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IMMUNOMODULATION BY BLASTOMYCES DERMATITIDIS;

FUNCTIONAL ACTIVITY OF MURINE PERITONEAL MACROPHAGES

CHAPTER 1

BLASTOMYCOSIS, CELL-MEDIATED IMMUNITY, AND THE MACROPHAGE 

The causative agent of blastomycosis is the dimorphic fungus 

Blastomyces dermatltidis. The disease was first described by Gilchrist 

at a meeting of the American Dermatological Association in 1894 (20). 

The description was based on microscopic observations of skin biopsy 

from a patient's hand. The disease was thought to be of protozoan ori­

gin, and the patient was described as having granulomatous lesions of 

the lungs, skin, and skeleton. In 1896, Gilchrist identified the agent 

as fungal (21), and Gilchrist and Stokes gave the organism its current 

name in 1898 (22).

Initially, the portals of entry were thought to dictate the 

pathogenesis of the cutaneous and systemic forms of the disease, i.e., 

the skin and lungs. However, in 1951, Schwartz and Baum (51) showed 

that the fungus is first inhaled and spread by hematogenous and lym­

phatic dissemenation.

Very little is known of the natural habitat of dermatltidis. 

It was thought to be geographically limited to the United States and 

Canada. According to Furcolow's 1970 study (19), the greatest number
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of cases occurred in the Mississippi, Missouri, and Ohio River basin 

states. The disease has now been shown to be endemic in 15 of the 50 

African countries (6, 13, 33, 56) as well as in Israel (32). There has 

also been a reported case in a life long resident of Poland (31).

The fungus has been isolated in Kentucky (11) and Georgia (10) 

in the mycelial form from soil. These findings were complicated by the 

fact that reisolation from the original samples or collection sites was 

not possible. Little was actually learned about the organism’s environ­

mental niche by these studies.

Blastomycosis has been diagnosed in lower animals. Among the 

species infected are the cat (2), dog (39), horse (5), and a captive 

sea lion (59). In animals the disease has been most frequently seen in 

the dog. The apparent absence of the infection among wild rodents and 

small mammals in the endemic areas has been noted (1). Much remains to 

be discovered about the environmental cycle of this fungus.

The definitive diagnosis of blastomycosis must be made by cul­

ture of the organism from clinical specimens. The currently available 

serological and skin tests are not conclusive (7, 14). Reviews of the 

disease and its history are available (14, 34, 47).

In studying the immunological processes active in experimental­

ly induced murine blastomycosis, Spencer and Cozad (54) demonstrated 

that cell-mediated immunity provided protection to mice challenged with 

a lethal dose of the yeast. Further investigation in this laboratory 

have supported the involvement of cell-mediated immunity in blastomyco­

sis. Such parameters as lymphocyte transformation (4), lymphokine pro­

duction (23), and the passive transfer of hypersensitivity by cells but



not sertim (52) have been examined.

As cell-mediated immunity has been shown to play such a dominant 

role in the immune response of mice to B̂. dermatitidis, it appeared 

worthwhile to look at aspects of cellular immunity as expressed by the 

macrophages of this system.

Macrophages are phagocytic cells distributed throughout the 

body. They differ in form depending on their anatomical site, but all 

possess the primary trait of phagocytosis, i.e., the ability to ingest 

and digest particulate matter.

The macrophage is a monocytic cell that apparently has its gen­

esis in the bone marrow (55). A pleuripotential stem cell of the bone 

marrow is the precursor cell which differentiates into a promonocyte.

The promonocyte matures to a monocyte. The monocyte is found in the 

peripheral blood at a normal level of 3 to 5% of the total circulating 

white blood cells. These circulating monocytes are blood-bome to the 

organs and tissues. The monocyte becomes a histiocyte or macrophage 

depending upon the area in which it comes to rest. The total lifespan 

of these mononuclear cells is measured in months (55).

Macrophages have been shown to be involved in a number of im­

munologic processes. Metchnikoff first described the ability of macro­

phages to ingest and destroy foreign bodies (40). The secretion of 

factors collectively called monokines (i.e., neutral proteases, comple­

ment cleavage products, interferons, prostaglandins, etc.) directly 

involves macrophages in the development of inflammation and immune 

amplification (3). These cells augment natural killer (NK) activity 

(12), and macrophages function in the presentation of antigen or mito­



gen signals to responder lymphocytes (53, 18). In addition, macrophages 

by themselves or cooperating with T-lymphocytes are involved in the 

activation of B-lymphocytes by thymus-independent antigens (8). Fur­

thermore, though they are endowed with considerable destructive power, 

their good behavior and subservient nature are displayed by their 

willingness to obey T-and B-lymphocyte signals.

Phagocytosis itself can be divided into two very general stages. 

The first is attachment of the particle to the phagocytic cell, and 

this is followed by the second stage which is intériorisation of the 

particle. The attachment phase may be immunologically specific (i.e., 

antibody or complement mediated) or non-immunological depending upon 

requirements for serum-recognition factors. Intériorisation is accom­

plished by endocytosis of the attached particle. When the cell is 

ingesting large numbers of particles, as much as 50 to 60% of the plasma 

membrane may be interiorized in the form of phagosomes. It appears 

that phagocytosis of an initial particle results in a cooperative - 

effect that enhances the uptake of subsequent particles (9). After 

ingestion of a large number of particles, the cell can begin to run 

short of membrane leading to the presence of particles in vacuoles that 

are not completely closed.

There has been considerable emphasis placed on the importance 

of the role of the macrophage in immunosurveillance (28; 36), and the 

capacity of macrophages to directly destroy tumor cells in vitro is 

well documented (26, 50). The mechanism of macrophage-mediated antir- 

tumor activity is yet undefined. Though phagocytosis has been impli r-. 

cated, recent microscopic observations have shown that it is not essen?



tial for tumoricidal activity (24, 43).

Our knowledge of the mechanisms involved in tumor cell destruc­

tion by macrophages has come from a variety of in vitro assays. These 

assays have looked at inhibition of target cell growth (15, 27), cleared 

zones of tumor cell monolayers (58), release of radioactive labels (45) 

cinemicrographic analysis (24), and sequential scanning and transmis­

sion electron microscopy (16).

Macrophages in vitro can either promote or impair the viabili­

ty of target cells. Conditions which determine the outcome of this 

interaction are poorly understood. Parameters such as the functional 

activity of the macrophage, actual ratio of effectors to targets, and 

the susceptibility of the target cell are important. Fidler and col­

leagues have pointed out that a lack of standardization of these para­

meters and testing methods has lead to conflicting reports regarding 

macrophage-tumor cell interaction in vitro (46).

Macrophages resting within tissue are termed resident macro­

phages. When inflammatory stimuli increase, macrophages can become 

activated to a cytotoxic state which distinguishes them functionally 

and cytochemically from normal tissue macrophages. There is a growing 

body of evidence which indicates that activation of macrophages is ac­

complished primarily by the action of mediators on the membrane of the 

cell. Macrophages cultured with stimulated lymphocytes can show a max­

imal activation within one hour (42). This has been interpreted as 

resulting from an external rather than an internal action. In addition, 

effective adjuvants tend to be surface active molecules.

Mackaness coined the term macrophage activation to describe mor-



phological changes in mononuclear phagocytes obtained from animals im­

mune to Listeria monocytogenes. The cells rapidly adhered to substra­

tum and showed considerable ruffled membrane activity. Since their 

introduction, the terms "activation" and "stimulation" have been non- 

discriminately and extensively used to describe diverse morphologic, 

biochemical, and functional phenomena. Mononuclear phagocytes respond 

differently to various material. The stimulatory or activation capac­

ity of bacteria, immune complexes, activated lymphocytes, polyanions, 

interferon, and complement components varies greatly. Therefore, acti­

vation is a general term that does not define specific biochemical and 

cytological changes that can result from exposure to certain agents.

It can be considered that macrophages are pluripotent cells capable of 

expressing a defined functinal state associated with inherent effector 

functions.

Activation of macrophages appears to be a complex process which 

may be brought about by a variety of agents acting through diverse bio­

chemical routes. Other cell types and/or their products have a role in 

the regulation of macrophage effector capacities. In one study, homol­

ogy at the I region between macrophages and T-cells as well as the pres­

ence of la molecules on the macrophages were necessary for the gener­

ation of cytocidal macrophages (17). The consistent observation that 

macrophages taken from nude mice manifest higher spontaneous cytotoxic 

activity than those from their normal congeners indicates that agents 

other than T-cell derived lymphokines can effectively trigger the acti­

vation process (44). However, agents such as BCG or parvum which 

are effective activators in vivo do not consistently cause activation



in vitro. This further supports the role of other cell types in acti­

vation. Nevertheless, agents such as endotoxin and double stranded ENA 

alone have been shown to be potent in vitro activators (58, 50).

A conceptual scheme has been put forth that outlines the se­

quences of reactions to develop activated macrophages (38). Given the 

presence of effective activation signals and competent mononuclear 

phagocytes, the following are three postulated phases which result in 

macrophage activation: 1) The first involves the formation of inflamma­

tory macrophages by recruitment and differentiation of blood-derived 

mononuclear phagocytes. Therefore, the Immediate precursor cells for 

activated macrophages are the blood-derived cells which accumulate non- 

specifically at sites of inflammation. 2) Factors released from antigen 

stimulated lymphocytes (lymphokines) have a very profound effect on 

inflammatory macrophages. The effect of lymphokine activation signals 

on inflammatory macrophages constitutes the second phase of activation. 

These interactions generate noncytotoxic intermediate cells which have 

been termed primed macrophages. 3) The final phase of macrophage acti­

vation results from the response of lymphokine primed macrophages to 

other activation signals. These stimuli can be derived from invading 

parasites or tumor cells. These final activation signals are active on 

primed macrophages, but they cannot directly activate inflammatory 

macrophages.

The development of macrophage tumoricidal capacity following 

infection with BCG, Toxoplasma, Listeria, or interaction with lympho­

kines is influenced by genetic factors. For example, C3H/HeJ mice 

have at least two genetic defects. The first is unresponsiveness to
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lipopolysaccharides (IPS), and the second abnormality is hyporesponsive- 

ness of their macrophages to activation by a variety of agents (38). 

They possess a normal inflammatory response but require strong stimuli 

both in vivo and in vitro to develop tumoricidal capacity. The gene 

for control of one or more essential reactions in the development of 

nonspecific macrophage cytotoxic activity is either closely linked or 

identical to the LPS gene. Macrophages for at least six other mice 

strains with defective LPS genes resist development of normal tumori­

cidal activity (49). This defect is also associated with a failure to 

kill Rickettsia and Leishmania.

The identification of mouse strains with genetic defects in the 

development of macrophage cytotoxicity are a useful source for the 

characterization of macrophage activation. Abnormalities of phagocyte 

function occur in Chediak-Higashi syndrome. This genetic disease has 

been identified in C57BL/6J mice (41). There is a resultant pigment 

dilution, and the syndrome has been designated as the beige mutation 

in C57BL/6J. This mutation has become important in the study of host 

resistance with the discovery that these mice have a decreased resist­

ance to some transplantable leukemias. The macrophages of the beige 

mouse possess lysosomal abnormalities and have giant cytoplasmic gran­

ules. However, the macrophage surface receptors, phagocytosis, and 

percent peroxidase positive cells are normal. Studies with the beige 

mouse may help elucidate the early steps in macrophage cytotoxic ex­

pression. A recent report also demonstrated that the beige mouse is 

deficient in NK cell funciton (48). The report suggests that this may 

provide the ideal system for distinguishing macrophage and NK mediated



defenses.

It has been shown that as macrophages become activated and 

acquire cytotoxic capabilities there is an associated expression of a 

distinctive macrophage surface antigen (25). The expression of Fc re­

ceptors on the surface of functionally active macrophages also in­

creases (30). These findings are in line with the concept that natural 

cytotoxicity of macrophages may require distinctive surface structures 

on both the effector and target cell. Mononuclear phagocytes can not 

only discriminate between self and non-self but also between self and 

alterations to self. This is exemplified by the destruction of effete 

or damaged tissue components by macrophages. It has been suggested 

that anything which contacts the macrophage membrane is phagocytized 

unless the contacting material displays a signal that inhibits phago­

cytosis (57). This interaction is thought to occur between special 

membrane receptors (self receptors) and self determinants on the con­

tacting material. Such a discriminatory capacity could have evolved 

from a simple expression in primitive species with refinement in phylo- 

geny.

Studies involving fetal tissues has given insight into the 

structures recognized as non-self by mononuclear phagocytes. In some 

systems it has been shown that the growth of malignant tumors in ex­

perimental animals can be accompanied by the renewed formation and 

expression of fetal structures (57). Cytotoxicity of activated macro­

phages against various targets can be blocked in a dose dependent 

manner by irradiated syngeneic fetal liver cells but not by liver cells 

from adult donors (29). This competitive property falls off rapidly
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after birth.

This discussion has centered on the generation, recruitment, 

activation, and cytotoxicity of macrophages as critically important 

components of host resistance. In this respect, the purpose of this 

study was to examine the functional activity of peritoneal macrophage 

populations from dermatitidis sensitized mice and evaluate the re­

sultant resistance to tumor cell growth.

There were three parameters chosen to assess the functional 

activity of peritoneal macrophages with regard to the yeast phase of 

dermatitidis. These parameters were phagocytosis, metabolic activation, 

and intracellular killing of the fungus. Qualitative morphologic dif­

ferences and quantitative functional differences between sensitized and 

non-sensitized macrophage populations were examined.

The second objective of this study was to determine the protec­

tive and therapeutic effects of B. dermatitidis induced resistance in 

mice using the syngeneic lymphoma EL4. The protective effects were 

evaluated by: 1) pre-immunization of mice with yeast cells and challeng­

ing with tumor cells at various times, 2) mixing yeast with tumor cells 

prior to injecting animals, and 3) therapy with yeast cells after the 

tumor load had been established. As a companion study to protection in 

vivo, in vitro assays to determine the interaction of activated macro­

phages and tumor cells were carried out.
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CHAPTER 2

ACTIVATION OF MURINE PERITONEAL MACROPHAGES BY 
BLASTOMYCES DERMATITIDIS

ABSTRACT

Cell-mediated immunity (CMI) plays the dominant role in the 

immune response of mice to Blastomyces dermatitidis infections. Since 

macrophages play an important role in CMI, the interactions between sen­

sitized murine peritoneal macrophages and the yeast phase of B. 

dermatitidis were investigated. Scanning electron microscopy (SEM) 

showed that the sensitized macrophages were more efficient in phago- 

cytizing B. dermatitidis than non-sensitized cells. In addition, there 

appeared to be activation of metabolic pathways within the sensitized 

macrophages as indicated by increased chemiluminescence activity during 

phagocytosis. There was a significant difference in the ability of 

sensitized macrophages to control intracellular proliferation of the 

yeast when compared to non-sensitized cells. This was determined by 

disruption of macrophages and plating for viable yeast. Scanning elec­

tron microscope observations offered further substantiation. Experiments 

with Candida albicans indicated that dermatitidis nonspecifically ac­

tivated macrophages. At 2 hours post-phagocytosis, 30% fewer albicans 

in activated macrophages were able to form germ tubes. SEM indicated 

that a number of activated macrophages may interact with a single yeast
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aggregate in vivo. A new mechanism of macrophage activation is sug­

gested. These studies demonstrated the multipoteintial of activated 

macrophages with regard to their functional activity.



INTRODUCTION

The study of host resistance against systemic fungal infections 

has begun to receive considerable attention in the past decade. Up until 

that time, most immunological investigations of these organisms were 

concerned with the isolation and characterization of antigens for use in 

vaccines, diagnosis, and epidemiological studies. The lack of informa­

tion as to the role of local defenses, antibody production, and cell- 

mediated reactions has prompted investigations into host response to var­

ious fungi. Recent studies have pointed to the importance of cell- 

mediated immunity (CMI) in fungal infections (6, 7, 14). Such studies 

have also pointed to the complexities involved in these host-parasite 

relationships.

Of the systemic mycoses, blastomycosis has been the most lack­

ing in terms of the host response. Therefore, in our laboratory we have 

developed a mouse model system to study the role of cell-mediated mech­

anisms in resistance to Blastomyces dermatitidis infections. Previous 

studies in this laboratory have established a delayed hypersensitivity 

pattern which can be passively transferred with cells but not serum 

(26, 25). We have also correlated the delayed hypersensitivity pattern 

with other parameters of CMI responses such as lymphocyte transformation 

(1), lymphokine production (8), and cell-mediated immunoprotection (6). 

All of these studies emphasized the dominant role of CMI against
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dermatitidis. It therefore appeared worthwhile to investigate the as­

pects of cellular immunity as expressed by the macrophages of this sys­

tem. The macrophage is possibly a key cell being both processor of 

antigen and the destroyer of parasites through phagocytosis.

In a preliminary report (G. C. Cozad and L. M. Kronholm, Abstr. 

Annu. Meet. Am. Soc. Microbiol. 1979. F51, P. 371), we demonstrated

an increase in phagocytosis of latex particles by macrophages from im­

mune mice. The prupose of this study was to further evaluate the 

functional activitiy of these macrophages with regard to yeast phase 

cells of dermatitidis. This was done by examining phagocytosis, 

metabolic activation of these macrophages, and intracellular killing 

of the fungus.



MATERIALS AND METHODS

Cultures. The killed whole yeast cell antigen was prepared by 

the method of Restrepo-Moreno and Schneidau (23) as modified by Spencer 

and Cozad (26). The yeast phase cultures of dermatitidis 242 was 

originally isolated from a fatal human case of blastomycosis. The cul­

ture was maintained on brain heart infusion (BHI) agar slants at 37°C.

A 72 hour slant was harvested, and the yeast cells were washed with 

sterile 0.1% cysteine in physiological saline solution (PSS). After 

diluting with 0.04% trypan blue, the cells were examined in a hemacyto­

meter to determine the concentration and viability. The cells were 

then centrifuged and resuspended at the desired concentration in RPMI 

1640 (Gibco, Grand Island, NY.) supplemented with 1% heat-inactivated 

fetal calf serum (ECS) (MA Bioproducts, Walkersville, MD.), penicillin 

(100 units/ml), and streptomycin (100 ug/ml). These suspensions were 

used for in vitro infection of macrophage cultures. A sample was taken 

from the suspension and plated on BHI to determine the colony forming 

units (CPU).

Candida albicans D-76 was maintained by weekly transfers on 

modified Sabouraud dextrose agar. The yeast cells were grown on slants 

for 24 to 36 hours at 37°C, harvested, and washed with sterile PSS. The 

concentration and viability were assessed by hemacytometer counts using 

trypan blue. The desired concentration of yeast cells was suspended
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in RPMI 1640 with 1% FCS.

Test animals. Two to three month old inbred C57BL/6J mice of 

both sexes were used in this study. The strain was originally obtained 

from Jax Laboratories, Bar Harbor, Maine, and bred in our animal facil­

ities. The mice were separated by sex and given water and mouse chow 

(Ralston Purina) ad libitum.

Emulsion of yeast cell antigen with Freund incomplete adjuvant. 

Two methods were tested in the preparation of the antigen-emulsion (Ag- 

emulsion). The first procedure was that of Cozad and Chang (6). The 

Ag-emulsion was prepared by continuous grinding in a motar while a sus­

pension containing 40 mg/ml (dry-weight equivalent) of the Merthiolate- 

killed yeast was added dropwise to an equal volume of Freund incomplete 

adjuvant (Difco Laboratories, Detroit, MI.). After the yeast cells 

were thoroughly ground, further émulsification was carried out by pass­

ing the mixture through an 18-gauge needle until a discrete droplet was 

formed on the surface of cold water. The control suspension was identi­

cally prepared except that a volume of PSS equal to the yeast cell sus­

pension was used in place of the latter.

In the second procedure, the Ag-emulsion was prepared by forcing 

equal volumes of the yeast suspension and Freund incomplete adjuvant 

(Difco) back and forth between two 10 cc glass syringes connected by an 

18-gauge emulsifying needle (Popper and Sons, Inc., New Hyde Park, NY.). 

This was continued until the emulsion formed a discrete droplet on the 

surface of cold water. In the control emulsion, PSS was substituted 

for the yeast cell suspension.
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Sensitization and delayed hypersensitivity of mice. The mice 

were sensitized according to the method of Cozad and Chang (6). Brief­

ly, the animals were divided into a test and control group. On days 0 

and 7 the test animals were inoculated subcutaneously in the inguinal 

area with 0.1 ml of the Ag-emulsion (containing 2 mg dry weight equiv­

alent of killed dermatitidis yeast cells). The control group was 

inoculated in the same manner with the PSS-emulsion.

To determine the delayed hypersensitivity (DH) pattern, three 

mice from each group were footpad tested on days 3, 15, and 30 after 

the initial injection. The footpad tests were done by the procedure of 

Youmans and Youmans (29). The tests were carried out by injecting 45 

ug of dry-weight equivalent of Merthiolet-killed whole yeast cells con­

tained in 0.03 ml of PSS into the right hind footpads and 0.03 ml PSS 

into the left hind footpads. The footpads were measured with dial 

gauge calipers immediately before and 48 hours after challenge. The 

mean differences in thicknesses between the right and left hind foot­

pads served as the measure of DH.

Collection of peritoneal cells. Peritoneal cells were collected 

without the use of an exudate-inducing agent by a modification of the 

method described by Tolnai (28). At 15 to 18 days post-primary injec­

tion, three mice were selected from each group and killed by cervical 

dislocation. The abdominal skin was dissected away from the peri­

toneum. Then 5.0 ml of cold RPMI 1640 with 10 units/ml sodium heparin 

(Fellows Medical Manufacturing Co., Anaheim, CA.) and 1% heat-inacti­

vated FCS was injected into the peritoneal cavity by a syringe with a 

20-gauge needle. After a short massage, the fluid was withdrawn into
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the same syringe by inserting the needle successively on both sides of 

the abdomen.

The cells from three animals were pooled, and their viability 

was assessed by trypan blue exclusion. After centrifugation the sus­

pensions were adjusted to 1 x 10^ cells/ml in cold KPMI 1640 with 1%

FCS, penicillin (100 units/ml), and streptomycin (100 ug/ml). Five 

milliliters of each suspension were added to separate petri dishes con­

taining 3 coverslips each. The cells wer allowed to attach for 60 min­

utes at 37° C in 5% CO^. All non-adhering cells were washed away with 

warm Dulbecco's phosphate buffered saline (PBS). Fresh warm medium con­

taining 10% FCS was added, and the cultures were incubated for 18 to 24 

hours at 37° C in 5% CO^.

Enumeration of macrophages. After the 24 hour incubation peri­

od, some coverslips were selected to enumerate the macrophages present.

A modification of the nonspecific esterase stain by Koski, Poplack, and 

Blaese (13) was used. The coverslips were fixed for 30 seconds in a 

solution of 20 mg Na^HPO^ and 100 mg KH^PO^ in 30 ml of distilled water, 

45 ml acetone, and 25 ml of 30% formaldehyde. The coverslips were 

rinsed with distilled water and air dried for 30 minutes. Then 1.0 ml 

of a pararosaniline solution (1.0 gm of pararosaniline hydrochloride in 

25 ml of 2N HCl) was filtered and mixed with an equal volume of freshly 

prepared 4% sodium nitrite. The stain was prepared by mixing in se­

quence 44.5 ml of M/15 Sorenson's phosphate buffer (2.128 gm of Na^HPO^ 

and 6.984 gm of KH^PO^ in 1000 ml of distilled water at pH 6.3), 0.25 

ml of the prepared pararosaniline solution, and 3.0 ml of an alpha- 

naphthyl solution (1.0 gm of alpha-naphthyl butyrate in 50 ml of dimeth­
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yl formamide). The mixture was immediately filtered, and the cover­

slips were stained for 45 minutes in a 37°C water bath. The coverslips 

were then rinsed with distilled water, drained, and counterstained with 

0.5% methyl green for 15 seconds. A final rinse with distilled water 

was followed by 30 minutes of air drying before mounting the cover­

slips. The entire procedure must be carried out in glass.

Challenge of macrophage monolayers. After the 24 hour incuba­

tion of the macrophage monolayers, in some experiments the medium was 

replaced with fresh RPMI 1640 containing 1% FCS and 1 x 10^ 

dermatitidis yeast cells/ml. Routinely, 0.3 to 0.5 ml of fresh mouse 

serum from sensitized animals were added to the medium. The monolayers 

were again incubated at 37°C in 5% CO^. At various time intervals, 

coverslips were removed and washed free of non-phagocytized yeast cells. 

These coverslips were either fixed in absolute methanol and stained with 

Wright stain for light microscopy or fixed in PBS containing 0.5% glu- 

taraldehyde for scanning electron microscopy (SEM).

For SEM, the coverslips were allowed to fix for 18-24 hours at 

room temperature after which they were washed four times in PBS. The 

coverslips were then dehydrated through a series of ethyl alcohol baths 

ending in absolute ethanol. The coverslips were then placed in a solu­

tion of ethanol amyl acetate for critical point drying in a No. 99 

Model H Pelco Critical Point Dryer (Ted Pella Company, Tustin, CA.) 

using liquid CO^ with a critical pressure of 1072 psi. The coverslips 

were then gold coated and examined in an International Scientific 

Instruments Super II scanning electron microscope at the noted magni­

fications with an accelerating voltage of 25 KV.
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Other experiments were carried out to assess the intracellular 

killing of phagocytized JB. dermatitidis yeast cells. A procedure simi­

lar to the one described by Howard (11) was used. Briefly, macrophage 

cultures from Immune and non-immune animals were allowed to phagocytize 

B̂. dermatitidis yeast cells as described above. After 3 hours, the 

extracellular yeast cells were removed by washing the cultures three 

times with PBS. Fresh medium was then added. A coverslip was removed 

as a zero time sample. Other coverslips were removed at 24 hour inter­

vals. The coverslips were placed in sterile distilled water, and their 

surfaces were scraped to disrupt the macrophages. The suspension were 

diluted, plated on BHI agar, and counted to determine the colony forming 

units (CPU) after 14 days at room temperature. Total numbers of yeast 

cells were determined by direct microscopic counts before plating.

C. albicans was substituted for jB. dermatitidis in the replace­

ment medium for some experiments. After allowing the JC. albicans to be 

phagocytized for 30 minutes, the extracellular yeast cells were removed 

by washing four times with warm PBS. At this point, some coverslips 

were removed and fixed in absolute methanol. These coverslips were 

stained with Wright stain. The percent of macrophages phagocytizing 

and the number of yeast cells per 100 phagocytic cells were determined. 

Other coverslips were reincubated with fresh medium and removed at one 

hour intervals to determine the percentage of phagocytized yeast cells 

forming germ tubes.

Chemiluminescence. The interaction of macrophages with yeast 

cells during phagocytosis was examined by previously described procedure 

for chemiluminescence activity (9). Peritoneal cells were harvested
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from immune and non-immune mice. The cells were counted, centrifuged, 

and resuspended at 1 x 10^ cells/ml in RPMI 1640 with 1% FCS. Then 4.0 

ml of the suspensions were added to dark adapted Beckman Poly Q vials. 

The suspensions were counted at 1 minute intervals for 10 minutes to 

obtain backgroud counts. The counts were made in a Beckman LS lOOC 

liquid scintillation counter at ambient light and temperature through 

the tritium window in the out-of-coincidence mode with the front photo­

multiplier disconnected. Then 1.0 ml of 4 x 10^ B̂. dermatitidis in 

RPMI 1640 with 1% FCS and 0.1 ml of fresh serum from sensitized mice 

was added to each vial. Control samples of peritoneal cells received 

1.0 ml of the medium without the fungus. After mixing, the vials were 

counted at 1 minute Intervals until 30 minutes of counts were obtained 

for each sample. The average counts per minute (CPM) over five minute 

periods were determined and plotted.

In vivo phagocytosis. Three mice of each group. Immune and non-

immune, were selected. The abdominal area was washed with ethanol, and
4 7concentrations ranging from 1 x 10 to 1 x 10 JB. dermatitidis yeast 

cells in Hank's Balanced Salt Solution (HESS) were injected intraperi- 

toneally (IP). At various time intervals after the IP injection, the 

mice were sacrificed, and their peritoneal cells were harvested as 

described early.

The cells were counted, centrifuged, and resuspended in RPMI 

1640 with 1% FCS at 1 x 10^ cells/ml. Then 5.0 ml of the suspensions 

were plated in petri dishes containing 3 coverslips. The cells were 

allowed to settle for 60 minutes at 37°C in 5% CO^. At the end of this 

time, the cell cultures were washed four times with PBS and prepared 

for light microscopy or SEM as earlier outlined.



RESULTS

Establishment of delayed hypersensitivity. Previous studies in 

this laboratory have established a consistent delayed hypersensitivity 

pattern to B. dermatitidis in C57BL/6J mice. For this study, the pat­

tern of delayed hypersensitivity was determined and compared to the 

results of a previous study (Figure 1). It can be seen that the estab­

lished pattern was followed with a peak reaction on day 15 post-primary 

injection with a return to near normal values by day 30. Mice in a 

range of 15 to 18 days post-primary injection were considered to be 

sensitized to dermatitidis. It can also be noted that there was no 

difference in the hypersensitivity response when comparing the two meth­

ods of antigen émulsification.

Enumeration of macrophages. The composition and density of the 

peritoneal cell monolayers were determined by staining for nonspecific 

esterase. Nonspecific esterase has been demonstrated in monocytes (13). 

In the procedure used, esterase positive cells stained red while the 

esterase negative cells took up the green counterstain.

Coverslips stained immediately after the 60 minute settling 

period contained 80 to 85% mononuclear adherent cells. The remaining 

cells were lymphocytes and some polymorphonuclear cells, Coverslips 

stained after the 24 hour incubation period showed greater than 98% 

mononuclear cells (results not shown). The concentration of cells used
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Figure 1. Delayed hypersensitivity pattern in C57BL/6J mice to killed 
dermatitidis yeast cells. Mean (+ standard deviation) 

increase in footpad thickness of mice injected on days 0 
and 7 with Ag-emulsion or PSS-emulsion.
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was sufficient to produce an almost continuous monolayer of macrphages.

In vitro phagocytosis of B. dermatitidis. An initial effort 

was made to arrive at a phagocytic index with the light microscope.

This could then be used to correlate the activity of macrophages with 

the delayed hypersensitivity pattern. However, due to the size and 

staining characteristics of the B. dermatitidis yeast cells this proved 

difficult. Therefore, the SEM was used to qualitatively assess the 

phagocytic activity of macrophages from immune mice.

At about 5 to 10 minutes after exposure of JB. dermatitidis. 

Figure 2 is representative of what one sees. In the sensitized macro­

phage culture (Figure 2A) there are several yeast cells attached or 

being phagocytized. Note also the morphology of these macrophages.

They are rounded and highly ruffled. This is consistent with observa­

tions made of activated macrophages (18). In the non-sensitized macro­

phage culture (Figure 2B) at the same time interval, there are no yeast 

cells attached. Also these macrophages are flattened and lack the 

roughness seen in the sensitized macrophage culture.

Observations made during the first 30 minutes of phagocytosis 

showed that the sensitized macrophages more readily took up the B. 

dermatitidis yeast cells. Once a cell had been phagocytized, it was 

difficult to determine the actual number of yeast cells within the 

phagocyte. However, it was estimated that there were 2.5+0.3 yeast 

cells per phagocytizing macrophage in the sensitized cultures after 30 

minutes of interaction. This was compared to 1.4+0.4 yeast cells per 

phagocytic cell in the non-sensitized cell cultures.



Figure 2A. Representative field from sensitized macrophage culture.
Sample was fixed 5 to 10 minutes after the addition of 
dermatitidis. Note the presence of several attached yeast 
cells (X400).

Figure 2B. Comparable field from non-sensitized macrophage culture.
Sample was fixed 5 to 10 minutes after the addition of 
dermatitidis. No yeast cells are attached to the macrophages 
(X400).
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It was found that the normal phagocytic process occurred 

(Figure 3). There was attachment of the yeast cells to the macrophage 

via filopodia. Next the macrophage began to engulf the yeast cell, and 

finally the yeast cell or cells were completely phagocytized. This pro­

cess was seen in the sensitized and non-sensitized cultures. However, 

it was obseirved with reduced efficiency in the non-sensitized macrophage 

cultures.

Chemiluminescence. There was a rapid increase in emitted light 

from sensitized peritoneal cells as compared to non-sensitized cells 

during interaction with dermatitidis yeast cells (Figure 4). The 

peak response occurred at about 15 minutes after addition of the yeast 

cells to the sensitized peritoneal cells. The non-sensitized cells 

showed only a gradual increase in emitted light over the 30 minute per­

iod of interaction. Controls containing peritoneal cells without the 

fungus remained constant throughout the counting time. Heat produced 

by the scintillation counter began to significantly effect the results 

after 30 minutes of counting.

Intracellular proliferation of B. dermatitidis. The results 

obtained for plating B. dermatitidis from lysed macrophage cultures are 

shown in Figure 5. The non-sensitized macrophages failed to prevent 

intracellular proliferation of the yeast cells. The phagocytized yeast 

cells proliferated at an almost logarithmic rate in the non-sensitized 

culture. While there was not dramatic killing as detectable by this 

system, the sensitized macrophages did inhibit the intracellular growth 

of dermatitidis yeast cells.

The cultures were followed with the SEM. Between 24 to 48 hours.



Figure 3. Phagocytosis of dermatitidis by sensitized peritoneal macro­
phages. A. Attachment of yeast cell to macrophage via macro­
phage philapodia (X4000). B. A macrophage in the process of 
engulfing a yeast cell (X5000). C. A macrophage that has com­
pletely phagocytized more than one yeast cell (X3000).





Figure 4. Chemiluminescence activity of macrophages during phagocytosis 
of B. dermatitidis. A 1:1 peritoneal to yeast cell ratio 
gave optimal results. Each point is the mean (+ standard 
deviation) counts per minute for a five minute interval.
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Figure 5. Intracellular proliferation of B. dermatitidis. Macrophage: 
yeast cell ratio was 1:1 with results expressed as means 
(+ standard deviation).
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there were a significant number (greater than 60%) or non-sensitized 

macrophages with yeast cells protruding out. Figure 6 shows a repre­

sentative non-sensitized macrophage. The yeast cell appeared to bud 

out of the macrophage. At about 90 hours, Figure 7A is typical of what 

was seen in the sensitized cell culture. The yeast cells appeared to 

be contained with a minimal amount of intracellular proliferation. In 

contrast, Figure 7B shows a compairable field from the non-sensitized 

macrophage culture at 90 hours. The yeast cells exhibited extensive 

proliferation. The non-sensitized macrophages had little or no effect 

over the intracellular proliferation of B. dermatitidis.

Figure 8 was obtained from a non-sensitized culture at 12 hours 

after exposure to B. dermatitidis. The yeast cell appeared to be lo­

cated on the remenants of a macrophage that had attempted to phago­

cytize it. Approximately 3 to 5% of the macrophages in the non-sensi­

tized cultures appeared to be lysed before the yeast cells budded out.

In vitro phagocytosis of jC. albicans. When dermatitidis 

activated and control macrophages were infected with Ĉ. albicans, 69 

to 74% of the former and 41 to 53% of the latter ingested yeast cells 

(Table 1). Furthermore, the activated macrophages significantly sup­

pressed germ tube formation by the phagocytized Ĉ. albicans (Figure 9). 

At the end of 2 hours, 30% fewer yeast cells in the activated macro­

phages had germ tubes as opposed to those phagocytized by control macro­

phages. At the end of three hours, there was only about a 10% dif­

ference in germ tube formation by the phagocytized yeast cells. Beyond 

3 hours the germ tubes were so numerous that it was not possible to 

make accurate observations.



Figure 6. Yeast cell budding out of a non-sensitized macrophage.
Macrophages which had phagocytized yeast cells were incu­
bated for 48 hours. It appears that the yeast cells are 
growing out of this macrophage (X2000).





Figure 7A. Representative field from sensitized macrophage culture.
Sample was fixed 90 hours after removal of non-phagocytized 
yeast cells. The dermatitidis appears to be well con­
tained showing only a minimal amount of intracellular proli­
feration (X400).

Figure 7B. A comparable field from non-sensitized macrophage culture.
Sample was fixed 90 hours after removal of non-phagocytized 

dermatitidis. The yeast cells show extensive prolifera­
tion and have escaped from the phagocytes. The non-sensi­
tized macrophages have little or no effect on the growth of 
the yeast cells (X400).
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Figure 8. Macrophage lysed by B. dermatitidis yeast cell. Sample was 
fixed 12 hours after non-phagocytized yeast cells were re­
moved. It appears that the macrophage has been destroyed 
without extensive proliferation of the yeast cell (X2000).





TABLE 1. FATE OF C . ALBICANS IN B . DERMATITIDIS 
ACTIVATED PERITONEAL MACROPHAGES

EXPT.
NO.

MACROPHAGE % MACROPHAGE 
PHAGOCYTIZING

NO. OF C. ALBICANS PER 
100 PHAGOCYTIZING CELLS *P-VALUE

1 A 72 288 <C0.03
C 49 219

2 A 69 270 <0.01
C 53 175

3 A 74 262 < 0 . 0 5
C 41 202

A. Activated macrophages 
C. Resident macrophages 
* Student t-test



Figure 9. Germ tube formation by Ĉ. albicans phagocytized by control 
macrophages and macrophages activated by dermatitidis. 
Results are expressed as means (+ standard deviation).
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In vivo phagocytosis of B. dermatitidis. The SEM was used to 

examine macrophages from sensitized and non-sensitized mice that had 

been exposed to dermatitidis yeast cells in vivo. It was not pos­

sible to quantitate the amount of phagocytosis. There was no way 

to accurately determine with the SEM if a macrophage contained one or 

more yeast cells once the cell was completely phagocytized. Quali­

tatively, the sensitized macrophages appeared more efficient at phago- 

cytizing the yeast cells. Greater than 50% of the adherent cells ob­

tained at 30 minutes after IP injection of B. dermatitidis contained 

yeast cells. This is in contrast to less than 30% of the adherent cells 

from control mice at the same time interval. However, adherent peri­

toneal cells collected at 2 and 3 hours after exposure showed very 

little evidence of phagocytized yeast cells.

Figure 10 shows the formation of a ring of macrophages around 

a yeast cell after harvesting the peritoneal contents. The macrophages 

from sensitized mice showed a cooperative effect during in vivo phago­

cytosis. The cells appeared to close in and engulf the yeast cells 

within the center of the ring.

Occasionally, cells taken from sensitized mice challenged in 

vivo with B. dermatitidis showed a high degree of clumping (Figure 11 A). 

Observations of a mesh like film were also made (Figure IIB). The na­

ture of this film was not determined. However, a recent report (10) 

demonstrated a network of cross-linked fibrin on the surface of 

elicited peritoneal macrophages which may explain these observations.



Figure 10. In vivo interaction of B̂. dermatitidis with sensitized macro­
phages. The contents of the peritoneum were harvested 30 
minutes after injection of B. dermatitidis. A number of 
macrophages appear to be actively involved in phagocytizing 
the yeast cell. The yeast cell is centerally located 
(A = X800; B X3000).





Figure 11. Formation of macrophage aggregates by sensitized macrophages. 
The contents of the peritoneum were harvested 30 minutes 
after injection of dermatitidis. A. In some cases there 
was extensive involvement of an apparent fibrin network 
(X1600). B. This micrograph shows a possible fibrin film 
associated with a macrophage aggregate (XIOOO).





DISCUSSION

It is well established that cell-mediated immunity plays a part 

in the mechanism of resistance to infectious diseases. The macrophage 

is a key cell in this phenomenon being both processor of antigen and 

destroyer of parasites through phagocytosis.

The data presented here show that peritoneal macrophages from 

sensitized C57BL/6J mice exhibit a definite increase in responsiveness 

to dermatitidis yeast phase cells. The peak in phagocytic activity 

of peritoneal macrophages appears to coincide with the peak in delayed 

hypersensitivity as determined by footpad testing. Macrophages collect­

ed from mice at 15 to 18 days post-primary injection are more efficient 

at phagocytizing B̂. dermatitidis yeast cells than those from non-sensi­

tized mice.

The SEM proved to be an invaluable tool in assessing the phago­

cytic activity of mcrophages against dermatitidis yeast cells. The 

size and staining character of this organism precluded attempts to fol­

low the phagocytic process with the light microscope. Phase contrast 

microscopy afforded some insight into the interaction of the yeast cells 

with macrophages, but it was still not possible to determine in all 

cases if the yeast cells were completely phagocytized by a macrophage 

or macrophages. The SEM left no questions. Because of their size, the 

yeast cells were readily discernable as phagocytized particles within

55



56

the macrophage. However, it was not possible to quantitate the total 

numbers of yeast cells per phagocytic cell with the SEM.

It has been reported that the composition of effector cell 

monolayers can significantly influence the outcome of in vitro cyto­

toxic assays (22). Such assays lack standardization. There is no 

standard assay for examining in vitro interaction of macrophages with 

target cells. Variations in experimental conditions can produce macro­

phage monolayers highly contaminated with granulocytes and even lympho­

cytes. Such contamination was significantly eliminated from our mono­

layers by culturing for 24 hours prior to challenge.

We examined the interaction of macrophages with yeast cells 

during phagocytosis by the technique of chemiluminescence. The phago­

cytic event produced a rapid increase in the amount of emitted light 

from the sensitized cell cultures. This phenomenon has been associated 

with the activation of certain metabolic pathways (19). It may indi­

cate the formation of microbiocidal substances within the macrophages.

Non-sensitized macrophages phagocytized dermatitidis yeast 

cells as did sensitized macrophages but with reduced efficiency. There­

fore, and obvious question is: What is the fate of the phagocytized 

yeast cells? In order to gain insight into this question, the intra­

cellular killing of yeast cells was investigated. While there was not 

a dramatic decrease in the viability of yeast cells in the sensitized 

macrophage cultures, these macrophages did inhibit the intracellular 

proliferation of the yeast. The results obtained may reflect the limi­

tations of the assay.

Macrophages are capable of killing many different microorgan­
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isms rapidly following phagocytosis (27). However, a number of para­

sites are able to survive phagocytosis and proliferate within macro­

phages. Our data indicate that B. dermatitidis yeast cells possess at 

least two means of escaping phagocytosis. One is related to the abil­

ity of the organism to proliferate inside the phagocyte. By an as yet 

undetermined mechanism, phagocytized dermatitidis yeast cells con­

tinue to proliferate and bud out of the macrophage. The SEM revealed 

that greater than 90% of the phagocytized yeast cells were capable of 

physically growing out of non-sensitized macrophages in vitro by 90 

hours. A second escape mechanism appears to involve yeast cell-med­

iated macrophage destruction. It has been reported that B. dermatitidis 

yeast cells contain cell wall associated toxin (5). The ability of 

these yeast cells to destroy non-sensitized macrophages in vitro with­

out evidence of extensive proliferation may result from such yeast cell 

produced substances.

A recent report by Brummer et al. (3) indicated that virulent, 

avirulent, and attenuated strains of dermatitidis yeast cells can 

replicate in vitro in the presence of macrophages. There are wide dif­

ferences in our assay procedures so that direct comparisons are not

possible. Nevertheless, we consider our strain to be virulent for mice
2(21-day dose of 3.90 x 10 yeast cells intravenously). We did not 

observe the inhibition of replication which they reported by resident 

peritoneal macrophages at 24 hours. They failed to indicate if the 

"free growing" yeast they observed had ever been phagocytized. There 

was no effort to remove non-phagocytized yeast cells from their system. 

In addition, we question the cell composition of their monolayers. Our
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staining procedures indicated a high potential for contamination of 

macrophage monolayers by granulocytes and lymphocytes. It has been re­

ported that extended attachment periods (greater than 60 minutes) in 

the presence of 10% heat-inactivated fetal calf serum can result in 

very heterogeneous monolayer populations (22).

JB. dermatitidis activated macrophage monolayers were infected 

with albicans in order to assess the ability of these macrophages to 

inhibit the growth of other fungi. The size of this organism made 

quantitation with the light microscope practical. This gave quantita­

tive results as to the number and activity of phagocytic cells in the 

peritoneum. Also, it has been reported that lack of germ tube formation 

by phagocytized Ĉ. albicans is indicative of candidacidal activity by 

macrophages (21). The dermatitidis activated macrophages signifi­

cantly suppressed formation of germ tubes by phagocytized £. albicans. 

The results indicate that B. dermatitidis can nonspecifically activate 

peritoneal macrophages.

Results obtained from IP challenge of dermatitidis were in 

agreement with the in vitro data. A significant number of macrophages 

collected from challenged sensitized mice showed evidence of phago­

cytized yeast cells. There appeared to be greater cooperation between 

macrophages in vivo in phagocytizing yeast cells. The formation of 

rings of macrophages around yeast cells may be a truer representation 

of macrophage yeast cell interaction in vivo. This tends to fit the 

histological picture of blastomycosis in which the pathogen may be 

extracellular or contained within giant cells (24).

The inability to recover large numbers of phagocytized B.
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dermatitidis yeast cells beyond one hour after IP injection may relate 

to the macrophage disappearance phenomenon as described by Nelson and 

North (20). The surface of the macrophages may become "sticky" medi­

ating attachment of yeast cells to membranes via macrophages. Alter­

natively, the cells may directly bind to organs within the peritoneum.

A recent study indicated that the deposition of fibrin on the surface 

of immune macrophages may mediate their aggregation (10). It would be 

interesting to see what effect heparin would have on the formation of 

rings or aggregates of macrophages by IP challenged mice.

The activation of macrophages could be of major importance in 

preventing the development of systemic blastomycosis during infection. 

Cozad and Chang (6) showed a close parallel between delayed hypersen­

sitivity and resistance to infection by dermatitidis. We present 

here evidence of correlation between macrophage activity and delayed 

hypersensitivity in mice. Mackaness (15) first demonstrated a relation­

ship between macrophage in vitro activity and in vivo protection against 

infection with jL. monocytogenes. Since macrophage populations are not 

uniform (12), it is possible that the failure of some macrophages to 

become activated and kill dermatitidis results in spread of the dis­

ease via the lymphatic system.

Additional evidence for the importance of macrophage activation 

came from a recent study by Morozumi et al. (17). They reported that 

C3H/HeJ mice are highly unresponsive to lipopolysaccharides, and their 

macrophages resist activation by a variety of agents (16). They con­

cluded that defects in macrophage cytotoxicity may contribute to suscep 

tibility in blastomycosis.
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Finally, we feel that our system may represent a novel mecha­

nism of macrophage activation. The question arises as to why cells in 

peritoneal cavity should exhibit activation from subcutaneous immuni­

zation with a killed organism. The mechanism for this is not clear.

It is known that activation can be sustained over a period of time in 

chronic rather than acute inflammatory situations (4). As the activa­

tion of macrophages has not been accomplished by serum transfer, it 

would appear that a circulating activating factor does not account for 

the activity of the peritoneal cells. It has been reported that BCG 

infected mice challenged with Listeria produce systemic effects on 

macrophages during periods of intense antigenic stimulation (.2). While 

the BCG data was with reference to active infections, it does postulate 

an undefined systemic activation at the height of response. The actual 

mechanism of systemic macrophage activation by dermatitidis should 

prove interesting.
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CHAPTER 3

IMMUNOADJUVANT EFFECTS OF 
BLASTOMYCES DERMATITIDIS 

AGAINST THE EL4 LYMPHOMA IN C57BL/6J MICE

ABSTRACT

We have previously shown that Merthiolate-killed Blastomyces 

dermatitidis yeast cells greatly enhance the cell-mediated immune res­

ponse in C57BL/6J mice. Therefore, tlie use of this fungus as an immuno- 

potentiator against EL4 lymphoma was investigated. Preimmunization

resulted in a doubling of the mean survival time of mice at an initial
2 4tumor challenge of 10 to 10 EL4 cells. In some experiments, mice

2 6 2were given a range of 10 to 10 EL4 cells intraperitoneally or 10 to

10^ EL4 mixed with killed B. dermatitidis. None of the animals receiv­

ing tumor cells alone survived. Mice treated with yeast cells were
4protected from as many as 10 tumor cells. Complete suppression of

2 3tumor growth was observed in treated animals at 10 and 10 tumor cells.

The mice were not immune to further EL4 challenge. The lack of tumor-

specific immunity indicated nonspecific suppression by macrophages. At

10 days after treatment, the peritoneal macrophages from mice showing

complete suppression were tested for their ability to prevent in vitro

tumor cells proliferation. These macrophages demonstrated 90% inhibi- 
3tion of H-thymidine incorporation by EL4 at a 100:1 effector to target
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ratio. Macrophages from treated animals at 10 and 15 days exhibited 

a two-fold increase in specific lysis of EL4 as compared to resident 

macrophages. Spleen and lymph node cells from protected animals show­

ed no cytotoxic activity against EL4 in a ^^Cr-release assay. Treat­

ment of tumor bearing mice with a single dose of B. dermatitidis was 

effective only if administered within 24 hours of tumor establishment.



INTRODUCTION

It is generally accepted that macrophages play a major role in 

resistance against growth of tumor cells within host tissue. The in 

vitro cytolytic capacity of activated macrophages is well substantiated 

(9, 20). Also, as the result of bacterial or protozoal infection macro­

phages become activated and are able to inhibit the growth of tumor 

cells in vivo (8, 11)^ The mechanisms whereby activated macrophages can 

destroy tumor cells but not normal cells are currently under investi­

gation.

Microorganisms such as Bacillus Calmette-Guerin (BCG) (20), 

Toxoplasma gondii (8), or Corynebacterium parvum (11) are capable of in­

ducing macrophages which have the capacity to distinguish tumor cells 

from normal cells. There is a great interest in agents which enhance 

the ability of macrophages to nonspecifically kill tumor cells. Various 

agents are also able to activate cultured resident macrophages to a tu­

moricidal state. These include lymphokines (20), lipopolysaccharide 

(IPS) (1), and poly I:C (28). Evidence continues to mount for the im­

portance of macrophages as the primary target of such immunomodulating 

agents.

Past studies in our laboratory with yeast cells of the dimorphic 

fungus Blastomyces dermatitidis indicated that this organism greatly 

stimulates the cell-mediated immune system, and suggests its use as a
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potent immunostlmulant for suppression of tumor cell growth. We re­

port here results from experiments aimed at determining the protective 

and therapeutic effects of defmatitidis induced resistance in 

C57BL/6J mice using the syngeneic lymphoma EL4.



MATERIALS AND METHODS

Culture. The Merthiolate-killed whole yeast cell antigen was 

prepared by the method of Restrepo-lforeno and Schneidau (21) as modi­

fied by Spencer and Cozad (26). The yeast phase culture of B. 

dermatitidis 242 was originally Isolated from a fatal human case of 

blastomycosis. The culture was maintained on brain heart infusion (BHI) 

agar slants at 37°C.

Test animals. Two to three month old inbred C57BL/6J mice of 

both sexes were used in this study. The strain was originally obtained 

from Jax Laboratories, Bar Harbor, Maine, and bred in our animal facil­

ities. The mice were separated by sex and given water and mouse chow 

(Ralston Purina) ad libitum.

Cell line. The thymus-derived benzopyrene-induced lymphoma 

EL4 of C57BL mice was used in this study. The cells were maintained 

as ascites tumors in 8 to 12 week old C57BL/6J mice. Transfers were 

made at 10 to 12 days by intraperitoneal (IP) injection of 10^ cells 

in 0.2 ml of Hank's Balanced Salt Solution (HBSS) (Gibco, Grand Island, 

NY.). In vitro cultures of EL4 were maintained as suspensions in RPMI 

1640 (Gibco) supplemented with 10% heat-inactivated fetal calf serum 

(PCS) (MA Bioproducts, Walkersville, MD.). Further supplements in­

cluded 2 mM L-glutamine, 100 units/ml of penicillin, and 100 ug/ml of 

streptomycin (Gibco). Cells were carried in logarithmic growth (12 to
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14 hour doubling time) within a cell density of I x 10" to 2 x 10^ 

cells/ml. EL4 viability under these growth conditions was between 97 

and 100% as determined by trypan blue exclusion.

Preparation of immunizing inoculum and assessment of delayed 

hypersensitivity. An antigen-emulsion (Ag-emulsion) of Merthiolate- 

killed 2" dermatitidis yeast cells was prepared by forcing equal vol­

umes of the yeast suspension and Freund incomplete adjuvant (Difco 

Laboratories, Detroit, MI.) through an 18-gauge emulsifying needle 

(Popper and Sons, Inc., New Hyde Park, NY.). This was continued until 

the emulsion formed a discrete droplet on the surface of cold water.

A control suspension was prepared by substituting a physiological saline 

solution (PSS) for the yeast suspension.

The mice were sensitized according to the method of Cozad and 

Chang (4). On days 0 and 7 mice were inoculated subcutaneously in the 

inguinal area with 0.1 ml of the Ag-emulsion (containing 2 mg dry weight 

equivalent of killed dermatitidis yeast cells). A control group 

was inoculated in the same manner with the PSS-emulsion.

To determine the delayed hypersensitivity pattern, three mice 

from each group were footpad tested on days 3, 15, and 30 after the ini­

tial injection. The footpad tests were done by the procedure of Youmans 

and Youmans (30) as described by Cozad and Chang (4).

Tumor inoculations. Mice were divided into groups of 10 animals 

each. All experiments were carried out at least two times. Initial

experiments were conducted to establish the median survival time of
2 7mice receiving from 10 to 10 tumor cells with no treatment.

Experiments were designed to test the effect of preimmunizing
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2mice with the Ag-emulsion. Mice were challenged with a range of 10 

to 10^ tumor cells IP on days 0, 3, and 15 after the initial Ag-emul- 

sion injection. Some animals were given 0.1 or 1.0 mg of killed B. 

dermatitidis in 0.2 ml of Dulbecco’s phosphate buffered saline (PBS)

IP five days before tumor challenge. In all experiments the B̂. 

dermatitidis was washed 3 times in 10 volumes of sterile PSS to remove 

Merthiolate.

The protective effects were also evaluated by mixing the yeast 

dells with tumor cells prior to injecting into mice. The mice were 

given 0.2 ml IP injections of 10 to 10 EL4 cells mixed with 0.1 or 

1.0 mg of killed B. dermatitidis yeast cells. The survival of the ani­

mals was checked daily for 2 months.

To test the therapeutic potential of dermatitidis, mice were 
2 6inoculated IP with 10 to 10 EL4 cells and treated with 1.0 mg of _B. 

dermatitidis in 0.2 ml of PBS IP at various times after tumor challenge. 

A control group of tumor bearing mice received 0.2 ml of PBS alone IP. 

The times of treatment were 2 hours, 1, 2, 5, 8, and 11 days.

Collection of peritoneal cells. Peritoneal cells were collected 

without the use of an exudate-inducing agent by a modification of the 

method described by Tolnai (29). The abdominal skin was dissected away 

from the peritoneum. Then 5.0 ml of cold RPMI 1640 containing 10 units/ 

ml sodium heparin (Fellows Medical Manufacturing Co., Anaheim, CA.) 

and 1% PCS was injected into the peritoneal cavity by a syringe with a 

20-gauge needle. After a short massage, the fluid was withdrawn into 

the same syringe by inserting the needle successively on both sides 

of the abdomen.
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The cells from three animals were pooled, and their viability 

was assessed by trypan blue exclusion. After centrifugation the sus­

pensions were resuspended to 5 x 10^ cells/ml in cold RPMI 1640 with 

15 PCS. Then 0.1 ml of the suspension was placed into wells of Falcon 

Microtest II plate style 3040 (Falcon Plastics, Oxnard, CA.). After 

adherence for 60 minutes at 37°C in 5% COg, nonadherent cells were re­

moved by washing two times with warm PBS and suction through a Pasteur 

pipette. Then 0.1 ml of fresh warm medium containing 10% PCS was added 

to the chambers, and the plates were incubated for 18 to 24 hours at 

37°C in 5% CO,.

Cytostasis assay. A modification of the procedure described 

by Goldman and Bar-Shavit (6) was used. After the 24 hours incubation, 

0.1 ml of RPMI 1640 with 10% PCS containing the desired concentration 

of EL4 cells was added to the wells. Controls of 0.2 ml RPMI 1640 with 

tumor cells alone were set up. The plates were reincubated for 7 hours.
3Then 0.5 uCi of H-thymidine (20 Ci/mmole; New England Nuclear, Boston,

3MA.) was added. Controls containing macrophages alone with H-thymidine 

were included. Then plates were again reincubated at 37°C and 5% CO^ 

for an additional 24 hours. The samples were harvested with.a MASH 

unit (MA Bioproducts). The filter strips were dried, and the discs 

were placed in toluene scintillation fluid and counted in a Beckman LS 

lOOC liquid scintillation counter.

Cytotoxic assay. EL4 cells were labeled by incubating 5 x 10^

cells for 3 hours in 1.0 ml RPMI 1640 with 10% PCS containing 10 uCi
125 125of I-iododeoxyuridine ( lUdR) (5 Ci/mg; Amersham, Arlington Heights,

IL.) (14). After incubation the cells were washed three times with
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medium and resuspended at 5 x 10^ cells/mi.

The desired concentration of labeled EL4 cells in 0,1 ml of 

medium was added to wells containing 5 x 10^ macrophages that had been 

incubated for 24 hours. Wells were set up for spontaneous and maximun 

release for each tumor cell concentration used. All samples were ran 

in triplicate. The plates were incubated for an additional 27 to 30 

hours at 37°C and 5% CO^. After incubation 0.1 ml of a 2N HCl solution 

was added to the maximum release wells to obtain total counts. The 

plates were centrifuged for 15 minutes at 200 x g. Then 0.1 ml samples 

were removed and counted in a Packard Tri-Carb gamma counter. The 

percentage of specific lysis was obtained using the following formula;

„ „ , , cpm test sample -cpm spontaneous release „
^ Specific lysis-------Mximum cp. of target cïlls-------- ==

Scanning electron microscopy (SEM) of EL4 and macrophages. 

Peritoneal cells were hrvested as described above. A 5.0 ml suspension 

of 1 X 10^ cells/ml was plated in petri dishes containing three glass 

coverslips. After 60 minutes at 37°C and 5% COg, all non-adhering cells 

were washed away with warm PBS. Fresh warm medium containing 10% PCS 

was added, and the culture was incubated for 18 to 24 hours at 37°C in 

5% COg.

After 24 hours, the medium was replaced with fresh medium con-
3

taining 5 x 10 EL4 cells/ml. This was incubated for various time in­

tervals up to 48 hours at 37°C and 5% COg. The medium was then aspir­

ated, and the coverslips were fixed \*rlth 0.5% glutaraldehyde in PBS 

at room temperature for 18 to 24 hours.



73

The samples were further prepared for SEM by dehydration 

through a series of ethyl alcohol. The coverslips were critical point 

dried in a No. 99 Model H Pelco Critical Point Dryer (Ted Pella Company, 

Tustin, CA.) using liquid CO^ with a critical pressure of 1072 psi.

The samples were then gold coated in a Technics Hummer sputter coater 

and examined in an International Scientific Instruments Super II scan­

ning electron microscope at the noted magnifications with an acceler­

ating voltage of 25 KV.

Chromium release assay. The cytotoxic activity of lymphocytes 

was evaluated using an established procedure (25). EL4 cells, 1 x 10^ 

in 1.0 ml, were Incubated in serum free RPMI 1640 containing 100 uCi of 

^^Cr-sodium chromate (500 mCi/mg; Amersham, Arlington Heights, IL.) for 

1 hour at 37°C and 5% COg. After incubation the cells were washed 

twice and adjusted to 2 x 10^ cells/ml (target cells) in RPMI 1640 with 

10% PCS. Spleen or lymph node cells (effector cells) from mice showing 

tumor suppression at 10 or 15 days were adjusted to 1 x 10^ cells/ml.

Then 0.1 ml of target cells were placed in round bottomed microtiter 

plates (Linbro Scientific Co., Hadmen, CT.). The plate was incubated 

at 37°C in 5% CO^ for 4 hours. At the end of this time, the plate was 

centrifuged at 200 x g for 15-20 minutes. Then 0.1 ml of the super­

natant was carefully removed, transferred to a 12 x 75 mm disposable 

glass tube, and counted for 10 minutes in a Packard Tri-Carb gamma 

counter. The percent cytotoxicity was obtained by the following for­

mula:
% S ecific 1 sis = test sample - cpm spontaneous release X 100

maximum cpm of target cells



RESULTS

Hypersensitivity. Footpad tests demonstrated a delayed hyper­

sensitivity pattern that is consistent for B. dermatitidis. For results 

see Chapter 2,

Survival time of normal mice. EL4 lymphoma cells were grown in 

the pweitoneal cavity of C57BL/6J mice. It was necessary to establish 

the survival time of untreated mice inoculated with various concentra­

tions of EL4 cells. The median survival time is shown as a function of 

the initial tumor inoculum in Figure 1. The median survival time was 

directly proportional to the initial tumor inoculum.

These results were compared to a previous study (13) for refer­

ence purposes. The data are shown in Figure 2. As can be seen, the 

survival time of the mice in this study followed that of the previous 

study.

Preimmunization effects on mice survival. Mice were preimmunized 

with B. dermatitidis in Freund incomplete adjuvant. They were then 

challenged with various tumor inocula at different times post-primary 

immunizing dose. The results are presented in Figure 3. As can be seen, 

mice that were challenged on the same day or 15 days after the initial 

JB. dermatitidis injection had mean survival times very similar to that 

of the controls. However, mice challenged 3 days after the initial B. 

dermatitidis injection showed a significant increase in mean survival

74



Figure 1. Median survival time of C57BL/6J mice as a function of the 
initial number of EL4 cells injected into the peritoneal 
cavity.
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Figure 2. Comparison of median survival time of C57BL/6J mice receiving 
EL4 to a previous study for reference purposes.
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Fugure 3. Preimmunization of C57BL/6J mice with dermatitidis in
Freund incomplete adjuvant. Results are expressed as mean 
(+ standard error) survival time.
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time. The lower the initial tumor inoculum, the more significant was 

the increase in mean survival time as compared to controls.

In some experiments, mice were given killed dermatitidis IP 

in PBS 5 days prior to tumor challenge. Figure 4 shows the increase in 

mean time of survival of mice treated with 0.1 or 1.0 mg of yeast cells. 

There was no significant difference in the survival of mice treated with 

0.1 or 1.0 mg of yeast cells. The increase in survival was very similar 

to that seen in mice immunized 3 days before tumor challenge with

dermatitidis in Freund incomplete adjuvant (Figure 3),

Mixing of EL4 with B. dermatitidis. A dry equivalent weight of
2 60.1 or 1.0 mg of killed dermatitidis was mixed with 10 to 10 EL4 

cells and immediately injected IP to determine if dermatitidis could

induce a host response capable of suppressing the growth of the tumor.

The EL4 in these mixtures showed no significant decrease in viability 

even after 4 hours as determined by trypan blue exclusion. Within sev­

eral days, all mice that had received the mixture developed an inflam­

matory response at site of injection. Mice that received EL4 alone 

showed no such response. At 30 days, the inflammation had receded in 

a majority of the animals that received dermatitidis. By 60 days, all 

mice in the control groups were dead as the result of tumor growth, but 

a significant number of animals that received the mixture were alive and 

free of tumors (Table 1). At 65 days, the living mice were rechallenged 

with 1 X 10 EL4 cells IP. Although the survival of the mice increased, 

they all died as result of tumor development.

Treatment of EL4 with dermatitidis. To determine if B. 

dermatitidis could cause regression of established tumors, mice inoculated



Figure 4. Preimmunization of C57BL/6J mice with B. dermatitidis by IP
injection five days prior to challenge with EL4. Results are 
expressed as mean (+ standard error) survival time.
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TABLE 1. SUPPRESSION OF TUMOR GROWTH BY B. DERMATITIDIS

CONC. EL4
RESULTS 60 DAYS POST TREATMENT

CONTROL 0.1 MG B. DERMATITIDIS 1.0 MG B. DERMATITIDIS

A B A B A B

10^ 0/10* 0/10 0/10 0/10 0/10 0/10

10^ 0/10 0/10 1/10 0/10 2/10 1/10

10^ 0/10 0/10 10/10 6/10 10/10 8/10

10^ 0/10 0/10 10/10 10/10 10/10 10/10

10^ 0/10 0/10 10/10 10/10 10/10 10/10

* No. of animals tumor-free/no. given injections of tiunor 
A Experiment #1 
B Experiment #2
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with EL4 cells were treated at various times with 1.0 mg of B. 

dermatitidis (Table 2). Animals that received 10^ or 10^ EL4 cells 

showed no regression of tumor growth. There was no significant in­

crease in the mean survival of these animals as compared with the con-
2 3 4trois. Mice given 10 , 10 , or 10 EL4 cells showed a significant

percent survival if treated within 2 hours. The amount of survival

decreased at least three-fold if the treatment was given at 1 day. No

animals treated between 3 and 11 days with a single dose of B̂.

dermatitidis showed significant increases in survival.

Effect of macrophages on tumor proliferation. To determine if
3peritoneal macrophages could halt the growth of EL4 cells in vitro, H- 

thymidine incorporation by EL4 in the presence of various macrophage 

preparations were examined (Figure 5), At a 100:1 effector to target
3ratio, resident macrophages reduced H-thymidine incorporation into EL4 

by 44%. A significant difference in the amount of incorporation was 

seen in the presence of macrophages from mice given 0.1 or 1.0 mg of B. 

dermatitidis 5 days before harvesting. The results obtained using mac­

rophages derived from animals given dermatitidis subcutaneously 3 

days before harvesting were almost identical to those seen with 5 day 

prior IP injected animals (data not shown). Macrophages from mice that
4received a mixture of 10 EL4 and dermatitidis 10 days before har­

vesting produced 90% inhibition of incorporation at à 100:1 effector to 

target ratio. This was greater than a 45% difference when compared to 

resident macrophages at the same concentration. The difference between 

these two groups was even greater at 1:1 and 10:1 effector to target 

ratioes.



TABLE 2. REGRESSION OF ESTABLISHED TUMORS BY B. DERMATITIDSI

CONC. EL4 TREATMENT
TIME

RESULTS 60 DAYS POST TREATMENT 
1.0 MG B. DERMATITIDIS PBS

P-VALUE®

10^ 2 HR 6/10 0/10 <0.05
1 DAY 2/10 0/10 <0.05
2 DAY 0/10 0/10

lo" 2 HR 9/10 0/10 <0.001
1 DAY 2/10 0/10 NS
2 DAY 0/10 0/10

10^ 2 HR 10/10 0/10 <0.001
1 DAY 6/10 0/10 NS .
2 DAY 4/10 0/10 NS

@ Mann-Whltney Rank-Sum test 
* No. of animals tumor-free/no. 

NS Not significant
given injections of tumor



Figure 5. Macrophage-mediated cytostasis of EL4 assessed by inhibition 
of ^H-thymidine incorporation. Macrophages were collected 
from normal mice (resident macrophages), from mice that had 
received 1.0 mg of B̂. dermatitidis 5 days earlier, and from 
mice showing complete suppression of tumor growth at 10 days 
which had received 10^ EL4 + 1.0 mg B. dermatitidis.
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In vitro cytotoxicity of peritoneal macrophages. Peritoneal

macrophages taken from mice 10 or 15 days after receiving 0.1 or 1.0 mg

of B̂. dermatitidis mixed with 10^ EL4 cells were tested for their abil- 
125ity to release lUdR prelabeled EL4 cells. The data in Fugure 6 show

that there was at least a two-fold difference in the amount of lysis

caused by macrophages from treated mice as compared to normal resident

macrophages. There was a consistent drop in the amount of lysis when

the effector to target ratio was increased from 10:1 to 100:1.

In initial experiments, an incubation period of 48 hours was

used to the cytotoxic effects. However, under these conditions the

spontaneous release was equal to the maximum release in the controls.

If the incubation time was cut to 30 hours, the counts obtained showed

greater than a five-fold difference for the spontaneous versus the max- 
125imum release of lUdR.

Interaction between activated macrophages and target cells.

The EL4 lymphoma cells were readily identifiable in the SEM. They were 

spherical and had numerous microvilli on their surfaces. When EL4 cells 

were seen in the presence of resident macrophages, there was no evidence 

of macrophage aggression toward the lymphoma cells (Figure 7A). Some 

tumor cells appeared to move across the surface of resident macrophages.

Macrophages collected from mice 10 days after receiving 1.0 mg 

of dermatitidis mixed with 10^ EL4 cells (test macrophages) were ex­

amined for there ability ;to interact in vitro with EL4. Figure 7B shows 

a macrophage surround by 8 EL4 cells. Two of the cells have been lysed 

and several others show significant surface alterations. This micro­

graph also shows the apparent sequence that lead to the ultimate lysis
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of tumor cells. The EL4 cells lost many of their surface microvilli 

eventually becoming smooth. These smooth surface cells would develop 

numerous perforations indicating lysis had occurred. Figure 7C shows a 

single EL4 cell that has been lysed by a test macrophage. There are 

several EL4 cells in close proximity to the macrophage that have not 

been lysed.

Figure 8A shows a test macrophage with 4 EL4 cells attached to 

it after 4 hours of interaction. Philapodia from the macrophage are ac­

tively engaged with the tumor cells (Figure 8B). Even at this early 

time, test macrophages showed strong evidence of interaction with tumor 

cells. However, there are no apparent alterations in the EL4 cells at 

this point.

Lymphocyte cytotoxicity. Cytotoxic lymphocytes were tested for 

in the spleen or lymph nodes of mice which had received 0.1 or 1.0 mg of
4JB. dermatitidis mixed with 10 cells IP. The tests were carried out at 

10 and 15 days after injection of the mixture. In one experiment, lymph 

node and spleen cells were taken at 10 days from mice which had received 

the above mixture on day 0, 3, and 5. Table 3 shows results from a re­

presentative experiment for lymphocytes collected 10 days after a single 

injection. No cytotoxic lymphocytes were detected in spleen and lymph 

node preparations from mice showing suppression of tumor growth.



125Figure 6. Release of I from EL4 target cells after 30 hours in culture.
The target cells were cultured with macrophages (effector) col­
lected from normal mice (resident macrophages) or from mice 
showing complete suppression of tumor growth at 10 or 15 days 
after receiving 104 EL4 + 1.0 mg dermatitidis. The data 
shown are means (+ standard error).
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Figure 7A. Scanning electron micrograph of a resident peritoneal macro­
phage with seven tumor cells. Sample was fixed after 48 
hours of macrophage:EL4 interaction in vitro. Note the 
presence of EL4 motility structures (X2000).

Figure 7B. Scanning electron micrograph of an activated peritoneal mac­
rophage with eight tumor cells. Macrophages were collected 
from mice showing suppression of tumor growth at 10 days 
after receiving 10^ EL4 + 1.0 mg of dermatitidis. Sample 
was fixed after 48 hours of macrophage:EL4 interaction in 
vitro. Two EL4 cells have been lysed and several show sig­
nificant surface alterations (X2000).

Figure 7C. Scanning electron micrograph of an activated peritoneal mac­
rophage in intimate contact with a single EL4 cell which has 
been lysed. EL4 cells in close proximity to the macrophage 
show no evidence of surface alteration. The sample was fixed 
after 30 hours of macrophage :EL4 interaction in vitro (X2000).





Figure 8. Scanning électron micrograph of an activated macrophage with 
four tumor cells. Sample was fixed after 4 hours of macro­
phage :EL4 interaction. There is already an indication of 
strong attachment of the EL4 cells to the macrophage via mac­
rophage philapodia (A = X2000; B = X15000).





TABLES. ^^CR-RELEASE ASSAY

EFFECTOR CELLS
% SPECIFIC LYSIS 
EFFECTOR:TARGET (50:1)

C57BL/6J, NORMAL SPLEEN -2

C57BL/6J, SENSITIZED SPLEEN 5.1

C57BL/6J, NORMAL LYMPH NODES 2.2

C57BL/6J, SENSITIZED LYMPH NODES 3.0



DISCUSSION

The results presented here demonstrate that Merthiolate-killed 

B. dermatitidis yeast cells can cause suppression of EL4 lymphoma in 

C57BL/6J mice. Other studies on the mechanisms of tumor regression by 

immunopotentiating agents have shown that macrophages are important 

effector cells (8, 9). Previous studies in this laboratory have shown 

that D. dermatitidis can activate macrophages to become fungicidal. It 

is possible that this organism can activate macrophages to a tumorici- 

dal state. Other mechanisms could be involved in the tumor suppression 

and cannot be ruled out. However, these experiments show that peri­

toneal macrophages from mice treated with non-viable B. dermatitidis 

yeast cells plus EL4 have an enhanced potential for in vitro tumor cell 

stasis and killing.

O'Neill and Stebbing (19) recently reported that preimmunization 

of mice with Ĉ. parvum failed to inhibit the growth of EL4 in C57BL/6J 

mice. In contrast to this, preimmunization with B. dermatitidis sig­

nificantly increased the mean survival time of mice challenged with 

EL4. This protective effect was seen at 3 to 6 days after subcutaneous 

or IP injection of dermatitidis. It is curious that the route of 

injection had little on the time sequence of protective effects.

It was originally thought that the highest degree of enhanced 

survival would coincide with the peak in phagocytic activity of peri-

98
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toneal macrophages (i.e., 15 to 18 days post-primary^, dermatitidis 

injection). However, this was not the case. The protective effects 

dropped off, and the mean survival time returned to that of the con­

trols by day 15. This suggests that the cells involved in protecting 

preimmunized mice are not highly phagocytic. Similar results were 

observed by Rice and Fishman (22), and they reported that weakly phago­

cytic cells were more active in the inhibition of tumor growth than 

highly phagocytic macrophages.

j|. dermatitidis produces a granulomatous reaction in tissue 

(24). Such reactions have been reported for other agents currently 

used in immunotherapy (7). The components of the yeast cells of B. 

dermatitidis which elicit tissue reaction are not completely defined. 

The yeast phase cell walls are mainly composed of glucose with small 

amounts of galactose, mannose, protein, and lipid (10, 2, 3). It has 

been reported that the lipid component may be responsible for induction 

of the granulomatous response (3). This is in contrast to the reported 

role of glucan from C. albicans being responsible for tissue reaction 

(17). In addition, glucan derived feom Saccharomyces cerevisiae has 

been shown to stimulate macrophages and produce resistance to bacterial 

infection and neoplasia (12, 23). The nature of the component respon­

sible for the protective effects seen in this study is not known.

Bacterial endotoxin or LPS is capable of activating macrophages 

in vitro to a tumoricidal state (1). B. dermatitidis yeast cells have 

been reported to contain cell wall associated toxin (3). While the B̂. 

dermatitidis endotoxin has not been extensively characterized, it is 

doubtful that this toxin is identical to bacterial LPS. As evidence,
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it has been reported that Ĉ. albicans and endotoxin which shares some 

of the properties of bacterial LPS but is not exactly comparable to it 

(5). Nevertheless, such a substance could be active in the protective 

effects we observed.

The possibility of direct interaction between non-viable 

dermatitidis and EL4 has been considered. Our data suggest that there 

may be some interaction since the highest degree of protection was ob­

tained by mixing yeast cells with tumor cells prior to injection. 

However, we do not feel that the protective effects result solely from 

an adverse action of yeast cells against tumor cells. First of all, 

significant protection was obtained by preimmunizing mice with 

dermatitidis alone. There were no adverse effects on EL4 observed by

the light microscope. Also, at a 10:1 ratio of non-viable yeast cells
3to tumor cells in vitro, the EL4 cells continued to incorporate H- 

thymidine at near normal levels (data not shown). In addition, the 

protective effects were not limited to mixing yeast cells with tumor 

cells in vitro. The same results could be obtained by injecting yeast 

cells and tumor cells separately on opposite sides of the peritoneum.

The fact that the highest degree of protection resulted from 

mixing yeast cells with tumor cells may be clinically significant. It 

has been reported that a BCG-tumor cell mixture can enhance the sur­

vival of some cancer patients (27). It is possible that a non-viable 

B. dermatitidis-tumor cell mixture could be useful in the development 

of active immunity in cancer patients.

The preliminary results we obtained on the therapeutic poten­

tial of B. dermatitidis indicate that the yeast cells were beneficial
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only if administered within 24 hours after tumor transplantation. It 

has been reported that immunoadjubants can generate cells which are 

capable of suppressing cell-mediated immune responses (15). It is 

possible that dermatitidis could suppress cellular immunity in tumor 

bearing mice thereby enhancing tumor growth. However, until further 

data has been gathered on the effects of dermatitidis on tumor bear­

ing mice, no conclusions can be made. It is likely that a regimen in­

volving several doses of dermatitidis over a period of time would be 

more therapeutically effective than a single dose.

The SEM revealed that there was strong interaction between mac­

rophages from mice showing complete suppression of tumor growth and 

EL4 cells in vitro. The lack of such interaction between EL4 and res­

ident macrophages was also noted. EL4 cells could be easily removed 

from resident macrophage cultures by washing. Such treatment failed to 

remove most EL4 cells interacting with macrophages from tuomr suppres­

sed mice. Also, it has been reported that intimate contact between 

target and macrophages is required for tumor cell lysis in vitro (16, 

18). Our observations of EL4 with the SEM agree with these findings.

We were unable to detect cytotoxic lymphocytes in the spleen 

or lymph nodes of mice showing suppression of tumor cell growth. It is 

possible that local immunity could have generated cytotoxic lymphocytes 

within the peritoneum. Such cells were not tested for. However, the 

fact that mice showing tumor suppression were not resistant to further 

EL4 challenge indicates a lack of specific immunity. This supports the 

idea of nonspecific suppression of tumor growth by macrophages.

These experiments indicate that non-viable B̂. dermatitidis
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yeast cells can significantly effect the outcome of tumor growth in 

this system. Since the organism is not viable, the possibility of in­

fection is eliminated. It will be interesting to see what component of 

2" dermatitidis yeast cells is involved in stimulating the immune sys­

tem to suppress tumor growth. Studies in our laboratory are aimed at 

further evaluation of B. dermatitidis induced resistance to neoplasia.
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