
illustration for the deviation of the locus from a straight line is shown
near the 7-axis, Since in the passive case, any Mohr's circle répre--
senting the state of stresses at the toe of a medium wall, does
not intersect the 7-axis, the assumption of a straight line locus, as

explained above, will hold then without any noticeable error. Thus,

line ED, Fig. 4.7, is the locus of points representing the state of
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| | FIG. 4.7 | -
METHOD OF DRAWING THE UNIQUE MOHR'S CIRCLE REPRESENTING THE

STATE OF PASSIVE FAILURE AT THE BOTTOM OF THE WALL.
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stress on the horizontal faces of particles at every depth.

If a wall having a height h is subjected to the passive pressure
of the earfh, the Mohr's circle representing the failure condition can
be drawn in the following manner: Point F lies at a distance Yh
from the origin O. Through F a perpendicular is drawn to intersect
ED at F'; then, a horizontal through F' is drawn to meet A'S' at
P, which is the passive pole of the Mohr's circle. The bisector of

P

F'PP intersects the og-axis at O1 which is the center of the required
Mohr's circle.

The angle that the tangent to the slip line makes with the hori-
zontal at the base of the wall is equal to dfP, shown in Fig. 4.7.

The dependency of dfP upon certain variables is shown in
Figs. XIII to XVII. It may be seen that wP decreases when &
.increases. Also le increases with increasing height of the wall;
but the rate of increase becomes negligible when the depth exceeds

about 20 ft. It is also worthy of note that dfP decreases when the

cohesion of the soil increases.

4,4, Slip Lines in Semi-Infinite Inclined Cohesive Masses

Fig. 4.8 illustrates the graphical method of determining the
state of stress in a cohesive inclined mass on the verge of active
failure. Let S be the inclination of the surface of the cohesive mass
with respect to the horizontal. As a practical measure, this study
will be limited to the case of B < o.

An eleme.nt of depth z is isolated as shown in Fig. 4.8a. All
the points on the Mohr's circles which represent the states of stress

on sections parallel to the surface at every depth z are located on
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line OS which rises at an angle B to the horizontal axis.
There exists a case for which the active pressure is zero,

corresponding to z_ = ES tan (45 + c%), (for explanation refer to

o Y
Terzaghi*). For depths less than z,, the active Rankine state
requires the existence of tensile stresses on the vertical plane,
whereas for depths greater than Z o5 the principal stresses are com-
pressive,

The active pole Py is located along OS, and the lines of
failure PAB and PAD make, respectively, the angles a/l? and aé\
with the surface of the slope. The angles a/ll:\ and a/? vary with
respect to z, as illustrated in Fig. 4. 9.

However, in the Rankine zone the curvature of the slip lines,
as well as their conjugates, is slight; and there appears to be little
practical value in obtaining their exact configuration, in so far as
applications to retaining wall problems are concerned. The negligible
effect of the curvature is illustrated in Fig. 4. 10. To facilitate solu-
tion, the slip lines in the active Rankine zone, OAGED, are approxi-
mated by a set of chords.

It was found that the change in slope of the slip line becomes
especially slight when 2z exceeds about 20 feet. Hence, it can be
assumed that since the total change in slope is small, no significant

error is introduced by replacing the curved line by an equivalent

straight line to facilitate the handling of the problem.

*
Karl Terzaghi. Theoretical Soil Mechanics. (New York,
1956), p. 38,
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—

Yz cos 8 sin B

O

(b) N!

Fig. 4.8 - (a) Stresses at Boundaries of Prismatic Element

(b) Graphic Representation of Active State of Stress
at Failure

Fig. 4.9 - Shear Pattern for Active State in a Sloping

Semi-Infinite Cohesive Mass
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The remaining part of the technique for drawing the final slip
line follows the procedure explained previously for retaining walls
with horizontal backfill,

To illustrate the reasonableness of using a.linear approximation
for a portion of the curved slip surface, a retaining wall 20 feet in
height is considered, having a backfill of clay that has the following

. 65=10°, B=10°, c =3001b/ft> and Y = 110 Ib/ft°.

o

properties: @ = 15
*
The depth of the crack, as suggested by Terzaghi , is taken as

1= L /
HC 2.67x v tan (45+/2) .

Thus,

300
Hé = 2.67x—mx tan (45 + 7.5) = 9.5

The inclination of the slip line and its conjugate will be determined

graphically at z = 9.5 ft, and z = 15 ft., as shown in Fig. 4.10.

Yz cos2B=110x 9.5 x (0. 985)°

Q
i

n
9 at z = 9.5
= 1010 1b/ ft
2 2
o, = Yz cos” =110 x 15 x (0. 985)
9 at z = 15'
= 1596 1b/ ft

From Fig. X, it is found that the slope of the slip line at the toe of the

wall is IJIA = 31. 20, whereas the siope of the line at depths of 9.5

*
K. Terzaghi. Theoretical Soil Mechanics. (New York, 1956)

p. 97 and 154.
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THE FOLLOWING VALUES OF THE SLOPES OF THE SLIP LINE AND ITS CON-
JUGATE AT DEPTHS 9.5' AND 15' ARE MEASURED OFF FIG. 4.10a.

ol = are gd <ea M
oy = 385 o =665 //
10°
DIRECTION OF
THE AVERAGE SLOPE
N
* \ —. . /.:
.o ~ L B ..
« — 0 N
N %
P

A NeAT

B DIRECTION OF THE AVERAGE SLOPE
(b) -
S

FIG _4.10

(a) GRAPHICAL DETERMINATION OF THE SLOPE OF THE SLIP LINE AT

POINTS D AND E; (b) METHOD OF CONSTRUCTING THE SLIP LINE FOR
THE CASE OF ACTIVE PRESSURE ON A RETAINING WALL WIiTH COHESIVE
SLOPING BACKFILL. '
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and 15' may be obtained graphically, as is illustrated in Fig. 4.10a.

Fig. 4.10b illustrates that the real curved slip line may be
rather closely approximated in the Rankine zone by means of a straight
line., Line OS' is parallel to AS which has the mean slope of OA
and AB. Also, line S'D is parallel to E'M', where the latter has
the mean slope of E'D' and E'F',

For the state of passive pressure, an approach similar to that
used for the active case will be followed, with required differences
being noted.

The Mohr's circle for the state of passive stress at depth =z
is shown in Fig. 4. 11b. It is apparent that all the points which repre-
sent stresses on sections parallel to the surface are located on line
OS which rises at an angle [ to the horizontal axis. The stresses
acting on the vertical faces must be larger than those acting on the
inclined faces of the element.

The passive pole, Pp’ is located on OS, and the lines of

1 2

with OS. These two angles vary with respect to z as shown in

failure PpD and PpB make, respectively, the angles aP and aP

Fig. 4.12.

From the preceding discussion, it may be concluded that in
the case of a retaining wall problem that portion of thé slip:line and
its conjugate which defines the passive Rankine zone will be slightly
curved, as is indicated in Fig. 4.12. An approximation similar to the
one used in the active case will be presented in order to simplify the
calculation of the passive pressure acting on a retaining wall with a

sloping cohesive backfill.
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Fig. 4.11 - Semi-Infinite Cohesive Mass with Iriclined Surface

(a) Stresses at Boundaries of Prismatic Element

(b) Graphic Representation of Passive State of Stress
at Failure

Fig. 4.12 - Shear Pattern for Passive State in a Sloping Semi-

Infinite Cohesive Mass
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Because of the complexity of the mathematical solutions of the
equations of these curves, the rise of the curve with r‘eSpect to the
" inclined surface will be determined graphically at different depths,
then the curved slip line will be replaced by broken segments as
shown in Fig. 4. 13b. This procedure illustrates that the curvature in
the Rankine zone is very small. Therefore, the curve represented
by the broken segments may be replaced by a straight line withou’c
introducing too much error.

The technique for drawing the curved portion of the slip line
is the same as that explained previously for retaining walls subjected
to the passive pressure of backfill having a horizontal surface.

To illustrate the method a retaining wall 20 feet high is con-
sidered, with a backfill of clay that has the following properties:

3

o

¢ =25, §=10", B= 10°,c.ﬁ="3001b/ft2, y =110 lb/ft
The inclination of the slip line and its conjugate will be deter-

mined graphically at: Zg = 0, Zy = 10', and Zg = 15', .as shown

in Fig. 4.13,
a 2 5 B o .
9.0 = Yz cos g=20 Llip = 12,4  from Fig. XVII
- 2 2 - 2
9.1 = Yz, cos B=110x 10x cos”™ 10 = 1065 1b/ft" -
2 2 _ 2
Goo = Yzzcos B=110x 15 x cos”™ 15 = 1600 Ib/ft

It can be seen in Fig. 4. 13b that the approximate slip line is
very close to the real one; and because of the advantage of the simple
calculations involved in working with straight surfaces, the approximate

representation is recommended.
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. F16.4.13a

GRAPHICAL DETERMINATION OF THE SLOPE OF THE SLIP LINE AT POINTS A, B
AND C' (SEE FIG. 4.13b)
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THE FOLLOWING VALUES OF THE SLOPES OF THE SLIP LINE AND ITS

P =325 ¥ = 325°

@Z-=0 :
. @ & =10 /' = 37.0° «h = 282°
: @z =15 o' = 37.75° o af = 2775°

R R

,/
y

\ ) RN e | -» 7
J_2 : APPROXIMATE
\ S ' S SLIP LINE PARA-
, AN " / LLEL TO A'C’
_9 -~ ’ '. DL' B” ‘ '//
.I_t_? Bl - G “:l ‘
- ) g .
e f S o
| Bl — | / ' . (XP“
- S _—T¢C {2
[4V] . ™ .
R Cr ; 4 S
RERY: B /,/ |
i » /
//
D %
FIG. 4.13b

METHOD OF CONSTRUCTING THE SLIP LINE FOR THE CASE OF
PASSIVE PRESSURE ON A RETAINING WALL WITH COHESIVE SLOPING

BACKFILL. ‘ -



CHAPTER V

NUMERICAL EXAMPLES

5.1. Problem No. 1 - Calculation of Active Earth Pressure

Exerted by a Cohesionless Levelled Backfill on Retaining Walls

Given: wall height = 16'
horizontal backfill surface

soil properties:

110 b/ £t°

o]

il

y
© =35

angle of wall friction

5,1.1., Coulomb's Method

K
* _ 1 2 A
PA~§YH sin @ cos &

where « is the angle that the wall makes with the horizontal (in

this problem o« = 900) and KZ is a coefficient obtained from graphs,

and H is the height of the wall.

4,

i
Karl Terzaghi. Theoretical Soil Mechanics. (New York,
1956), p. 80, formula (la) and (1b).
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Thus:

_ 1 2
PA——Z-X 0.11 x (16)" x

0.22
0.899

- 3.45 k/1. ft.

5.1.2, Slip Line Method

To be able to draw the slip line, it will be necessary to obtain

(o] (o]

w and ¥ for © =35 and & = 26 .
Al

From Fig. I and Fig. II it was found that:

oy = 50.57° and w =11,92°

The slip line was drawn according to the steps explained in Article 3. 3.
The friction circle method will be used to determine the active earth
pressure as shown in Fig. 5. 1.

The effect of the portion def may be represented by Rankine's
active pressure:

1 2 2
Ejp = 5 Y(ed)” tan” ;(45 - %)

The problem thus resolves itself into a study of the equilibrium of
the portion of the wedge acde.

At the point of failure the full frictional resistance of the sand
has been mobilized, and the resisting force at any point on cdf must
actat ® to the normal. On the cd portion of the slip line the resist-
ing forces must thus all be tangent to the friction circle whose radius
is R sin @

It will be assumed that the resultant of all the resisting forces

is also tangent to the ®-circle. This is not strictly true but is
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CALCULATION OF LATERAL EARTH PRESSURE OF COHESIONLESS BACKFILL BY THE SLIP
LINE APPROACH.
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sufficiently close to the truth to justify its acceptance.

‘To be able to determine the active earth force, P on the

AJ

retaining wall it will be necessary first to find the magnitude of EA

and the weight of the area acde.

E, - 3% 0.11x (92 x (0.52)% = 121k 1. ft.
W, = weight of area abde

= 0.11x 4.65x 9 = 4.6 k/1. ft.
W2 = weight of area bcd

=2 x0.11x 4.65x 7= 1.7 k/L ft.

WS’ the weight of segment cd, can be neglected in this problem.

The locations of the following forces are known: EA is at %’I of ed

from e. The resultant W of force W, and W2 is located at

1

}_i from the face of the wall where:

X=(4.6x2.32+1.79x

4'365) +6.39 = 2,11 ft.
The resultant, S, of ©W and EA can be obtained graphically and
its line of action can be drawn through the point of intersection of
force EA and W,

Since the direction and location of P is known, let g be
the point of intersection of the line of action of PA with that of S,
Thus the direction of the resultant resisting force, Fl’ will be along

the line passing through g and tangent to the friction circle. As the
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direction of F1 is established,’ it becomes very simple to draw to
scale the polygon of forces as shown and scale the force PA‘

In this problem PA was found equal to 3. 5K. It can be
observed that this answer is very close to that obtained by Coulomb's
method, and the error is less than L5%, Terzaghi* stated that the
diffefence between the exact value of the earth pressure on a retain-
ing wall, in the active case, and Coulomb's value is smaller than 5%
and in connection with practical problems this error is insignificant,

and with decreasing values of & the error decreases further.

5.2. Problem No, 2 - Calculation of Active Earth Pressure

Exerted by a Cohesionless Sloping Backfill on Retaining Walls

Given: wall height = 15!
sloping backfill surface
soil properties:

v = 110 Ib/t°

® = 30°
Angle of wall friction

o]

5 =16

5.2.1. Coulomb's Method

K
1.2 A
PA* 3 YH Sin @ coS &

sin2 {a +©®) cos 6
,/sin (@ + 6) sin (CP-B)]Z
sin (@ - §) sin (a + B)

KA:

sin o sin (a - 6)[1~+ !/

*._,;K.* Terzaghi. Theoretical Soil Mechanics. (New York, 1956),
p. 80.



Calculating K, /it is found that:

KA = 0.329
Therefore,
1 2 0,329 _ '
PA = 35X 0.11x (15)" x 0. 96T - 4,23 k71, ft.

5.2,2, Slip Line Method

To be able to draw the slip line, the angles lerl, w, a“?

and a? should be obtained from Fig. I, II, IV, and V,

It was found that:

Ypq = 51,27° w = 8.72°
a? = 44,83° a§=75.17°

The method followed in determining the slip line is as was explained
in Article 3.5.1. It was found in this specific problem that dec is
almost collinear with bc, see Fig. 5.2; therefore, the slip line was
considered to be bd. By following the same reasoning as in Problem
No. 1, the force P, can be calculated very easily from the equili-
brium force polygon. Since in this problem the slip line came out
to be a straight line, the resultant of all resisting forces will make
an angle ® with the normal to line bd.

The weight W of the wedge abd is:

1

5 X 0.11x 12x 15 =9.9 k/1. ft.

W::
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- CALCULATION OF LATERAL EARTH PRESSURE OF SLOPING COHESIONLESS
BACKFILL BY THE SLIP LINE APPROACH .
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Drawing the equilibrium force polygon, the force PA can be
scaled.

It was found that P, = 4.25k/l.ft. agrees very closely with

A

that found by Coulomb's formula.

5.3. Problem No, 3 - Calculation of Passive Earth Pressure

Exerted by a Cohesionless Levelled Backfill on Retaining Walls

Given: wall height = 20!
horizontal backfill surface
soil properties:

112 1b/it°

Y

o}

® = 36

Angle of wall friction

5,3.1, Friction Circle Method

@
€

under passive resistance is a plane introduces excessive error. The

Since 6 > Coulomb’'s assumption that the slip surface

lower portion of the slip surfaceis definitely curved and it can be
approximated by an arc of a circle,

The upper part of the wedge is assumed to fail as indicated by

% with the direction of maxi-

mum principal stress, which is horizontal. If a line AC is drawn

Rankine's theory, at an angle of 45°-

o @
at 45 /2

the effect of the portion CDE may be represented by Rankine's

to the horizontal, and a vertical CD drawn from C,

passive pressure:
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1 2 2 .
Ep—gy(CD) tan” (45 + %)

Then the problem is to consider the equilibrium of the portion .ABCD
where CE must be tangent to the circular arc BC.

At the point of failure, the resisting force at any point on the
assumed slip line must act at ® to the normal.  Along the curved
portion the normals pass through the center of the circle, and the
resisting forces must thus all be tangent to the friction circle whose
radius is R sin @,

The procedure to determine the passive pressure is as
follows (Fig. 5.3):

(a) Measure the height of CD and calculate the force
Ep from Ep = %Y (CD)2 ’can‘2 (45 + %) . This force is located at
one-third of CD from C.

(b) Determine the weight of the sections AGCD, GCB and
BJC and call them, respectively, Wl,..W2 and W3.

(c) Locate the mass center of the weight ABJCD and
represent all the weight by one vector, W, at the mass center,

(d) Combine graphically ©W and Ep to give the resultant S.

(e) Draw the passive thrust, Pp, at one-third of the height
of the wall from point B at an angle +6 with the horizontal. The
intersection of the line of action of Pp with that of S determines
the point Q through which the resisting force F must pass.

(f) Draw through Q a line tangent to the ®¥-circle. This is
the direction of the resultant F.

{(g) Draw Pp and F on the force diagram and scale off

their magnitudes.



Trial No, 1 - AD = 29 ft,

From Fig. 5.3 the following dimensions can be scaled off:

CD = 14, 8!

R =0C = 50.8°

CB = 48, T / CcOB = 34°

W1 =0,112x 29x 14,8 = 48 k1. ft.

vW2 = -%—X 0.112x 29x 5,2 = 8.45 k1. ft.

1 [ 2 34m _ _J

W3 T 5 X 0.112] (50. 8) X T80 29.3x 48.7| = 5,6 k1. ft.
Therefore,

YW =48+ 8.45 + 5.6 = 62,05 k/1, ft.

The location of the mass center of ABCD can be obtained by sum-
ming moments around point B. Thus:
W, 8y

ZWi

el

_48x 14,5+ 8.45x 9,67 +5,6x 14,6 _
= 5905 = 13,85 ft.

The radius of the friction circle.is:
r =R sin® =50,8x 0,588 = 29,9 ft.

and

x 0,112 (14, 8)%(1.9626)% = 47.3 k/L. fi,

=
1]
\G]



FIG. 53

FRICTION CIRCLE METHOD OF DETERMINING PASSIVE EARTH
PRESSURE OF SAND. - (TRIAL NO. 1)
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For trial No. 1 the magnitude of Pp is found from the force diagram

to be:
Pp =170.5 k71, ft.

Trial No, 2 - AD = 24 {1,

From Fig. 5.4 the following dimensions can be scaled off:

CD = 12. 2 ft.

R =O0C =81.5 ft.

CB = 25,2 ft. LCOB =18°

W, =0.112x 24x 12.2 = 32,8 k/1. ft.

W, =%x 0.112x 24x 7.8 = 10.5 k/L. ft.

1 [ 2 187 _ ]_

W, = 5x 0.112| (81.5)" x 455 - 80.5x 25.2 | = 3.36 k/1, ft.

Therefore,

LW = 32.8 + 10.5 + 3.36 = 46.66 k/1. ft.

_32.8x 12 +10.5x 8+ 3.36x%x 12.2
46. 66

X = 11.15!

r =81.5x 0,588 = 48 ft.

and

E=1

p =g X 0112 (12.2)2(1. 9626)% = 32,1 k/1. ft.

From trial No. 2 the magnitude of Pp is found from the force dia-

gram to be:
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FIG. 5. 4

FRICTION CIRCLE METHOD OF DETERMINING PASSIVE EARTH PRESSURE
OF SAND. (TRIAL NO. 2)
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Pp = 184 k1. ft.

Trial No., 3 - AD = 27 ft.

From Fig. 5.5, the following dimensions can be scaled off:

CD = 14 ft.
R = 60 ft.
CB = 27. 6 ft. LCOB = 26.26°
W, =0.112 x 27 x 14 = 42,2 k/L. ft.

2=%x 0.112x 27 x 6 = 9,06 k/L. ft.

1 [ 2 26.26T _ ]_
W, = 5x 0.112| (60)° x —g5— - 27.6 x 58.3 | = 2.24 k/L. ft.
Therefore,
SW = 42.2 + 9. 06 + 2.24 = 53.5 k’1. ft.
X -42.2x13.5+9.06x9+2.24%13.8 _ 1,y 45
53.5
r = 60x 0.588 = 35.3 ft.
1 2 2 .

B, = 3x 0.112x (14)" x (1. 9626)" = 42.4 k/1. ft.

From trial No. 3 the magnitude of Pp is found from the force dia-

gram to be:
Pp = 165 k-1, ft.

Plotting the values of Pp above the corresponding positions of C,

the least value of Pp which can be determined from the graph shown

72



Fi6. 5.5

FRICTION CIRCLE METHOD OF DETERMINING PASSIVE EARTH PRESSURE
OF SAND - [(TRIAL NO.3) AND THE SLIP LINE APPROACH]
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in Fig. 5.3 is found to be:

P . = 165 k/1. ft.
p (minimum)

5.,3,2. Calculation of Passive Earth Pressure by the Use of the

Slip Line Method.

From Fig. I and III, the angles « and lhp are found to be:
w=1.75° and v, =-o. 75°

Following the procedure for drawing the slip line as explained in
Article 3.4, the shape of the line is that shown in Fig. 5.5,

It was found that AD is equal to 27 ft. which happens to
coincide with trial No, 3 of the preceding section, Having located
the critical slip line, the method followed in calculating Pp is the
friction circle method previously explained. It follows that the value
of Pp obtained by this method is the same as that of trial No. 3
which represented the minimum value of Pp°

The advantage of the use of the slip line method is quite

obvious. The method is direct, accurate and fast.
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5.4, Problem No. 4 - Calculation of Active Earth Pressure

Exerted by a Cohesive Levelled Backfill on Retaining Walls

Given: wall height = 20'
horizontal backfill surface

soil properties:

v = 110 1b/ 5
»=10°
c = 0.3 52

angle of wall friction

o

65 =1

5.4.1. Wedge Method

In the case of cohesive backfill, the effect of cohesion must
be taken into account. It is assumed that there is a neutral or
ineffective zone of depth HC‘ =2.67 —% tan (45 +g), as suggested by
Terzaghi')f within which there is no adhesion or friction along the
back of the wall or along the slip surface.

There are five forces acting on the wedge ABDE, Fig. 5. 6a:

(1) The weight of the whole wedge ABDE (2W;).

(2) The reaction F5 on the plane of rupture.

{(3) The resultantvof the normal and frictional forces (PA5) .

(4) The cohesion along the length BD (C

s5) -
(5) The adhesion along the height of wall BG (C.).

#
K. Terzaghi. Theoretical Soil Mechanics. (New York,
1956}, p. 154.
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There are only two unknown forces, F5 and PA5 whose
directions are known, their magnitudes can be determined from the
force polygon. The selection of a few trial planes of failure permits
a curve to be drawn describing the variation of the magnitude of PA'
From this curve the maximum possible value for PA may be deter-
mined. PA is assumed, as is usual, to act at a height of one-third

#
of the height of the wall.

Trial No, 1:
H' = AB = 2.67 x 520 tan (45 + 5) = 8.7 ft.
ZW, = 0.11(24 x 8.7 +-22i % 11.3) = 37.92 k/1. ft.
C, =0.3x11.3=3.39 k/L. ft.
C, = 0.3%26.6=8k/1 i

From the force polygon diagram Fig. 5. 6b, PAl is found to be:

= k/1. ft.
Paq 1.5
Trial No., 2:
19.3
ZW2 =0,11,19.3x 8,7 + 5— X 11.3 | = 30,45 k1. ft.

*
P. L. Capper and W. F. Cassie. The Mechanics of

Engineering Soils. (London, 1963), p. 111.



Trial No. 3:

%
W3

s3

Ppz =

Trial No. 4:

LW

4

s4

Ppg =

Trial No. 5:

ZW5 =

.39 k71 ft.

(it is constant)

.3x22.4=6,73 k71, ft.

k71. ft. Scaled from the force polygon.

.39 k710 ft.

.75 k71, ft.

. 11[12.2 x 8.

.39 k71. 1t

.1 k71, ft.

.11[9x8a7+

16
2

12,2

7.+ 5

9
gx 11.3

. 11[16 x 8.7T+=5x% 11,3:] = 25.25 k1. ft.

.3x 19.65 =5.9k/1, ft.

% 11.3] - 19.3 k/1. ft.

.3x 16,5 = 4,95 k/1. ft.

]_: 14,22 k71, ft.
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ACTIVE EARTH PRESSURE ON RETAINING WALL" BACKF!LLED WITH COHESIVE
SOIL, BY THE WEDGE METHOD.
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SCALE 1I:10
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| FIG. 5.6b |

FORCE POLYGON DIAGRAMS FOR THE VARIOUS TRIALS INVESTIGATED IN FIG. 5.6a.
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Ca = 3.39 k71, ft,
Cs5 =0,3x 14.4 = 4,33 k1. ft.
PA5 = 3.5 k71, ft.

Plotting the values of PA for the above trials as shown in Fig. 5. 6a,

it is found that the maximum value for PA is 4.1k~71. ft.

5.4,2, Slip Line Method

From Fig. IX, for K =l(Note K =—<-:—°— =-12-0-) ¥, is found
g 15 3 < " 300/’ °A

to be 25°. Once the slip line is drawn according to the method
described in Article 4.2, the friction circle method can be applied
to find the active earth pressure. ‘

It is convenient to consider the active resistance of cohesive
soils in two parts, Fig. (5.7a):

(1) The frictional resistance developed along the slip line
and the back of the wall when the backfill is mobilized;

(2)  The cohesive resistance along the slip line combined with
the adhesion resistance along the back of the wall. |

The evaluation of part (1) is similar to the application of the
friction circle method to cohesionless backfill except that the weight
of area ABJL 1is considered as surcharge. The steps of the friction
circle method were already outlined in Article 5.1.2. The effect of
the portion JGH may be represented by Rankine's active pressure:

1 2., 2
By = 5 Y (JG)” tan® (45 - %) (5.1)
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The force PK

The force polygon is drawn as shown in Fig. 5. 7b and as explained

is taken at one-third of the height BD from point D.

in Article 5.1, 2,
When cohesion alone is considered, the effect of the cohesive

forces on GH can be replaced by the active resistance EA where:
#*
EA = l:— 2¢ tan (45 - %) +q tan2 (45 - C%):l(JG) (5.2)

where q is the surcharge stress due to the fissured portion above
line BH. The force EA acts at half the height JG. Similarly,

Pf ., the active resistance on the wall due to cohesion alone acts at

As
half the height BD. C , the cohesion on the wall, acts along the
line of the back of the wall. The resultant of the cohesive forces on

the curve DG is parallel to the chord ‘DG, and the value CS repre-

sents the sum of the components of the cohesion paraliel to DG.
CS = ¢ x chord DG .

The line of action of CS is found by taking the moment of the cohesive.
force on curve DG around the center of the friction circle, and then
equating this moment to that of force CS acting at a distance L1

from the center of the friction circle., Actually, CS is the equi-

pollent force for the cohesion force acting along the curve DG. Thus:

C,L; = ¢ xcurve DGx R (5. 3)

*K. Terzaghi., Theoretical Soil Mechanics. (New York,
1956), p. 38, formula (4).
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where R is the radius of the curve DG.

The steps to be taken to determine the active resistance due
to cohesion are as follows:

(1) Obtzin the values of Cw’ CS and EA by calculation.

(2) Draw the triangle of forces for Cw and CS and mark the
re.sultant Cr in its position on the wedge diagram.

(3) Determine the point M where E) meets the line of
action of Cr and then draw through M the resultant SC (see
Fig. 5.7a and c),

(4) S, meets Pj atpoint R. Through R draw a line
tangent to the friction circle. This is the line of action of force F'.

(5) Complete the force polygon and so determine P'A . The

total active force acting on the wall is the algebraic summation of

1 [
PA and PAQ

Numerical Calculations

The radius R of the curved portion DG was scaled off and
found to be 17.1 ft., and the angle subtending are DG, equal to 25°,

Thus:

R = (17.1)° x 227 X o = 17,5 ft,

arc DG

Ly shord DG ¥

The radius r of the friction circle is:
r=Rsinp=17.1x 0,1736 = 2,97 ft.

Let W, be the weight of area AB'GL, VV2 the weight of

1
area DB'G, and VV3 the weight of segment DG. Thus:
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= 0,11 x 5.8bx 15.5 = 10 k71, ft.

g

1
W, = 0.11x 5°285 x 4.5 = 1,45 k/1, ft.

Nooll[ 2 25m ] |
W, === | (17.1)° 335 = 7.3 % 16.7 | = 0.3 k/L, ft,

C =cxchord DG =0,3x 7.3 =2,19 k1. ft.

@]
il

cxBD=0,3x 11,3 = 3.39 k-1, ft.

From Eq. (5. 1)and §. 2), EA and E‘Az follow

Bt o= [=-2 % 0.3 % tan 40° + 0, 11 x 8.7 x tan> 40]6,,85

3

1.22 k71, ft.

L
7

v (JG)* tan’(45 - %) = 2 x 0.11x (6.85)” tan” 40°

1,82 k71, ft.

From the force polygons (Fig. 5. 7b and c) the values of PA

and PK are

g - ~ 27
PA 3.5 ki, ft.

Pyt = 7.6 k1. ft.

Their vectorial summation gives

P =

LT 1y - : - o
A PA P 3.9+7.6 =4,1k/1, ft,



This answer agrees exactly with that obtained by the wedge method.

5.5. Problem No. 5 =~ Calculation of Passive Earth Pressure

Exerted by a Cohesive Levelled Backfill on Retaining Walls

Given: wall height = 20!
horizontal backfill surface

soil properties:

v = 110 1b/ £t°
= 15°

2
c = 0.3 k/ft

angle of wall friction

o]

6 =10

5.5.1. Friction Circle Method

The passive resistance of cohesive soils can be considered
in two parts:

(1) The frictional resistance developed along the slip line
and the back of the wall.

(2) The cohesive resistance along the slip line combined with
the adhesive resistance along the back of the wall.

The main difference between the active and passive cases
when the friction circle method is applied is that in the passive case,
since the soil is in compression, no tension cracks appear at the

surface, and the cohesive forces are assumed to be distributed

uniformly over the entire back of the wall and the curved surface DG.
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The corresponding total pressures on the section JG, Fig. 5.8

are

B! = 2c (JG) tan (45 + %) (5. 4)
and

Bl = 3 v (36)° tan® (45 + %) (5.5)

Once the passive resistances are calculated for each of the assumed
slip surfaces and plotted to scale, the minimum value which can be

it
found for the term PE) + Pp is used in the design.

Trial No. 1: AJ = 167

The following dimensions are scaled off Fig, 5. 8:

R = 42.6 ft, JG = 12,3 ft.

DG = 17.7 ft. /. DOG = 24°
The radius of the friction circie is
r =R sin®=42,6x 0,2588 = 11°

From Egq. (5. 3}, solve for LI:

~ 2 247 1 o,
L1~(4206) X_l-é-ﬁ_ X——-——l,?o,? = 43

f

1]
From Eq's . 4)and (5. 3}, solve for EE) and Ep:

El’:):2x 0.3x 12,3 x1tan 52.5 = 9.6 k71, ft,



O

F I

P=a6+25.2 = 71.2 X/L.fi.

FIG. 5.8

PASSIVE EARTH PRESSURE ON RETAINING WALL WITH COHESIVE SOIL BY THE
FRICTION CIRCLE METHOD. (TRIAL NO. I')
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and
| 2 2 o _

Ep =5 X 0.11x (12,.3)" x tan” 52,5 = 14,15 k71, ft.
CW:CX(AD):003X20:61{/10 ft.
Cs = ¢ x chord DG = 0,3 x 17,7 = 5,32 k1. ft.
VV1 = weight of area ABGJ

=0,11x 16 x 12,3 = 21.6 k71, fi,
W2 = weight of area BDG

f%-x 0.11x 16x 7,7 =6,76 k1. ft,

1 [ 2241 ] - 1
VV3 ~—2-0°11 (42. 6) 50 17.7x 41.7| = 1.1 k71, ft,

The location of the equipollent force ZW can be obtained by taking

with respect to D.

summation of moments of W W2 and W

1° 3

Thus:
21,6 x 8+6,76x 5,30+ 1,1x 8.05

X = 504G = 7,4 ft.

The resultant passive pressure on the back of the wall is

equal to the vectorial summation of PI“) and PI”)“O

P =P!+ P!'"=252+46=71.2 k-1, ft.
p p p
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Trial No., 2: AJ = 18"

The following values are scaled off from Fig. 5. 9:

R = 27,7 ft. JG = 14 ft,

DG = 19, L ft, /_DOG = 40,5°
The radius of the friction circle is:
r=27.7x 0.2588 =7.16 ft,

2 _40.5m 1

L= (27.7)" x T80 X101 28. 4 ft.

E%} = 2x 0,.3x 14 x tan 52.5 = 10,94 k1. ft.

x 0,11 x (14)% tan® 52.5 = 18.3 k/1. ft.

T
i
)

C_=0.3x20=6 k7L, ft.

C =0,3x19,1=25.74 k71, ft.

W, =0,11x18x 14 = 27.7 k-1, ft,

1
W, =5 x0.11x 18x 6 = 5.95 k/1. ft.

W, = +x0.11[ (7.7 L2420 10,1 x 26| = 2.53 k1. .
20 7% 9+5.95%x6+2.53% 9.2 _ ¢ 4 g

36. 2

P =P +P'"=23.5+46.7=790,2 k71, ft.
p p p



/ Cs P=46.7+23.5=70.2 "/Lf

S

F16. 5.9

PASSIVE EARTH PRESSURE ON RETAINING WALL WITH COHESIVE SOIL BY
THE FRICTION CIRCLE METHOD. (TRIAL NO. 2)

06



Trial No. 3: AJ = 17 ft,

The following values are scaled off from Fig. 5. 10:

R = 35.2 ft, JG = 13,2 ft.

t

(o]

DG = 18. 4 ft, /_DOG = 30

i

The radius of the friction circle is:
r=35,2x 0.2588 = 9,12 ft.
Bl =2x0.3x13.2 x tan 52.5° = 10.3 k/1, ft.
Bl = Ly 0,11 x (13.2)% x tan? 52.5 = 16.3 k1. ft.
C. =0.3x20=6 k/1. ft,
C_ =0,3x 18,4 =5,53 k71, ft.

W, =0,11x 17x 13.2 = 24,7 k-1, ft.

1

W2:-2-X0u11X17X6‘.8:6036 k/1, ft,

L1 [ 2 _30m ]ﬂ
W3~§X0,11 (35. 2) X T80 18.4x 34 | =1,21k71. ft.
X - 24,7x 8.5 +6.36x 5,60+ 1,21 x 8.7 - 7.95 ft.

392,91

P = P;) ui-bP{D“ =24 + 45,5 =69.5 k1, ft,
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PASSIVE EARTH PRESSURE ON RETAINING WALL WITH COHESIVE SOIL BY
THE _USE OF SLIP LINE METHOD. (ALSO TRIAL NO.3)
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From these three trials a graph representing the variation of P

can be plotted and the minimum value is found to be 69.5 k71, ft.

5,5.,2, Slip Line Method

¢
From Fig. XV, for K =-2 =120 -1 40 value ot \pp

is found to be 6.6°., Knowing \l!p, the slip line can be drawn,

Fig. 5.10, according to the steps explained in Article 4.3. Then,

by the use of the friction circle method, the passive earth pressure

can be obtained. In this problem it was found that the calculated
slip line agrees with that assumed in Trial No. 3, Therefore,

the passive pressure acting on the wall is equal to 69.5 k71, ft.

as was obtained from Trial No. 3, which proved to be the minimum

value. Thus, the efficiency and convenience of the slip line method

is well demonstrated.
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CHAPTER VI

CONCLUSIONS

The new method developed in this study for finding the earth
pressure on a retaining wall, by determining the critical slip surface,
has proved to be simple, accurate and fast. It provides a direct
solution for earth pressure without resorting to trial and error
procedures. The method is‘ particularly advantageous when applied
to the calculation of passive earth pressure on retaining walls with
either cohesive or cohesionless backfills.

Also, mathematical relations for the slope of the slip surfaces
are provided which permit an evaluation of the effect of soil pro-
perties on the shape of the failure surfaces.

For retaining walls with cohesionless backfill, it was proved
that (a) the shape of the slip surface is independent of the height
of the wall, in both the active and passive cases a}nd (b) the slope of
the slip surface at the toe of the wall is linearly relatea to & for
5<%

involved in assuming the slip surface to be a plane becomes intolerably

c% . It has been found that active earth pressures

, beyond which a nonlinear relation is found. The error

large when & >
calculated by means of Coulomb's method, while on the unsafe side,
are only a few percent smaller than the correct values; whereas

in the passive case, the results obtained by Coulomb's method are on

%

the unsafe side, and if & > 3 they may exceed by 30 percent the

correct values.
94
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For retaining walls with cohesive backfill, a graphical solu-
tion to determine thle slope of the failure surface at the toe of the wall
was developed. The method proved to be quite simple and accurate.
For the aétive case it is concluded that le, the slope of the slip line
at the toe of the wall, (a) increases when the height of the wall increases
or when cohesion decreaées; but the effects of these two varia-
bles become negligible when the height of the wall exceeds 25°',
(b) decreases when & increases.

For the passive case it is concluded that \bp, the slope of.
the slip line at the toe of the wall, (a) decreases when & increases,
(b) increases when the height of the wall increases, but the rate of
increase becomes negligible when the depth exceeds about 2b feet,
and (c) decr‘eases when the cohesion of the soil increases.

In summary, it can be said that the slip line approach pre-
sented in this thesis provides a direct solution for the earth pressure
exerted on retaining walls without resorting to trial and error pro-
cedures. The charts which have been prepared to facilitate the solu-
tion of the problem clearly illustrate the manner in which the shape

of the surface of failure is influenced by the various soil properties.
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APPENDIX

DETERMINATION OF THE LOCUS OF THE SHEARING STRESSES
ON VERTICAL AND HORIZONTAL PLANES OF COHESIVE ELEMENTS
TAKEN AT THE TOE OF RETAINING WALLS OF DIFFERENT HEIGHTS

Case 1: Active Case of Failure

Referring to Fig. 4.1b and 4. 2, the problem encountered in
drawing the equivalent Mohr's circle for the state of stresses acting
on the element is that the undetermined shearing stress, c + Pa sin &,
cannot be located directly to establish the circle. In Article 4.2, it
was assurﬁéd that the locus of the shearing stresses on elements taken
at the toe of retaining walls with cohesive backfill and of different
heights, when plotted on Mohr's circles, is approximated by a
straight line. The reliability of this assumption will be demonstrated
analytically.

Let- MM' be the rupture line, making angle ® with the hori-
zontal, and cutting the 7-axis at A where OA = c. Through point A
draw the line AS that makes an angle 6 with the horizontal. This
line cuts the various arbitrary Mohr's circles at A, F, G, H and K,
Fig. A.1l. The horizontal projections of these points on their respec-
tive circles are A', F', G', H' and K'. The problem then, is to
investigate the linearity of these latter points, To .do this, the
coordinates of points A', F', G', H' and K' will be determined
analytically, and the slope of the segments A'F', F'G', G'H' and

H'K' will be c:ompared..
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(2000,0)

FIG A.l

COHESIVE SOIL, ACTIVE CASE: GRAPHICAL DETERMINATION OF THE LOCUS OF THE SHEARING STRESSES
ACTING ON THE VERTICAL AND HORIZONTAL PLANES OF ELEMENTS TAKEN AT THE TOES OF DIFFERENT
HEIGHT RETAINING WALLS. ' '
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The equation of line MM’ is
T=mo +c (A. 1)

where m = tan @.
The radius of any circle tangent to MM' and having its

center at (oo,o) is,. {(Fig. A.2):

“mo = ¢ mo _+c
p= |T MO -C - o = 2 (A.2)
1+ m?2 @0, 0) Vl + m? 1+ m?
The general equation of any Mohr's circle becomes:
(0*00)2+72=r
substituting for r from (A.2):
2
2 2 (moo +c)
(0=00) + 7 = —— (A.3)
1+m
The equation of line AS is:
T=no+c ’ (A.4)
where n =tan 6.,

The points of intersection of line AS with the arbitrary
Mohr's circle can be obtained by substituting for 7 ‘in Eq.(A. 3)the

value obtained from (A.4). Thus:

(moo + 0)2
2

(o~ 00)2 + (no + 0)2 =
1+m



N(S’N &)

T

N' (6" g 7y)

o,

Fig. A.2 - Cohesive Soil: Mohr's Circle Representation for the Active
State of Stress at the Toe of the Wall

TOT
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Expanding the previous equation and collecting terms, it follows that:

(mo +c)2
02(1+n2) - 20(c_ - nc) + ol+c?2-° =9 (A. 5a)
0 0 2
1+m

Let:
1+n2 = A
o =-nc=58B
o)
and
2
(mo _+c)
c2+ 02— o =D
o} 2

Then (A. 5a) can be written in the following form:

Ac® - 2Bo + D = 0 (A.5b)

Solve for o:

- = ' (A.6a)

For the active case, the abscissa of point N is:

2
+B - VB” - AD
oN = = (A.6Db)

Substitute for o in (A.4) the value obtained in {A. 6b), thus:

(A.7)

=n

2 .
(B - B“ - AD)
TN X + c
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The coordinates of point N' can be determined by finding the
intersection of line NN' with the circle O. Since line NN' is parallel
to the o-axis, its equation is as expressed in (A. 7).

Substitute for 7 in Eq. (A.3) the value obtained from (A.T):

2
_ I/ 2 2 (mo_+c)
(0‘-0‘)2+|:1’1(B B AD)‘*‘C:] =—2 (A.8a)
o A 1 +m?2
m
Let:
n(B - I/B? - AD)
( +c =E
A
and
(mo +c)2
0
g - F
1 +m
Then (A. 8a) can be written in the following form:
(0-o0 )2+E2—F:O
o}
Expand this equation and collect the:terms:
" - 20 0+02 +E” - F =0 (A. 8b)

The roots of (A. 8b) are:
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The abscissa of point N' is:
oNt T 0, F IF - E2 (A.9)

Since in any practical problerﬁ the value of oNt is given as Yh
(see Fig. 4.1b), it becomes possible, by the use of (A. 9), to solve
for oy and thus the center of the required Mohr's circle can be
obtained. The value E in Eq. A.9 can be written in the following

form, if one makes use of (A.6b):

But it is known from the properties of the Mohr's circle that:

+ vh

g
N -
——-2-——— = O‘O (A. 10)

Therefore,

Thus:

E =n(20_ - Yh) +c (A.11)

Substitute (A.11) for E in Eq. A.9 to obtain:

(mc + c) 2
Yh—o + - n(ZGO—Yh)+c]

After simplification, the above equation can be written in the following
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form:
2 1 2 2 mc
g, (—————2 + 4n”) - 200[Yh(1 +2n7) 4 ——— - 2nc:|
1+m l1+m
: 2
2 2 c
+ (nYh - ¢c)” + (Yh)" - ——— (A.12)
1+m

Let )

o= ——s + 40’

1+m
B=| vh(t +20%) + _mC__ nc |
1+m
and
2
A= (k- o) + (v)® - —S
1+m

then Eq. (A.12) can be presented as:

0o - 280 +A=0 (A.13)

o o )

Solving for o, and using the smallest root since o, has to be

smaller than Yh

Y T /)

O o

(A.14)

Eq. (A.14) is an accurate solution for the position of the
center of the Mohr's circle that satisfies the stresses on the element

shown in Fig. 4. 1b.



106

Using expressions (A.6b), (A.7) and (A.9), the coordinates of
points N and N' can be determined. Since circle O is an arbitrary
circle, the expression above can be used with respect to any specific
circle if o, is replaced by the abscissa of the center of the proposed circle,
The angle llfA which is represented approximately by Eq. (4.7) can now

be derived accurately, see Fig. A.2, It is observed that

T

. BN
2

A = % (/BOD - n) (A.15)

/ BOD = 90 + ®©
- -1 n
and Mn = tan = p—— (A.16)

Yh—cro

Solve for o in terms of Yh, as shown in Eq. (A.14)and determine
M. Substitute for 1 in (A.15) and solve for de.

Referring back to Fig. A.1, it is now necessary to find the
coordinates of points A, F' G', H' and K', in order to check the slopes
of the lines A'F' F'G' G'H' and H'K' for a given numerical problem.

If these slopes are found to be equal, then points A', F', G', H' and
K' are collinear.
Given & = 10°, ® =20° and c = 165 psf. Then, m = tan® = 0, 364,

n=tan § = 0.1763 and A =1 +n2 = 1,031

Circle Ojq:

The coordinates of center O, are (60, 0); the coordinates

1
of point A are (0, 165), From Eq. (A.9), ops can be determined

- - gl -
Opar =00 FVFN BN 991 = 60

2
_ tmogy Y% 10,364 x 60 + 165)2
1 +m? 1 + (0. 364)°

13

30800
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2 2 2
EA = (ncrA +c) = (165)" = 27,300
Therefore:
GA' =60 + l/30800 - 27,300 =119, 2 psf

The coordinates of A' are then (119.2, 165)

Circle O2

The coordinates of center O2 are (236, 0); the coordinates

of point F can be calculated from (A.6b) and (A.T).

B, =0,, ~nc =236 ~-0,1763 x 165 = 206, 9

F 02
- 2 2 _
A=1+n"=1+(0.1763)" = 1.031
| (mo +c)2
D=0 +ct-—02
F 02 1 er2
2 2 (0.364 x 236 + 165)2
= (236)" + (165)" -~ *— 155 = 27300
Therefore,
2
_206.9 - [/(206.9) - 1.031x 27300

O = 7031 = 83.2 psft.
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TF=n0‘F+c = 0,1763 x 83.2 + 165

I

179. 65 psf

The coordinates of point F are (83.2, 179.60)

GF, =0
(mcro2 +c)2
‘ FF = —a = 55600
1 +m
2 _ 2
EF = (’TF) = 32200
Then
Ot =236 + V;5600 - 32200 = 389 psft.

The coordinates of point F' are (389, 179.65).

Circle O3 :

The coordinates of center O3 are (500, 0).

BG =500 - 29,1 =470.9

_(0.364 x 500 + 165)°
T 132

_ 2 2
Dg = (500)7 + (185)

= 170800
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Then

L 470.9 - [/(470.9)2 - 1,031 x 170800
G 7,031

= 249 psf.

3
il

+c = 0. = . .
g = hog *tc 0.1763 x 249 + 165 = 208. 8 psf

Q
1
Q

(rncr03 + 0)2
1 +m
2 _ .2 _ 2
EG = ’TG (208. 8)" = 43600
Ogt = 500 + V106400 - 43600 = 751 psf.

The coordinates of G' are (751, 208, 8).
Circle Oy:

The coordinates of center O4 are (1000, 0)

B., =1000 - 29.1 = 970.9

= 780200

_(0.364 x 1000 + 165)°

_ 2 2
Dy; = (1000)° + (165) T35



_ 9709 - J70. 9) - 1.031 x 780200

°H I. 031
= 580 psf.
Ty RO T e = 0.1763 x 580 + 165 = 267 psf.
f
Ot = 0y T t/F - Ez
H' 04 H H
Fep = 247000
2 _ 2 _
By =g = 71300
Oy = 1000 + l/247000 - 71300 = 1419 psf.

The coordinates of H' are (1419, 267).

Circle 05:

The coordinates of center O, are (2000, 0).

B, = Ogs ~ BC = 2000 - 29.1 = 1970. 9

2 _ (0.364 x 2000 + 165)2
1.132

.
1

(2000)% + (165)

_ 1970.9 - V(1970. 9)2 - 1. 031 x 3323, 200
K 1,031

3,323,200

= 1260 psf.
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The coordinates of K' are (2745, 387).

o
|

3
i

O" =

b
i

=
n

0.1763 x 1260 + 165 = 387 psfi.

o +l/F _EIZ{

05 K
704, 000

2 150, 000
'TK R

= 2000 + l/704000 - 150000 = 2745 psft.

Checking the slopes of lines A'F', F'G', G'H' and H'K!,

it is found that:

tan «o

tan

tan

tan

Q’H,

At

_ 208.8 - 179.65

_ 267 - 208.8

179.69 - 165

389 - 1103 _ 0- 0043

1

tan- 0. 0543 ~ 3°- 10!

TET =389 = 0. 0805

tan" ! 0.0805 ~ 4°-35"

= 0.08712

1419 - 751

tan 1 0.08712 ~ 5°-0"

387 - 267

= srre—Ta7g = 0. 09049

111



112

1

@, =tan = 0.09049 ~ 5°-10!

H

This result reveals that line A'K' can be approximated by a
straight line between F' and K'. Apparently, a significant devia-
tion occurs only in circles very near the origin. Therefore, the
straight lin¢ assumption for the locus of the shearing stresses for
cohesive elements taken at the toe of retaining walls of different
heights when plotted on Mohr's circles is found to be reasonable,

justifying the graphical procedure described in Article 4. 2.

Case 2: Passive Case of Failure

Due to the similarity in the nature of this problem and that
for the active case, no analytical investigation is presented. A
graphical solution is shown in Fig. A.3, in which it is seen that the
locus of the shearing stresses deviates significantly from a straight
line only at points A' and F'. Since these two points have very
small abscissa, they represent the vertical stresses of very low
retaining walls. Soils engineers are usually interested in intermediate
and high retaining walls. For the correspondingly large normal
stresses the associated shearing stresses can be considered to be

located on the nearly straight portion of the locus, G'K',
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Fic. A3
COHESIVE SOiL, PASSIVE CASE:. GRAPHICAL DETERMINATION OF THE LOCUS OF THE SHEARING:
STRESSES ACTING ON THE VERTICAL AND HORIZONTAL PLANES OF ELEMENTS TAKEN AT
THE TOES OF DIFFERENT HEIGHT RETAINING WALLS.
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