
MEASURING COMPLEXITY AND STABILITY OF -
WEB PROGRAMS

By

LISA MIN-YI CHEN SMITH
1$

Bachelor of Science

in Arts and Sciences

University of Kentucky

Lexington, Kentucky

1986

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of

the requirements for
the Degree of

MASTER OF SCIENCE
December, 1990

Oklahoma State UnivG Library

MEASURING COMPLEXITY AND STABILITY OF

WEB PROGRAMS

Thesis Approved:

De~ of the Graduate College

ll

1380855

PREFACE

Software maintenance engineers spend at least half of their time trying to un

derstand the system they are to modify. This is due partially to the fact that often

the only documentation available is the source code itself. The literate programming

paradigm provides the incentive and the capability to produce high quality documen

tation and code simultaneously. The goal is to create "works of literature" which

have all the extras (table of contents, cross references, and indices) to help readers to

comprehend the programs quickly and thoroughly. The purpose of this thesis is to

explore the similarities and differences in measurements of complexity and stability

of literate programs compared to those of traditionally developed code.

My sincere appreciation goes to my major advisor, Dr. Mansur H. Samadzadeh,

who has been patient, enthusiastic, and full of encouragement from day one. Without

his ideas, guidance, and library of books, I would never have come close to finishing

this thesis.

I would also like to thank Drs. George E. Hedrick and W. David Miller for their

comments and suggestions while serving on my committee.

In addition, special thanks go to Dr. S. Bart Childs of Texas A&M University

for advancing my research of literate programming by leaps and bounds.

My appreciation goes to Mr. Steve Koinm for helping me to get started on using

'fEX, TANGLE, and WEAVE; in addition to responding to my cries of help when the laser

printer was not cooperating.

I would like to thank my parents, Boris and Linda Chen, for their generous

support, and my sister Audrey for listening to me. I would like to express my gratitude

lll

to James and Beverly Smith and Mrs. !della Smith for their encouragement. Most of

all, I would like to thank Gary for being a wonderful husband and for helping me to

survive Graduate School.

A Note on Format: Appendix B (pp. 60-106) and C (pp. 107-118) are not

in strict compliance with the OSU Graduate School Thesis Format requirements

regarding the margins and the numbering of pages. This deviation is due to the

fact that the format of those appendices, as well as their contents, is part of the

programming environment being promoted in this thesis.

IV

TABLE OF CONTENTS

Chapter

I. INTRODUCTION .

II. LITERATE PROGRAMMING ...
2.1 Background

2.1.1 Definition
2.1.2 Advantages and Limitations

2.2 The WEB System o •••••••••

2.2.1 '!EX, TANGLE, and WEAVE
2.2.2 Code Sections
2.2.3 Macros ~ . .
2.2.4 Indexing
2.2.5 CHange Files

2.3 Other Systems /Research
2.3.1 Cweb ·.•......
2.3.2 Spider WEB
2.3.3 A Literate Programming Environment . .

III. SOFTWARE METRICS
3.1 Complexity

3.1.1 Design Complexity
3.1.2 Fan-in/Fan-Out . .
3.1.3 Software Science ..
3.1.4 Cyclomatic Complexity ...

3.2 Stability o • o • • • • • • • • • • • •

3.2.1 Design Stability
3.2.2 Logical Stability

IV. EXPERIMENTATION FRAMEWORK ..
4.1 Definition
4.2 Planning
4.3 Operation o • • • • • • • • •

4.3.1 Preparation o ••••• 0 • 0 •••

4.3.2 Execution
4.3.3 Analysis

4.4 Interpretation

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

REFERENCES

v

Page

1

2
2
2
3
5
5
5
6
7
7
7
8
8
9

10
10
11
14
16
17
18
18
23

30
30
31
32
32
34
35
44

46

49

Chapter

APPENDICES

Page

53

APPENDIX A - ANNOTATED BIBLIOGRAPHY 53

APPENDIX B- WEBmeter . 60

APPENDIX C - A SAMPLE LITERATE PROGRAM and its OUTPUT 107

APPENDIX D- HAND-CALCULATED ME'I'RlCS 134

VI

LIST OF TABLES

Table

1. WEB Environment Specific Commands

2. WEB Environment Features

3. WEB Environment Specific Command Counts

4. WEB Environment Feature Counts

5. Size Metrics

6. Source Code Complexity Metrics

7. Design Complexity and Stability Metrics

Vll

Page

36

37

38

39

41

43

44

CHAPTER I

INTRODUCTION

The software crisis is upon us. One af the major problems we face is that

maintenance activities (correcting errors, adapting a system to a new environment,

or adding enhancements to fulfill new requirements or improve performance) consume

half of all resources allocated to software development [PaZv83]. Before a system can

be modified, it must be understood by the software engineer(s) performing the task(s).

It is disturbing that at least half of their time is spent trying to understand what the

alien code does (or is supposed to do!) [PaZv83]. This may be due, in part, to the

fact that quite often the only information available to the maintainer is the source

code of the program itself. Thus, quality of the documentation will play a major

part in how quickly and completely a piece of software will be understood. The

literate programming paradigm introduced publically by Knuth in 1984, provides the

incentive and the capability for producing such documentation.

1

CHAPTER II

LITERATE PROGRAMMING

2.1 Background

The role of documentation is the crucial difference between traditional pro

grams and literate programs. Traditional programs are written for a computer to

execute, with comments added to show the meaning_ of some parts of the code. In

contrast, literate programs contain documentation to explain what the program does

in a manner which facilitates understandability and readability by a human audience.

Documentation is no longer secondary, but is at least of equal importance, if not more

important, than the code itself. This investment of documenting during development

should more than pay for itself during program maintenance [Thim86].

2.1.1 Definition

Lins (Lin89a.] sums the concept in this manner:

literate programming = structured programming + structured documentation

Thus, a literate program contains both source code and its documentation. The

two may be presented in any order the author believes will enhance his ability to

explain the program (generally, the order in which it is written). Using a utility

program, source code can be extracted from a literate program, be compiled, and

2

3

executed. Using a different utility, a typeset document containing all source code

and documentation can be created. It is crucial that the program executed and

the document produced be created from exactly the same input file. In addition,

niceties available in a traditional work of literature, such as a table of contents, cross

references, and an index should also be generated automatically. These are the

features of the literate programming paradigm [VWyk90, VWLT89].

2.1.2 Advantages and Limitations

Literate programming provides many advantages over traditional program de

velopment. The discipline of simultaneously documenting programs while develop

ing the code leads to significantly better programs and documentation [BeKM86,

ReSk89]. Since the explanation of code and its implementation are so tightly cou

pled, it becomes very difficult to gloss over the inscrutable parts, thus helping both

the author to explain the code and his readers to understand it [BeKM86]. In ad

dition, since the program is hidden in its documentation, it is impossible to modify

the code without changing the documentation at the same time [Leca85]. Mixing

general descriptions with precise code segments is much more powerful than thinly

interspersed comments found in ttaditional programs [ReSk89]. Since commentary

becomes more prominent, even better documentation is encouraged as any omissions

are now readily apparent. Also, since the compilation order of the code no longer

dictates how the program is. designed and presented, the resulting program is much

more comprehensible and thus will be more maintainable for the future.

Thimbleby {VWLT89] states: "How literate programming is done, and how

easily it can be done and redone, changes the way one programs. It provides new

incentives. There is an incentive to make code and documentation consistent (by

4

developing code and documentation concurrently). There is an incentive to explain

and hence understand what you are doing. And by making a program look so nice,

it gives an incentive to publicize the program and suffer its public review!"

On the other hand, literate programming does have some limitations which

may limit its widespread use. To write a literate program, the author must know

several languages: a high level programming language, a text formatting language,

a literate programming specification language, and English. Since the program can

generate three types of syntax errors, plus algorithmic errors, some sophistication and

patience is needed to debug the program [Knut84J. Quality of documentation is not

guaranteed; it is very person-dependent [ReSk89]. Knuth comments that literate

programming may only be for those who "like to write and explain what they are

doing" [Knut84].

In addition, some limitations of literate programming can be blamed on its in

fancy. Almost all literate programs published so far have been written by Knuth him

self [BeKn86, BeKM86, Knu86a, Knu86b]. By inspection, all of them appear to have

been programmed from scratch. For literate programming to become widespread, de

velopment with reuse in mind must be considered' [BeKM86]. Another improvement

which is needed is the ability to add diagrams to the documentation, for illustrating

difficult data structures and interrelationships among various program components.

The lack of software tools to support literate programming is another limitation

[Lin89a]. For example, the advantage of being able to present source code and doc

umentation in any manner seen to be more comprehensible, causes the traditional

graph structure of the total program hardly to be visible. This is the one of the best

tools for measuring program complexity [Leca85] and would be useful to have.

5

2.2 The WEB System

2.2.1 'TEX, TANGLE, and WEAVE

Knuth developed the literate programming methodology when developing the

second version of his software system for typesetting, 'I]jX. Originally, '!EX. was writ

ten in SAIL, a language not widely available. Wanting to make 'lEX more portable,

Knuth developed a system called DOC, for structured documentation. In 1981, he

replaced DOC with 'WEB and :it has been his programming language of choice ever since

[Knut89].

Knuth's WEB system embodies the ideas of literate programming in the WEB

language and its associated programs. It is a combination of a document formatting

language and a programming language. For his prototype, Knuth chose 'lEX as the

document formatting language and Pascal as the programming language [Knut8~.

Knuth wrote the literate programs, 'J:EX.82 and Metafont, using his WEB system

of structured documentation. WEB consists of the two system routines TANGLE and

WEAVE. TANGLE takes a WEB program, extracts and rearranges the interleaved code

from the documentation and rearranges it to produce a syntactically correct Pascal

program ready to be compiled. WEAVE also takes the WEB program as input, but

produces a document containing pretty-printed source code and documentation that

is ready to be T:EXed.

2.2.2 Code Sections

A WEB program consists of WEB commands, 'lEX commands, and Pascal code.

Each program consists of a series of numbered code sections. A code section can have

6

at most three parts which must appear in the following order, but any part may be

empty.

I. informal commentary written in '!EX, explaining what the current section does;

II. macro definitions, which are abbreviations for Pascal constructions that make

the code more readable and portable; and

III. pascal code to be extracted by TANGLE.

Every code section is either named or unnamed. A named section begins with

its name followed by its Pascal code (also called its replacement text). When a

named section appears in another section, the corresponding replacement text should

be substituted because a named section serves as a placeholder for its replacement

text. If more than one section has the same name, the latter section's Pascal code is

appended to the former section's replacement text and relative order is maintained.

In addition, a section may also be categorized as a major section. In the WEAVEd

(woven?) output, all major sections appear in the table of contents and start on a

new page.

2.2.3 Macros

There are three types of macros that can be defined in a WEB program. Use of

macros is encouraged for promoting portability and readability of programs.

• a numeric macro associates numbers with identifiers and allows TANGLE to do

simple arithmetic;

• a simple macro causes TANGLE to replace an identifier with Pascal text; and

• a parametric macro causes an identifier to be replaced by Pascal text, and all

occurrences of the parameter (denoted by #) to be replaced by an argument.

7

2.2.4 Indexing

The WEB system provides several mechanisms for cross referencing. A table

of contents is provided with names of all major sections and their page numbers.

The indea: lists all identifiers that appear in the program, along with the section

in which each one was declared (underlined) and all other sections where they were

used. Finally, an alphabetized list of all named sections is provided, with a list of all

sections where each named section is used (see Appendix B or C for an example).

2.2.5 CHange Files

A WEB program may have a CHange file associated with it. A CHange file consists

of zero or more changes, where each change contcl.ins a block of text from the original

WEB program (to be modified), and a block of text which is to replace the original

text. That is, when WEAVE and TANGLE are run, they replace the original block of text

with the new changed block of text, for each change encountered. The CHange file

is very useful in program maintenance when customizing system-dependent changes

or adding enhancements to the code. To create a new validated version of a WEB

program, it may be desired to merge the CHange file with the original WEB file after a

major bug has been fixed and fully tested.

2.3 Other Systems/Research

Knuth's WEB System has been used more as a model for other literate program

ming systems than for development of literate programs. Some of the other literate

programming systems use a different programming language or text formatting lan

guage, while using most features of WEB, along with some new ones [VWyk90]. The

8

following subsections briefly describe some of the literate programming systems that

have been modeled after the WEB System.

2.3.1 Cweb

The first such system was implemented by Thimbleby in 1986, using the pro

gramming language C and the text formatting language troff. He named his UNIX

version cweb. Several differences exist between cweb and the original WEB, including

the following: (1) in cweb, macro bodies can be placed in named files which can be

included in a program, and thus be reused; (2) cweb does not pretty print the C code

like WEB does the Pascal code; (3) cweb can produce output for line printers, but

WEB can't; and (4) if a cweb author updates the documentation of his/her literate

program, without touching any code, the code (i.e., the TANGLEd part) need not

be recompiled. During the actual implementation of cweb, Thimbleby estimated he

spent 95% of the time in text formatting (troff) related issues. His observations for

future work include the need for development of language-independent literate pro

gramming notation, interactive editors, or integrating literate programming systems

into new languages [Thlm86].

2.3.2 Spider WEB

Ramsey recently published his work on a language-independent version of WEB

[VWRa89, Ram89a, Ram89b, Sewe89]. His program, called SPIDER, generates a

variant of Knuth's WEB System by combining 'lEX with a programming language X

of your choice (instead of Pascal). The description of the desired programming

language X is combined with language-independent master files of TANGLE and WEAVE

to produce C code for XTANGLE and XWEAVE [VWRa89]. Ramsey has generated WEB

systems for C, AWK, SSL, and Ada, among other languages.

9

2.3.3 A Literate Programming Environment

In other research on literate programming, a prototype interactive WEB browser

using a hypertext structure has been implemented by Brown [Bro88a, Bro88b, BrCh90,

BrCh89]. This WEB tool allows the user to view the program in different ways, in

cluding one section at a time or as a tree of sections. Browsing is accomplished by

clicking the mouse at certain hot spots on the screen. Sections can be brought up

from either the index or a named sections list. When a code section is displayed,

it resembles the 'J:EXed output rather than the WEB source code (no WEB commands

appear). The addition of editing capabilities should enhance the browser's usefulness

in a Literate Programming Environment [Sewe89].

Work in progress of other literate programming environments include systems

for FORTRAN {Av0p90J and Smalltalk [ReSk89]. See Appendix A for an annotated

bibliography of literate programming.

CHAPTER III

SOFTWARE METRICS

Conte, Dunsmore, and Shen define software metrics as measures which can be

used to quantify software such that it can be classified, compared, and analyzed

mathematically [CoDS86]. Software metrics can be divided in~o various categories.

Yau and Collofello distinguish between metrics of the design phase of the software life

cycle vs. source code metrics which are gathered during the coding phase [YaCo85].

There are a large number of software metrics which measure software complexity and

some that have been developed to monitor the stability of software [YaCo80]. Some

of the classic and recently developed metrics of the two categories are outlined below.

3.1 Complexity

Four well-known and popular complexity measures are described below. The

two design-phase measures include McCabe and Butler's recent design complexity

metrics based on cyclomatic complexity, and Henry and Kafura's information flow

complexity metrics based on fan-in and fan-out. The source code measures to be

covered are Halstead's Software Science metrics and McCabe's cyclomatic number.

Measurements which can be collected before the coding phase of the software

life cycle are known as macro-level metrics [KaHe81]. These metrics typically focus on

the relationship between system components (procedures or modules). The ability to

10

11

discover software design flaws in an early phase of the software development process

is a major advantage of these measures.

3.1.1 Design Complexity

McCabe and Butler recently published their work (McBu89] using cyclomatic

complexity [McCa76] to measure design complexity. They define the following design

metrics: module design complexity, design complexity, and integration complexity.

The three design metrics, which are described below, are essentially based on the

concept of cylcomatic complexity. Cyclomatic complexity, v(G), is a measure of

program control flow complexity: the number of basic paths through a flowgraph G.

The easiest way to calculate v(G) is to c.ount decision statements (predicates) in the

program.

v(G) = number of decision statements+ 1 (1)

What follows in this section is a detailed description of the three design metrics.

I. module design complexity iv

Each individual module in a design has its own flowgraph G. A module's primary

control structure of calling subordinate. modules can be determined after four

reduction rules are applied to the flowgraph.

The cyclomatic complexity of the reduced flowgraph is the
module design complexity, iv(G), of the original flowgraph G.

(2)

The notation iv(G) is derived in an attempt to be indicative of its purpose, i.e.,

calculating individual cyclomatic complexity, v(G).

II. design complexity S0

12

The primary design instrument in this phase of the development cycle is the

structure chart or hierarchy tree. A structure chart defines the manner in which

modules work together, but not how each individual module works. The design

complexity, S0 , of the structure chart of a module M is defined below.

So= l:iv(Gi)
iED

where D = M U {descendents of M} and M is a module.

III. integration complexity S1

(3)

The last design metric McCabe and Butler define is a measure of the number

of integration tests required to test the overall design.

S1 =So-n+ 1 (4)

where n is the number of modules.

The following algorithm for computing design and integration complexity is

adapted from McCabe and Butler [McBu89].

Algorithm for Computing Design and Integration Complexity

Input: Program code or design psuedocode.

Output: iv(x) and S0 (x), V module x; and S1.

Method:

step 1. "':f module x, construct a module :flowgraph. Each white dot should cor

respond to a block of code where the flow is sequential, a black dot should

correspond to a subordinate module call, and arcs correspond to branches in

the code.

13

step 2. Construct a structure chart or design tree for the program. This defines how

the modules of the program work together. Show a call from a superordinate

to a subordinate module with a black dot.

step 3. "V module x, apply the following four reduction rules to produce its primary

control structure for calling subordinate modules- (1) sequential black dot: a

call to a subordinate module cannot be reduced; (2) sequential white dot: a

sequential node can be reduced to a single edge; (3) repetitive white dots: a

logical repetition without a black dot can be reduced to a single node; and (4)

conditional while dots: a logical decision with two paths without a black dot

can be reduced to one path.

step 4. "V module x, compute individual module design complexity, iv(x), from the

reduced flowgraph iv(x) = number of conditions (predicates) + 1.

step 5. "V module x, compute design complexity, S0 (x), using one of the following

two options: (a) If module x's design is a pure tree (it has no common modules),

S0 is upwardly additive: So(x) = iv(x) + :EieD So(G,), where D = { descen

dents of x }; (b) If module x's design is not a pure tree (has common modules),

So is nonadditive. {This case happens more often.) S0 (x) = :EaeD iv(Gi),

where D =xU { descendents of x }.

step 6. Calculate integration complexity, S1, for the desired modules. S1 -

S0 - n + 1, where n = number of modules in the design.

Note that a design where' S0 = n always behaves in the same way. There are

no conditional calls to subordinate modules. Therefore, iv(G) = 1 for each module

in the design.

14

3.1.2 Fan-in/Fan-Out

Henry and Kafura defined four information flow complexity measures which can

be determined during the design phase (as well as the coding phase) of the software

life cycle [HeKa81, KaHe81]. They provide several definitions of various types of

information flow on which these metrics are based.

Def 1 . There is a global flow of information from module M1 to module M2 through
a global data structure D if M1 deposits information into D and M2 retrieves
in:fo.rmation from D.

Def 2 • There is a local flow of information from module M1 to module M2 if one or
more of the following conclitions hold: (a) if M1 calls M2 ; (b) if M2 calls M1
and M1 returns a value to M2 , which M2 subsequently utilizes; or (c) if M3

calls both M1 and M2 passing an output value from M1 to M2•

Def 3. The fan-in of a procedure A is the number of local flows into procedure A plus
the number of data structures from which procedure A retrieves information.

Def 4. The Jan-out of a procedure A is the number of local flows from procedure A
plus the number of data structures which procedure A updates.

The measures calculated using these concepts are the complexity value of a

procedure, complexity of a module, the number of global flows of a module, and

strength of connections between two modules.

I. complexity value of a procedure

The complexity value of a procedure is based on the bulk complexity of the

procedure code, length, and the complexity of the procedure's connections to

its environment, fan-in * fan-out. The justification offered for the power of

two is Brook's law of programmer interaction [Broo75] and Belady's formula for

system partitioning [BeEv79].

complexity value of a procedure= length* (fan- in* fan- out)2 (5)

15

II. complexity of a module

According to Henry and Kafura, a module with respect to a data structure D

consists of those procedures which either directly update D or directly retrieve

information from D. Thus, module complexity is calculated using procedure

complexities.

complexity of a module= L complexity of a procedure p (6)
pEM

where M is a module.

III. number of global flows of a module

The number of global flows of a module is an indicator of the number of pro-

cedures in each module and which procedures read-only, write-only, or read-

write to the data structures.

number of global flows of a module =
(write* read)+ (write* readwrite)+
(readwrite *read)+ (readwrite * (readwrite- 1))

IV. strength of connections from module M1 to module M2

(7)

Interlaces between modules show how components are connected to form the

overall system. Minimizing connection among modules can be used as a design

goal.

strength of connections from module M1 to module M2 =
(the no. of proc. exporting info. from module M1 +
the no. of proc. importing info. into module M2)*
the no. of info. paths.

(8)

16

Source code metrics focus on individual components because details of the in

ternal modules and procedures are required. Another name for these measures are

microlevel metrics [KaHe81]. The following two subsections describe two source code

metrics.

3.1.3 Software Science

Halstead developed the Software Science family of measures which

are calculated from four basic counts {Hals77, Hals79, RaMe88, BaZw80].

• '1/l = the number of unique operators

• 'fJ2 =the number of unique operands

• N1 = the total number of occurrences of all operators

• N2 = the total number of occurrences of all operands

An operator is defined to be either a built-in function, a symbol or group of

symbols that produce an action [RaMe88]. An operand can be a constant or a

variable.

Some of Halstead's metrics are briefly described here.

I. length of a program in tokens N

(9)

II. volume of a program in bits V

The volume of a program is the fewest number of binary digits or bits with

which the program can be represented.

(10)

17

III. effort spent developing a program E

The effort is the total number of elementary mental discriminations needed to

write a program. The approximation of E, E, does not need V* (potential

volume) for its calculation.

(11)

(12)

IV. time spent developing a program T

The time is effort converted to units of time based on the Stroud number,

S = 18 e.m.d. per second.

(13)

It should be noted here that some of Halstead's metrics (time in particular)

have been criticized because of the use of some results from experimental psycho}-

ogy. However, a large body of literature on validation across several programming

languages, provides empirical support for most of Halstead's metrics.

3.1.4 Cyclomatic Complexity

McCabe's {McCa76] cyclomatic complexity metric measures program control

flow complexity [RaMe88]. Its firm analytical basis ensures that it will be applied in

measuring the complexity of graphs in a wide range of fields involving graph theory.

There are several ways of calculating the cyclomatic complexity, three are mentioned

below.

I. cyclomatic number, v(G), of a graph G

v(G) = e - n + 2p (14)

18

where e = number of edges, n = number of vertices, and p = number of

connected components.

II. cyclomatic complexity, v, of a structured program

V=7r+1 (15)

wheEe 7r = number of conditions (predicates) in a program.

III. cyclomatic complexity, r, of a plane or planar control graph

r=e-n+2 (16)

where r = number of regions, e = number of edges, and n - number of

vertices.

3.2 Stability

The following sections contain the description of some measures for determining

the stability of a program in the design and coding phases which have been developed

by Yau and Collofello [YaCo80, YaCo85].

3.2.1 Design Stability

Yau and Collofello define design stability as "the quality attribute indicating the

resistance to the potential ripple effect which a program developed from the design

would have when it is modified" [YaCo85J. Ya.u and Collofello's design stability

measures are based on the use of data abstraction and information hiding, which

profoundly affect the maintainability of a program. The lack of adequate data

abstraction and information hiding in a design can result in modules possessing many

19

assumptions about other modules in the design and/or its execution environment.

During program maintenance, if changes are made which affect these assumptions, a

ripple effect may occur throughout the program requiring additional costly changes.

The calculation of the design stability measures is restricted to the examination

of the assumptions concerning module interfaces in the program. The design stability

of a module, DS, is calculated as the reciprocal of the potential ripple effect as a

consequence of modifying the module. The potential ripple effect of a module, DLRE,

is defined as the total number of assumptions made by other modules, which either

(a) invoke the module whose stability is being measured, (b) share global data or files

with the module, or (c) are invoked by the module. This implies that modules with

poor design stability are likely to affect many assumptions made by other modules,

and consequently can produce a large ripple effect if modified. Finally, the design

stability of a program, P DS, is calculated as the reciprocal of the total potential

ripple effect of all its modules.

Some basic definitions are discussed below.

Module Interface. A module's interface is defined to consist of the module's

passed parameters, global variables, and shared files. To be more precise, each

of these objects must then be examined to see if they are composed of other

identifiable entities. This decomposition into minimal entities is used to count

assumptions. For example, a record can be decomposed into its respective fields

and other structured data types can be decomposed into their respective basic

types. Thus, if a rero:rd data type is part of. a module's interface and that record

consists of a character, an integer, and a real number, then the three minimal

entities are the character, the integer, and the real number.

20

Assumptions. To standardize and simplify the recording of assumptions made by

each module about its minimal interface entities, two categories of assumptions

are utilized. The first type of assumptions concerns the basic type of the

entity such as integer, real, Boolean, character, etc. This assumption is always

recorded and can be checked automatically by a compiler. The second type of

assumptions concerns the value of the basic entity and is recorded if the module

has any assumptions about the values which the minimal entity may assume.

Counting Assumptions. Each minimal entity in an interlace can contribute a

maximum of one assumption to each category. The parameters, global vari

ables, and shared files should also contribute to this assumption count. In

general, each structured data type in an interface should be decomposed into

its base types and one assumption for the structure recorded. The base type of

the interface should then be examined and additional assumptions recorded.

Here are two examples to illustrate the assumption counting strategy. An array

of integers utilized as part of an interface implies an assumption about the interface

structure. This assumption should be counted towards that of the module's interface.

The minimal entity for this structure is an integer which implies a maximum of two

more assumptions (one for the type integer, one for the value the integer may hold)

may be made concerning this interface. Thus, a total of three assumptions may

be recorded for the array of integers in the module's interface. Consider an array

of students where a student is a record consisting of an ID number and a grade.

Assumptions may be recorded for the array structure, the record structure, and the

ID number and grade for a maximum of six assumptions.

The following algorithm for computing design stability metrics is adapted from

Yau and Collofello [YaCo85].

21

Algorithm for Computing Design Stability

Input: Program design documentation.

Output: DLREx and DSx, 'V module x; and P DS.

Method:

step 1. From the program design documentation, analyze the module invocation

hierarchy for the program and V module x and identify the following sets:

Jx = { modules which invoke x}

Kz = { modules invoked by x}

Rxy = {passed parameters returned from x to module y, where y E Jx}

Sxy = {parameters passed from x to module y, where y E Kr}

step 2. From the program design documentation, analyze the program's global data

which is defined to consist of global variables and shared files, and 'V module x,

identify the following sets:

G Rz = { global data referenced in x}

GDx = {global data defined in x}

from these sets, 'V global data item i, identify the set:

Gi ={xI i E (GRxUGDx)}

NOTE: Calculation of the set G is undecidable {or languages having pointer

variables. In such a case, the set G, is calculated as the worst case, i.e., it

includes all global items which may be accessed,via the pointers.

22

step 3. T/ set Rxy and each parameter i E Rxy, find the number of assumptions

made by module y about i utilizing the following pseudocode algorithm. (a)

If parameter i is a structured data element, then decompose i into its base

types and increment the assumption count by 1, else consider ito be a minimal

entity. (b) While more base elements can be decomposed, select a base element

which is not a minimal entity and decompose it into its base elements and

increment the assumption count by 1. (c) For each minimal entity comprising

i, if module y makes assumptions about the values which the minimal entity

may assume, then increment the assumption count by 2, else increment the

assumption count by 1. Set T Pxy = the total number of assumptions made by

y about the parameters in Rxy·

step 4. V set Sxy and each parameter i E Sxy, find the number of assumptions made

by module y about i utilizing the pseudocode algorithm in step 3. Set TQxy =

the total number of assumptions made by y about the parameters in Bxy·

step 5. T/ module x and every global data item i E GDx, find the number of assump

tions made about i by other modules in the program. This requires utilization

of the set G, and application of the pseudocode algorithm in step 3 for each

global data item i and every module y E (Gi - { x}). Set TGx = the total

number of assumptions made by other modules about the global data items in

GDx.

step 6. Compute design logical ripple effect

DLREx = TGx + EyeJ .. T Pxy + EyeK. TQxy, T/ module X.

step 7. Calculate design stability

DSx = l+DiRE.,, T/ module x.

23

step 8. Compute program design stability

PDS = ~+E.bLRE,.' where xis a module in the program.

3.2.2 Logical Stability

The stability of a program is defined by Yau and Collofello as the quality

attribute which indicates the resistance of a program to the potential ripple effect

which a program would have when it is modified during software maintenance. This

measure is dependent on the stability of the modules of the program. The logical

stability of a module is a measure of the resistance to the impact of a modification

of the module on other modules in the program in terms of logical considerations (as

opposed to performance considerations) [YaCo80].

The intent of Yau and Collofello is not to use stability measures as indicators

of program maintenance, but as significant factors contributing to program main

tainability. They propose utilizing this measure in conjunction with other attributes

affecting program maintainability. As an illustrative example, they mention that:

" ... a single program of 20,000 statements will possess an excellent program stability

since there cannot be any rippl~ effect among modules; however, the maintainability

of the program will probably be quite poor."

Some important points and definitions are discussed below.

Basis of Analysis. The computation of the logical stability of a module is based

on a primitive subset of the maintenance activity for which the impact of the

modifications can be readily determined: a change to a single variable definition

of a module. This choice of a primitive subset of the maintenance activity is

justified because, regardless of the complexity of the maintenance activity, it

basically consists of modifications to variables in modules.

24

Aspects of Logical Ripple Effect. There are two aspects of the logical ripple

effect which are to be examined. One aspect concerns intramodule change

propagation. This involves the flow of program changes within the module

as a consequence of the modification. The other aspect concerns intermodule

change propagation. This involves the flow of program changes across module

boundaries as a consequence of the modification.

definitions

module interface variables -consist of the module's global variables, its output pa

rameters, and its variables utilized as input parameters to called modules.

unique interface variable - each utilization of a variable as an input parameter to a

called module.

worst case logical ripple effect analysis - calculate the set XkJ by first identifying

all the modules for which j is an input parameter or global variable. Then, for

each of these modules in Xkj, the intramodule change propagation emanating

from j is traced to the interface variables within the module. Intermodule

change propagation is then utilized to identify other modules affected and these

are added to Xkj· This continues until the ripple effect terminates or no new

module can be added to XkJ· (See steps 3 and 4 of the algorithm that follows

these definitions for computing logical stability measures).

assumptions - A significant refinement to the worst case change propagation can

resUlt by utilizing the approach of examining whether or not a module makes

any assumptions about the values of its interface va.Pables. These assumptions

can be expressed as program assertions. If it does not make any assumptions

25

about the values of the interface variables, the modules cannot be affected by

intermodule change propagation. However, if it does make an assumption about

the value of an interface variable, the worst case is automatically in effect and

the module is placed in the change propagation resulting from affecting the

interface variable if the interface variable is also in the change propagation as a

consequence of some modification.

The following algorithm for computing logical stability metrics is adapted from

Yau and Collofello [YaCo80].

Algorithm for Computing Logical Stability Measures

Input: Program.

Output: LREx and LSx, V module x; LREP; and LSP.

Method:

step 1. V module x, set Vx = {all variable definitions in module x }. Each occurrence

of a variable in a variable definition is uniquely identified in 'Vz. Thus, if the

same variable is defined twice within a module, the set 'V;; contains a unique

entry for each definition. The set Vx is created by scanning the source code

of module x and adding to Vx all variables which satisfy any of the following

criteria. (a) the variable is defined in an assignment statement; (b) the variable

is assigned a value which is read as input; (c) the variable is an input parameter

to module x; (d) the variable is an output parameter from a called module; or

(e) the variable is a global variable.

26

step 2. 'V module x, set Tx ={all interface variables in module x}. The set Tx is

created by scanning the source code of module x and adding to Tx all variables

which satisfy any of the following criteria. (a) the variable is a global variable;

(b) the variable is an input parameter to a called module. Each utilization of

a variable as an input parameter to a called module is regarded as a unique

interface variable. Thus, if variable i is utilized as an input parameter in

two module invocations, each occurrence of i is regarded as a unique interface

variable; or (c) the variable is em output parameter of module x.

step 3. 'V module x and each variable definition i E x, set Zxi = {interface variables

in Tx which are affected by a modification to variable definition i of module x

by intramodule change propagation}.

step 4 . V module x and each interface variable j E x, set XxJ = {modules in

intermodule change propagation as a consequence of affecting interface variable

j of module x }.

step 5. 'V module x and each variable definition i E x, compute the set Wxi consist

ing of the set of modules involved ill intermodule change propagation as a con

sequence of modifying variable definition i of module x. Set Wxi = UJez.,, Xxj·

step 6. 'V module x and each variable definition i E x, compute the logical complex

ity of modification LC Mxi = 2:teW.,; Ct, where Ct is McCabe's cyclomatic

complexity of module t.

step 7. V module x and each variable definition i E x, calculate the probability that

a particular variable definition i of module x will be selected for modification

P(xi) = 1 ~., 1 , 'V variable definition i of module x.

27

step 8. Compute potential logical ripple effect of a module

and logical stability of a module

LSII! = Lk,, \;/module x.

step 9. Compute potential logical ripple effect of a primitive modification to the

program LREP = L:~=1 [P(x) * LREx] where P(x) = ~ and n =number of

modules in the program.

step 10. Compute logical stability of the program LSP = LR~P

The following algorithm for computing logical ripple effect may be modified to

compute intramodule and intermodule change propagation for the logical stability

algorithm. This is adapted from Yau et al. [YaCo78].

STAGE 1 Lexical Analysis

I. Compute precedence order for each module defined from the program's invoca

tion graph.

II. V module i, scan the module's code and produce a control flow graph based on

program blocks. (A program block is a maximal set of ordered statements such

that it is always executed from the first statement to the last statement and

that all the statements are executed if one of them is executed.)

III. Characterize each program block v, in terms of its source capable set C,, its

potential propagator set P., and a flow mapping C, +--- f(P,). C, is the set of

definitions in block v, which cause potential error to exist within and flow from

28

Vi· Pi is the set of all usages in Vi which can cause elements in the source

capable set to flow from Vi.

Example: for block Vi X2 = SQRT(-DISC}, X Rl = Xl, X R2 = Xl,

and XI= X2

Ci = {X2,XR1,XR2,XI}

P,; = {DISC,Xl}

{X2,XI} +-- f(DISC)

{XR1,XR2} +-- j(Xl)

STAGE 2 Computing ripple effect

A set of modules and their primary error sources involved in the initial mainte

nance task should be supplied.

I. Intramodule Change Propagation. This algorithm operates on each module

characterization to trace error sources from their points of definition to their

exit points. For each module, Mj, initially involved in the modification, trace

the intramodule flow of potential errors from the primary error sources through

various program blocks. When the flow of error sources stabilizes, apply a block

identification criterion to determine which blocks within the module must be

examined to insure that they are not inconsistent with the initial change. After

block identification is complete, a propagation criterion is applied to module

M3 to other modules which M3 invokes, and to modules which invoke M3 •

II. Intermodule Change Propagation. Error flow across module boundaries con-

stitutes intermodule error flow. For each module affected by intermodule error

flow, the algorithm traces intramodule error flow in the same manner as for

29

Mj to determine the net effect that the propagated error sources have on their

respective modules. The algorithm executes in this manner until intermodule

error How stabilizes.

III. Ripple Effect. At this point, the set of modules in the program which are

affected by the intermodule How of error sources created by the primary error

sources involved in the maintenance task has been determined. Complete the

algorithm by applying a ripple effect, criterion to each module affected by inter

module error How to determine if the module requires additional maintenance

activity to insure that the module is not inconsistent with the initial change.

CHAPTER IV

EXPERIMENTATION FRAMEWORK

Basili et al.'s classification scheme for experimentation in Software Engineer

ing [BaSH86] will be employed to present the pre-experimental design used in this

study. Each of the four categories: cl.d.nidon, planning, operation, and interpretation,

corresponds to a phase of the experiment.

4.1 Definition

The motivation for this prototype study is to understand, assess, and learn

more about the product of the literate programming process: WEB programs (object).

The purpose is to capture, quantify, and characterize the attributes of a WEB program

which contribute to the effort in (a) understanding it, or (b) expl<rining it to someone

else. The major questions are: what needs to be expl<rined and how important are

the relative weights of the features particular to the WEB environment? A subsidiary

goal is to motivate and promote the literate programming paradigm.

This pre-experimental design takes into account the perspectives of a WEB pro

gram developer, modifier, maintainer, user, or researcher- anyone who may have

the need io read and understand what the program is all about. The dom<rin of the

study consists of several complete WEB programs that have been published by "ex

perts" of literate progamming (i.e., Knuth and Sewell [Knut84,. Sewe89]) or developed

30

31

by a "novice" (i.e., the author). The scope can be classified as multi-project variation

[BaSH86J.

4.2 Planning

The design of the experiment is a pre-test multi-project variation involving WEB

programs which have been published in the literatute or developed for testing pur

poses. The criteria used to evaluate these programs will be objective measurements

of size, complexity, and stability metrics. They include lines of code, lines of doc

umentation, several of Halstead's Software Science measures, McCabe's cyclomatic

complexity, McCabe and Butler's design complexity, and Yau and Collofello's design

stability measure. An additional criteria is the counts of commands specific to the

VEB environment.

The metrics calculations are used to study the relationships between the com

mands specific to the WEB environment and size, complexity, and stability metrics.

Preliminary observations based on these relationships will be made in this pilot in

vestigation to identify the attributes of WEB programs which are of particular interest.

These should be investigated further in future experiments on WEB programs and

literate programming environments.

The data collection process includes the development of a WEB program, WEBmeter,

to automatically gather and calculate the size and source code metrics data, as well

as the command counts specific to the WEB environment. The remaining design com

plexity and stability metrics are hand-calculated. The measurement of data taken

will either belong to the ordinal scale or the interval scale [CoDS86J depending on the

particular metric in question.

32

4.3 Operation

The operation phase is the third phase of the experimental study. This phase

consists of three parts: preparation, execution, and analysis.

4.3.1 Preparation

The preparation for the operation of the experiment included developing a lit

erate program to calculate some of the ta.rget metrics and designing algorithms to be

used in hand-calculating the remaining ones. The ideal situation would have been to

completely automate the entire data collection process. However, due to the difficulty

in deriving structure metrics from WEB programs (which are basically free-form in re

gard to traditional Pascal syntax) and time constraints, full automation was relegated

to future work.

A literate program, WEBmeter, was developed on a Sun 3/60 workstation running

SunOS release 4.0.3. Knuth's WEB System consisting of the document formatting

language 'lEX (C version 2.93) and the Pascal programming language (Sun Pascal)

was chosen because most of the literate programs published in the literature were

developed on this system [BeKn86, BeKM86, Knu86a, Knu86b, Knut84, Sewe89].

The preprocessors TANGLE (C version 2.8) and WEAVE (C version 2.9) are also part of

this WEB system of structured documentation.

WEBmeter (see Appendix B) expects as input a. syntactically correct WEB progam

-that :is, a program which can be WEAVEd, 'JEX.ed, TANGLEd, and compiled with no

errors. (It would be desirable to have a CHange file along with the WEB program as

input.) The output produced is written to a user-defined file, and includes a list of

the operands and operators, with their respective frequencies; rn., TJ2 , N1 , and N2

and other Software Science measures that can be derived from them: length, volume,

33

effort, and time; McCabe's cyclomatic complexity number; as well as the various

commands specific to the WEB environment and their frequencies; and finally, size

metrics including the number of lines of limbo, lines of documentation, lines of code,

and number of macro and format definitions in the WEB program.

A sample input WEB program and its generated output appears in Appendix C.

The listings include the WEAVEd, TANGLEd, and WEB source code; a sample execution

of the program; and the output generated by WEBmeter.

The implementation of WEBmeter basically consists of a one-pass lexical analyzer

which counts most of the Pascal operators and WEB-specific commands and calls the

parser to determine if a token is an operand or an operator and whether it affects

the cyclomatic complexity number. The Software Science measures are calculated

from the four basic counts TJ1, TJ2 , N1 , and N2. The counting of operands, operators,

and the cyclomatic number in WEBmeter is based on Conte et al.'s Pascal Counting

Strategy [CoDS86]. Design decisions regarding the counting of WEB-related entities

are listed in the WEB Counting Strategy of WEBmeter (see Appendix B).

Algorithms for computing design complexity and stability metrics were devel

oped as a guide for the hand-calculation process. They may also be used as program

design documentation for automating the process.

McCabe and Butler's design and integration complexity measures (see Section

3.1.1) are calculated fro~ a structure chart of the program and the flowgraphs of each

module. Applying several reduction rules to a flowgraph will produce the primary

control structure for calling subordinate modules. The cyclomatic complexity of the

reduced flowgraphs are used to calculate the design complexity, which in turn is used

to find the integration complexity.

Yau and Collofello's design stability measures (see Section 3.2.1) are calculated

from a program's design documentation. Parameters and global data used in each

34

module are analyzed to determine the total number of assumptions made by the

module and its design stability value. The design stability of the program is calculated

using the design stability measures of the subordinate modules.

4.3.2 Execution

Three of the six input WEB programs used to collect the data (primes. web,

knights. web, and queens. web) were taken from the literature. Primes. web, published

by Knuth [Knut84), was available on-line among the files of the 'lEX distribution

tape already on the Sun. It is a program to print the first 1000 prime numbers. The

next two programs, knights.web and queens. web were published by Sewell [Sewe89).

Because they were not available on-line, they were manually entered. Knights. web

was copied from the published WEB source code and queens.web was translated into

WEB from the published WEAVEd listing. Both are classic Computer Science problems.

The Knight's Tour involves a knight, which can only move according to the rules of

chess, trying to move to every square of a chessboard once and only once. The Eight

Queens problem consists of placing eight queens on a full-size chessboard such that

no queen can "check" another queen (each queen must be placed so that it is not on

the same row, column, or diagonal as any other queen).

The remaining three input WEB programs were developed by the author. Sam

ple. web is a simple program which calculates the maximum, minimum, and mean

value of an array of real numbers. Reg. web is a program which solves a set of regular

expression equations in standard form to give the minimal fixed-point solution. The

final input program is WEBmeter itseH.

WEBmeter was TANGLEd and compiled so the program could be executed multiple

times without recompilation. Two macros stat and tats are provided which, if

35

not commented out using the WEB meta-comment commands (CD{ and CD}), will write

output to the terminal in a summary format (in addition to the regular output file).

The data collection process on the Sun consisted of using the Unix script utility to

collect the data, which crossed the terminal screen each time WEBmeter was executed

with a different input program, into a file called typescript. The WEBmeter-generated

output for the six input programs is provided in the next section.

Design complexity and stability measures were hand-calculated for the TANGLEd

versions of all input programs except WEBmeter itself. Intermediate and final calcu

lations for McCabe and Butler's design complexity (So) and integration complexity

(S!), and Yau and Collofello's design stability (P DS) appear in Appendix D. The

next section includes a summary of the hand-calculated metrics.

4.3.3 Analysis

According to Basili et al. [BaSH86J, the final stage of the Experiment Op

eration phase is analysis of data. Because of the small number of input programs

available for this study, formal data analysis using statistical models and tests was

not performed. Analysis of this type is meaningful only when a representative and

reasonably-sized sample is used, thus justifying the extrapolation of results to other

similar environments. In this prototype investigation of WEB program, "data analysis"

will consist of making preliminary observations based on the metrics calculations and

the WEB environment speciic command counts. These observations may be used to

formulate hypotheses to be tested in future experiments.

Table 1 contains the WEB environment speciiic commands tokenized in the input

WEB programs, along with the token names in WEBmeter and their corresponding

action.

36

Table 1. WEB Environment Specific Commands

Command Token Action
CIQ tat the single character '<ll'
<liU ' tnew_mod new oode section ('U' is a blank)
<ll* tstar_mod new starred (major) code section
COd tdef macro definition
(llf tjormat format definition
<Op tbegin_code starl Pascal part of an unnamed section

<0< <0> tmod_name a code section name
<0' toctal octal constant
<0" thex hexadecimal constant
<0$ tcheck_sum string pool check sum

e~{ c} tbegin_code a "meta-comment"
CO.t tjoin concatenate two elements with no space

<OA <O> troman roman font index entry
(0. <ll> ttypewriter typewriter font index entry
(Q: (Q> tuser_def user-controlled font index entry
COt <0> ttex_string pure 'lEX text
<ll= <ll> tverbatim verbatim text

CO\ tforce_line force end-of-line in Pascal text
<ll! tunderline underline index entry
<ll? tno_ underline cancel underline in index
co, tthin_space insert a thin space in 'IEX file
<ll/ tline_break force a line break in 'IEX file
<lll t_opt_line_break optional line break in 'lEX file
<0# t_big_line_break force a line break with extra vertical space in 'lEX file
<0+ Lno_line_break cancel a pending line break in 'lEX file
(Q• , tpseudo_semi invisible semicolon in 'lEX file
<llx tx start of a change section (change files only)
<Oy ty ' start of replacement text (change files only)
<liz tz end of a change section (change files only)

37

Table 2. WEB Environment Features

Feature Token Description

I I tassumpt embedded Pascal code in 'lEX code

' , tstring Pas cal text string
II II tpreproc preprocessed string

{ } tcomment Pascal in-line comment
targument macro argUinent

== tdbLeql defining simple or parametric macro
= tone_eql defining numeric macro

<0< CO>= tis defining Pascal part of a code section
<0< <0>; tcall calling a code section

To count some of the additional features of WEB programs that are not WEB

commands (a command starts with a '<0,) , some additional tokens were counted.

These are listed in Table 2, along with a short description of each.

Table 3 contains the frequencies of the WEB environment specific commands used

in the six input programs.

Fourteen of the twenty-nine commands were not used by any of the three WEB

program developers. These include (by token name): toctal, thex, tcheck...sum,

tjoin, ttex_string, tverbatim, tforce_line, tno_ underline, tthin_space, tbig_line_ break,

tno_line_break, t:£1 ty, and tz. In addition, four WEB commands: tformat, tbe-

gin_comment (a meta-comment), tuser_dej, and topLline_break were used in only one

program each. This may be due to the overall simplicity of the applications shared

among the input programs (i.e., they did not require special commands such as toctal,

thex, tcheck..sum, tjoin, etc.).

Upon examining the list of unused text formatting commands, it is reasonable

to believe that these will always be used infrequently. In fact, "novice" programmers

may never use them, while "experts" may only use them in specific situations. (I

38

Table 3. WEB Environment Specific Command Counts

WEB Programs
Command sample queens primes knights reg WEB meter

<0<0 2 2 0 2 0 3
<OU 9 20 21 24 27 84
<0* 5 4 6 4 10 12
td 0 12 5 19 0 20
<Of 0 0 0 0 0 6
<Op 1 1 1 1 1 1

<O< <0> 21 22 37 35 64 189
<0{ <0} 0 0 0 0 0 12
(QA <0> 0 8 9 10 0 3

<0. <0> 0 1 1 2 0 13
<0: <0> 0 0 0 0 0 1

<0! 10 8 17 18 30 127
<0/ 11 2 1 3 0 15
<OI 0 0 0 20 0 0
<0·

' 3 1 2 3 10 19

39

Table 4. WEB Environment Feature Counts

WEB Programs
Feature sample queens primes knights reg WEBmeter

I I 11 33 105 70 76 191
' , 5 1 2 1 16 398
{ } 21 3 25 9 18 95

0 4 6 18 0 14

== 0 10 5 16 0 19
= 0 2 0 3 0 7

<D< <D>= 11 13 23 18 34 84
<D< <D> j 10 9 14 17 30 105

would venture to guess that if Knuth's WEB programs 'lEX, Metajont, TANGLE, and

WEAVE [Knu86a, Knu86b, Knut83, Sewe89] were used as input programs, all of the

text formatting commands would have been used at least once.)

The WEB command tbegin._code (<Dp) was used by each program once. Every

WEB program is required to use <Dp at least once, because TANGLE uses this unnamed

section to start "building" its Pascal program. Multiple unnamed code sections work

in the same manner as multiple named sections: they are appended in the order they

appear in the WEB source code.

Table 4 contains the counts of the additional WEB environment features tok-

enized, except for tpreproc.

Preprocessed strings were not used in any of the six input programs. What

follows is a short explanation of why each feature was selected for counting. The

tassumpt count refers to the number of times Pascal code appears in the '!EX part

of the code sections of a WEB program. This may be used to measure the number of

"assumptions" of the program, because an occurrence of the token signals a direct

explanation of the Pascal code or variable referenced. The count of the token tstring

40

simply measures the number of Pascal text strings used. WEBmeter's tstring count

is relatively high because of the large amount of output generated, both normal and

debug. The tcomment count represents the number of Pascal in-line comments in

the WEB program. Because the WEB System provides for separate commentary in each

code section, it would be logical to hypothesize that WEB programs contain fewer in

line comments than traditional Pascal programs. The next three tokens are directly

related to macros. The count of targument gives an estimate of the number of

arguments used in the parametric macros of the program. The tdbLeql count is the

total number of simple and parametric macros defined, while tone_eql is the number

of numeric macros. These two should add up to the count of tdef in Table 3. The

final two features break down the tmod_name ((D< (D>) count in Table 3. Token tis ((D<

a!>=) is used when defining the replacement Pascal part of a code section. Teall («1<

(D>; or (D< (D>(D;) can be described as a "call" to a code section. It signals TANGLE to

replace the code section name with the section's corresponding Pascal code. These

are analogous to defining a procedure vs. calling a procedure in traditional Pascal

programs.

The size metrics generated by WEBmeter for the six input programs appear in

Table 5. These measures include the number of identifier tokens recognized (TIDENT),

the number of number tokens recognized (TNUM), the total number of numbered code

sections in the WEB program (CS), the number of procedures defined (PROC), the num

ber of functions defined (FUNCT), the number of lines of limbo text (LOL), the number

of lines of documentation in the code sections of the program (LOD), the average num

ber of lines of documentation per code section (LOD/CS), the number of lines used to

define macros and format statements (LOM), the number of lines of code used in the

code sections of the program (LOC), and finally the average number of lines of code per

41

Table 5. Size Metrics

Size WEB Programs
Metric sample queens primes knights reg WEBmeter
TIDENT 71 89 117 140 562 2252
TNUM 19 24 30 59 98 307
cs 14 24 27 28 37 96
PROC 1 1 0 1 4 6
FUNCT 1 0 0 0 4 9
LOL 9 13 16 14 14 10
LOD 49 133 233 263 171 506
LOD/CS 3.50 5.54 8.63 9.39 4.62 5.27
LOH 0 12 5 19 0 26
LOC 78 66 91 110 365 1312
LOC/CS 7.09 5.08 3.96 6.11 10.74 15.62

code section {LOC/CS). Note that the two averages are computed differently. LOC/CS

only counts code sections which contain a Pascal part. This number is reflected in

the count of token tis. Also, the LOC count excludes blank lines, but includes in-line

comments. In addition, CS is the sum of the tnew_mod and tstar_mod counts from

Table 3.

Notice that the WEB programs listed in Table 5 are ordered by increasing size

(see counts of TIDENT, TNUM, and CS). The only aberrations are the LOL count for

knights, the LOD and LOD/CS measures for reg, the LOD/CS for WEBmeter, the LOC and

LOC/CS for sample, and the LOC/CS count for primes.

The LOL count is not very meaningful unless there is a big discrepancy signalling

special formatting requirements or many comments. The lower LOD, and LOD/CS

values for reg and WEBmeter may be attributed to the novice programmer syndromes

of underdocumenting and inefficient coding. Documenting a WEB program is difficult

when one is unaccustomed to explaining programs in detail. Traditionally accepted

42

amounts of external and internal documentation of Pascal programs does not prepare

one adequately for the extensive detailed explanation which may be placed in a WEB

program. The LOC and LOC/CS counts were lower for queens than for sample. Hardly

anyone would claim that sample is a more difficult program than queens. The

apparent discrepancy may be due to the fact that the LOL, LOD, LOM, and LOC counts

are highly dependent on programming style since they a.re based on physical lines in

the WEB source code. For example, one programmer may type in his/her Pascal code

one statement per line while another may disregard this traditional method because

WEAVE will format it according to its own conventions. The final discrepancy, the

relatively small value of LOC/CS of primes may be attributed to the fact that Knuth

was using this program to explain features of WEB and the literate programming

paradigm, resulting in more documentation and code sections than normal.

Some general observations can be made about the size metrics that were calu

lated. For example, the number of procedures and functions used were very few.

The WEB programmers opted to use macros and code sections over the traditional

procedures and functions. Sewell [Sewe89] suggests that procedures only be used

when necessary (i.e., parameters must be passed or recursion must be used). He also

provides guidelines for using macros vs. code sections. Inexperienced WEB program

mers should exercise caution because it is very easy to lose sight of these guidelines.

This may lead to an unclean design (i.e., excessive use of global variables, code sec

tions, etc.). Sewell suggests that approximately a dozen lines of code should be a

reasonable size for a code section (he does not give an estimate for LOD). None of the

programs·examined reached this goal except for WEBmeter (which surpassed it). This

may indicate the use of too many code sections. The ratios of LOD/CS to LOC/CS vary

from approximately 1:3 (WEBmeter) to 2:1 (primes).

43

Table 6. Source Code Complexity Metrics

Code WEB Programs
Metric sample queens primes knights reg WEBmeter

VG 8 11 12 13 62 235

'Til 33 37 32 51 48 86

112 25 21 32 33 67 498
N1 156 160 201 268 911 3973

N2 90 74 135 148 623 2625
LENGTH 246.00 234.00 336.00 416.00 1534.00 6598.00
VOLUME 1441.06 1370.77 2016.00 2659.20 10500.98 60634.46
EFFORT 85599.16 89360.99 136080.00 304116.24 2343442.97 137 43202.71
TIME (s) 4755.51 4964.50 7560.00 16895.35 130191.28 763511.26
TIME (m) 79.26 82.74 126.00 281.59 2169.85 12725.19
TIME (h) 1.32 1.38 2.10 4.69 36.16 212.09

The source code complexity metrics generated by WEBmeter are in Table 6.

These include cyclomatic complexity (VG), Software Science basic counts 'Tlb 112, N1,

and N2 , and the calculated measures LENGTH, VOLUME, EFFORT, and TIME. The ma-

jority of the complexity measures increase with size. Exceptions are the 'Til counts of

queens and primes; and the N2 , LENGTH, and VOLUME measures of sample and queens.

These may be attributed to the difference in the number of procedures, functions, and

macros declared and called.

Table 7 gives the hand-calculated counts of program design stability (PDS),

program design complexity (So), and integration complexity (51) that were calculated

from the TANGLEd versions of tlte input programs.

A module (defined as a procedure or function) is the basic entity for each of

these metrics. As mentioned earlier, the input programs utilized very few modules in

their implementation. Thus these may not totally reflect the intentions of the metrics.

44

Table 7. Design Complexity and Stability Metrics

Design TANGLEd WEB Programs
Metric sample queens primes knights reg
PDS 1 1 1 ft 1

T7 21 96
So 3 2 1 2 23

s1 1 1 1 1 15

However, they may illustrate the need for improved guidelines for WEB environment

specific command and attribute usage.

The PDS counts for sa.mple.p, queens.p, and knights.p are fairly straightforward.

Each of these programs were efficient in their use of parameters. Primes.p has a

PDS count of one because no procedures or functions were used. Reg.p had the

worst program design stability. This is mainly attributable to the larger number of

procedures and functions used, and the parameters which included arrays of records

of pointers. Usage of these types of parameter tends to increase assumption counts.

For sample.p, queens.p, and knights.p, S0 = n, where n is the total number of

procedures and functions. This means that no subordinate modules were called in

conditional statements. Thus S1 = 1 for these three input programs. For primes.p

since n = 1, 50 = S1 = 1. For the program xeg.p, the values of S0 and S1 reflect the

complicated structure chart of the program.

4.4 Interpretation

This is a pre-test, pre-experimental study. One way to validate the observations,

would be to obtain a subjective rating of the complexity and stability of the programs

by WEB program "experts" and compare the results with the objective data. Also,

45

ideally, it would be necessary to repeat the experiment with a larger number of test

programs and a larger group of people.

CHAPTER V

SUMMARY, CONCLUSIONS, AND FUTURE WORK

The literate programming pazadigm is a novel approach to developing software.

Its fundamental concept equates a computer program to a piece of literature. A

person should be able to read a WEB program as if it were a book. Various commands

and features unavailable in traditional programming systems are provided by the WEB

System of Structured Documentation to enable a developer to easily and automati

cally create "works of literature." The goal is to help the human reader comprehend

the programs quickly and thoroughly.

A prototype study of WEB program was conducted to investigate what features

particular to the WEB environment contribute most to the process of explaining or

understanding it. A WEB program, WEBmeter, was developed to isolate and count

all of the features and commands of interest. In addition, size and code complexity

metrics were generated by WEBmeter. Three additional design complexity and stability

measures were hand-calculated from the TANGLEd versions of the input WEB programs.

The metrics calculations and the counts of the WEB environment specific com

mands and features for the set of six input programs were analyzed to make pre

liminary observations which may be used as a basis for future experiments on WEB

programs and literate programming environments. While using functions and proce

dures are the only way to modularize traditionally developed Pascal programs, WEB

programs have additional macro and code sections definition and calling capabilities.

46

47

Measuring the relationships between these three mechanisms and how they decrease

the perceived complexity of a WEB program for a potential reader seems to be of cen

tral importance. The size, code complexity, and design metrics calculated need to

incorporate these relationships in order to truly measure the complexity and stability

of WEB programs.

From my own experiences in developing the WEBmeter program, I found that

the literate programming paradigm did simplify the process of developing and un

derstanding large programs. At first, it was difficult to document and develop the

code simultaneously; this became easier as I gained more experience. The ability

to explain design decisions and call a code section before actually defining it were

definite advantages. The best part was being able to rearrange the code sections to

refiect the improved design very easily ~nd without fearing that the program would

never run agaJ.n.

On the down side, I found that writing the rather small program named sample

was quite tedious due to the overhead of using 'lEX and WEB commands. When

developing larger and complex applications, the overhead is offset by the benefits

gamed. Also, I tended to overuse code sections (i.e., I sometimes used code sections

where procedures or functions would have been more appropriate). This was due

mostly to lack of experience in "thinking in WEB." Later I became spoiled by the

"extras" (including a nicely typeset listing) that the literate programming paradigm

offers. It will be difficult to face a regular Pascal program again, let alone write one.

What follows is a list of possible extensions to t.lris thesis and other areas of

related future work.

• To automate the metrics collection process completely.

48

• To add metrics calculations capabilities to WEBmeter for Fan-in/Fan-out (see

Section 3.1.2) and Logical Stability (see Section 3.2.2).

• To form hypotheses based on the observations and to test these hypotheses in

large-scale experiments across literate programming environments that utilize

various languages and text formatters.

• To define metrics specially designed for literate programming environments to

measure the degree of "literateness" of a program. Such metrics can be gener

alizations of the existing design/ code complexity measurements.

• To collect and classify WEB programs into a repository to be used as data in

large-scale experiments.

• To design and carry out experiments to examine how WEB programs promote

reusability and ease of mcrintenance.

[Av0p90]

(BaSH86]

[BaZw80J

[BeEv79]

[BeGr87]

[BeKn86]

(BeKM86]

(Broo75]

[BrCh90]

(BrCh89]

[Bro88a]

{Bro88bl

(CoDS86]

REFERENCES

A. Avenarius and S. Oppermann, "FWEB: A Literate Programming Sys
tem for Fortran Sx," ACM SIGPLAN Notices, vol. 25, no. 1, pp. 52-58,
January 1990.

V.R. Basili, R.W. Selby, and D.H. Hutchens, "Experimentation in Soft
ware Engineering," IEEE Transactions on Software Engineering, vol. SE-
12, no. 7, pp. 733-743, July 1986.

A.L. Baker and S.H. Zweben, "A Comparison of Measures of Control
Flow Complexity," IEEE Transactions on Software Engineering, vol. SE-
6, no. 6, pp. 506-512, November 1980.

L.A. Belady and C.J. Evangelisti, "System Partitioning and Its Measure,"
IBM Research Report RC7560, 1979.

J. Bentley and D. Gries, "Programming Pearls- Abstract Data Types,"
Communications of the ACM, vol. 30, no. 4, pp. 284-289, April 1987.

J. Bentley and D.E. Knuth, "Programming Pearls- Literate Program
ming," Communications of the A CM, vol. 29, no. 5, pp. 364-369, May
1986.

J. Bentley, D.E. Knuth, and D. Mcilroy, "Programming Pearls - A
Literate Program," Communications of the ACM, vol. 29, no. 6, pp.
471-483, June 1986.

F.P. Brooks, Jr., The Mythical Man-Month: Essays on Software Engi
neering. Reading, MA: Addison-Wesley, 1975.

M. Brown and B. Childs, "An Interactive Environment for Literate Pro
gramming," Structured Programming, vol. 11, pp. 11-25, 1990.

M. Brown and B. Childs, "An Interactive Tool for Literate Program
ming," Third Workshop on Empirical Studies of Programmers, Austin,
April 29-30, 1989.

M.E. Brown, "An Interactive Environment for Literate Programming,"
Ph.D. Dissertation, Dept. of Computer Science, Texas A&M University,
Technical Report, August 1988.

M.E. Brown, "The Literate Programming Tool," Computer Science De
partment, Texas A&M University, Technical Report, August 1988.

S.D. Conte, H.E. Dunsmore, and V.Y. Shen, Software Engineering Met
rics and Models. Menlo Park, CA: Benjamin/Cummings, 1986.

49

[CuSK89)

[Hals77]

[Hals79]

[HeKa81]

fKaHe81J

[Knu86a]

[Knu86b)

fKnut84]

[Knut89]

{Knut83]

[Leca85]

{Lin89a]

[Lin89b]

[McCa76)

[McBu89]

[Mitc88]

[Papp90]

50

B. Curtis, S.B. Sheppard, E. Kruesi-Bailey, J. Bailey, and D.A. Boehm
Davis, "Experimental Evaluation of Software Documentation Formats,"
The Journal of Systems and Software, vol. 9, pp. 167-207, February 1989.

M.H. Halstead, Elements of Software Science. New York, NY: Elsevier
North-Holland, 1977.

M.H. Halstead, "Advances in Software Science," in Advances in Comput
ers, vol. 18. New York, NY: Academic Press, pp. 119-172, 1979.

S. Henry and D. Kafura, "Software Structure Metrics Based on Informa
tion Flow," IEEE Transactions on Software Engineering, vol. SE-7, no.
5, pp. 510-518, September 1981.

D. Kafu.ra and S. Henry, "Software Quality Metrics Based on Intercon
nectivity," The Journal of Systems and Software, vol. 2, pp. 121-131,
1981.

D.E. Knuth, Computers and Typesetting, Volume B, 'J.EX: The Program.
Reading, MA: Addison-Wesley, 1986.

D.E. Knuth, Computers and Typesetting, VolumeD, Metafont: The Pro
gram. Reading, MA: Addison-Wesley, 1986.

D.E. Knuth, "Literate Programming," The Computer Journal, vol. 27,
no. 2, pp. 97-111, May 1984.

D.E. Knuth, "The Errors of '!EX," Software-Practice and Experience,
vol. 19, no. 7, pp. 607-685, July 1989.

D.E. Knuth, "The WEB System of Structured Documentation," Dept. of
Computer Science, Stanford University, Technical Report, 1983.

0. Lecarme, "Literate Programming," Computing Reviews, vol. 26, no.
1, p. 75, January 1985.

C.A. Lins, "A First Look at Literate Programming," Structured Program
ming, vol. 10, no. 1, pp. 60-62,, 1989.

C.A. Lins, "An Introduction to Literate Programming," Structured Pro
gramming, vol. 10, no. 2, pp. 107-111, 1989.

T. McCabe, "A Complexity Measure," IEEE Transactions on Software
Engineering, vol. SE-2, no. 4, pp. 308-320, December 1976.

T.J. McCabe and C.W. Butler, "Design Complexity Measurement and
Testing," Communications of the ACM, vol. 32, no. 12, pp. 1415-1425,
December 1989.

R. Mitchell, "Literate Programming (Knuth)," Ph.D. Dissertation, Coun
cil for National Academic Awards, United Kingdom, 1988.

T.L. Pappas, "Literate Programming for Reusability: A Queue Pack
age Example," in Proceedings of the Eighth Annual Conference on Ada
Technology, Atlanta, pp. 500-514, March 5-8, 1990.

[PaZv83]

[RaMe88]

[Ram89a]

[Ram89b]

[ReSk89)

[Sewe89]

[Thim86]

51

G. Parikh and N. Zvegintzov, Tutorial on Software Maintenance. Silver
Spring, MD: Computer Society Press, 1983.

B. Ramamurthy and A. Melton, "A Synthesis of Software Science Mea
sures and the Cyclomatic Number," IEEE Transactions on Software En-
gineering, vol. 14, no. 8, pp. 1116-1121, August 1988.

N. Ramsey, "A Spider User's Guide," Dept. of Computer Science, Prince
ton University, Technical Report, August 1989.

N. Ramsey, "The Spidery WEB System of Structured Documentation,"
Dept. of Computer Science, Princeton University, Technical Report, Au-
gust 1989.

T. Reenskaug and A.L. Skaar, "An Environment for Literate Smalltalk
Programming," in OOPSLA '89 Proceedings, pp. 337-345, October 1989.

W. Sewell, Weaving a Program: Literate Programming in WEB. New York,
NY: Van Nostrand Reinhold, 1989.

H. Thimbleby, "Experiences of 'Literate Programming' using cweb (a
variant of Knuth's WEB)," The Computer Journal, vol. 29, no. 1, pp. 201-
211, March 1986.

[VWHC88] C.J. VanWyk, E. Hamilton, and D. Coiner, "Literate Programming
Expanding Generalized Regular Expressions," Communications of the
ACM, vol 31, no. 12, pp. 1376-1385, December 1988.

[VWHG87] C.J. VanWyk, D.R. Hanson, and J. Gilbert, "Literate Programming
Printing Common Words," Communications of the A CM, vol. 30, no. 7,
pp. 594-599, July 1987.

[VWJW87] C.J. Van Wyk, M. Jackson, and D.W. Wall, "Literate Programming
Processing Transactions," Communications of the ACM, vol. 30, no. 12,
pp. 1000-1010, December 1987.

[VWLT89] C.J. VanWyk, D.C. Lindsay, and H. Thimbleby, "Literate Programming
- A File Difference Program," Communications of the ACM, vol. 32,
no. 6, pp. 7 40-755, June 1989.

(VWRa89] C.J. Van Wyk and N. Ramsey, "Literate Programming- Weaving A
Language-Independent WEB," Communications of the ACM, vol. 32, no.
9, pp. 1051-1055, September 1989.

(VWyk90] C.J. Van Wyk, "Literate Programming: An Assessment," Communica
tions of the ACM, vol. 33, no. 3, pp. 361-365, March 1990.

(YaCo78]

(YaCo80]

(YaCo85]

S.S. Yau, J.S. Collofello, and T.M. MacGregor, "Ripple Effect Analysis
of Software Maintenance," in Proc. of COMPSAC 78, pp. 60-65, 1978.

S.S. Yau and J.S. Collofello, "Some Stability Measures for Software Main
tenance," IEEE Transactions on Software Engineering, vol. SE-6, no. 6,
pp. 545-552, November 1980.

S.S. Yau and J.S. Collofello, "Design Stability Measures for Software
Maintenance," IEEE Transactions on Software Engineering, vol. SE-11,
no. 9, pp. 849-856, September 1985.

APPENDICES

52

APPENDIX A

ANNOTATED BIBLIOGRAPHY

53

54

An Annotated Bibliography of Literate Programming

A. Avenarius and S. Oppermann, "FWEB: A Literate Programming System for
FORTRAN 8x," ACM SIGPLAN Notices, val. 25, no. 1, pp. 52-58, January 1990.
This paper is a general cliscussion of several aspects of literate programming. Topics
include the merits of documentation; writing literate FORTRAN programs; FWEB' s
pretty-printing style; how the literate programming paracligm should be applicable
to all non-machine-oriented programming languages; and comments about the future
of literate programming. The authors believe that documentation will eventually
change from normal linear text to a dynamic hypermedia format. In addition, a
short sample FWEB program is provided.

J. Bentley and D. Gries, "Programming Pearls- Abstract Data Types," Com
municatio'IUJ of the ACM, val. 30, no. 4, pp. 284-289, April1987.
This pape~ presents a literate program which is a solution by Gries to the problem
of printing the n most common words in a text file (see Bentley, Knuth, and Mcilroy
below). Gries' criticism of Knuth's implementation is his description of the hash
table. In his solution, Gries distinguishes between an abstract data object and the
data structure it is implemented by. He. describes as his goal the construction of
libraries of modules which can be reused as "off-the-shelf" parts.

J. Bentley and D.E. Knuth, "Programming Pearls- Literate Programming,"
Communications of the ACM, val. 29, no. 5, pp. 364-369, May 1986.
This paper presents an introduction to the literate programming style and Knuth's
WEB system. In addition, a small example literate program written by Knuth to
output a sorted list of m random integers is included which illustrates some of the
features. Bentley credits Knuth for making three fundamental contributions to the
area of literate programming: defining and naming the area, creating the WEB system,
and providing a body of literate programs ('lEX and Metafont, to name two).

J. Bentley, D.E. Knuth, and D. Mcilroy, "Programming Pearls- A Literate
Program," Communications of the ACM, val. 29, no. 6, pp. 471-483, June 1986.
This paper presents a literate program solution to the problem of printing the n most
common words in a text file. In his review, Mcilroy applauds some features of WEB,
but dislikes the solution because of the lack of reuse involved. He demonstrates how
the same problem can be solved using utilities in a six line UNIX shell script. Bentley
is impressed by Knuth's implementation and description of the new hash trie data
structure.

M. Brown and B. Childs, "An Interactive Environment for Literate Program
ming," Structured Programming, vol. 11, pp. 11-25, 1990.
This paper presents an overview of literate programming and the WEB system. A dis
cussion of the current environment that literate programmers use leads to a proposal
for a full-scale Literate Programming Environment (LPE). The proposed LPE would
automate the literate programming process thereby simplifying the development pro
cess. It would include a main control panel, a WEB Eclitor, a WEB-based Debugger, and
a Personal Preference Database. Two typical programming scenarios are presented to
illustrate the use of LPE. A prototype of the LPE has been implemented on a Sun.

M. Brown and B. Childs, "An Interactive Tool for Literate Programming,"
Third Workshop on Empirical Studies of Programmers, Austin, April 29-30, 1989.

55

This paper describes an empirical study involving a prototype literate programming
tool developed to investigate whether a hypertext presentation would be useful in a
proposed Literate Programming Environment (LPE). A study of a senior-level Com
puter Science class familiar with the WEB System showed a preference for using the
prototype tool over the WEAVEd (woven?) typeset listing, which was in turn preferred
over a standard editor (and WEB source code).

M.E. Brown, "An Interactive Environment for Literate Programming," Ph.D.
Dissertation, Dept. of Computer Science, Texas A&M University, Technical Report,
August 1988.
This dissertation discusses the prototype WEB editor developed to investigate whether
the development of a Literate Programming Environment would promote the use of
and reduce the complexity of using Knuth's WEB system. An empirical study of a
number of programmers using the WEB editor to perform maintenance tasks showed
that the WEB editor was preferred over the 'lEX document typesetting system and a
regular editor.

M.E. Brown, "The Literate Programming Tool," Computer Science Depart
ment, Texas A&M University, Technical Report, August 1988.
This technical report is the CWEB source code of the prototype literate programming
tool mentioned in the previous three entries (see above). The source code includes
three separate programs: Web..Read, LpLServer, and Lpt_Client.

P.J. Denning, "Announcing Literate Programming," Communications of the
ACM, vol. 30, no. 7, p. 593, July 1987.
This is an introduction to the regular column on Literate Programming appearing
in CACM. Jon Bentley proposed the idea, after receiving favorable reponse to his
Programming Pearls columns, which introduced the subject. The literate program
ming column is published as an experiment to see how much interest is generated
and sustained, with a planned evaluation set for mid-1988. The moderator for the
column, Christopher J. Van Wyk, is introduced, with a call for interested literate
program authors and critics to contact him.

D.E. Knuth, Computers and Typesetting, Volume B, 'JEX: The Program. Read
ing, MA: Addison-Wesley, 1986.
T.his 594-page book contains the source code for '!EX, developed using the WEB System
of structured documentation. Also included are a selected Bibliography of 'JEX and
WEB references, and a short introduction on how to read the (WEB) program.

D.E. Knuth, Computers and Typesetting, VolumeD, Metajont: The Program.
· Reading, MA: Addison-Wesley, 1986.
This 560-page hook contains the source code for Metafont, developed using the 'WEB
System of structured documentation. Also included are a selected Bibliography of
'IF)(and WEB references, and a short introduction on how to read the (WEB) program.

D.E. Knuth, "Literate Programming," The Computer Journal, vol. 27, no. 2,
pp. 97-111, May 1984.
This seminal paper is the first published article introducing the concept of literate
programming. The philosophy and features of the WEB programming language and
documentation system are described. Also included is a sample literate program for
printing the first 1000 prime numbers. Other topics discussed are the portability

56

of WEB, advantages of programming in WEB, stylistic and economic issues, and future
implications.

D.E. Knuth, "The WEB System of Structured Documentation," Dept. of Com
puter Science, Stanford University, Technical Report, 1983.
This technical report is a User Manual for WEB. It describes how to write programs
in the WEB language using WEB control codes, 'lEX text, and Pascal code. Appendices
include an example excerpt of a WEB program with its WEAVE and TANGLE outputs;
the complete WEB source code of WEAVE and TANGLE; and instructions for installing
the WEB system.

0. Lecarme, "Literate Programming," Computing Reviews, vol. 26, no. 1, p.
75, January 1985.
This is a review of Knuth's introductory paper with the same name. Both posi
tive and negative aspects of the WEB system are discussed along with suggestions for
improvements.

C.A. Lins, "A First Look at Literate Programming," Structured Programming,
vol. 10, no. 1, pp. 6Q-62, 1989.
This paper is a first in a series of regular columns in the journal of Structured Pro
gramming on literate programming. The problem of facilitating readability and
understandability of programs and their documentation is discussed, with literate
programming named a possible solution. The philosophy of literate programming
and Knuth's WEB system are introduced. Some issues to be considered and possible
research directions are listed.

C.A. Lins, "An Introduction to Literate Programming," Structured Program
ming, vol. 10, no. 2, pp. 107-111, 1989.
This paper begins with a brief description of each element of a literate program
section (commentary or description, macros, and code) and the indexing facility. A
sample literate program describing an interface to an abstract data type is presented.
The author uses Modula-2 and a brute-force method because at the time he had no
access to a WEB system. The problems caused by non-automatic generation of literate
programs are discussed.

R. Mitchell, "Literate Programming (Knuth)," Ph.D. Dissertation, Council for
National Academic Awards, United Kingdom, 1988.
This dissertation extends the idea of literate programming by applying the principle of
separation of concerns. An approach to program development based on data abstrac
tion and a formal specification language is taken. More specifically, the programming
language Modula-2 and the specification language OBJ are used. (abstract]

T.L. Pappas, "Literate Programming for Reusability: A Queue Package Exam
ple," in Proceedings of the Eighth Annual Conference on Ada Technology, Atlanta,
pp. 50Q-514, March 5-8, 1990.
This paper begins with a set of guidelines for writing and documenting reusable
Ada software. AdaWeb, a literate programming system combining Ada and 1EX is
described. A sample AdaWeb package, Bounded Generic Queue Package, is provided.
Features of AdaWeb are explained as they are used in the literate program.

N. Ramsey, "A Spider User's Guide," Dept. of Computer Science, Princeton
University, Technical Report, August 1989.

57

This manual explains how to use the Spider program to generate a WEB system for
any programming language. It describes the syntax of the Spider description file used
to describe a programming language, giving several examples. It does not say how
to use the generated WEB system. [abstract]

N. Ramsey, "The Spidery WEB System of Structured Documentation," Dept. of
Computer Science, Princeton University, Technical Report, August 1989.
This manual describes how to write programs in the WEB language using WEB systems
generated by Spider. Most of the material is taken verbatim from Donald Knuth's
original memo introducing WEB (see Knuth, technical report above). It contains a
brief introduction to the idea of literate programming, a short explanation of how to
run WEAVE and TANGLE, and a list of all the control sequences that can be used in WEB
programs and their effects. [abstract]

T.' Reenskaug and A.L. Skaar, "An Environment for Literate Smalltalk Pro
gramming," in OOPSLA '89 Proceedings, pp. 337-345, October 1989.
The programming environment described in this paper is an adaptation of Knuth's
concept of literate programming applied to Smalltalk programs. The environment
provides a multi-media document production system including media for Smalltalk
class and method definitions. [abstract]

W. Sewell, Weaving a Program: Literate Programming in WEB. New York, NY:
Van Nostrand Reinhold, 1989.
This book is the first and only book published on literate programming or the WEB
System to date. Part I is a User's Guide, which includes an introduction to literate
programming, the WEB language, 'JEX, variant WEB systems, WEB utilities, and a review
of some of the current research being done in the area. Part II, titled "Advanced
Topics" includes information on porting WEB to different environments and how to
tailor WEB to personal preferences. The appendices provide several sample programs
(in Pascal, C, and Modula-2) and useful utilities as well as command summaries, and
the source code for TANGLE and WEAVE.

H. Thimble by, "Experiences of 'Literate Programming' using cweb (a variant of
Knuth's WEB)," The Computer Journal, vol. 29, no. 1, pp. 201-211, March 1986.
This paper presents Thimhleby's version of Knuth's WEB system, called cweb. Cweb
uses the programming language C coupled with the text formatting language troff.
A description of how cweb works and an excerpt of a cweb program are included. Also
discussed are the advantages and disadvantages of literate programming, possibilities
of using cweb as a trivial IPSE (Integrated Project Support Environment), ideas for
an interactive version of cweb, possible extensions, and implementation problems.

C.J. VanWyk, "Literate Programming: An Assessment," Communications of
the ACM, vol. 33, no. 3, pp. 361-365, March 1990.
This column presents a. review of the regular column on Literate Progamming ap
pearing in CACM since July 1987. VanWyk lists three aspects common to Knuth's
published literate programs: cosmetic details, polish, and verisimilitude (exactly the
same input that is used to prepare the program is published). He notes that the
four programs appearing in the column achieved the first two aspects, but not the
third. The versions used to publish the programs were produced after the code was
written. Van Wyk concludes by stating that only programs produced from literate
programming systems will be published in future columns; and the column will only

58

continue if there is interest by literate program developers who use systems they have
not designed themselves.

C.J. Van Wyk, E. Hamilton, and D. Coiner, "Literate Programming - Ex
panding Generalized Regular Expressions," Communications of the A CM, vol. 31,
no. 12, pp. 1376-1385, December 1988.
This paper presents a program by Hamilton that was developed using tools which
interleave code and design information. No further information about the specifics
of the tools or literate programming style is mentioned. The program is reviewed by
Coiner, who suggests improvements which would remove the limitations of Hamilton's
program.

C.J. VanWyk, D.R. Hanson, and J. Gilbert, "Literate Programming- Printing
Common Words," Communications of the ACM, vol. 30, no. 7, pp. 594-599, July
1987.
This paper presents Hanson's solution to the problem of printing then most common
words in a text file (see Bentley, Knuth, and Mcilroy; and Bentley and Gries above).
The program is written in C and presented using the loom system. Loom is a
preprocessor that takes a text file with references to program segments and integrates
them with the actual program fragments to produce output, which in turn becomes
input to a document formatter (such as '!EX). A review of all three solutions is given
by Gilbert. His view is that literate programming has different meanings in different
circumstances. According to Gilbert, "It is not a matter of artistry or efficiency alone;
it is more a question of suitability in context."

C.J. Van Wyk, M. Jackson, and D.W. Wall, "Literate Programming - Pro
cessing Transactions," Communications of the A CM, vol. 30, no. 12, pp. 1000-1010,
December 1987.
This paper presents a program written by Jackson using the JSP design method. The
methodology is explained in the commentary portion located at the end of each sec
tion. The program is reviewed by Wall. He determines that Jackson's methodology is
useful in data processing applications where program structure depends on the struc
ture of the data; but perhaps not quite useful for applications where input/output is
not as strictly defined.

C.J. VanWyk, D.C. Lindsay, and H. Thimbleby, "Literate Programming- A
File Difference Program," Communications of the ACM, vol. 32, no. 6, pp. 740-755,
June 1989.
This paper begins with a traditional C program (which is not claimed to be a literate
program by Knuth's definition). Lindsay wishes to demonstrate how a well-written
program can be attained without using a WEB system by using standard programming
technology only. His work is reviewed by Thimbleby, who believes that the liter
ate programming pa.radigm provides all the desireable features of a literate program
automatically, and for "free". The same results could not be reached by simulat
ing literate programming unless considerably more effort is expended, and with no
guarantee of being free of errors.

C.J. VanWyk and N. Ramsey, "Literate Programming- Weaving a Language
Independent WEB," Communications of the ACM, vol. 32, no. 9, pp. 1051-1055,
September 1989.

59

This paper describes how the program Spider enables literate programmers to use
a variant of Knuth's WEB system by combining 'JEX with a programming language,
X, of their choice (instead of Pascal). The description of the targeted programming
language is combined with language-independent master parts of TANGLE and WEAVE
to produce C code for XTANGLE and XWEAVE. The major differences and benefits of
the Spider generated versions of XTANGLE and XWEAVE compared to Knuth's versions
are discussed.

APPENDIX B

WEBmeter

60

WEB meter

Section Page
Introduction •...•... , •.•...•.•••.••.......•. , . • • • • . • • • . . . • 1 62
Halstead's Software Science • . . . • . • . • • 10 64
McCabe's Cyclomatic Complexity , ,•..•...•..•••............... , 14 66
Pascal Counting Strategy•............................... , .. , , 17 67
WEB Counting Strategy•... , 18 69
Data Structures ... , . . 19 70
Lexical Analysis . 23 72
Utilities for Lexical Analysis .. , . , , , 60 86
Parsing . • • • . • . • • • . 67 88
Utilities for Parser . 77 92
Input and Output . 84 94
Index • . 96 102

62 INTRODUCTION WEBmeter §1

1. Introduction. WEBmeter was developed by Lisa M. C. Smith, on a Sun 3/60 workstation running
SunOS release 4.0.3, 'lEX C version 2.93, TANGLE C version 2.8, WEAVE C version 2.9, and Sun Pascal.

This program computes various size and complexity metrics as detailed in the text (see metrics defi
nitions in Index). This program assumes that the input WEB program is syntactically correct. That is, it
can be WEAVEd, 'JEXed, TANGLEed, and compiled with no errors.

The "banner line" defined here should be changed whenever this program is modified.

define banner = 'ThisuisuWEBmeter ,uversionu1. 0 •

2. Here is a skeleton of the program:

program webmeter (input, output, web_file, meLfile);
const (Global constants of the program 21}

type (Global types of the program 19}

var (Global variables of the program 13}

(Procedure halstead 10}

(Procedure mccabe 14}

(Utilities for input and output 84}

(Utilities for lexical analysis 60}

(Procedures for lexical analysis 25)

begin writeln; writeln (banner); write In; (Calculate complexity metrics 3}
(Output metrics 4}
end.

3. (Calculate complexity metrics 3} =
{Initialize arrays 22);

(Initialize global variables 64}

(Perform lexical analysis 24 };

(Calculate software science measures 11 } ;

This code is used in section 2.

4. (Output metrics 4} =
outcounts;

This code is used in section 2.

5. Some of the code is optional. The material enclosed between the delimiters debug and gubed, is only
included in the TANGLEd source code when the macro definitions are set to an empty statement. The stat
and tats statements work in the same manner. These will be used when collecting summary data. It is
highly recommended that if stat is true, debug should be false (only use one at a time).

define debug :: Gl{ {change this to 'debug = 'when true}
define gubed ::GI} {change this to 'gubed = ' when true}
define stat :: {change this to 'stat = ' when true}
define tats :: {change this to 'tats = ' when true }
format debug = begin
format gubed = end
format atat = begin
format tats = end

6. Here are some macros for common programming constructs.

define incr(#):: #- # + 1 {increase a variable by unity}
define deer(#)::#-#- 1 {decrease a variable by unity}
define do_nothing = {empty statement}

§7 WEBmeter INTRODUCTION 63

7. Sun Pascal ease statements may include a default case that applies if no matching label if found. To
make the program more portable, a macro to rename the reserved word will be used. In addition, a macro
to rename the reserved word e:z:ternal will be defined to encourage portability.

define othercases :: otherwise {default for cases not explicitly listed}
format othercases = else
define e:z:tern :: e:z:ternal {externally defined procedures and functions}
format e:z:tern = forward

8. The input will come from web_file. An enhancement to the program would be to enable an optional
CHange file to be input along with the web-file.

A CHange file includes a series of one or more "changes" to be made to the web.Jile. Each change in the
change file includes the tokens tx, ty, and tz. The token tx signals a change. Between the tx and ty is the
exact code from the web-file which is to be replaced by the code between the ty and tz from the CHange file.

9. Output of the program will be w.r~tten to met.Jile. It includes:

1. The number of identifier tokens and number tokens recognized;

2. Software Science operators used, and their frequencies;

3. Software Science operands, and their frequences;

4. WEB program counts: total numbered code sections, number of procedures, and number of functions;

5. Size metrics: number of lines of limbo (lol)', number of lines of documentation (lod), average number of
lines of documentation per code section~ number of lines of macro and format definitions (1om), number
of lines of code (loc), and average number of lines of code per code section which had code;

6. Cyclomatic complexity number: vg;

7. Software Science measures: 7]1, 712, N1, N2, length, volume, effort, and time (in seconds, minutes, and
hours); and

8. WEB environment specific commands and their frequencies.

As mentioned before, if stat is true, the output will be sent to the terminal in condensed form. This can
be used as input to a statistics package with minimal modifications.

64 HALSTEAD'S SOFTWARE SCIENCE WEBmeter §10

10. Halstead's Software Science. Halstead developed the Software Science family of measures which
are calculated from four basic counts.

'71 = the number of unique operators
'72 =the number of unique operands
Nt = the total number of occurrences of all operators
N2 = the total number of occurrences of all operands
An operator is defined to be either a built-in function, a symbol or group of symbols that produce an

action. An operand can be a constant or a variable.
The operators and operands to be considered will be clearly defined in the Pascal and WEB Counting

Strategy sections.
The Software Science metrics to be calculated in the program are briefly described here.

1. length of a program in tokens N

2. volume of a program V
The volume of a program is the fewest number of binary digits or bits with which the program can be

represented.

3. effort E
The effort is the total number of elementary mental discriminations needed to write a program. The

approximation of E, E, does not need V* (potential volume) for its calculation, and will be used.

4. timeT

v2
E=

V*

The time is effort converted to units of time based on the Stroud number, S = 18 e.m.d. per second.

E
T=

S

(Procedure halstead 10) =
procedure halstead(eta1, eta2, n1, n2 : integer; var hlength, hvolume, heffort, htime : real);

const hstroud = 18; {Stroud number }
begin hlength - nt + n2;
if ((eta1 +eta!)> 0) then hvolume - hlength * ln(eta1 + eta2)/ln(2);
if (eta2 > 0) then heffort - hvolume * ((eta1 * n2)/(2 * eta2));
htime - heffort / hstroud;
end;

This code is used in section 2.

11. (Calculate software science measures 11) =
(Find '71, '72, Nt, and N2 12);
halstead (eta1 , eta2, 11.1 , n2, hlength, hvolume, hej]ort, htime)

This oode is. used in section 3.

§12 WEBmeter

12. (Find 771, 772, Nt, and N2 12) ::
eta1 - 0; eta2 - 0; n1 - 0; n2 - 0; { Pascal operators}
for 1 - tand to tco1on do

begin sym_string (1, 8);
if (8 f: · uuuuuuuuuu •) then

if (count[~ f: 0) then
begin incr (eta1); n1 - n1 + count[~;
end;

end; { User-defined subprograms and macros}
for i - 1 to numuser do

begin incr (eta1); n1 - n1 + usercnt [i];
end; { Operands }

for i - 1 to numopd do
if (opdcntfi] f: 0) then

begin incr(eta2); n2- n2 + opdcnt[i];
end;

This code is used in section 11.

13. (Global variables of the program 13) ::

eta1 , { 171 - number of unique operators}
eta2 1 { 112 - n~mber of unique operands}
n1, { N1 - total number of occurrences of all operators}
n2 { N2- total number of occurrences of all operands}
: integer; hlength, {length of a program in tokens}
hvolume, { volume of a program in bits }
hejjort, { estimated effort needed to write a program }
htime {effort converted to time using the Stroud number}
: real;

See also sections 161 20, 62, and 80.

This code is used in section 2.

HALSTEAD'S SOFTWARE SCIENCE 65

66 MCCABE'S CYCLOMATIC COMPLEXITY WEBmeter §14

14. McCabe's Cyc:lomatic: Complexity. McCabe's cyclomatic complexity metric measures program
control flow complexity. The easiest way to compute vg is to count the number of conditions (predicates) in
a program and add one. The "add one" is accounted for by counting the program reserved word. See the
Pascal Counting Strategy for more detail.

(Procedure mccabe 14) ::

procedure mccabe(sym : token; var vg : integer);
var temp: integer;
begin temp - vg; {for debug}
if (sym E [twhile 1 tif 1 tuntil]) then

begin condition- true; incr(vg);
end

else if (sym e [tfor, tprocedure, tfunction, tprogram]) then incr(vg)
else if condition A (sym e [tand, tor]) then incr (vg)

else if sym = tease then deer(casebal)
else if (casebal ~ 1) A (parenbal = 0) A (sym E [tcolon, tcomma]) then incr (vg)

else if (sym = tbegin) A (casebal ~ 1) then incr(casebal)
else if (sym =tend) A (casebal ~ 1) then deer(casebal)

else if condition A (sym E [tdo, tthen, tsemi]) then condition -false
else if (sym = tlabel) then deer(wg)

else if isla bel A (sym = tcomma) then deer (vg);
debug if (temp =1- vg) then {changed, so print }

write(·uVGu·,vg: 1, ·u·);
gubed
end;

This code is used in section 2.

15. mccabe is called by the parser.

(Update cyclomatic complexity 15) =
mccabe(sym,vg)

This code is used in section 61.

16. (Global variables of the program 13) +=
vg: integer; {McCabe's cyclomatic complexity number}
condition: boolean; {current statement is a conditional}
casebal: integer; {add one if tease, subtract one if tend }

§17 WEBmeter PASCAL COUNTING STRATEGY 67

17. Pascal Counting Strategy. This counting strategy is adapted from S. D. Conte, H. E. Dunsmore,
and V. Y. Shen, Software Engineering Metrics and Models. Menlo Park, CA: Benjamin/Cummings, 1986,
pp. 38-41.

1. All of the program code including statement parts, program heading, and declaration parts should be
considered.

2. Variables, constants (including the standard constants FALSE, TRUE, and MAXINT), user-defined
types, literals, file names, and the reserved word NIL are counted as operands. All operands are counted
as if they were global in scope. In other words, local variables with the same name in different procedures
are counted as multiple occurrences of the same operand.

3. The following entities are always counted as single operators (* is not differentiated between set and
arithmetic use):

* I DIV MOD < <=
<> >= > ·- ' NOT AND OR IN PACKED TO DOWNTO
INTEGER REAL TEXT CHAR LABEL PROGRAM FUNCTION
FORWARD READ READLN WRITE WRITELN
PROCEDURE OTHERWISE EXTERNAL

4. The following multiple entities are counted as single operators.

BEGIN END
IF THEN
SET OF

CASE END
IF THEN ELSE
FILE OF

WHILE DO
FORDO
RECORD END

BOOLEAN

REPEAT UNTIL
WITH DO
ARRAY OF

5. The following entities or pairs of entities are counted as single operators subject to the accompanying
conditions:

V AR is counted as an operator in parameter lists and is not counted as a section label
= is counted as either a relational operator in expressions or a definition operator in

non-executable sections of the program.
+ is counted as either a unary+ or binary+ depending on its function. The binary

is not differentiated between arithmetic and set usage.
is counted as either a record component selector symbol or a program terminator
depending on its function.
is a definition operator in the VAR section and parameter lists. It is a separation
operator following CASE or GOTO labels.

() is counted as either an argument list operator or expression operator depending on
the function.

[] is counted as either a subscript operator or set operator depending on
the function.

6. Procedure and function calls are counted as operators. The subprogram name following FUNCTION
or PROCEDURE is not counted, though it actually is the operand for the FUNCTION or PROCE
DURE operator.

7. GOTO statements (i.e., GOTO and an accompanying label) are counted as the operator GOTO and
the operand label.

68 PASCAL COUNTING STRATEGY WEBmeter § 17

8. Declarations of labels are not enumerated - all tokens after the LABEL operator through the next
semicolon (inclusive) are ignored.

9. The following are syntactic devices and are not counted:
CONST TYPE

10. not applicable.

11. McCabe's vg metric is counted as follows:

increment on keywords:

WHILE
AND
PROGRAM

FOR
OR

V AR (for variable sections)

REPEAT
PROCEDURE

IF
FUNCTION

AND and OR, include loops/branches controlled by boolean variables. Conditionals could not be counted
directly as boolean functions and variables would not be counted correctly.

also count CASE labels by :

incrementing on:

colons in the executable part of the program but outside a WRITE(LN) parameter list.

commas in a CASE label list.

decrementing on:

LABEL keyword.

commas in a LABEL statement.

The decrement is necessary to remove the GOTO labels, if any.

§18 WEBmeter WEB COUNTING STRATEGY 69

18. WEB Counting Strategy. The following WEB entities are counted and output to the met-file.

1. lol- lines of limbo : the number of lines of text before the first starred module is found.

2. lod - lines of documentation : the number of lines of 'IEJXtext in the code sections of the program.

3. average lines of documentation : the average number of lines of 'lEX text in the code sections per code
section.

4. 1om- lines of macros : the number of lines of macro and format definitions in the code sections of the
program.

5. loc - lines of code : the number of lines of program code in the code sections of the program. This
includes in-line comments. Blank lines are not counted.

5. average lines of code : the average number of lines of program code in the code sections of t)le program
which have code. Note that this may be different from the total number of code sections in the program
used to compute lod_cs.

6. The count of each WEB token used in the program is output to metfile. (See procedure sym..string or
function web_token for the complete list.)

7. Macro calls are counted as operators. The identifier name following the macro is not counted.

70 DATA STRUCTURES WEBmeter §19

19. Data Structures. Tokens to be scanned will include four categories.
1. Pascal identifiers and numbers;
2. Pascal reserved words, predefined data types, standard Pascal functions and procedures, arithmetic, set

and relational operators.
3. Special tokens unique to WEB and Pascal; and
4. WEB commands.

Blank lines will be skipped.
Each token is declared in the enumerated type token. An array count will hold the number of occurrences

of each token. It may pe more convenient to split up the various token classes (operand, operator) later, for
more detailed metric calculations.

In addition, there is an array pword which holds all the Pascal reserved words, etc (see item 2 above).
This will be used to check if strings are actually reserved words or not. A parallel array psymbol holds the
actual token name for each string.

(Global types of the program 19) =
token= (tnul, tident, tnum,
tand, tarray, tbegin, tboolean, tease, tchar, tconst, tdiv, tdo, tdownto, telse, tend, teof, teoln, tezternal, tfile,

tfor, tforward, tfunction, tgoto, tif, tin, tinteger, tlabel, tmod, tnot, tof, tor, totherwise, tpacked,
tprocedure, tprogram, tread, treadln, treal, trecord, trepeat, tset, ttezt, tthen, tto, ttype, tuntil, tvar,
twhile, twith, twrite, twriteln,

tplus, tminus, ttimes, tslash, tlparen, trparen, teql, tcomma, tperiod, tlt, tgt, tsemi, tlbrack, trbrack,
tbecomes, tdotdot, tneq, tleq, tgeq, tcaret, tcolon,

tassumpt, tstring, tpreproc, tcomment, targument, tdbLeql, tone_eql, tcall, tis, tabbrev,
tat, tnew_ mod, tstar _mod, tdef, tformat, tbegin_code, tmod_name, tend_ web, toctal, thez, tcheck_sum,

tbegin_comment, tend_comment, tjoin, troman, ttypewriter, tuser _def, ttez_string, tverbatim,
tforce_line, tunderline, tno_underline, tthin_space, tline_break, topt_line_break, tbig_line_break,
tno_line_break, tpseudo_semi, tz, ty, tz);

alpha= array [1 .. len_alpha] of char;
alphat = array [1 .. num_rw] of alpha;
to kent = array [1 .. num_rw] of token;
symbolt = array [token] of integer;

See also sections 61 and 78.

This code is used in section 2.

20. (Global variables of the program 13) +=
pword: alp hat; { strings of reserved words }
psymbol: tokent; {tokens of reserved words}
count: symbolt; {total num. of occurrences of each token}

21. (Global constants of the program 21) =
num_rw = 48; { num. of Pascal reserved words}
len_alpha = 10; {max. length of an identifier}

See also sections 63 and 79.

This code is used in section 2.

§22 WEBmeter DATA STRUCTURES 71

22. Each pascal reserved word will be a token itself. They will be stored in an array pword. The token
name corresponding to each reserved word will be located in the array psymbol.

(Initialize arrays 22) =
pword[1] - • ANDuuuuuuu ·; pword[2] - • ARRAYuuuuu ·; pword[3] - ·BEGINuuuuu ·;
pword[4]- ·BOOLEANuuu·; pword[5]- ·cASEuuuuuu·; pword[6]- ·cBARuuuuuu·;
pword[7]- ·coNSTuuuuu·; pword[8]- ·DIVuuuuuuu·; pword[9]- ·Douuuuuuuu·;
pword[10]- ·DOWNTOuuuu·; pword[ll]- ·ELSEuuuuuu·; pword[12]- ·ENDuuuuuuu·;
pword[13]- ·EoFuuuuuuu·; pword[14]- ·EOLlluuuuuu·; pword[15]- ·EXTERNALuu·;
pword[16]- ·FILEuuuuuu·; pword[17]- ·FoRuuuuuuu·; pword[18]- ·FoRWARDuuu·;
pword[19]- ·ruNCTIOlluu·; pword[20]- ·aoTOuuuuuu·; pword[21]- ·rFuuuuuuuu·;
pword[22]- ·rNuuuuuuuu·; pword[23]- ·rNTEGERuuu·; pword[24]- ·uBELuuuuu·;
pword[25]- ·MODuuuuuuu·; pword[26]- ·NOTuuuuuuu·; pword[27]- ·oFuuuuuuuu·;
pword [28] - ·oRuuuuuuuu ·; pword [29] - ·oTBERWISEu ·; pword [30] - ·pACKEDuuuu ·;
pword [31] - ·PROCEDUREu ·; pword [32] - ·PROGRAMuuu ·; pword [33] - ·READuuuuuu ·;
pword [34] - ·READLlluuuu ·; pword [35] - ·REALuuuuuu ·; pword [36] - ·RECORDuuuu ·;
pword[37]- ·REPEATuuuu·; pword[38]- ·sETuuuuuuu·; pword[39]- ·rEXTuuuuuu·;
pword [40] - ·rBENuuuuuu ·; pword [41] - ·rouuuuuuuu ·; pword [42] - ·rYPEuuuuuu ·;
pword[43]- ·uNTILuuuuu·; pword[44]- ·vARuuuuuuu·; pword[45]- ·wBILEuuuuu·;
pword[46]- ·wrTBuuuuuu·; pword[47]- ·wRITEuuuuu·; pword[48]- ·wRITELNuuu·;
psymbol[1]- tand; psymbol[2]- tarray; psymbol[3]- tbegin; psymbol[4]- tboolean;
psymbol[5]- tease; psymbol[6] - tchar; psymbol[7] - tconst; psymbol[8] - tdiv; psymbol[9] - tdo;
psymbol[10] - tdownto; psymbol[ll] - telse; psymbol[12] - tend; psymbol[13] - teof;
psymbol[14] - teoln; psymbol[15] - tezternal; psymbol[16] - tfile; psymbol[17] - tfor;
psymbol[18]- tforward; psymbol[19] - tfunction; psymbol[20] - tgoto; psymbol[21] - tif;
psymbol[22] -tin; psymbol[23] - tinteger; psymbol[24] - tlabel; psymbol[25] - tmod;
psymbol[26] - tnot; psymbol[27] - tof; psymbol[28] -tor; psymbol[29] - totherwise;
psymbol[30] - tpacked; psymbol[31] - tprocedure; psymbol[32] - tprogram; psymbol[33]- tread;
psymbol[34] - treadln; psymbol[35] - treal; psymbol[36] - trecord; psymbol[37] - trepeat;
psymbol[38] - tset; psymbol[39] - ttezt; psymbol[40] - tthen; psymbol[41] - tto;
psymbol[42] - ttype; psymbol[43] - tuntil; psymbol[44] - tvar; psymbol[45] - twhile;
psymbol[46] - twith; psymbol[47] - twrite; psymbol[48] - twriteln;
for sym - tnul to tpseudo_semi do count [sym] - 0;

This code is used in section 3.

72 LEXICAL ANALYSIS WEBmeter §23

23. Lexical Analysis. Lexical Analysis will be handled depending on which part of a WEB program we
are currently in. The very first part of a WEB program includes several lines of "limbo" which may include 'lEX
commands, or general comments about the program which will not appear in the WEAVEd output. The rest
of the program is made of WEB modules. A WEB module is recognized by the tokens tstar_mod or tnew_mod.
Each module may have up to three parts as follows (any may be empty, but they must appear in this order):
a 'lEX part, explaining what the module does; a definition part, defining the macros to be used in the Pascal
code; and finally, the Pascal section, which contains the Pascal code.

Thus, there are four plus two extra states to be handled here. The tokens which cause the state to change
to these states are listed below.
1. Limbo section - start state
2. 'lEX section- tnew_mod, tstar_mod
3. Definition section - tdef, tdef
4. Pascal section- tbegin_code, tmod..name
5. Finished - end of input - no more tokens
6. Parsing- any valid token recognized by Pascal

The following macros will be used to identify different states.

define same_state = 0
define limbo..state = 1
define tez_state = 2
define def_state = 3
define code..state = 4
define fin_state = 5
define parse_state = 6

24. Basically, when in states limbo, tex, or def, the input will be scanned, counting all WEB commands and
other tokens of interest (by incrementing the appropriate symbols in count), until a state change occurs.
When in the code state, the input will be scanned until a token is found. If the token is of interest to the
parser, the state will change to the parse state, with sym holding the token; otherwise the state will stay
the same. Either way, all tokens are counted (with some exceptions documented fully).

In addition to recognizing tokens, the lexical analyzer will keep primitive counts of the lines of limbo, lines
of documentation, number of macros, and lines of code.

(Perform lexical analysis 24 } =
state - limbo..state;
while state "# fin-state do

begin case state of
limbo_state: nezt - proc_limbo;
tez_state: nezt - proc_tez;
def_state: nezt - proc_def;
code..state: nezt - proc_code;
parse_state: nezt - parser;
othercases do_nothing
end; (Adjust counts of lol, lod, lom, loc 37};
prev_state - state; state - nezt;
debug write(·(",prev_state: 1,state: 1, •)u•);
gubed
end;

This code is used in section 3.

§25 WEBmeter LEXICAL ANALYSIS 73

25. These algorithms are adapted from Knuth's WEAVE program, and Niklaus Wirth's book titled Algo
rithms + Data Strv.ctures = Programs.

(Procedures for lexical analysis 25} =
(Function procJimbo return nezt 27};
(Function proc_tex return nezt 28 };

(Function proc_def return nezt 29 };

(Function proc_code return nezt 30 };

See also section 26.

This code is used in section 2.

26. The parser is called in the lexical analysis phase. See major section on Parsing.

(Procedures for lexical analysis 25} +=
(Utilities of parser 77}
(Function parser return nezt 67};

27. Function procJimbo skips through the input file counting the number of lines, until a new module is
found (either token tnew_mod or tstar_mod is recognized). It will return tez..state.

(Function procJimbo return nezt 27} = ·
function proc_limbo: integer;

var ret..state: integer;
begin ret..state +- same_state;
while (ret..state = same_state) do

begin (if end of buffer, get new buffer 31 } ;

if end_of_input then ret..state +- fin_state
else begin sym +- tnul; buffer [lbuf + 1] +- • Gl.;

while (buffer [cbuf] =I ·GI•) do incr(cbuf);
if (cbuf $ lbuf) then

begin cbuf +- cbuf + 2; cc +- buffer[cbuf -1]; sym +- web_token(cc); incr(count[sym]);
debug outsym (sym);
gubed
if sym E [tnew_mod, tstar_mod] then ret_state +- tez_state;
end;

end;
end;

proc_limbo +- ret_state;
end

This code is used in section 25.

74 LEXICAL ANALYSIS WEBmeter §28

28. Function proc_tex skips through the 'lEX text, counting each WEB command and Pascal assumption
(delimited by two tassumpt symbols). State change will be flagged when recognizing one of the following
tokens: tnew_mod, tstar_mod, tdef, tformat, tbegin_code, and tmod_name.
(Function proc_tex return nezt 28) ::
function proc_tez: integer;

var ret..state, bal: integer;
begin ret..state +- same_state;
while (ret..state = same_state) do

begin (if end of buffer, get new buffer 31) ;

if end_of_input then ret..state +- fin-state
else begin sym +- tnu.l; buffer [lbuf + 1] +- • C ·;

repeat cc +- buffer[cbuf]; incr(cbuf);
until (cc = ·c·) V (cc = ·1 •);
if (cc = ·1 •) then (Process an assumption 38)

else if (cbu.f :$ lbu.f) then (Get a web command 39);

end;
if sym :f. tnu.l then

begin incr(cou.nt[sym]);
debug ou.tsym (sym);
gubed
end;

end;
proc_tez +- ret_state;
end {function }

Thls code is used in section 25.

§29 WEBmeter LEXICAL ANALYSIS 75

29. Function proc_def basically parses part of the macro or format statement and then passes control to
the code state. The macro name is placed in the user array, but is not counted as an operator (the same
policy as for function and procedure names). Tokens are counted up to and including the'=' or'==', when
control passes to the code_state which processes the following Pascal code or constant.

Format statements are only counted for their tokens tident, tdbl_eql, and tident. The identifiers are not
saved or counted as operators or operands because they are used by WEAVE for formatting.

The syntax of macros and format statements follow.
1. Numeric macro : identifier = constant
2. Simple macro: identifier== Pascal code
3. Parametric macro : identifier (argument) == Pascal code
4. Format definition: identifier == identifier

(Function proc_def return next 29) =
function proc_def: integer;

var ret_state,j, k: integer;
begin ret_state .,_ same_state;
while (ret_state = same_state) do

begin (if end of buffer, get new buffer 31) ;

if end_of_input then ret_state .,_ fin_state
else begin buffer [lbuf + 1) .,_ • e~·; (Skip blanks in buffer 42) ;

(Get an identifier 48);

if sym = tdef then
begin sym .,_ tident; incr (count [sym]);
debug outsym(sym);
gubed(Skip blanks in buffer 42);

(Save user-defined name in user 74);

if cc = • = • then
if buffer [cbu!) = · = • then (Process simple macro 43)

else (Process numeric macro 44)

else if cc = • (• then (Process parametric macro 45);

end
else if sym = tformat then (Process format definition 46);

end;
end;

proc_def .,_ reLstate;
end

This code is used in section 25.

76 LEXICAL ANALYSIS WEBmeter §30

30. Function proc_code sets sym to the first token it finds. If it is an insignificant WEB command (i.e.,
if it doesn't have an effect on the Pascal code) or a Pascal comment, the token is counted but not sent to
the parser. Otherwise, all tokens are passed to the parser after being counted, unless it is a WEB command
indicating that a different state change is to be made. Exceptions are :
1. The syntactic device tvar is not counted, and is left to the parser to deal with because it is counted only

if in a parameter list;
2. tconst and ttype are not counted as they are also syntactic devices;
3. the following tokens are the second half of a pair of reserved words counted as one operator, and thus will

not be counted (ever): tof, tend, tdo, tthen, tuntil, trparen, and trbrack.

(Function proc..code return nezt 30) =
function proc_code: integer;

var ret_state, k, i,j: integer;
begin ret..JJtate - same_state;
while ret..JJtate = same_state do

begin (if end of buffer, get new buffer 31) ;

if end_of_input then ret_state - fin_state
else begin sym - tnul; buffer [lbuf + 1] - • ~ ·; (Skip blanks in buffer 42);

{assume return state unless otherwise set}
ret..JJtate - parse_state;
if cc E ['A' .. ·z·, ·a· .. •z•] then

begin (Get an identifier 48);

(Check if a reserved word 49) ;

end
else if cc E [·o· .. ·g·] then (Get a number so)

else if (cc = ·~')A (cbuf ::; lbuf) then (Get a web command 39)
else if (cc = · · · ') then (Get a constant string 51)

else if (cc = ·" ·) then (Get a preprocessed string 52)

else if (cc = · { ·) then
begin (Get a pascal comment 53);
ret_state - same_state;
end

else if (cc = '# ') then (Get a macro argument 54)

else if (cbuf ::; lbuf + 1) then (Get an operator 55) ; { if}
if -,(sym E [tvar, tconst, ttype, tof, tend, tdo, tthen, tuntil, trparen, trbrack]) then incr(count[sym]);
debug outsym(sym);
gubed
end;

end;
proc_code - ret_state;
end

This code is used in section 25.

§31 WEBmeter LEXICAL ANALYSIS 77

31. This section of code returns a new buffer if the last character in the buffer has been read, by calling
procedure get_line. The line or number counts lol, lod, Zoe, lom are incremented accordingly.

(if end of buffer, get new buffer 31) =
if (ebuf > lbuf) then

begin get_line;
case state of
limbo..state: begin iner(lol); (Output lol 32);

end;
te:utate: begin iner(lod); (Output lod 33);

end;
def-state: begin iner(lom); (Output 1om 34);

end;
eode..state: begin iner(loe); (Output loc 35);

end;
otherwise do_nothing;

end; {case}
(Output eoln 36);

end
This code is used in sections 27, 28, 29, 30, 40, and 41.

32. Print to the sceen if debug is on.

(Output lol 32) =
debug write(·ul=·,Zol: 1, ·u·);
gubed

This code is used in sections 31 and 37.

33. (Output lod 33) =
debug write (• uD= ·, lod : 1, • u •);
gubed

This code is used in sections 31, 37, 37, 37, 37, and 37.

34. (Output 1om 34) =
debug write(·uM=·, lom: 1, ·u·);
gubed

This code is used in sections 31, 37, and 37.

35. (Output loc 35) =
debug write (• uC= ·,Zoe : 1, • u •);
gubed

This code is used in sections 31, 37, 37, and 37.

36. (Output eoln 36) =
debug writeln;
gubed

This code is used in section 31.

78 LEXICAL ANALYSIS WEBmeter §37

37. Since the ZoZ, Zod, Zom, Zoe counts are incremented in the state which reads the new buffer, we must
adjust the counts if the pending change of the state indicates that the buffer line really belongs to another
state. For example, if in eodeJtate we read a new buffer starting with the token tdef, we know that the Zoe
was incremented prematurely. To adjust the counts, we will then decrement Zoe and increment lom.
(Adjust counts of loZ, Zod, lom, Zoe 37) =

begin if state = Zimbo_state then
begin if nezt = tez_state then

begin iner(Zod); deer(loZ); (Output lol32);
(Output lod 33);
end;

end
else if state = tez_state then

begin if nezt = def_state then
begin iner(Zom); deer(Zod); (Output lod 33);
(Output 1om 34);
end

else if nezt = eode_state then
begin iner(Zoe); deer(Zod); (Output lod 33);
(Output loc 35);
end

else if nezt = fin_state then

end

begin deer(lod); (Output lod 33);
end

else if state = eode_state then

end

begin if nezt = def_state then
begin iner(Zom); deer(Zoe); (Output loc 35);
(Output 1om 34);
end

else if nezt = tez_state then
begin iner(Zod); deer(Zoe); (Output loc 35);
(Output lod 33);
end;

end;

This code is used in section 24.

§38 WEBmeter LEXICAL ANALYSIS 79

38. When using two tassumpt symbols as delimiters in a WEB program, WEAVE formats the characters in
between as if it were a Pascal identifier. Thus, it may be useful to count such occurrences as an "assumption"
of some kind. Examples: a,b,c will be counted as three assumptions; a[i,j] will be counted as one.

(Process an assumption 38} =
begin sym +- tassumpt; baZ +- 0;
repeat cc +- buffer[cbuf]; incr(cbuf);

if (cc = · , ·) A (baZ = 0) then
begin incr(count[sym]);
debug outsym(sym);
gubed
end

else if (cc = · [') then incr(baZ)
else if (cc = 'J ')then decr(baZ);

until (cc = 'I '); {second delimeter}
end

This code is used in section 28.

39. If the WEB token is tnew_mod, tstar_mod, tdef, tjormat, tbegin_code, or tmod_name, a state change will
be flagged. Otherwise the state will remain the same. If the token is tmod..name, troman, ttypewriter,
tuser_dej, ttez_string, or tverbatim, the input will be skipped until the token tend_web is found. Likewise,
if tbegin_comment is recognized, a skip to tend_comment will be made. Finally if the token tforceJine is
found, the count Zoe will be incremented.

NOTE: the count array is not explicitly incremented here.

(Get a web command 39} =
begin cc +- buffer[cbuf]; incr(cbuf); sym +- web_token(cc);
if sym E [tnew_mod, tstar_mod, tdef, tformat, tbegin_code, tmod_name] then

begin case sym of
tnew_mod, tstar_mod: ret_state +- tez_state;
tdef, tjormat: ret-state +- def_state;
tbegin..code: ret-state +- code-Btate;
tmod_name: begin (Skip text to tend.. web 40 };

if state = tez_state then ret-Btate +- code-Btate
else if state = code_state then ret-state +- parse_state;
end;

othercases do_ nothing;
end;
end

else begin ret_state +- same_state;
if sym E [troman, ttypewriter, tuser_def, ttez_string, tverbatim] then (Skip text to tend.. web 40}

else if (sym = tbegin_comment) A (prev_state :f; def_state) then (Skip text to tend..comment 41}
else if sym = tforce_line then

begin incr(Zoc);

end;
end

debug write (• uC= ·, Zoe : 1);
gubed
end;

This code is used in sections 28 and 30.

80 LEXICAL ANALYSIS WEBmeter §40

40. This section skips the input until the token tentLweb is encountered. Since this does not have to be
on the same input line, a new buffer is read when necessary. If the current token is tmod..name, we check
to see what it's purpose is: a placeholder of code or a call to a code section. If a semicolon is found after a
call to a code section, it is counted as an operator; however, a pseudo-semicolon is not counted as a Pascal
operator.

(Skip text to tend_ web 40} =
begin repeat cc- buffer[cbuf]; incr(cbuf); (if end of buffer, get new buffer 31};

if cbuf = 1 then { got a new buffer }
begin buffer[lbuf + 1]- ·o·; cc- buffer[cbuf]; incr(cbuf);
end;

until (cc = ·o·) A (buffer[cbuf] = ·>·);
cc- buffer[cbuf]; incr(cbuf); {read the> sign}
incr(count [tend_ web]);
if sym = tmod_name then

begin incr(count[sym]); cc- buffer[cbuf]; incr(cbuf);
if cc = ·= · then {a web module definition, placeholder}

sym- tis
else { a web module call }
begin sym - tcall;
if (cc = ·o·) A (buffer[cbuf] = ·; •) then {this is a psuedosemi}

begin incr (cbuf); incr (count [tpseudo_semi]);
end

else if (cc = · ; •) then { count tsemi next time around}
decr(cbuf);

end;
end;

end
This code is used in sections 39 and 39.

41. This section skips the input until the token tend..comment is encountered. Since this does not have to
be on the same input line, a new buffer is read when necessary.

NOTE: the usage of the tokens tbegin_comment, and tend_comment allows code to be "commented out"
where Pascal does not allow it (mainly because you can't nest comment symbols).

(Skip text to tencLcomment 41) =
begin repeat cc- buffer[cbuf]; incr(cbuf); (if end of buffer, get new buffer 31 };

if cbuf = 1 then { got a new buffer }
begin buffer[lbuf + 1]- ·o·; cc- buffer[cbuf]; incr(cbuf);
end;

until (cc = ·o·) A (buffer[cbuf] = •)•);
cc- buffer[cbuf]; incr(cbuf); incr(count[tend_comment]);
end

This code is used in section 39.

42. Skip blanks in buffer. The next valid character is cc.

(Skip blanks in buffer 42) =
repeat cc - buffer [cbuf]; incr (cbuf);
until (cc =/:- • u •);

This code is used in sections 29, 29, 30, 45, 45, 45, 46, and 46.

§43 WEBmeter

43. Parse '=='·
(Process simple macro 43) =

begin sym- tdbLeql; incr(count[sym]);
debug outsym (sym);
gubedcc- buffer(cbuf]; incr(cbuf); ret..state - code_state;
end

This code is used .in section 29.

44. Parse '='·
(Process numeric macro 44) =

begin sym - tone_eql; incr(count [sym]);
debug outsym(sym);
gubedret_state - code..state;
end

This code is used .in section 29.

45. Parse '(targument) =='
(Process parametric macro 45) =

begin sym - tlparen; incr(count[sym]);
debug outsym(sym);
gubed(Skip blanks in buffer 42);

if cc = '#' then
begin sym- targument; incr(count[sym]);
debug outsym(sym);
gubed (Skip blanks in buffer 42);

if cc = ·) · then
begin sym - trparen; incr (count [sym]);
debug outsym(sym);
gubed(Skip blanks in buffer 42);

if (cc = '=')A (buffer[cbuf] = '=')then
begin sym- tdbLeql; incr(count[sym]);
de bug outsym (sym);
gubedcc- buffer[cbuf]; incr(cbuf); ret-state- code..state;
end;

end;
end;

end
This code is used .in section 29.

LEXICAL ANALYSIS 81

82 LEXICAL ANALYSIS

46. Parse '== tident'.

(Process format definition 46) =
begin sym - tident; incr (count [sym]);
debug outsym (sym);
gubed(Skip blanks in buffer 42);

if (cc = ·= •) A (buffer [cbuf] = ·= •) then
begin sym- tdbleql; incr(count[sym]);
debug outsym(sym);
gubedcc- buffer[cbuf]; incr(cbu!); (Skip blanks in buffer 42);

(Get an identifier 48);

sym - tident; incr (count [sym]);
debug outsym(sym);
gubedret...date - code..state;
end;

end
This code is used in section 29.

WEBmeter §46

47. Declare a macro to set id to blanks. The parameter is the loop control variable, and is initialized to
zero.

define id_to_blanks (#) =
for # - 1 to len_alpha do id [#] - • u ·;

#-O

48. An identifier can be up to len..alpha long. Each character is set to upper case and all'-' (underscore)
characters are deleted.

(Get an identifier 48) =
begin id_to_blanks (k);
repeat if (k < len_alpha) A (cc =F • _ ·) then

begin incr(k); id[k]- ch_upper(cc);
end;

cc - buffer [cbuf]; incr (cbu!);
until -.(cc E ['A' .. ·z·, ·a· .. ·z·, ·o· .. ·g·, ·_·]);
decr(cbu!);
end

This code is used in sections 29, 30, and 46.

49. Binary search the pword array to see if id is there. If it is, set sym to its counterpart in psymbol. If
it is not there, sym is set to tident.

(Check if a reserved word 49) =
begin i - 1; j - num_rw;
repeat k- (i + j) div 2;

if id =:; pword [k] then j - k - 1;
if id ~ pword[k] then i- k + 1;

until (i > j) V (pword[k] = id);
if (pword[k] = id) then sym - psymbol[k]
else sym - tidt;nt;
end

This code is used in section 30.

§50 WEBmeter LEXICAL ANALYSIS 83

50, This section gets a number, and copies the string into the global variable num. It does not distinguish
between integer or reals. If sign = true (set in the parser), the sign will be copied from id[1]. Since we are
assuming that this is valid Pascal code, we simply copy everything until a non-valid character (it is not a
digit, decimal point, or exponent) is found. Since a decimal point also appears in the token tdotdot, we check
for this occurrence and backtrack if this is recognized. The maximum number of digits allowed is len...alpha.

(Get a number 50) =
begin sym +- tnum;
fork+- 1 to len_alpha do num[k] +- ·u·;
k- 0;
if sign then

begin incr(k);
if prev_sym = tplus then num[k] +- '+'
else num[k] +- ·-·;
end;

repeat if (cc = ·. ') /\ (buffer[cbuf] = ·.')then {this is tdotdot, stop}
cc +- ·u·

else begin if (k ~ len_alpha - 1) then
begin incr(k); num[k] +- cc;
end;

cc +- buffer[cbuf]; incr(cbuf);
end;

until -.(cc E [·o· .. ·9·, ·. ·, 'E']);
decr(cbuf); cc +- buffer[cbuf -1];
end

This code is used in section 30.

51. This section skips the input until a close single quote is found. It is assumed that it must be found in
the same buffer. The string is copied into id.

(Get a constant string 51) =
begin sym +- tstring; id_to_blanks(k);
repeat if k < len_alpha - 1 then

begin incr(k); id[k] +- cc;
end;

cc +- buffer[cbuf]; incr(cbuf);
until (cc = · · · ');
incr(k); id[k] +- cc;
end

This code is used in section 30.

52. This section skips the input until a close double quote is found. It is assumed that it must be found
in the same buffer. This is a WEB preprocessed string. It is copied into id.

(Get a preprocessed string 52) =
begin sym +- tpreproc; id_to_blanks(k);
repeat if k < len-alpha - 1 then

begin incr(k); id[k] +- cc;
end;

cc +- buffer [cbuf]; incr(cbuf);
until (cc = ... ');
incr(k); id[k] +- cc;
end

This code is used in section 30.

84 LEXICAL ANALYSIS WEBmeter §53

53. This section skips the input until a close brace is found. It is assumed it must be found in the same
buffer. If there are nested braces, increment and decrement until balance is zero. Note: this is an in-line
comment.

(Get a pascal comment 53} =
begin sym - tcomment; bracebal - 1;
repeat cc - buffer [cbuf]; incr(cbuf);

if (cc = · { ·) then incr (bracebal)
else if (cc = ·} ·) then deer (brace bal);

until (cc = ·} •) 1\ (bracebal = 0);
end

This code is used in section 30.

54. This section simply sets the current token to targument.

(Get a macro argument 54} =
begin sym - targument;
end

This code is used in section 30.

55. Check if the token is a valid Pascal operator.

(Get an operator 55 } =
begin ease cc of
• + ·: sym - tplus;
·- ·: sym - tminus;
·•·: sym- ttimes;
·j·: sym- tslash;
• (·: sym - tlparen;
•) ·: sym - trparen;
·= ·: sym - teql;
·, ·: sym - tcomma;
·; ·: sym - tsemi;
• [•: sym - tlbrack;
•J ·: sym - trbrack;
•• ·: sym- tcaret;
•• ·: (Return ' .. ' or'.' 56};
·<·:(Return< or<> or<= 57};
·> ·: (Return > or >= 58};
·: ·: (Return ':' or ':=' 59};
othereases debug writeln (cc);

gubed
end;
end

This code is used in section 30.

56. Check if the token is tdotdot or tperiod.

(Return' .. ' or'.' 56}=
begin if (buffer[cbuf) = ·. •) then

begin sym- tdotdot; cc- buffer[cbuf]; incr(cbuf);
end

else sym - tperiod;
end

This code is used in section 55.

§57 WEBmeter

57. Check if the token is tlt, tneq, or tleq.

(Return < or<> or <= 57)=
begin if (buffer [cbuf] = · = •) then

begin sym +- tleq; cc +- buffer[cbuf]; incr(cbuf);
end

else if (buffer[cbuf] = ·>•) then
begin sym +- tneq; cc +- buffer[cbuf]; incr(cbuf);
end

else sym +- tlt;
end

This code is used in section 55.

58. Check if the token is tgt or tgeq.

(Return> or>= 58)=
begin if (buffer[cbuf] = ·=·)then

begin sym +- tgeq; cc +- buffer[cbuf]; incr(cbuf);
end

else sym +- tgt;
end

This code is used in section 55.

59. Check if the token is tbecomes or tcolon.

(Return ':' or ':=' 59) =
begin if (buffer[cbuf] = ·=·)then

begin sym +- tbecomes; cc +- buffer[cbuf]; incr(cbuf);
end

else sym +- tcolon;
end

This code is used in section 55.

LEXICAL ANALYSIS 85

86 UTILITIES FOR LEXICAL ANALYSIS WEBmetex §60

60. Utilities for Lexical Analysis. Before defining all the utilities used in the previous code sections,
let's define and initialize the many global variables we have been using.

(Utilities for lexical analysis 60} =
(Function web_token return token 65 };

(Function ch..upper return char 66 };

This code is used in section 2. '

61. (Global types Of the program 19} +=
buffert = array [1 .. len_line] of char;
file_name = packed array [1 .. 'len_name] of char;

62. (Global variables of the program 13} +=
web_file, met_file: tezt;
in-file, out_file: file_ name;
buffer: buffert; {buffered line of input file}
end_of_input: boolean; {true if eof }
cbuf: integer; {current character to read from buffer}
lbuf: integer; { num of characters in current buffer }
cc: char; {last character read from buffer}
sym: token; {last token recognized}
id: alpha; {last identifier read}
num: alpha; {last number read- a string}
lol: integer; {lines of limbo}
loc: integer; {lines of code metric}
lod: integer; {lines of documentation metric}
lom: integer; {number of macros}
i: integer; {loop variable}
s: alpha; {temporary variable}
1: token; { forloop counter}
state: integer; {current state of lexical analysis}
prev_state: integer; { previous state }
nezt: integer; {next state to go to}
bracebal: integer; {used to check for nested braces}

63. (Global constants of the program 21} +=
len_name = 25; { max length of a file name }
len_line = 81; {max length of input buffer}

64. (Initialize global variables 64} =
vg +- 0;
fori +- 1 to len_line do buffer [i] +- • u ·;
end_of_input +-false; lbuf +- 0; cbuf +- 1; {set cbuf > lbuf}
cc +- ·u·; sym +- tnul; id_to_blanks(i);
fori +- 1 to len_alpha do num [a1 +- • u ·;
loc +- 0; lod +- 0; lol +- 0; lom +- 0; bracebal +- 0; state +- same_state; nezt +- same_state;
prev_state +- same_state; (Open input and output files 85}

See also section 81.

This code is used in section 3.

§65 WEBmeter UTILITIES FOR LEXICAL ANALYSIS 87

65. Function web_token will return the WEB command being recognized. It is assumed an '@' has just been
encountered, prior to the call.

(Function web_token return token 65) =
function web_ token (d : char): token;

begin ease d of
·a·: web_token -tat;
·u·: web_token- tnew_mod;
·• ·: web_token - tstar_mod;
• d ·, ·n ·: web_ token - tdef;
•t•, ·F·: web_token- tformat;
·p·, ·p·: web_token- tbegin_code;
·<·: web_token- tmod..name;
·>·: web_token- tend_web;
• • • ·: web_token - toctal;
... ·: web_token - thez;
·$·: web_token- tcheck_sum;
·{·: web_token- tbegin_comment;
·}·: web_token - tend_comment;
•t·: web_token- tjoin;
·~ ·: web_token - troman;
•• ·: web_token - ttypewriter;
·: ·: web_token - tuser_def;
•t ·: web_token - ttez_string;
·= ·: web_token - tverbatim;
·\ ·: web_token - tforce_line;
·! ·: web_token - tunderline;
·? ·: web_token - tno_underline;
·, ·: web_token - tthin_space;
·;·: web_token - tline_break;
·1 ·: web_token - topUine_break;
·#·: web_token - tbig_line_break;
• + ·: web_ token - tno_line_break;
·; ·: web_token - tpseudo_semi;
othereases begin web_token - tnul;

end;
end;
end

This code is used in section 60.

66. This function converts a lower case alphabetic character to upper case.
(Function ch..upper return char 66) =
function ch_upper(:c : char): char;

begin if :c E [·a· .. •z•] then ch_upper- chr(ord(:c)- (ord("a•)- ord(•A•)))
else ch_upper - :c;
end

This code is used in section 60.

88 PARSING WEBmeter §67

67. Parsing. In the lexical analysis phase, all predefined Pascal tokens which are defined as operators
are counted - except for user-defined program, sub-program, and macro names, and counting of tvar in
sub-program parameters. They will be handled here in the parsing phase. We will also handle all items
defined as an Halstead operand. That is, a token determined to be either a tident, tnum, tstring, or tpreproc.

(Function parser return nezt 67) =
function parser: integer;

var i,j: integer; id2: alpha; found: boolean;
begin (Set appropriate flag conditions 68)

if islabel then {don't count anything until islabel =false }
begin if "''(sym e [tident' tnum' tstring' tpreproc' tnul]) then deer (count [sym])
end

else if (prev_sym E [tprogram, t.function,tprocedure]) A (sym = tident) then
begin (Save user-defined> name in user 74);

(If id in opd, copy over count 75);
end

else if isparam A (sym = tvar) then
begin incr(count[tvar]);
debug outsym (tvar);
gubed
end

else if (sym = tident) then
begin (Search for id in user 1 set found 76) ;

if found then subpgm +- i
else begin subpgm +- 0; (Count operand in opd,opdcnt 11);

end;
end

else if (sym = tbecomes) A (prev_sym = tident) A (subpgm > 0) then
begin { assignment to function or macro name, count as operand to tbecomes}
deer(usercnt [subpgm]);
debug write (• u* • 1 user [subpgm], • u • 1 usercnt [subpgm] : 1, '*u ');
gubedsubpgm +- 0; (Count operand in opd,opdcnt 11);

end
else if (sym e [tstring, tpreproc]) then (Count operand in opd,opdcnt 11)

else if (prev_sym e [ttimes, tslash, tlparen, teql, tcomma, tlt, tgt, tlbrack, tbecomes, tdotdot,
tneq 1 tleq, tgeq, tof 1 tcolon, tone_eql]) A (sym E [tplus 1 tminus]) then
{constant or simple type}

sign+- true
else if (sym = tnum) then

begin sign +-false; (Copy id to id2 1 num to id 69);

(Count operand in opd,opdcnt 71);

(Copy id2 back to id 10);
end

else if (sym = telse) then {don't count as an if stmt}
deer(count [tif]); {adjust vg }

(Update cyclomatic complexity 15);

if (sym "::fo tnul) A ...,(sym E [tassumpt .. tz]) then prev_sym +- sym;
if (sym E [targument, tone_eql]) then prev_sym +- sym;
parser +- code..Btate;
end

This code is used in section 26.

§68 WEBmeter

68. (Set appropriate fiag conditions 68} =
if prev_sym = tnul then prev_sym - sym; {first valid }
if sym = tlparen then

begin isparam -true; incr(parenbal);
end

else if sym = trparen then
begin isparam- false; decr(parenbal);
end

else if sym = tlabel then is label - true;
if islabel A (prev_sym = tsemi) then islabel -false;

This code is used in section 67.

PARSING 89

69. Set id2 - id and id - num, so can use the same code to place the number into the opd array.
(Copy id to id2, num to id 69} =

for i - 1 to len_alpha do
begin id2[i]- id[i]; id[i]- num[i];
end

This code is used in section 67.

70. Restore the value of the last identifier read.

(Copy id2 back to id 10} =
fori- 1 to len_alpha do id[i] - id2 [i]

This code is used in section 67.

71. If the token is tident, tstring, tpreproc, or tnum, then it is an operand. We will insert the operand id
into the table opd if not already there, and increment the count in opdcnt. The contents of opd will be in
the order that the operands are recognized in the input program. Thus searching will be sequential. Variable
numopd (Halstead's 112) will hold the number of elements in the array opd. The sum of all the counts of
opdcnt is the total number of operands in the program (Halstead's N2).
(Count operand in opd,opdcnt 11} =

begin (Search for id in opd, set found 12 } ;
if -.found then (Add id to opd 73 };

end
This code is used in sections 67, 67, 67, and 67.

72. Sequentially search the opd table'for id. Iffound, increment count in parallel array opdcnt.

(Search for id in opd, set found 72} =
i - 1; found -false;
while (i :5 numopd) A (-.found) do

begin if comp_opd (i) then
begin found- true; incr(opdcnt[i]);
debug write(·u·,id, ·-·,opdcnt[i]: 1, ·u·);
gubed
end

else incr (i);
end

This code is u8ed in section 71.

90 PARSING

73. Add id to the end of opd if it is not full yet, and increment count in opdcnt.
Declare a macro to copy contents of id to opd[#].

define copy_opd(#) =
for j - 1 to len_alpha do opd [#, j] - id [.i]

(Add id to opd 73) =
if (numopd < mazopd) then

begin incr (numopd); copy_opd (numopd); opdcnt [numopd] - 1;
debug write(" u ·, id, ·- ·, opdcnt[numopd] : 1, • u •);
gubed
end

else opdfull - true
This code is used in section 71.

WEBmeter §73

74. We must keep user-defined names in a separate table user because they are counted as operators.
Increment the count in usercnt if prev_sym = tprogram, but not if it is tprocedure or tfunction.

Declare a macro to copy contents of id to user[#].

define copy_user(#) =
for j - 1 to len_alpha do user[#,j] - id[.i]

(Save user-defined name in user 74) =
begin if (numuser < mazuser) then

begin incr (numuser); copy_ user (numuser);
if prev_sym = tprogram then usercnt [numuser] - 1
else usercnt [numuser] - 0;
debug write(" u ·, id, ·- ·, usercnt [numuser] : 1, • u •);
gubed
end

else userfull - true ;
end

This code is used in sections 29 and 67.

75. If id is found in opd and the current token is tprocedure or tfunction, then the procedure or function
must have been called before it was declared (not allowed for macros). We need to remove it from the opd
array and copy the count over to usercnt.

(If id in opd, copy over count 75) =
i - 1; found -false;
while (i :5 numopd) A (-,found) do

begin if comp_opd (i) then
begin found- true; usercnt[numuser]- usercnt[numuser] + opdcnt[i]; opdcnt[i]- 0;
end

else incr (i);
end

This code is used in section 67.

§76 WEBmeter PARSING 91

76. Before we count tident token as an operand, we must first make sure it is not an operator (user-defined
subprogram or macro name). Set found= true and increment usercnt if id is found in user.

(Search for id in user, set found 76} =
begin it- 1; found t- false;
while (i ~ numuser) A (-.found) do

begin if comp.user(i) then
begin found t- true; incr (usercnt [i]);
debug write('u',id, ·-·,usercnt[i]: 1, 'u');
gubed
end

else incr(i);
end;

end
This code is used in section 67.

92 UTILITIES FOR PARSER WEBmeter §77

77. Utilities for Parser. Before defining the utilities functions of the parser, let's define and intialize
the various global variables we are using.

(Utilities of parser 77) =
(Function comp_opd return equal 82);

(Function comp_user return equal 83);

This code is used in section 26.

78. (Global types of the program 19) +=
opdta = array [1 .. mazopd] of alpha;
opdti = array [1 .. mazopd] of integer;
userta = array [1 .. mazuser] of alpha;
userti = array [1 .. mazuser] of integer;

79. (Global constants of the program 21) +=
mazopd = 600; {maximum number of operands that can be handled}
mazuser = 150; {maximum number of user-defined subprograms and macros}

80. (Global variables of the program 13) +=
user: userta; {array of user-defined subprogram names}
usercnt: userti; {array of counts corresponding to user}
numuser: integer; {current number of user-defined subprograms}
userfull: boolean; {tried to add too many elements to user}
opd: opdta; { array of operands }
opdcnt: opdti; {array of counts corresponding to opd}
numopd: integer; {current number of operands}
opdfull: boolean; {tried to add to many elements to opd}
prev_sym: token ; { previous sym recognized }
isparam: boolean; {in parameter list}
parenbal: integer; {add one if tlparen, subtract one if trparen }
islabel: boolean; {in a label stmt}
sign: boolean; {the tplus or tminus is a sign, not an operator}
subpgm: integer; {save position just accessed in user}

81. Now, let's initialize those variables!

(Initialize global variables 64) +=
numuser - 0; eta2 - 0; userfull- false; opdfull- false; prev_sym - tnul; isparam- false;
subpgm- 0; sign -false; islabel- false; numopd - 0;

82. This function takes as a parameter the element number of array opd to be compared with id. The
function will return troe if they are equal.

(Function comp_opd return equal 82) =
function comp_opd(i: integer): boolean;

var j: integer; stop: boolean;
begin stop- false; j - 1;
while (j :$ len_alpha) A -.stop do

if (opd[i,j] ¥- id[j]) then stop- troe
else incr(j);

if -.stop then comp_opd - true
else comp_opd - false;
end

This code is used in section 77.

§83 WEBmeter UTILITIES FOR PARSER 93

83. This function takes as a parameter the element number of array user to be compared with id. The
function will return true if they are equal.

(Function comp_user return equal 83) =
function comp_user(i: integer): boolean;

var j: integer; stop: boolean;
begin stop -false; j - 1;
while (j :5 len_alpha) 1\ -,stop do

if (user[i,j] :/< id[j]) then stop- true
else incr(j);

if -,stop then comp_user - true
else comp_user - false;
end

This code is used in section 77.

94 INPUT AND OUTPUT

84. Input and Output.

(Utilities for input and output 84) =
(Procedure getJine; set end..of_input 86);

(Procedure syllLString; return alpha 87);

(Procedure outsym; print token 88);

(Procedure outcounts; print to met-flle 89);

This code is used in section 2,

85. (Open input and output files 85) =
for i +- 1 to len_name do

begin in-file [i) +- • u ·; out-file [i] +- • u ·;
end;

write(•II'PUTu:u·); i +- 1;
while (i S len_name) A (-,eoln) do

begin read(cc); in..file[i] +- cc; incr(i);
end;

reset(web_file,in..file); writeln; readln; write(·ouTPUT:u·); i +-1;
while (i S len_ name) A (-,eoln) do

begin read(cc); out_file[i] +- cc; incr(i);
end;

rewrite(met-file, out-file); writeln;
This code is used in section 64.

WEBmeter §84

§86 WEBmeter INPUT AND OUTPUT 95

86. Procedure getJine will read one line of input from web_file. Global variable end_of_input is set to t1"Ue
when eof = t1"Ue. This procedure must be modified to accommodate CHange files.

{Procedure getJine; set end_of_input 86) ::

procedure get_line;
var ch: char; i: integer;
begin if eof (web_file) then

begin debug writeln(·*****enduo:fu:file •); writeln;
gubed end_of_input - t1"Ue;
end

else begin debug writeln;
gubed
for i - 1 to len_line do buffer [i] - • u ·;
lbuf - 0; cbuf - 1; {skip blank lines}
while eoln(web_file) A.,(eof (web_file)) do readln(web.:.file);
if -,eof (web_file) then

begin debug write('_ •);
gubed
while -,eoln(web_file) A (lbuf ~ len_line- 2) A -,(eof(web_file)) do

begin incr (lbuf); read (web_file, ch);
debug write(ch);
gubed buffer [lbuf] - ch;
end; {check for too long of a line}

if (lbuf = len_line - 1) A (-,eoln(web_file)) then
begin writeln; write (·***Warning, uinputulineumayuhaveubeenutruncated •);
writeln(met_file, ·•••warning ,uinputulineumayuhaveubeenutruncated •);
end; -

readln(web_file); {advance to next line}
end;

debug write(••L=·, lbuf: 1);
gubed
end;

end
This code is used in section 84.

96 INPUT AND OUTPUT WEBmeter §87

87. Procedure sym..string sets temp to a string depending on what the sym token is. This is for printing
purposes. The tokens commented out with meta-comments will not appear in the TANGLEd code. , They
are declared as tokens because they need to be recognized, but commented out because they are not to be
counted as individual Pascal operators (they are either syntactic devices, or the second half of an operator
pair).

(Procedure sym..string; return alpha 87) ::
procedure sym_string(sym :token; var temp: alpha);

begin ease sym of
tnu.l: temp +- ·Tll11Luuuuuu ·;
tident: temp +- ·TIDE:NTuuuu ·;
tnu.m: temp +- ·TllUMuuuuuu ·;

{Pascal stuff}
tand: temp +- • anduuuuuuu ·;
tarray: temp +- ·arrayuofuu ·;
tbegin: temp +- ·beginuendu ·;
tboolean: temp +- ·booleanuuu ·;
tease: temp +- • caseuenduu ·;
tchar: temp+- ·charuuuuuu·;
Cl{tconst: temp +- •tconstuuuu ·;
Cl}tdiv: temp +- • di Vuuuuuuu ·;
Cl{tdo: temp +- •tdouuuuuuu ·;
Cl}tdownto: temp +- ·downtouuuu ·;
telse: temp +- • ifuthenuel·;
Cl{tend: temp+- ·enduuuuuuu·;
Cl}teof: temp+- ·eofuuuuuuu·;
teoln: temp +- • eolnuuuuuu ·;
tezternal: temp+- ·externaluu·;
tfile: temp +- ·fileuuuuuu ·;
tfor: temp +- ·forudouuuu ·;
tforward: temp +- •torwarduuu ·;
tfu.nction: temp +- ·functionuu ·;
tgoto: temp +- • gotouuuuuu ·;
tif: temp+- ·ifuthenuuu·;
tin: temp+- ·inuuuuuuuu·;
tinteger: temp+- ·integeruuu·;
tlabel: temp +- ·labeluuuuu ·;
tmod: temp +- ·moduuuuuuu ·;
tnot: temp +- ·notuuuuuuu ·;
Cl{tof: temp +- •tofuuuuuuu ·;
Cl}tor: temp +- • oruuuuuuuu ·;
totherwise: temp +- • otherwiseu ·;
tpacked: temp +- ·packeduuuu ·;
tprocedu.re: temp +- ·procedureu ·;
tprogram: temp +- ·programuuu ·;
tread: temp +- ·readuuuuuu ·;
treadln: temp +- ·readlnuuuu ·;
treal: temp +- ·realuuuuuu ·;
trecord: temp +- ·recorduend ·;
trepeat: temp +- ·repeatuunt ·;
tset: temp+- ·setuuuuuuu·;
ttezt: temp +- •textuuuuuu ·;
Cl{tthen: temp +- •tthenuuuuu ·;

§87 WEBmeter

Cl}tto: temp - •touuuuuuuu ·;
G{ttype: temp - •ttypeuuuuu ·;
CI}G{tuntil: temp - •tuntiluuuu ·;
Cl}tvar: temp- ·varuuuuuuu·;
twhile: temp - ·whileudouu ·;
twith: temp- ·withudouuu·;
twrite: temp- ·writeuuuuu·;
twriteln: temp- ·writelnuuu·;

{ operators and delimeters }
tplus: temp - • +uuuuuuuuu ·;
tminus: temp - • -uuuuuuuuu ·;
ttimes: temp - • *uuuuuuuuu ·;
tslash: temp - •fuuuuuuuuu ·;
tlparen: temp - • (u) uuuuuuu ·;

G{trparen: temp - • uuuuuuuuuu ·;
Cl}teql: temp - ·=uuuuuuuuu ·;
tcomma: temp - • .uuuuuuuuu ·;
tperiod: temp - • • uuuuuuuuu ·;
tlt: temp - ·<uuuuuuuuu ·;
tgt: temp- ·>uuuuuuuuu·;
tsemi: temp-· ;uuuuuuuuu·;
tlbrack: temp - • [u] uuuuuuu ·;
Cl{trbrack: temp - • uuuuuuuuuu ·;
Cl}tbecomes: temp - • : =uuuuuuuu ·;
tdotdot: temp-·. •uuuuuuuu·;

tneq: temp - • <>uuuuuuuu ·;
tleq: temp - • <=uuuuuuuu ·;
tgeq: temp- ·>=uuuuuuuu·;

tea ret: temp - • • uuuuuuuuu ·;
tcolon: temp - • : uuuuuuuuu ·;

{ special web and pascal stuff}
tassumpt: temp - ·1 u I uuuuuuu ·;
tstring: temp - • • • •• • .. uuu ·;

t • II II •. tpreproc: emp - • • • uuuuu ,
tcomment: temp - ·{u}uuuuuuu ·;
targument: temp - ·#uuuuuuuuu ·;
tdbl_eql: temp - ·==uuuuuuuu ·;
tone_eql: temp - ·=uuuuuuuuu ·;
tis: temp - ·a<uCI>=uu ·;
tcall: temp - • Cl<uG>•; u ·;
tabbrev: temp - • ••• uuuuuuu ·;

{ web commands }
tat: temp- ·e~uuuuuuuu·;

tnew_mod: temp- ·abuuuuuuu·;
tstar_mod: temp- ·e~•uuuuuuu·;

tdef: temp - ·aduuuuuuu ·;
tformat: temp - ·e~fuuuuuuu ·;
tbegin_code: temp - ·ID}>uuuuuuu ·;
tmotL.name: temp - • Cl<uuCI>uu ·;
Cl{tentL.web: temp- •tend_webuu·;

G}toctal: temp- ·e~· • uuuuuu ·;
thez: temp- ·a11uuuuuuu·;

INPUT AND OUTPUT 97

98 INPUT AND OUTPUT

tcheck_sum: temp - •CI$uuuuuuu ·;
tbegin_comment: temp - ·e~{uuCI}uu ·;
Cl{tend_comment: temp - •tend_comme ·;
Cl}tjoin: temp - •Cituuuuuuu ·;
troman: temp- ·e~AuuCI>uu·;

ttypewriter: temp - ·e~. uuCI>uu ·;
tuser_def: temp- ·e~:uuCI>uu·;

ttez_string: temp - • CltuuCI>uu ·;
tverbatim: temp - ·CI=uuCI>uu ·;
tforce..line: temp - ·e~\uuuuuuu ·;
tunderline: temp - • C1! uuuuuuu ·;
tno_underline: temp- ·e~?uuuuuuu·;

tthin_space: temp - • C1, uuuuuuu ·;
tline_break: temp - ·e~t uuuuuuu ·;
topt_line_break: temp - ·e~1 uuuuuuu ·;
tbig_line_break: temp ..._ ·CI#uuuuuuu ·;

tno_line_break: temp - ·e~+uuuuuuu ·;
tpseudo_semi: temp - • C1 i uu uuuuu ·;
tz: temp - ·e~xuuuuuuu ·;
ty: temp - ·e~yuuuuuuu ·;
tz: temp- ·Cizuuuuuuu·;

othercases temp - • uuuuuuuuuu ·;
end;
end

This code is used in section 84.

WEB meter

88. Procedure outsym prints one token to the screen, along with the number of occurrences.

(Procedure outsym; print token 88) =
procedure outsym(sym :token);

var temp: alpha; i: integer;
begin sym_string (sym, temp);
for i - 1 to len_alpha - 1 do

if (temp[i] ¥= ·u·) V (temp[i + 1] ¥= ·u·) then write(temp[i]);
if (temp[len_alpha] ¥= ·u·) then write(temp[len_alpha]);
write("-·, count[sym) : 1); write (• u •);
end

This code is used in section 84.

89. This is a procedure to output counts to met-file.

(Procedure outcounts; print to met..file 89) =
procedure outcounts;

var i: token; s: alpha; j, k: integer;
begin (Output header to met_file 90)
(Output operators to met_file 91)

(Output operands to met..file 92)

(Output summary to met_file 93)

(Output web counts to met..file 94)

(Output warnings 95)
end

This code is used in section 84.

§87

§90 WEBmeter

90. (Output header to met..Jile 90) =
writeln(met_file, 'foruiHPUTufileu: u ·, in_file); writeln(met_file);
stat writeln(in_file, 'u');
tats
for i +- tident to tnum do

begin sym_string(i,s); writeln(met_file,s, 'u:u·, count[i]: 4);
stat write (count [i) : 4, • u ');
tats
end;

This code is used in section 89.

91. (Output operators to met_file 91) =
writeln (met-file); writeln (met_file, ·OPERATORS'); writeln (met_ file);
for i +- tand to tcolon do

begin sym_string(i,s);
if s #= • uuuuuuuuuu • then

if count [i] #= 0 then writeln (met_file, s, • u : u ·, count [i] : 4);
end;

for j +- 1 to numuser do
begin for k +- 1 to len_alpha do write (met_file, user [j, k]);
writeln(met_file, 'u:u·, usercnt[i]: 4);
end;

INPUT AND OUTPUT 99

writeln(met-file); writeln (met_file, • etau 1uuuuuuuuuuuuuuuuuuuuu: u ·, eta1 : 5);
writeln(met_file, 'totalunumberuofuoperatorsu: u ·, n1 : 5); writeln(met_file);

This code is used in section 89.

92. (Output operands to met-file 92) =
writeln(met_file); writeln(met_file, 'OPERANDS'); writeln (met_file);
for j +- 1 to numopd do

if (opdcnt [j] #= 0) then
begin for k +- 1 to len_ alpha do write (met_file, opd [j, k]);
writeln (met_file, • u : u ·, opdcnt [j] : 4);
end;

writeln (met_file); writeln (met_ file, • etau2uuuuuuuuuuuuuuuuuuuuu: u ·, eta2 : 5);
writeln(met..Jile, 'totalunumberuofuoperandsuu=u·, n2 : 5); writeln(met_file);

This code is used in section 89.

100 INPUT AND OUTPUT

93. (Output summary to met-file 93) ::

writeln(met_file, ·usUMMARYu·); writeln(met-file);

WEBmeter §93

writeln(met_file, ·numbereducodeusectionsu ·,count [tnew_mod] + count [tstar_mod] : 5);
writeln(met_file, ·numberuofuproceduresuuu ·,count [tprocedure] : 5);
writeln (met-file, ·numberuofufunctions uuuu ·, count [tfunction] : 5); writeln (met-file);
writeln(met-file, ·linesuuofulimbouu·, lol: 3); writeln(met_file, ·linesuuofudocuuuu·, lod: 3);
writeln(met_file, ·uuperucodeusect.u·, lodf(count[tnew_mod] + count[tstar_mod]): 5: 2);
writeln(meLfile, ·numberuofumacrosu ·, lom : 3); writeln(met_file, ·linesuuofucodeuuu ·,Zoe : 3);
writeln(meLfile, ·uuperucodeusect.u·,Zocfcount[tis]: 5: 2); writeln(meLfile);
writeln(met-file, ·vGuuuuuuu: u • 1 vg : 8 : 2); writeln(met_file);
writeln(met_file, •eta1uuuuu:u·, etat :8: 2); writeln(met_file, •eta2uuuuu:u·, eta2: 8: 2);
writeln(met_file, ·n1uuuuuuu:u·,nt: 8: 2); writeln(met_file, ·n2uuuuuuu:u·,n2: 8: 2);
writeln (met_file);
stat writeln(count[tnew_mod] + count[tstar_mod] : 3, • u • 1 count[tprocedure] : 3, • u ·, count[tfunction] : 3);
writeln(lol : 2, • u ·, lod : 3, • u ·, lodf(count[tnew_mod] +count [tstar_mod]) : 5: 2, lom : 3, • u ·,Zoe : 4, • u ·,

locfcount[tis]: 5: 2); writeln(vg: 3, ·u·, eta1 :2, ·u·, eta2: 3, ·u·, n1 :4, ·u·, n2: 4, ·u·);
tatswriteln(met_file, ·lengthuuu:u·,hZength: 8: 2); writeln(met-file, ·volumeuuu:u·,hvolume: 8: 2);
writeln(met_file, ·effortuuu:u·,he.tfort: 8: 2);
writeln(met_file, •timeuuuuu:u·,htime: 8:2, ·useconds•);
writeln(met_file, • uuuuuuuuu :u ·, (htime/60) : 8 : 2, • uminutes •);
writeln(meLfile, ·uuuuuuuuu:u·,(htime/60)/60: 8:2, ·uhours•); writeln(met_file);
stat write(hlength : 7: 21 • u ·, hvolume : 8: 2, • u ·, he.tfort : 11 : 2, • u •);
writeln(htime: 9:2, ·u·,(htime/60): 8:2, ·u·,(htime/60)/60: 6:2, ·u·);
tats

This code is used in section 89.

94. (Output web counts to meLfile 94) =
writeln (met_ file); writeln (meLfile, • WEBuCommanduCount s •); writeln (meLfile);
for i +- tassumpt to tz do

begin sym_string(i, s);
if s '# · uuuuuuuuuu • then

begin stat if (i f:; tabbrev) then
begin if (count[i] f:; 0) then write(count[i]: 3, ·u·)
else write(" uu. u •);
end;

if (i E [tdef, tverbatim, tz]) then writeln;
tats
if count[i] 'f:; 0 then writeln(met-file, s, • u :u ·, count[i] : 4);
end;

end;
This code is used in section 89.

__j

§95 WEBmeter INPUT AND OUTPUT 101

95. These messages are output to warn the user that some calculations may be off because the opd or user
overflowed.

(Output warnings 95) =
if (opdfull V userfull) then

begin writeln (.***warning J umetricsucalculationsumayubeuincorrectu •);
writeln (met_file, ·***warning 1 umetricsucalculationsumayubeuincorrectu •); writeln;
writeln (met-file);
if (opdfull) then

begin writeln (• uuuuuuuuuuunumberuofuoperandsumayubeuinaccurateu •);
writeln (• uuuuuuuuuuunumopdu>=umaxopdu •);
writeln (met_ file, • uuuuuuuuuuunumberuof uoperandsumayu beuinaccurat e •);
writeln (met_file, • uuuuuuuuuuunumopdu>=umaxopdu •); writeln; writeln (met_file);
end;

if (userfull) then
begin writeln(• uuuuuuuuuuunumberuofuoperatorsumayubeuinaccurate ");
writeln(• uuuuuuuuuuunumuseru>=umaxuseru •);
writeln(met_file, • uuuuuuuuuuunumberuofuoperatorsumayubeuinaccurate ");
writeln(met_file, • uuuuuuuuuuunumuseru>=umaxuseru "); writeln; writeln (met_file);
end;

end;
This code is used in section 89.

102 INDEX

96. Index.

alpha: . 19, 62, 67, 78, 87, 88, 89.
alphat: 19, 20.
bal: 28, 38.
banner: 1, 2.
begin: 5.
boolean: 16, 62, 67, 80, 82, 83.
bracebal: 53, 62, 64.
buffer: 27, 28, 29, 30, 31, 37, 38, 39, 40, 41,

42, 43, 45, 46, 48, 50, 51, 52, 53, 56, 57,
58, 59, 62, 64, 86.

buffert: 61, 62.
casebal: 14, 16.
cbuf: 27, 28, 29, 30, 31, 38, 39, 40, 41, 42, 43, 45,

46, 48, 50, 51, 52, 53, 56, 57, 58, 59, 62, 64, 86.
cc: 27, 28, 29, 30, 38, 39, 40, 41, 42, 43, 45, 46,

48, 50, 51, 52, 53, 55, 56,57, 58, 59, 62, 64, 85.
ch: 86.
ch_upper: 48, 66.
CHange file : 8, 86.
char: 19, 61, 62, 65, 66, 86.
chr: 66.
code..state: 23, 24, 31, 37, 39, 43, 44, 45, 46, 67.
comp_opd: 72, 75, 82.
comp_user: 76, 83.
condition: 14, 16.
copy_opd: 73.
copy_user: 74.
count: 12, 19, 20, 22, 24, 27, 28, 29, 30, 38, 39,

40, 41,43, 44,45, 46, 67, 88, 90, 91, 93, 94.
debug: Q, 14, 24, 27, 28, 29, 30, 32, 33, 34, 35, 36,

38,39,43,44,45,46,55,67,72,73,74,76,86.
deer: Q, 14, 37, 38, 40, 48, 50, 53, 67, 68.
def_state: 23, 24, 31, 37, 39.
do_nothing: Q, 24, 31, 39.
else: 7.
end: 5.
end_of_input: 27, 28, 29, 30, 62, 64, 86.
eof: 62, 86.
eoln: 85, 86.
eta1: 10, 11, 12, 13, 91, 93.
eta2: 10, 11, 12, 13, 81, 92, 93.
eztern: 1.
ezternal: 7.
false: 14, 64, 67, 68, 72, 75, 76, 81, 82, 83.
file_name: 61, 62.
fin..state: 23, 24, 27, 28, 29, 30, 37.
forward: 7.
found: 67, 71, 72, 75, 76.
Future Work: 8.
get-line: 31, 86.

WEBmeter §96

gubed: .§, 14, 24, 27, 28, 29, 30, 32, 33, 34, 35, 36,
38,39,43,44,45,46,55,67,72,73,74,76,86.

halstead: 10, 11.
hejJort: 10, 11, 13, 93.
hlength: 10, 11, 13, 93.
hstroud: 10.
htime: 10, 11, 13, 93.
hvolume: 10, 11,. 13, 93.
i: 62, 67, 89.
id: 47, 48, 49, 50, 51, 52, 62, 69, 70, 71, 72,

73, 74, 75, 76, 82, 83.
id...to_blanks: 47, 48, 51, 52, 64.
id2: 67, 69, 70.
in_file: 62, 85, 90.
incr: Q, 12, 14, 27, 28, 29, 30, 31, 37, 38, 39, 40,

41,42, 43, 44,45, 46,48, 50, 51, 52, 53, 56, 57,
58, 59, 67, 68, 72, 73, 74, 75, 76, 82, 83, 85, 86.

input: ~.

integer: 10, 13, 14, 16, 19, 27, 28, 29, 30, 62, 67,
78, 80, 82, 83, 86, 88, 89.

islabel: 14, 67, 68, 80, 81.
isparam: 67, 68, 80, 81.
j: 82, 83.
Knuth, Donald: 25.
l: 62.
lbuf: 27, 28, 29, 30, 31, 40, 41, 62, 64, 86.
len_alpha: 19, 21, 47, 48, 50, 51, 52, 64, 69, 70,

73, 74, 82, 83, 88, 91, 92.
len_line: 61, 63, 64, 86.
len_name: 61, 63, 85.
limbo..state: 23, 24, 31, 37.
ln: 10.
loc: 31, 35, 37, 39, 62, 64, 93.
lod: 31, 33, 37, 62, 64, 93.
lol: 31, 32, 37, 62, 64, 93.
lom: 31, 34, 37, 62, 64, 93.
mazopd: 73, 78, 79.
mazuser: 7 4, 78, 79.
mccabe: 14, 15.
met_file: ~' 9, 18, 62, 85, 86, 89, 90, 91, 92,

93, 94, 95.
metfile: 18.
metrics detinitions: 10, 17, 18.
nezt: 24, 37, 62, 64.
num: 50, 62, 64, 69.
num_rw: 19, 21, 49.
numopd: 12, 71, 72, 73, 75, 80, 81, 92.
numuser: 12, 74, 75, 76, 80, 81, 91.
n1: 10, 11, 12, 13, 91, 93.
n2: 10, 11, 12, 13, 92, 93.
opd: 69, 71, 72, 73, 75, 80, 82, 92, 95.

§96 WEBmeter

opdcnt: 12, 71, 72, 73, 75, 80, 92.
opdfu.ll: 73, 80, 81, 95.
opdta: 78, 80.
opdti: 78, 80.
ord: 66.
othereases: 1·
otherwise: 7, 31.
out_file: 62, 85.
outcounts: 4, 89.
output : z.
outsym: 27, 28, 29, 30, 38, 43, 44, 45, 46, 67, 88.
parenbal: 14, 68, 80.
parse_state: 23, 24, 30, 39.
parser: 24, 67.
prev_state: 24, 39, 62, 64.
prev_sym: 50, 67, 68, 74, 80, 81.
proc_code: 24, 30.
proc_def: 24, 29.
procJimbo: 24, 27.
proc_tez: 24, 28.
psymbol: 19, 20, 22, 49.
pword: 19, 20, 22, 49.
read: 85, 86.
readln: 85, 86.
real: 10, 13.
reset: 85.
ret_state: 27, 28, 29, 30, 39, 43, 44, 45, 46.
rewrite: 85.
s: 62.
same_state: 23, 27, 28, 29, 30, 39, 64.
sign: 50, 67, 80, 81.
Smith, Lisa M. C. : 1.
stat: ,2, 90, 93, 94.
state: 24, 31, 37, 39, 62, 64.
stop: 82, 83.
subpgm: 67, 80, 81. ,
sym: 14, 15, 22, 24, 27, 28, 29, 30, 38, 39, 40, 43,

44, 45, 46, 49, 50, 51, 52, 53, 54, 55, 56, 57,
58, 59, 62, 64, 67, 68, so, 87, 88.

sym_string: 12, 87, 88, 90, 91, 94.
symbolt: 19, 20.
tabbrev: 19, 87, 94.
tand: 12, 14, 19, 22, 87, 91.
TANGLE: 1.
targument: 19, 45, 54, 67, 87.
tarray: 19, 22, 87.
tassumpt: 19, 38, 67, 87, 94.
tat: 19, 65, 87.
tats: ,2, 90, 93, 94.
tbecomes: 19, 59, 67, 87.
tbegin: 14, 19, 22, 87.
tbegin..code: 19, 23, 28, 39, 65, 87.

tbegin_comment: 19, 39, 41, 65, 87.
tbig_line_break: 19, 65, 87.
tboolean: 19, 22, 87.
tcall: 19, 40, 87.
tcaret: 19, 55, 87.
tease: 14, 16, 19, 22, 87.
tchar: 19, 22, 87.
tcheck_sum: ' 19, 65, 87.
tcolon: 12, 14, 19, 59, 67, 87, 91.
tcomma: 14, 19, 55, 67, 87.
tcomment: 19, 53, 87.
tconst: 19, 22, 30, 87.
tdbLeql: 19, 29, 43, 45, 46, 87.

INDEX 103

tdef: 19, 23, 28, 29, 37, 39, 65, 87, 94.
tdiv: 19, 22, 87.
tdo: 14, 19, 22, 30, 87.
tdotdot: 19, 50, 56, 67, 87.
tdownto: 19, 22, 87.
telse: 19, 22, 67, 87.
temp: 14, 87, 88.
tend: 14, 16, 19, 22, 30, 87.
tend_comment: 19, 39, 41, 65, 87.
tend_web: 19, 39, 40, 65, 87.
teof: 19, 22, 87.
teoln: 19, 22, 87.
teql: 19, 55, 67, 87.
'fEX: 1.
tez_state: 23, 24, 27, 31, 37, 39.
tezt: 62.
tezternal: 19, 22, 87.
tfile: 19, 22, 87.
tfor: 14, 19, 22, 87.
tforce_line: 19, 39, 65, 87.
tformat: 19, 28, 29, 39, 65, 87.
tforward: 19, 22, 87.
tfu.nction: 14, 19, 22, 67, 74, 75, 87, 93.
tgeq: 19, 58, 67, 87.
tgoto: 19, 22, 87.
tgt: 19, 58, 67, 87.
thez: 19, 65, 87.
tident: 19, 29, 46, 49, 67, 71, 76, 87, 90.
tif: 14, 19, 22, 67, 87.
tin: 19, 22, 87.
tinteger: 19, 22, 87.
tis: 19, 40, 87, 93.
tjoin: 19, 65, 87.
tlabel: 14, 19, 22, 68, 87.
tlbrack: 19, 55, 67, 87.
tleq: 19, 57, 67, 87.
tline_break: 19, 65, 87.
tlparen: 19, 45, 55, 67, 68, 80, 87.
tlt: 19, 57, 67, 87.

104 INDEX

tminus: 19, 55, 67, SO, S7.
tmod: 19, 22, S7.
tmod_name: 19, 23, 2S, 39, 40, 65, S7.
tneq: 19, 57, 67, S7.
tnew_mod: 19, 23, 27, 2S, 39, 65, S7, 93.
tno_line_break: 19, 65, S7.
tno_underline: 19, 65, S7.
tnot: 19, 22, S7.
tnul: 19, 22, 27, 2S, 30, 64, 65, 67, 6S, Sl, S7.
tnum: 19, 50, 67, 71, S7, 90.
toctal: 19, 65, S7.
tof: 19, 22, 30, 67, S7.
token: 14, 19, 62, 65, SO, S7, SS, S9.
tokent: 19, 20.
tone_eql: 19, 44, 67, S7.
topt_line_break: 19, 65, S7.
tor: 14, 19, 22, S7.
totherwise: 19, 22, S7.
tpacked: 19, 22, S7.
tperiod: 19, 56, S7.
tplus: 19, 50, 55, 67, SO, S7.
tpreproc: 19, 52, 67, 71, S7.
tprocedure: 14, 19, 22, 67, 74, 75, S7, 93.
tprogram: 14, 19, 22, 67, 74, S7.
tpseudo_semi: 19, 22, 40, 65, S7.
trbrack: 19, 30, 55, S7.
tread: 19, 22, S7.
treadln: 19, 22, S7.
treal: 19, 22, S7.
trecord: 19, 22, S7.
trepeat: 19, 22, S7.
troman: 19, 39, 65, S7.
trparen: 19, 30, 45, 55, 6S, SO, S7.
true: 14, 50, 67, 6S, 72, 73, 74, 75, 76, S2, S3, S6.
tsemi: 14, 19, 40, 55, 6S, S7.
tset: 19, 22, S7.
tslash: 19, 55, 67, S7.
tstar_mod: 19, 23, 27, 2S, 39, 65, S7, 93.
tstring: 19, 51, 67, 71, S7.
ttez_string: 19, 39, 65, S7.
ttezt: 19, 22, S7.
tthen: 14, 19, 22, 30, S7.
tthin_space: 19, 65, S7.
ttimes: 19, 55, 67, S7.
tto: 19, 22, S7.
ttype: 19, 22, 30, S7.
ttypewriter: 19, 39, 65, S7.
tunderline: 19, 65, S7.
tuntil: 14, 19, 22, 30, S7.
tuser_def: 19, 39, 65, S7.
tvar: 19, 22, 30, 67, S7.
tverbatim: 19, 39, 65, S7, 94.

twhile: 14, 19, 22, S7.
twith: 19, 22, S7.
twrite: 19, 22, S7.
twriteln: 19, 22, S7.
tz: 19, S7.
ty: 19, S7.
tz: 19, 67, S7, 94.

WEBmeter §96

user: 29, 67, 74, 76, SO, S3, 91, 95.
usercnt: 12, 67, 74, 75, 76, SO, 91.
userfull: 74, SO, Sl, 95.
userta: 7S, SO.
userti: 7S, SO.
vg: 14, 15, 16, 64, 67, 93.
~arning message: 73, 74, S6, 95.
WEAVE: 1.
WEB: 1.
web_file: ~' S, 62, S5, S6.
web_token: 27, 39, 65.
webmeter: ~.

Wirth, Niklaus: 25.
write: 14, 24, 32, 33, 34, 35, 39, 67, 72, 73, 74,

76, S5, S6, ss, 90, 91, 92, 93, 94.
writeln: 2, 36, 55, S5, S6, 90, 91, 92, 93, 94, 95.

§96 WEBmeter

(Add id to opd 73) Used in section 71.

(Adjust counts of lol, lod, lom, loc 37) Used in section 24.

(Calculate complexity metrics 3) Used in section 2.

(Calculate software science measures 11) Used in section 3.

(Check if a reserved word 49) Used in section 30.

(Copy id2 back to id 70) Used in section 67.

(Copy id to id2 1 num to id 69) Used in section 67.

(Count operand in opd,opdcnt 71) Used in sections 67, 67, 67, and 67.

(Find 7]1 1 7]21 N1, and N2 12) Used in section 11.

(Function clLupper return char 66) Used in section 60.

(Function comp_opd return equal 82) Used in section 77.

(Function comp_user return equal 83) Used in section 77.

(Function parser return nezt 67) Used in section 26.

(Function proc_code return nezt 30) Used in section 25.

(Function proc_def return nezt 29) Used in section 25.

(Function procJimbo return nezt 27) Used in section 25.

(Function proc_tex return nezt 28) Used in section 25.

(Function web_token return token 65) Used in section 60.

(Get a constant string 51) Used in section 30.

(Get a macro argument 54) Used in section 30.

(Get a number 50) Used in section 30.

(Get a pascal comment 53) Used in section 30.

(Get a preprocessed string 52) Used in section 30.

(Get a web command 39) Used in sections 28 and 30.

(Get an identifier 48) Used in sections 29, 30, and 46.

(Get an operator 55) Used in section 30.

(Global constants of the program 21, 63, 79) Used in section 2.

(Global types of the program 19, 61, 78) Used in section 2.

(Global variables of the program 13, 16, 20, 62, 80) Used in section 2.

(If id in opd 1 copy over count 75) Used in section 67.

(Initialize arrays 22) Used in section 3.

(Initialize global variables 64, 81) Used in section 3.

(Open input and output files 85) Used in section 64.

(Output eoln 36) Used in section 31.

(Output header to met_file 90) Used in section 89.

(Output loc 35) Used in sections 31, 37, 37, and 37.

(Output lod 33) Used in sections 31, 37, 37, 37, 37, and 37.

(Output lol 32) Used in sections 31 and 37.

(Output 1om 34) Used in sections 31, 37, and 37.

(Output metrics 4) Used in section 2.

(Output operands to met_file 92) Used in section 89.

(Output operators to met_file 91) Used in section 89.

(Output summary to met_file 93) Used in section 89.

(Output warnings 95) Used in section 89.

(Output web counts to met_file 94) Used in section 89.

(Perform lexical analysis 24) Used in section 3.
(Procedure getJine; set end..of_input 86) Used in section 84.

(Procedure halstead 10) Used in section 2.

(Procedure mccabe 14) Used in section 2.

(Procedure outcounts; print to meLfile 89) Used in section 84.

(Procedure outsym; print token 88) Used in section 84.

(Procedure sym..string; return alpha 87) Used in section 84.

NAMES OF THE SECTIONS 105

106 NAMES OF THE SECTIONS

(Procedures for lexical analysis 25, 26) Used in section 2.

(Process an assumption 38) Used in section 28.

(Process format definition 46) Used in section 29.

(Process numeric macro 44) Used in section 29.

(Process parametric macro 45) Used in section 29.

(Process simple macro 43) Used in section 29.

(Return < or <> or <= 57) Used in section 55.

(Return > or >= 58) Used in section 55.

(Return ' .. ' or '.' 56) Used in section 55.

(Return ':' or ':=' 59) Used in section 55.

(Save user-defined name in user 74) Used in sections 29 and 67.

(Search for id in opd, set found 72) Used in section 71.

(Search for id in user, set found 76) Used in section 67.

(Set appropriate flag conditions 68) Used in section 67.

(Skip blanks in buffer 42) Used in sections 29, 29, 30, 45, 45, 45, 46, and 46.

(Skip text to tend_comment 41) Used in section 39.

(Skip text to tend_ web 40) Used in sections 39 and 39.

(Update cyclomatic complexity 15) Used in section 67.

(Utilities for input and output 84) Used in section 2.

(Utilities for lexical analysis 60) Used in section 2.

(Utilities of parser 77) Used in section 26.

(if end of buffer, get new buffer 31) Used in sections 27, 28, 29, 30, 40, and 41.

WEBmeter §96

APPENDIX C

A SAMPLE LITERATE PROGRAM and its OUTPUT

107

The Knight's Tour

Section Page
Introduction . 1 109
The Tour . 5 110
The output phase . 24 116
Index . 28 117

§1 The Knight's Tour INTRODUCTION 109

1. Introduction. The following program is based on the "Knight's Tour" algorithm found on pages
137-142 of Niklaus Wirth's Algorithms+ Data Structures= Programs (pages 148-152 in the 1986 edition,
renamed Algorithms and Data Structures), translated into the WEB language.

2. This program has no input because we want to keep it rather simple. The result of the program will be
the solution to the problem, which will be written to the output file.

In true top-down tradition, we lay out the entire program as a skeleton which will be filled in later.

program knights_ tour (output);
const (Constants of the program 6)
type (Types of the program 7)
var (Variables of the program 8)

(Recursive procedure definitions 12)

begin (Initialize the data structures 19);

(Perform the Knight's Tour and print the results 21);
end.

3. Here are some macros for common programming idioms.

define incr(#):: #- # + 1 {increase a variable by unity}
define deer(#)::#-# -1 {decrease a variable by unity}

4. We shall proceed to build the program in pieces, following the text of Wirth's book and describing the
structures and algorithms in more or less the same order in which he describes them. Part of the time we
will be designing top-down; at other times, bottom-up; but always in the order that contributes more to
the understanding of the program. One difference between this description and Wirth's is that we will use
meaningful variable names (rather than names such as u,v,a,b,c). We can get away with this because we
don't have to worry about the entire program's being listed in one place in narrow columns. It is broken up
into small pieces and spread over several pages.

110 THE TOUR The Knight's Tour §5

5. The Tour. For those not familiar with the Knight's Tour, it is a classic computer science problem
involving a knight, moving according to the rules of chess, which attempts to move to every square of a
chessboard once and only once. To implement it, we use what is known as a "backtracking" algorithm,
which is a trial-and-error search for a solution, sometimes referred to as a "brute-force" approach. We start
at a beginning position and try every path leading from that position (there are 8 possible knight moves
from a given position) and then every path from each of those positions, etc. We folllow every path until
either a complete solution is found or the first failure occurs (the square is not on the board or has already
been visited). If we get a failure, we "backtrack" to the previous good move and start again from there.

6. The board is a ma:r: x ma:r: square and the number of squares is ma:z:2• Since this program has no input,
we declare the value ma:z: = 5 as a compile-time constant.

(Constants of the program 6) =
ma:z: = 5; number_of_squares = 25;

This code is used in section 2.

7. The obvious way to define the board is as an array of two dimensions where the indexes range from 1
to ma:z:.

(Types of the program 7) =
inde:z: = 1 •. ma:z:;

This code is used in section 2.

8. Boolean values for the squares would be sufficient if we only wanted to know which squares had been
visited, but we also wish to know the order of the visits, so we define board as a two-dimensional array of
ordinal values ranging from 0 to number_of_squares. If the value at board[row, col] = 0 then the square
at that position has not been visited and is a candidate for a visit. Otherwise board[row, col] = i, which
indicates that the square was visited on the ith move. The total number of moves (including the first one)
= number_of_squares.

define empty = 0

(Variables of the program 8) =
board: array [inde:z:, inde:z:] of empty .. number_of_squares;
See also sections 18 and 27.

This code is used in section 2.

9. Here we initialize all positions on the board to empty. This code is placed in a program scrap separate
from all of the other initialization code for reasons explained later.

(Initialize the Knight's Tour board 9) =
for i - 1 to ma:z: do

for j- 1 to ma:z: do board[i,j] - empty;
This code is used in sections 21, 22, and 23.

§10 The Knight's Tour THE TOUR 111

10. Two local variables, targ_row and targ_col, are the coordinates of target_square, the one to which we
wish to move next. Before we attempt the move, we must first ensure that target...square is on the board
(1 ~ targ_row ~ maz and 1 ~ targ_col ~ maz). Then we must determine whether it is available for knight
placement (target_square = empty). We provide some macros for manipulation of target...square.

Side note: in Wirth's book, the target..position_valid test is later changed to be a check for inclusion in
the set [1 •• maz] rather than discrete comparisons to 1 and maz. While this is more efficient, it does not
necessarily aid understanding of the algorithm, so we will not bother.

define valid_row_or_column(#) = ((1 ~#)A(#~ maz))
define target..position_valid = (valid_row_or_column(targ_row) A valid_row_or_column(targ_col))
define target_square = board[targ_row, targ_coij
define target..empty = (target..square = empty)
define set..square_to(#) = target..square - #

(Local variables of the Knight's Tour procedure 10) =
targ_row, targ_col: integer; {row and column of target square}
See also section 11.

This code is used in section 12.

11. There are 8 possible knight moves from any given position. Since we normally are going to attempt
all 8, we will define candidate_move to hold the move index.

define number_of_legal..knight..moves = 8

(Local variables of the Knight's Tour procedure 10) +=
candidate_move: 0 .. number_of_legaLknight..moves;

12. We are ready to define the procedure which actually does the search. It must be declared as a procedure
rather than as simple inline code, since it is recursive. As the procedure is entered for a particular move
number and current position, the moves possible from that position are attempted. The Boolean result
successful is set if one of the 8 paths results in a solution. The procedure passes the value of successful back
to the calling procedure, which will pass it to its own caller, etc., all the way back up to the original call.

(Recursive procedure definitions 12) =
procedure try_knight..move (move_ number : integer; row, col : indez; var successful : Boolean);

var (Local variables of the Knight's Tour procedure 10)
begin (Try the moves possible from the current position until solution is found or all have been

tried 13);

end;
This code is used in section 2.

13. Each of the 8 possible moves is attempted. If the move can be made, it is recorded and a move from
the new position is attempted. If successful is ever true, it can only mean that a complete solution has been
found and the search is terminated. If successful is false, the remaining candidate moves are tried.

define no_more_candidates = (candidate_ move = number_of_legalknight..moves)

(Try the moves possible from the current position until solution is found or all have been tried 13) =
candidate_move - 0;
repeat incr (candidate_move); successful - false;

(Set the coordinates of the next move as defined by the rules of chess 17) ;

(Record the move if acceptable and try to make further moves; set successful if solution is found 14);

until successful V no_more_candidates;
This code is used in section 12.

112 THE TOUR The Knight's Tour §14

14. The condition move_is_acceptable is equivalent to the conditions (target_position_valid A target_empty).
Because of the realities of computer memory addressing, if we find that the condition target..position_valid
is not true, we cannot perform the second test because the array indexes targ..row or targ_col are not valid
and the contents of target_square cannot be accessed. We have to test these two conditions with separate
nested if statements ("if target_position_valid then if target_empty then"). In the future, when the ANSI
Extended Pascal Standard is adopted, its short-circuiting and_then operator will make this unnecessary,
but we have to handle it manually in the meantime.

Once we have determined that the move is acceptable, we record it. If board..not_full is true, we try the
next knight move. If board.:not_full iffalse (i.e., the board is full), it means we have found a solution to the
problem, so we set successful to true, which will terminate the tour.

define board_not_full = move_number < number_of_squares
define recortLmove = set_square_to(move_ number)

{Record the move if acceptable and try to make further moves; set successful if solution is found 14) =
if target_position_valid then

if target_empty then
begin record_move;
if board_not_full then {Try further knight moves and erase this move if not successful 15}

else successful- true;
end;

This code is used m section 13.

15. Here we try the next move by having the procedure call itself recursively, with the move..number
incremented by one and targ_row, targ_col as the position of the move. If a failure occurs on that move or
any move that follows it (successful= false), we erase the move we just made (this is the "backtracking"
part) and continue looking.

Important note: the begin and end statements are criticalfor this particular section, since they are used
as a then clause in the previous section and the program text is simply inserted verbatim. Without the
begin and end , the call to the try_knight_move procedure alone becomes the then clause, which will cause
a syntax error when the dangling else clause is processed.

define nezt_move = move_number + 1
define erase_ move = set_square_to (empty)

{Try further knight moves and erase this move if not successful 15 } =
begin try_knight_move (nezt_move, targ_row, targ_col, successful);
if -,successful then erase_move;
end

This code is used m section 14.

§16 The Knight's Tour THE TOUR 113

16. We now consider the moves a knight is allowed to make. From any given position there are 8 possible
moves, not all of which are necessarily on the board. A knight makes a two-part L-shaped move, where the
first part is either one or two squares in a nondiagonal direction, and the second part is one or two squares
in a direction perpendicular to the first. The number of squares is never the same for the two parts; if the
knight is moved one square during the first part, then it is moved two squares during the second, and vice
versa.

0 '¢::::? 0

0 1t 0

~ ¢: • => ~
0 J.L 0

0 ¢:=> 0

The ,., represents a knight. Doesn't it sort of look like one? (You have to use some imagination. Okay,
a lot of imagination.) The '0' characters represent the legal destinations from the current position.

17. Rather than go through a complicated algorithm, we simply initialize a pair of tables, row..deltas and
coLdeltas, containing values to be added to the current position to get the target position. For each of the 8
moves which are possible from the current position, row_deltas [candidate_ move] is added to the current row
to get targ_row and coLdeltas [candidate_ move] provides the same service for targ_col.

(Set the coordinates of the next move as defined by the rules of chess 17} =
targ_row - row + row_deltas [candidate_ move]; targ_col - col + coLdeltas [candidate_ move];

This code is used in section 13.

18. If we are going to use these arrays, it might be helpful to define them to prevent the Pascal compiler
from complaining bitterly.

(Variables of the program 8} +=
row_deltas, coLdeltas: array [1 .. number_of_legal.Jcnight_moves] of -2 .. 2;

19. Even though the compiler is now happy, if we don't initialize the arrays with the proper delta values,
we will take the knight on a route more like th~ Drunkard's Walk than the Knight's Tour.

(Initialize the data structures 19} =
row_deltas[1]- 2; coLdeltas[1]- 1; row_deltas[2]- 1; coLdeltas[2]- 2; row_deltas[3]- -1;
coLdeltas[3]- 2; row_deltas[4]- -2; coLdeltas[4]- 1; row_deltas[5]- -2; coLdeltas[5)- -1;
row_deltas[6] - -1; coLdeltas[6] - -2; row_deltas[7] - 1; coLdeltas[7]- -2; row_deltas[B]- 2;
coLdeltas[B] - -1;

This code is used in section 2.

114 THE TOUR The Knight's Tour §20

20. Now it's time to start the tour. For starting position xoyo we select (1,1). Since this is the first move,
we set board[1, 1) = 1. We then call the try_knight_move procedure with the proper parameters for move 2
to set events in motion. After all of the moves have been completed, we print out the board. The result
should be the same as the first part of Table 3.1 on page 141 (page 151, 1986 edition) of Wirth's book, which
is reproduced here.

1 6 15 10 21

14 9 20 5 16

19 2 7 22 11

8 13 24 17 4

25 18 3 12 23

21. We define a macro to initialize the first move and start the tour. Note: the call to tryJmight_mcive in
the definition of do_the_tour_starting_at appears to have the wrong number of parameters. This procedure
requires four parameters and we seem to be passing only three. However, since a macro parameter is really
just a simple string substitution, we will really be replacing the #character with two parameters at once:
the row and column of the starting position. Since the comma is included in the substitution, the expanded
text will have the proper four parameters.

define do_the_tour_starting_at(#) = board[#] +- 1; try_knight_move(2, #,successful);

(Perform the Knight's Tour and print the results 21) =
(Initialize the Knight's Tour board 9);
do_the_tour_starting_at(1, 1); (Print the results of the Knight's Tour 26);

See also sections 22 and 23.

This code is used in section 2.

22. Since Table 3.1 in the book shows a second solution obtained with a different first move (3,3),

23 10 15 4 25

16 5 24 9 14

11 22 1 18 3

6 17 20 13 8

21 12 7 2 19

we decide to run the tour again to duplicate that result as well. We decline the third test in Table 3.1,
because it requires a different value of maz, which we cannot change at run-time as the program is currently
designed. Before rerunning the test, we must remember to reinitialize the board. This is the reason that the
board initialization code was separated from all of the other initializations; it is executed more than once.
We use the same name when defining the code for this section as for the previous section, which will cause
the second test to follow immediately after the first in the Pascal program.

(Perform the Knight's Tour and print the results 21) +=
(Initialize the Knight's Tour board 9);

do_the_tour_starting_at(3, 3); (Print the results of the Knight's Tour 26);

§23 The Knight's Tour

23. The 1986 edition shows yet another solution, with (2,4) as the starting move.

23 4 9

10 15 24

5 22 3

16 11 20

21 6 17

(Perform the Knight's Tour and print the results 21) +=
(Initialize the Knight's Tour board 9);

14 25

1 8

18 13

7 2

12 19

do_the_tour_starting_at(2, 4); (Print the results of the Knight's Tour 26);

THE TOUR 115

116 THE OUTPUT PHASE The Knight's Tour §24

24. The output phase. The job of printing is not as interesting as the problem itself, but it must be
done sooner or later, so we may as well get it over with.

25. In order to keep this program reasonably free of notations that are uniquely Pascalesque, a few macro
definitions for low-level output instructions are introduced here. All of the output-oriented commands in the
remainder of the program will be stated in terms of three simple primitives called newJine, print_string,
and print-integer.

define width = 3 {width of an integer field}
define print_string(#)::: write(#); {put a given string into the output file}
define print-integer(#)= write(#: width) {print an integer of width character positions}
define new_line = writeln { advance to a new line in the output file }

26. (Print the results of the Knight's Tour 26) =
if successful then

for i - 1 to ma:z: do
begin for j - 1 to ma:z: do print_integer(board[i,j]);
new_line;
end

else print_string ('nousol uti on');
new_line; new_line;

This code is used in sections 21, 22, and 23.

27. We define a few more odd variables.

(Variables of the program 8) +=
i,j: inde:z:; {temporary index variables}
successful: Boolean; {The Knight's Tour was successful }

§28 The Knight's Tour

28. Index.

backtracking algorithm: .Q, 15.
board: §, 9, 10, 20, 21, 26.
boartLnot_full: 14.
Boolean: 12, 27.
candidate_ move: 11, 13, 17.
col: 8, 12, 17.
coLdeltas: 17, 18, 19.
deer: ~.
do_the_tour_starting_at: 21, 22, 23.
Drunkard's Walk: 19.
empty: §, 9, 10, 15.
erase-move: 15.
false: 13, 15.
i: 27.
incr: ~~ 13.
indez: 1, 8, 12, 27.
integer: 10, 12.
j: 27.
Knight's Tour: 1, .Q, 19, 20, 22.
knights_tour: ~·
maz: .§1 71 91 10, 22 1 26.
move_number: 12, 14, 15.
new_line: 25, 26.
nezt-move: 15.
no solution: 26.
no_more_candidates: 13.
number_of_legalknight-moves: 11, 13, 18.
number_of_squares: .§, 8, 14.
output: ~~ 25.
print-integer: 25, 26.
print_string: 25, 26.
record_move: 14.
row: 8, 121 17.
row_deltas: 17, 18, 19.
set_square_to: 101 14, 15.
successful: 12, 13, 14, 15, 21, 26, 27.
system dependencies: 25.
targ_col: 10, 141 15, 17.
targ_row: 10, 14, 15, 17.
target-empty: 10, 14.
target_position_valid: 10, 14.
target..square: 10, 14.
true: 13, 14.
try_knight-move: 12, 15, 20, 21.
valitLrow_or_column: 10.
VEB: 1.
width: 25.
Wirth, Niklaus: 1.
write: 25.
writeln: 25.

INDEX 117

118 NAMES OF THE SECTIONS

(Constants of the program 6} Used m section 2.

(Initialize the Knight's Tour board 9} Used m sections 21, 22, and 23.

(Initialize the data structures 19} Used m section 2.

(Local variables of the Knight's Tour procedure 10, 11} Used m section 12.

(Perform the Knight's Tour and print the results 21, 22, 23} Used m section 2.

(Print the results of the Knight's Tour 26} Used m sections 21, 22, and 23.

The Knight's Tour

(Record the move if acceptable and try to make further moves; set successful if solution is found 14}

Used m section 13.

(Recursive procedure definitions 12} Used m section 2.

(Set the coordinates of the next move as defined by the rules of chess 17} Used m section 13.

(Try further knight moves and erase this move if not successful 15 } Used m section 14.

(Try the moves possible from the current position until solution is found or all have been tried 13}

Used m section 12.

(Types of the program 7} Used m section 2.

(Variables of the program 8, 18, 27} Used m section 2.

§28

119

TANGLEd Version of knights.web

{2:}program knightstour(output);const{6:}max=5;numberofsquares=25;{:6}
type{7:}index=1 .. max;{:7}var{8:}
board:array[index,index]of o .. numberofsquares;{:8}{18:}
rowdeltas,coldeltas:array[1 .. 8]of-2 .. 2;{:18}{27:}i,j:index;
successful:Boolean;{:27}{12:}procedure tryknightmove(movenumber:integer;
row,col:index;var successful:Boolean);var{10:}targrow,targcol:integer;
{:10}{11:}candidatemove:O .. 8;{:11}begin{13:}candidatemove:=O;
repeat candidatemove:=candidatemove+1;successful:=false;{17:}
targrow:=row+rowdeltas[candidatemove];
targcol:=col+coldeltas[candidatemove] ;{:17};{14:}
if(((1<=targrow)and(targrow<=max))and((1<=targcol)and(targcol<~ax)))
then if(board[targrow,targcol]=O)then begin board[targrow,targcol]:=
movenumber;if movenumber<numberofsquares then{15:}
begin tryknightmove(movenumber+1,targrow,targcol,successful);
if not successful then board[targrow,targcol] :=O;end{:15}
else successful:=true;end;{:14};until successful or(candidatemove=B);
{:13};end;{:12}begin{19:}rowdeltas[1] :=2;coldeltas[1] :=1;
rowdeltas[2] :=1;coldeltas[2]:=2;rowdeltas[3]:=-1;coldeltas[3]:=2;
rowdeltas[4] :=-2;coldeltas[4] :=1;rowdeltas[5] :=-2;coldeltas[5]:=-1;
rowdeltas[6] :=-1;coldeltas[6] :=-2;rowdeltas[7] :=1;coldeltas[7] :=-2;
rowdeltas[B] :=2;coldeltas[8] :=-1;{:19};{21:}{9:}
for i:=1 to max do for j:=1 to max do board[i,j] :=0;{:9};board[1,1] :=1;
tryknightmove(2,1,1,successful);;{26:}
if successful then for i:=1 to max do begin for j:=1 to max do write(
board[i,j] :3);writeln;end else write('no solution');;writeln;writeln;
{:26};{:21}{22:}{9:}for i:=1 to max do for j:=1 to max do board[i,j] :=0;
{:9};board[3,3] :=1;tryknightmove(2,3,3,successful); ;{26:}
if successful then for i:=1 to max do begin for j:=1 to max do write(
board[i,j] :3);writeln;end else write('no solution');;writeln;writeln;
{:26};{:22}{23:}{9:}for i:=1 to max do for j:=1 to max do board[i,j] :=0;
{:9};board[2,4] :=1;tryknightmove(2,2,4,successful);;{26:}
if successful then for i:=1 to max do begin for j:=1 to max do write(
board[i,j] :3);writeln;end else write('no solution');;writeln;writeln;
{:26};{:23};end.{:2}

WEB Source Code: knights. web

%ll.mbo materJ.al
%
% from p. 256 of Wayne Sewell's book
%
\de£\WEB{{\tt WEB}}
\de£\title{The Knight's Tour}
\countde£\pageno=108 \pageno=109

120

\de£\9#1{}%this is used tor the sort keys in the index via ~~:sort key}{entry~~>
%
\def\smalline{height2ptt\omit&&&tttttt\cr}
\def\hrline{\multispan{11}\hrulefill\cr}
%
%
%
~* Introduction.
The following program is based on the ''Knight's Tour'' algorithm
~~Knight's Tour~>

found on pages 137--142 of Niklaus Wirth's {\sl Algorithms + Data
~~Wirth, Niklaus~>

Structures = Programs}
(pages 148--152 in the 1986 editJ.on, renamed {\sl Algorithms and Data
Structures}),
translated into the \WEB\ language. ~.WEB~>

~ This program has no input because we want to keep it rather simple.
The result of the program will be the solution to the
problem, which will be written to the loutputl file.

In true top-down tradition, we lay out the entire program as
a skeleton which will be filled in later.

~
program knights_tour(~!output);
const ~<Constants of the program~>~;
type ~<Types of the program~>~;
var ~<Variables of the program~>~;~/
~<Recursive procedure definitions~>
begin ~/
~<Initialize the data structures~>;
~<Perform the Knight's Tour and prJ.nt the results~>;
end.

~Here are some macros tor common programming J.dJ.oms.

~d incr(#) == #:=#+1 {increase a variable by unity}
~d deer(#) == #:=#-1 {decrease a variable by unity}
~We shall proceed to build the program in pieces, following the text of
Wirth's book and describing the structures and algorithms in more or less the
same order in which he describes them. Part of the time we will be designing
top-down; at other times, bottom-up; but always in the order that contributes
more to the understanding of the program. One difference between this
description and Wirth's is that. we will use meaningful variable names (rather
than names such as lu,v,a,b,cl). We can get away with this
because we don't have to worry about the entire program's being listed in one
place in narrow columns. It is broken up into small pieces and
spread over several pages.
~* The Tour.
~~~AKnight's Tour~> 

For those not familiar with the Knight's Tour, it is a classic computer science 
problem involving a knight, moving according to the rules of chess, which 
attempts to move to every square of a chessboard once and 
only once. 
To implement it, we use what is known as a ''backtracking'' algorithm, 
~~~Abacktracking algorithm~> 

121

which is a trial-and-error search for a solution, sometimes referred to as a
''brute-force'' approach. We start at a beginning position and try every path
leading from that position (there are 8 possible knight moves from a given
position) and then every path from each of those positions, etc. We folllow
every path until either a complete solution is found or the first failure occurs
(the square is not on the board or has already been visited). I£ we
get a failure, we ''backtrack'' to the previous good move and start again from
there.

~ The board is a $max \times max$ square and the
number of squares is $lmaxiA2$.
Since this program has no input, we declare the value lmax=51 as a compile-time
constant.
~<Constants of the program~>=
~!max = 5;
~!number_of_squares = 25;
~ The obvious way to define the board is
as an array of two dimensions where the indexes range from 1 to lmaxl.
~<Types of the program~>=
~!index=1 •. max;

~ Boolean values for the squares would be sufficient if we only wanted to know
which squares had been visited, but we also wish to know the {\it order} of
the visits, so we define lboardl as a two-dimensional array of
ordinal values ranging from 0 to lnumber_of_squaresl.
I£ the value at lboard[row,col]=OI
then the square at that position has not been visited and
is a candidate for a visit. Otherwise lboard[row,col]=il, which indicates
that the square was visited on the lilth move. The total number of moves
(including the first one) l=number_of_squaresl.
~d empty=O
~<Variables of the program~>=
~!board: array[index,index] of empty .. number_of_squares;
~Here we in1tialize all positions on the board to lemptyl.

122

This code is placed in a
program scrap separate from all of the other initialization code
for reasons explained later.
~<Initialize the Knight's Tour board~>=
for i := 1 to max do

for j := 1 to max do
board[i,j] := empty;

~Two local variables, ltarg_rowl and ltarg_coll, are the
coordinates of ltarget_squarel, the one to which we wish to move next.
Before we attempt the move, we must first ensure that
ltarget_squarel is on the board (l1<=targ_row<=maxl and
l1<=targ_col<=maxl). Then we must determine whether it is available
for knight placement (ltarget_square=empt~l).
We provide some macros for manipulation
of ltarget_squarel.

Side note: in Wirth's book,
the ltarget_position_validl test is later changed to be a check
for inclusion in the set I [1 .. max] I rather than discrete comparisons to 1 and
lmaxl. While this is more efficient, it does not necessarily aid understanding
of the algorithm, so we will not bother.
~d valid_row_or_column(#)== ~I
((1 <= #) and (# <= max))
~d target_position_valid== ~I
(valid_row_or_column(targ_row) and ~I
valid_row_or_column(targ_col))
~d target_square==board[targ_row,targ_col]
~d target_empty== ~I (target_square = empty)
~d set_square_to(#)== ~I target_square := #
~<Local variables of the Knight's Tour procedureG>=
G!targ_row,G!targ_col : integer; {row and column of target square}
G There are 8 possible knight moves from any given position.
Since we normally are going to attempt, all 8, we w1ll
define lcandidate_movel to hold the move index.
~d number_of_legal_knight_moves=8
G<Local variables of the Knight's Tour procedureG>=
~!candidate_move: o .. number_of_legal_knight_moves i

G We are ready to define the procedure which actually does the search.
It must be declared as a procedure rather than as simple inline code, since it
is recursive. As the procedure is entered for a particular move number and
current position, the moves possible from that position are attempted.
The Boolean result lsuccessfull is set if one of the 8 paths results
in a solution.
The procedure passes the value of lsuccessfull back to
the calling procedure, which will pass it to its own caller, etc., all the
way back up to the original call.
G<Recursive procedure definitionsG>=
procedure try_knight_move(~!move_number:integer

G!row,G!col:index ;
var successful:Boolean) ;

var G<Local variables of the Knight's Tour procedure~>

begin
~<Try the moves possible from the current position until solution is found
or all have been tried~>;
end;
~ Each of the 8 possible moves is attempted.
If the move can be made, it is recorded and a
move from the new position is attempted.
If I successful I is ever I true I,
it can only mean that a complete solution has
been found and the search is terminated.
If lsuccesefull is false, the remaining
candidate moves are tried.

~d no_more_candidates== ~I
(candidate_move = number_of_legal_knight_movee)

C<Try the moves ••• G>=
candidate_move := 0 ;
repeat

incr(candidate_move)
successful := false ;
~<Set the coordinates of the next move as defined

by the rules of chessG>;
~<Record the move if acceptable and try to make

further moves; set lsuccessfull if
solution is foundG>;

until successful or no_more_candidates

G The condition \\{move_is_acceptable} is equivalent to
the conditions (ltarget_position_valid and target_emptyl).
Because of the realities of computer memory addressing, if
we find that the condition ltarget_position_validl
is not ltruel, we cannot perform the second test because
the array indexes ltarg_rowl or ltarg_coll are not valid and
the contents of ltarget_squarel cannot be accessed.
We have to test these two conditions with separate nested lifl statements
(''lif target_position_valid then if target_empty thenl'').

123

In the future, when the ANSI Extended Pascal Standard is adopted, its
short-circuiting \t{and_then} operator will make this unnecessary, but we have
to handle it manually in the meantime.

Once we have determined that the move is acceptable, we ~ecord it. If
lboard_not_fulll is true, we try the next knight move.
If lboard_not_fulll if false (i.e., the board {\it is} full),
it means we have found a solution to the
problem, so we set lsuccessfull to true, which will terminate the tour.
Gd board_not_full==GI
move_number < number_of_squares
Gd record_move== Gl set_square_to(move_number)
~<Record the move if .•• G>=
if target_position_valid then

if target_empty then

begin
record_move
if board_not_full then ~I
~<Try further knight moves and erase this move if not successful~>

else
successful := true;

end;
~Here we try the next move by having the procedure call itself recursively,
with the lmove_numberl incremented by one and
ltarg_row,targ_coll as the position of the move.
If a failure occurs on that move or any move that follows it
(lsuccessful=falsel), we erase the move we just made (this is the
11backtracking 11 part) and continue looking.
~Abacktracking algorithm~>

Important note: the lbeginl and
lendl statements are {\it critical} for this particular section, since they
are used as a lthenl clause in the previous section
and the program text is simply inserted verbatim.
Without the lbeginl and lendl, the call to the ltry_knight_movel procedure
alone becomes
the lthenl clause, which will cause a syntax error when the dangling
lelsel clause is processed.
~d next_move==move_number + 1
~d erase_move==set_square_to(empty)
~<Try further ••• ~>=
begin

try_knight_move(next_move,targ_row,targ_col,successful)
if not successful then

erase_move;
end
~ We now consider the moves
a knight is allowed to make. From any given
position there are 8 possible moves, not all of which are necessarily on
the board. A knight makes a two-part L-shaped move, where the first part
is either one or two squares in a nondiagonal direction, and the second
part is one or two squares in a direction perpendicular to the first.
The number of squares
is never the same for the two parts; if the knight is moved one square during
the first part, then it is moved two squares during the second, and vice versa.

$$\vbo~{
\offinterlineskip
\halign{ \vrule # t \strut\ # \ t \vrule # t \ # \ t

\vrule # t \ # t \vrule # t \ # t \vrule # t \ # t \vrule # \cr
\hrline\smalline
ttt \odot tt \Longleftrightarrow tt \odot ttt \cr
\smalline\hrline\smalline
t \odot tttt \Uparrow tttt \odot t \cr
\smalline\hrline\smalline
t \Updownarrow tt \Leftarrow tt \spadesuit tt

\Rightarrow tt \Updownarrow t \cr
\smalline\hrline\smalline

124

125

& \odot &&&& \Downarrow &&&& \odot & \cr
\smalline\hrline\smalline
&&& \odot && \Longleftrightarrow && \odot &&& \cr
\smalline\hrline
}}$$

The '\spadesuit' represents a knight. Doesn't it sort
of look like one? (You have to use some imagination. Okay, a {\it lot}
of imagination.) The '\odot' characters represent the legal
destinations from the current position.

~ Rather than go through a complicated algorithm, we simply
initialize a pair of tables, lrow_deltasl and lcol_deltasl, containing
values to be added to the curre,nt position to get the target position.
For each of the 8 moves which are possible from the current position,
lrow_deltas[cand1date_move] I is added to the current row to get ltarg_rowl and
lcol_deltas[candidate_move] I provides the same service for ltarg_coll.
~<Set the coordinates of the next move as defined by the rules of chess~>=
targ_row :=row + row_deltas[candidate_move]
targ_col := col + col_deltas[candidate_move] ;

~ If we are going to use these arrays, it might be helpful to define them
to prevent, the Pascal compiler from complaining bitterly.
~<Variables of the program~>=
~!row_deltas,~!col_deltas : ~I

array ~I [1 •• number_of_legal_knight_moves] ~I of ~I -2 •• 2;
~ Even though the compiler is now happy, if we don't initialize the arrays with
the proper delta values, we will take the knight on a route more like the
Drunkard's Walk than the Knight's Tour.
~~Drunkard's Walk~>

~~Knight's Tour~>

~<Initialize the data structures~>=
row_deltas[1] := 2 col_deltas[1] := 1 ;~I

row_deltas[2] := 1 col_deltas[2] := 2 ;~I

row_deltas[3] := - 1 col_deltas[3] := 2 ;~I

row_deltas[4] := - 2 col_deltas[4] := 1 ;~I

row_deltas[S] := - 2 col_deltas[S] := - 1 ;~I

row_deltas[6] :=- 1 col_deltas[6] :=- 2 ;~I

row_deltas[7] := 1 col_deltas[7] := - 2 ;~I

row_deltas[8] := 2 col_deltas[8] := - 1 ;
~ Now it's time to start the tour. For starting positi~n $x_{O}y_{O}$
~~Knight's Tour~>

we select (1,1). Since this is the first move, we set lboard[1,1]=11. We
then call the ltry_knight_movel procedure
with the proper parameters for move 2 to set events in
motion. After all of the moves have been completed, we print out the board.
The result should be the same as the first part of Table 3.1 on page 141
(page 151, 1986 edition) of
Wirth's book, which is reproduced here.

$$\vbox{
\offinterlineskip
\halign{ \vrule # & \strut\ # \ & \vrule # & \ # \ &

\vrule # & \ # & \vrule # & \ # & \vrule # & \ # & \vrule # \cr
\hrline\smalline
& 1 U 6 U 15 U 10 U 21 & \c'r
\smalline\hrline\smalline
& 14 && 9 && 20 && 5 && 16 & \cr
\smalline\hrline\smalline
& 19 && 2 && 7 && 22 && 11 & \cr
\smalline\hrline\smalline
& 8 && 13 && 24 && 17 && 4 & \cr
\smalline\hrline\smalline
& 25 && 18 && 3 && 12 && 23 & \cr
\smalline\hrline
}}$$

~ We define a macro to initialize the first move and start the tour.
Note: the call to ltry_knight_movel in the definition
of ldo_the_tour_starting_atl appears to have
the wrong number of parameters. This procedure requires four parameters and
we seem to be passing only three. However, since a macro parameter is really
just a simple string substitution, we will really be replacing the \#
character with two parameters at once: the row and column of the starting
position. Since the comma is included in the substitution, the expanded text
will have the proper four parameters.
~d do_the_tour_starting_at(#)==board[#] := 1 ;try_knight_move(2,#,successful)
~<Perform the Knight's Tour and print the results~>=
~<Initialize the Knight's Tour board~>;
do_the_tour_starting_at(1,1) ;
~<Print the results of the Knight's Tour~>;

~Since Table 3.1 in the book shows a second solution obtained with
a different first move (3,3),

$$\vbox{
\offinterlineskip
\halign{ \vrule # & \strut\ # \ & \vrule # & \ # \ &

\vrule # & \ # & \vrule # & \ # & \vrule # & \ # & \vrule # \cr
\hrline\smalline
& 23 && 10 && 15 && 4 && 25 & \cr
\smalline\hrline\smalline
& 16 && 5 && 24 && 9 && 14 & \cr
\smalline\hrline\smalline
& 11 && 22 && 1 && 18 && 3 & \cr
\smalline\hrline\smalline
& 6 && 17 && 20 && 13 && 8 & \cr
\smalline\hrline\smalline
& 21 &t 12 &t 7 && 2 t& 19 t \cr
\smalline\hrline
}}$$

\noindent we decide to run the tour
again to duplicate that result as well. We decline the third test in
Table 3.1, because it requires a different value of lmaxl, which we cannot
change at run-time as the program is currently designed.
Before rerunning the test, we must remember to

126

reinitialize the board. This is the reason that the board initialization
code was separated from all of the other initializations; it is executed
more than once.
We use the same name when defining
the code for this section as for the previous section,
which will cause the second test to follow
immediately after the first in the Pascal program.
c·Knight's TourC>
C<Perform the Knight's Tour and print the resultsC>=
C<Initialize the Knight's Tour boardC>;
do_the_tour_starting_at(3,3) i
C<Print the results of the Knight's TourC>;
C The 1986 edition shows yet another solution, with (2,4) as the
starting move.

$$\vbox{
\offinterlineskip
\halign{ \vrule # t \strut\ # \ t \vrule # t \ # \ t

\vrule # t \ # a \vrule # t \ # a \vrule # t \ # t \vrule # \cr
\hrline\smalline
t 23 && 4 && 9 at 14 && 25 t \cr
\smalline\hrline\smalline
t 10 && 15 && 24 && 1 && 8 t \cr
\smalline\hrline\smalline
t 5 && 22 && 3 && 18 && 13 & \cr
\smalline\hrline\smalline
& 16 && 11 && 20 && 7 && 2 & \cr
\smalline\hrline\smalline
t 21 U 6 U 17 U 12 U 19 t \cr
\smalline\hrline
}}$$

C<Perform the Knight's Tour and print the resultsC>=
C<Initialize the Knight's Tour boardC>;
do_the_tour_starting_at(2,4) i
C<Print the results of the Knight's TourC>;
C• The output phase.
The job of printing is not as interesting as the problem itself, but it must be
done sooner or later, so we may as well get it over with.

C In order to keep this program reasonably free of notations that
are uniquely Pascalesque, a few macro definitions for low-level output
instructions are introduced here. All of the output-oriented commands
in the remainder of the program will be stated in terms of three
simple primitives called lnew_linel, lprint_stringl, and
I print_ integer I .
c·system dependenciesC>

Cd width=3 {width of an integer field}
Cd print_string(#)==write(#); {put a given string into the loutputl file}
Cd print_integer(#)==write(#:width) {print an integer of lwidthl character

positions}

127

~d new_line==writeln {advance to a new line in the loutputl file}

~ ~<Print the results of the Knight's Tour~>=
if successful then

for i := 1 to max do
begin 0/

for j := 1 to max do
print_integer(board[i,j])

new_line;
end

else
print_string('no solution')

O.no solutionO>
new_line;
new_line;
~We define a few more odd variables.
~<Variables of the program~>=
~!i,~!j : index ; {temporary index variables}
~!successful : Boolean ; {The Knight's Tour was successful }
0* Index.

128

1 6 15 10 21
14 9 20 5 16
19 2 7 22 11

8 13 24 17 4
25 18 3 12 23

23 10 15 4 25
16 5 24 9 14
11 22 1 18 3

6 17 20 13 8
21 12 7 2 19

23 4 9 14 25
10 15 24 1 8

5 22 3 18 13
16 11 20 7 2
21 6 17 12 19

129

Sample Execution of knights.p

130

WEBmeter Generated Output

for INPUT file : knights.web

TIDENT 140
TNUM 59

OPERATORS

and 2
array of 2
begin end 5
boolean 2
if then el 2
for do 4
if then 3
integer 2
not 1
or 1
procedure 1
program 1
repeat unt 1
to 4
var 1
write 2
writeln 1
+ 4

10
() 29
= 5

16
1

< 1 . 64 ' [] 24
:= 30

5
<= 2

10
KNIGHTSTOU 1
INCR 1
DECR 0
EMPTY 4
VALIDROWOR 2
TARGETPOSI 1
TARGETS QUA 1

131

TARGETEMPT 1
SETSQUARET 2
NUMBEROFLE 3
TRYKNIGHTM 2
NOMORECAND 1
BOARDNOTFU 1
RECORDMOVE 1
NEXTMOVE 1
ERASEMOVE 1
DOTHETOURS 3
WIDTH 1
PRINTSTRIN 1
PRINT INTEG 1
NEWLINE 3

eta 1 51
total number of operators 268

OPERANDS

OUTPUT 1
1 19
MAX 7
5 3
NUMBEROFSQ 3
25 1
INDEX 5
0 3
BOARD 5
I 5
J 5
TARGROW 5
TARGCOL 5
TARGETS QUA 1
8 3
CANDIDATEM 6
MOVENUMBER : 4
ROW 2
COL 2
SUCCESSFUL 9
FALSE 1
TRUE 1
ROWDELTAS 10
COLDELTAS 10
-2 5
2 9
3 5
-1 4
4 3

6 2
7 2
POSITIONS 1
'no solut' 1

eta 2 33
total number of operands 148

SUMMARY

numbered code sections 28
number of procedures 1
number of functions 0

lines of limbo
lines of doc

per code sect.
number of macros
lines of code

per code sect.

14
263
9.39
19

110
6.11

VG 13.00

eta1 51.00
eta2 33.00
n1 268.00
n2 148.00

length 416.00
volume 2659.20
effort 304116.24
time 16895.35 seconds

281 . 59 minutes
4.69 hours

WEB Command Counts

I I

{ }

=
<O< <II>*;
<II< <O>=
(il

<ilb
<II*
<ild

70
1
9

18
16

3
17
18

2
24

4
19

132

133

<Op 1
<O< <0> 35
«<A «<> 10
«!. «<> 2
«!! 18
«1/ 3
«<I 20
«!· I 3

APPENDIX D

HAND-CALCULATED METRICS

134

135

DESIGN and INTEGRATION COMPLEXITY

The design and integration complexity metrics were hand-calculated from the TANGLEd
versions of the WEB programs, using the algorithm mentioned in Section 3.1.1.

sample.p n = 3

iv(maxmin) = 1 S0 (maxmin) = 1 iv(mean) = 1 S0 (mean) = 1

iv(main) = 1 S0 (main) = iv(main) + S0 (maxmin) + S0 (mean) = 3

s1 = 3-3 + 1

queens.p n = 2

iv(tryqueenmove) = 1 S0(tryqueenmove) = 1

iv(main) = 1 S0 (main) = iv(main) + So(tryqueenmove) = 2

s1 = 2-2 + 1

knights.p n = 2

iv(tryknightmove) = 1 S0 (tryknightmove) = 1

iv(main) = 1 S0(main) = iv(main) + S0 (tryknightmove) = 2

St = 2-2 + 1

primes.p n = 1

iv(main) = 1 S0 (main) = iv(main) = 1

S1 = 1- 1 + 1

reg.p n = 9

iv(blankcoef f) = 1 So(blankcoef f) = 1 iv(length) = 1 So(length) = 1

iv(needparen) = 1 S0 (needparen) = iv(needparen) + So(length) = 2

iv(orop) = 2 S0 (orop) = iv(orop) + S0 (blankcoeff) + So(length) = 4

iv(closure) = 3

So(closure)= iv(closure) + So(blankcoeff) + S0(length) = 5

iv(concat) = 6

So(concat) = iv(concat) + iv(blankcoeff) + iv(length) + iv(needparen) = 9

iv(getmat) = 1 S0(getmat) = 1

iv(writematrix) = 1

S0(writematrix) = iv(writematrix) + S0(getmat) = 2

iv(main) = 9

136

S0(main) = iv(main) + iv(orop) + iv(closure) + iv(concat) + iv(blankcoeff) +
iv(getmat) + iv(writematrix) = 23

St = 23 -'9 + 1 = 15

DESIGN STABILITY

The design stability metrics were hand-calculated from the TANGLEd versions of the
WEB programs, using the algorithm mentioned in Section 3.2.1.

sample.p PDS-.1.. - 17

DLREmain = 10 DSmain = ft DLREma:cmin = 5 DSma:cmm = i

DLREmean = 1 DSmean = ~

queens.p P DS = ;1

D LREmain = 11 Ds . -...!.
mam- 12

knights.p PDS=...!. 16

DLREtryqueenmove = 9 D Stryqueenmove = 110

137

DLREmain = 11 DSmain = 112 ' DLREtryknightmove = 4 DStryknightmove = i

primes.p P DS = 1

reg.p F DS = ; 6

D LREmain = 30 Ds . - .1.
mam- 31 DLREblankcoeff = 12 DSblankcoefl = la

DLREorop = 4 DSorop = l DLREclosure = 4 DSclosure = l

DLREconcat = 6 DSconcat = ~ DLREgetmat = 16 DSgetmat = 117

DLREwratematrix = 11 DSwratematrix = l2 DLRElength = 8 DSlength = ~

DLREneedparen = 4 DSneedparen = i

\
VITA

Lisa Min-yi Chen Smith

Candidate for the Degree of

Master of Science

Thesis: MEASURING COMPLEXITY AND STABILITY OF WEB PROGRAMS

Major Field: Computer Science

Biographical:

Personal Data: Born in Louisville, Kentucky, January 24, 1966, the daughter of
Boris Y. and Linda L.H. Chen. Married to Gary Wayne Smith on August
5, 1989.

Education: Graduated from Lafayette Senior High School, Lexington, Kentucky
in May, 1982; received Bachelor of Science from the University of Ken
tucky, Lexington, Kentucky, in May, 1986; completed requirements for
the Master of Science degree at Oklahoma State University in December,
1990.

Professional Experience: Research Assistant, Applied Research Laboratory,
Pennsylvania State University, September 1986 to September 1987. En
gineer, General Dynamics- Fort Worth Division, Fort Worth, Texas, Oc
tober 1987 to August 1988. Graduate Teaching Assistant, Department of
Computer Science, Oklahoma State University, August 1989 to May 1990.

