
UNIVERSITY OF OKLAHOMA

GRADUATE COLLEGE

PREDICTION OF USER INTENTIONS WHEN OPERATING WITH THE CURSOR

A THESIS

SUBMITTED TO THE GRADUATE FACULTY

in partial fulfillment of the requirements for the

Degree of

MASTER OF SCIENCE

By

LUCAS CEZARD

 Norman, Oklahoma

2017

CORE Metadata, citation and similar papers at core.ac.uk

Provided by SHAREOK repository

https://core.ac.uk/display/215295701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

PREDICTION OF USER INTENTIONS WHEN OPERATING WITH THE CURSOR

A THESIS APPROVED FOR THE

SCHOOL OF INDUSTRIAL AND SYSTEMS ENGINEERING

BY

Dr. Ziho Kang, Chair

Dr. Theodore B. Trafalis

Dr. Charles D. Nicholson

© Copyright by LUCAS CEZARD 2017

All Rights Reserved.

iv

Acknowledgements

 First, I would like to thank Dr. Ziho Kang for his mentoring and support during

this research. Thank you for the opportunity you gave me to pursue the research in a field

I am passionate about. I would also acknowledge Dr. Charles D. Nicholson and Dr.

Theodore B. Trafalis for agreeing to be part of my committee.

 I would also like to thank all the students who gave of their time to participate in

the experiment that makes this work complete.

 Finally, I want to thank my parents who made this life-changing experience

possible.

v

Table of Contents

Acknowledgements ... iv

Table of Contents ... v

List of Tables ... viii

List of Figures .. ix

Abstract .. xi

Chapter 1: Introduction and literature review... 1

1- Background ... 1

1.1 Pattern identification and target prediction .. 1

1.2 Prediction of movement time ... 3

1.3 Usability testing .. 4

2- Other related researches.. 5

2.1 The role of aging in cursor manipulation ... 5

2.2 Gaze and cursor alignment ... 7

2.2 Eye-tracking applications ... 9

Chapter 2: Motivation ... 10

1- Real time access to mouse-tracking data .. 10

2- Auto-completion tools .. 11

3- Research questions ... 12

Chapter 3: Methodology ... 13

1- Create a mouse-tracker ... 13

1.1 Generating an interface ... 13

1.2 Technical details ... 14

vi

1.3 Data interpretation .. 15

2- Define and detect patterns and cues ... 17

2.1 Cursor position ... 17

2.2 Checkmark cue ... 18

2.3 Bracket-shaped cue ... 20

2.4 Angle of the movement .. 21

2.5 Circular shape ... 22

3- Applications .. 23

3.1 Scrolling a document .. 23

3.1.1- Position-based solution .. 24

3.1.2- Cue-based solution ... 25

3.2 Selecting text .. 26

3.2.1- Bracket shaped cue ... 28

3.2.2- Circular cue .. 28

3.2.3- Checkmark cue ... 29

3.3 Navigate on a web browser .. 30

3.3.1- Opening a Google menu tab ... 31

3.3.2- Complete recurring movements ... 33

3.4 Final deliverable ... 35

Chapter 4: Experimentation .. 37

1- Recruitment .. 37

2- Technical details ... 37

3- Navigation improvement tool ... 38

vii

4- Text selection tool .. 39

5- Scrolling tool .. 39

6- Usability questionnaire ... 39

Chapter 5: Results ... 41

1- Familiarity with the touchpad ... 41

2- Perceived difficulty of the tasks ... 41

3- Intuitiveness of the patterns .. 42

4- Auto-completion tools usability scores .. 43

5- Influence of the tools on the computer use ... 44

6- Comparison of the completion times .. 45

6.1 Movement times ... 45

6.2 Text selection task .. 47

6.3 Scrolling task .. 47

7- Comparison of the completion rates ... 48

Chapter 6: Discussions ... 50

Chapter 7: Future work ... 54

Conclusion .. 56

References .. 58

Appendix A: Usability questionnaire ... 61

viii

List of Tables

Table 1. The different questions of the usability questionnaire classified by the usability

measure they evaluate. .. 40

Table 2. Theoretical movement time resulting from Fitts' law. 46

Table 3. Summary of the completion rates for each task for the experimental group.... 48

ix

List of Figures

Figure 1. X and Y coordinates of the cursor for three different readers........................... 5

Figure 2. Interfaces for the mouse-tracker.. 15

Figure 3. X or Y position of the cursor against time for three participants. 16

Figure 4. Detection of the presence of the cursor around a given point (X, Y). 18

Figure 5. Top and bottom part of the screen as described earlier. 19

Figure 6. Checkmark cues used for the auto-scrolling tool. ... 20

Figure 7. Bracket-shaped cue. .. 20

Figure 8. Illustration of the use of the movement’s angle to detect the target. 22

Figure 9. The different angles computed to detect a circular cue................................... 23

Figure 10. Successive steps to automatically scroll the page with the cue detection. 27

Figure 11. An example of how the bracket-shaped cue needs to be drawn around text. 28

Figure 12. Left: an example of how the checkmark cue needs to be drawn around text.

Right: explanation on where the cursor is moved for the beginning of the text selection.

 .. 29

Figure 13. The interface created for the navigation improvement tools. 30

Figure 14. Steps for the automatic opening of Google News. .. 31

Figure 15. The homepage divided into four quadrants and the movements that can be

identified and autocompleted (colored by target point).. 34

Figure 16. Interface of the final auto-completion tool.. 36

Figure 17. Histogram presenting the score given for tasks difficulty. 42

Figure 18. Histogram presenting the score given for patterns intuitiveness. 43

Figure 19. Boxplots of the usability scores given for each auto-completion tool. 43

x

Figure 20. Histogram presenting the score given for the influence of the tools on the

navigation. .. 44

Figure 21. Mean and standard error plots for each movement completion time, by

group, in seconds.. .. 46

Figure 22. Mean and standard error plots for text selection task completion time, by

group, in seconds. ... 47

Figure 23. Mean and standard error plots for scrolling task completion time, by group,

in seconds. .. 48

xi

Abstract

 Studies have shown that when we operate the cursor on a computer, several factors

such as the type of device used (i.e. mouse or touchpad), aging (young vs. old) or motor-

impairment can hinder performances. More precisely, using the touchpad can be difficult

for any user, even for the most basic tasks, due to the absence of scrolling wheel and the

reduced amplitude of cursor movement.

 To cope with these issues, I developed a set of tools to increase the usability of

the touchpad by analyzing mouse-tracking data. More specifically, several movement

patterns or cues were predefined and when they were detected, they would trigger the

auto-completion of the related task which includes navigating on a web browser, selecting

text and scrolling.

 The usability experiment conducted to assess the ease-of-use of the created tools

and to compare the performances of participants showed promising results. Participants

appreciated the help of the auto-completion tools and when they were able to trigger these

tools, they were significantly faster. In particular, when moving the cursor to the URL

address bar they even outperformed Fitts’ law predictions. However, it appeared that

participants needed several attempts to draw certain cues correctly hence a longer

completion time.

Keywords: human factors, usability, mouse-tracking, cues, pattern detection, auto-

completion.

1

 Chapter 1: Introduction and literature review

 Mouse-tracking is useful for many purposes such as usability testing and human

cognition studies. Through the recording of the cursor trajectory and other features like

clicks and scrolling, we can analyze how we interact with computers or gain insights on

the hesitations we face while choosing between several options. Mouse-tracking is also

widely used to improve the design of menus, applications, and web pages. Indeed, it is

an interesting technique for usability testing as it provides meaningful information

(cursor fixations, duration of a movement, speed of the movement) that can be easily

computed and interpreted. Moreover, it provides similar results to eye tracking with

cheaper and easier-to-use devices.

 The following sections summarize the literature related to this study and the

opportunities for future work. The first section dwells on the use of mouse-tracking to

determine users’ behavior, prediction of cursor’s movement time and usability testing

that are the primary focus of this research. Although it is not part of this study, it is

necessary to consider the influence of aging on computer use, the link between eye and

cursor position and the applications of eye-tracking.

1- Background

1.1 Pattern identification and target prediction

 Numerous studies focused on the user’s interest during web search task to offer a

more personalized experience or improve the quality of the results. Mueller et al. (2001)

used mostly the back-and-forth movements of the cursor and they considered that these

movements were representative of the hesitations of the user between several results.

2

Then, they used the insights from these hesitations to determine what interested the most

the user and provide personalized content. Huang et al. (2011) used the same principle

and focused on the use of hovering data to define the user’s interest and improve the

quality and the relevance of the search results. Additionally, Rodden et al. (2008) were

able to identify three cursor movement patterns when examining SERP that are also

linked to eyes movements. These three patterns consist of following the eye horizontally

or vertically and marking cursor a promising result with the cursor while the eyes continue

exploring the results. Finally, Guo et al. (2008) focused on the determination of the query

intent. But instead of using only mouse clicks, they used cursor movements as they

discovered that cursor movements had specific characteristics depending on the query

intent. For instance, the vertical range of cursor movements was larger in the case of

informational tasks as the user was likely to explore all the results provided in the SERP.

Then, they used their findings to create a classifier that outperforms previous models

using clicks and related features.

 Pusara et al. (2004) demonstrated how powerful, cursor movement patterns can

be. Indeed, they developed, using machine-learning techniques, a model that was able to

identify a user only thanks to his or her use of the mouse. The features included cursor

position, speed and angle of movement, clicks and scroll wheel use. With this model, they

were able to re-authenticate computer users with their mouse habits instead of requiring

that they re-enter their passwords.

 It is important to note that identifying movement patterns often relies on

visualization of eye-tracking data as recommended by Räihä et al. (2005). Static

visualization enable the plotting of the coordinates of the gaze superimposed on the

3

content displayed on the screen. This gives valuable insights on the specific points of

interest that the user considered. But these visualizations can also be used to plot mouse-

tracking data. Figure 1 shows how different cursor movement patterns can be identified

for a reading task. More precisely, one used the cursor as a reading aid (green plus signs),

one left the cursor inactive (blue circles), and one moved the cursor only line-by-line (red

crosses).

 In another context, studies focused on the possibility of creating a model to predict

in real time the target of the cursor movement. Murata (1998) used the trajectory and

more precisely the angle of the cursor movement to determine potential targets and move

automatically the cursor over the most likely target. The results showed that this model

decreased the pointing time but highlighted the difficulty to make accurate predictions

when targets were close from each other. Moreover, the trade-off between pointing time

and accuracy was discussed as the results of the experiment proved that increasing the

number of samples used to predict the trajectory of the cursor did not always increased

the accuracy of the said predictions. Ziebart et al. (2012) explained how they developed

a new probabilistic model using, machine learning techniques, to predict the target of the

movements with the help of more features. This model was interesting as it overcame the

difficulty of predicting accurately the target when several small targets were close to each

other.

1.2 Prediction of movement time

 Another important field of interest is the modeling of the time required to

complete a certain task with the mouse. In particular, the time needed to move the cursor

4

from a starting point to a precise target can be modeled by Fitts’ law and numerous studies

proved that this law is well-fitted to predict the movement’s duration. It is also widely

used to compare the performances of a new prediction model to the previous theoretical

time needed to complete the movement. MacKenzie (1992) reviewed the state of the art

regarding Fitts’ law and the promising refinements to have a more accurate law to predict

movement time. In this study, the author also demonstrated how Fitts’ law can help for

usability experiment as three different techniques to delete a file on a Mac computer were

compared using Fitts’ law. These ideas are also found in the study of Boritz et al. (1991)

where the authors included the angle of the target as a mitigating effect on the movement

time before validating their model in a usability experiment of a pie-shaped menu. They

proved that this new model was accurate to predict the movement time and that the angle

between the cursor and the target effectively played a key-role in the time required to

reach the target. However, some studies highlighted the accuracy issues of Fitts’ law for

small targets (Oel et al., 2001). To cope with this issue, a new model has been developed

to infer the movement time from a power law including the distance from the target and

some parameters that depend on the width of the target.

1.3 Usability testing

 Finally, to assess the quality of the tools presented in this paper, it is necessary to

conduct a usability testing. The metrics used to quantify usability are often debated but

three main characteristics emerged in the ISO/IEC 9126-4 Metrics norm as effectiveness,

efficiency, and satisfaction. Effectiveness refers to how well the user performed the

specified task, efficiency is the efforts required to achieve the given effectiveness and

http://usabilitynet.org/trump/documents/Usability_standards.ppt.pdf

5

satisfaction quantifies the ease of use. However, each of these constituent elements can

be measured in various ways; for example, there are dozens of standardized

questionnaires to evaluate satisfaction (Sauro et al., 2005). Moreover, some usability

measures were introduced for a specific field of research (Bevan, 2006). More precisely,

for our target users, some usability metrics were presented to account for the relationship

between the elderly and IT and included a measure of trustworthiness and non-

intrusiveness in the usability evaluation (Holzinger et al., 2008). To reduce the

dimensions of usability data, Sauro et al. (2005) discussed how some common metrics

can be standardized and, using PCA analysis, how we can use only one measure as a

combination of all usability metrics weighed with the first principal components

coefficients while retaining up to 60% of the original variance.

Figure 1. X and Y coordinates of the cursor for three different readers.

2- Other related researches

2.1 The role of aging in cursor manipulation

 Several studies shed light on the influence of aging on the motor capabilities and

its consequences on cursor control. Armbrüster et al. (2007) tested two tasks, pointing

6

and clicking and pointing-dragging-dropping with two different devices including a

touchpad for different age categories. Their results showed that for touchpad users,

middle-aged participants (40 to 65 years old) were 45% slower for the first task and 39%

slower for the second task compared to younger participants (20 to 32 years old). Another

study completed the results from the previous study by experimenting various tasks such

as pointing, clicking, double-clicking and dragging (Smith et al., 1999). Once again, aging

was linked to a loss of motor control that triggered significantly slower use of the mouse.

In this study, it was explained by the fact that older participants tended to cover a larger

distance to reach a target, in particular, because they did more sub-movements and they

also had a lower accuracy in pointing at targets. From these conclusions, it became clear

that modeling the user’s behavior to be able to predict his or her next target and anticipate

the cursor movements is crucial. Indeed, if we can detect a pattern in the user behavior,

we can later identify this pattern and complete the task automatically.

 Other researches were conducted to adapt the cursor behavior to the challenges

faced by older or motor-impaired users. Trewin et al. (2006) developed a tool that aims

at reducing clicking errors like slipping the mouse before releasing a button, clicking

while moving or pushing the wrong button. To tackle these issues, their feature prevents

clicking if the cursor is moving over a certain speed and “freezes” the cursor in its position

when a target is clicked. The results from the pointing and clicking experiment performed

by motor-impaired users demonstrated that the tool developed improved target selection

and worked as an error filter for overlapping clicks and clicks performed while the cursor

is moving. Gajos et al. (2008) went even further and offered personalized interfaces based

either on preferences or abilities. They tested the usability of these personalized interfaces

7

compared to a baseline interface for pointing and clicking tasks with able-bodied and

motor-impaired participants. The results showed that even able-bodied participants

performed better with personalized interfaces and in particular with the abilities based

one. Motor-impaired participants also reduced their error rate when using adapted

interfaces and found it easier and less tiring to use interfaces that were designed

specifically to suit their capabilities. However, each of these solutions has some

limitations. Indeed, the tool developed by Trewin et al. (2006) only addresses clicking

problems and the adaptive interfaces proposed by Gajos et al. (2008) can only replace a

set of interfaces and requires a long setting phase.

2.2 Gaze and cursor alignment

 To confirm the link between eyes and cursor movements, several studies focused

specifically on the gaze/cursor alignment. First of all, Quetard et al. (2016) studied the

processes involved during visual search to find a specific target in an everyday life scene.

Findings showed that eyes and cursor movements can be linked mostly in the case of

noisy pictures or when the target was placed in an unusual location. In these cases, they

observed that more eye fixations were made to verify the presence of the target and in

parallel, the cursor movements were slower and deviated more from a straight trajectory,

indicating hesitations in the decision-making process.

 But most of the researches regarding gaze/cursor alignment concentrated on

SERP (Search Engine Results Page), how we examine these results and webpages. Cooke

(2006) asked participants to find several information on the Washington State Department

of Licensing web site and determined that when the cursor appeared on screen, 69% of

8

the time, it matched the gaze position. Similarly, Chen et al. (2001), recorded gaze and

cursor positions of participants browsing four websites with different designs. They

defined seven regions related to the different points of interest on a webpage and found

that 84% of the regions visited by the cursor were also visited by the eyes, suggesting a

strong correlation between eyes and cursor movements. To a larger extent, Huang et al.

(2012) distinguished several cursor movement patterns when browsing a SERP and

compared gaze/cursor alignment for each behavior. In particular, the gaze and cursor

positions were the closest when the cursor was used to click or perform specific action

like scrolling with a median distance around 75 pixels. On the contrary, when the cursor

was inactive, the gaze was at a median distance of 233 pixels from the cursor.

 The strong correlation between eyes and cursor movements lead to multiple

research to predict the gaze position. The first model was proposed by Guo et al. (2010)

and consisted of a classifier indicating if gaze position is aligned or not with the cursor

for a sample point. Different methods were used and trained with data collected on

navigational and informational tasks including the cursor position but also velocities

along each axis. The results showed that the LogitBoost algorithm outperformed all other

methods and reached an accuracy of 77% for the most precise model (gaze and cursor

were considered aligned if the distance was less than 100 pixels). Huang et al. (2012)

used their findings on the influence of the cursor behavior on the gaze/cursor alignment

to create a model that includes this feature. However, they reached a surprising conclusion

since it appeared that it was easier to predict the X coordinate of the gaze than the Y

coordinate although every study found that the gaze/cursor alignment is stronger along

the Y-axis.

9

2.2 Eye-tracking applications

 Extensive research was conducted on eye-tracking and its applications, and they

are important as eye and mouse-tracking are closely related. Moreover, it showed the

importance of these technologies in usability testing or to improve learning techniques

for instance. In particular, Holmqvist et al. (2005) and Vitu et al. (1995) used eye-tracking

to explore the factors that influence reading behaviors in the case of newspapers. More

specifically, they studied the influence of the content’s complexity, the general design of

the document and some more specific factors such as the text size and color or the

positioning of the images and figures on the reader’s attention. It is asserted that reading

patterns and the quality of the reading were not fully dependent on the content but

depended more on the general layout and size of the text and the presence of images along

the text. Other studies like Kang et al. (2014) focused on the analysis of air traffic

controllers scanning patterns of their radar screen. Finally, Wilson et al. (2016) also

analyzed data from radar screen scanning patterns but in the scope of meteorology and

more precisely to understand how meteorologists determined if a meteorological

phenomenon was dangerous and how they triggered adequate alert messages.

10

Chapter 2: Motivation

 Being able to understand how we use the mouse is crucial since it is the most

common way to interact and control computers. Therefore, every computer user needs to

be comfortable when using a mouse or touchpad to be able to control his or her computer.

Moreover, most of the tasks involving the mouse are repetitive; for instance, while

navigating on a web browser we are likely to enter several URL addresses to access

different websites and move the cursor to the URL address bar. Thus, we can argue that

there is a set of cursor movements that are often performed and characteristic of common

tasks in computer use.

 In the following sections, we will discuss the objectives and requirements of the

different tools developed in this research before detailing the research questions.

1- Real time access to mouse-tracking data

 Mouse-tracking is a mature technology, easy to understand and easy to

implement. Jon Freeman, professor at NYU, has developed a mouse-tracking software

used worldwide by more than 3,000 researchers1. However, this software only allows for

post hoc treatment and analysis of the mouse-tracking data. In the context of pattern

identification, this is an issue as it does not enable the detection of cues when they occur.

Moreover, some computations like the velocity of the cursor along each axis are not

demanding and do not hinder the performances of the software. Thus, for this research, it

is necessary to create a mouse-tracking software with a real time access to the trajectory

to compute the necessary features for pattern recognition.

1 http://www.mousetracker.org/

11

 This tool was also designed in the scope of the research taking place at the Human

Factors and Simulation laboratory at the University of Oklahoma2. To serve future

researches, this mouse-tracker will potentially be coupled with an eye-tracker for real

time analysis of both eyes and cursor movements. Consequently, the mouse-tracking tool

was developed using Matlab R2016 so that it will be compatible with the eye-tracking

software.

2- Auto-completion tools

 In this work, I explored the difficulties that older or motor-impaired people can

face when using a laptop and its touchpad to point or click a small icon. In particular, I

used mouse-tracking to create tools to spare this population demanding actions with the

mouse. I identified three major areas of improvement. First I developed an application

that facilitates the scrolling task. This task seemed hard to perform in the case of laptops

used without an additional mouse and thus deprived of scrolling wheel. In this case, the

user needs to click on a relatively small icon on the scrolling bar which requires a precise

movement. The second idea I worked on is the assistance for text selection. Indeed

whether it is performed with the touchpad or a traditional mouse, we need to maintain the

left button pressed while we move the cursor toward the end of the text we want to select.

The simultaneous actions required can be challenging for people encountering motor

impairment. To tackle this issue, I developed a tool that automatically maintains the said

left button pressed while the user is moving the cursor to select some text. The last idea I

explored is the auto-completion of predefined movements. I assumed that we can identify

2 https://humanfactors.oucreate.com/home.html?r

12

a set of movements that are demanding or repeated regularly when using a web browser.

Then, when the pattern of movements is detected, the movements can be automatically

performed.

3- Research questions

 The development of these tools and the subsequent usability testing helped us

answer the following questions: is it possible to create a mouse-tracker and use its data in

real time? Is it possible to facilitate the scrolling task by avoiding the scrollbar? Is it

possible to facilitate text selection? Can we identify some repetitive and difficult tasks to

perform when using the touchpad and develop an automatic completion of such tasks?

What is the gain obtained with these tools?

13

Chapter 3: Methodology

 This chapter details the different steps followed to conduct this study. First, I

developed a mouse-tracking device, using Matlab, which meets the specific requirements

for pattern recognition. Then the focus is set on the different cues and patterns that are

used in the auto-completion tools. Finally, details are provided on the tasks that are

considered for auto-completion and which patterns or cues are used to trigger these tools.

1- Create a mouse-tracker

 This first sub-section provides insight on the creation of the mouse-tracker, how

we can generate an interface with Matlab, the technical challenges to determine the cursor

position and time but also how mouse-tracking data can be interpreted.

1.1 Generating an interface

 Matlab has a dedicated tool, GUIDE that allows the creation of Graphical User

Interfaces (GUI). Each element such as textboxes or buttons can be placed on a blank

canvas using drag-and-drop. Once the visual aspect of the interface is defined, it is saved

in a “figure” file. To implement the behavior of the interface, a Matlab code file is

generated and linked to the figure. In this code file, we can develop the computations

following a click on a button, save the text typed by the user or add some dialog boxes

for instance. For the mouse-tracker, I developed two interfaces. One has a reduced size

so it minimizes the influence of the interface during a usability testing (see Figure 2-left).

The second one is larger and provides more information such as the real time X and Y

position of the cursor (see Figure 2-right). In both cases, the ‘START’ and ‘STOP’

14

buttons respectively start and stop the recording of the cursor trajectory and the ‘SAVE’

button allows to save the cursor trajectory as a matrix for further use.

 Once the user starts the recording, the interface will run in the background. Indeed,

for usability experiments, we do not want the interface to interfere with the environment

that is being tested. At the end of the experiment, the interface comes back to the

foreground to let the user stop the recording.

1.2 Technical details

 To determine the time needed to complete a task and to compute the speed of the

cursor, it is necessary to create a timer. Matlab offers the ‘clock’ function that gives the

current date and time with a precision of 1 millisecond. When the recording of the cursor

trajectory starts, a reference time T0 is stored. Then, with the function ‘etime’, we can

compute the time elapsed since T0. The sampling is made at a rate of one measure every

150 milliseconds. In the literature, the sampling rate range from one measure every 100

milliseconds to one measure every 500 milliseconds. I chose the value of 150

milliseconds to be accurate enough without compromising the performance of the mouse-

tracker with too much data.

 However, with Matlab functions, it is only possible to get the cursor position

within the created GUI. Hence, I called some JAVA functions that are compatible with

Matlab and allows to get the cursor position relatively to the screen without regard to the

application being used. The function used to record the cursor position imposed that the

upper-left corner of the screen has the coordinates (0, 0) and the Y-axis is oriented

15

downward. The development was done on a 15.6” screen with a resolution of 1366 by

768 pixels. Thus, the lower-right corner has the coordinates (1366, 768).

 Once the position of the cursor is known and time intervals given by the timer, it

is easy to compute the velocity of the cursor along the X and Y-axes thanks to the

following formulas:

𝑣𝑥(𝑡𝑖) =
𝑥(𝑡𝑖)− 𝑥(𝑡𝑖−1)

𝑡𝑖− 𝑡𝑖−1
 (1)

𝑣𝑦(𝑡𝑖) =
𝑦(𝑡𝑖)− 𝑦(𝑡𝑖−1)

𝑡𝑖− 𝑡𝑖−1
 (2)

These speeds are computed while the execution of the code is stopped to wait for the next

sample so, it does not influence the performances of the mouse-tracker. Moreover, it

avoids a processing phase before the data can be interpreted.

Figure 2. Interfaces for the mouse-tracker. Left: minimal interface. Right: the

general interface of the mouse-tracker with textboxes to display the cursor

position.

1.3 Data interpretation

 The data from the recording of the cursor trajectory can be stored as a matrix in

an appropriate Matlab file to be used later. In this case, the matrix contains the X and Y

coordinates of the cursor, the timestamp and the X and Y-velocities. From this matrix,

we can retrieve meaningful information such as the duration of the experiment, the cursor

trajectory along each axis, velocities or the maximum deviation from a straight trajectory.

16

The field of research highly influences the interpretation techniques. For instance,

psychology scientists will be interested in the deviation from a straight trajectory and the

velocities to quantify hesitations (Smeding et al., 2016). On the other hand, for studies

that aim at identifying pattern in cursor trajectories temporal visualizations of the

positions or velocities will be privileged (Räihä et al., 2005).

 The mouse-tracker’s functionalities were tested in an experiment aiming at

identifying cursor movements’ patterns during a reading task. In Figure 1, the cursor

coordinates are superimposed on the screenshot of the text read. The different colors show

different patterns and the fixations on the words. Figure 3 demonstrates how these

patterns can be characterized by the temporal representation of X and Y coordinates

separately.

Figure 3. X or Y position of the cursor against time for three participants.

17

2- Define and detect patterns and cues

 This second sub-section is dedicated to the different patterns and cues used to

trigger the auto-completion tools and more precisely how they can be characterized by

the coordinates or velocities of the cursor to be detected.

 To detect certain patterns and specific cues, I gathered information from the

mouse-tracking device. More specifically, the mouse-tracker computes, in real time, the

position of the cursor and the velocities along each axis. If it is necessary, it is also

possible to determine the angle of the movement based on two successive positions. All

these information are then interpreted to identify patterns and cues that are detailed in the

following sections.

2.1 Cursor position

 Even if the cursor position is the most basic knowledge that can be retrieved from

the mouse-tracker, it gives significant insight into the user behavior. First, it is easy to

detect the presence of the cursor close to a specific point (see Figure 4). The cursor is

considered close to a target point if it is included in a 15 pixels radius of this target point.

To determine if the cursor at position (𝑥, 𝑦) is around a specific point, I used the

characteristic equation of a circle of radius R centered on (X, Y):

 (3)

 More generally, the position can be used to detect the presence of the cursor in

specific areas of the screen rather than around a point. For example, we can be interested

in the presence of the cursor at the top or the bottom of the screen. Consequently, we can

define the top part of the display as the upper quarter of the screen and the bottom of the

18

screen as the last 20% of the screen (see Figure 5). To determine that the cursor is one of

these parts of the screen it is only necessary to verify that the Y coordinate of the cursor

respects certain conditions. Given a 15.6” screen with a resolution of 1366 by 768 pixels

and given that the Y-axis is oriented downward, the cursor at position(𝑥, 𝑦) being in the

upper part of the screen is equivalent to the following equation:

𝑦 ≤ 192 (4)

 The second information provided by the mouse-tracking device is the velocities

of the cursor along the X and Y-axes that derived from the position. This information is

useful to detect the direction of a cursor movement. The velocity of the movement can

also be linked to the user’s hesitations. Indeed, a fast movement indicates that the user is

confident in the target he or she is aiming at. On the contrary, slow movements can relate

to either involuntary movements or a user who is not confident in the target aimed at.

Figure 4. Detection of the presence of the cursor around a given point (X, Y).

2.2 Checkmark cue

 For the purpose of the auto-scrolling tool, it was decided to use cues in the shape

of checkmark pointing upward or downward (see Figure 6). These cues are easily

recognizable with the help of the velocities values but have few chances to be drawn

inadvertently. The cue is characterized by a positive X-velocity for both orientations and

a positive then negative Y-velocity for the downward cue and vice-versa for the upward

19

cue. To determine this change of sign of the Y-velocity, only the last two positions of the

cursor are examined, each position corresponding to one branch of the checkmark. The

concept is detailed in the following algorithm:

 To limit the chances of unwanted detections, it is necessary to introduce some

tolerance regarding the detection of the checkmark. Indeed, if a user moves the cursor

along a line of text, he or she is not likely to move in an absolutely straight line and any

deviation along the Y-axis could be interpreted as the cue. To tackle this issue, the

velocity along the Y-axis is not compared to 0 but to the value of ±67. This value

corresponding to a movement of 10 pixels for a 150 milliseconds interval.

Figure 5. Top and bottom part of the screen as described earlier.

20

Figure 6. Checkmark cues used for the auto-scrolling tool.

Figure 7. Bracket-shaped cue.

2.3 Bracket-shaped cue

 Another cue can be detected thanks to the velocities. This cue is a bracket-like

shape drawn on the touchpad (see Figure 7). It is characterized by a horizontal movement

to the left followed by a downward movement followed by a horizontal movement to the

right. The horizontal movement to the left (respectively to the right) can be detected with

negative (respectively positive) velocity along the X-axis and the downward movement

is indicated by a positive velocity along the Y-axis. We want to detect the pattern as soon

as it is drawn by the user but we are unable to detect in advance when the user started the

pattern. Thus, to identify the pattern, the last positions are examined in reverse order and

it is necessary to reverse the order until the pattern is found or all the positions were

21

explored. Consequently, it is necessary to reverse the order in which each specific

movement is looked for as presented in the following algorithm:

2.4 Angle of the movement

 To improve the detection of movements’ target and to reduce the amplitude of

movement required to detect a pattern, one opportunity is to use the angle of the

movement. This way, it is no longer necessary to move the cursor up to the target point

but only to move in direction of this target point during several iterations. For each point

of the subset of positions considered, the actual angle formed by the cursor and the point

of interest will be compared to the optimal angle formed by the first point of the subset

and the target (see Figure 8). The angle formed by a horizontal line and the line between

two points of coordinates (𝑥1, 𝑦1) and is given by the following formula:

𝛼 = 𝑎𝑡𝑎𝑛 (
𝑦2− 𝑦1

𝑥2− 𝑥1
) (5)

22

Figure 8. Illustration of the use of the movement’s angle to detect the target. Point

A represents the current point, point B the target point and the dashed lines

represent a tolerance margin around the optimal value α.

2.5 Circular shape

 To detect a circular movement, four successive angles are computed from the last

five positions recorded following the formula described in the previous section (see

Figure 9). If the values of the angles are increasing and the last angle is superior to 160°,

then it is considered as a circle. The concept of this cue’s detection is developed in the

following algorithm:

23

Figure 9. The different angles computed to detect a circular cue.

3- Applications

 This last sub-section focuses on the tasks that are auto-completed, namely

scrolling a document, selecting text and navigating on a web browser. For each task,

details are given on how the auto-completion tool helps finish the task and the different

patterns or cues considered to trigger the auto-completion.

 To be able to create the auto-completion tools, it is necessary to simulate mouse

events like clicks and scrolling but also to move the cursor over a specific point. These

functionalities rely on the methods of the JAVA ‘Robot’ class that implements mouse

events and text-typing simulation. For this research I used in particular the ‘mouseWheel’

function to simulate the use of the scrolling wheel, the ‘mouseMove’ function to shift the

cursor to a given position and lastly the ‘mousePress’ and ‘mouseRelease’ functions that

simulate respectively a button press or release of the given mouse button (left, right or

middle button).

3.1 Scrolling a document

 When we use a laptop with a touchpad, we do not have access to a scrolling wheel.

Thus we need to use the scrolling bar but that requires to click on small icons that are

24

difficult to reach. Indeed, according to Fitts’ law, the smaller the target, the longer is the

time needed to reach it. This time will be even longer for older or motor-impaired people.

Moreover, this task is critical as it is regularly performed when browsing the web or

reading any kind of documents.

 In the following sub-sections, two different approaches are discussed but they

share some common ground. In both cases, the interface remains the same than for the

mouse-tracking tool (see Figure 2-right); only the code related to the interface was

modified to include the pattern detection and automatic scrolling. This tool can be used

on any application ran on the computer (e.g. reading a PDF file, editing text, browsing a

web page) once the interface is started and, when the cue is detected the display is scrolled

for a value of 5 notches (the unit that describes the scrolling wheel movement) that, in

most cases, transfers the text that was at the bottom of the page, up to the top of the screen

(see Figure 10).

3.1.1- Position-based solution

 As discussed in the literature review, it appears that in the case of search engine

results page, cursor and gaze are aligned and thus, the position of the cursor is a good

indicator of where the attention of the user is focused. Then we can extrapolate that when

one is reading a document, the position of the cursor can be used to determine when the

reader reaches the end of the document on the screen and then trigger the automatic

scrolling. Thus, this first alternative is entirely based on the position of the cursor on the

screen. More precisely, I considered that, if the user moves the cursor downward from

the top to the bottom of the screen, it means that he or she is browsing the content of the

25

page and is most likely to want to continue downward. The operating principle for this

pattern detection is detailed in the following algorithm:

 Whenever the user starts using this tool, the code enters a loop to look for the

pattern and automatically scroll down the page when the pattern is detected. The loop is

exited when the user presses the ‘STOP’ button. In more details, at each iteration, the

position of the cursor is examined. If it’s in the upper zone (as described in the ‘Cursor

position’ sub-section), the velocity along the Y-axis is computed. If this velocity is

positive, it indicates a downward movement. Then, after one or more iterations, if the

cursor reaches the bottom part of the screen, the pattern is considered complete. Then,

execution is paused for 2 seconds to let the user finish reading after the cursor moved to

the bottom of the screen. Finally, a scrolling equivalent to 5 notches is simulated. It is

important to note that for this tool, velocities are not computed automatically as the

detection is very simple and it would require unnecessary time and space.

3.1.2- Cue-based solution

 The previous solution is easy to understand and implement. However, one

drawback emerges as not every reader uses the cursor as a reading aid. Thus, if the cursor

26

stays still, it is impossible to detect that the reader reached the bottom of the page and

wanted to scroll the page to continue reading.

 This second alternative does not rely on the cursor position but on specific cues

that trigger scrolling (see Figure 6). Indeed, I wanted to include more flexibility than in

the previous solution in particular, by adding an upward scrolling. In this case, the user

can draw a checkmark pointing upward or downward on the touchpad and the

corresponding scrolling movement is automatically performed. The mechanics of this

tool is detailed in the following algorithm:

3.2 Selecting text

 This second tool aims at simplifying text selection to copy, delete or modify some

text. Indeed, I considered the case where the user only has access to a touchpad. Thus, it

can be hard for some people to maintain the left button of the mouse pressed while moving

the cursor to select text. In this solution, a cue drawn with the touchpad will automatically

simulate the left button press. Then the user has his or her hands free to select the text he

or she is interested in.

27

Figure 10. Successive steps to automatically scroll the page with the cue detection.

 In the following sub-sections, three different cues are discussed but in all

solutions, the interface of the mouse-tracker remained the same and only the code was

modified to implement the appropriate pattern detections. Similarly to the previous tool,

when the interface is started, at each iteration, the pattern is looked for among the last

positions recorded. Once the pattern is detected, it is necessary to determine where the

text selection begins as drawing the cue to trigger the assistance may entail moving the

cursor around the first word of the selection. Once the position of the first word is

computed, the cursor is automatically moved to that position and a left button press is

simulated. The left button is released as soon as the velocities along the X and Y-axes are

lower than 0.75 pixel per second. This value allows the user to precisely select some text

with slower movements while accounting for involuntary movements when the user

leaves the cursor still at the end of the selection.

28

3.2.1- Bracket shaped cue

 The first possible cue that was considered to trigger these actions is a bracket-like

shape drawn on the touchpad (see Figure 11). When the pattern is detected, the cursor is

moved to the position of the vertical bar of the bracket with an offset of 5 pixels to the

left. This offset is introduced to take into account a lack of precision from the user as it

can be difficult to draw the bracket exactly at the beginning of the first word. This way,

the offset can add a couple characters to the selection if the bracket was not placed at the

exact position. At each iteration, the cue is looked for among the last 10 positions

recorded (or all the positions if less than 10 were measured).

Figure 11. An example of how the bracket-shaped cue needs to be drawn around

text.

3.2.2- Circular cue

 To be used efficiently in the text selection assistance tool, the bracket-shaped cue

needs to be drawn with precision and with a limited size which may entail difficulties for

people lacking motor control. To cope with the precision demanded by the previous cue,

another idea come up and consists in using a circular shape to circle the beginning of the

text to be selected.

 In this case, the beginning of the selection is set to the approximate center of the

circle drawn by the user. To determine the center, the position related to the angle that is

29

the closest to 160° is retrieved. This point can be considered diametrically opposite to the

first point. Then the position of the center is computed as the middle of the segment

between these two points. The selection stops with the same conditions than the bracket-

shaped cue solution.

 Whereas this cue should be easier to draw and be less precision-demanding with

regard to the beginning of the text selection, this solution suffers from a major drawback

as the method employed to detect the circular cue is not restrictive enough and entails

many unintended detections that hinder the navigation on any type of document.

3.2.3- Checkmark cue

 The last cue that was considered is the checkmark shape, similar to the scrolling

tool, but this time, pointing toward the left. As described in section 2.2, this pattern is

detected by examining the last two positions in the cursor trajectory thus, the starting

point for the selection is inferred from these two positions. To start the selection, the

cursor is moved to the X coordinate of the second position (corresponding to the right

extremity of the checkmark) and the Y coordinate of the first position which approximates

the middle of the cue (see Figure 12). The selection stops with the same conditions than

the previous solutions presented.

Figure 12. Left: an example of how the checkmark cue needs to be drawn around

text. Right: explanation on where the cursor is moved for the beginning of the text

selection.

30

3.3 Navigate on a web browser

 Motor-impaired people can encounter difficulties browsing the web on a search

engine. Indeed, using the different features of a search engine often entails moving the

cursor across the screen. To tackle this issue, two solutions with different features were

explored to offer an automatized movement of the cursor to specific points of interest.

For both solutions discussed in the following sub-sections, the interface of the mouse-

tracker has been modified. Indeed, to make these tools operable on any computer, it is

necessary to take into account different screen resolutions that lead to different

coordinates for the points of interest.

 The original mouse-tracker interface has been modified (see Figure 13). Several

editable text boxes were added to enable the participant to enter the X and Y coordinates

of the different points of interest on the Google homepage. This way, the code can be

executed on any computer without regards to the screen resolution.

Figure 13. The interface created for the navigation improvement tools.

31

3.3.1- Opening a Google menu tab

 This first example focuses on opening a tab of the Google menu which requires

often time a wide movement to reach the menu icon and to click precisely on a small icon

surrounded by several other icons. For the demonstration, the tab opened by this tool is

Google News but any tab can be opened provided that we know its coordinates. In this

example, the user starts from the Google search bar and moves toward the Google menu

to open Google News. The pattern recognition refers to the movement from the search

bar to the menu. Then the auto-completion includes moving the cursor to the center of

the Google menu, simulate a click, move the cursor to the Google News icon and simulate

another click (see Figure 14).

Figure 14. Steps for the automatic opening of Google News. The user moves from

the search bar to the menu (dashed line) and the tool completes the action (red

line).

 I developed two methods to detect this pattern. The first method only uses the

position of the cursor and detect the presence of the cursor around the two points of

interest that are the search bar and the Google menu. Each time the mouse-tracker gets a

32

measure of the cursor position, the predefined pattern is looked for among the last 20

positions recorded (or all the positions if less than 20 were measured). The concept for

the pattern’s identification is as follows:

 The second method implements the angle of the movement. Indeed, once the

cursor is detected around the search bar, the angle of movement is analyzed and compared

to the optimal angle between the search bar and the Google menu. Then, if three measures

show that the angle of movement is within 10° of the optimal angle, the pattern is

considered complete.

 Once one of these patterns is detected, the auto-completion starts. The cursor is

moved at the center of the Google menu button, a click is performed which opens the

33

menu then, the cursor is moved toward the Google News icon and another click is

performed to open it (see Figure 14).

3.3.2- Complete recurring movements

 The previous tool proved that identifying movement toward a specific point is

possible. However, its scope is relatively narrow as the detection is only possible if the

user moves from a given point to the target and the auto-completion only include one

feature when we can imagine many more.

 To improve the opportunities offered by the previous tool, a second tool has been

developed by dividing the Google homepage into four quadrants that contain different

points of interest. The upper-left quadrant contains the URL address bar, the upper-right

quadrant includes the Google menu and the lower-left quadrant gives access to the search

bar. Then, I identified what are the movements that the user is the most likely to perform

and which require a large amplitude of movement to complete them automatically (see

Figure 15). This way, the movement is identified from a quadrant to a target point which

is less restrictive and three different patterns are considered in the same tool.

 Once this tool is started, the position of the cursor is recorded and at each iteration,

depending on the quadrant in which the cursor is currently located, specific patterns are

looked for and if one is detected the movement is automatically operated by moving the

cursor to the corresponding point of interest as described in the following algorithm:

34

Figure 15. The homepage divided into four quadrants and the movements that can

be identified and autocompleted (colored by target point).

35

 To detect the said patterns, I used both the angle of the movement and the distance

to the target. Indeed, the angle of the movement does not indicate if the cursor is moving

toward or away from the point of interest. Thus, introducing the notion of distance from

the target helps reduce unwanted detections by simply verifying that the distance between

the cursor and the target is decreasing. At each iteration, the last four points of the

trajectory are considered; the optimal angle of movement is computed as the angle

between the first of the four points and the potential target and angles and distances are

calculated for the next three points. Then, the pattern is considered complete if the three

measures show that the angle of movement is within 15° of the optimal angle and if the

distance to the target decreased. The concept for this pattern detection is the following:

3.4 Final deliverable

 The final deliverable takes the form of an application that combines all the tools

described here in one, more complete, tool to provide an optimal experience to the user.

This way, while we are browsing the web we would have assistance to move to specific

36

points of interest, scroll the web pages and select text. Moreover, we can imagine that the

interface lets the user choose which tools he or she wants to use (see Figure 16). Thus, if

the user wants assistance for scrolling and text selection for other types of documents, he

or she would not be disturbed by the target identification tool.

Figure 16. Interface of the final auto-completion tool.

37

Chapter 4: Experimentation

1- Recruitment

 All participants were recruited through emails at the University of Oklahoma.

They were aged 22 to 72 years old. All of them were fluent in English and able to perform

simple computer tasks involving the touchpad. Participants were split into two groups: a

control group of participants (aged 23 to 72 years old, mean = 34.43, sd = 13.01) who had

no access to the auto-completion tools and whose tasks completion time served as a

reference and an experimental group (aged 22 to 57 years old, mean = 28.46, sd = 9.48)

who had access to the auto-completion tools. They were randomly assigned to either

group at the condition that there was an equal number of participants in each group.

Before starting the experiment, they were asked to sign a consent form authorizing the

recording and analysis of the cursor movements during the experiment and the responses

to a usability questionnaire.

2- Technical details

 To compare the completion time of each task, it is necessary to be able to detect

when a given task is completed by the user. For participants that were part of the

experimental group, it was easy as the completion of the task corresponds to the end of

the auto-completion code execution. But for the control group, it required additional

computations. In the case of the navigation on Google, it is possible to detect the presence

of the cursor around one of the point of interest which means that the task involving to

move the cursor to this point is complete. However, there is no particular event related to

38

the completion of the scrolling or text selection tasks. Thus, it was impossible to test all

these tools in one scenario and still get a precise completion time.

3- Navigation improvement tool

 The interface used for this part of the experiment is identical to the interface

described in Section 3.3 (see Figure 13). Once all the required positions were entered,

participants clicked the ‘START’ button. After that, the recording of the cursor position

started along with pattern detections. To have all participants start in the same conditions,

a new web browser page was opened on the Google homepage and the cursor was

automatically moved to the position (1300, 700). This position corresponds to the lower

right quadrant and was chosen to maximize the distance to cross to complete the first task

of the scenario. The scenario included the following steps:

1. Move the cursor to the URL bar and enter the URL:

https://en.wikipedia.org/wiki/University_of_Oklahoma.

2. Go back to the homepage and move the cursor to the search bar to enter the request

‘Wikipedia OU’.

3. Open the Google News tab from the Google menu.

Once the participants completed all the steps, the recording was stopped by clicking the

‘STOP’ button and the participants were asked to save the data in a file for further

analysis.

39

4- Text selection tool

 This tool displayed a smaller interface as the screen resolution has no influence

on the code (see Figure 2-Right). Still, the original code was modified so that when the

user launched the application, the system web browser opened at the Wikipedia web page

for the University of Oklahoma. Once the recording was started, the only task to be

performed was to select the first paragraph of the article. Then, participants stopped the

recording and saved it for further analysis.

5- Scrolling tool

 The interface used here was the same than for the text selection tool. Once again

the University of Oklahoma Wikipedia web page opened automatically. When

participants started the recording, the task to be performed consisted in scrolling down to

the first section and back up to the top of the page. Then, the recording was stopped and

the data were stored in a file for further analysis.

6- Usability questionnaire

 When all these tasks were performed, participants were asked to answer several

questions (see Appendix A) aiming at quantifying how difficult these tasks were

perceived on a five-point scale and the user’s familiarity with the touchpad (all

participants) and how easy it was to use the auto-completion tool on a five-point scale

(only participants from the experimental group).

 These questions were established to evaluate several usability measures as

described in the following table:

40

Usability measure Group Questions

Efficiency

Both

• In general, I find it hard to use the touchpad

• I found the tasks hard to perform

Learnability

Experimental
• It is easy to understand how auto-

completion tools work

Satisfaction

Experimental

• Evaluate how useful was the auto-

completion tool

• The navigation was harder due to the tools

Table 1. The different questions of the usability questionnaire classified by the

usability measure they evaluate.

41

Chapter 5: Results

 All mouse-tracking data were processed using Matlab to retrieve each task’s

completion time. When a participant was not able to trigger auto-completion tools or did

not leave the cursor still around target points, it was impossible to generate automatically

the completion time. Thus, some data were analyzed manually to determine as precisely

as possible the completion time. Across all participants and tasks, three values were

missing, one due to data corruption and two other because it was impossible to determine

an exact completion time. Once all completion times were determined, the data were

analyzed using the language R to perform data visualizations and statistical analysis

summarized in the following sections. ANOVA analysis of the participants’ age of both

groups showed no significant difference between control and experimental group

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.74) so age has not influenced the results between the two groups.

1- Familiarity with the touchpad

 This factor was evaluated using a yes or no question on whether participants found

it difficult to use the touchpad in general. 26% of the participants replied yes indicating

that using the touchpad is not perceived as difficult for most people.

2- Perceived difficulty of the tasks

 This measure is an aggregate value on how participants perceived the difficulty

of the tasks. A lower score indicates that the tasks were easy. The score attributed by

participants in question 1 are presented in the following histogram. We can see that scores

range from 1 to 5, indicating that all participants had not the same perception of the

42

difficulty of the tasks. The mean score is 1.96 which tends to show that overall, the tasks

were not perceived as difficult.

Figure 17. Histogram presenting the score given for tasks difficulty.

 If we take a closer look at these scores by participants’ group, it appears that 71%

of the control group gave a score of 1 meaning that the tasks were easy but experimental

group participants gave in average a score of 2.69.

3- Intuitiveness of the patterns

 The score attributed by participants in question 2 are presented in the following

histogram. A higher score indicates that it was easy to understand the cues and patterns

detected for the auto-completion tools. We can see that scores range from 2 to 5,

indicating that the cues decided to trigger auto-completion tools were easy to understand.

This factor is all the more important as the intended target for these tools are elder people

who can suffer from memory impairment. It is highly important that the patterns used to

43

trigger the auto-completions are easy to memorize and the mean score of 4.46 shows that

there is no need to improve the intuitiveness of these patterns.

Figure 18. Histogram presenting the score given for patterns intuitiveness.

4- Auto-completion tools usability scores

 The usability of each auto-completion tools along with an overall appreciation of

all the tools was assessed by the participants on a 5-point scale with a score of 1 indicating

dissatisfaction and a score of 5 meaning that the participant was satisfied. The following

figure displays the median and first and last quartiles of the scores in boxplots.

Figure 19. Boxplots of the usability scores given for each auto-completion tool.

44

 The general appreciation score is 3.31 on average indicating that the tools are

considered helpful. It is particularly true for the scrolling assistance tool that reached a

4.08 average score with 46% of the participants giving a score of 5. On the other hand,

the text selection assistance tool scored poorly with an average score of 2.31 and 54% of

the participants giving a score of 1 or 2. Regarding the navigation improvement tool, the

mean scores are all over 3.6 which is satisfying but not as high as the scrolling assistance

tool.

5- Influence of the tools on the computer use

 The score attributed by participants in question 9 is presented in the following

histogram. A lower score indicates that the tools improved the use of the computer. We

can see that the scores range from 1 to 5 with a mean of 2.92, indicating that the navigation

is slightly improved thanks to the tools. However, this value is close to 3 which is the

intermediate value in the 5-point scale used in the questionnaire. Thus, it is hard to

conclude definitively that the tools have an influence on the general use of the computer.

Figure 20. Histogram presenting the score given for the influence of the tools on

the navigation.

45

6- Comparison of the completion times

All tasks of the experiment are discussed separately in the following sections. It

is important to note that outlying values corresponding to unexpectedly high completion

times were removed. Indeed, 26% of the participants declared that they find it difficult to

use the touchpad in general so the difficulty they encounter with the touchpad may have

slowed them in the completion of the tasks involved in the experiment. To compare both

groups, I performed an ANOVA to determine if the time required to complete a task is

significantly different from one group to the other.

6.1 Movement times

To complete the tasks of navigation on the Google homepage, experimental group

participants were not required to learn how to draw a specific cue. They only had to try

to complete the cursor movements following the straightest possible trajectory to trigger

the auto-completion tools.

The comparison of the completion times showed that participants from the

experimental group were significantly faster to move the cursor to the URL address bar

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 7.37 ∙ 10−3) and to the search bar (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 5.26 ∙ 10−3). These

results appear clearly on the mean and standard error plots in Figure 21.

To complete these results, I used a Fitts’ law based on the results presented in

MacKenzie et al. (1992). For pointing and selecting, the equation giving the completion

time is:

𝑀𝑇 = 53 + 148 ∙ 𝐼𝐷 (6)

where ID represents the index of difficulty of the task, computed as:

46

𝐼𝐷 = log2(2 ∙ 𝐴
𝑊⁄) (7)

with A representing the distance to the target and W its width.

 We can notice that all minimum movement times are lower than predicted except

for the movement to the Google menu for the control group. Moreover, the minimum

movement times for the experimental group are almost twice lower than the theoretical

movement time. Finally, if we consider only the participants who were able to trigger

auto-completion tools, their mean movement time are lower (0.536s, 0.575s and 0.616s

respectively).

 A (px) W (px) ID MT (s)

Movement to the URL bar 354 15 5.56 0.876

Movement to the search bar 429 15 5.84 0.917

Movement to the Google

menu

870 15 6.86 1.068

Table 2. Theoretical movement time resulting from Fitts' law.

Figure 21. Mean and standard error plots for each movement completion time, by

group, in seconds. From left to right: movement to the URL address bar,

movement to the search bar and movement to the Google menu.

47

6.2 Text selection task

For this task, participants from the experimental group had to learn how to draw

the cue that triggers the assistance tool. More precisely, they had to go through a trials

and errors phase to draw the cue accurately at the beginning of the text they had to select,

and they also had to move the cursor fast enough to prevent the tool from releasing the

left button. This training phase was included in the completion time which explains why

the experimental group needed significantly more time to complete the text selection task

(𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 1.27 ∙ 10−11).

Figure 22. Mean and standard error plots for text selection task completion time,

by group, in seconds.

6.3 Scrolling task

Again, for this task, participants from the experimental group had to learn how to

draw the cue that triggers the assistance tool. More precisely, they had to go through a

trials and errors phase to draw the cue accurately. This training phase was included in the

completion time which explains why the experimental group needed significantly more

time to complete the scrolling task (𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 3.46 ∙ 10−2).

48

Figure 23. Mean and standard error plots for scrolling task completion time, by

group, in seconds.

7- Comparison of the completion rates

 The completion rate is defined as the ratio of participants that successfully

completed the required tasks. For the experimental group, a task is considered completed

if the participant was able to trigger the auto-completion tool with the appropriate pattern

(see Table 3).

 Completion rate for the

experimental group

Movement to the URL bar 54%

Movement to the search bar 85%

Movement to the Google menu 8%

Text selection 69%

Scrolling 100%

Table 3. Summary of the completion rates for each task for the experimental

group.

49

 We can notice that for the scrolling task, the completion rate was 100% meaning

that all participants from the experimental group were able to draw the cue accurately.

The movement to the search was automatically completed for 85% of the participants

which is satisfying. However, for the movement toward the Google menu, it dropped to

8%.

50

Chapter 6: Discussions

 In this chapter, the results of the experiment are discussed to explain the probable

reasons behind outlying results and the main limitations of this study. The results of the

experiment showed that all participants are familiar with the touchpad and most of them

do not encounter difficulties using it. Moreover, the perceived difficulty of tasks involved

in the testing is low. Participants from the experimental group also described the pattern

and cues as easy to understand. All these indicators explain the high usability scores for

the navigation and scrolling tasks as well as minimum movements times that are almost

half the predictions from Fitts’ law for the movement to the search bar and the Google

menu. Nevertheless, some results are less satisfying than expected or need some

qualifications.

 First of all, regarding the perceived difficulty of the tasks, we can notice that the

experimental group gave higher scores with an average score more than twice as high as

the control group. This is all the more intriguing as the tasks involved in the experiment

are common tasks that are performed on a daily basis by any computer user. However,

we must bear in mind that participants from the experimental group needed to understand

and get used to the auto-completion tools that they had to use. In particular, for the text

selection and scrolling task, they had to manage to draw the cues correctly, with enough

precision and speed to be detected correctly. Thus, these participants might have

encountered more difficulties to perform these tasks due to the novelty of the tools. This

argument is supported by several participants that commented that after some training

they would be likely to be able to use the auto-completion tools more efficiently.

51

 Secondly, some qualifications need to be drawn about the usability scores

attributed to the auto-completion tools. Indeed, in the case of the navigation on Google,

several participants commented that they were not able to perceive the auto-completion

part, most likely because they were not able to trigger the auto-completion. Moreover,

some participants did not move the cursor following a straight trajectory but made a

curvier movement which prevented the detection of the movement patterns and the

triggering of the related auto-completion. This is particularly true for the movement to

the Google menu where only 8% of the participants triggered the auto-completion tools.

Both of these issues can explain why the usability scores are not higher. Additionally,

even though the completion rate for the text selection task is satisfying with 69% of the

participants triggering the text selection assistance tool, the average usability score of

2.31 remains low. This is likely explained by the precision demanded by this tool to draw

the cue accurately at the beginning of the text to be selected and to move the cursor fast

enough to reach the end of the text before the assistance is stopped. To be able to complete

this task, successful participants had to make several attempts before controlling all the

parameters involved in the cue detection. Thus, without training, this solution seems to

make it harder to perform a basic task which entails the lower usability score. However,

it is important to note that several participants expressed a strong interest in the idea of

not having to hold the left button of the mouse pressed while moving the cursor to select

text. These comments confirm that the idea of simulating the left button press can be

highly beneficial to improve the touchpad’s usability, but some improvements are

required on the cue that triggers this assistance.

52

 The fact that participants needed to get used to the cues for the text selection and

scrolling tools has also an influence on the completion times. The results showed that for

both text selection and scrolling, the experimental group required significantly more time

to complete the tasks than the control group. Indeed, few participants were able to trigger

these auto-completion tools on their first attempt thus longer completion times. But these

results must be considered carefully as the completion times take into account all the

attempts made as a training. Once the potential users get used to drawing these cues, we

can expect that they will be able to draw the cues precisely at the first attempt thus

reducing the completion time. Moreover, if we focus on the automatic scrolling tool, it is

important to note the completion rate of 100% showing that all participants were able to

control this tool within seconds and more importantly, the usability score of 4.08 confirms

that this tool is easy to use.

 Additionally, one may argue that the completion times for the text selection and

scrolling tasks are quite high even for the control group with no participant under 10

seconds. But, for all tasks, participants had to press the ‘START’ button to record the

cursor trajectory and start the tools, reduce the interface to work on the web browser and

at the end reopen the interface and press the ‘STOP’ button to end the recording of the

cursor trajectory. But contrary to the navigation tasks where it possible to isolate the

movements time from the manipulation of the interface, there is no event that can help

distinguish the selection or scrolling phase. This likely explains why the completion times

for these two tasks appear to be abnormally high.

 On the other hand, it is necessary to consider the limitations of this study and how

the results could be improved by overcoming these constraints. The main limitations in

53

this work come from how the GUI tool works in Matlab. Even if it simplifies the process

of creating a GUI, it lacks more generality in the event handling. Indeed, Matlab provides

numerous useful event handlers but they are only working when the cursor moves within

the GUI. Thus to provide auto-completion tools that can work on any application running

on a computer, it is impossible to use Matlab’s event handlers, and it is necessary to fall

back on external functions, namely using Java. But this trick is limited as it is not possible

to use all Java functions in Matlab and in particular, I was not able to use the

‘MouseListener’ class and its functionalities. This issue mostly reduces the quantity of

information we can collect to define and detect a pattern in the user’s cursor movements.

 Additionally, regarding the navigational tasks being tested, the tools were

implemented in such a way that each subtask is flagged, which makes it easier to

determine the completion time during post hoc analysis. More precisely, for the

experimental group, when a pattern is auto-completed, a specific number is entered in a

dedicated column of the record and for the control group, the flag is set when the cursor

is around any of the points of interest. However, some participants failed to trigger the

auto-completion tools or, in the case of the control group, clicked in the URL bar or search

bar outside the area around the points of interests. They were still able to complete the

tasks but they were not flagged during the execution of the code. Then, it was necessary

to manually compute the completion times by browsing the record to spot a position that

was consistent with the completion of a given task. This process lacks precision as it may

introduce human error but also because participants sometimes moved the cursor to

different (close) locations that are all potentially indicative of the task completion.

54

Chapter 7: Future work

 The first area of improvement concerns the code that has already been written.

More specifically, the detection of a circle that has been considered for the text selection

assistance tool. The current solution as it is leads to many involuntary detections that

hinder the navigation on any kind of application. Moreover, the computations to

determine the beginning of the selection only gives an approximate position. Thus, it

would be interesting to investigate further how we can detect a circular movement of the

cursor with sufficient restrictions to avoid multiple unwanted detections. Another

beneficial improvement can originate from the opportunity to use clicks information. It

would enable more precise detections for existing tools but also offer new detection

possibilities that will convert into new tools. The tools emanating from these new

opportunities will either include longer sequence of events to provide auto-completion

for more complex tasks or offer a way to differentiate patterns that may have the same

movement characteristics but different clicking patterns. Eventually, we can imagine to

introduce machine learning in the existing code to detect more general patterns like how

the user repeats some sequence of task regularly. Another idea within the scope of the

existing tools is to record which tab of the Google menu is clicked the most and once the

movement toward the menu is detected, not only move the cursor to the menu but also

click it and open the tab that is the most likely to be opened.

 Another area of improvement involves the experiment protocol. Indeed, the

scenarii used to test all the auto-completion tools only include one straightforward

execution of each task. However, it would be interesting to test these tools for a longer

period to let the participants use the tools in conditions that are the closest to the everyday

55

use. In particular, it would be highly beneficial to let participants navigate on their web

browser with the auto-completion tools activated and evaluate how often involuntary

pattern detections happened and the disruptions that it entailed. Moreover, as some

participants declared, using the tools for a longer time may help them get used to the cues

and make it easier to use the auto-completion tools efficiently.

 Eventually, as suggested by the literature, age can be an influential factor in the

time required to complete some tasks like pointing and clicking. Yet the pool of

participants did not include enough middle aged and older participants. Thus, it was

impossible to study the influence of the age on the completion times. Future studies must

endeavor to include more age diversity within the participants to explore the influence of

aging in the completion times and the success in using auto-completion tools.

56

Conclusion

 This research contributes to the advances in the mouse-tracking technology and

its applications to improve the usability of laptops. Indeed, I created a mouse-tracking

device that records the cursor position on the screen and computes the velocities in real

time. The real time computations are paving the way for auto-completion tools. The first

application I presented demonstrates how we can look for different patterns at once to

facilitate the navigation on a web browser by defining points of interest and automatically

moves the cursor to these points when the movement of the cursor points to a given target.

The second application shows how we can predefine a pattern that once recognized by

the mouse-tracking device, triggers a tool that assists the user in text selection. Finally,

the last tool helps scrolling a page without moving the cursor on the small icons of the

scrollbar.

 The results obtained from the experiment carried out to validate the usability of

these tools gave several insights. First, regarding the navigation improvement tool, it

showed that participants found this tool useful and the time required to complete these

tasks was reduced for the participants from the experimental group. Using Fitts’ law

indicated that movements’ time for the navigation tasks were lower than expected and, in

particular, participants from the experimental group were almost twice as fast as the

prediction from Fitts’ law.

As anticipated, the cue for the text selection assistance tool was hard to draw

precisely and this tool could not be used efficiently on the first attempt as the significantly

higher completion time proved. Finally, the scrolling tool was characterized by a very

high usability score indicating that the participants found it easy to draw the cue and that

57

the tool was helpful even if the completion time indicated that experimental group needed

more time. These results tend to show that participants were satisfied with a solution that

makes it easier to use a laptop’s touchpad even if they need some time to get used to it.

 This study also proved that analyzing mouse-tracking data can help implementing

auto-completion tools that detect specific cues or movements toward specific target points

but to be efficient and useful, the patterns need to be intuitive and easy to draw. Several

areas of improvements of the current tools were identified and we hope that this will lead

to more research in this field.

58

References

1. Armbrüster, C., Sutter, C., & Ziefle, M. (2007). Notebook input devices put to the

age test: the usability of trackpoint and touchpad for middle-aged

adults. Ergonomics, 50(3), 426-445.

2. Bevan, N. (2006). Practical issues in usability measurement. Interactions, 13(6),

42-43.

3. Boritz, J., & Cowan, W. B. (1991). Fitts's law studies of directional mouse

movement. human performance, 1(6).

4. Chen, M. C., Anderson, J. R., & Sohn, M. H. (2001, March). What can a mouse

cursor tell us more?: correlation of eye/mouse movements on web browsing.

In CHI'01 extended abstracts on Human factors in computing systems (pp. 281-

282). ACM.

5. Cooke, L. (2006, May). Is the Mouse a" Poor Man's Eye Tracker"?. In Annual

Conference-Society for Technical Communication (Vol. 53, p. 252).

6. Gajos, K. Z., Wobbrock, J. O., & Weld, D. S. (2008, April). Improving the

performance of motor-impaired users with automatically-generated, ability-based

interfaces. In Proceedings of the SIGCHI conference on Human Factors in

Computing Systems (pp. 1257-1266). ACM.

7. Guo, Q., & Agichtein, E. (2008, July). Exploring mouse movements for inferring

query intent. In Proceedings of the 31st annual international ACM SIGIR

conference on Research and development in information retrieval (pp. 707-708).

ACM.

8. Guo, Q., & Agichtein, E. (2010, April). Towards predicting web searcher gaze

position from mouse movements. In CHI'10 Extended Abstracts on Human

Factors in Computing Systems (pp. 3601-3606). ACM.

9. Holmqvist, K., & Wartenberg, C. (2005). The role of local design factors for

newspaper reading behaviour-an eye-tracking perspective. Lund University

Cognitive Studies, 127, 1-21.

10. Holzinger, A., Searle, G., Kleinberger, T., Seffah, A., & Javahery, H. (2008, July).

Investigating usability metrics for the design and development of applications for

59

the elderly. In International Conference on Computers for Handicapped

Persons (pp. 98-105). Springer, Berlin, Heidelberg.

11. Huang, J., White, R., & Buscher, G. (2012, May). User see, user point: gaze and

cursor alignment in web search. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 1341-1350). ACM.

12. Huang, J., White, R. W., & Dumais, S. (2011, May). No clicks, no problem: using

cursor movements to understand and improve search. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems (pp. 1225-1234).

ACM.

13. Kang, Z. and Bass, E.J. (2014). Supporting the eye tracking analysis of multiple

moving targets: Design concept and algorithm. IEEE International Conference

on Systems, Man, and Cybernetics. San Diego, CA, pp. 3191-3196.

14. MacKenzie, I. S. (1992, September). Movement time prediction in human-

computer interfaces. In Proceedings of Graphics Interface (Vol. 92, No. 7, p. 1).

15. Mueller, F., & Lockerd, A. (2001, March). Cheese: tracking mouse movement

activity on websites, a tool for user modeling. In CHI'01 extended abstracts on

Human factors in computing systems (pp. 279-280). ACM.

16. Murata, A. (1998). Improvement of pointing time by predicting targets in pointing

with a PC mouse. International Journal of Human-Computer Interaction, 10(1),

23-32.

17. Oel, P., Schmidt, P., & Schmitt, A. (2001, September). Time prediction of mouse-

based cursor movements. In Proceedings of Joint AFIHM-BCS Conference on

Human-Computer Interaction IHM-HCI (Vol. 2, pp. 37-40).

18. Pusara, M., & Brodley, C. E. (2004, October). User re-authentication via mouse

movements. In Proceedings of the 2004 ACM workshop on Visualization and data

mining for computer security (pp. 1-8). ACM.

19. Quétard, B., Quinton, J. C., Mermillod, M., Barca, L., Pezzulo, G., Colomb, M.,

& Izaute, M. (2016). Differential effects of visual uncertainty and contextual

guidance on perceptual decisions: Evidence from eye and mouse tracking in visual

search. Journal of Vision, 16(11).

60

20. Räihä, K. J., Aula, A., Majaranta, P., Rantala, H., & Koivunen, K. (2005). Static

visualization of temporal eye-tracking data. Human-Computer Interaction-

INTERACT 2005, 946-949.

21. Rodden, K., Fu, X., Aula, A., & Spiro, I. (2008, April). Eye-mouse coordination

patterns on web search results pages. In CHI'08 extended abstracts on Human

factors in computing systems (pp. 2997-3002). ACM.

22. Sauro, J., & Kindlund, E. (2005, April). A method to standardize usability metrics

into a single score. In Proceedings of the SIGCHI conference on Human factors

in computing systems (pp. 401-409). ACM.

23. Smeding, A., Quinton, J. C., Lauer, K., Barca, L., & Pezzulo, G. (2016). Tracking

and simulating dynamics of implicit stereotypes: A situated social cognition

perspective.

24. Smith, M. W., Sharit, J., & Czaja, S. J. (1999). Aging, motor control, and the

performance of computer mouse tasks. Human factors, 41(3), 389-396.

25. Trewin, S., Keates, S., & Moffatt, K. (2006, October). Developing steady clicks:

a method of cursor assistance for people with motor impairments. In Proceedings

of the 8th international ACM SIGACCESS conference on Computers and

accessibility (pp. 26-33). ACM.

26. Vitu, F., O’Regan, J. K., Inhoff, A. W., & Topolski, R. (1995). Mindless reading:

Eye-movement characteristics are similar in scanning letter strings and reading

texts. Attention, Perception, & Psychophysics, 57(3), 352-364

27. Wilson, K. A., Heinselman, P. L., and Kang, Z. (2016). Exploring applications of

eyetracking in operational meteorology research. Bulletin of the American

Meteorological Society, 97(11), 2019-2025.

28. Ziebart, B., Dey, A., & Bagnell, J. A. (2012, February). Probabilistic pointing

target prediction via inverse optimal control. In Proceedings of the 2012 ACM

international conference on Intelligent User Interfaces (pp. 1-10). ACM.

61

Appendix A: Usability questionnaire

Participant’s ID:

Participant’s Age:

I had access to the auto-completion tool: Yes  No  (If No, answer only the first

question below)

In general, I find it hard to use the touchpad: Yes  No 

All the items use a five point scale from strongly disagree to strongly agree:

 Strongly

Disagree

1

2 3 4 Strongly

Agree

5

1. I found the tasks hard to perform

    

2. It is easy to understand how auto-completion

tools work

    

For the following tasks, evaluate how useful was

the auto-completion tool:

 3. Moving the cursor to the URL address bar

    

 4. Moving the cursor to the search bar

    

 5. Moving the cursor to the Google menu

    

 6. Select text for further modification

    

 7. Scroll down/up a web page

    

8. Overall, I found these tools useful

    

9. The navigation was harder due to the tools     

