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Abstract 

 Studies have shown that when we operate the cursor on a computer, several factors 

such as the type of device used (i.e. mouse or touchpad), aging (young vs. old) or motor-

impairment can hinder performances. More precisely, using the touchpad can be difficult 

for any user, even for the most basic tasks, due to the absence of scrolling wheel and the 

reduced amplitude of cursor movement. 

 To cope with these issues, I developed a set of tools to increase the usability of 

the touchpad by analyzing mouse-tracking data. More specifically, several movement 

patterns or cues were predefined and when they were detected, they would trigger the 

auto-completion of the related task which includes navigating on a web browser, selecting 

text and scrolling. 

 The usability experiment conducted to assess the ease-of-use of the created tools 

and to compare the performances of participants showed promising results. Participants 

appreciated the help of the auto-completion tools and when they were able to trigger these 

tools, they were significantly faster. In particular, when moving the cursor to the URL 

address bar they even outperformed Fitts’ law predictions. However, it appeared that 

participants needed several attempts to draw certain cues correctly hence a longer 

completion time.  

 

 

 

Keywords: human factors, usability, mouse-tracking, cues, pattern detection, auto-

completion.
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 Chapter 1: Introduction and literature review 

 Mouse-tracking is useful for many purposes such as usability testing and human 

cognition studies. Through the recording of the cursor trajectory and other features like 

clicks and scrolling, we can analyze how we interact with computers or gain insights on 

the hesitations we face while choosing between several options. Mouse-tracking is also 

widely used to improve the design of menus, applications, and web pages. Indeed, it is 

an interesting technique for usability testing as it provides meaningful information 

(cursor fixations, duration of a movement, speed of the movement) that can be easily 

computed and interpreted. Moreover, it provides similar results to eye tracking with 

cheaper and easier-to-use devices. 

 The following sections summarize the literature related to this study and the 

opportunities for future work. The first section dwells on the use of mouse-tracking to 

determine users’ behavior, prediction of cursor’s movement time and usability testing 

that are the primary focus of this research. Although it is not part of this study, it is 

necessary to consider the influence of aging on computer use, the link between eye and 

cursor position and the applications of eye-tracking. 

 

1- Background 

1.1 Pattern identification and target prediction 

 Numerous studies focused on the user’s interest during web search task to offer a 

more personalized experience or improve the quality of the results. Mueller et al. (2001) 

used mostly the back-and-forth movements of the cursor and they considered that these 

movements were representative of the hesitations of the user between several results. 
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Then, they used the insights from these hesitations to determine what interested the most 

the user and provide personalized content. Huang et al. (2011) used the same principle 

and focused on the use of hovering data to define the user’s interest and improve the 

quality and the relevance of the search results. Additionally, Rodden et al. (2008) were 

able to identify three cursor movement patterns when examining SERP that are also 

linked to eyes movements. These three patterns consist of following the eye horizontally 

or vertically and marking cursor a promising result with the cursor while the eyes continue 

exploring the results. Finally, Guo et al. (2008) focused on the determination of the query 

intent. But instead of using only mouse clicks, they used cursor movements as they 

discovered that cursor movements had specific characteristics depending on the query 

intent. For instance, the vertical range of cursor movements was larger in the case of 

informational tasks as the user was likely to explore all the results provided in the SERP. 

Then, they used their findings to create a classifier that outperforms previous models 

using clicks and related features.   

 Pusara et al. (2004) demonstrated how powerful, cursor movement patterns can 

be. Indeed, they developed, using machine-learning techniques, a model that was able to 

identify a user only thanks to his or her use of the mouse. The features included cursor 

position, speed and angle of movement, clicks and scroll wheel use. With this model, they 

were able to re-authenticate computer users with their mouse habits instead of requiring 

that they re-enter their passwords. 

 It is important to note that identifying movement patterns often relies on 

visualization of eye-tracking data as recommended by Räihä et al. (2005). Static 

visualization enable the plotting of the coordinates of the gaze superimposed on the 
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content displayed on the screen. This gives valuable insights on the specific points of 

interest that the user considered. But these visualizations can also be used to plot mouse-

tracking data. Figure 1 shows how different cursor movement patterns can be identified 

for a reading task. More precisely, one used the cursor as a reading aid (green plus signs), 

one left the cursor inactive (blue circles), and one moved the cursor only line-by-line (red 

crosses). 

 In another context, studies focused on the possibility of creating a model to predict 

in real time the target of the cursor movement. Murata (1998) used the trajectory and 

more precisely the angle of the cursor movement to determine potential targets and move 

automatically the cursor over the most likely target. The results showed that this model 

decreased the pointing time but highlighted the difficulty to make accurate predictions 

when targets were close from each other. Moreover, the trade-off between pointing time 

and accuracy was discussed as the results of the experiment proved that increasing the 

number of samples used to predict the trajectory of the cursor did not always increased 

the accuracy of the said predictions. Ziebart et al. (2012) explained how they developed 

a new probabilistic model using, machine learning techniques, to predict the target of the 

movements with the help of more features. This model was interesting as it overcame the 

difficulty of predicting accurately the target when several small targets were close to each 

other. 

 

1.2 Prediction of movement time 

 Another important field of interest is the modeling of the time required to 

complete a certain task with the mouse. In particular, the time needed to move the cursor 
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from a starting point to a precise target can be modeled by Fitts’ law and numerous studies 

proved that this law is well-fitted to predict the movement’s duration. It is also widely 

used to compare the performances of a new prediction model to the previous theoretical 

time needed to complete the movement. MacKenzie (1992) reviewed the state of the art 

regarding Fitts’ law and the promising refinements to have a more accurate law to predict 

movement time. In this study, the author also demonstrated how Fitts’ law can help for 

usability experiment as three different techniques to delete a file on a Mac computer were 

compared using Fitts’ law. These ideas are also found in the study of Boritz et al. (1991) 

where the authors included the angle of the target as a mitigating effect on the movement 

time before validating their model in a usability experiment of a pie-shaped menu. They 

proved that this new model was accurate to predict the movement time and that the angle 

between the cursor and the target effectively played a key-role in the time required to 

reach the target. However, some studies highlighted the accuracy issues of Fitts’ law for 

small targets (Oel et al., 2001). To cope with this issue, a new model has been developed 

to infer the movement time from a power law including the distance from the target and 

some parameters that depend on the width of the target. 

 

1.3 Usability testing 

 Finally, to assess the quality of the tools presented in this paper, it is necessary to 

conduct a usability testing. The metrics used to quantify usability are often debated but 

three main characteristics emerged in the ISO/IEC 9126-4 Metrics norm as effectiveness, 

efficiency, and satisfaction. Effectiveness refers to how well the user performed the 

specified task, efficiency is the efforts required to achieve the given effectiveness and 

http://usabilitynet.org/trump/documents/Usability_standards.ppt.pdf


5 

satisfaction quantifies the ease of use. However, each of these constituent elements can 

be measured in various ways; for example, there are dozens of standardized 

questionnaires to evaluate satisfaction (Sauro et al., 2005). Moreover, some usability 

measures were introduced for a specific field of research (Bevan, 2006). More precisely, 

for our target users, some usability metrics were presented to account for the relationship 

between the elderly and IT and included a measure of trustworthiness and non-

intrusiveness in the usability evaluation (Holzinger et al., 2008). To reduce the 

dimensions of usability data, Sauro et al. (2005) discussed how some common metrics 

can be standardized and, using PCA analysis, how we can use only one measure as a 

combination of all usability metrics weighed with the first principal components 

coefficients while retaining up to 60% of the original variance. 

 

Figure 1. X and Y coordinates of the cursor for three different readers. 

  

2- Other related researches 

2.1 The role of aging in cursor manipulation 

 Several studies shed light on the influence of aging on the motor capabilities and 

its consequences on cursor control. Armbrüster et al. (2007) tested two tasks, pointing 
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and clicking and pointing-dragging-dropping with two different devices including a 

touchpad for different age categories. Their results showed that for touchpad users, 

middle-aged participants (40 to 65 years old) were 45% slower for the first task and 39% 

slower for the second task compared to younger participants (20 to 32 years old). Another 

study completed the results from the previous study by experimenting various tasks such 

as pointing, clicking, double-clicking and dragging (Smith et al., 1999). Once again, aging 

was linked to a loss of motor control that triggered significantly slower use of the mouse. 

In this study, it was explained by the fact that older participants tended to cover a larger 

distance to reach a target, in particular, because they did more sub-movements and they 

also had a lower accuracy in pointing at targets. From these conclusions, it became clear 

that modeling the user’s behavior to be able to predict his or her next target and anticipate 

the cursor movements is crucial. Indeed, if we can detect a pattern in the user behavior, 

we can later identify this pattern and complete the task automatically. 

 Other researches were conducted to adapt the cursor behavior to the challenges 

faced by older or motor-impaired users. Trewin et al. (2006) developed a tool that aims 

at reducing clicking errors like slipping the mouse before releasing a button, clicking 

while moving or pushing the wrong button. To tackle these issues, their feature prevents 

clicking if the cursor is moving over a certain speed and “freezes” the cursor in its position 

when a target is clicked. The results from the pointing and clicking experiment performed 

by motor-impaired users demonstrated that the tool developed improved target selection 

and worked as an error filter for overlapping clicks and clicks performed while the cursor 

is moving. Gajos et al. (2008) went even further and offered personalized interfaces based 

either on preferences or abilities. They tested the usability of these personalized interfaces 
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compared to a baseline interface for pointing and clicking tasks with able-bodied and 

motor-impaired participants. The results showed that even able-bodied participants 

performed better with personalized interfaces and in particular with the abilities based 

one. Motor-impaired participants also reduced their error rate when using adapted 

interfaces and found it easier and less tiring to use interfaces that were designed 

specifically to suit their capabilities. However, each of these solutions has some 

limitations. Indeed, the tool developed by Trewin et al. (2006) only addresses clicking 

problems and the adaptive interfaces proposed by Gajos et al. (2008) can only replace a 

set of interfaces and requires a long setting phase. 

 

2.2 Gaze and cursor alignment 

 To confirm the link between eyes and cursor movements, several studies focused 

specifically on the gaze/cursor alignment. First of all, Quetard et al. (2016) studied the 

processes involved during visual search to find a specific target in an everyday life scene. 

Findings showed that eyes and cursor movements can be linked mostly in the case of 

noisy pictures or when the target was placed in an unusual location. In these cases, they 

observed that more eye fixations were made to verify the presence of the target and in 

parallel, the cursor movements were slower and deviated more from a straight trajectory, 

indicating hesitations in the decision-making process. 

 But most of the researches regarding gaze/cursor alignment concentrated on 

SERP (Search Engine Results Page), how we examine these results and webpages. Cooke 

(2006) asked participants to find several information on the Washington State Department 

of Licensing web site and determined that when the cursor appeared on screen, 69% of 



8 

the time, it matched the gaze position. Similarly, Chen et al. (2001), recorded gaze and 

cursor positions of participants browsing four websites with different designs. They 

defined seven regions related to the different points of interest on a webpage and found 

that 84% of the regions visited by the cursor were also visited by the eyes, suggesting a 

strong correlation between eyes and cursor movements. To a larger extent, Huang et al. 

(2012) distinguished several cursor movement patterns when browsing a SERP and 

compared gaze/cursor alignment for each behavior. In particular, the gaze and cursor 

positions were the closest when the cursor was used to click or perform specific action 

like scrolling with a median distance around 75 pixels. On the contrary, when the cursor 

was inactive, the gaze was at a median distance of 233 pixels from the cursor. 

 The strong correlation between eyes and cursor movements lead to multiple 

research to predict the gaze position. The first model was proposed by Guo et al. (2010) 

and consisted of a classifier indicating if gaze position is aligned or not with the cursor 

for a sample point. Different methods were used and trained with data collected on 

navigational and informational tasks including the cursor position but also velocities 

along each axis. The results showed that the LogitBoost algorithm outperformed all other 

methods and reached an accuracy of 77% for the most precise model (gaze and cursor 

were considered aligned if the distance was less than 100 pixels). Huang et al. (2012) 

used their findings on the influence of the cursor behavior on the gaze/cursor alignment 

to create a model that includes this feature. However, they reached a surprising conclusion 

since it appeared that it was easier to predict the X coordinate of the gaze than the Y 

coordinate although every study found that the gaze/cursor alignment is stronger along 

the Y-axis. 
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2.2 Eye-tracking applications 

 Extensive research was conducted on eye-tracking and its applications, and they 

are important as eye and mouse-tracking are closely related. Moreover, it showed the 

importance of these technologies in usability testing or to improve learning techniques 

for instance. In particular, Holmqvist et al. (2005) and Vitu et al. (1995) used eye-tracking 

to explore the factors that influence reading behaviors in the case of newspapers. More 

specifically, they studied the influence of the content’s complexity, the general design of 

the document and some more specific factors such as the text size and color or the 

positioning of the images and figures on the reader’s attention. It is asserted that reading 

patterns and the quality of the reading were not fully dependent on the content but 

depended more on the general layout and size of the text and the presence of images along 

the text. Other studies like Kang et al. (2014) focused on the analysis of air traffic 

controllers scanning patterns of their radar screen. Finally, Wilson et al. (2016) also 

analyzed data from radar screen scanning patterns but in the scope of meteorology and 

more precisely to understand how meteorologists determined if a meteorological 

phenomenon was dangerous and how they triggered adequate alert messages. 
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Chapter 2: Motivation 

 Being able to understand how we use the mouse is crucial since it is the most 

common way to interact and control computers. Therefore, every computer user needs to 

be comfortable when using a mouse or touchpad to be able to control his or her computer. 

Moreover, most of the tasks involving the mouse are repetitive; for instance, while 

navigating on a web browser we are likely to enter several URL addresses to access 

different websites and move the cursor to the URL address bar. Thus, we can argue that 

there is a set of cursor movements that are often performed and characteristic of common 

tasks in computer use. 

 In the following sections, we will discuss the objectives and requirements of the 

different tools developed in this research before detailing the research questions. 

 

1- Real time access to mouse-tracking data 

 Mouse-tracking is a mature technology, easy to understand and easy to 

implement. Jon Freeman, professor at NYU, has developed a mouse-tracking software 

used worldwide by more than 3,000 researchers1. However, this software only allows for 

post hoc treatment and analysis of the mouse-tracking data. In the context of pattern 

identification, this is an issue as it does not enable the detection of cues when they occur. 

Moreover, some computations like the velocity of the cursor along each axis are not 

demanding and do not hinder the performances of the software. Thus, for this research, it 

is necessary to create a mouse-tracking software with a real time access to the trajectory 

to compute the necessary features for pattern recognition. 

                                                 
1 http://www.mousetracker.org/ 
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 This tool was also designed in the scope of the research taking place at the Human 

Factors and Simulation laboratory at the University of Oklahoma2. To serve future 

researches, this mouse-tracker will potentially be coupled with an eye-tracker for real 

time analysis of both eyes and cursor movements. Consequently, the mouse-tracking tool 

was developed using Matlab R2016 so that it will be compatible with the eye-tracking 

software. 

  

2- Auto-completion tools 

 In this work, I explored the difficulties that older or motor-impaired people can 

face when using a laptop and its touchpad to point or click a small icon. In particular, I 

used mouse-tracking to create tools to spare this population demanding actions with the 

mouse. I identified three major areas of improvement. First I developed an application 

that facilitates the scrolling task. This task seemed hard to perform in the case of laptops 

used without an additional mouse and thus deprived of scrolling wheel. In this case, the 

user needs to click on a relatively small icon on the scrolling bar which requires a precise 

movement. The second idea I worked on is the assistance for text selection. Indeed 

whether it is performed with the touchpad or a traditional mouse, we need to maintain the 

left button pressed while we move the cursor toward the end of the text we want to select. 

The simultaneous actions required can be challenging for people encountering motor 

impairment. To tackle this issue, I developed a tool that automatically maintains the said 

left button pressed while the user is moving the cursor to select some text. The last idea I 

explored is the auto-completion of predefined movements. I assumed that we can identify 

                                                 
2 https://humanfactors.oucreate.com/home.html?r 
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a set of movements that are demanding or repeated regularly when using a web browser. 

Then, when the pattern of movements is detected, the movements can be automatically 

performed. 

 

3- Research questions 

 The development of these tools and the subsequent usability testing helped us 

answer the following questions: is it possible to create a mouse-tracker and use its data in 

real time? Is it possible to facilitate the scrolling task by avoiding the scrollbar? Is it 

possible to facilitate text selection? Can we identify some repetitive and difficult tasks to 

perform when using the touchpad and develop an automatic completion of such tasks? 

What is the gain obtained with these tools? 
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Chapter 3: Methodology 

 This chapter details the different steps followed to conduct this study. First, I 

developed a mouse-tracking device, using Matlab, which meets the specific requirements 

for pattern recognition. Then the focus is set on the different cues and patterns that are 

used in the auto-completion tools. Finally, details are provided on the tasks that are 

considered for auto-completion and which patterns or cues are used to trigger these tools. 

 

1- Create a mouse-tracker 

 This first sub-section provides insight on the creation of the mouse-tracker, how 

we can generate an interface with Matlab, the technical challenges to determine the cursor 

position and time but also how mouse-tracking data can be interpreted. 

 

1.1 Generating an interface 

 Matlab has a dedicated tool, GUIDE that allows the creation of Graphical User 

Interfaces (GUI). Each element such as textboxes or buttons can be placed on a blank 

canvas using drag-and-drop. Once the visual aspect of the interface is defined, it is saved 

in a “figure” file. To implement the behavior of the interface, a Matlab code file is 

generated and linked to the figure. In this code file, we can develop the computations 

following a click on a button, save the text typed by the user or add some dialog boxes 

for instance. For the mouse-tracker, I developed two interfaces. One has a reduced size 

so it minimizes the influence of the interface during a usability testing (see Figure 2-left). 

The second one is larger and provides more information such as the real time X and Y 

position of the cursor (see Figure 2-right). In both cases, the ‘START’ and ‘STOP’ 
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buttons respectively start and stop the recording of the cursor trajectory and the ‘SAVE’ 

button allows to save the cursor trajectory as a matrix for further use. 

 Once the user starts the recording, the interface will run in the background. Indeed, 

for usability experiments, we do not want the interface to interfere with the environment 

that is being tested. At the end of the experiment, the interface comes back to the 

foreground to let the user stop the recording. 

 

1.2 Technical details 

 To determine the time needed to complete a task and to compute the speed of the 

cursor, it is necessary to create a timer. Matlab offers the ‘clock’ function that gives the 

current date and time with a precision of 1 millisecond. When the recording of the cursor 

trajectory starts, a reference time T0 is stored. Then, with the function ‘etime’, we can 

compute the time elapsed since T0. The sampling is made at a rate of one measure every 

150 milliseconds. In the literature, the sampling rate range from one measure every 100 

milliseconds to one measure every 500 milliseconds. I chose the value of 150 

milliseconds to be accurate enough without compromising the performance of the mouse-

tracker with too much data. 

 However, with Matlab functions, it is only possible to get the cursor position 

within the created GUI. Hence, I called some JAVA functions that are compatible with 

Matlab and allows to get the cursor position relatively to the screen without regard to the 

application being used. The function used to record the cursor position imposed that the 

upper-left corner of the screen has the coordinates (0, 0) and the Y-axis is oriented 
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downward. The development was done on a 15.6” screen with a resolution of 1366 by 

768 pixels. Thus, the lower-right corner has the coordinates (1366, 768). 

 Once the position of the cursor is known and time intervals given by the timer, it 

is easy to compute the velocity of the cursor along the X and Y-axes thanks to the 

following formulas: 

𝑣𝑥(𝑡𝑖) =  
𝑥(𝑡𝑖)− 𝑥(𝑡𝑖−1)

𝑡𝑖− 𝑡𝑖−1
  (1) 

𝑣𝑦(𝑡𝑖) =  
𝑦(𝑡𝑖)− 𝑦(𝑡𝑖−1)

𝑡𝑖− 𝑡𝑖−1
  (2) 

These speeds are computed while the execution of the code is stopped to wait for the next 

sample so, it does not influence the performances of the mouse-tracker. Moreover, it 

avoids a processing phase before the data can be interpreted. 

 

Figure 2. Interfaces for the mouse-tracker. Left: minimal interface. Right: the 

general interface of the mouse-tracker with textboxes to display the cursor 

position. 

 

1.3 Data interpretation 

 The data from the recording of the cursor trajectory can be stored as a matrix in 

an appropriate Matlab file to be used later. In this case, the matrix contains the X and Y 

coordinates of the cursor, the timestamp and the X and Y-velocities. From this matrix, 

we can retrieve meaningful information such as the duration of the experiment, the cursor 

trajectory along each axis, velocities or the maximum deviation from a straight trajectory. 
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The field of research highly influences the interpretation techniques. For instance, 

psychology scientists will be interested in the deviation from a straight trajectory and the 

velocities to quantify hesitations (Smeding et al., 2016). On the other hand, for studies 

that aim at identifying pattern in cursor trajectories temporal visualizations of the 

positions or velocities will be privileged (Räihä et al., 2005). 

 The mouse-tracker’s functionalities were tested in an experiment aiming at 

identifying cursor movements’ patterns during a reading task. In Figure 1, the cursor 

coordinates are superimposed on the screenshot of the text read. The different colors show 

different patterns and the fixations on the words. Figure 3 demonstrates how these 

patterns can be characterized by the temporal representation of X and Y coordinates 

separately. 

 

Figure 3. X or Y position of the cursor against time for three participants. 
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2- Define and detect patterns and cues 

 This second sub-section is dedicated to the different patterns and cues used to 

trigger the auto-completion tools and more precisely how they can be characterized by 

the coordinates or velocities of the cursor to be detected. 

 To detect certain patterns and specific cues, I gathered information from the 

mouse-tracking device. More specifically, the mouse-tracker computes, in real time, the 

position of the cursor and the velocities along each axis. If it is necessary, it is also 

possible to determine the angle of the movement based on two successive positions. All 

these information are then interpreted to identify patterns and cues that are detailed in the 

following sections. 

 

2.1 Cursor position 

 Even if the cursor position is the most basic knowledge that can be retrieved from 

the mouse-tracker, it gives significant insight into the user behavior. First, it is easy to 

detect the presence of the cursor close to a specific point (see Figure 4). The cursor is 

considered close to a target point if it is included in a 15 pixels radius of this target point. 

To determine if the cursor at position (𝑥, 𝑦) is around a specific point, I used the 

characteristic equation of a circle of radius R centered on (X, Y): 

 (3) 

 More generally, the position can be used to detect the presence of the cursor in 

specific areas of the screen rather than around a point. For example, we can be interested 

in the presence of the cursor at the top or the bottom of the screen. Consequently, we can 

define the top part of the display as the upper quarter of the screen and the bottom of the 
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screen as the last 20% of the screen (see Figure 5). To determine that the cursor is one of 

these parts of the screen it is only necessary to verify that the Y coordinate of the cursor 

respects certain conditions. Given a 15.6” screen with a resolution of 1366 by 768 pixels 

and given that the Y-axis is oriented downward, the cursor at position(𝑥, 𝑦) being in the 

upper part of the screen is equivalent to the following equation: 

𝑦 ≤ 192 (4) 

 The second information provided by the mouse-tracking device is the velocities 

of the cursor along the X and Y-axes that derived from the position. This information is 

useful to detect the direction of a cursor movement. The velocity of the movement can 

also be linked to the user’s hesitations. Indeed, a fast movement indicates that the user is 

confident in the target he or she is aiming at. On the contrary, slow movements can relate 

to either involuntary movements or a user who is not confident in the target aimed at. 

 

Figure 4. Detection of the presence of the cursor around a given point (X, Y). 

 

2.2 Checkmark cue 

 For the purpose of the auto-scrolling tool, it was decided to use cues in the shape 

of checkmark pointing upward or downward (see Figure 6). These cues are easily 

recognizable with the help of the velocities values but have few chances to be drawn 

inadvertently. The cue is characterized by a positive X-velocity for both orientations and 

a positive then negative Y-velocity for the downward cue and vice-versa for the upward 
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cue. To determine this change of sign of the Y-velocity, only the last two positions of the 

cursor are examined, each position corresponding to one branch of the checkmark. The 

concept is detailed in the following algorithm: 

 

 To limit the chances of unwanted detections, it is necessary to introduce some 

tolerance regarding the detection of the checkmark. Indeed, if a user moves the cursor 

along a line of text, he or she is not likely to move in an absolutely straight line and any 

deviation along the Y-axis could be interpreted as the cue. To tackle this issue, the 

velocity along the Y-axis is not compared to 0 but to the value of ±67. This value 

corresponding to a movement of 10 pixels for a 150 milliseconds interval. 

 

Figure 5. Top and bottom part of the screen as described earlier. 
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Figure 6. Checkmark cues used for the auto-scrolling tool. 

 

 

Figure 7. Bracket-shaped cue. 

  

2.3 Bracket-shaped cue 

 Another cue can be detected thanks to the velocities. This cue is a bracket-like 

shape drawn on the touchpad (see Figure 7). It is characterized by a horizontal movement 

to the left followed by a downward movement followed by a horizontal movement to the 

right. The horizontal movement to the left (respectively to the right) can be detected with 

negative (respectively positive) velocity along the X-axis and the downward movement 

is indicated by a positive velocity along the Y-axis. We want to detect the pattern as soon 

as it is drawn by the user but we are unable to detect in advance when the user started the 

pattern. Thus, to identify the pattern, the last positions are examined in reverse order and 

it is necessary to reverse the order until the pattern is found or all the positions were 
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explored. Consequently, it is necessary to reverse the order in which each specific 

movement is looked for as presented in the following algorithm: 

 

 

2.4 Angle of the movement 

 To improve the detection of movements’ target and to reduce the amplitude of 

movement required to detect a pattern, one opportunity is to use the angle of the 

movement. This way, it is no longer necessary to move the cursor up to the target point 

but only to move in direction of this target point during several iterations. For each point 

of the subset of positions considered, the actual angle formed by the cursor and the point 

of interest will be compared to the optimal angle formed by the first point of the subset 

and the target (see Figure 8). The angle formed by a horizontal line and the line between 

two points of coordinates (𝑥1, 𝑦1) and  is given by the following formula: 

𝛼 = 𝑎𝑡𝑎𝑛 (
𝑦2− 𝑦1

𝑥2− 𝑥1
) (5) 
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Figure 8. Illustration of the use of the movement’s angle to detect the target. Point 

A represents the current point, point B the target point and the dashed lines 

represent a tolerance margin around the optimal value α. 

 

2.5 Circular shape 

 To detect a circular movement, four successive angles are computed from the last 

five positions recorded following the formula described in the previous section (see 

Figure 9). If the values of the angles are increasing and the last angle is superior to 160°, 

then it is considered as a circle. The concept of this cue’s detection is developed in the 

following algorithm: 
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Figure 9. The different angles computed to detect a circular cue. 

 

3- Applications 

 This last sub-section focuses on the tasks that are auto-completed, namely 

scrolling a document, selecting text and navigating on a web browser. For each task, 

details are given on how the auto-completion tool helps finish the task and the different 

patterns or cues considered to trigger the auto-completion. 

 To be able to create the auto-completion tools, it is necessary to simulate mouse 

events like clicks and scrolling but also to move the cursor over a specific point. These 

functionalities rely on the methods of the JAVA ‘Robot’ class that implements mouse 

events and text-typing simulation. For this research I used in particular the ‘mouseWheel’ 

function to simulate the use of the scrolling wheel, the ‘mouseMove’ function to shift the 

cursor to a given position and lastly the ‘mousePress’ and ‘mouseRelease’ functions that 

simulate respectively a button press or release of the given mouse button (left, right or 

middle button). 

 

3.1 Scrolling a document 

 When we use a laptop with a touchpad, we do not have access to a scrolling wheel. 

Thus we need to use the scrolling bar but that requires to click on small icons that are 
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difficult to reach. Indeed, according to Fitts’ law, the smaller the target, the longer is the 

time needed to reach it. This time will be even longer for older or motor-impaired people. 

Moreover, this task is critical as it is regularly performed when browsing the web or 

reading any kind of documents. 

 In the following sub-sections, two different approaches are discussed but they 

share some common ground. In both cases, the interface remains the same than for the 

mouse-tracking tool (see Figure 2-right); only the code related to the interface was 

modified to include the pattern detection and automatic scrolling. This tool can be used 

on any application ran on the computer (e.g. reading a PDF file, editing text, browsing a 

web page) once the interface is started and, when the cue is detected the display is scrolled 

for a value of 5 notches (the unit that describes the scrolling wheel movement) that, in 

most cases, transfers the text that was at the bottom of the page, up to the top of the screen 

(see Figure 10). 

 

3.1.1- Position-based solution 

 As discussed in the literature review, it appears that in the case of search engine 

results page, cursor and gaze are aligned and thus, the position of the cursor is a good 

indicator of where the attention of the user is focused. Then we can extrapolate that when 

one is reading a document, the position of the cursor can be used to determine when the 

reader reaches the end of the document on the screen and then trigger the automatic 

scrolling. Thus, this first alternative is entirely based on the position of the cursor on the 

screen. More precisely, I considered that, if the user moves the cursor downward from 

the top to the bottom of the screen, it means that he or she is browsing the content of the 
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page and is most likely to want to continue downward. The operating principle for this 

pattern detection is detailed in the following algorithm: 

 

 Whenever the user starts using this tool, the code enters a loop to look for the 

pattern and automatically scroll down the page when the pattern is detected. The loop is 

exited when the user presses the ‘STOP’ button. In more details, at each iteration, the 

position of the cursor is examined. If it’s in the upper zone (as described in the ‘Cursor 

position’ sub-section), the velocity along the Y-axis is computed. If this velocity is 

positive, it indicates a downward movement. Then, after one or more iterations, if the 

cursor reaches the bottom part of the screen, the pattern is considered complete. Then, 

execution is paused for 2 seconds to let the user finish reading after the cursor moved to 

the bottom of the screen. Finally, a scrolling equivalent to 5 notches is simulated. It is 

important to note that for this tool, velocities are not computed automatically as the 

detection is very simple and it would require unnecessary time and space. 

 

3.1.2- Cue-based solution 

 The previous solution is easy to understand and implement. However, one 

drawback emerges as not every reader uses the cursor as a reading aid. Thus, if the cursor 
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stays still, it is impossible to detect that the reader reached the bottom of the page and 

wanted to scroll the page to continue reading. 

 This second alternative does not rely on the cursor position but on specific cues 

that trigger scrolling (see Figure 6). Indeed, I wanted to include more flexibility than in 

the previous solution in particular, by adding an upward scrolling. In this case, the user 

can draw a checkmark pointing upward or downward on the touchpad and the 

corresponding scrolling movement is automatically performed. The mechanics of this 

tool is detailed in the following algorithm: 

 

 

3.2 Selecting text 

 This second tool aims at simplifying text selection to copy, delete or modify some 

text. Indeed, I considered the case where the user only has access to a touchpad. Thus, it 

can be hard for some people to maintain the left button of the mouse pressed while moving 

the cursor to select text. In this solution, a cue drawn with the touchpad will automatically 

simulate the left button press. Then the user has his or her hands free to select the text he 

or she is interested in. 



27 

 

Figure 10. Successive steps to automatically scroll the page with the cue detection. 

 

 In the following sub-sections, three different cues are discussed but in all 

solutions, the interface of the mouse-tracker remained the same and only the code was 

modified to implement the appropriate pattern detections. Similarly to the previous tool, 

when the interface is started, at each iteration, the pattern is looked for among the last 

positions recorded. Once the pattern is detected, it is necessary to determine where the 

text selection begins as drawing the cue to trigger the assistance may entail moving the 

cursor around the first word of the selection. Once the position of the first word is 

computed, the cursor is automatically moved to that position and a left button press is 

simulated. The left button is released as soon as the velocities along the X and Y-axes are 

lower than 0.75 pixel per second. This value allows the user to precisely select some text 

with slower movements while accounting for involuntary movements when the user 

leaves the cursor still at the end of the selection. 
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3.2.1- Bracket shaped cue 

 The first possible cue that was considered to trigger these actions is a bracket-like 

shape drawn on the touchpad (see Figure 11). When the pattern is detected, the cursor is 

moved to the position of the vertical bar of the bracket with an offset of 5 pixels to the 

left. This offset is introduced to take into account a lack of precision from the user as it 

can be difficult to draw the bracket exactly at the beginning of the first word. This way, 

the offset can add a couple characters to the selection if the bracket was not placed at the 

exact position. At each iteration, the cue is looked for among the last 10 positions 

recorded (or all the positions if less than 10 were measured). 

 

Figure 11. An example of how the bracket-shaped cue needs to be drawn around 

text. 

 

3.2.2- Circular cue 

 To be used efficiently in the text selection assistance tool, the bracket-shaped cue 

needs to be drawn with precision and with a limited size which may entail difficulties for 

people lacking motor control. To cope with the precision demanded by the previous cue, 

another idea come up and consists in using a circular shape to circle the beginning of the 

text to be selected. 

 In this case, the beginning of the selection is set to the approximate center of the 

circle drawn by the user. To determine the center, the position related to the angle that is 
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the closest to 160° is retrieved. This point can be considered diametrically opposite to the 

first point. Then the position of the center is computed as the middle of the segment 

between these two points. The selection stops with the same conditions than the bracket-

shaped cue solution. 

 Whereas this cue should be easier to draw and be less precision-demanding with 

regard to the beginning of the text selection, this solution suffers from a major drawback 

as the method employed to detect the circular cue is not restrictive enough and entails 

many unintended detections that hinder the navigation on any type of document. 

 

3.2.3- Checkmark cue 

 The last cue that was considered is the checkmark shape, similar to the scrolling 

tool, but this time, pointing toward the left. As described in section 2.2, this pattern is 

detected by examining the last two positions in the cursor trajectory thus, the starting 

point for the selection is inferred from these two positions. To start the selection, the 

cursor is moved to the X coordinate of the second position (corresponding to the right 

extremity of the checkmark) and the Y coordinate of the first position which approximates 

the middle of the cue (see Figure 12). The selection stops with the same conditions than 

the previous solutions presented. 

 
 

Figure 12. Left: an example of how the checkmark cue needs to be drawn around 

text. Right: explanation on where the cursor is moved for the beginning of the text 

selection. 
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3.3 Navigate on a web browser 

 Motor-impaired people can encounter difficulties browsing the web on a search 

engine. Indeed, using the different features of a search engine often entails moving the 

cursor across the screen. To tackle this issue, two solutions with different features were 

explored to offer an automatized movement of the cursor to specific points of interest. 

For both solutions discussed in the following sub-sections, the interface of the mouse-

tracker has been modified. Indeed, to make these tools operable on any computer, it is 

necessary to take into account different screen resolutions that lead to different 

coordinates for the points of interest. 

 The original mouse-tracker interface has been modified (see Figure 13). Several 

editable text boxes were added to enable the participant to enter the X and Y coordinates 

of the different points of interest on the Google homepage. This way, the code can be 

executed on any computer without regards to the screen resolution. 

 

Figure 13. The interface created for the navigation improvement tools. 
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3.3.1- Opening a Google menu tab 

 This first example focuses on opening a tab of the Google menu which requires 

often time a wide movement to reach the menu icon and to click precisely on a small icon 

surrounded by several other icons. For the demonstration, the tab opened by this tool is 

Google News but any tab can be opened provided that we know its coordinates. In this 

example, the user starts from the Google search bar and moves toward the Google menu 

to open Google News. The pattern recognition refers to the movement from the search 

bar to the menu. Then the auto-completion includes moving the cursor to the center of 

the Google menu, simulate a click, move the cursor to the Google News icon and simulate 

another click (see Figure 14). 

 

Figure 14. Steps for the automatic opening of Google News. The user moves from 

the search bar to the menu (dashed line) and the tool completes the action (red 

line). 

 

 I developed two methods to detect this pattern. The first method only uses the 

position of the cursor and detect the presence of the cursor around the two points of 

interest that are the search bar and the Google menu. Each time the mouse-tracker gets a 
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measure of the cursor position, the predefined pattern is looked for among the last 20 

positions recorded (or all the positions if less than 20 were measured). The concept for 

the pattern’s identification is as follows: 

 

 The second method implements the angle of the movement. Indeed, once the 

cursor is detected around the search bar, the angle of movement is analyzed and compared 

to the optimal angle between the search bar and the Google menu. Then, if three measures 

show that the angle of movement is within 10° of the optimal angle, the pattern is 

considered complete. 

 

 Once one of these patterns is detected, the auto-completion starts. The cursor is 

moved at the center of the Google menu button, a click is performed which opens the 
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menu then, the cursor is moved toward the Google News icon and another click is 

performed to open it (see Figure 14). 

 

3.3.2- Complete recurring movements 

 The previous tool proved that identifying movement toward a specific point is 

possible. However, its scope is relatively narrow as the detection is only possible if the 

user moves from a given point to the target and the auto-completion only include one 

feature when we can imagine many more. 

 To improve the opportunities offered by the previous tool, a second tool has been 

developed by dividing the Google homepage into four quadrants that contain different 

points of interest. The upper-left quadrant contains the URL address bar, the upper-right 

quadrant includes the Google menu and the lower-left quadrant gives access to the search 

bar. Then, I identified what are the movements that the user is the most likely to perform 

and which require a large amplitude of movement to complete them automatically (see 

Figure 15). This way, the movement is identified from a quadrant to a target point which 

is less restrictive and three different patterns are considered in the same tool. 

 Once this tool is started, the position of the cursor is recorded and at each iteration, 

depending on the quadrant in which the cursor is currently located, specific patterns are 

looked for and if one is detected the movement is automatically operated by moving the 

cursor to the corresponding point of interest as described in the following algorithm: 
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Figure 15. The homepage divided into four quadrants and the movements that can 

be identified and autocompleted (colored by target point). 
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 To detect the said patterns, I used both the angle of the movement and the distance 

to the target. Indeed, the angle of the movement does not indicate if the cursor is moving 

toward or away from the point of interest. Thus, introducing the notion of distance from 

the target helps reduce unwanted detections by simply verifying that the distance between 

the cursor and the target is decreasing. At each iteration, the last four points of the 

trajectory are considered; the optimal angle of movement is computed as the angle 

between the first of the four points and the potential target and angles and distances are 

calculated for the next three points. Then, the pattern is considered complete if the three 

measures show that the angle of movement is within 15° of the optimal angle and if the 

distance to the target decreased. The concept for this pattern detection is the following:  

 

 

3.4 Final deliverable 

 The final deliverable takes the form of an application that combines all the tools 

described here in one, more complete, tool to provide an optimal experience to the user. 

This way, while we are browsing the web we would have assistance to move to specific 
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points of interest, scroll the web pages and select text. Moreover, we can imagine that the 

interface lets the user choose which tools he or she wants to use (see Figure 16). Thus, if 

the user wants assistance for scrolling and text selection for other types of documents, he 

or she would not be disturbed by the target identification tool. 

 

Figure 16. Interface of the final auto-completion tool.  
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Chapter 4: Experimentation 

1- Recruitment 

 All participants were recruited through emails at the University of Oklahoma. 

They were aged 22 to 72 years old. All of them were fluent in English and able to perform 

simple computer tasks involving the touchpad. Participants were split into two groups: a 

control group of participants (aged 23 to 72 years old, mean = 34.43, sd = 13.01) who had 

no access to the auto-completion tools and whose tasks completion time served as a 

reference and an experimental group (aged 22 to 57 years old, mean = 28.46, sd = 9.48) 

who had access to the auto-completion tools. They were randomly assigned to either 

group at the condition that there was an equal number of participants in each group. 

Before starting the experiment, they were asked to sign a consent form authorizing the 

recording and analysis of the cursor movements during the experiment and the responses 

to a usability questionnaire. 

 

2- Technical details 

 To compare the completion time of each task, it is necessary to be able to detect 

when a given task is completed by the user. For participants that were part of the 

experimental group, it was easy as the completion of the task corresponds to the end of 

the auto-completion code execution. But for the control group, it required additional 

computations. In the case of the navigation on Google, it is possible to detect the presence 

of the cursor around one of the point of interest which means that the task involving to 

move the cursor to this point is complete. However, there is no particular event related to 
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the completion of the scrolling or text selection tasks. Thus, it was impossible to test all 

these tools in one scenario and still get a precise completion time. 

 

3- Navigation improvement tool 

  The interface used for this part of the experiment is identical to the interface 

described in Section 3.3 (see Figure 13). Once all the required positions were entered, 

participants clicked the ‘START’ button. After that, the recording of the cursor position 

started along with pattern detections. To have all participants start in the same conditions, 

a new web browser page was opened on the Google homepage and the cursor was 

automatically moved to the position (1300, 700). This position corresponds to the lower 

right quadrant and was chosen to maximize the distance to cross to complete the first task 

of the scenario. The scenario included the following steps: 

1. Move the cursor to the URL bar and enter the URL: 

https://en.wikipedia.org/wiki/University_of_Oklahoma. 

2. Go back to the homepage and move the cursor to the search bar to enter the request 

‘Wikipedia OU’. 

3. Open the Google News tab from the Google menu. 

Once the participants completed all the steps, the recording was stopped by clicking the 

‘STOP’ button and the participants were asked to save the data in a file for further 

analysis. 
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4- Text selection tool 

 This tool displayed a smaller interface as the screen resolution has no influence 

on the code (see Figure 2-Right). Still, the original code was modified so that when the 

user launched the application, the system web browser opened at the Wikipedia web page 

for the University of Oklahoma. Once the recording was started, the only task to be 

performed was to select the first paragraph of the article. Then, participants stopped the 

recording and saved it for further analysis. 

 

5- Scrolling tool 

 The interface used here was the same than for the text selection tool. Once again 

the University of Oklahoma Wikipedia web page opened automatically. When 

participants started the recording, the task to be performed consisted in scrolling down to 

the first section and back up to the top of the page. Then, the recording was stopped and 

the data were stored in a file for further analysis. 

 

6- Usability questionnaire 

 When all these tasks were performed, participants were asked to answer several 

questions (see Appendix A) aiming at quantifying how difficult these tasks were 

perceived on a five-point scale and the user’s familiarity with the touchpad (all 

participants) and how easy it was to use the auto-completion tool on a five-point scale 

(only participants from the experimental group). 

 These questions were established to evaluate several usability measures as 

described in the following table: 
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Usability measure Group Questions 

Efficiency 

Both 

• In general, I find it hard to use the touchpad 

• I found the tasks hard to perform 

Learnability 

Experimental 
• It is easy to understand how auto-

completion tools work 

Satisfaction 

Experimental 

• Evaluate how useful was the auto-

completion tool 

• The navigation was harder due to the tools 

Table 1. The different questions of the usability questionnaire classified by the 

usability measure they evaluate.  



41 

Chapter 5: Results 

 All mouse-tracking data were processed using Matlab to retrieve each task’s 

completion time. When a participant was not able to trigger auto-completion tools or did 

not leave the cursor still around target points, it was impossible to generate automatically 

the completion time. Thus, some data were analyzed manually to determine as precisely 

as possible the completion time. Across all participants and tasks, three values were 

missing, one due to data corruption and two other because it was impossible to determine 

an exact completion time. Once all completion times were determined, the data were 

analyzed using the language R to perform data visualizations and statistical analysis 

summarized in the following sections. ANOVA analysis of the participants’ age of both 

groups showed no significant difference between control and experimental group 

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  0.74) so age has not influenced the results between the two groups. 

 

1- Familiarity with the touchpad 

 This factor was evaluated using a yes or no question on whether participants found 

it difficult to use the touchpad in general. 26% of the participants replied yes indicating 

that using the touchpad is not perceived as difficult for most people. 

 

2- Perceived difficulty of the tasks 

 This measure is an aggregate value on how participants perceived the difficulty 

of the tasks. A lower score indicates that the tasks were easy. The score attributed by 

participants in question 1 are presented in the following histogram. We can see that scores 

range from 1 to 5, indicating that all participants had not the same perception of the 
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difficulty of the tasks. The mean score is 1.96 which tends to show that overall, the tasks 

were not perceived as difficult. 

 

Figure 17. Histogram presenting the score given for tasks difficulty. 

 

 If we take a closer look at these scores by participants’ group, it appears that 71% 

of the control group gave a score of 1 meaning that the tasks were easy but experimental 

group participants gave in average a score of 2.69. 

 

3- Intuitiveness of the patterns 

 The score attributed by participants in question 2 are presented in the following 

histogram. A higher score indicates that it was easy to understand the cues and patterns 

detected for the auto-completion tools. We can see that scores range from 2 to 5, 

indicating that the cues decided to trigger auto-completion tools were easy to understand. 

This factor is all the more important as the intended target for these tools are elder people 

who can suffer from memory impairment. It is highly important that the patterns used to 
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trigger the auto-completions are easy to memorize and the mean score of 4.46 shows that 

there is no need to improve the intuitiveness of these patterns. 

 

Figure 18. Histogram presenting the score given for patterns intuitiveness. 

 

4- Auto-completion tools usability scores 

 The usability of each auto-completion tools along with an overall appreciation of 

all the tools was assessed by the participants on a 5-point scale with a score of 1 indicating 

dissatisfaction and a score of 5 meaning that the participant was satisfied. The following 

figure displays the median and first and last quartiles of the scores in boxplots. 

 
Figure 19. Boxplots of the usability scores given for each auto-completion tool. 
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 The general appreciation score is 3.31 on average indicating that the tools are 

considered helpful. It is particularly true for the scrolling assistance tool that reached a 

4.08 average score with 46% of the participants giving a score of 5. On the other hand, 

the text selection assistance tool scored poorly with an average score of 2.31 and 54% of 

the participants giving a score of 1 or 2. Regarding the navigation improvement tool, the 

mean scores are all over 3.6 which is satisfying but not as high as the scrolling assistance 

tool.  

 

5- Influence of the tools on the computer use 

 The score attributed by participants in question 9 is presented in the following 

histogram. A lower score indicates that the tools improved the use of the computer. We 

can see that the scores range from 1 to 5 with a mean of 2.92, indicating that the navigation 

is slightly improved thanks to the tools. However, this value is close to 3 which is the 

intermediate value in the 5-point scale used in the questionnaire. Thus, it is hard to 

conclude definitively that the tools have an influence on the general use of the computer. 

 

Figure 20. Histogram presenting the score given for the influence of the tools on 

the navigation. 
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6- Comparison of the completion times 

All tasks of the experiment are discussed separately in the following sections. It 

is important to note that outlying values corresponding to unexpectedly high completion 

times were removed. Indeed, 26% of the participants declared that they find it difficult to 

use the touchpad in general so the difficulty they encounter with the touchpad may have 

slowed them in the completion of the tasks involved in the experiment. To compare both 

groups, I performed an ANOVA to determine if the time required to complete a task is 

significantly different from one group to the other. 

 

6.1 Movement times 

To complete the tasks of navigation on the Google homepage, experimental group 

participants were not required to learn how to draw a specific cue. They only had to try 

to complete the cursor movements following the straightest possible trajectory to trigger 

the auto-completion tools. 

The comparison of the completion times showed that participants from the 

experimental group were significantly faster to move the cursor to the URL address bar 

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  7.37 ∙ 10−3) and to the search bar (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  5.26 ∙ 10−3). These 

results appear clearly on the mean and standard error plots in Figure 21. 

To complete these results, I used a Fitts’ law based on the results presented in 

MacKenzie et al. (1992). For pointing and selecting, the equation giving the completion 

time is: 

𝑀𝑇 = 53 + 148 ∙ 𝐼𝐷  (6) 

where ID represents the index of difficulty of the task, computed as: 



46 

𝐼𝐷 =  log2(2 ∙ 𝐴
𝑊⁄ )  (7) 

with A representing the distance to the target and W its width. 

 We can notice that all minimum movement times are lower than predicted except 

for the movement to the Google menu for the control group. Moreover, the minimum 

movement times for the experimental group are almost twice lower than the theoretical 

movement time. Finally, if we consider only the participants who were able to trigger 

auto-completion tools, their mean movement time are lower (0.536s, 0.575s and 0.616s 

respectively). 

 A (px) W (px) ID MT (s) 

Movement to the URL bar 354 15 5.56 0.876 

Movement to the search bar 429 15 5.84 0.917 

Movement to the Google 

menu 

870 15 6.86 1.068 

Table 2. Theoretical movement time resulting from Fitts' law. 

 

 

Figure 21. Mean and standard error plots for each movement completion time, by 

group, in seconds. From left to right: movement to the URL address bar, 

movement to the search bar and movement to the Google menu. 



47 

6.2 Text selection task 

For this task, participants from the experimental group had to learn how to draw 

the cue that triggers the assistance tool. More precisely, they had to go through a trials 

and errors phase to draw the cue accurately at the beginning of the text they had to select, 

and they also had to move the cursor fast enough to prevent the tool from releasing the 

left button. This training phase was included in the completion time which explains why 

the experimental group needed significantly more time to complete the text selection task 

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  1.27 ∙ 10−11). 

 

Figure 22. Mean and standard error plots for text selection task completion time, 

by group, in seconds.  

 

6.3 Scrolling task 

Again, for this task, participants from the experimental group had to learn how to 

draw the cue that triggers the assistance tool. More precisely, they had to go through a 

trials and errors phase to draw the cue accurately. This training phase was included in the 

completion time which explains why the experimental group needed significantly more 

time to complete the scrolling task (𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  3.46 ∙ 10−2). 
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Figure 23. Mean and standard error plots for scrolling task completion time, by 

group, in seconds.   

 

7- Comparison of the completion rates 

 The completion rate is defined as the ratio of participants that successfully 

completed the required tasks. For the experimental group, a task is considered completed 

if the participant was able to trigger the auto-completion tool with the appropriate pattern 

(see Table 3). 

 Completion rate for the 

experimental group 

Movement to the URL bar 54% 

Movement to the search bar 85% 

Movement to the Google menu 8% 

Text selection 69% 

Scrolling 100% 

Table 3. Summary of the completion rates for each task for the experimental 

group. 
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 We can notice that for the scrolling task, the completion rate was 100% meaning 

that all participants from the experimental group were able to draw the cue accurately. 

The movement to the search was automatically completed for 85% of the participants 

which is satisfying. However, for the movement toward the Google menu, it dropped to 

8%. 
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Chapter 6: Discussions 

 In this chapter, the results of the experiment are discussed to explain the probable 

reasons behind outlying results and the main limitations of this study. The results of the 

experiment showed that all participants are familiar with the touchpad and most of them 

do not encounter difficulties using it. Moreover, the perceived difficulty of tasks involved 

in the testing is low. Participants from the experimental group also described the pattern 

and cues as easy to understand. All these indicators explain the high usability scores for 

the navigation and scrolling tasks as well as minimum movements times that are almost 

half the predictions from Fitts’ law for the movement to the search bar and the Google 

menu. Nevertheless, some results are less satisfying than expected or need some 

qualifications. 

 First of all, regarding the perceived difficulty of the tasks, we can notice that the 

experimental group gave higher scores with an average score more than twice as high as 

the control group. This is all the more intriguing as the tasks involved in the experiment 

are common tasks that are performed on a daily basis by any computer user. However, 

we must bear in mind that participants from the experimental group needed to understand 

and get used to the auto-completion tools that they had to use. In particular, for the text 

selection and scrolling task, they had to manage to draw the cues correctly, with enough 

precision and speed to be detected correctly. Thus, these participants might have 

encountered more difficulties to perform these tasks due to the novelty of the tools. This 

argument is supported by several participants that commented that after some training 

they would be likely to be able to use the auto-completion tools more efficiently. 
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 Secondly, some qualifications need to be drawn about the usability scores 

attributed to the auto-completion tools. Indeed, in the case of the navigation on Google, 

several participants commented that they were not able to perceive the auto-completion 

part, most likely because they were not able to trigger the auto-completion. Moreover, 

some participants did not move the cursor following a straight trajectory but made a 

curvier movement which prevented the detection of the movement patterns and the 

triggering of the related auto-completion. This is particularly true for the movement to 

the Google menu where only 8% of the participants triggered the auto-completion tools. 

Both of these issues can explain why the usability scores are not higher. Additionally, 

even though the completion rate for the text selection task is satisfying with 69% of the 

participants triggering the text selection assistance tool, the average usability score of 

2.31 remains low. This is likely explained by the precision demanded by this tool to draw 

the cue accurately at the beginning of the text to be selected and to move the cursor fast 

enough to reach the end of the text before the assistance is stopped. To be able to complete 

this task, successful participants had to make several attempts before controlling all the 

parameters involved in the cue detection. Thus, without training, this solution seems to 

make it harder to perform a basic task which entails the lower usability score. However, 

it is important to note that several participants expressed a strong interest in the idea of 

not having to hold the left button of the mouse pressed while moving the cursor to select 

text. These comments confirm that the idea of simulating the left button press can be 

highly beneficial to improve the touchpad’s usability, but some improvements are 

required on the cue that triggers this assistance. 
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 The fact that participants needed to get used to the cues for the text selection and 

scrolling tools has also an influence on the completion times. The results showed that for 

both text selection and scrolling, the experimental group required significantly more time 

to complete the tasks than the control group. Indeed, few participants were able to trigger 

these auto-completion tools on their first attempt thus longer completion times. But these 

results must be considered carefully as the completion times take into account all the 

attempts made as a training. Once the potential users get used to drawing these cues, we 

can expect that they will be able to draw the cues precisely at the first attempt thus 

reducing the completion time. Moreover, if we focus on the automatic scrolling tool, it is 

important to note the completion rate of 100% showing that all participants were able to 

control this tool within seconds and more importantly, the usability score of 4.08 confirms 

that this tool is easy to use. 

 Additionally, one may argue that the completion times for the text selection and 

scrolling tasks are quite high even for the control group with no participant under 10 

seconds. But, for all tasks, participants had to press the ‘START’ button to record the 

cursor trajectory and start the tools, reduce the interface to work on the web browser and 

at the end reopen the interface and press the ‘STOP’ button to end the recording of the 

cursor trajectory. But contrary to the navigation tasks where it possible to isolate the 

movements time from the manipulation of the interface, there is no event that can help 

distinguish the selection or scrolling phase. This likely explains why the completion times 

for these two tasks appear to be abnormally high. 

 On the other hand, it is necessary to consider the limitations of this study and how 

the results could be improved by overcoming these constraints. The main limitations in 
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this work come from how the GUI tool works in Matlab. Even if it simplifies the process 

of creating a GUI, it lacks more generality in the event handling. Indeed, Matlab provides 

numerous useful event handlers but they are only working when the cursor moves within 

the GUI. Thus to provide auto-completion tools that can work on any application running 

on a computer, it is impossible to use Matlab’s event handlers, and it is necessary to fall 

back on external functions, namely using Java. But this trick is limited as it is not possible 

to use all Java functions in Matlab and in particular, I was not able to use the 

‘MouseListener’ class and its functionalities. This issue mostly reduces the quantity of 

information we can collect to define and detect a pattern in the user’s cursor movements. 

 Additionally, regarding the navigational tasks being tested, the tools were 

implemented in such a way that each subtask is flagged, which makes it easier to 

determine the completion time during post hoc analysis. More precisely, for the 

experimental group, when a pattern is auto-completed, a specific number is entered in a 

dedicated column of the record and for the control group, the flag is set when the cursor 

is around any of the points of interest. However, some participants failed to trigger the 

auto-completion tools or, in the case of the control group, clicked in the URL bar or search 

bar outside the area around the points of interests. They were still able to complete the 

tasks but they were not flagged during the execution of the code. Then, it was necessary 

to manually compute the completion times by browsing the record to spot a position that 

was consistent with the completion of a given task. This process lacks precision as it may 

introduce human error but also because participants sometimes moved the cursor to 

different (close) locations that are all potentially indicative of the task completion. 
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Chapter 7: Future work 

 The first area of improvement concerns the code that has already been written. 

More specifically, the detection of a circle that has been considered for the text selection 

assistance tool. The current solution as it is leads to many involuntary detections that 

hinder the navigation on any kind of application. Moreover, the computations to 

determine the beginning of the selection only gives an approximate position. Thus, it 

would be interesting to investigate further how we can detect a circular movement of the 

cursor with sufficient restrictions to avoid multiple unwanted detections. Another 

beneficial improvement can originate from the opportunity to use clicks information. It 

would enable more precise detections for existing tools but also offer new detection 

possibilities that will convert into new tools. The tools emanating from these new 

opportunities will either include longer sequence of events to provide auto-completion 

for more complex tasks or offer a way to differentiate patterns that may have the same 

movement characteristics but different clicking patterns. Eventually, we can imagine to 

introduce machine learning in the existing code to detect more general patterns like how 

the user repeats some sequence of task regularly. Another idea within the scope of the 

existing tools is to record which tab of the Google menu is clicked the most and once the 

movement toward the menu is detected, not only move the cursor to the menu but also 

click it and open the tab that is the most likely to be opened. 

 Another area of improvement involves the experiment protocol. Indeed, the 

scenarii used to test all the auto-completion tools only include one straightforward 

execution of each task. However, it would be interesting to test these tools for a longer 

period to let the participants use the tools in conditions that are the closest to the everyday 
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use. In particular, it would be highly beneficial to let participants navigate on their web 

browser with the auto-completion tools activated and evaluate how often involuntary 

pattern detections happened and the disruptions that it entailed. Moreover, as some 

participants declared, using the tools for a longer time may help them get used to the cues 

and make it easier to use the auto-completion tools efficiently. 

 Eventually, as suggested by the literature, age can be an influential factor in the 

time required to complete some tasks like pointing and clicking. Yet the pool of 

participants did not include enough middle aged and older participants. Thus, it was 

impossible to study the influence of the age on the completion times. Future studies must 

endeavor to include more age diversity within the participants to explore the influence of 

aging in the completion times and the success in using auto-completion tools. 
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Conclusion 

 This research contributes to the advances in the mouse-tracking technology and 

its applications to improve the usability of laptops. Indeed, I created a mouse-tracking 

device that records the cursor position on the screen and computes the velocities in real 

time. The real time computations are paving the way for auto-completion tools. The first 

application I presented demonstrates how we can look for different patterns at once to 

facilitate the navigation on a web browser by defining points of interest and automatically 

moves the cursor to these points when the movement of the cursor points to a given target. 

The second application shows how we can predefine a pattern that once recognized by 

the mouse-tracking device, triggers a tool that assists the user in text selection. Finally, 

the last tool helps scrolling a page without moving the cursor on the small icons of the 

scrollbar. 

 The results obtained from the experiment carried out to validate the usability of 

these tools gave several insights. First, regarding the navigation improvement tool, it 

showed that participants found this tool useful and the time required to complete these 

tasks was reduced for the participants from the experimental group. Using Fitts’ law 

indicated that movements’ time for the navigation tasks were lower than expected and, in 

particular, participants from the experimental group were almost twice as fast as the 

prediction from Fitts’ law. 

As anticipated, the cue for the text selection assistance tool was hard to draw 

precisely and this tool could not be used efficiently on the first attempt as the significantly 

higher completion time proved. Finally, the scrolling tool was characterized by a very 

high usability score indicating that the participants found it easy to draw the cue and that 
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the tool was helpful even if the completion time indicated that experimental group needed 

more time. These results tend to show that participants were satisfied with a solution that 

makes it easier to use a laptop’s touchpad even if they need some time to get used to it. 

 This study also proved that analyzing mouse-tracking data can help implementing 

auto-completion tools that detect specific cues or movements toward specific target points 

but to be efficient and useful, the patterns need to be intuitive and easy to draw. Several 

areas of improvements of the current tools were identified and we hope that this will lead 

to more research in this field. 

 



58 

References 

1. Armbrüster, C., Sutter, C., & Ziefle, M. (2007). Notebook input devices put to the 

age test: the usability of trackpoint and touchpad for middle-aged 

adults. Ergonomics, 50(3), 426-445. 

 

2. Bevan, N. (2006). Practical issues in usability measurement. Interactions, 13(6), 

42-43. 

 

3. Boritz, J., & Cowan, W. B. (1991). Fitts's law studies of directional mouse 

movement. human performance, 1(6). 

 

4. Chen, M. C., Anderson, J. R., & Sohn, M. H. (2001, March). What can a mouse 

cursor tell us more?: correlation of eye/mouse movements on web browsing. 

In CHI'01 extended abstracts on Human factors in computing systems (pp. 281-

282). ACM. 

 

5. Cooke, L. (2006, May). Is the Mouse a" Poor Man's Eye Tracker"?. In Annual 

Conference-Society for Technical Communication (Vol. 53, p. 252). 

 

6. Gajos, K. Z., Wobbrock, J. O., & Weld, D. S. (2008, April). Improving the 

performance of motor-impaired users with automatically-generated, ability-based 

interfaces. In Proceedings of the SIGCHI conference on Human Factors in 

Computing Systems (pp. 1257-1266). ACM. 

 

7. Guo, Q., & Agichtein, E. (2008, July). Exploring mouse movements for inferring 

query intent. In Proceedings of the 31st annual international ACM SIGIR 

conference on Research and development in information retrieval (pp. 707-708). 

ACM. 

 

8. Guo, Q., & Agichtein, E. (2010, April). Towards predicting web searcher gaze 

position from mouse movements. In CHI'10 Extended Abstracts on Human 

Factors in Computing Systems (pp. 3601-3606). ACM. 

 

9. Holmqvist, K., & Wartenberg, C. (2005). The role of local design factors for 

newspaper reading behaviour-an eye-tracking perspective. Lund University 

Cognitive Studies, 127, 1-21. 

 

10. Holzinger, A., Searle, G., Kleinberger, T., Seffah, A., & Javahery, H. (2008, July). 

Investigating usability metrics for the design and development of applications for 



59 

the elderly. In International Conference on Computers for Handicapped 

Persons (pp. 98-105). Springer, Berlin, Heidelberg. 

 

11. Huang, J., White, R., & Buscher, G. (2012, May). User see, user point: gaze and 

cursor alignment in web search. In Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems (pp. 1341-1350). ACM. 

 

12. Huang, J., White, R. W., & Dumais, S. (2011, May). No clicks, no problem: using 

cursor movements to understand and improve search. In Proceedings of the 

SIGCHI Conference on Human Factors in Computing Systems (pp. 1225-1234). 

ACM. 

 

13. Kang, Z. and Bass, E.J. (2014). Supporting the eye tracking analysis of multiple 

moving targets: Design concept and algorithm. IEEE International Conference 

on Systems, Man, and Cybernetics. San Diego, CA, pp. 3191-3196. 

 

14. MacKenzie, I. S. (1992, September). Movement time prediction in human-

computer interfaces. In Proceedings of Graphics Interface (Vol. 92, No. 7, p. 1). 

 

15. Mueller, F., & Lockerd, A. (2001, March). Cheese: tracking mouse movement 

activity on websites, a tool for user modeling. In CHI'01 extended abstracts on 

Human factors in computing systems (pp. 279-280). ACM.  

 

16. Murata, A. (1998). Improvement of pointing time by predicting targets in pointing 

with a PC mouse. International Journal of Human-Computer Interaction, 10(1), 

23-32. 

 

17. Oel, P., Schmidt, P., & Schmitt, A. (2001, September). Time prediction of mouse-

based cursor movements. In Proceedings of Joint AFIHM-BCS Conference on 

Human-Computer Interaction IHM-HCI (Vol. 2, pp. 37-40). 

 

18. Pusara, M., & Brodley, C. E. (2004, October). User re-authentication via mouse 

movements. In Proceedings of the 2004 ACM workshop on Visualization and data 

mining for computer security (pp. 1-8). ACM. 

 

19. Quétard, B., Quinton, J. C., Mermillod, M., Barca, L., Pezzulo, G., Colomb, M., 

& Izaute, M. (2016). Differential effects of visual uncertainty and contextual 

guidance on perceptual decisions: Evidence from eye and mouse tracking in visual 

search. Journal of Vision, 16(11). 



60 

20. Räihä, K. J., Aula, A., Majaranta, P., Rantala, H., & Koivunen, K. (2005). Static 

visualization of temporal eye-tracking data. Human-Computer Interaction-

INTERACT 2005, 946-949. 

 

21. Rodden, K., Fu, X., Aula, A., & Spiro, I. (2008, April). Eye-mouse coordination 

patterns on web search results pages. In CHI'08 extended abstracts on Human 

factors in computing systems (pp. 2997-3002). ACM. 

 

22. Sauro, J., & Kindlund, E. (2005, April). A method to standardize usability metrics 

into a single score. In Proceedings of the SIGCHI conference on Human factors 

in computing systems (pp. 401-409). ACM. 

 

23. Smeding, A., Quinton, J. C., Lauer, K., Barca, L., & Pezzulo, G. (2016). Tracking 

and simulating dynamics of implicit stereotypes: A situated social cognition 

perspective. 

 

24. Smith, M. W., Sharit, J., & Czaja, S. J. (1999). Aging, motor control, and the 

performance of computer mouse tasks. Human factors, 41(3), 389-396. 

 

25. Trewin, S., Keates, S., & Moffatt, K. (2006, October). Developing steady clicks: 

a method of cursor assistance for people with motor impairments. In Proceedings 

of the 8th international ACM SIGACCESS conference on Computers and 

accessibility (pp. 26-33). ACM. 

 

26. Vitu, F., O’Regan, J. K., Inhoff, A. W., & Topolski, R. (1995). Mindless reading: 

Eye-movement characteristics are similar in scanning letter strings and reading 

texts. Attention, Perception, & Psychophysics, 57(3), 352-364 

 

27. Wilson, K. A., Heinselman, P. L., and Kang, Z. (2016). Exploring applications of 

eyetracking in operational meteorology research. Bulletin of the American 

Meteorological Society, 97(11), 2019-2025. 

 

28. Ziebart, B., Dey, A., & Bagnell, J. A. (2012, February). Probabilistic pointing 

target prediction via inverse optimal control. In Proceedings of the 2012 ACM 

international conference on Intelligent User Interfaces (pp. 1-10). ACM. 



61 

Appendix A: Usability questionnaire 

Participant’s ID: 

Participant’s Age: 

I had access to the auto-completion tool: Yes  No  (If No, answer only the first 

question below) 

In general, I find it hard to use the touchpad: Yes  No   

 

All the items use a five point scale from strongly disagree to strongly agree: 

 

 Strongly  

Disagree  

1 

2 3 4 Strongly  

Agree  

5 

1. I found the tasks hard to perform 

 

     

2. It is easy to understand how auto-completion 

tools work 

 

     

For the following tasks, evaluate how useful was 

the auto-completion tool: 

     

    3. Moving the cursor to the URL address bar 

 

     

    4. Moving the cursor to the search bar 

 

     

    5. Moving the cursor to the Google menu 

 

     

    6. Select text for further modification 

 

     

    7. Scroll down/up a web page 

 

     

8. Overall, I found these tools useful 

 

     

9. The navigation was harder due to the tools      

 

 


