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CHAPTER I
"INTRODUCTION

The focus of this study centers around five different
silicate based glasses. The glasses are predominately

amorphous Si0, with the addition of three network

modifiers, two of which are the same in each sample, and

the rare-earth Eu®* as a dopant ion. One of three modifier
ions of each glass was changed through the series of
alkali-metal ions Li, Na, K, Rb, and Cs. Table I lists
the five glasses with their chemical composition in mole X.
The purpose of the modifying ions, in most cases, is
to modify the structure of the gless in a way suitable for

a specific application. Some possible applications are

discussed below. The Eu3* dopant ions are introduced as a
means of producing very locelized structural changes that
allow for the creation of laser induced refractive-index
gratings. This topic is discussed in more detail later.
In the last twenty years there has been some interest
in the use of crystals and glasses as laser hosts,
acousto-optic light modulators, opto-optical deflectors
(Sincerbox and Rossen (1983)), and phdﬁo-optical switches
(Tanaka and Odajima (1981)) to mention just a few. (See

Pinnow (1972) and references within for additional



TABLE I

COMPOSITION OF GLASS SAMPLES (MOLE %)

Sample
ID #

Network Network
Formers Modifiers

Eu
Content

K-2620

K-2619

K-2721

K-2736

K-2757

70.0 Si0 15.0 Li,0
5.0 2n0

5.0 BaO

Nazo

5.0
5.0 ZnO
5.0 BaO

70.0 Si0

15.0 KO

3.0 2Zn0
3.0 BaO

70.0 Si0

70.0 sS40 5.0 Rb0
5.0 Z2n0
5.0 BaO
15.0 Cs.0
5.0 Z2n0
5.0 BaO

70.0 S4i0

Eu203

EUZO3




applications). In all of these applications, the elasto-
optic effect plays an important role. The elasto-aptic
effect is the coupling of the index of refraction to the
mechaniéal strain in the glass (Nye (1981)). The
mechanical strain in the glass can be produced in a number
of ways. “It can be permanently frozen-in at the time of
formation of the glass or it can be causea by acoustic
phonon waves either thermal in origin or asrtificially
introduced through a transducer. The mechanical strain
can also be introduced through laser induced structural
changes of which thermal lensing and refractive index
gratings are examples. In any case, an incident laser
beam will interact with the changes in the local index of
refraction.

Some of the applications involving refractive index
gratings in rare-earth doped glasses using four-vave
mixing techniques include holographic storage,
demultiplexing multifrequency laser beams, and signal

modulation {Behrens and Powell et al. (1989)).
Previous Studies

Four-wave mixing techniques have been used to produce
permanent and transient refractive-index gratings in the
same glasses used in this study and iisted in Table I
(Behrens et al. (1989) ;nd Gang and Powell (1983)). The
gratings were produced by splitting the output of a laser

beam and crossing the two beams inside the sample. The



production of the gratings can be verified by directing a
probe laser beam, of different wavelength than the write
beams, into the region of the sample where the gratings
were produced. The probe beam is then Bragg diffracted
and the scattered intensity measured with a photo-
multiplyer tube. It has been shown {(Behrens et al.

(1989)) that the scattering efficiency from these induced
gratings is dependent on the Eu3' concentration, with no

grating produced in those samples with little or no Eu3*
dopant. Also, it has been found that the scattering
efficiency decreases as the modifier ion is systematically

3+

changed from Li to Cs even though the Eu content is

believed to be the same in each sample.

The effect the modifying ions and Eu3* ions have on
the scattering efficiency was explained using a simple
double-minimum potential well model where both the network

former and the modifier ions move in the environment of
the Eu®* ion creating a double well for the electronic
levels of the Eu3®* ion. During the creation of the
gratings, the write beams, which are in resonance with the

F, = D, absorption/transition of the Eu3®* ion excite the
ions into a higher energy state. The ions deca} by way of
the non-radiative transition 5D2 —~5D° which produces

several high energy phonons. The resultant local heating
caused by the phonons is then believed to be responsible
for the structural changes that produce the gratings.

Additional information on the formation of the



gratings and of the structure of the glasses can be
obtained from Raman and Brillouin scattering experiments.
Raman scattering experiments have already been done in
some of these glasses (Durville et al. (1987)) but to date
no Brillouin scattering experiments have been reported.
Schroedex (1980), sﬁudied the index of refraction/
density relationship of the‘photo-elastic>constants for
several families of binary and ternafyLsilicate glasses
using Brillouin scattering. He found that the theoretical
expressions for the photo-elastic constants as derived by
Mueller (1935), Carleton (1972), and Sipe (1978) could
qualitatively account for the changes in the photo-elastic
constants as the amount of alkali-o#ide concentration was
changed in the host glass. From the measured values of

the photo-elastic constants P, and P4ﬁ, the density

derivative of the optical dielectric constant [p%%) vas

calculated and compared with that value predicted by
several different theories. It was found that the
Carleton model was able to provide an upper and lover

bound to the measured value of the density. derivative.
Present Study

We report in this dissertation the results of
Brillouin scattering experiments in the same glasses as
vas used in the four-wvave mixing experiments mentionéd in
the last section. The elastic constants and photo-elastic

constants for these glasses were measured at room



temperature. The photo-elastic constants were measured by
comparing the scattering intensity of the longitudinal
acoustic (LA) and transverse acoustic (TA) peaks to that
of fused quartz. {Fused quartz with its known photo-
elastic constants was used as a standard scatterer).

The measured values of the photo-elastic constants
are compared to Carleton’s theoretical expressions for
photo-elastic constants in glasses. The phoﬁo-elastic
constants were also used to calculate the density
derivative of the optical dielectric“constant,<mentioned
in the last section, for the five glasses listed in
Table I. OQur results are compared with the Lorentz-Lorenz
and the Drude expressions for the density derivative. The
strain polérizablity constant, a quantity that measures
the amount of strain induced polarizablity in the glass,
was calculated for each sample. The figures-of-merit and
Landau-Placzek ratios of the glasses as well as Young’s
modulus, Poisson’s ratio, énd acoustic attenuation

coefficients are also reported.



CHAPTER II
EXPERIMENTAL APPARATUS AND PROCEDURE

In this chapter the equipment used in the Brillouin
scattering experiments will be discussed and the procedure

outlined. But first, a few words on sample preparation.
Sample Preparation

The glass samples listed in Table X on page 2, vere
prepared by the National Bureau of Standards and vere
provided to us by Dr. Richard C. Powell of the Physics
Department of Oklahoma State University. The samples were
cut from larger pieces so that two of the narrow width
faces intersected at a 60° prism angle. This facilitated
the measurement of the index of refraction. {Cutting the
samples in this way did not affect the scattering
experiments since these experiments were done on the
bottom helf of the samples where they were rectangulaer in
shape). Except for the &60° prism angle, the samples were
cut into a near rectangular shape of dimensions of about
1x1x0.5cm®. Each sample was then polished by hand to
optical quality. |

The fused quartz sample, used as the standard, was

cut from a circular disk part of a stock of disks normally



used for high quality windows. After cutting, the sample
vas repolished to optical quality. Liquid toluene from
Fisher Scientific was used to calibrate the fused quartz
standard. Before using, the toluene was filtered several
times using filter paper to remove sources of elastic

scattering.
Apparatus

Figure 1 shows the experimental setup used in the

measurements of the elastic constants and the photo-

elastic constants of the Eu®'-doped silicate glasses.

All of the experiments were done at room temperature
of about 25°C. On any given day, the temperature in the
room vwas stable to less than about = 1C°. However, over
a period of more than a year, the temperature varied by
about * 3C° due to the effects of air conditioning and
heating. Since the Brillouin scattering intensity is
proportiocnal to tﬁe absoluté temperature this fluctuation
of about 3C° amounts tojan uncertainty of around 2 1%. The
elastic constants, on the other hand, are independent of
temperature in this temperature range.

The single mode output of a Spectra-Physics model

2020 argon-ion laser aperating at 51454, was focused into
the sample to be studied/by S0cm focal length lens. The
pover used in these experiments depended on the situation
and the type of experiment being conducted. Usually it

vas between 100mW and 250mW. A simple experiment where
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Scattering Experiments.
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the Brillouin intensity was measured as a function of
powver wvas performed on the more absorbing samples. It was
determined that no noticeable heating of the sample was
taking place at powvers of 250mW or less.

The scattered light was collected at 90" by an
Olympus S5Smm camera lens, spatially filtered using a
pinhole and collimated using an Olympus SOmm camera lens.
The size of the pinhole varied depending on the situation
and the experiment being conducted but was typically 100sm.
The collimated light was passed through a stabilized
(using a Burleigh DAS-10 stabilization unit and RC-43 ramp
generator) triple-pass Burleigh model RC-110 Fabry-Perot
interferometer. The Fabry-Perot output was then focused
onto the cathode of a cooled ITT FW-130 photomultiplier
tube.

The output pulses of the photomultiplier tube were
sent both to a Canberra model 3502 multichannel analyzer
(MCA) for display of the spectrum and to a Canberra
amplifier-discrimenator (PAD) for use by the stabilization
unit of the Fabry-Perot. The spectrum collected in the
{MCA) could then be sent to an IBM PC/XT 80286 computer
for analysis and storage of the data. A computer data
base (Smart Integrated Software (1988)) was used to record
the experimental parameters and equipment settings for
each experimental run.

A computer program written in IBM Advanced BASIC wvas

used to analyze and plot the data received from the (MCA).
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A listing of the program and an explanation of the
algorithms used in the program can be found in Appendix A.
In addition to this program, a commercial plotting routine
(Plotit (1989)) was obtained to quickly produce
publishable quality plots on a Hewlitt Packard CeclorPro
plotter. Figure 2 shows a plot of a typical room

temperature Brillouin spectrum of the Rb,0-5i0, sample.

(For brevity, the five glasses used in this study will be

referred to as MZO—SiDZ where M = Li, Na, K, Rb, =and Cs

even though each glass contains additional materials).

The spectrum shows both the longitudinal acoustic (LA) and
transverse acoustic (TA) peaks and the central Rayleigh
peak. In this plot a smooth curve was drawn through the
data points. The interpretation of the spectrum will be

discussed in Chapter 3.

Procedure

In this section, the methods used to measure the
plate separation of the Fabry-Perot interferometer, the
index of refraction of the samples and the densities will
be discussed.

The plate separation of the Fabry-Perot must be known
in order to determine the Brillouin shifts. Whenever the
plate separation was changed, & Brillouin spectrum of
fused quartz was taken. This spectrum in conjunction with
the known LA Brillouin shift of fused quartz was then used

to determine the plate separation using the same
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analysis computer program mentioned earlier.

The LA shift of fused quartz, used in the analysis
program, was the average value of a number of independent
measurements where the plate separation was measured using
a traveling microscaope. The results compared very well
with published results. Table II lists the results of our
measurements on fused quartz as well as the results
obtained by other researchers using Brillouin spectroscopy
(Schroeder (1980) and Schroeder (1985)).

The computer program used to analyze the data had
geveral functions. It was first used to analyze the fused
quartz data to determine the plate separation of the
Fabry-Perot. With the knowledée of the plate separation,
it was used to determine the Brillouin shifts of the glass
samples. The program also printed-out the intensities of
the Rayleigh and Brillouin peaks as well as peak
centroids, the full-width at half-maximum of each peak,
the free spectral range, the finesse, and the
Landau-Placzek ratio.

The Brillouin shifts df the glass samples were
measured in this wey, over a period of several years using
several different plate separations. (Uging different
plate separations was necessary to make sure that the
Brillouin peaks were not overlapped into adjoining
orders). The plate separations used in these experiments
varied ﬁetween about 0.25%7cm and 0. 282cm.

The expression for the phonon velocity is,
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TABLE II

RESULTS OF FUSED QUARTZ MEASUREMENTS

Source Awpa L@y a4 n P

(em™) (cm™) (g/ecm3)
This Report 0. 504 0. 801 1. 462 2. 207
No = 51454
Schroeder (1980) 1.4577 2. 20335
Ao = 63284

Ym Via Caa Ch

(x109cmss)  (x109cmrs) (x10'%dynescm?) (x10!%ynescn?)
This Report 3.76 S5.98 31.2 78.9
No = 51454 '
Schroeder (1985) 3.7487 S5.9442 30. 97 79. 00
Ao = 63284
P2 P44

This Report 0. 279 -0.0792
No = 51454
Schroeder (1980) 0. 270 -0.0718

No = 63284
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v = ——e (2.1)
4nnsin{%] )

where aw is the Brillouin shift, », is the laser wavelength,

¢ the speed of light, n the index of refraction of the
sample, and ¢ is the scattering angle. As can be seen, in
order to determine the acoustic velocities from which the
elastic constants can be determined, one needs among other
things, the knowledge of the index of refraction. As has
already been mentioned, the samples were cut so that two

of the faces intersected so as to make a prism angle of

60°. The index of refraction was measured using a standard
Gaertner-Peck spectrometer designed to use the common
refractive angle minimum deviation method. The procedure
was complicated by the non-uniformity of the samples. The
image of the slit after passing through the sample, as
seen through the telescope of the spectrometer, was bent
and distorted for most of the glasses leading to a higher
uncertainty in the indices than would otherwise be
expected from this method.

The results of the index of refraction and density
measurements for the five glasses, fused quartz, and
toluene are given in Table III.

To determine the elastic constants, C,, and C44 the

density p of the samples must be measured as can be seen

from the following equations,

2
Ciy = #Via
Cyq = PVE5 - (2.2

The densities were measured using the buoyancy



18

TABLE III

DENSITIES, REFRACTIVE INDEX, AND
COLOR OF THE GLASSES AND TOLUENE

Sample Density Index of Color
(g/cm?) Refraction
(5145A)

Liy0-8i0, 3.22 £ 0.03 1.604 = 0.005 Brown
Na,0-Si0, 3.21 £ 0.03 1.583 * 0.005 Brown
K, 0-Si0, 3.15 = 0.03 1.584 ¢ 0.005  Dark Brown
Rb,0-8i0, 3.47 + 0.03 1.573 + 0.005 Light Brown
Cs,0-510, 3.74 £ 0.03 1.591 + 0.005 Light Brown
$i0, 2.21 ¢ 0.03' 1.482 ¢ 0.001 Clear
Toluene 0.8668° 1.493 = 0.0017 Clear

'Pan (1989)

2CRC Handbook (1987)
3Bouchalkha (1989)
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principle with distilled water as the working fluid. 1In
this method one is able to determine the volume of the
irregularly shaped glass sample by measuring the change in

wveight as the sample is submerged into the working fluid.

The Brillouin Shifts

In this section the method used by the analysis
program to measure the Brillouin shifts is discussed.

Before taking data, the ramp amplitude of the DAS-10
vag adjusted to display three orders of the Fabry-Perot
output below the ramp. (The ramp amplitude controls the
voltage range sent to the piezcelectric stacks on one of
the Fabry-Perot plates for one sweep. Thus a larger
voltage range translates into a larger movement of one
plate toward the other allowing the Fabry-Perot to scan
through several orders). Figure 3 shows a typical
vertical-unpolarized Brillouin spectrum of intensity
versus channel number of the fused quartz sample taken at
room temperature. In this plot a smooth curve was drawn
through the data points without showing the points. The
figure shows three orders with the very intense Rayleigh
peaks off scale and the LA and smalier TA peaks clearly
shown. Each data set received from the multichannel
analyzer consisted of 1024 channels.

Figure 4 illustrates the method used to determine the
Brillouin shifts from the experimental data. The free

spectral range (FSR) is defined as the range of
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frequencies that can be observed in one order without

overlap into the next order. In units of cm—n the free

spectral range of the Fabry-Perot is defined as (Hecht
(1975)),

= 1
FSR = 5q | (2.3)

wvhere d is the Fabry-Perot p;ate separation in centimeters.
Letting aw;, represent the actual Brillouin shift in units

of cm™!

» we can set the ratio of the Brillouin shift to
the FSR, equal to the ratio of the average number of

channels between the Stokes and anti-Stokes Brillouin
peaks r, to the sum of the average ﬁumher of channels

between the anti-Stokes peaks L,s and the average number

of channels between the Stokes peaks Ls’

AWia _ r . (2.4)
s (Lns + Lg)

Solving for the Brillouin shift and using Equation (2.3)
we get,

= r . (2.5)
S T 24 (Las + Ls)

In Appendix A the reader will find the algorithms
used by the analysis program to compute the centroids of

the Brillouin peaks used to calculate Lay L%, and r used

in the Brillouin shift calculations.

The free spectral range in our experiments depended
on the plate separation but was ty#ically around 2.0cm™! or
6.0X10'%H=z. The finesse of the instrument depended on the

quality of the alignment and ranged from the lowv to upper

fifties and occasionally in the low sixties.
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All of the data taken in these experiments were
recorded in a computerized spreadsheet (Smart Integrated
Software (1989)). The spreadsheet was then used to do all
of the tedious calculations such as mean values,
uncertainties, and other calculations involving the
Brillouin shifts and the elastic constants.

Now that the Brillﬁuin shifts have been determined,
the index of refraction and the density can be used to
calculate the velocities using Equation (2.1) aﬂd the

elastic constants using Equation (2.2).

Intensity Measurements

In order to determine the photo-elastic constants it
is necessary to measure the integrated areas of the
Brillouin peaks of the glass samples relative to some
standard such as fused quartz with known photo-elastic
constants taken under identical experimental conditions.
The method of comparing to a standard is the preferred
method over measuring the absolute intensities since this
would require the knowledge of experimental conditions
which are difficult to measure, in practice, with any
degree of accuracy.

The photo-elastic constants of fused quartz have been
measured previously by Schroeder (1980). Schroeder
determined the photo-elaétic consetants by comparing the

scattered intensities of fused quartz to liquid toluene
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and vater. We decided to repeat these experiments using
toluene a2 a check of our experimental apparatus and

procedure.
sz of toluene can be determined by comparing two

relations for the density derivative of the optical
dielectric constant at constant entropy for a pure liquid.
The first of these expressions was derived by Fabelinskii
(1968) from thermodynamic derivations of the scattered
intensity from adiabatic (Brillouin qomponents) and
isobaric (Rayleigh component) density fluctuations in pure
liquidé. The second expression can be obtained by
comparing the theoretical expression for the (LA)
Brillouin intensity for isotropic materials (see Chapter
III for the derivation), to the thermodynamic calculation

found in Fableinskii,

(d32) (L2¥2T)z
caT P RLPCP

—
©
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4 5T
n*P, . (2.6)
In Equation (2.6), ¢ is the coefficient of volume

expansion, v the velocity of hypersound, T the absolute

temperature, Cp the specific heat at constant pressure, »

the density, n is the index of refraction, ({3%) is the

p
temperature coefficient of the dielectric constant at

constant pressure, and RLP is the Landau-Placzek ratio.

The Landau-Placzek ratio is defined as the ratio of the

intensity of the Rayleigh peak to that of the total
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Brillouin intensities,
I
_ R

Rip = 2T, ° (2.7)

In determining sz from Equation (2.6), ve used

Fabelinskii’s listed values for Cp = 1.68X10%erg/deg,

6 = 106X10%deg”!, and the temperature coefficient of the

dielectric constant -1.74. We used our values for the
hypersonic velocity v = 1.34X10%m/s and R p = 0.42 that

vere obtained from the Brillouin spectrum. These values

for v and R, compare very well with values found in the
literature. Fabelinskii listed a value for v of

1.38X10%m/s and used the top part of Equation (2.6) =along
with an independently measured value of the density
derivative of the dielectric constant, to compute

R, p obtaining a value of 0.44. Our directly measured

value of 0.42 compares favorably with Fabelinskii’s
calculated value and other directly measured values from
Brillouin scattering of 0.42 (Cummins et al. (1966)) and
0.415 (Schroeder (1980). The velocity and the Landau-
Placzek ratio from our measurements were measured at a

temperature of 293K and the index of refraction was

measured at a wavelength of 51454 giving a value of 1.493.

Using these values for v, n, and R“,and those listed

in Fabelinskii for C s, and [125 , we obtained a value of
P ¢3T P

1.61 for the density derivative of the dielectric constant
vhich compares well with Fabelinskii’s listed value of 1.60.

Using the bottom half of Equation (2.6), we were able

to determine PTZ using our value for the index of
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refraction. The result is sz = 0,322 which compares

very well with Schreoeder’s result of 0.3225. Using our
value for the photo-elastic constant of toluene we then

compared the toluene Brillouin intensities to the (LA)
Brillouin intensities of fused quartz to get P?z {the

superscript "o" refers to the fused quartz value). With

the fused quartz standard calibrated, we then preceded to

measure the photo-elastic constants of the Eus*—doped
glass samples. The details of the procedure used to
measure the photo-elastic constants will be discussed in
Chapter III.

In the calibration of fused quartz just discussed and
in subsequent intensity measurements with the other glass
samples, the integrated areas of the Brillouin peaks must
be calculated. The areas were determined by adding-up the
total number of counts in each channel, minus the
background, within a region—of-interest that included the
peak in question. The area used in subsequent
calculations, was the average of five of the right most
peaks within the three orders shown in Figure 3 on page
18. The béckgrouna wvas determined from that region of the
spectrum that had the fewest number of counts, frequently
the region between the LA peaks.

. The procedure would then be to take a spectrum of
fused quartz and theh under the exact same conditions,
except for focusing due to the difference in the index of

refraction, take a spectrum of one of the glass samples.
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Then from the computer print-out of the areas, calculate
the ratio of the Brillouin area of the glass sample to
that of fused quartz. The results could then be used to
determine the photo-elastic constants. More will be said
on thié in Chapter III.

The above procedure was complicated by the fact that

the glass samples were absorbing in the 51454 region of
the spectrum. As a result of this absorption, the‘
intensity of the Brillouin peaks depended on the position
of the scattering volume within the =sample. Therefore, as
many as twelve runs vere made at different positions
inside each sample. In this way we could extrapolate the
intensities to that point in the sample where the
scattering volume is very close to both the entrance
surface where the laser beam enters the sample and to the
exit surface where the scattered light leaves the sample.
Referring to Figure 5, the areas were fit to the

followving equation,

I=1I¢e ™ (2.8)
where o is the absorption of the material in cm™! and
h =’x+z is the sum of the distance the laser beam travels

through the sample to the scattering volume z and the
distance the scattered light travels from the =cattering
volume to the point where it leaves the sample x. A
linear regression routine, part of a graph plotting

program (Plotit (1989)), wvas used to determine « I, and

to plot the results. Table IV lists the absorption and
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TABLE IV

ABSORPTION COEFFICIENTS AND REGRESSION
ANALYSIS PARAMETERS

« Standard Error Correlation

Sample (cm™!) (cm™h Coefficient
Li,0-510, 0.6 + 0.1 0. 940
Na ,0-510, 1.49 + 0.04 0. 997
K, 0-510, 1.98 + 0.08 0. 995
Rb,0-51i0, 0. 24 + 0.02 0. 953
Cs,0-S10, 0. 43 + 0.03 0.971

510, 0.04 x 0.02 0. 531
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regression analysis parameters for the glass samples and
for fused quartz.

After taking data in the glass sample, fused quartz
runs wvere taken under the same experimental conditions and

a similar analysis with the Plotit program gave values of

Ig and «° for fused quartz. The ratios of the areas

In/Ig, wvere then computed and entered into the spreadsheet

for calculation of the photo-elastic constants. Figure 6

shows a plot of 1n(A) vs. h for the KZO-SiD2 and fused

quartz samples showing the area ratio g at the top of the
figure along with the expected uncertainty. Also shown
are the values for the absorption coefficient and
extrapolated intensity along with their respective
uncertainties.

The uncertainties were computed from the linear
regression standard error determined by the regression
program of Plotit.

This is not the whole story hovever. In the case of
fused quartz the absorption waé small enough so that the
intensity of the incident laser light that was lost at the
entrance face due to reflection was almost totaliy
compensated for by the back reflection froﬁ the exit
face. In the case of the high absorbing samples, this
back reflection from the exit face did not compensate as
much for that intensity lost at the entrance face as it
did for fused quart=z=. The difference amounted to as much

as a 3% decrease in the laser intensity inside the high
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absorbing sample compared to that of fused quartz. The
corregponding corrections for each sample were made to the
intensity ratios. These and other corrections are discussed
in detail in Appendix B.

In the case of the Rb,0-Si0, sample, the sample had
been cut inadvertently so as to direct the back reflection
down and away from the laser beam inside the sample. The
correction to the area in this case was on the order of 3%.

Table V lists the intensity ratios for the five
glasses studied in this report. These values have been
corrected for the back reflection and this explains why

Buxfor KZG—SiOZ listed in the table is different from

that shown at the top of Figure 6. Details of the back
reflection correction plus other correction factors are

given in Appendix B.



TABLE V

BRILLOUIN INTENSITIES RELATIVE

TO FUSED QUARTZ

31

Sample Bra Bia
Li,0-Si0, 0. 55 0.60
Na,0-Si0, 0.71 0.93
K,0-5i0, 0. 52 0.84
Rb,0-5i0, 0. 46 1.15

0.37 1.36

Cs,0-Si0,




CHAPTER III
THEQORETICAL ANALYSIS
Equations of Motion

In this first section the solutions to the equations
of motion for an elastic medium are discussed for the
general case applicable to both crystals and glasses. In
the next section, the Brillouin frequency and wavelength
are discussed and in the final section, the Rayleigh ratio
will be evaluated for glass materials. Since this is a
report on Brillouin scattering in glasses, the few
examples cited will use glass as the model.

It can be shown {(Nye (1981)) by épplication of
Nevwton’s second law, that the equations of motion for an
elastic medium of density ¢ expressed in terms of the

stress can be written as,

- 3
pu = EE 3% (3=1,2,3) (3.1)

wvhere u, is the displacement from equilibrium in the X,
direction and ¢,y are the elements of the stress tensor.

Equation (3.1) is the fundamental equation that relates
the spatial variation of the stress in the material with

the acceleration of its parts. It is the beginning point

32
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of the study of elastic waves in crystals and in glasses
(Nye (1981)).

The relationship between the stress and the strain
tensors in the harmonic approximation (Hooke'’s law) is
given by {(Nye (1981)),

3 3
Gyy = kZ“ZICU“s“ (i, 3j=1,2,3) , (3.2)

where the CUkl are called the elastic stiffness constants

and the s are the elements of the strain tensor. Using

k1

Equation (3.2) and assuming a plane wave solution for uy,

Equation (3.1) can be written in the long wavelength limit

as (Cummins and Schoen (1972)),

2333 9,9 2
S =lc 5t - ovZs,, |u? = 0 (j=1,2,3). (3.3)
S A5 q? Sk B T

Equation (3.3) represents three equations, one for

each value of j. The three eigenvalues of the determinant
of the coefficients of u: in Equation (3.3), give the

velocities in the long wavelength limit of the three

acoustic modes,
ov§ = C (3=1,2,3). (3.4)
The CJ are in general, complicated linear combinations of

the elastic constants. Only for phonons propagating in
high symmetry directions of crystals will the left side of
Equation (3.4) be equal to a single elastic constant.

The number of non-zero elastic constants depends on
the symmetry of the material. Glasses are isotropic and
as a result the stress produced by a small strain can be

described by just two independent elastic constants



C,, and C4y (Where the more convenient six-component

notation has been used for the elastic constants). The
Cauchy relation 2C4, = C,,-C,, allows one to determine

C (Schroeder (1977)).

12°
The displacement eigenvectors associated with each

velocity eigenvalue can be found by substituting the v
back into the equations of motion. In glasses, the
displacement vectors U will be either parallel or
perpendicular to the phonon wa§evector aﬁ

As an example, let the phonon wavevector E'be in the
X direction of an arbitrarily chosen rectangular
coordinate system in a glassy material. In this case,

q=q, and qy=qz=0. From Equation (3.3), we get,

C
-ov2iy? = 2 - 11 o
(Cyymovi3u2 =0 = vZ= 24  ulig,
C
-ov2lul = . . ) o
{qu pvz)uy =0 = Vs = o uqux (3.35)
c
- 2 o - 2 _ 44 ]
(Caqmovilug = 0 = vi= 3% ualqy, -

Thus, for glasses there is one longitudinal mode and one
degenerate transverse maode for the phonon propagating in
£he X direction. Since it makes no difference which
direction we choose to point the x axis in isotropic
materials, we would expect to get the same result for any
other direction in the glass. In crystals howvever, the
results can be very different for other directions of
propagation of the phonon being probed. In general there
are three distinct modes giving three separate eigenvalues

in crystals.

34
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The Phonon Frequency and Wavevector

To this point, we have seen that the equations of
motion can be solved to obtain an expression for the
phonon velocities in terms of the elastic constants. The
next step is to find out how the velocities are
experimentally measured.

Brillouin scattering is the inelastic scattering of
photons. Quantum mechanicelly, Brillouin scattering is a
three part process. Referring to Figure 7, an incident

photon of energy #w; is absorbed resulting in the creation
of a scattered photon of energy #wg accompanied by the

creation (Stokes) or destruction {(anti-Stokes) of a phonon
of energy #n. Conservation of energy and momentum in the
process give rise to the following selection rules;

*

W,y = wg

w
-3 -
kl = ks

* {(3.6)

Q2
-
q
wvhere 1t is the phonon frequency, 3 is the phoncn
wvavevector and the subscripts "i" and "s" refer to the
incident and scattered light components respectively.

It can be shown that the wavevector of the phonon in

terms of the index of refraction of the sample n, the

wavelength of the incident light », and the scattering

angle ¢ can be written as,

_ 4nn @
q = T:Bini— . (3.7)

It is important to realize that the phonon wavevector
probed in Brillouin spectroscopy is completely determined

by the experimental geometry (i.e. ¢) and parameters.



Phonon Creation

(Stokes Process)

Figure 7.

Phonon Destruction

(Anti—Stokes Process)

The Brillouin Scattering Process.

=1



37

The direction chosen for E'in crystals is important
because, as has already been mentioned, the solutions to

the equations of motion are simple only in high symmetry

Ql

directions of the crystal. In glasses, the direction of
is unimportant because of the isotropic nature of these
materials.

The maximum value of q is typically on the order of
103 cm™! as compared with the typical crystal Brillouin

zone width of 10% cm™.

Experimentally, the Brillouin shifts aw = w;-w,
wvhich are equal to the phonon angular frequencies n (see
Equation (3.6)), are determined from a Brillouin spectrum
obtained using a single mode laser of known wavelength and
a Fabry-Perot interferometer.

In general the Brillouin shifts can be determined
from the spectrum with the knowledge of the plate
separation of the Fabry-Perot (see Equation (2.5)). Using
the Brillouin shifts, the velocities can be determined

using v=%$-and Equation (3.7) to get,

AWCK,
4nnsin(%0 ’

(3. 8)

And finally the elastic constants can be determined using

Equaiion (3.5).
The Rayleigh Ratio

Thus far we have seen how the elastic constants can

be determined by measuring the acoustic phanon
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velocities. However, we still need to determine how to
identify the peaks in the Brillouin spectrum with the
different phonon modes. For example, how is it determined
which pair of peaks in Figure 2 correspond to the
transverse phonon mode?

. The ansver to this question lies in the Rayleigh
ratio or the differential cross section per unit volume.
In this section the Rayleigh ratio is discussed and it is
shown how it can be used to determine the polarization of
the scattered light produced by the different phonon
modes. In general, by using an analyzer bhefore the
Fabry-Perot, only certain pairs of peaks will show up in
the spectrum. ‘The calculation of the Rayleigh ratio will
allov us to predict which peaks will appear for a given
orientation of the analyzer.

To begin, consider laser light incident on a sample

vith electric field inside the sample given by,
E = eE%xp[i(k T -wt) ] (3.9)
1€%P i 1 :
wvhere E: is the incident wavevector, w; the incident

frequency and 31 is the unit vector that describes the

polarization of the incident light. The Rayleigh ratio is
defined as the differential cross section per unit volume

per unit incident intensity (Cummins and Schoen (1972)),

= 2 ‘ (3.10)

In Equation (3.10), Is is the scattered intensity

polarized in the és direction, I, is the incident
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intensity polarized in the @ direction both inside the

1
sample, V is the volume of the illuminated region being
detected and R .is the distance from the scattering volume
to the collecting lens.

The exact form of the Rayleigh ratio can be derived
in terms of the Brillouin scattering tensors Xx; and other
experimentally determined parameters (Cummins and Schoen
(1972)). The elements of the Brillouin scattering tensors
contain the photo-elastic constants (Pockel‘coefficients)

P that relate the change in the reciprocal dielectric

ijrs

constant &(e™!) and the strain s produced by the

rs
acoustic phonons propagating through the material (Nye

(1981).

-1 =
&(e ’11 = Pijrssrs . (3.11)

It can be shown that the fluctuation of the
‘dielectric constant can be written as (Born and Huang
(1962)),

3€45 = 0118011 1315k (3.12)

where €(0)11 and e(o”j are the dielectric constants:

ordinary and extraordinary. for uniaxial.crystals. In the
case qf glasses there is only one dielectric constant and
these two quantities are equal to each other.

The Brillouin Rayleigh ratio is then derived (Cummins

and Schoen (1972)) from the excess dipole moment per unit

se, E]
volume, P (r) = —id yhere E is the amplitude of the

electric field of the incident laser light. Assuming that

the excitation of each acoustic mode is on the average in
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thermal eguilibrium at temperature T, then,

K.T
2y _ B
{(qu)“y = Vv (3.13)
As a result we have,
KBng [A A ]2 ns
RJ - 32nchovﬁ ®s )(J"el (H:) ) (3.14)

Equation (3.14) is the internal Rayleigh ratio of the

j'" acoustic mode, where Ky is Boltzmann’'s constant, T is

the sample temperature, wg » w, is the angular frequency

of the scattered light, ¢ is the speed of light, ¢ is the

density of the glass, v, the velocity of the j‘n phonon

mode, and gs and 3, are the unit vectors that describe

the polarization of the scattered and the incident
electric fields. The indices of refraction for the

incident and scattered fields are given by n, and ng

respectively. For glasses these two quantities are equal.
Eguation (3.14) gives the scattering cross section for

each acoustic mode in terms of the Brillouin tensors X,

Values of the Brillouin scattering tensor and the elastic

constants corresponding to the various eigenvalues

2

PV have been tabulated for a number of phonon directions

in a variety of crystal classes and for isotropic glasses
by Cummins and>Sohoen (1972). Outlined below is an
example of how to use these tabulated quantities.

Figure 8 shows the scattering geometry for a typical
Brillouin scattering experiment in a glass. For this
case, the eigenvalue, unit displacement vector, and

Brillouin scattering tensor for a phonon propagating in
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Figure 8. Brillouin Scattering Geometry.
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the x direction, are given in Table VI.
Referring to Figure 8, there are four possible
combinations for the polarization of the incident and

scattered light:

0
) A
Incident light vertically polarized: e, = (1]
0
A 1
Incident light horizontally polarized: e, = i%(o)
. 1
A
Scattered light vertically polarized: e, = (010)
Scattered light horizontally polarized: 35 = f§<1or>

The next thing to do is to determine which combination of
A A .

[es- )(Jo el] from Equation (3.14) produces a

non-zero result. For the geometry shown in Figure 8,

there are four possibilities:

P,,0 O 40
i) VA (01 0)e?|0 P,0 ||1]| = €?P

— lz ’
0 0 Pyl
P,,0 O 1
2
ii) HHL (1 0TDe? 0Pz 0 -14:5- 0| = &«P,,-P,,) = €%P,, ,
0 0P, 1
1 - (6]
. 0 2(Py"Py? O
iii) VH (1 0 TDIe?|5(Py~Py) ) o |1
0 a] 0
= £2(p, -P,,) = Le?P
T 24z 112 N s I
1 - 1
o PALSTRUSTUI N
iv) HV (0 1 0)e?|3P, -P ) 0 o |50
0 8] 1
- &2 - = 12
= 55 PP = 5P

(3.13)



TABLE VI

VELOCITIES, POLARIZATIONS AND BRILLOUIN
SCATTERING TENSORS FOR GLASSES

43

pve = Cll

A

u = (1,0,0) Longitudinal
0

0
X: ez O Plz 6]
0 0 Py

1
ov? = i{cll—clz)

3 = (0,1,0) Transverse
1 -
. 0 2(P"Pp) O
X = €%[3¢P;7P,p) 0 0
o 8] 0
2 _ 1 _
pv= = E{Clx Cy2)
A
u = (0,0,1) Transverse
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the incident and the scattered light are vertically
polarized. Comparing this with the theorétical treatment
above we see that this spectrum is the result of
longitudinal acoustic (LA) phonons. In Figure 9c, the
scattered light is horizontally polarized showing the
transverse acoustic (TA) phonons. In Figure 10a the
incident light is horizontally polarized and the scattered
light is unpolarized; Figure 10b, shows the spectrum
where the incident and scattered light are horizontally
polarized showing the (LA) peaks with reduced intensity
relative to that found in the VV spectrum. And finally,
Figure 10c shows the (TA) peaks where the incident light
is horizontally polariged and the scattered light is
vertically polarized. In this case the (TA) intensity is

the same as in the VH case.
' A n
Substituting the expressions for [eso )(J- ei] in

Equation (3.15) into the equation fof the Rayleigh ratio
Equation (3.14), and using Equation (3.10) we arrive at
the expressions for the intensity of the scattered light

from the various Brillouin components,

I w0 11 VK T4 ;P2 '
1. = —Be“(—"—) ( B )(——‘&) (3.16a)
W o R2T \c/ \32r2/\Cy, )

o4 VKgT (3. 16b)
T = g2 (C) 321:2)(0 ) :

I VKT P2
— - —o.4f{¥o . i 5 .

Ty = T = Z3€ (c) (5522) o ) . (3. 16c)
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These are the expressions for the scattered light
inside the glass and one must make corrections to obtain
the corresponding expressions for outside the glass. In
addition, the back reflection from the inside exit surface
must be taken into account. This is the topic of a later

section.
Intensities Relative to Fused Quartz

Figure 11 shows a top view of the sample with the

laser beam of intensity I, incident from the left. At

the entrance surface a small fraction of the laser
intensity is reflected and the rest is transmitted. The
intensity Jjust inside the sample is,

I(0,0) =TI, (3.17)
ﬁhere T is the transmittance and is given by,

= 4n
R TS S (3.18)

where « is the imaginary part of the index of refraction
which can be neglected for relatively small absorption
coefficients. The largest coefficient for our glasses is
1.98cm™' for K,0-Si0, which gives x = 8.11x107°.

Because of absorption, it is found that the intensity

inside the sample decreases exponentially. The expression
for the intensity of the laser beam inside the sample

becomes (Loudon, (19865)),
I1(0,2z) = TI e  ** (3.19)

The Rayleigh ratio previously defined in Eguation (3.10),
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Figure 11. Top View of the Sample Showing the
Incident, Transmitted, and
Scattered Light.
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gives the value for the scattered intensity at the point
(0,z) inside the sample,

I_(0,2z) = I¢0,=z) °)i}—z . (3.20)

ala
3)

The scattered light at the point (x,z) inside the sample is,

- doyl - -+
Ix,2) = TI (3= ~a x(x+z) | (3.21)

OQutside the sample, the scattered light is,

= f - a(x+z)
I8 = IoIoe (3. 22)
where,
¢ _ T2 do
1, = gf(aa) . (3.23)

As described in Chapter II, the photo-elastic
constants were determined by comparing the Brillouin
intensities of the glass samples to those of the standard
fused quart=z. This is done by first forming the ratio of

the integrated intensity of the sample to that of fused

quartz,
I I_I e~ %(x+2)
B = I_g = 909 o (3. 24)
s IoIo

and then setting x = z = 0, so0 that Equation (3. 24)

reduces to,

g = 2, (3.25)

This is the quantity measured experimentally as described
in detail in Chapter II. Using Equation (3. 16a),
Equation (3.23) and Equation (3.25) we arrive at an

expression for the photo-elastic constant P, of our glass
sample in terms of the intensity ratio B,

o (¥°12:C11y3rn+1 12005, 1z
Pz = PS(¥) (E?:) (n°+1) (%) (=)% - (3.26)
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Also used in the derivation of Equation (3.26) was the

expression € = n%. It is shown in Appendix B that the
ratio of the volumes in the above expression is very
nearly equal to one and can be be neglected.

In the above discussion, no mention was made of the
collection solid angle defined by the collection optics.
That i1s, the amount of light received from the scattering
volume, not only depends on the collecting optics but also
on the index of refraction of the sample. It is shown in
Appendix B that the solid angle correction‘to the
intensity ratio in Equation (3.25) is such as to increase
the measured intensity ratio B, by a factor of {n/n% 2,

In addition, the back reflection from the exit
surface in the high absorbing glasses is not sufficient
enough in intensity to compensate for that intensity laost
due to reflection at the entrance surface. It is shown in

Appendix B that this gorrection increases the intensity

ratio B by,

[1+R0e— 2a°L°]
y = (3.27)
[1+Re™ 2at]

vhere R is the reflectivity, « the absorption and L the
length of the sample. The superscript "o" refers to the
fused quartz values. |

The value of B that should be used in Equation (3.26)

is then,
2
- n
B = Bpeas.(5) ¥ - (3.28)

As a result, Equation (3.26) for the photo-elastic
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constant becomes,

n?,4

1
—) (Ppeas.¥)? - (3.29)

o (S 'é' n+l y2
Pz = PIZ(E!;T;) (o)

The expression for P,, can now be derived in terms

of the TA to LA intensities of the sample,

1
I z
= TA TA
Py = Plz(v )[2(1 )] . (3. 30)



CHAPTER 1V
EXPERIMENTAL RESULTS AND ANALYSIS

In this chapter we present the results of the

Brillouin scattering experiments on the Eu3*-doped
glasses. In chapter V we will discuss these results in
relation to what we think is physically happening in the
glasses and to current theories of light scattering in
glasses. In the first section of this chapter, the
Brillouin shifts, velocities, and elastic constants will
be discussed. In the next section, a discussion of the
photo-elastic constants will be given. Included in each
section will be discussions of quantities that can be
determined from either the elastié constants or the photo-
elastic constants. In addition, each section will include
brief discussions in fegards to error analysis for the

different facets of the experiment.

Brillouin Shifts, Velocities, And
Elastic Constants

The Brillouin shifts awp were determined from the

spectrum using Equation (2.5) on page 20,

r 1
Awy = (—-———) (4.1)
B L. )2d
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Table VII lists the average room temperature Brillouin

shifts for all of the Eu3*-doped silicate glasses. These
values are the averages of at least 10 or more separate
measurements. {Several different plate separations were
used to insure that the Brillouin peaks were not
overlapped into adjoining orders). The uncertainties were
determined from the spread in the values by calculating
the standard deviation. The uncertainties shown represent
three standard deviations of the mean.

As can be seen, the TA and LA Brillouin shifts
decrease by about 24% and 22% respectively as the modifier
ion is changed through the series Li, Na, K, Rb, and Cs.

The units normally used for the Brillouin shifts are

cm™!. To express the Brillouin shifts in the more

familiar frequency units of Hertz, all cne needs to do is
multiply by the speed of light in centimeters per second.

Thus the frequencies\of the acoustic phonons measured in
these experiments are on the order of 10'%z as compared

to the laser frequency of around 10z,

Table VIII lists the acoustic velocities calculated
from the average Brillouin shifts using Equation (2.1) on
page 15,

A Cawg
v = —t (4. 2)
Anne=in (-—)

2
The uncertainties in the velocities are the result of a

standard error analysis incorporating the measurement

uncertainties in the Brillouin shifts a{aw), indices of



TABLE VII

ROOM TEMPERATURE BRILLOUIN SHIFTS

55

Sample AWqp (ecm™) AWy 4 (em™h)
L1i,0-5i0, 0.489 * 0.007 0.833 + 0.009
Na,0-Si0, 0.446 * 0.002 0.767 x 0.001
K,0-S10, 0.423 £ 0.004 0.736 % 0.002
Rb,0-Si0, 0.395 = 0.001 0.687 * 0.001
Cs,0-Si0, 0.370 = 0.004 0.654 * 0.001

TABLE VIII
ROOM TEMPERATURE SOUND VELOCITIES

Sample V.. (10° cm/s) V.. (10° cm/s)
Li,0-s40, 3.31 2 0.05 5.66 = 0.05
Na,0-Si0, 3.07 # 0.05 5.29 * 0.05
K,0-Si0, 2.91 = 0.05 5.07 % 0.05
Rb,0-Si0, 2.74 = 0.05 4.76 £ 0.05

2.54 * 0.05 4.48 = 0.05

c820—5102
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refraction an and the scattering angle a¢. The error

equation is given by,

P
cos<

av . alaw) &0, —_2,, (4.3)
281n—2-

wvhere av is the uncertainty in the velocity due to the
uncertainties in the directly measured quantities aw, n,

and o. The values used for the measurement uncertainties
are as follows; a(aw) = t 0.004cm™! for the TA mode and

t 0.002cm™! for the LA mode, an = : 0.005 and

A¢ = % 0.068rad (~ 4°). The value used for a¢ is the
result of the analysis of the so0lid angle of collection
given at the end of Appendix B. As it turns out the last
term in Equation (4.1) dominates over the other two
terms. it is more than ten times larger and as a result
the uncertainty in the velocity is primarily due to the
scattering solid angle.

Both acoustic velocities decrease by about the same
percentage as do their respective Brillouin shifts
reflecting the fact that the indices of refraction for the
glasses vary by only about 2X%.

In Table IX the elastic constants are listed as
calculated from Equation (2.2) on page 15,

C = pv? (4.4)
The uncertainties were determined in the same way as for

the velocities using for ap = z 0.03g/cm.



TABLE IX

ROOM TEMPERATURE ELASTIC CONSTANTS

Sample Cuu C.,

(10'% dyne/cm?) (10'9 dyne/cm?)
Li,0-si0, 35.3 ¢+ 0.5 103.5 + 0.5
Na 0-Si0, 30.2 ¢ 0.5 89.5 = 0.5
K,0-5i0, 26.7 £ 0.5 81.0 * 0.5
Rb,0-Si0, 26.0 + 0.5 78.7 + 0.5

Cs,0-5i0, 24,1 + 0.5 75.2 = 0.5
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Both elastic constants, C,, and C_,, shov a gradual

decrease of approximately 27% and 32% respectively as the
size and mass of the modifier ion increases through the
series Li, Na, K, Rb, and Cs. In Figure 12 the LA and TA
elastic constants are graphed versus the molecular weight
of the glass samples.

There are several qqantities that can be calculated
from the elastic constants. The first of these is Young’s
modulus, the ratio of the applied stress to the fractional
change in dimension. In terms of the elastic constants,

Young’s modulus is given by (Christman (1988)),

Yy = C44(3011'4C44) (4.5)

(Clx_cqq)

The second is Poisson's ratio, the measure of the change

in dimensions perpendicular to the direction of the
applied force. Poisson’s ratio is given by {(Christman

(1988)),

c =

Lglﬁffﬁil‘. ‘ (4.6)
2(C11"C44) '

The third quantity is the adiabatic bulk wmodulus, the
reciprocal of the compressibility. The compressibility is
defined as the fractional change in volume due to an
applied pressure. The bulk modulus is given by (Christman

(1988)),

_ _4
B = Cll §C44 (4.7)

Table X shows the calculated values of these quantities

for the five glasses along with some other materials for



TABLE X

BULK MODULUS,
POISSON’S RATIO

YOUNG’S MODULUS AND
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Sample Adiebatic Bulk Young’s Poisson’s
Modglus Modulus Ratio
(10'% dynes/cm?) (10!'% dyne/cm?)
Li,0-Si0, 56.1 87.4 0.24
Na 0-SiO0, 49.3 75.2 0.24
K,0-Si0, 45. 4 67.0 0.25
Rb,0-SiO0, 44.0 65.3 0.25
Cs,0-Si0, 43.1 60.9 0.26
sio, 37. 2! 73. 2! 0.17!
sio, 36.572 72. 4572 0.170%
B,O, 12.83% 15.37°2 0. 30072

'This report
2Schroeder (1977)
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comparison. As can be seen, Young’s modulus and the
adiabatic bulk modulus both decrease as the size of the
modifying ion is increased. Poisson’s ratio on the other

hand, increases very slightly.

Photo-Elastic Constants

Table XI lists the measured photo-elastic constants

for the five glasses. P and P,, vere measured directly

12
from the vertical-unpolarized Brillouin spectrum as
described in Chapters II and II1I, whereas P,, vas
determined from the Cauchy relation,

P, = 2P, + P

" » (4.8)

12 *
The photo-elastic constants for other materials are also
shown in Table XI for comparison. The uncertainties are
not shown but are estiﬁated to be approximately 10X%.
Figure 13 is a plot of the photo-elastic constants

versus the molecular weight of the glasses. Except for

the decrease in going from Na to K, P,, increases by about
31% from Li to Cs, and qu increases, though not

continuously, by about 33%. Howvever, we have assumed here
that P, is negative consistent with that found in most
glasses (Schroeder (1980)). (More will be said on this in
Chapter V in relation to Carleton’s theory of
photoelastisity). The absolute value of P, decreases
reflecting the fact that the intensity of the TA peaks
actually decreases as the size of the modifier ions is

increased.



TABLE XI

ROOM TEMPERATURE PHOTO-ELASTIC CONSTANTS
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Sample P, [ Pyl Py
Li 0-Si0, 0.191 0.0518 0.087
Na_0-SiO, 0. 230 0. 0520 0.126
K,0-510, 0. 207 0.0410 0.125
Rb,0-510, 0. 244 0.0428 0.158
Cs,0-Si0, 0.251 0.0339 0.183
Fused quartz 0. 270! 0.126!
Fused quart=z 0. 2792 0.1212
Dense flint 0. 2563 0. 2323
Water 0.31°3 0.31°
Lucite 0. 28°% 0. 303
Polystrene 0.31°3 0. 303
Toluene 0. 3222

!ISchroeder (1980)
2This report
3pinnow (1972)
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Other quantities of interest related to the
intensities are the Landau-Placzek ratioc and the Rayleigh
and Brillouin scattering losses. The Landau-Placzek ratio

is given by,

R,, = R (4.9)

where I_ is the integrated intensity of the Rayleigh line
and I,, is the total integrated intensity of the

longitudinal Brillouin peaks. Table XII shows the results for
our glasses and for some other materials as well. As can be
seen, the Landau-Placzek ratio decreases steadily from Li to

Cs. In the Li,0-5i0, glass, the Rayleigh scattering wvas

so intense that neutral density filters had to be used
during the experiments to prevent flooding of the

photomultiplier tube. In the K,-Si0O, glass, there wvere

numerous flares making it difficult, but not impossible,
to find a quiet spot for the location of the scattering
volume. Bright flaresAof this kind were absent from the
other glasses. In all cases the value listed in Table XII

for R,, is the smallest value obtained after many runs.

The Brillouin scattering loss is given by (Schroeder

'(1977)),

8"3 KBT 2 1
o = == ——In |:P (4. lo)
B 3 ,\1 ( !Z) OVEA

vhere » is the laser wavelength, ¢ is the density, KB is

Boltzmann’s constant, T is the absolute temperature, n the

index of refraction, and v,, is the longitudinal acoustic

velocity. From Table XII ve see that «p increases by



TABLE XII

LANDAU-PLACZEK RATIOS AND ATTENUATION

COEFFICIENTS
Sample R p g xg

{cm™ ) tem™ 1)
Li,0-Si0, 23500 0.336 7890
NBZO-SiOZ 109 0. 491 66.7
KZO—SiO2 87.9 0.442 59. 8
Rb,0-Si0, 54.5 0.613 34.5
Cs,0-510, 39.0 0.724 31.1

5ia0 21.6 0. 404 9.13
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over 100% from Li to Cs, even though it decreases slightly
from Na to K.

The Rayleigh scattering loss is given by (Schroeder
(1977)), “

Cap = ag(R p*1) ‘ (4.11)
with values listed in Table XII. The Rayleigh scattering
loss decreases from Li to Cs. The units for «p and «g are

cm™L. Alternatively, they can be expressed in decibels

per kilometer by multiplying by 4.34X103.

The acousto-optic figure-of-merit is a quantity that
appears in a number of expressions describing photo-
elastic interactions in materials (Pinnow (1972)). The
figure-of-merit, measured relative to some standard,
characterizes a material as to its suitability for use as
control devices such as laser beam deflectors, light
modulators, and Q-switches requiring a large photo-elastic
interaction and large figure-of-merit, or as solid-state
laser hosts and glass used for lenses both requiring a
small interaction.

There are three different forms of the figure-of-

merit, they are,

M np_
1 PV

:

M (4.3)

3

It is common practice to express the figures-of-merit

relative to fused quart=z=. Expressed in this way M,,

M and M, are all set equal to one for fused quartz.

2’
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TABLE XIII

FIGURES-OF-MERIT

Sample M, M, M,

(X 7.88X%X1077) (X 1.51X107'8) (X 1.32X107!2)

Li _0-Si0, 0.69 0.70 0.73
Na 0-Si0, 0.98 L2 1.1

K 0-S5i0, 0. 85 1.1 i.0

Rb,0-5i0, 1.1 1.6 1.4

Cs,0-510, 1.2 2.0 1.6

Fused quartz 1.0

Dense flint 3.0!

Water 106!

Lucite 33!

Polystyrene ‘ : 84!

'Pinnow (1972)
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As can be seen in Table XIII, the figures-of-merit
increase from Li to Cs but are not much larger than that
of fused quartz. The figures-of-merit for some other
isotropic materials, listed in the literature, are also
shown for comparison. The conclusion is that the five
glasses studied in our experiments are not well suited for
acousto-optical applications that require a large

photo-elastic interaction.
Optical Absorption

Because of absorption, the intensity of the scattered
light will depend on where the scattering volume is
located within the sample. As a result, the absorption
had to be taken into account when measuring the intensity
ratios. The optical absorption was the largest for the

K 0-51i0, glass and decreased in the series Na,0-Si0O,,

Lizﬂ—SiOZ, CSZD—SiDZ, and Rb_0-5Si0,. Figure 14 shows a

I
plot of ln(TE) vs. h for the five glasses. In this

plot Is is the scattered intensity of the LA peaks for a

scattering volume at some position h within the sample.
(The coordinate h’is the sum of x and z where x is the
disgtance the scattered light travels through the sample
from the scattering volume to the exit surface and z is
the distance the center of the scattering volume is from

the entrance surface). I0 is the scattered intensity

extrapolated to h = O. The procedure used to do this is

discussed in Chapter II. When the intensities are plotted
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in this way the slope of the line is equal to the

absorption coefficient «.
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CHAPTER V
DISCUSSION AND SUMMARY

The purpose of this chapter is to discuss the results
of Brillouin scattering experiments in the Eua*—doped
glasses in relation to what we think is physically
responsible for the behavior of the data. Also included
in this chapter is a discussion of the structure and
properties of binary alkali silicate glasses.
Understanding the effects of changing the alkali ion in
the base glass may help us in understanding these effects
in our more complicated glasses. Finally in the last few
sections we discuss the physical interpretation of the
results of Brillouin scattering in these glasses. But
first a description of the structure of fused quartz,
which forms the base material for all of our glasses.
Each glass studied for this dissertation contained 70%

Si0,.

Fused Q@Quartz

Fused quartz has been studied extensively for many
years, primarily because of its technological impdrtance
and its relatively simple composition (Kreidl (1983)).

Fused quartz consists of a three dimensional network of
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5104 tetrahedra (Figure 15). Most of the tetrahedra in

the network are bonded to four other tetrahedra at the O
corners. These 0 atoms are referred to as bridging
oxygens. The main difference between fused quartz and the
crystalline form of 510, is the lack of repetitive
orientation of the Si0, tetrahedra. Fused quartz studies
have shown that the most probable number of Si atoms in a
ring of tetrahedra is five (Kreidl (1983)).

The bonding between the Si and O is believed to be
mostly covalent in nature, however other bonding schemes

may be involved as well. These include the double
bond 0=Si =0 and the pure ionic bond Si"*+(02“)4
(Kreidl (1983)). Some of the important distances in the

SiOz network are the Si-0 (1.62&), 0-Qa (2.65§), and

Si-Si (3.12A) bond lengths. The most probable Si-0-5i ang
is 144° and the most probable 0-Si-0 angle is 109° with

most angles being within 10% of these values.
Alkeli Silicate Glasses

Most of the important glasses used today are silicate
glasses that contain several different kinds of oxides

(Kreidl (1983)). Binary glasses of the form M, 0-Si0,

wvhere M = Li, Na, K, Rb, and Cs, limited in use due to
their reactivity to water, have been studied in detail
because of their relatively simple structure and to the
insights they provide to the structure and properties of

silicate glasses in general. In this section we present

72
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Figure 15. Two-Dimensional Schematic of the Structures
of (a) Crystalline SiOz, (b) SiOz Glass,

and (c) MZO-S:LO2 Glass. The Small Solid

Circles are the Silicon Atoms, Open Circles
the Oxygen Atoms, and the Lerge Shaded
Circles the Alkali Atoms.
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some of the results of studies on these binary silicate
glasses. Most of the material in this section was taken
from Kreidl (1983) who did an extensive review of studies
in silicate glasses.

For each alkali oxide M20 molecule added to SiDz, an

extra oxygen is added to the network and two noh—bridging
oxygens are produced (Figure 15). A non-bridging oxygen
is an O bonded to only one Si atom instead of two as in

pure 5i0,. Also bonded to the non-bridging oxygen is the

cation MY which tends to fill-up the cavities created by
the tetrahedra rings. The distribution of alkali within

the Si0, network may not be uniform (Sigel (1977)), giving

rise to regions of alkali rich clusters surrounded by

mostly S5i0, regions.
In general the addition of MO serves to weaken the

structure due to the appearance of the non-bridging

oxygens. Increasing the concentration of MZD, further

veakens the structure until =11 the oxygens are
non-bridging and the tetrahedra are isolated from each
other. This weakening effect is more pronounced as the
size of the alkali ion is increased. {Incidently this
effect is confirmed by our elastic constant values).
Measurements of the molar volume of binary alkali
silicate glasses have sbown that Na mostly fills the

cavities of the SiDq network, while Li additionally

contracts the network because of its large field strength

and small size while K, Rb, and Cs act to expand the



network. In general the density of alkali silicate
glasses increases with increasing alkali concentration and
increases with increasing mass of the alkali ion as the

ions £ill the cavities of the SiD* netwvork.

These observations on the molar volume in binary
alkali silicate glasses are consistent with our
measurements of the density of our glasses as shown in
Table III on page 16. As can be seen, the density
decreases slightly from Li to K before increasing
noticeably from K to Cs. If the ions were simply filling

the cavities without any distortion of the S5i0, network

then the density would increase in the direction Li, Na,
K, Rb, and Cs.

The index of refraction is generally higher in the
alkali silicate glasses compared to pure fused quart=z
because of the higher polarizability of the alkali
compared to oxygen and silicon and the higher
polarizability of non-bridging oxygens. As a result, the
index generally increases with increased concentration of
the alkali ions. Lithium silicate glasses have relatively
large indices of refraction due to their low molar
volume. In our glasses the Li sample has the highest
index of refraction with a value of 1.604 with the Rb
sample with the smallest value measuring in at 1.3573.
Fused quartz, on the other hand, has an index of

refraction of 1.462.
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Visible Absorption

Visible absorption in the glasses studied for this

dissertation is believed to be due mostly, if not

entirely, to the Eu ions (Dixon (1989). SiD2 and alkali
ions in 5i0, contribute to ultraviolet absorption (Sigel

(1977)). However, different types of alkali ions may
change the characteristics of the absorption due to the Eu
ions (Vogel (1985)), Sigel reviewed the affect rare earth
ions have on the visible absorption in oxide glasses.

Each one of our glasses has 5% per mole Eu203. According

to a table found in Sigel, Eu?' in oxide glasses should

produce no colorations while Eu®*

would produce a
characteristic brown color. All of our glasses are brown
with the K glass being the darkest followed by Na, Li, Cs,
and Rb. Furthermore, there is a lack of uniformity in
color and shading in some of the glasses noticeably the Li
and Na samples. In fact the Li sample has blue streaks
running through it, an indication of phase separation

(Powell (1987)). If the Eu ion is the only source of

absorption in tﬁese glasses then we could conclude that

the K glass has the highest concentration of Eu?* with Rb
the least. On the other hand, the alkali ions may also be
affecting the absorption to produce the observed

3
colorations.
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Elastic Constants

As was mentioned in the last chapter, both elastic
constants decrease as the sizg of the modifying ion is
increased through the series Li, Na, K, Rb, and Cs (Table
IX page S7). This decrease can be attributed to the
decrease in field strength and the increase in size of
the modifying ions from Li to Cs. This is consistent with
results in simplexr alkali silicéte glasses discussed
earlier. In the binary glasses, the weakening of the
structure due to the appearance of non-bridging oxygens is
amplified with increasing size of the alkali ion.

Young’s modulus is defined as the ratio of the
applied stress to thé fractional change in dimension along
the direction of the applied stress. Young’s modulus
decreases by about 30% from Li t& Cs indicating that the
glasses are becoming more elastic as the mass of the
modifying ion is increaséd (Table X on page 60).

Born and Huang (1954) have shown that if each
particle of a material is located at a center of symmetry
and if the particles interact with each other through
central forces then the so called Cauchy relation holds
for cubic and isotropic materials, C,, = C,, (C, = 3C,,)-
None of the glasses stud;ed in this report have the ratio

c,,/C exactly equal to one. There is =a general decrease

44 12

in this ratio from Li to Cs with a value of 1.09 for the

Li glass to 0.893 for the Cs glass. In pure S5i0, this
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ratio is 1.89 reflecting the predominance of covalent
bonding and the presence of non-central forces. The fact
that this ratio is closer to one for our glasses may
indicate an increase in the number of ionic bonds as a
result of the additions of the modifying ions.

Poisson’s ratio defined as the fractional change in
dimension in the direction of the applied stress to the
fractional change in dimension perpendicular to the
applied stress can also be used as a measure of the degree
of non-central forces and covalent bonding. If the Cauchy
relation holds then Poisson’s ratio reduces to 0.25
exactly. In covalently baonded fused quartz, Poisson’s
ratio is8 equal to 0.172 and in our samples it ranges from

0.240 for the Li glass to 0.264 for Cs (Table X on page 60).
Photo-Elastic Constants

In Chapter IV we pointed out that both photo-elastic
constants showed a general increase as the size of the
modifying ion was increased (Table XI on page 62). As we

will see, unlike Plz' P is negative. So an increase in

g4

value for qu translates into a decrease in its absolute
value. Referring to Equation (3.12), an increase in P,
indicates that the flﬁétuation of the dielectric constant,

as a result of compressional sound waves, increases as the

size and mass of the modifying icn increases. As for

shear waves, the fluctuation of the dielectric constant

decreases.
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In the remainder qf this section one of the few
theoretical treatments found in the literature for the
photo-elastic constants of glasses will be discussed.

This model had its beginning with the dielectric formalism
of Kirkwood and Yvon and was later extended to optical
frequencies by Fixman (1955) and further refined by
Carleton (1972). The model is for simple materials of
optically isotropic and non-polar molecules. It is
assumed that the location of each polarizable center is
known and given by a number of multiparticle correlation
functions. Even though the model is strictly applicable
to simple materials, Carleton suggested that it could help
characterize some of the features of more complex

materials. Carleton derived expressions for the three

photo-elastic constants P,,, P, and P,
P, = (nzr,-ql)z(wgpﬂa v 1= - -.]1'—4—1") (5.1)
P, = (n:i)2(4ﬂgpNA _ %5__ %r) (5.2)
Py = %‘qﬁi(é_ - é—f‘) | (5.3)

wvhere n is the index of refraction, « the free particle
polarizability, e is the particle density, M is the

molecular weight of the glass, N, is Avogadro’s number,
and the correlation term r, in cgs units, is given by,

T dr
r =3 (r)— (5. 4)
o ggxz o



where glz(r) is a two particle radial distribution

function such that ag{r)=average polarizability at r
given that a particle is at the origin (Chandler (1987)).
The first term of Equations (5.1) and (5.2)
represents the change in the dielectric constant with
density produced by the strain caused by‘the prapagating
phonons. This term does not appear in Equation (5.3) for

P This can be explained in the fdllowing way. For a

44°
longitudinal wave the average distance between atoms, in a
localized region of the sample, changes as the wave moves
through the material. We would then expect that the
photo-elastic constants for compressional waves should
depend on the density of the glass. On the other hand,
the average distance between atoms does not change as =a
transverse wave moves through this same localized region
and we would not expect the photo-elastic constant for the
shear waves to be as density dependent. The second term
in Equations (5.1) and {(5.2) and the first term in
Equation (5.3) is due to the anisotropic correction to the
refractive index as a result of the elliptical distortion
of the Lorentz cavity as a result of the strain produced
by the phonons. The third term is the result of the
additional polariziné effect of neighboring molecules on
each other.

Schroeder (1980) measured the photo-elastic constants
for a number of binary and ternary silicate based

glasses. The density of a particular type of glass was
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varied by changing the concentration of the modifying
ion. Schroeder found that for the binary glasses,

P44 showved some linear density dependence, decreasing

slightly as the density increased, but not as much as for

P On the other hand for the iernary glasses, P

12* 44
showved no density dependence, consistent with Equation
(5.3), while P,, decreased linearly with increasing
density.

In order to test Carleton’s expressions for the

photo-elastic constants with our data, we first calculated

r from Equation (5.3) using our values for P, ,. Then
using Equation (5.2) and our values for P,» we calculated

the first expression inside the brackets involving the
molecular weight of the glasses M. From this we were able
to obtain values for the average polarizability of each
sample. Table XIV shows the measured values needed for
each sample in order to do the calculations just
described. In Table XV the results of these calculations
are shown.

The average polarizability of the material shows an
increase of about 20X% in‘the direction Li to Cs. The
polarizability is density dependent and one would expect
that as the density increases the polarizabhility would

decrease (Schroeder (1980)). However, the electronic
polarizabilities of the isolated ions Li*, Na®, K*, Rb%,

and Cs% show a large increase from Li to Cs (Kittel

(1986)). At the same time, the density of our samples
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Table XIV

QUANTITIES USED IN THE EXPRESSIQONS
FOR THE PHOTO-ELASTIC CONSTANTS

Sample n P M Py, P4 P
(g/cma) (g)
Li,0-540, 1.604 3.22 75.87 0.191 -0.0518 0.087
Na _0-5i0, 1.583 3.21 80. 69 0.230 -0.0320 0.126
K,0-51i0, 1.584 3.15 85. 52 0.207 -0.0410 0.125
Rb,0-5i0, 1.573 3.47 99. 43 0.244 -0.0428 0.158
Cs,0-51i0, 1.591 3.74 113.66 0.251 -0.0339 0.183
510, 1.462 2.207 60.08 0.279 -0.0792 0.121
TABLE XV

NUMERICAL VALUES FOUND IN THE EXPRESSIONS
FOR THE PHOTO-ELASTIC CONSTANTS

Sample (ni;:)z 4ﬂ:LNA @ r %ﬁ
(X10™%%cn?) (X10%3%cm™3)

Li 0-si0, 0.374 1.54 2.01 1.69 2.80

Na 0-Si0, 0. 361 1.69 1.96 1.72 2.92

K,0-5i0, 0.362 1.54 2.32 1.57 2.26

Rb,0-510, 0. 355 1.67 2.26 1.60 2.36

Cs,0-Si0, 0. 366 1.60 2.51 1.46 1.94

510, 0. 283 2.40 1.50 2.40 5. 33
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increases from K to Cs by about 16% which would act to
decrease the polarizability from that which would be
expected if the density were the same for each sample.
The large increase in polarizability from Li to Cs should
dominate over the density effect. As a result, the
increase in average polarizability of our samples from Li
to Cs8, as determined from the Carleton relations, is not
unreasonable.

The average polarizabilities of the samples are
larger than the average polarizability of fused quartz.
This should be expected since the polarizability of the
modifying ions is larger,than that of Si and Q. Also, the
polarizability of non-bridging oxygens is greater than
bridging oxygens.

The correlation term r, as determined from qu, shows

a decrease in value of about 142 from Li to Cs. In order
to understand the significance of this decrease in terms
of structural changes in the glass, we rewrite Equation

(5.4) as,

T dr _ T
{glz(r)-? = Ba (3.3)

As was stated above, r decreases and « increases in the
direction from Li to Cs. The measurements of r and «
indicate that the integral in Equation (5.5) fluctuates
slightly but overall decreases by 28% from Li to Cs. In
fused quartz the value of the integral is almost twice as

much as that for any of our glass samples. It is natural
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to ask if these results are consistent with what is

currently known about fused quartz and glass systems

similar to ours. The r™* in the integrand of the integral
indicates that the integral will be significant only out
to about next nearest neighbor distances. What short
range structural changes, as alkali oxide is added to the

5i0, network, would lead to a decrease in the value of the

integral of Equation (5.5)7?

Tesar et al. (1987) studied the structure of M20-8102

(M = Li, Na, K) glasses using the method of molecular
dynamic coﬁputer simulation.  Their results were reported
to be consistent with x-ray and infrared experimental
results on the same kinds of‘systems (Kreidl (1983)).

They calculated and studied the radial distribution
function g{r) and coordination numbhers for the various ion
pairs as a function of composition. They found that
within a given system, increasing the amounts of alkali
oxide had minimal effgcts on the structure. However, both
the number of non-bridging oxygens and the oxygen
coordination of the alkali ions increased with increased
concentration of alkali.

The peak corresponding to the shortest distance in
their radial distribution function was attributed to the
Si-0 bond length and the peak with the secaond shortest
distance was assigned to the M-S5i bond‘length. In going
from Li to K, they found that the bond lengths between the

oxygens and the alkali ions increased. This would lead to
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a decrease of the integral in Equation (5.5) consistent
with our results.
Murray et al. (1987) and Soules (1979) studied

structural models of NaOz—SiOZ glasses using computer

simulations. They found that the radial distribution
function changed significantly at small r as sodium oxide

vas introduced into the pure SiO2 network {(Figure 186).

The first peak at 1.62A corresponding to the Si-0 bond
length decreased indicating a decrease in Si coordination

of 0 as a result of the creation of non-bridging oxygens.

In addition, a new peak appeared at about 2.4A
corresponding to the Na bond length to the nan-bridging
oxygens. Both of these observations would give a smaller
value for the integral in Equation (5.5) for the glasses
containing alkali oxide. This again is consistent with
our results.

Let’s summarize the above discussion. In pure fused

quartz the nearest neighbors are the Si-0 pairs with a

bound length of 1.62A. Each Si ion has four O nearest
neighbors and each 0 has two Si nearest neighbors. For

each alkali oxide molecule M,0 added to the system two

non-bridging oxygens are created. The oxygen ccordination
of Si does not change but the non-bridging oxygens now
have only one Si nearest neighbor and two alkali ion next

nearest neighbors at an increased bond length of about

2. 4A. The decreased Si coordination of oxygen and the

corresponding new peak in g(r) at larger r would account
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Figure 186. The Radial Distribution Function and Two-
Dimensional Schematic of the Structures

of (a) SiO2 Glass and (b) MZO-SiGZ Glass.
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for the decrease in the integral in Equation (5.5) when
alkali oxide is added to pure fused quart=z.

Changing the type of alkali oxide from Li to Cs
increases the M-0 bond length due to the decrease in field
strength of the alkali ion. This would account for the
decrease in the integral in going f;om Li to Cs.

Brawer (1975) developed a thearetical maodel for the
vibrational spectra of glasses and applied it to the
experimental Raman spectra of binary alkali silicate

glasses (Brawer (1975) and Brawer & White (1975)). They

reported that the decrease in width of the 1100cm™! Raman
line from Li to K was evidence of increased short-range
order in the glass. The different types of disorder were
defined as: fluctuating Si-0-Si angles, distorted
tetrahedral angles and Si-0 distances, and random relative
orientations of tetrahedra. Except for the Si-0 distance
fluctuations, these kinds of fluctuations would not affect
the radial distributioﬁ function for small r
significantly. Thus our data does not conflict with their
results.

| Behrens et al. (1989) concluded from their four-wave
mixing experiments on exactly the same glasses used in
this study, that for the larger madifying ions the glasses
showed an increase in local order. Again this does not
contradict our results since an increase in order in going
from Li to Cs is not inconsistent with an increase in M-0

bend length with the non-bridging oxygens. It is this
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increase in M-0 bond length that we believe is primarily
responsible for the decrease in the integral of Equation
(5.3). in the series Li to Cs.

Within the framework of the Carleton theory, two
conclusions can be made from our data at this point. The
first is that r decreases as the mass of the modifying
ion is increased. Referring to Equations (5.1), (5.2),
and (5.3), the term outside the brackets of each equation,
depending only on the index of refraction, shows no real
tendency of increase or decrease with increasing size of
the modifying ion (see Table XV). The same is true for
the first term inside the brackets in Equations (5.1) and

(5.2). However P , increases by approximately 24% and

P increases by 34%. We can conclude from this that the

ST}
last term in each of the equations involving r must
decrease to cause the photo-elastic constants to
increase. Furthermore, it is this decrease of r as a
result of the increase in the M-0 bond length that is

the main reason for the increase of sz and qu as the

mass of the modifying ion is changed through the series Li
to Cs.

The second conclusion is that P,, must be negative.

I£f P were positive, then our measured values would show

44

that P*idecreases rather than increases in value as the

mass of the modifying ion increases. In this case it
wvould be necessary for r to increase instead of decrease

as it has to do in order to satisfy the equation for P ..
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Furthermore, as we have seen, an increase in r in the

series Li to Cs would be inconsistent with known
structural changes that take place as the size of the

modifying ion is increased.
The Landau-Placzek Ratio

The Landau-Placzek ratio is defined as the ratio of

the Rayleigh intensity to the total Brillouin intensity,

IR
R = 777 (5.8)

In the case of a single-component glass I; is due mainly

to frozen-in density fluctuations (Schroeder (1977)). In

binary and more complicated glasses, I; is attributed to
frozen-in concentration fluctuations as well as density
fluctuations. In pure 5i0,, where only density
fluctuations are important, R;, is equal to 21.6. In our
glasses R p decreases form Li to Cs with a value of over

?3,000 for the Li sample to 39 for the Cs sample. The

high values of R;p for the K, Na, and Li samples may

indicate large frozen-in concentration fluctuations in

these glasses.

The Density Derivative of the Optical

Dielectric Constant

A gquantity that appears in theories on light
scattering in gasses, liquids and solids is the density
derivative of the optical dielectric constant (Fabelinskii

(1988)). An expression for this quantity can be derived
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in terms of experimentally measured quantities by using
Equation (3.12) and applying it to the case of a material
under hydrostatic pressure. For cubic crystals and
isotropic glasses the result is,

(685 e, = (P

e, = & + 2P, ) (5.7)

°

12

where n is the index of refraction and sz and qu are the

photo-elastic constants measured in Brillouin scattering
experiments. The subscript obs. refers to the fact that
this is the observed value from light scattering.

Other expressions for the density derivative exist

based on different models. For example,

3e = 1.2 2
(ng)LL' = 5(n?-1)(n?+2) (5.8)

can be derived from implicit differentiation of the
standard Loentz-Lorenz equation,

n%-1 _ 47ro:nNA

= (5.9)
n?+2 3H

where « is the average ﬁolarizability ({assumed to be
independent of density in this model), ¢ is the density,

N, is Avogadro’s number, and M is the molecular weight.

By treating the term n%+2 in Equation (5.9) as a
constant when differentiating, the so called Drude

equation results,

( ae) = (n2-1) . (5.10)

The justification for setting n?+2 equal to a constant

wvas given by Rocard (1928). He showed that the term
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n?+2 in Equation (5.8) is the result of the action of the
molecules outside the Lorentz cavity. Furthermore, he
showed that the fluctuation in the index of refraction for
the material outside the cavity has little effect on the

change in the field inside the cavity. As a result, the

n? in the term n®%+2 can be treated as a constant when

differentiating Equatiqn ({5.9) (Fabelinskii (1968).

Table XVI shows the calculated values for the density
derivative of the dielectric constant of the five glasses
studied in this report in addition to fused quartz for
comparison. As can be seen, neither form of the density
derivative agrees with the measured values. The measured
value of the density derivative of the optical dielectric
constant shows an increase of 41% as the mass of the
modifying ion is increased. At the same time it is lower
by as much as 57% coﬁpared to that predicted by the
corresponding Lorentz-Lorenz value and 34% lower than that
predicted by the Drude model. Interestingly, the measured
values approach those predicted by the Drude model for the
heavier modifying ions.

The fact that the observed values do not agree with
either form is not surprising in view of the fact that
both equations were derived under the assumptidn that
nearest neighbor atoms of the material are arranged in a
completely random fashion. In silicate glasses this may
not be the case. The fact that the observed density

derivative approaches the Drude values for the heavier



TABLE XVI

VALUES FOR THE DENSITY DERIVATIVE

OF THE DIELECTRIC CONSTANT
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Sample pﬁ pa_e 995-
P ( ap)obs_ ( ap)L.L. ( ao)Dt.
LiZO-SiO2 1.04 2. 40 1.57
Nazo—SiOZ 1.22 2.26 1.51
KZO—S:LCI2 1.13 2.27 1.51
RbZO-SiO2 1.32 2.20 1.47
CSZD—S:LO2 1.46 2.31 1.53
Si0 1.03 1.57 1.14

2
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modifying ions may indicate that as the mass of the
modifying ion increases, the nearest neighbors are
becoming less correlated. This is consistent with the
observed decrease in r.

As was mentioned earlier, the polarizability probably
should be taken as density dependent. Both the
Lorentz-Lorenz and the Drude expressions for the density
derivative of the dielectric constant were obtained
assuming that the polarizability is independent of
density. If we implictly differentiate Equation (5.9) as
was done to obtain Equation (5.8), but this time treating

the polarizability as a function of density we obtain,
3ey - 1., 2_ 2 -
(p35) = F(n?-1)(nZ+2) (1-x,) (5.11)

where,

[V}

o
(3 (5.12)

Rl

Ng = -

is called the strain polarizability constant. By
comparing the observed and calcﬁlated values
(Lorentz-Lorentz and Drude) of the density derivative wve
get, |

<1->\°>(pg—g-)L_L. (5.13)

(o35)

(o35)

The values for the strain polarizability constant

obs.

(1-xg) (03%) (5.14)

obs. Dr.

determined from Equations (5.13) and (5.14) are shown in
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Table XVII for the five glasses of this study in addition
to fused quartz for comparison. Also shown are the values
for the derivative of the polarization witg respect to
density. As can be seen the density derivative of the
polarization decreases with increasing mass of the
modifying ion. This may be understood‘by considering the
following points. The change in the iﬂdex aof refraction
wvith density in solids is caused by two competing effects
(Babcock (1977)): (1) an increase in the number of
scattering centers per unit volume will result in an
increase in the refractive index with increasing density,
and (2) the contraction of the electronic clouds of the
atoms will reduce the polarizability and decrease the
refractive index. This second effect should be largest
for ions with small ionic radii and large charge

{Schroeder (1980)). That is, the change in polarizability

with density caused by an external stress should be the

largest for the Li glass with small ionic radius (0. 4334)

and smallest for the Cs glass with a large ionic radius

(1.654). This is consistent with our observations.

In passing we point out that for most materimls the
first effect, discussed above, dominates over the second
so that the density derivative of the dielectric constant
is positive as it is for our glasses. But for diamond,
ZnS, and Mg0O, the second effect is larger than the first
and the density derivative is negative for these crystals

(Babcock (1977)).



TABLE XVII

STRAIN POLARIZABILITY CONSTANTS
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Sot dor
Sample trgdrr. X pr. (—EJL.L (SF)DL
LiZO—SiOZ Q.57 0. 36 0. 34 0.22
NBZD—SiDZ 0. 46 0. 28 0.19 0.11
KZO—SiOz 0. 50 0.37 0. 25 0.18
Rb20~5102 0.40 0. 26 0.11 0. 069
C820~Sioz 0. 37 0. 258 0. 04 0. 030
510 0. 34 0.23 0. 09 0.062

2
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Summary

In this dissertation we report the measurements of
the elastic and photo-elastic constants of five silicate
based glasses using Brillouin spectroscopy. Both elastic

constants Cll and C44 wvere found to decreased as the size

and mass of the modifying ion was increased. The decrease
in elastic constants is an indication that the glasses are
becoming softer and more elastic for the heavier modifying
ions.

The photo-elastic constants were measured by
comparing the scattered intensity of the glasses to that

of the standard scatterer fused quart=z. Both P.o and P,

showed a general increase as the size and mass of the
modifying ion was increased. Within the framework of
Carleton’s equations for the photo-elastic constants, the

increase in P‘2 and P44 may be due in part to the

increased distance in the M-0 bond length for the heavier
modifying ions.

The photo—élastic data along with measurements of the
index-of-refraction and density were used to test
Carleton’s theory of photo-elasticity in glasses for
consistency with expected results. It was found that the
obseréed photo-elastic constants could he described
qualitatively by Carleton’s theoretical expressions.

The observed density derivative of the optical

dielectric constant is lower then that predicted by the
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Lorentz-Lorenz and the Drude expressions. However as the
size and mass of the modifying ion is increased in the
base glass the observed values approach those of the Drude
values.

The strain polarizabhility constant decreases as the
size and mass of the modifying ion is increased. This
decrease may indicate a decrease in the change in

polarizability caused by strain.
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APPENDIX A

THE COMPUTER ANALYSIS PROGRAM

In this appendix we present some of the details of
how the computer program used to analyze the Brillouin
data warks. The program is listed at the end of this
appendix. Some of the algorithms used in the program were
taken from the Canberra multichannel analyzer manual

{Canberra (1987)).
Background

The background is calculated from the background
region-of-interest (ROI) supplied by the user. For the
experiments reported in this dissertation, the background
ROI was taken from the lowest part of the spectrum and was
usually about 10 to 20 channels wide. The background was
calculated by summing the total number of counts in the
ROI and then dividing by the number of channels in the
ROT. This is done in lines 620 to 670 of the praogram.

The equation for the background B is given by,

B
2 Y(i)
B = _Xt3) (A.1)
i=Bl(Bz—B1+l)

vhere Bx and B2 are the first and last channel

respectively of the background ROI and Y{(i) is the number

io01



102

of counts in the i'P channel. The "one" in the
denominator of Equation (A.1) is needed so that the last

channel in the (RQI) will be counted.
Peak Channel

The ROI for the Rayleigh, LA, and TA peaks of the
spectrum are supplied by the user. To find the channel

wvith the most numbher of counts Yma in each R0OI, the

x
program simply scans through the ROI picking out the
channel with the most counts. This is done in line 920.

The peak channel, X is the channel with the

max’
maximum number of counts in the ROI and may not bhe eqgual
to the actual centroid of the peak. This would be the
case 1f a peak was asymmetric. The centroid is calculated

later in the program and will be discused in turn.
Peak Area

The area is calculated in the same region of the
program where the peak channel is calculated, lines 890 to
940. The area of a peak is equal to the sum of the total
number of counts in each channel of the peak ROI minus the

background,

M

s [v(i)-B]

1=5,

>
I

E
n
§:Y(i)]-(En—Sn+1)B (A. 2)
=Sn

i

where Srl is the start channel of the n'! ROI and En is the

end channel.
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Full-Width at Half-Maximum

The full-width at half-maximum is the peaks width at

half of its mwaximum amplitude. The peak channel, Xmar is

used to find one-half of the peak amplitude (half-maximum

value) Ymv

-— [Y(Xmax) _B] +

Yoo = 2 B

= ———[Y’“Eg‘*B] (A.3)

wvhere Y(Xmax) is the number of counts in the pesak

channel. This is done in line 980. In lines 990 to 1040,

the program first scans down the right-hand side of the

peak and finds the first channel X that has fewer

RHM'

counts than the half-maximum value Y_. The right

full-width at half-maximum channel is then determined from

the interpolated value between X, and the channel just

before it,

) [Yp Y Rppe |
[¥ (X g1 -Y (X0 ]

X = X

RFWHM (A. 4)

RHM

The same procedure is used to find the left full-width at

half-maximum XLH&M. The full-width at half-maximum is

then given by FWHM = X X The abave

RFWHM " LFWHM'

algorithms are found in lines 1050 tao 1070.
The Centroid

The centroid is the channel that corresponds to the

geometric "center of mass" of the pesk. To find the
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centriod X_. within a ROI, the program sums the products

of the channel number relative to the left half-maximum
channel and the number of counts in that channel. The
above result is then divided by the area A of that ROI
found earlier, and then added to XLHT

En

s [1-% gy

i=Sn 7

X. = +X

c = (A.5)

LHM

This routine is found in lines 1080 to 1120.
The Average Areas

As was mentioned in Chapter II, the Brillouin spectra
taken for this study consisted of three aorders. The
average Rayleigh area was determined from the three
Rayleigh peaks in the spectrum. The average LA and TA
areas were determined from the five right mast LA and TA
peaks respectively. The first LA and TA peaks were not
used due to small distortions in the spectrum that
appeared occasionally under approximately the first 10% of

the ramp.
The Free Spectral Range and the Finesse

The channel free spectral range (FSR) is the number
of channels between the centroids of adjoining Rayleigh
peaks. The free spectral range is calculated in line
1750. The finesse is a measure of the resaolving power of
the interferometer and is equal to the full-width at

half-maximum divided by the channel free spectral range,
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FWHM

F = T5r

{A.6)

The prog?am calculates separately the average finesse for
the Rayleigh, LA, and TA pesaks. That is, the value used
for FWHM in Equation (A.6) in the Rayleigh peak finesse is
the average value taken over the three Rayleigh peaks in
the spectrum.  For the LA and TA finesses the five right
most peaks in the spectrum are used in the average. The

FSR and the finesse are calculated in lines 1750 to 1810.
The Brillouin Shift and Plate Separation

The Brillouin shifts were’determined using Equation
(2.5) as described in detail in Chapter II and using the
calculated centroide for each peak. The plate separation,
used in the calculation, is supplied by the user and had
been determined previously either using fused quartz as a
standard or by using a traveling microscope. The
Brillouin shifts are calculated in lines 1850 to 1860.

If the user chose to have the Fabry-Perot plate
separation calculated by the program, the program does
this in line 1870. The plate separation is determined
using a fused quartz spectrum and using Equation (2.35).

The value used for the LA Brillouin shift of fused quartz

is 0.801cm™! the average value as determined from
six separate spectra where the plate separation was
measured using a traveling microscope.

The following is a listing of the program.



10 REM  EXE®REEERRERRRERERERERRERKIIERERERXRERRBERREERREIRRIIRSEERRRRSRYE

20 REM

30 REM = Prograe for the Analysis of Brallouin

40 REW *
90 REM

Scattering Data

*
¥
¥
#

60 RER  EXXXXXXXHRNXEXHXEXXRXXRRXRHEKERAHRHRHKERHRHEIERERR R RRRERURHHHARF

70 KER
80 RER

90 REM ¥xxEEEXREFREREFRERERERAX

100 REK

Input Routine #xEEE¥EXEEEIHKHEREERERERSR

110 SCREEN 0,1:WIDTH 80:COLOR 14,1:CLS
120 LOCATE 1,24:PRINT"Brillouan Data fnalysis Program”
130 LOCATE 3,2:INPUT"Input File Name = ",FILE$

140 OPEN 2", 41, FILE$

150 LOCATE 4,2:INFUT"Nemory Partition x/4, x = " NP

160 LOCATE 3,40:INPUT"Input background start channel
170 LOCATE 4,40:INFUT"Input background end channel

" B1%
" BRX

180 LOCATE 5,2:INPUT"Calculate plate separation Y or N 2 " H¢

190 REN

200 RER ¥xxxxxxaxssxrkx¥xkx  Brillouin Shaft for SEXEEEXXAREXEEXEEXXREXXER
EREERERRERRERERRERKEREERK

210 RER ¥REEXREXEXERXERERREX

220 REH

Fused Quartz

230 IF W$="y" OR M$="Y" THEN DKBLR=,801:60T0C 250

240 LOCATE 5,40:INFUT"Input plate separation (cm) = ",D

250 LOCATE 7,2:PRINT"Input the ROI for 13 peaks in the spectrum”
4 S1X:LOCATE 9,20:INPUT"End = ",E1X

260 LOCATE 9,2:INPUT" 1) Start ="

270 LOCATE 10,2:INPUT" 2)
260 LOCATE 11,2:INPUT" 3)
290 LOCATE 12,2:INPUT" 4)
300 LOCATE 13,2:INFUT" B)
310 LOCATE 14,2:INPUT" 6)
320 LOCATE 15,2:INPUT" 7)
330 LOCATE 16,2:INFUT" 8)
340 LDCATE 17,2:INFUT" 9
350 LDCATE 18,2:INPUT"10)
360 LOCATE 19,2:INPUT"11)
370 LOCATE 20,2:IKFUT"1R)
380 LOCATE 21,2:INPUT"13)
330 REN

400 REM  sxaxxmuuerxnxxxxxrxsx Initialize Varrables SEeMMEsEdsexxxkesss

410 REM

420 COUNTER1X=0

430 IF MP=1 THEN N2x=1023
440 IF MP=2 THEN N2x=2047
450 IF MP=3 THEN N2%=3071
460 IF MP=4 THEN N2%=4035
470 REM

480 REM *exxxxxxxkkxxxxxxxxxxx¥ Dimension erays 133332223232 22 22232232234

490 REN
500 DIK X1X(4097),Y1(4097)
910 REM

520 REM sxxexxexexkxxexnsexxex Input Data From Disk MEEKEKEXKEXXKRERKEKKK

330 REM

Start =
Start =
Start =
Start =
Start =
Start =
Start =
Start =
Start =
Start =
Start =
Start =

"y52X:LOCATE 10,20:INFUT"End =
"y63X:LOCATE 11,20:INPUT"End =
"y 54X:LOCATE 12,20: INFUT"End
485X :LOCATE 13,20:INFUT"End
"y56X:LOCATE 14,20:INPUT"End
"yS7%:LOCATE 15,20:INFUT"End
",58%:LOCATE 16,20:INFUT"End
",§9%:LOCATE 17,20:INPUT"End
",610x%:LOCATE 18,20: IHFUT"End
",511X:LOCATE 19,20: INFUT"End
",612%:LOCATE 20,20: INFUT"End
"y513X:LOCATE 21,20:INPUT"End

now o nouw o non

" EPx

" E3%

" EAx

" E5%

" E6X

" E7X

" EBX

" E9s
" E10%
" E11%
" E10%
" E13%
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940 INPUT #1,X12,Y1

950 FOR Iz=0 TO N2x

560 INFUT #1,X1X(1%),Y1(IX)

970 NEXT

580 CLOSE #1

990 REK

600 REM sxxkxkxxxxkxxixxxsixx Calculate the Background HEEEEEEEXEXXRAKK
610 REM

620 B3x=Eex-B1X

630 B=0

640 FOR J2=Fix TO B2X

650 B=Y1(JX)+k

660 NEXT

670 B=B/(B3x+1)

680 REN

€90 REM sxxxxxxxxxsxsxxx  Determine Which Feal to Consider EkEk¥EEXXEXKE
700 REM

710 COUNTER1X=COUNTER1%+1

720 ON COUNTER1X GOTO 730,740, 730,760,770,760,790,800,810,820,830,840,850,1310
730 S%=51x:EX=E1X:60T0 890

740 5x=52x:E2=E2%:G0OTO 890

750 52=83%:EX=E3X:60T0 890

760 5%=54x:EX=E4X:60T0 890

770 SX=85%:EX=E5%:60T0 890

780 S%=56X:EX=E6X:G0TD 890

790 S%=87X:EX=E7X:G0TO 890

800 S5x=58x:EX=E8X:GOTO 890

810 SX=59%:EX=E9%:G0T0 890

820 Sx=510%X:EX=E10%:G0T0 830

830 S%=511X:EX=E11%:G0T0 890

840 52=512X:Ex=£12%:6G0T0 890

850 Sx=513x:Ex=E13%:60T0 830

860 REN

870 REM sxsxxxxxxxxx Determine the Peal Channel and the Area #¥xk¥x¥¥usx
880 RER

890 Y=0:YRAX=Y1(52)

900 FOR Kx=Sx TO EX

910 Y=Y1(RX)+Y

920 IF Y1(KX))YMAX THEN YMAX=Y1(KX):XKAXX=KX

930 NEXT

940 ARER=Y-(EX-SX+1)*K

950 REM

960 REM sxxxxxxxxxxsxsxxx Calculate the FWHN and Centroad kEssxE¥ukEsix
970 REM

980 HALFYMAX=(Y1(XMAXX)+B)/2

990 FOR Ix=1 TO 100

1000 IF Y1(XMAXX+IX) (HALFYMRX THEN HMRX=XMAXx+IX:GOTO 1020
1010 NEXT

1020 FOR JX=1 T0 100

1030 IF Y1(XMAXX-JX) (HALFYMAX THEN HM1x=XMAXX-JX:G60T0 1050
1040 NEXT

1050 FWHK2=HMRX- (HALFYMAX-Y1(HM2%)) /(Y1 (HN2X-1)-Y1 (HN2X))
1060 FWHM1=HM1X+(HALFYNAX-Y1 (HN1X)) /(Y1 (HM1X+1)-Y1(HNIX))
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1070 FWHM=FWHM2-FWHN1

1080 XC1=0

1090 FOR Kz=S% T0 Ex

1100 XC1=XC1+(KX-HM1x+1)*Y1(KX)

1110 NEXT

1120 XC=XC1/AREA+HM1X

1130 ON COUNTER1X GOTO 1170,1180,1190,1200,1210, 1220, 1230, 1240, 1250, 1260, 1270, 12
80,1290

1140 REN

1150 REM *xx¥x Assign the Area, FWHM anc Centroid to the Right Peall *#¥sx
1160 REN

1170 AREA1=AREA: XMAX1%=XKAXX:FWHRO1=FWHK:XCO1=XC:60T0 1300

1180 AREA2=ARER:XMAX2Z=XKAXX:FWHRO2=FWHI:XC2=XC:60T0 1300

1190 AREA3=ARER: XKAX3X=XMAXX :FWHN3=FWHK:XC3=XC:G0TO 1300

1200 ARER4=AREA:XHRX4X=XMAXX:FWHHM4=FWHM:XC4=XC:60TD 1300

1210 AREAS=AREA: XKAXSZ=XMAXX : FWHNG=FWHH: XC5=XC:G0TO 1300

1220 AREAG=AREA:XHAX6X=XMAXX:FWHME=FWHM:XC6=XC:G0T0 1300

1230 AREA7=AREA:XMAX7%=XMAXX:FWHN7=FWHM:XC7=XC:60T0 1300

1240 AREAB=AREA:XNAXBX=XMAXX :FWHHO=FWHI:XC8=XC:60T0 1300

1250 ARERI=AREA:XMAX3Z=XMAXX:FWHNI=FWHM:XC9=XC:60T0 1300

1260 AREAI10=AREA:XWAX10X=XNAXX:FWHM10=FWHN:XC10=XC:60T0 1300

1270 AREA11=RREA:XMAX11X=XMAXX:FWHK11=FWHK:XC11=XC:60TO 1300

1280 ARCA12=AREA:XMAX12X=XMAXX :FWHK12=FWHK:XC12=XC:60TO 1300

1290 AREA13=AREA:XMAX13X=XMAXX:FWHN13=FWHM:XC13=XC:60T0 1300

1300 GOTO 710

1310 REH

1320 REM sxxxxxxxxkexxenssx Calculate the Average Areas EEEREEEKEKKEKEK
1330 REK

1340 ARERRRY=(ARER1+AREAG+ARER11)/3

1350 AREALA={AREA3+AREA4+AREAB+AREAI+ARERLS) /S

1360 AREATA=(AREA2+AREAS+AREA7+ARER10+AREALR) /5

1370 CLS

1360 REK

1390 RER  #Rkkxkxkexkdaiiansd®  Print-out of Results SEREXEXEXREXEEREEREX
1400 REK

1410 LOCATE 1,19:PRINT"Analysis of";MF:LOCATE 1,32:PRINT "/4 Memory of File ";FI
LES$

1420 LOCATE 3,1:PRINT"Background:":LOCRTE 3,12:FRINT USING "HH#HH.H#";B:LOCATE 3
C4:PRINT"Counts per dwell time"

1430 LOCATE 5,1:PRINT"Areas:" "
1440 LOCATE 5,14:PRINT"Rayleigh ":LOCATE 5,25:PRINT USING "MHHHHHRHHR";AREAL,ARE

A6, AREAL1

1450 LOCATE 6,14:PRINT"LA ":LOCATE 6,25:PRINT USING "HHHAHHHNAH";AREA3, ARE
R4, AREAB, ARERY, AREAL3

1460 LOCATE 7,14:PRINT"TA "sLOCATE 7,25:PRINT USING "NHHHHHAHAH";AREA2, ARE

A%, AREA7, AREA10, AREALZ

1470 LOCATE 9,1:PRINT"Averages:"

1480 LOCATE 9,14:PRINT"Rayleigh ":LOCATE 9,25:PRINT USING "NHHHHHHHHR";AREARAY
1490 LOCATE 10,14:PRINT"LA ":LOCATE 10,25:PRINT USING "HHHHHRHHHH";AREALA
1500 LOCATE 11,14:PRINT"TR ":LOCATE 11,25:PRINT USING "MHHHHHHHHH";AREATA
1510 LOCATE 13,1:PRINT"Peak "

1520 LOCATE 14,1:PRINT"Channels:":LOCATE 13,14:PRINT"Rayleigh ":LOCATE 13,25:PRI
NT USING “MHRHNRHHHEH" ;XNAX1X, XHAXEX, XHAX11X



1530 LOCATE 14,14:PRINT"LR “:LOCATE 14,25:PRINT USING “HHHHHRHHNH" ;XHAX3X,
XMAX4Z, XMAXBX, XMAX9X, XHAX13X
1540 LOCATE 15,14:PRINT"TA ":LOCATE 15,25:PRINT USING "HHHHHHHHHE";XHAX2X,

XWAXSX, XMAX7Z, XMAX10%X, XMAX12X

1550 LOCATE 17,1:PRINT"Peak"”

1560 LOCATE 17,14:PRINT"Raylergh “:LOCATE 17,25:PRINT USING “HHHHRRHHHA"3Y1(XMAX
1X), Y1 (XMAX6X) , Y1 (XMAX11X)

1570 LOCATE 18,1:FRINT"Intensities:"

1580 LOCATE 18,14:PRINT"LA “:LOCATE 18,25:PRINT USING “HHBHHHHHHN";Y1 (XMAX
3%), YL(XNRX4X) , Y1 (XHAXBX) , Y1 (XMAX9X) , Y1 (XMAX13X)
1590 LOCATE 18,14:PRINT"TA “:LOCATE 19,25:PRINT USING "HHHHHHHHHH"3Y1(XNAX

2%) , Y1(XMAX5Z) , Y1 (XMAX7X) , Y1 {XMAX10Z) , Y1 (XHAX12X)

1600 LOCATE 23,24:PRINT"Press the Space Bar to Continue"

1610 A$=INKEY$:IF A$=CHR$(32) GOTO 1620 ELSE 1610

1620 CLS

1630 LOCATE 1,19:PRINT"Analysis of'";MPsLOCATE 1,32:PRINT "/4 Hewory of File "jFI
LES

1640 LOCATE 3,1:PRINT"FWHM's:"

1650 LOCATE 3,14:PRINT"Rayleigh ":LOCATE 3,25:FRINT USING "HHHHHHHH.H";FWHMOL,FW
HKi6, FWHEL1 ‘

1660 LOCATE 4,14:PRINT"LA ":LOCATE 4,25:PRINT USING "HHHHHHHH.H"5FWHN3,FWH
N4, FRHKG, FWHN3, FWHR13
1670 LOCATE 5,14:PRINT"TA ":LOCATE 5,25:PRINT USING "RHH#HHHHH. R";FWHRO2, FU

HNG, FWHN7, FWHN10, FWHN12

1680 LOCATE 7,1:PRINT"Centroads:”

1690 LOCATE 7,14:PRINT"Raylergh ":LOCRTE 7,25:PRINT USING "HHHHHHHH.H";XCO1,XC6,
XC11

1700 LOCATE 8, 14:PRINT"LA ";LOCATE 8,25:PRINT USING “HHHHHEHK.H";XC3,XC4, X
£8,XC9,XC13

1710 LOCATE 9,14:PRINT"TA "sLOCATE 9,25:PRINT USING “RHHHHEHH.H";XC2,XC5,X
£7,XC10,XC12 :

1720 REN

1730 REM #xx¥*x Calculate the Free Spectral Range and the Finesse ®kkx
1740 REM

1750 FSR=(XC11-XC01)/2

1760 FWHMRAY=(FWHMO1+FWHEE+FWHI11) /3

1770 FWHMLA= (FWHM3+FWHNM4+FWHNB+FWHK3+FWHE13) /5

1780 FWHMTA= (FRHMO2+FWHMG+FWHK7+FWHN10+FWHN12) /S

1790 FINRAY=FSK/FWHNRRY

1800 FINLA=FSR/FWHMLA

. 1810 FINTA=FSR/FWHHKTR

1820 REN

1830 REM sxxxxxexxxxxxx¥ Calculate the Brillouin Shaifts #ssisekiikkis
1840 REM

1850 DKLA=((XC13-XC9+XC8-XC4)/2)/(XC13-XCB+XCI-XC4)

1860 DKTAR=((XC12-XC10+XC7-XCS)/2) / (XC12-XC7+XC10-XC3)

1870 IF M$="Y" DR M$="y" THEN D=DKLA/(2%DKBLR):60TO 1930

1880 DK2LA=DKLA/ (2%D)

1830 DK2TA=DKTR/ (2%D)

1900 REN

1910 REM sxxxxxxkxxxkxxdk¥¥ Print-out the Results ¥¥EEEXRXXXXXXEXRKKKKKE
1920 REM

1930 LOCATE 11,1:PRINT"FSR:"
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1940 LOCATE 11,14:PRINT"Raylexgh":LOCATE 11,25:PRINT USING “HRHHHHRE. 4" 3XC6-XCOL
4 XC11-XC6

1950 LOCATE 13,1:PRINT"Finesse:"

1960 LOCATE 13,14:PRINT"Rayleagh ":LOCATE 13,25:PRINT USING "HHHRHHHHHR";FINRAY
1970 LOCATE 14,14:PRINT"LA ":LOCATE 14,25:PRINT USING "HH#HH#HHKRY";FINLA
1980 LOCATE 15,14:PRINT"TA ":LOCATE 15,25:PRINT USING "HiHHHHHHRR";FINTA
1990 LOCATE 17,1:PRINT"(1/L):"

2000 LOCATE 17,14:PRINT"LA ":LOCATE 17,25:PRINT USING "HHHH.HHH#H";DKLA

2010 LOCATE 18,14:PRINT"TA ":LOCATE 18,25:PRINT USING "HHHH.HHHKK";DKTA

2020 LOCATE 23,24:PRINT"Fress the Space Bar to Continue"

2030 A$=INKEY$:IF R$=CHR$(32) THEN 2040 ELSE 2030

2040 CLS

2050 LOCATE 1,19:PRINT"Analysis of"jMF:LOCATE 1,32:PRINT"/4 Mepory of File "sFIL
E$

2060 LOCATE 3,1:PRINT"Brillouin "

2070 LOCATE 3,14:PRINT"LA ":LOCATE 3,25:PRINT. USING "HHHH. HHHHH";DKELA
2080 LOCATE 4,1:PRINT"Sh1fts ":LOCATE 4,14:PRINT"TA ":LOCATE 4,25:PRINT USI

NG "HHHH. HHHHR" ; DK2TA

2090 LOCATE 6,1:PRINT"Landau-"

2100 LOCATE 7,1:PRINT"Placzek:":LOCATE 7,25:PRINT USING "H#HH#HHHH. 4" ;AREARAY/ (Bx
AREALA)

2110 LOCATE 9,1:PRINT"Plate”

2120 LOCATE 10,1:PRINT"Separation: ":LOCATE 10,25:FRINT USING “HHHHHH.HHH";D;:PR
INT"cn"

2130 LDCATE 23,24:PRINT"Press the Space Bar to Continue"

2140 A$=INKEY$:IF A$=CHR$(32) THEN 2180 ELSE 2140

2150 REM

2160 REN sxxsxxxxxxxsxxx¥ Print-out Rackground and ROI's *suEsxsexkkxsss
2170 REH

2180 CLS:LOCATE 1,19:PRINT"Analysis of";MF:LOCATE 1,32:PRINT"/4 Memory of File "
sFILES

2190 LOCATE 4,2:PRINT"Background Start Channel
2200 LOCATE 5,2:PRINT"Background End Channel
2210 LOCATE 7,2:FRINT"RDI’s for the 13 Peaks"
2220 LOCATE 9,2:PRINT"1) Start = ",S1X:LOCATE 9,25:PRINT"End =  ";Ei1X

"R
e

2230 LOCATE 10,2:PRINT"2) Start = ",52X:LOCATE 10,25:PRINT"End =  “;E2%
2240 LOCATE 11,2:PRINT"3) Start = “;S3X:LOCATE 11,25:PRINT"End =  “;E3Z
2250 LOCATE 12,2:PRINT"4) Start = " 54X:LOCATE 12,25:PRINT"End =  “;E4Z%
2260 LOCATE 13,2:PRINT"3) Start = ",S5X:LOCATE 13,25:PRINT"End =  “;ESX
2270 LOCATE 14,2:PRINT"6) Start = ",S6X:LOCATE 14,25:PRINT"End =  ™3E6X
2280 LOCATE 15,2:PRINT"7) Start = ",S7%:LOCATE 15,25:PRINT"End =  ";E7X
2290 LOCATE 16,2:PRINT"8) Start = ",58%:LOCATE 16,25:PRINT"End =  “jEBX
2300 LOCATE 17,2:PRINT"9) Start = ",89%:LOCATE 17,25:PRINT"End =  ";E9%
2310 LOCATE 18,2:PRINT"10) Start = ",510%:LOCATE 18,25:PRINT"End =  "jE10%
2320 LOCATE 19,2:PRINT"11) Start = “,S11X:LOCATE 19,25:PRINT"End =  "3;E11Z
2330 LOCATE 20,2:PRINT"12) Start = ",S12X:LOCATE 20,25:PRINT"End =  "jE12%

2340 LOCATE 21,2:PRINT"13) Start = ",513%:LOCATE 21,25:PRINT"End =  “jE13X
2350 LOCATE 23,24:PRINT"Press the Space Bar to Continue"

2360 A$=INKEY$:IF A$=CHR$(32) THEN 2370 ELSE 2360

2370 END
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APPENDIX B

APPROXIMATIONS AND CORRECTIONS

TO THE INTENSITY RATIO

In the first section of this appendix, the volume
ratio that appears in Equation (3.235) is evaluated. In
the next section the solid angle correction to the
intensity ratioc B8 is derived. The correction for the
back reflection of the laser beam from the inside surface
of the sample is derived in the third section and in the
last section the uncertainty in the sound velocity due to

the finite sclid angle is determined.
The Volume Ratio

In our exﬁeriments, the sample is located at
approximately two focal lengths from the collecting lens
so that if the effects of refraction are neglected, the
scattering velume image would be the same size as the
object. In reality, the refraction of the scattered
light, as it leaves the sample, serves to reduce the size
of the scattering volume from what we would expect it to
be if there was no refraction; Since the scattered
intensity is proportional to the scattering volume, it is

necessary to know the differences in this quantity as a
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result of the differences in the index‘of refraction of
the samples.

The quantity of interest here is the ratio of the
scattering volume of fused quartz to that of the glass
sample. This’quantity appears in Equation (3.25) of
Chapter III and it was stated there that the ratio was
approximately equal to one. In this first section, the
apparent scattering volume is derived and then corrected
for the index of refraction of the sample. The scattering
volume ratio is evaluated for all of the glass samples.

Figure 17 shows a top view of a sample of refractive
index n, with a laser beam of width w incident from the
top of the figure. The distance from the center of the
beam to the front surface of the sample is r. The
distance from the center of the laser beam to the
collecting lens is R and the diameter of the pinhole is
a.v The left and right radii of the apparent scattering

volume are dl and d2 and the radii of the actual

scattering volume are d; and dé. Finally, e; is the

angle of refraction of the marginal ray defined by the
pinhole. |

Approximating the shape of the =scattering volume as a
cylindrical cone with its apex cut off, the apparent
scattering volume is easily derived using«a triple

integral and is given by,

_ 1 2 2
Vapp = §uw[dl+dtd2+d2) {B.1)
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Referring to Figure 17 and keeping in mind that the
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scattering volume is two focal lengths from the collecting

lens (i.e. the object distance equals the image distance

which in turn equals twice the focal length), we see that

e, can be expressed in a number of ways,

o = tan () ~ §
— -1 dl 2dl
o= ] -
2
d 2d
e, = tan—l[l 2 ] ~ Rz
s(R-w) ,

Using these three expressions for e,, d;, and d, become,

d, fk[R+w) = %

a

d, = Fk(R-w) =~ §

The apparent volume Equation (B.1) is then,
- 2
Vapp = &V"a ;
To calculate the actual scattering volume we need

expressions for d; and d;. Using Equation (B.3) we

see that,

also from Figure 17,

dl—d; = 9,(r+%ﬂ—og(r+%ﬂ

where e; is the angle of incidence of the marginal ray

defined by the collecting lens. Now e; and e, are

related to each other through Snell’s law for small

angles,

(B.2)

(B.3)

(B.4)

(B.5)

(B.6)
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81
90 = °n— (B.7)
Putting the first expression in Equation {(B.2) and

Equation (B.7) into Equation (B.6) and then equating the

right hand sides of Equations (B.S) and (B.6), we arrive

at an expression for d,,

~ (%)[é _r_lz_l_(r+%)] ) (B.8)

In a similar way d; is given by,

a; = (B)Er-v)-25L (-3)]

~ (B)[3r-25t(r-5)) (2.9)

Inserting Equations (B.8) and (B.9) into the expression
for the volume Equation (B.1) and keeping only the first
order terms, the actual volume becomes,

V = Vapp+AV
2

.1 _f{r 2{n-1)
V = zvna (R)wna — (B.10)

The second term aon the right hand side of Eq. (B. 10)
is an approximation for the correction to the scattering
volume as a result of the refraction of the scattered
light as it leaves the sample. The square root of the
ratio of the scattering volume of fused qguartz to that of
the samples is the quantity that appears in the expression

for the photo-elastic caonstants. In view of the abave
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discussion, this quantity becomes,

(Vo)% = ( 2PP n (B.11)
Where the quantities that have a superscript "ao" are the
fused quartz quantities.

Table XVIII lists the values of this ratio for the
different glass samples where we have used r = 0.2cm and
R = 10. 5cm. As one can see, the ratio is very nearly

equal to one for all of the samples.
Solid Angle Correction

Figure 18 shows a top view of the sample with the

laser beam incident from the top of the figure. e, is the

angle of incidence between the optic axis and the marginal

ray defined by the collecting lens of radius h. e5 is the

angle between the optic axis and the imaginary line
extending from a point within the scattering volume to the
periphery of the collecting lens and e, is the angle of
refraction for the marginal ray. R is the distance from
the point of scattering to the collecting lens and r is
the distance from the scattering point to the front
surface of the sample.

For small angles the tangents and the sines of the
angles are approximately equal to the angles themselves.

With this in mind, we can vrite,



TABLE XVIII

CORRECTION FACTORS

117

172

Sample n [%ﬂé}f) (ﬁ%)z Y ¢y
{degrees)
Li,0-85i0, 1.604 0.9977 1.204 1.017 4.618
Na 0-5i0, 1.583 0. 9980 1.172 1.026 4.679
K, 0-5i0, 1.584 0. 9980 1.174 1.031 4.676
Rb_0-5i0, 1.572 0. 9982 1.156 1.004 4.712
Cs,0-510, 1.591 0. 9979 1.184 1.032 4. 656
Sio 1.462 S. 066

2
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Re3 r92+(R—r)94
and

ne, = 6,4 {B.12)
Solving for e, we have, -
°3

[n_r(ggl)]

62-"-'

(B.13)

This is the expression for the maximum angle, from the
optic axis, for the bundle of rays leaving the scattering
volume and still making it through the collecting lens.
Any ray that leaves the point of scattering with an angle
larger than e, will not pass through the collecting lens.

6, clearly depends on the index of refractiaﬂ of

the sample. The larger the index of refraction, the
smaller the amount of light that makes it through to the
collecting lens.

The scattered intensity at the collecting lens is
equal to the scattered power per unit area across the
collecting lens. The ratio of the scattered intensity of

the sample to that of fused quartz is praoportional to,

Is 1/a _ a°
17 1/A° A
e8.2
= (32) , (B. 14)
2
wvhere A = nh? = nR29§ and A° = nRz(eg)%

Using Equation (B.13), this ratio becomes,

2 [n_r(n—l)]2

0
(;{] B [ r(n%-1)12
po-E(n®1) ]

~ (27 (B.15)

o)
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As a result of the above sclid angle correction the
intensity ratio g that appears in Equation (3.25)

becomes,

B = anms_(x‘]“—c,)2 (B. 16)

That is, the actual intensity ratio is larger than that
which is measured due to the fact that the refraction of
the scattered light, as it leaves the =sample, is greater
for the glass samples then it is for fused quartz as a
result of the relatively lowv index of refraction of fused
quartz. This means that less light is received by the
collecting lens from the glass samples compared to fused
quartz then would be expected if the effects of refraction

vere the same for both materials.

Back-Reflection

When a laser beam is normally incident on the surface
of polished glass, a small fraction of the incident
intensity is reflected and the rest is transmitted. There
is an additional reflection at the inside surface where
the laser beam exits the materiaesl. If the entrance and
exit surfaces are parallel, this back reflection
contributes to the intensity of the laser beam within the
sample. Furthermore, this contribution of the
back-reflection nearly compensates for that fraction of
the incident light lost due to reflection at the entrance

surface. If the incident intensity is I, then the
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transmitted intensity is TIO, where T is the

transmittance. The fraction of laser light, within the

sample, that is reflected at the exit surface is RTI,

where R is the reflectance. The total intensity inside

the sample is the sum of these two quantities,

TI+RTI_, = I T(1+R) (B.17)

If we take typical values for T and R of about 0.95 and
0.05 respectively, we find that the intensity inside the

glass is 0.99810 w2 Io

The above represents the situation in fused quart=z.
Howvever, in those samples that are absorbing, the
back-reflection does not compensate nearly as well for the
fraction of light lost at the entrance surface. Referring
to a coordinate system where the origin is located at the
point where the laser beam enters the glass, the intensity

of the laser beam is,

I¢(0,z) = TIo(e' @Z;Re” 20lg®Z)

i

TI e~ *2[1+Re2*(z71)) (B.18)

vhere z is the distance'traveled by the laser beam through
the sample, « is the absorption coefficient and L is the
length of the sample. Note that Equation (B. 18) reduces
to Equation (B.17) in the case « = 0.

Since the scattered\intensity is proportional to the
intensity of the laser beam given by Equation (B.18), wve

can take the ratio of the intensity of the laser beam
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inside the glass to that inside fused quartz in the limit

as z—0,

I [1+Re” ]
F = [1+R08_ ZCCDLO]

(B.19)

In the above equation, we have not included the ratio of
the transmittances as this was taken into account in
Chapter III.

Since the absorption of the light in the high
absorption glasses serves to reduce the intensity of the

laser beam inside the material, we would expect the
measured intensity ratio to be less then would be expected
if absorption was not taking place. Thus, to cancel out
the effects of absorption we need to multiply the measured
intensity ratio 8 by the reciprocal of Equation (B.19),

R = Emaag.y (B.20)
where,

[1+Roe—2aﬁﬁl

[1+Re'2“L]

<
1]

(B.21)

Values of ¥ for the different samples are listed in
Table XVIII. In most cases ¥ is on the order of about 3%

of the measured value of 8.
Uncertainty in the Velocity

The phonon wave velocity in terms of the Brillouin
shift aw is given by,

v = —gta® (B.22)

2nsin%
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wvhere ¢ is the speed of light, n the index of refraction

and 2, the laser wavelength. The velocity clearly depends
on the scattering angle <. In our experiments this angle
is equal to‘90°. However, as we have seen in the last few
sections, the finite size of the collecting lens leads to

a solid angle of rays emanating from the scattering
volume. As a result, there is an uncértainty in the
velocity due to this range of angles.

Using standard error analysis procedures, the
fractional uncertainty in the velocity due to measurement

errors is given by

-3
cos=

av | alAaw) _ an . 772 (B. 23)
v Aw n 2sin%

2

In order to evaluate this expression we need, in addition
to the other values, ae.
Figure 19 shows a top view of the sample with the

laser beam incident from the top of the figure. L, is the
collecting lens of focal length f,, L, the collimating
lens with focal length f, and PH is the pinhole. The

Fabry-Perot triple pass entrance is shown at the right

with radius a. The angle ¢, is the angle of refraction of
the marginal ray defined by the Fabry-Perot opening and is

given by,

®, = tan“[%) x % (B.24)

¢, is the angle of incidence of the marginal ray and is

related to ¢, by Snell’s law for small angles,

-3
®, = -2 (B. 25)
n
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Values of ¢; for the glass samples are given in
Table XVIII. The largest value is 4.7 degrees for
Rb,0-5i0,. Converting this to radians, we have for
the maximum uncertainty in the scattering angle ¢,
a¢ = t 0.082rad (B.26)

Comparing this with the fractional uncertainty in the

index of refraction and the Brillouin shift, we see that
a¢ contributes the most to the uncertainty in the

velocity.
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