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Abstract

The ADCIRC hydrodynamic model has been used extensively for coastal modeling 

applications over the last twenty years. Within the last decade, modeling of hurricane storm 

surge has become one of its principal applications. Utilization of ADCIRC for these 

problems has required additional model development. Two areas for model development 

are focused on in this dissertation. First, the numerical parameter, G, is analyzed in 

ADCIRC. Then, aspects of coupled hydrologic-hydrodynamic modeling for coastal flood 

inundation are explored using ADCIRC.

The numerical parameter, G, in the generalized wave continuity equation, which is 

one of the governing equations in ADCIRC, is analyzed using dispersion analysis results 

as a guide for parameter selection. Results show traditional analysis techniques, which are 

limited to linear systems, do not produce optimal results for non-linear problems. 

Therefore, application of the Forward Sensitivity Method (FSM) to ADCIRC, in 1-D, is 

explored. Results show model sensitivity to  computed using the FSM is equivalent to 

numerical analog values using model results. Additionally, the data assimilation step in the 

FSM can be used to successfully recover target  values using the model errors and 

sensitivity values. However, due to the variability of the sensitivities, recovery of target 

values depends on the initial coefficient set specification. Furthermore, sensitivity results 

show generation of spurious oscillations in the elevation and velocity results when  is set 

too high.

The preliminary model coupling is completed using 1-D channel routing and 
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ADCIRC models to analyze the impact of the location of the coupling, the types of 

boundary conditions used for the models, and the complexity of the momentum equation 

approximation in the channel routing model. Results show one-way coupling of a model 

with kinematic wave channel routing to ADCIRC is acceptable if the hand-off point is 

placed upstream of major backwater effects. Additionally, ADCIRC results are best when 

flux values are used at the upstream boundary.

Finally, a one-way coupled model system using output from a hydrologic model as 

the upstream boundary condition in ADCIRC is implemented. The target area for this 2-D 

application is coastal North Carolina, specifically the Tar-Pamlico and Neuse River basins 

and Pamlico Sound. The hand-off points on the rivers are placed tens of km inland from the 

Pamlico Sound to ensure ADCIRC handles areas impacted by tides and storm surge. 

Results show ADCIRC accurately represents specified boundary discharges at the 

upstream extents of the rivers and can model inundation of the coastal plain due to the 

combined effects of rainfall-runoff and hurricane storm surge. A hindcast of Hurricane 

Isabel shows the coupled system accurately models total water level at the USGS location 

at Washington where the Tar-Pamlico River discharges into the Pamlico Sound. However, 

inadequate resolution and issues with the wet/dry algorithm in ADCIRC give rise to some 

mass balance problems in the river reaches that limit the accuracy of results in the 

downstream portions of the rivers.
xxxviii



 CHAPTER 1.  Study Background and Motivation

1.1   Introduction

The goal of this study is to improve the capabilities of modeling coastal flood inun-

dation, specifically using the code ADCIRC (ADvanced CIRCulation model [Luettich 

1992, 2004; Westerink 1994]). ADCIRC is a system of computer programs that solves free 

surface circulation problems. ADCIRC uses a finite element discretization in space that 

allows for use of the highly unstructured grids necessary to resolve intricate geographical 

features along the coasts. The continuous Galerkin (CG) finite element method is applied 

to the shallow water equations, as shown in (2.1) - (2.3). Specifically, the generalized wave 

continuity equation (GWCE) formulation of the vertically-integrated continuity equation is 

solved to determine changes in the free surface elevation, and the depth-averaged velocities 

are determined through solution of the vertically-integrated momentum equations [Luettich

2004]. ADCIRC is applied for numerous modeling purposes including tide- and wind-

driven circulation; hurricane storm surge and inundation; baroclinic transport for Naval 

fleet operations; sediment transport and coastal dredging feasibility; and larval and oil spill 

conveyance [Kolar 2000].

1.2   Coastal Flood Inundation

The United States coastlines along the Gulf of Mexico and bordering the Atlantic 

Ocean are susceptible to storm surge inundation from tropical cyclones and nor’easters. In 

the last decade, the Louisiana Gulf Coast has been impacted by Hurricanes Katrina, Rita 
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and Ike, as well as many lesser storms. During Hurricane Katrina, the peak storm surge, 

ranging from 7 to 10 m, occurred along the Mississippi coastline 20-80 km east of the 

center of the storm and affected areas up to 20 km inland along water bodies [Fritz 2007].

In addition to storm surge, flooding due to rainfall-runoff can be severe and exten-

sive. In 2009, a coastal low-pressure system that included the remnants of Hurricane Ida 

produced almost 12 in. of rainfall in Chesapeake and Hampton, VA [Gutro 2009]. In June 

2001, Tropical Storm Allison produced 15 in. of rainfall over large sections of Brays Bayou 

and downtown Houston, TX in a three-hour period, leading to flooding that resulted in 

approximately $5 billion in damages [Bedient 2003]. In 1999, Hurricane Floyd produced a 

record 24-hour rainfall at Wilmington, NC of 15.06 in. and a storm total of 19.06 in [Pasch 

1999]. Rainfall from Hurricanes Dennis, Floyd and Irene produced 500-year flows in every 

major river basin in North Carolina except one (the Lumber River Basin in southeastern 

North Carolina bordering South Carolina). Following Floyd, the flow rate on the Tar River 

at Tarboro was almost twice as much as the previously recorded high flow, and the peak 

stage was nearly 3 m higher than the former maximum [Bales 2000, 2003].

1.2.1  History of Coastal Flood Inundation Modeling

While there have been significant efforts undertaken to predict hurricane storm 

surge in a number of coastal areas, e.g. [Fleming 2008; Mattocks 2008], and precipitation-

induced river flood forecasting is also common, e.g. [Bedient 2003], relatively few efforts 

have been made to combine storm surge and rainfall-runoff for prediction of flood inunda-

tion. As noted in Van Cooten et al. [2011], there is a NOAA service gap in the coastal plain
2



as “over 90 percent of these CDAsa do not receive any hydrologic information regarding 

water level and timing of flood crest from the NWSb.” Hydrologic models do not predict 

storm surge, and many models are incapable of accurately representing flood inundation in 

the coastal plain because of the assumptions used in model development. On the other hand, 

hydrodynamic models often do not model precipitation-induced flooding. Thus, to achieve 

a more holistic representation of coastal inundation, it is necessary to couple a hydrologic 

model to a hydrodynamic model to generate a total water level product, which consists of 

the water surface elevation taking into account the combination of tides, storm surge, wind 

waves and riverine flows.

1.2.2  Coastal Flood Inundation Using ADCIRC

Recently, ADCIRC has been used to simulate hurricane storm surge, e.g. [USACE

2009; Bunya 2010; Dietrich 2010a]. Westerink et al. [2008] detail use of ADCIRC to hind-

cast Hurricanes Betsy and Andrew. The triangular, unstructured grid used to discretize the 

spatial domain for those hindcasts has significant local refinement of the southern Loui-

siana coastal floodplain including, generally, “five or more nodes across the major rivers 

and inlets with grid sizes of 100-200 m” to minimize errors caused by under-resolution, 

which can significantly reduce conveyance of waterways. That manuscript provides signif-

icant detail on applying ADCIRC to model storm surge. The two most relevant elements to 

the current study are as follows: they apply a constant flow rate at the upstream boundary 

of each river in the model that is representative of the flow during a particular storm and 

a.  From Van Cooten et al. [2011], “NOAA (2010) defines a CDA as ‘that component of an entire 
watershed that meets the following three criteria: 1) it is not part of any estuary drainage area; 2) it 
drains directly into an ocean, an estuary, or the Great Lakes; and 3) it is composed only of the down-
stream-most HUC in which the head-of-tide is found.’”
b.  National Weather Service
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employ a radiation boundary condition to prevent reflection of tides and surge waves that 

are propagating upriver; simulations are performed using spatially variable , which is 

sometimes referred to as , with higher values in shallow and overland areas and a lower 

value in deeper areas, all determined by experience and empirical rules guided by analysis 

of the linear system.

1.2.3  River Flood Prediction and Inundation

Hydrology deals with the movement, distribution and quality of surface and ground 

water. Thus, hydrologic models are comprised of some combination of the following 

components: precipitation, interception, evaporation and evapotranspiration, infiltration, 

unsaturated flow, saturated flow, soil moisture, surface runoff, channel routing, and erosion 

and export. One main aspect of hydrologic modeling is predicting the flow rate (or 

discharge) of a river, stream or channel. 

There are innumerable hydrologic models which fall along the spectrum of the two 

extremes in watershed modeling. At one end are lumped, parametric rainfall-runoff models. 

At the other end are distributed, physics-based models. Generally, physics-based models, 

e.g. Vflo [Vieux 2002, 2004], TREX [Velleux 2006], MIKE SHE [Abbott 1986a,b; Refs-

gaard 1995], PIHM [Qu 2005, 2007], and WASH123D [Yeh 2005], are distributed models 

that use governing equations of overland and channel flow, along with detailed information 

about topography and land use, to route rainfall to the basin outlet. Parametric models, e.g. 

HL-RDHM [Koren 2004; Smith 2004; Reed 2004; Moreda 2006; Hydrology Laboratory

2008], HRC-DHM [Carpenter 2004, 2006], and HEC-HMS [Feldman 2000], can often be 

applied on a range of scales, from lumped to distributed, with the parameters being cali-

brated at a given modeling scale. Generally, physics-based models utilize available data 

G
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sets, e.g. digital elevation, land-use/cover and soil classification maps, to define model 

parameters [Vieux 2001], while lumped, parametric models rely on historical data for 

parameter calibration. However, as is the case with HL-RDHM, the parameters can be esti-

mated from distributed physical data sets. Additionally, HL-RDHM, HRC-DHM and HEC-

HMS are all capable of physics-based channel routing. 

The calculated discharge from a hydrologic model can be used to generate a river 

stage using a stage-discharge relationship. In turn, the river stage is an indicator of flood 

inundation potential. Alternatively, the discharge can be input into a hydraulic code to 

produce river stage and inundation results for a particular reach. Fang et al. [2008] describe 

a flood alert system that uses discharge results from the lumped model HEC-1 and the 

distributed model Vflo. They developed a floodplain map library based on rainfall patterns, 

with the flood inundation prediction based on steady-state flow theory. The 1-D hydraulic 

code HEC-RAS [Brunner 2001, 2002] accepted the peak flow rate for a given rainfall event 

and generated the water surface elevation for the corresponding cross-sections. Finally, 

floodplain maps were generated using GIS to process the water surface elevation profiles.

Another approach is to model river and floodplain flow using a 2-D model. Bates 

and Anderson [1993] developed a two-dimensional finite element model that solves the 

depth-averaged Reynolds equations and applied it to an 11 km reach of the River Culm, 

Devon, U.K. Bates et al. [1998] validated TELEMAC-2D [Galland 1991; Hervouet 1996], 

a two-dimensional finite element code, on five river reaches using discharge/elevation as 

the upstream/downstream boundary conditions. Horritt and Bates [2002] compared 1-D 

and 2-D numerical models for predicting river flood inundation on a 60 km reach of the 

Severn River, UK and found similar accuracy levels for HEC-RAS, LISFLOOD-FP [Bates, 
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2000] and Telemac-2D at optimal calibration. 

1.3   Current Deficiencies in Coastal Flood Inundation

In this study, the main objective is to create a total water level product for the 

coastal plain, which is subject to significant flood effects from both rainfall-runoff and 

storm surge. The ADCIRC hydrodynamic model has been used extensively for coastal 

storm surge modeling, but it does not ingest precipitation data or include the elements 

necessary to model all the types of rivers encountered in modeling of coastal systems. 

Therefore, coupling of ADCIRC to a hydrologic model is necessary.

Hydrologic models differ in the level of complexity of the momentum equation 

approximation used in channel routing. Many models, e.g. Vflo and HL-RDHM, use the 

kinematic wave approximation to the momentum equation. Others, including TREX, use 

the diffusive wave approximation. Still others have been developed with multiple routing 

options. For example, the PIHM has both kinematic and diffusive wave routing options and 

both WASH123D and MIKE SHE include kinematic, diffusive and dynamic wave routing 

algorithms. The approximation to the momentum equation has implications in applicability 

of models to the coastal plain. Generally, the kinematic wave approximation is more adept 

at simulating flow in steeper areas because of the assumption that the friction slope is 

equivalent to the bottom slope. The diffusive and dynamic wave approximations both 

incorporate depth of flow and, thus, are able to simulate backwater effects and allow water 

to travel upstream, which is a possibility in rivers in the coastal plain. The momentum equa-

tion approximation and location of the boundary between the hydrologic and hydrody-

namic models are investigated using a 1-D framework, as presented in Chapter 5 of this 
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study.

The target region for this study is the area of coastal North Carolina that includes 

the Tar-Pamlico (Tar) and Neuse Rivers and the Pamlico Sound. The Tar and Neuse Rivers 

are much smaller than the rivers discretized in the grid for storm surge simulations for Loui-

siana, notably the Mississippi and Atchafalaya Rivers. The Tar and Neuse Rivers are 

approximately 40 m wide, whereas the Mississippi and Atchafalaya Rivers are hundreds of 

meters wide. Additionally, the bottoms of the rivers in Louisiana are well below sea level 

in the entire ADCIRC domain; the bottom of the Mississippi River is 17.5 m below sea 

level at Baton Rouge, LA in the ADCIRC grid and the bottom of the Atchafalaya River is 

about 7 m below sea level at the grid boundary, a comparable distance (approximately 120 

km) inland. In contrast, the bottoms of the rivers in the North Carolina grid are about 8 m 

above sea level approximately 60 km inland from the Pamlico Sound. Thus, implementa-

tion issues related to discretization and initialization of the North Carolina rivers in 

ADCIRC, along with the river boundary condition specification, must be addressed. This 

work is presented in Chapter 6, along with application to historical storms.

In addition to the coastal inundation-specific aspects of this work, the numerical 

parameter, , in the GWCE is investigated in Chapter 2, Chapter 3 and Chapter 4. Due to 

the impact of  on ADCIRC simulation stability and results, as well as the time and exper-

tise necessary to systematically adjust , an automated selection routine is desirable. 

Generally, more complex flow fields, such as those experienced during storm surge appli-

cations, require more intricate  specification in order to maintain stability and accuracy.
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1.4   Dissertation Roadmap

The hypothesis driving this work is that systematic improvements and additions to 

the ADCIRC hydrodynamic model can improve forecasting and hindcasting of coastal 

flood inundation, as well as be useful in future studies of theoretical storms. The subsequent 

five chapters of the dissertation can be divided into two sections. The first three chapters 

are focused on analysis of . The last two body chapters are focused on development of a 

coupled modeling system composed of a hydrologic model and ADCIRC.

Chapter 2 details work towards a spatially and temporally variable algorithm for 

automatic selection of the  parameter in the GWCE using idealized test cases and Fourier 

analysis. Chapter 3 explains application of the Forward Sensitivity Method (FSM) to the 

linearized 1-D ADCIRC equations and shows how data assimilation can be used to estimate 

. The application of FSM is extended to the non-linear 1-D ADCIRC equations in 

Chapter 4. Additionally, non-constant parameterizations for  are analyzed.

Chapter 5 is focused on determining the proper boundary condition, type and loca-

tion, for use in coupling ADCIRC with hydrologic models. This is accomplished using a 1-

D version of ADCIRC. Extension of the 1-D study to the Tar and Neuse River basins is 

presented in Chapter 6. Specifically, a procedure is developed for modeling rivers in 2-D 

ADCIRC based on inputs from a hydrologic model, and results for hindcasts of tropical 

systems are presented, including a total water level hindcast of Hurricane Isabel.
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 CHAPTER 2.  Analysis of G Using Traditional Techniques

2.1   Introduction

Finite element solutions to the primitive shallow water equations (primitive conti-

nuity and conservative momentum), given by Pritchard [1971] and shown in (2.1) and 

(2.2), are subject to spurious oscillations. Lynch and Gray [1979] formulated the wave 

continuity equation (WCE), (2.3), by differentiating the primitive continuity equation with 

respect to time, substituting the conservative momentum equation for the  term, 

and substituting the primitive continuity equation for the  term. They found that by 

using the WCE in conjunction with the conservative momentum equation, accurate 

modeling of longer physical waves was possible while suppressing (or not generating) the 

spurious oscillations inherent to finite element solutions of the primitive equations.

(2.1)

(2.2)

(2.3)

In the above equations, L denotes the primitive continuity equation (2.1),  is a symbol 

for the conservative form of the momentum equation (2.2), and W represents the WCE 

(2.3). Additionally, H is total water depth, which is equal to the sum of the bathymetry, h, 

and the water surface elevation, , while t is time,  is the 2-D fluid velocity, g is the 

magnitude of gravity,  is the Coriolis parameter,  is the bottom friction term, and  

∂Hv( ) ∂t( )⁄

∇ Hv( )⋅

L ∂H
∂t
------- ∇ Hv( )⋅+ 0= =

MC ∂Hv
∂t

----------- ∇ Hvv( ) gH∇ζ f Hv τHv Hψ–+×+ +⋅+ 0= =

W ∂2H
∂t2
---------- τ∂H

∂y
------- ∇ ∇ Hvv( ) gH∇ζ f Hv Hψ–×+ +⋅[ ]⋅( )– Hv ∇τ⋅( )–+ 0= =

MC

ζ v

f τ ψ
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accounts for wind stress and atmospheric pressure variations. Furthermore,  is the nabla 

(grad) operator,  is the divergence operator, and  denotes a partial differential. 

Appendix A is a nomenclature reference for commonly used symbols in this work.

Kinnmark [1986] showed that the WCE can be generalized by replacing the bottom 

friction parameter, , with a numerical parameter, . As in Kolar et al. [1994], this is 

easily expressed by presenting the equations in operator notation. The WCE is given by 

(2.4), while the generalized wave continuity equation (GWCE), denoted by , is shown 

in (2.5).

(2.4)

(2.5)

The ADCIRC hydrodynamic model [Luettich 1992, 2004; Westerink 2004] is based 

on a continuous Galerkin finite element discretization of the GWCE and momentum (either 

conservative or non-conservative momentum) equation. The numerical parameter, , 

affects the behavior of the governing equations for the ADCIRC model. As  increases, 

the GWCE tends toward a primitive (hyperbolic) form of the continuity equation. When  

is reduced, the GWCE moves toward a pure wave form of the continuity equation. Empir-

ical studies by Kolar et al. [1994] show  should be 1-10 . Dispersion analysis supported 

empirical findings and showed the GWCE has a monotonic dispersion relationship for 

. 

By analyzing the discrete equations in both 1-D and 2-D, Atkinson et al. [2004] 

show the GWCE is approximately equivalent to the Quasi-Bubble formulation used in 

∇

∇• ∂

τ G

WG

W ∂L
∂t
------ τL ∇ MC⋅( )–+≡ 0=

WG ∂L
∂t
------ GL ∇ MC⋅( )–+≡ 0=

G

G

G

G τ

G τ=
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TELEMAC 2D [Galland 1991; Hervouet 1996] if the appropriate formula is used to 

compute . The Quasi-Bubble scheme solves the primitive continuity equation but uses an 

enriched velocity field to avoid generation of spurious oscillations. The equations for  

that make the GWCE approximately equivalent to the Quasi-Bubble formulation are 

slightly different in 1-D and 2-D, given by (2.6) and (2.7), respectively, where  is the 

wave frequency and  is the imaginary unit. 

1-D: (2.6)

2-D: (2.7)

Using the appropriate formula for , the equations (not shown) for elevation in the two 

models are equivalent. The difference between the two formulations (GWCE-based and 

Quasi-Bubble) is in the mass matrix terms for the momentum equation. The momentum 

equation does not depend on , and using a lumped formulation for the mass matrix terms 

would make the equations identical. Atkinson et al. [2004] found that the formulas, (2.6) 

and (2.7), improve the dispersion characteristics of the GWCE formulation over using 

.

Constant  values tend to produce reasonable results for simple applications. 

However, more complex problems require more sophisticated specification of the numer-

ical parameter. The equations suggested by the dispersion analysis point towards a spatially 

and temporally variable algorithm for . Unfortunately, dispersion analysis is limited to 

linear behavior, so the above equations may not produce optimal results for non-linear 

applications, such as hurricane storm surge.

Simulations comparing results using constant and variable  formulations are 
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explored in the next two sections, with non-moving boundary domains utilized in Section 

2.2 and an application requiring wetting and drying in Section 2.3. Subsequently, Fourier 

analysis is performed on the GWCE in Section 2.4. Conclusions based on analyses in this 

chapter are provided in Section 2.5.

2.2   Comparison of Constant and Variable G

Simulations were performed using both constant and variable  (based on Atkinson 

et al. [2004]) formulations. Results are shown for three domains: a 1-D slice of the east 

coast of the United States, a 2-D quarter annular harbor, and a 2-D Bahamas domain. The 

error metric for these comparisons is mass balance error, which has been shown to be a 

good surrogate for truncation error [Dietrich 2008]. Following Dietrich et al. [2008], 

conservation of mass for an element over one time step is given by (2.8), where the first 

term is the accumulation term and the second term is the net flux term. Additionally,  is 

the area of an element, the net flux out of the element is represented by , and  

denotes the change in time.

(2.8)

The mass balance residual, , is calculated (as in Dietrich et al. [2008]) as the sum of the 

accumulation and net flux terms, as (2.9) shows.

(2.9)

This treatment of mass balance is based on the finite volume flux and was also used in 

Kolar et al. [1994]. Massey and Blain [2005] investigated different methods for computing 

flux for GWCE-based finite element models and concluded that the finite volume flux 
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gives realistic results, even though it is not consistent with the finite element formulation 

with the GWCE.

2.2.1  1-D East Coast

The domain for these simulations is a 1-D slice of the east coast, shown in 

Figure 2.1, that transitions from the deep ocean to the continental rise, then up to the conti-

nental shelf. This domain was used by Hagen et al. [2000], Dresback [2005], and Dietrich 

et al. [2008]. The simulations share the following parameters: 65 nodes; domain length of 

2,000 km; constant node spacing of 31.25 km;  s; bottom friction coefficient, , 

of 0.1; and a lateral eddy viscosity of zero. The ocean boundary forcing is a 1.0 m tide with 

a M2 period of 44712.0 s. The duration of the simulations is just over 15 tidal cycles 

(671,000 s) and values are saved every 1,000 s for the last 5 tidal cycles. 

The bottom friction, , is calculated using the Chezy formula, (2.10), where  is 

the depth-averaged velocity in the x-direction at spatial location  and time .

(2.10)
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The friction coefficient was selected to produce an average  value near 0.0001  at the 

break between the continental rise and continental shelf. The friction value is used to calcu-

late the  value based on the work of Atkinson et al. [2004], referred to herein as 

Atkinson’s formula, according to (2.11). The wave frequency is calculated from the tidal 

forcing period, T, as . 

(2.11)

Use of Atkinson’s formula with an  value of unity will be referred to as the base 

Atkinson  formulation. For reference, for the east coast domain problem, 

 . Thus, there is a lower limit on  of  .

For this domain, four simulations were performed. Two simulations were with 

constant  values and the other two used the Atkinson formula for computing . The two 

constant  values were 0.001  (which is the value used by Dietrich et al. [2008]) and 

0.000084355 , which is the mean  value from the base Atkinson simulation. The two 

variable  simulations use the base Atkinson formulation and the Atkinson formula with 

an  value of 12.0 which results in a mean  value near 0.001 . The mass residual 

was computed for each output record, and the average elemental mass residual was calcu-

lated as the mean of the absolute values of the residuals for a given element, , according 

to (2.12), where  is the number of records used in the computation. 

(2.12)

Additionally, the maximum norm for the mass residuals is computed for each element.

The average and maximum mass residuals for each element are shown in Figure 2.2
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for each of the four simulations. As Figure 2.2 readily shows, specification of  has a 

substantial effect on mass residual results. Higher values of  (right panels) drastically 

reduce the peak local mass balance errors that occur over the continental rise (which 

consists of elements 49-57), as compared to the lower values of , regardless of whether 

the constant or variable  formulation is used. 

The variable  formulation implemented for these runs only increases the mean 

nodal  value above the overall simulation mean  value at seven nodes (nodes 58-64). 

The first of these nodes is at the break between the continental rise and the continental shelf. 

Thus, the only nodes where the mean  value is larger than the constant  value for the 

comparisons are on the continental shelf. 

The boundary condition on the right side of the domain fixes the velocity at zero at 

the last node in the domain. Therefore, the  value for that node is at the minimum value, 
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computed as , which is thirty times less than the maximum average value for 

the variable  simulation with . A plot of the mean  value for each node 

for the variable  simulation with  is shown in Figure 2.3. The base 

Atkinson simulation, in contrast, has minimum and maximum mean  values of 4.69 E-

05  and 8.22 E-04  and the ratio of the mean  values at the last two nodes is about 

17.6. This discrepancy in  near the boundary may be the cause of the rise in the mass 

residual near the land boundary for the variable  simulations that does not occur for the 

constant  simulations. 

2.2.2  2-D Quarter Annular Harbor

The second domain is a quarter annular harbor that is shown in Figure 2.4 and was 

used previously by Lynch and Gray [1979] and Dresback [2005]. Eleven equally spaced 

arcs (30,000 ft apart with the first at a radius of 200,000 ft) and radii (  apart) define the 

121 nodes in the domain that create 200 elements. The duration of the simulations on the 

quarter annular harbor domain was 2.0 days, with a 0.5 day ramp on the 1.0 ft elevation 

boundary condition at the outer boundary. The tidal forcing has a M2 period of 44712.0 s. 

The inner boundary was treated as a no-flow land boundary. The other common parameters 
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are  s and . The Coriolis effect was neglected. For the last day of the 

simulation, the results were recorded every 100 s. 

The two simulations are 1) a variable  simulation using the 2-D base Atkinson 

formula, (2.13), 

(2.13)

and 2) a constant  simulation with  , which is slightly less than the 

average  value from the variable  simulation, 1.10E-04 . The global net flux and 

accumulation values, computed for the last day of the simulations, are shown in Figure 2.5. 

In contrast to (2.9), where a zero mass residual results when the accumulation and net flux 

are the same magnitude but opposite signs, a zero mass residual exists for these results 

when the accumulation and net flux values are the same. This is due to the sign on the net 

flux term being switched for graphing purposes. The mass residual is the difference 

between the accumulation and net flux at a given time. The global mass residual is similar 
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to the elemental value. However, the global mass accumulation consists of the sum of the 

elemental accumulations. The global net flux is simply the net flux across the domain 

boundaries because the fluxes across interior element faces cancel, i.e., the flux out of one 

element is the flux into the adjacent element. 

The global mass balance results, presented in Figure 2.5, show similar general 

trends for the constant and variable  simulations. The accumulation and net flux are set 

at zero one day into the simulation and allowed to vary from that point forward. For each 

simulation, the range of the accumulation and net flux terms is about 5.0 E11 . The range 

of the mass residual is about 2.0 E10  for each simulation, with an average global mass 

residual of 7.84 E09  for the variable  simulation and 7.77 E09  for the constant  

simulation. Additionally, the variable  simulation had slightly larger accumulation and 

net flux values at most times during the simulations than the constant G simulation. 

However, the magnitude of the differences between the terms for the two simulations was 

on the order of  , which is significantly less than the average mass residuals.

Throughout the variable  simulation, the minimum value of  is approximately 

7.0 E-05  (given by ), while the maximum value is about 2.3 E-04 . The tempo-

rally-averaged  values for the variable  simulation are shown in Figure 2.6. The  
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values are a minimum at the inner and outer boundaries for different, yet related, reasons. 

In both areas, the velocities are low; the non-constant portion of the variable  formula is 

dependent on velocity. The velocity is close to zero at the inner boundary because the flow 

is generally along the radial direction and the radial component at the inner boundary is 

zero (no flow is allowed past that string of nodes). The relatively low velocities at the outer 

boundary are due to the relatively large depths and arc lengths. The large arc length 

produces a relatively low unit flux across the arc, as compared to arcs closer to the land 

boundary. Additionally, the bottom friction value is inversely proportional to the depth. 

A comparison of the local mass balance results is shown in Figure 2.7. The cumu-

lative mass residual is computed for each element and the values at the end of the simula-

tion are used to produce Figure 2.7. The nodal values, , for local mass balance are 

computed using the elemental values according to (2.14), where  is the number of 

elements surrounding a given node. 

(2.14)
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Figure 2.6 Spatial distribution of temporally-averaged G values for the variable G simulation.
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The nodal local mass residuals from the two simulations are used to compute the nodal 

residual difference values, , used in Figure 2.7 using (2.15), where  values are from 

the variable  simulation and  values are from the constant  simulation.

(2.15)

Thus, when the nodal residual from the variable  simulation is smaller than its counter-

part from the constant  simulation, the nodal residual difference is negative. Therefore, 

negative values in Figure 2.7 correspond to locations where the variable  simulation has 

less mass balance error. Conversely, locations on the plot with positive values are areas 

where the constant  simulation has less mass balance error than the variable  simula-

tion.

The intensity of the color (red or blue) captures the magnitude of the difference in 

error between the two simulations. Regions where the color is light red, white, or light blue 

are areas where the log of the absolute value of the difference is small. In these areas, the 

local mass balance error was approximately equal between the two simulations. Near the 

interior boundary of the grid, the color is mostly dark blue. Thus, the variable  simulation 

produces much better mass balance results in this region. Generally, the variable  simu-

lation shows better results at the inner and outer boundaries. However, the constant  

simulation has less mass balance error through the majority of the middle of the domain. 

Relating Figure 2.6 and Figure 2.7, the highest  values for the variable  simulation are 

found in the same area as the best relative local mass balance results for the variable  

simulation. 
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2.2.3  2-D Bahamas

The third domain used to compare constant and variable  results is a 2-D 

Bahamas domain, shown in Figure 2.8 [Dresback 2005; Kolar 1994; Massey 2005]. The 

domain consists of 926 nodes, defining 1696 elements, with a bathymetry range of 1.0 - 9.0 

m. The simulations on this domain were 15.0 days with a 5.0 day ramp on the elevation 

boundary forcing which consisted of 5 tidal signals (O1, K1, N2, M2, and S2), and the 

results for the last 5.0 days were output every 4 minutes. The other common parameters 

were a time step of 60 s, , and a Coriolis parameter of 5.9 E-05 . Three 

simulations were performed using this domain: 1) variable  with the base Atkinson 

formula, 2) constant  of 4.225E-04  which is the average value from the variable  

simulation, and 3) constant  of 0.001 . 

The elevation and velocity results throughout the domain are similar for the 

constant and variable  simulations. To illustrate this point, Figure 2.9 shows a compar-
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Figure 2.7 Spatial distribution of difference in local mass balance error between the variable G 
simulation and the constant G simulation. The magnitude is the log of the absolute value 
of the difference at each node and the sign is determined by the sign of the computed 
difference. Areas where the variable G simulation have less error are shown in blue, 
while red areas denote locations where the constant G simulation has less error.
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ison of flow variables (water surface elevations and depth-averaged velocities) from the 

constant  simulation using a value of 0.001  to results from the variable  simulation. 

There is very little difference in either the elevation or velocity results. The peak elevation 

difference is about 0.5 cm for each of the three nodes analyzed. Note that node 624 is in the 

deep portion of the domain away from the open boundary, which is the straight line on the 

top right side of the plot. The other two locations are in shallower areas near the boundary. 

While  specification has limited impact on elevation and velocity results, the 

mass balance is affected more significantly by the choice of . The global mass balance 

results are shown in Figure 2.10. As before, each graph corresponds to one particular simu-

lation and the time series are the accumulation and net flux for the entire domain. Again, 

the difference between the two lines at a given time is the mass balance error. The simula-

tion with the higher constant  value and the variable  simulation show similar error 

Figure 2.8 Bathymetry for Bahamas domain (dark is deep, light is shallow), which ranges from 1.0-
9.0 m. Three arrows are shown corresponding to node locations where results are 
compared for the constant and variable G simulations. The numbers are the node 
number for reference to results plots.

428

213

624

G s 1– G

G

G

G G
22



values. The results with a constant  value of 0.001  show larger errors when the accu-

mulation and net flux are at maximum values than when they are minimums. This trend is 

also seen in the results for the lower constant  value, 4.225 E-04 . The main difference 

between the results for the two constant  simulations is that the error is greater for the 

simulation with the lower  value. It is important to note that the maximum global mass 

errors grow with time for both constant  simulations, whereas the errors for the variable 

G simulation do not exhibit that trend from one period to the next. 
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nodes 213, 428 and 624.
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The range of  values in the simulation using the base Atkinson formula is just 

over 0.00007  to approximately 0.0027 . The highest values are an order of magni-

tude higher than the maximum  values for the quarter annular harbor simulation with the 

base Atkinson formula for . The mean nodal  values for the base Atkinson simulation 

are shown in Figure 2.11. The shallower areas generally have higher average  values than 

the deeper areas due to the higher friction values, with the highest values being located near 

the bottom right side of the boundary and the top left side of the island. 

The local mass balance graphic comparing the results for the variable  simulation 

to the results for the constant G simulation with the lower G value are shown in Figure 2.12. 

Near the open boundary (on the top right), the variable  simulation generally shows less 

local mass balance. However, away from the open boundary, the constant G simulation has 

less local mass balance error for most locations. Essentially, there is a high correlation 
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Figure 2.10 Global net flux and accumulation for Bahamas domain. The error in mass balance is the 
difference between accumulation and net flux.
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Figure 2.11 Spatial distribution of temporally-averaged G values for the variable G simulation on 
the Bahamas domain.
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Figure 2.12 Spatial distribution of difference in local mass balance error between the variable G 
simulation and the constant G = 0.0004225 s-1 simulation on the Bahamas domain. The 
magnitude is the log of the absolute value of the difference at each node and the sign is 
determined by the sign of the computed difference. Areas where the variable G 
simulation have less error are shown in blue, while red areas denote locations where the 
constant G simulation has less error.
25



between the local average  value and local mass balance error. The transition from 

predominantly blue to predominantly red in Figure 2.12 corresponds to the shift in the 

average values from the variable  simulation from higher than the overall average (which 

is the value used in the constant  simulation to which results are being compared) to 

lower than the overall average. 

2.3   Back Bay Problem

Recently, ADCIRC has been used to model hurricane storm surge, particularly in 

the southeastern United States, with an emphasis on the impacts to southern Louisiana and 

coastal North Carolina [Bunya 2010; Dietrich 2010a; Fleming 2008; Mattocks 2008; West-

erink 2008]. Accurate modeling of inundation requires wetting and drying as the tides and 

surge interact with areas of elevation near mean sea level. In order to assess the impact of 

 selection on these types of problems, a domain was used that has one portion that is 

always wet and a second section that receives water when a dividing feature is overtopped. 

A slice of the domain is shown in Figure 2.13. The domain is discretized using a 91 by 7 

(x- and y-directions) node grid with constant grid spacing of 16.67 m in each direction, 

which makes the domain 1.5 km long and 100 m wide. The bathymetry for the 1-D slice is 

the same as the bathymetry along each of the seven lines of nodes, from ocean boundary to 

land boundary, in the 2-D grid. The results along the centerline of the simulations were used 

for comparison purposes. 

2.3.1  G Specification

For the continuous Galerkin version of ADCIRC, three types of  specification 

were examined. The first two, used previously, are constant  and variable  using the 
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base Atkinson formula. The third is an alternate variable  formulation, based on sugges-

tions from Westerink [personal communication, July 2006]. This specification, which will 

be referred to as the Westerink variable formula, calculates  at each node based on nodal 

variable using (2.16) and (2.17).

(2.16)

(2.17)

 is a base value that depends on depth (0.005 for deep areas and 0.02 for shallow areas), 

while  is a coefficient multiplier on the temporally-variable term in (2.16). For this 

domain, all the nodes are “shallow”, so the  value is always 0.02. The exponential func-

tion is used in order to cap the values of the parameter at a maximum of 1.0 as  

approaches infinity. The relationship between  and  for the Westerink variable 

formula is shown in Figure 2.14. The ratio  is close to unity for small  values. 

Specifically, when  is the base shallow value, 0.02, the ratio is 0.99. The ratio decreases 

to about 0.95 and 0.90 for  values of 0.1 and 0.2, respectively. Thus, the main effect of 

the transformation from  to  is to set a cap on . This allows areas with less than 

maximal  values to receive values of  near 1.0  without generating exces-
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Figure 2.13 One-dimensional slice of the 2-D back bay grid.
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sively large  values in other parts of the domain. 

2.3.2  Simulation Set-up

The simulations used a 1.0 m elevation forcing at the ocean boundary and a 0.1 

second time step, which is well within the stable range for the  value specifications that 

produce reasonable results, which will be addressed in subsequent sections. Simulations 

were 0.2 days, with a ramp over the first 0.01 days and output recorded every 1000 time 

steps (100 seconds), so there were 172 records of elevation and velocity. The other common 

parameters were  ; the friction parameters ,  

m, , and ; and an elevation boundary forcing frequency of 0.01 . 

As outlined in Westerink et al. [2008], the bottom-friction coefficient is computed using 

(2.18) if the depth is below .

(2.18)

The standard Chezy friction law, (2.10), is used when the depth is greater than the break 

depth.
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Figure 2.14 Relationship between G and G* for the Westerink variable formulation; the left panel 
uses a logarithmic scale for the abscissae, while the right panel shows a limited range of 
the data in the left panel.
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2.3.3  Stability

The impact on stability was assessed by determining the maximum stable time step. 

The maximum stable time step using the base Atkinson formula, approximately 0.7 s, was 

equivalent to the highest maximum stable time steps using constant  values (over the 

range 0.005 to 1000.0 ) or the Westerink variable  formula with a range of  

values from 1-1000. The impact of low  values on the stability is significant, with an 

abrupt decrease in maximum stable time step occurring over a small change in . For the 

constant  value simulations, a  value of at least 0.04  is necessary to have the simu-

lation complete with a time step of 0.7 seconds. However, the maximum stable time step 

for   is about 0.2 s and is around 0.1 s for  . This result differs 

from the trend seen on the Bahamas domain (not subject to wetting and drying) where the 

maximum stable time step reduces from 450 seconds to 390 seconds when the constant  

value is increased from 4.225 E-04  to 1.00 E-03 . For the Westerink variable  

formula, increasing  from 1 to 3 increases the maximum stable time step from just 

under 0.2 s to the maximum value of approximately 0.7 s.

2.3.4  Full-Domain Elevation and Velocity Errors

In this section, the elevation and velocity fields will be used to compute root mean 

square error (RMSE) values. In general, the RMS value of a set of  numbers, 

, is given by (2.19).

(2.19)

The analyses herein will use errors as the set of values. The error value, at spatial location 
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 and time , is the difference between values from the two sets of numbers. For instance, 

the water surface elevation error, , is given by (2.20), where the subscripts 1 and 2 refer 

to two sets (i.e., model and true solution).

(2.20)

The order of the difference computation is inconsequential as the error value is squared in 

the RMSE computation. Generally, however, error is calculated by subtracting the model 

solution from the true solution.

The elevation RMSE in space, , uses the errors at a given time, , to 

compute the error metric. At time , the elevation RMSE in space is given by (2.21) using 

error computations at  spatial locations.

(2.21)

The elevation RMSE in time, , uses the errors at a given spatial location, , to 

compute the error metric. At location , the elevation RMSE in time is given by (2.22) 

using error computations at  temporal levels.

(2.22)

The elevation RMSE in time and space, , uses the  value for each 

time record to compute the error metric as shown in (2.23).
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(2.23)

The velocity RMSE values are computed using the same procedure as the elevation RMSE 

values.

A new version of ADCIRC solves the primitive continuity and momentum equa-

tions using discontinuous Galerkin (DG) finite elements [Dawson 2010; Kubatko 2006]. 

The DG ADCIRC solution was used as the “true” solution. The reason for using the DG 

code as the “true” solution is two-fold. First, the DG version of ADCIRC does not use the 

GWCE. Thus,  specification is not necessary in the DG code. Second, the DG model is 

better suited to handle this type of problem, where the solution may change rapidly from 

one node to the next. The DG solution on the 91 x 7 grid was compared to results from a 

DG simulation using a split-by-four version of the grid that has double the resolution in 

each direction and, therefore, four times the number of elements. 

To compare two simulations (e.g., the two DG simulations at different resolutions 

or the DG and CG simulations with the same resolution), only the nodes that were wet in 

both simulations were used to compare elevations and velocities. For example, if the node 

at the peak of the divide between the ocean and the back bay is wet in one simulation and 

dry in the other simulation, the node is ignored in error computations. Each simulation has 

one value of velocity error, , and one value of elevation error, , 

associated with it. The elevation error between the original DG simulation and the DG 

simulation on the split-by-four grid was less than 0.01 m.

The elevation and velocity  values for the CG simulations are plotted in 
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Figure 2.15 and Figure 2.16, respectively. Note the error metric is  and the  

value is referred to as simply  in the plot label. The constant  results show a steep 

decrease in error as  is increased up to the breakpoint value of 0.04 , where subse-

quent increases in  do not result in substantial decreases in error (which coincides with 

the  value necessary to achieve the largest maximum stable time step, as noted in Section 

2.3.3). The minimum error values for the constant  simulations occur when  is 5.0 , 

although the values for   are near the minimum. The minimum elevation and 

velocity error values for the constant  simulations are approximately 0.02 m and 0.09 

, respectively. 

Using the base Atkinson formula, the error values are approximately 0.3 m and 0.3 

, respectively. These values are comparable to the values achieved using a constant  

value of 0.04 . Simulations using the Westerink variable  formula were performed 

with  values of 1, 3, 10, 30, 100, 300 and 1000. In this case, the breakpoint where 
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Figure 2.15 Elevation error, RMSExt(ζ), for the back bay domain for CG simulations compared to 
the DG simulation. The error value for the base Atkinson G formula is shown with a 
solid line. The x-axis denotes the constant G value or the value of AJJW used in the 
Westerink variable G formula for each run.
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subsequent increases to  (in this case through increases to the coefficient multiplier on 

the velocity part of the equation) do not dramatically decrease elevation and velocity errors 

occurs at a slightly higher value, , than where the maximum stable time step 

plateaus. The minimum error values occur with the highest  value used for this set of 

simulations and are in the same range as the minimum error values for the best constant  

simulations. It is important to note that the  values based on the Westerink formula are 

capped (i.e., the maximum values approach 1.0 ). Based on the error reducing as  

is increased, it does not appear that variability of , in space and time, is important for 

minimizing error. This may be a consequence of using the DG simulation result as the true 

solution.

2.3.5  Extent of Wetting and Drying

In computing error values for elevations and velocities between the CG and DG 

ADCIRC simulations, nodes where the wet/dry status was not consistent between the two 
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Figure 2.16 Velocity error, RMSExt(u), for the back bay domain for CG simulations compared to the 
DG simulation. The error value for the base Atkinson G formula is shown with a solid 
line. The x-axis denotes the constant G value or the value of AJJW used in the Westerink 
variable G formula for each run.
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simulations were ignored. In order to account for these nodes, the number of instances of 

wet/dry inconsistencies were counted and are presented in Table 2.1, Table 2.2 and 

Table 2.3. The three tables contain the results for the constant  simulations, the base 

Atkinson simulation, and the simulations using the Westerink variable  formula, respec-

tively.   

The results for the comparisons of constant G runs to the DG results are similar to 

the results for the variable  runs using the Westerink formula. This is not particularly 

surprising based on previous metrics. For both sets, the vast majority of the inconsistencies 

occur for cases when a node is wet in the CG simulation and dry in the DG simulation. The 

minimum number is near 700 and the average, calculated by dividing the total by the 

number of records analyzed, is about 4 nodes per record. The values used for specifying  

that produced minimum error values also produce the fewest numbers of discrepancies. 

While this is not necessarily surprising, as the extent of the wetting is highly dependent on 

the elevation field, it does suggest that the solution in the areas near the wetting extent are 

similar, whereas the elevation error calculation is a measure of the solution over the entire 

domain. 

For extremely high constant  values, the less frequent inconsistency (with a node 

wet in the DG solution and dry in the CG simulation) occurs more often. There is only one 

DG simulation result, so the shift from higher to lower values in column two of Table 2.1

results from a sequential reduction in the extent of the wet area in the CG simulations as  

is increased. This reduction in wet area in the CG simulation results in times when the DG 

simulation is wet in areas that are dry in the CG simulation and, thus, non-zero values in 

the third column of the table.
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The base Atkinson formula for  results in the highest ratio, 0.57, of “DG Wet, CG 

Dry” to “DG Dry, CG Wet” of any of the simulations. While the total number of inconsis-

tencies between wetting and drying is slightly higher for this case than the minimum values 

using either constant  or the alternate variable  simulation, the bias towards too much 

Table 2.1  Comparison of the wetting and drying in constant G CG simulations and the DG simulation.

Constant G Value, DG Dry, CG Weta

a. This column contains the number of instances in the elevation output files where a DG node 
is dry and the same node is wet in the CG simulation.

DG Wet, CG Dryb

b. This column contains the number of instances in the elevation output files where a DG node 
is wet and the same node is dry in the CG simulation.

Totalc

c. This column is the sum of the previous two columns; it contains the total number of 
instances of inconsistent wet/dry values between the CG and DG simulations.

0.005 4715 0 4715

0.01 4713 0 4713

0.02 4711 0 4711

0.03 4689 0 4689

0.04 1295 0 1295

0.05 790 0 790

0.1 720 0 720

0.3 683 0 683

0.5 685 0 685

1.0 683 1 684

5.0 676 1 677

10.0 671 0 671

25.0 603 25 628

100.0 538 141 679

s 1–

Table 2.2  Comparison of the wetting and drying in the base Atkinson CG simulation 
and the DG simulation. The columns are consistent with those in Table 2.1.

DG Dry, CG Wet DG Wet, CG Dry Total

480 274 754

G

G G
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wet extent is less than for the other  specifications, which suggests better general mass 

balance.   

2.3.6  Nodal Errors and G Values

The nodal elevation and velocity errors were computed for each node in the domain 

using the RMSE in time, , as per (2.22). As before, only instances where the node 

was wet in both the CG and DG ADCIRC simulations were used in the RMSE computa-

tions. Additionally, the arithmetic average (in time) of the  values was computed for each 

node in the domain. Again, values were only used when the node was wet in both simula-

tions. The nodal  values for the constant  simulation with   are 

shown in Figure 2.17. The line in the left panel shows the  is approximately 0.3 

m in the back bay and an order of magnitude less, 0.03 m, oceanward of the dividing 

feature. Combined with prior knowledge about the wet extent of the simulations, this 

suggests too much water is moving into the back bay for the constant  simulations. The 

elevations, and thus the wet extent, are high compared to the DG simulation. 

The results for a constant G simulation with a G value of 1.0  are shown in 

Table 2.3  Comparison of the wetting and drying in CG simulations with the Westerink variable G 
formula and the DG simulation. The columns are consistent with those in Table 2.1.

Coefficient Value, DG Dry, CG Wet DG Wet, CG Dry Total

1 4705 0 4705

3 4682 0 4682

10 728 0 728

30 691 0 691

100 683 0 683

300 683 0 683

1000 682 0 682

AJJW

G

RMSEt

G

RMSEt G G 0.04= s 1–

RMSEt ζ( )

G
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Figure 2.18 to illustrate the impact of increasing . Noting that the scales differ between 

the plots in Figure 2.17 and Figure 2.18, the large decrease in the  in the back 

bay portion of the domain is obvious. The maximum nodal value for  is on the 

order of 0.02 m with constant  . The  is dramatically reduced as 

well, from a peak of about 0.25  for the simulation using   to less than 

0.1  for all nodes in the domain for the simulation using  . 

Using the base Atkinson formula produces the results shown in Figure 2.19. Similar 

to the results for the constant  run using 0.04 , the majority of the elevation error is in 
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Figure 2.17 Nodal elevation and velocity RMSE in time, RMSEt, for the back bay domain for a 

constant G simulation using a value of 0.04 s-1. The nodal temporal arithmetic average 
G value, 0.04 s-1 for this simulation, is also shown. The vertical line in each plot shows 
the maximum extent of inundation during the simulation.
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Figure 2.18 Nodal elevation and velocity RMSE in time, RMSEt, for the back bay domain for a 

constant G simulation using a value of 1.0 s-1. The vertical line in each plot shows the 
maximum extent of inundation during the simulation.
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the back bay portion of the domain. Consistent with many of the simulations, the highest 

 occur just before and over the dividing feature. Use of the base Atkinson vari-

able  formula results in the highest  values occurring just to the right of the peak in the 

divide. In fact, the only mean nodal  values that are greater than 0.04  (the lowest 

constant  value that produces reasonable results) occur at nodes 31-34. The average  

values for nodes 32-34 are all about 0.075 . Consistent with results for other domains, 

similar quality results are obtained using a much lower average  value by selectively 

increasing  at certain instances of space and time. 

The first reasonable results using the Westerink variable formula to calculate  

occur with an  value of 10. The range of average  values for this simulation was 

0.023-0.074 . The  and average  value plots for the simulation with 
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Figure 2.19 Nodal elevation and velocity RMSEt values for the back bay domain for the variable G 
simulation using the base Atkinson formula, as well as the mean G value for each node. 
The vertical line depicts the maximum extent of inundation.
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 are shown in Figure 2.20. While the maximum average  value for this simu-

lation is similar to the maximum value for the base Atkinson variable  simulation, the 

location of the maximum is different. The values greater than 0.07  occur just ocean-

ward of the divide, at nodes 29-31, with a drop to just over 0.05  at node 32 and a 

decrease to less than 0.04  at node 33. Oceanward of the divide, the average  values 

are greater than 0.04  at and to the right of node 16. Results show the maximum 

 on the bay side and over the transition, with increases in the coefficient  

decreasing the magnitude of errors. 

The results for an  value of 100 are shown in Figure 2.21. Increasing the coef-

ficient multiplier in the Westerink formula for  results in decreased  values, 

although the minimum  levels achieved with constant  simulations are not 
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Figure 2.20 Nodal elevation and velocity RMSEt values for the back bay domain for the simulation 
using the Westerink variable G formula with AJJW = 10.0, as well as the mean G value 
for each node. The vertical line depicts the maximum extent of inundation.
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reached using the Westerink variable  formula. Because there is an upper limit on  

using the Westerink variable  formula, the largest  values approach, but cannot exceed, 

1.0 . Thus, the average  values at the divide, for simulations with sequentially larger 

coefficient multiplier values, approach  . The maximum average  value exceeds 

0.98  with an  value of 1000, while it approaches 0.46  with an  value of 

100. The influence on the minimum values is even more dramatic. The minimum average 

 value is about 0.04  with an  value of 100; however, increasing  by a 

factor of 10 increases the minimum average  value above 0.20 . Subsequent increases 

to , above 1000, would simply result in the simulation nearing the simulation using a 

constant  value of 1.0 . 
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Figure 2.21 Nodal elevation and velocity RMSEt values for the back bay domain for the simulation 
using the Westerink variable G formula with AJJW = 100.0, as well as the mean G value 
for each node. The vertical line depicts the maximum extent of inundation.
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2.4   Fourier Analysis

Fourier analysis is used to analyze the stability and propagation characteristics of a 

numerical algorithm [Tannehill 1997]. The ratio of the solution for elevations and velocities 

at the future time level to the current time level is referred to as the propagation factor. For 

the linear shallow water equations, the propagation factor, , should be one for all wave-

lengths (assuming frictionless and inviscid). The magnitude of  should be one and there 

should not be any change in phase. This study utilizes the analytical Fourier relationship 

derivation work of Szpilka [2005].

2.4.1  Staggered Finite Difference

The staggered finite difference approximation to the shallow water equations allows 

for a more simple introduction to Fourier analysis than the ADCIRC model we will 

examine subsequently. Using weighted Euler time stepping and assuming constant bathym-

etry, Szpilka [2005] finds the discrete propagation factors, , for this approximation to be 

the complex conjugates given by (2.24). 

, where (2.24)

 and (2.25)

(2.26)

Forward Euler, Crank-Nicolson and Backward Euler correspond to  values of 0.0, 0.5 and 

1.0, respectively.

By selecting a parameter set, the amplification factor, , and phase change per 

time step, , can be calculated for different wave number values using (2.27) and (2.28), 
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respectively.

(2.27)

(2.28)

Using a depth of 10.0 m, gravitational constant of 9.81 ,  of 50.0 m and  of 1.0 

s, the amplification factor and phase have been computed; the results are plotted, against 

dimensionless wave number, in Figure 2.22 using the three different time-weighting values 

(Forward Euler, Crank-Nicolson, and Backward Euler). The dimensionless wave number 

is given by (2.29), where  is the number of elements used to represent the wave. 

(2.29)

The minimum resolvable wave has a length of  and corresponds to the Nyquist 

frequency. This wave has the largest dimensionless wave number, .

The phase values are similar for each of the time discretization methods. Addition-

ally, the amplification factor is similar for dimensionless wave numbers less than . 

However, for the large wave numbers (associated with the shortest wave lengths), the 

amplification factor is highly dependent on the time-weighting. 
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Figure 2.22 Amplification and phase plots for the staggered finite-difference approximation to the 
shallow water equations for different values of θ and σ∆x, the dimensionless wave 
number.
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The forward Euler, which is fully explicit, has amplification factors greater than 

unity for high wave numbers (which correspond to the shortest wave lengths) and this 

parameter set. Thus, simulations will be unstable as the water surface elevation distur-

bances grow progressively with time unless enough artificial or physical damping is intro-

duced. Conversely, the fully implicit backward Euler method artificially damps 

propagation of waves of the highest numbers. The Crank-Nicolson method produces prop-

agation factors just under unity (approximately 0.99995) for the range of wave numbers 

presented. The propagation factors for the staggered finite difference approximation to the 

shallow water equations are complex conjugates. Thus, the amplification factors for the 

two propagation factors are the same. The difference between the two is in the phase plots; 

for a given wave number, the amplification factors are the same but the phase errors have 

opposite signs. Changing the parameters used causes changes to the propagation factor. 

However, the general trends present in Figure 2.22 persist.

2.4.2  ADCIRC

Szpilka [2005] does not provide explicit equations for the propagation factors for 

ADCIRC. However, the system of equations and the cubic polynomial resulting from 

setting the determinant of the matrix equal to zero are given. Solving the cubic polynomial 

yields three roots, which are the propagation factors for the ADCIRC model approximation 

to the shallow water equations. As in the case for the staggered finite difference approxi-

mation, two of the roots are complex conjugates and are the physical modes for propaga-

tion. The third root is a computational mode resulting from the three time-level 

discretization of the GWCE in ADCIRC that, in turn, is due to the time derivative of the 

continuity equation that is taken during the model formulation.
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Using the same parameters as for the staggered finite difference case presented 

above, the propagation and phase for  values of 1.0 E-04, 1.0 E-03, 1.0 E-02 and 1.0 E-

01  are shown in Figure 2.23. Note that the scales in the left panels vary while the scales 

in the right panels are consistent. The propagation factors with the lowest  value shown 

are almost equivalent to the ones for the staggered finite difference with Crank-Nicolson 

time discretization. The phase values are similar as well, although the maximum value is 

higher than is found with the staggered finite difference. Thus, the imaginary component is 

greater for ADCIRC, with this  value, than for the equivalent staggered finite difference. 

There are notable trends as  increases. First, the amplification factor for the phys-

ical modes at high wave numbers decreases, resulting in increased damping over time; with 

a  value of 0.1 , the amplification factors are similar to the values for the staggered 

finite difference using backward Euler time stepping. Additionally, the amplification 

factors for all wave numbers for the computational mode decrease as  increases until they 

reach minimums near zero with  . This may be due to the GWCE trending 

towards the primitive continuity equation as  increases. The primitive continuity equa-

tion does not have a third (computational) mode. Thus, it seems reasonable that the compu-

tational mode associated with the GWCE will become less prevalent for higher  values.

The graphs in the bottom row in Figure 2.23 show another facet of increasing . 

The plots, for a  value of 0.1 , look similar to the plots for lower  values for dimen-

sionless wave numbers greater than . Specifically, for the physical modes, the ampli-

fication factors for the high wave numbers increase towards unity while the amplification 

factor for the computational mode decreases with decreasing wave number, that is, as you 

move from the right edge of the plot to the left. However, starting with a dimensionless 

G

s 1–
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G

G s 1–

G

G 2.0= s 1–

G

G

G

G s 1– G

π 10⁄
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wave number of  the second and third modes switch places. For high wave numbers, 

as well as in the plots with lower  values, the first and second roots produced the complex 

conjugate physical modes and the third root was the non-physical, computational mode. 
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Figure 2.23 Amplification and phase plots for ADCIRC for four different G values.
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Increasing  results in an increase in wave number where this switch between modes takes 

place. For instance, the switch occurs between dimensionless wave numbers  and 

 with  .

2.4.3  Comparison to Dispersion Analysis for Bahamas

Kolar et al. [1994] show results for a 1-D dispersion analysis using  m, 

  and  m. These parameters are consistent with values for the 

Bahamas domain used previously. For large values of  (> 0.05 ), the dispersion curve 

folds, giving two wave numbers for the same frequency. The result of a folding dispersion 

curve is the generation of spurious, short-wavelength noise in the solution.

The Fourier analysis for the 1-D ADCIRC equations, using the same parameter set 

with a  s, results in amplification factors (for all three modes) near unity and 

phase error values near zero for all wave numbers with  . As  is increased, 

the amplification factor for the computational mode tends towards zero.

Increasing  to 100 s, while holding the other parameters constant, results in a 

mode shift for high wave numbers, even when low values of  are used. The switch occurs 

for dimensionless wave numbers greater than  when  . Additionally, 

at the lowest wave numbers, the physical modes do not have the exact same amplification 

factors.

2.5   Conclusions

The analyses presented in this chapter demonstrate that application of variable  

schemes can improve behavior of ADCIRC on certain applications. Careful selection of  

can result in realistic elevation and velocity fields that produce smaller mass balance resid-

G

2π( ) 3⁄

π G 1.0= s 1–

h 2=

τ 0.01= s 1– ∆x 2700=

G s 1–

∆t 1.0=

G 0.001= s 1– G
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π 2⁄ G 0.0001= s 1–
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uals than those that result from an arbitrary selection of . Additionally, use of variable  

schemes allows  to be increased at certain combinations of space and time where a larger 

 value is necessary to help maintain stability and mass balance, while still allowing a rela-

tively low value to be used throughout the domain to avoid spurious oscillations resulting 

from high  values. 

However, while the base Atkinson formula for  may give near optimal dispersion 

results for the linear equations, it is not optimal for the highly non-linear conditions present 

under hurricane storm surge and wetting and drying applications. The Westerink variable 

 formula, which is similar in form and function to the Atkinson formula, produces decent 

results for the back bay wetting and drying problem. 

The use of the Westerink variable  formula points to a difficulty in modeling with 

the GWCE. Traditional analysis techniques, like dispersion and Fourier analysis, are solely 

applicable to the linear equations. However, there is a need to apply ADCIRC to non-linear 

problems. Therefore, it is desirable to utilize techniques that allow for analysis of non-

linear equations. The next two chapters focus on such an effort through the application of 

the forward sensitivity method to the 1-D ADCIRC model.

G G

G

G

G

G

G

G
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 CHAPTER 3.  Application of the Forward Sensitivity Method to 

Linear 1-D ADCIRC with Constant G

3.1   Introduction

The specification of the numerical parameter  in ADCIRC has primarily been 

guided by linear analyses and experience. Over time, the complexity of specification 

schemes has evolved as applications have become more complex. Kolar et al. [1994] 

details assessment of different constant  simulations. Currently, variable  implementa-

tions are routinely used [Westerink 2008]. However, other than traditional linear analysis 

techniques, which provide limited guidance for the highly non-linear problems that typi-

cally require more sophisticated  schemes, assessment of the results generated from a 

particular simulation has been the main tool for evaluation.

Recently, Lakshmivarahan and Lewis [2010] outlined a methodology for deter-

mining corrections to control parameters. The forward sensitivity method (FSM) combines 

sensitivity function analysis with the solution of an inverse problem. The evolution of the 

sensitivity of the solution to the control parameters is computed. Then, the inverse problem 

is solved using a least-squares approach. Control parameters include initial and boundary 

conditions as well as physical, empirical and numerical parameters. In this chapter, the 

FSM is applied to the numerical parameter, , in the generalized wave continuity equation 

(GWCE).

The analysis in this chapter is limited to the linearized 1-D shallow water equation 

G

G G

G

G
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system consisting of the GWCE and the non-conservative momentum equation (NCM). 

However, the FSM is applicable to non-linear systems, as will be considered in Chapter 4. 

The linear case was selected as the starting point for purposes of simplicity. Additionally, 

this chapter is limited to constant  analyses, where  is constant in both space and time. 

Both semi-implicit (referred to herein as simply “implicit”) and explicit time-marching 

schemes are analyzed. 

To begin, the governing equations and discretizations are presented in Section 3.2. 

Then, the sensitivity equations and sensitivity results for two applications are presented in 

Section 3.3. Subsequently, in Section 3.4, the FSM sensitivities to  are compared to a 

numerical analog for the sensitivities where the difference in the results for two simula-

tions, with slightly different  values, are used to compute the sensitivity. Next (Section 

3.5), the corrections to , using the solution to the inverse problem, are assessed. Sequen-

tial optimization for corrections to  (Section 3.6) and a comparison of FSM to dispersion 

analysis (Section 3.7) complete the analysis for the chapter. Finally, conclusions are made 

based on the 1-D constant  analyses. Additionally, details of the discrete time formulation 

of the FSM are included in Appendix B.

3.2   1-D Discretizations

3.2.1  Governing Equations

The 1-D linear inviscid generalized wave continuity and momentum equations are 

given by (3.1) and (3.2), respectively, where the subscripts refer to space or time deriva-

tives, e.g., .

G G

G

G

G

G

G

ζtt ∂2ζ( ) ∂t2( )⁄=
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(3.1)

(3.2)

3.2.2  Continuous Galerkin Finite Element Discretization

Application of the continuous Galerkin finite element method using constant grid 

spacing results in the following equations for the GWCE, (3.3), and momentum equations, 

(3.4):

(3.3)

(3.4)

where , , , 

 and .

3.2.3  Finite Difference Time Discretization

Application of a three-level scheme centered at  for the GWCE and a two-level 

scheme centered at  for the momentum equation results in the following set of 

equations, (3.5) and (3.6).

(3.5)

ζtt Gζt G τ–( )hux ghζxx–+ + 0=

ut τu gζx+ + 0=

Mi j,
∂2ζj

∂t2
---------- GMi j,

∂ζj
∂t
------- G τ–( )hjBi j, uj– ghSi j, ζj+ + 0=

Mi j,
L ∂uj

∂t
------- τMi j,

L uj gBi j,
T ζj+ + 0=

Mi j, ∆x 1 3⁄ 1 6⁄
1 6⁄ 1 3⁄

= Mi j,
L ∆x 1 2⁄ 0

0 1 2⁄
= Bi j,

1 2⁄– 1 2⁄–
1 2⁄ 1 2⁄

=

Bi j,
T 1 2⁄– 1 2⁄

1 2⁄– 1 2⁄
= Si j,

1
∆x
------ 1 1–

1– 1
=

k

k 1 2⁄+

1
∆t2
--------Mi j, ζj

k 1+ 2ζj
k– ζj

k 1–+( ) G
2∆t
---------Mi j, ζj

k 1+ ζj
k 1––( ) G τ–( )hjBi j, uj

k–+ +
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(3.6)

The  are the time-weight parameters subject to .

3.2.4  Semi-Implicit Scheme

Using the unlumped mass matrices, for both the GWCE and momentum equations, 

and equal values ( ) for the time-weighting coefficients in the GWCE results in a 

semi-implicit scheme. With lumping, the Crank-Nicolson time discretization of the 

momentum equation can be solved directly using the new elevations calculated from the 

current time step. The system can be written symbolically as shown in (3.7), where A, B, 

and C are coefficient matrices for the future, current, and past time levels, respectively; the 

c vectors contain the nodal water surface elevation and velocity values; and  is the 

specified boundary forcing.

(3.7)

Discretizing the domain with  nodes results in the following coefficient 

matrix and unknown vector components, with the appropriate modifications made to 

account for a specified (i.e., Dirichlet) elevation on the first node and a specified velocity 

on the last node:

1
∆t
-----M

i j,

L
uj

k 1+ uj
k–( ) τ

2
---Mi j,

L uj
k 1+ uj

k+( ) g
2
---Bi j,

T ζj
k 1+ ζj

k+( )+ + 0=

αi's α1 α2 α3+ + 1.0=

αi 1 3⁄=

fbc
k 1+

A G( )ck 1+ B G( )ck C G( )ck 1– fbc
k 1++ +=

n 5=
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(3.8)

(3.9)

(3.10)

(3.11)

(3.12)

where , , , 

A G( )

1 0 0 0 0 0 0 0 0 0
E1 F2 E2 0 0 0 0 0 0 0

0 E2 F3 E3 0 0 0 0 0 0

0 0 E3 F4 E4 0 0 0 0 0

0 0 0 E4 F4∗ 0 0 0 0 0

r– r 0 0 0 q 0 0 0 0
r– 0 r 0 0 0 2q 0 0 0

0 r– 0 r 0 0 0 2q 0 0
0 0 r– 0 r 0 0 0 2q 0
0 0 0 0 0 0 0 0 0 1

=

B G( )

0 0 0 0 0 0 0 0 0 0
I1 J2 I2 0 0 dh1 0 dh3– 0 0

0 I2 J3 I3 0 0 dh2 0 dh4– 0

0 0 I3 J4 I4 0 0 dh3 0 dh5–

0 0 0 I4 J4∗ 0 0 0 dh4 dh5
r r– 0 0 0 s 0 0 0 0
r 0 r– 0 0 0 2s 0 0 0
0 r 0 r– 0 0 0 2s 0 0
0 0 r 0 r– 0 0 0 2s 0
0 0 0 0 0 0 0 0 0 0

=

C G( )

0 0 0 0 0 0 0 0 0 0
K1 L2 K2 0 0 0 0 0 0 0

0 K2 L3 K3 0 0 0 0 0 0

0 0 K3 L4 K4 0 0 0 0 0

0 0 0 K4 L4∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

=

ck
ζ1

k ζ2
k ζ3

k ζ4
k ζn

k u1
k u2

k u3
k u4

k un
k

T
=

fbc
k 1+

ζ1 bc,
k 1+ 0 0 0 0 0 0 0 0 un bc,

k 1+
T

=

Ei a b ehei
–+= Fi 4 a b+( ) e hei 1–

hei
+( )+= Fi∗ 2 a b+( ) ehei

+=
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, , , , 

, , , , 

, , ,  and .

3.2.5  Explicit Scheme

By using the lumped mass matrix for the first two terms in the GWCE, (3.5), and 

setting  and , the GWCE system becomes explicit. Additionally, 

the elevation term in the momentum equation, (3.6), was treated explicitly so the only terms 

on the left-hand side of the system are on the diagonal. The system is of the same form as 

the semi-explicit scheme outlined above, with slightly different coefficient matrices ( , 

, and ), as shown below.

(3.13)

Ii 2a ehei
+= Ji 8a e hei 1–

hei
+( )–= Ji∗ 4a ehei

–= Ki a b–( )– ehei
+=

Li 4 a b–( )– e hei 1–
hei

+( )–= Li∗ 2 a b–( )– ehei
–= a ∆x

6∆t2
-----------= b G∆x

12∆t
------------=

d G τ–
2

------------= e g
3∆x
----------= q ∆x

2
------ 1 τ∆t

2
--------+ 

 = r g∆t
4

---------= s ∆x
2

------ 1 τ∆t
2

--------– 
 =

α1 0= α2 α3 1 2⁄= =

A∗

B∗ C∗

A∗ G( )

1 0 0 0 0 0 0 0 0 0
0 2 a' b'+( ) 0 0 0 0 0 0 0 0
0 0 2 a' b'+( ) 0 0 0 0 0 0 0
0 0 0 2 a' b'+( ) 0 0 0 0 0 0
0 0 0 0 a' b'+ 0 0 0 0 0
0 0 0 0 0 q 0 0 0 0
0 0 0 0 0 0 2q 0 0 0
0 0 0 0 0 0 0 2q 0 0
0 0 0 0 0 0 0 0 2q 0
0 0 0 0 0 0 0 0 0 1

=

53



(3.14)

(3.15)

where , , 

, , , , 

, , ,  and .

B∗ G( )

e'he1
N2 e'he2

0 0 dh1 0 dh3– 0 0

0 2a' e'he2
+ N3 e'he3

0 0 dh2 0 dh4– 0

0 0 e'he3
N4 e'he4

0 0 dh3 0 dh5–

0 0 0 e'he4
N4∗ 0 0 0 dh4 dh5

r'– r' 0 0 0 s 0 0 0 0
r'– 0 r' 0 0 0 2s 0 0 0

=

C∗ G( )

e'he1
O2 e'he2

0 0 0 0 0 0 0

0 e'he2
O3 e'he3

0 0 0 0 0 0

0 0 e'he3
O4 e'he4

0 0 0 0 0

0 0 0 e'he4
O4∗ 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

=

Ni 2a′ e′ hei 1–
hei

+( )–= Ni∗ 2a′ e′hei
–=

Oi 2 a′ b′–( )– e′ hei 1–
hei

+( )–= Oi∗ a′ b′–( )– e′hei
–= a' ∆x

2∆t2
-----------= b' G∆x

4∆t
-----------=

d G τ–
2

------------= e' g
2∆x
----------= q ∆x

2
------ 1 τ∆t

2
--------+ 

 = r' g∆t
2

---------–= s ∆x
2

------ 1 τ∆t
2

--------– 
 =
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3.3   Sensitivity to G

Given the system described above, the sensitivity to  can be found by taking the 

derivative with respect to , as shown in (3.16).

(3.16)

By applying the product rule and noting that the boundary forcing is independent of , the 

sensitivity is described by (3.17).

(3.17)

Defining the sensitivity to  at a given time, , allows the system to be 

simplified and rearranged for solution of the new, unknown sensitivity vector based on the 

previous sensitivities and computed elevation and velocity fields according to (3.18).

(3.18)

The three time-level scheme requires sets of initial values at times  and . Results 

herein have cold start initial conditions, where the initial elevation and velocity fields are 

zero throughout the domain. The initial conditions do not depend on ; therefore, the 

initial conditions for the sensitivity are . 

G

G

∂
∂G
------- A G( )ck 1+[ ] ∂

∂G
------- B G( )ck C G( )ck 1– fbc

k 1++ +[ ]=

G

∂A G( )
∂G

-----------------ck 1+ A G( )∂ck 1+

∂G
---------------+ ∂B G( )

∂G
----------------ck B G( )∂ck

∂G
-------- ∂C G( )

∂G
-----------------ck 1– C G( )∂ck 1–

∂G
--------------+ + +=

G wk ∂ck ∂G( )⁄=

A G( )wk 1+ ∂A G( )
∂G

-----------------ck 1+– ∂B G( )
∂G

----------------ck ∂C G( )
∂G

-----------------ck 1– B G( )wk C G( )wk 1–+ + + +=

k k 1–

G

w 1– w0
0 0 0 0 0 0 0 0 0 0

T
= =
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3.3.1  Sensitivity of Implicit Scheme

The derivatives with respect to  of the matrices are necessary to compute the 

evolution of the sensitivity to  in time (cf. (3.18)). The derivatives of the matrices for the 

implicit scheme are as follows:

(3.19)

(3.20)

G

G

∂A G( )
∂G

----------------- ∂C G( )
∂G

-----------------

0 0 0 0 0 0 0 0 0 0
∆x

12∆t
------------ ∆x

3∆t
--------- ∆x

12∆t
------------ 0 0 0 0 0 0 0

0 ∆x
12∆t
------------ ∆x

3∆t
--------- ∆x

12∆t
------------ 0 0 0 0 0 0

0 0 ∆x
12∆t
------------ ∆x

3∆t
--------- ∆x

12∆t
------------ 0 0 0 0 0

0 0 0 ∆x
12∆t
------------ ∆x

6∆t
--------- 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

= =

∂B G( )
∂G

----------------

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
h1
2

------ 0
h3
2

------– 0 0

0 0 0 0 0 0
h2
2

------ 0
h4
2

------– 0

0 0 0 0 0 0 0
h3
2

------ 0
h5
2

------–

0 0 0 0 0 0 0 0
h4
2

------
h5
2

------

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

=
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3.3.2  Sensitivity of Explicit Scheme

The derivatives of the matrices, with respect to , for the explicit scheme are 

shown below:

(3.21)

(3.22)

3.3.3  Sensitivity Results for Tidal Problem on the Linear Sloping 
Domain

The parameters for the first test case are outlined in Table 3.1, and the bathymetry 

and node locations for the linear sloping domain are shown in Figure 3.1. Simulations were 

run for 10.0 days with results (elevations, velocities and sensitivities) recorded every 5.0 

G

∂A∗ G( )
∂G

-------------------- ∂C∗ G( )
∂G

--------------------

0 0 0 0 0 0 0 0 0 0

0 ∆x
2∆t
--------- 0 0 0 0 0 0 0 0

0 0 ∆x
2∆t
--------- 0 0 0 0 0 0 0

0 0 0 ∆x
2∆t
--------- 0 0 0 0 0 0

0 0 0 0 ∆x
4∆t
--------- 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

= =

∂B∗ G( )
∂G

--------------------

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0
h1
2

------ 0
h3
2

------– 0 0

0 0 0 0 0 0
h2
2

------ 0
h4
2

------– 0

0 0 0 0 0 0 0
h3
2

------ 0
h5
2

------–

0 0 0 0 0 0 0 0
h4
2

------
h5
2

------

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

=
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minutes (60 time steps). The ramp function for the open boundary elevation is a hyperbolic 

tangent function. At the end of the ramp, its value is 0.964. Thus, there is a small disruption 

in the results at the end of the ramp because of the small jump in the forcing due to the ramp 

specification. This artificial disturbance quickly dissipates. A larger coefficient can be used 

in the hyperbolic tangent function, but that increases the rate of change of the forcing at 

early times, which increases potential for instability at the outset of the simulation. 

For both the implicit and explicit schemes, elevation sensitivity results for the 11th 

node in the domain over the last two days of the simulations with   are 

shown in Figure 3.2. The units for elevation and velocity sensitivities to constant  are ms 

(meter-seconds) and m, respectively. The results at the 11th node are consistent with the 

results for the other nodes in the domain, with the exception of the open boundary node, 

Table 3.1  Parameters for linear 
sloping bottom test case.

Parameter Value

Bathymetry 
value at open 
boundary

20.0 m

Bottom slope 1.25E-04 

Domain 
length

40.0 km

2.0 km

0.001 

Forcing 
amplitude

1.0 m

Forcing 
period

44714.8 s

Time step 5.0 s

Ramp 
duration

1.0 days
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Figure 3.1 Bathymetry and node locations for the linear 
sloping domain.
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which is inherently insensitive to  because the specified elevation at the boundary is inde-

pendent of the numerical parameter and simulation results. 

Plots like Figure 3.2 are prevalent in this chapter so detailed discussion is 

warranted. This plot shows the temporal evolution of the FSM elevation sensitivity to  

for the 11th node in the domain. There are two lines; the black line shows the evolution of 

the sensitivity during the simulation using the implicit scheme, and the gray line shows the 

evolution of the sensitivity during the simulation using the explicit scheme. The gray line 

has a larger thickness so results are not obscured when the sensitivities are equivalent. Nine 

days into the simulation with  , the elevation sensitivity to  is at a 

maximum near 0.53 ms. This means that if there is a small increase to , the results from 

the new simulation will have a higher elevation value at node 11 than the results with 

 .

In contrast to the sensitivity results for the simulations with  , the 

results for simulations with   show wide variations for elevation sensitivities 
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Figure 3.2 Elevation sensitivity results for the last two days of the simulation with G = 0.001 s-1 for 
the 11th node in the linear sloping domain. The results for the implicit scheme are shown 
in black, while the explicit results are shown in gray.
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for different locations in the domain. For the majority of the domain, the peak magnitude 

of the elevation sensitivity to  is about 0.006-0.008 ms. This is depicted in Figure 3.3, a 

graph of the elevation sensitivities for the last two days of the run at the 11th node in the 

domain. However, nodes 2-7 show a large variation in sensitivity from one node to the next. 

The variation is especially apparent for the 3rd and 5th nodes in the domain, which 

have sensitivities that are out-of-phase with the sensitivities in the rest of the domain. Out-

of-phase means that the sensitivity for a node is negative at a time when it is positive for 

other nodes and vice versa. Additionally, the peak amplitude of the sensitivity is variable; 

the maximum sensitivity for node 2 is approximately 0.018 ms while the maximum sensi-

tivity at node 5 is only about 0.0014 ms, as seen in Figure 3.4 and Figure 3.5, respectively. 

The general trends in the sensitivities continue for the case where  . For these 

simulations, the magnitude of the elevation sensitivity is about 0.001 ms, which is about 50 

times less than with a  value an order of magnitude lower. Additionally, while the ampli-

tude is similar for all nodes, the sign of the sensitivity at a given time alternates from node 
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Figure 3.3 Elevation sensitivity results for the last two days of the simulation with G = 0.01 s-1 for 
the 11th node in the linear sloping domain. The results for the implicit scheme are 
shown in black, while the explicit results are shown in gray.
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to node throughout the entire domain when  , rather than just near the open 

boundary with  . 

The impact of  on sensitivities at a given node can be shown by graphing the 

sensitivities from multiple simulations on the same plot. The elevation sensitivity results at 

node 2 for five simulations with different  values are shown in Figure 3.6. The second-
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Figure 3.4 Elevation sensitivity results for the last two days of the simulation with G = 0.01 s-1 for 
the 2nd node in the linear sloping domain. The results for the implicit scheme are 
shown in black, while the explicit results are shown in gray.
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Figure 3.5 Elevation sensitivity results for the last two days of the simulation with G = 0.01 s-1 for 
the 5th node in the linear sloping domain. The results for the implicit scheme are 
shown in black, while the explicit results are shown in gray.
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lightest color shows the results for the simulation with  . The black line in 

Figure 3.4 shows the same values as the second-lightest color in Figure 3.6. The maximum 

sensitivity values near 0.018 ms occur at approximately 8.4, 8.9, 9.4 and 9.9 days into the 

simulation. The log scale was necessary for the sensitivities because the maximum sensi-

tivities vary over orders of magnitude for different values of . Generally, the gaps in 

Figure 3.6 correspond to times when the sensitivity is negative, which is problematic with 

a log scale. The log scale was used for the sensitivities because the maximum sensitivities 

vary over orders of magnitude for different values of . 

The impact of  on elevation sensitivities at nodes 2-7 is shown in Figure 3.7. 

Increasing  from 0.00001 to 0.001  results in the sensitivity decreasing in magnitude, 

but also shifting to the left. Thus, the peak elevation sensitivity to a change in  occurs 

earlier in time for a higher  value. These trends continue as  is increased further, 

although the shift becomes less pronounced between consecutive values. 

The change of signs at high  values can be seen by comparing the plot for node 2 
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Figure 3.6 Elevation sensitivity to G at node 2 for implicit simulations on the linear sloping domain. 
The darkness of the lines decreases for increasing G for the following set of constant G 
values: {0.00001, 0.0001, 0.001, 0.01, 0.1} s-1.
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to the one for node 3. The results are similar for the three lowest  values. In the plot for 

node 2, the sensitivities for the two highest G values plot almost directly beneath the values 

for  . However, the positive sensitivities for the two highest  values at 

node 3 appear in the void for   (when the sensitivities to   are 

negative). The plots for nodes 4 and 6 are similar to the plot for node 2, while the plot for 
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Figure 3.7 Elevation sensitivity to G for implicit runs on the linear sloping domain. The darkness 
decreases with increasing G for the following set of values: {0.00001, 0.0001, 0.001, 
0.01, 0.1} s-1. 
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node 5 shows the same trend as the one for node 3. The plot for node 7 still has the sensi-

tivities for the   simulation primarily in the void for the results with 

 . Conversely, the sensitivities for   are back in line with the 

results for the lower  values, signifying the end of the node-to-node sign oscillations for 

that  value.

The GWCE was introduced for CG finite element modeling to control spurious 

 oscillations present in solutions of the shallow water equations using the primitive 

continuity equation. Increasing  shifts the GWCE toward the primitive continuity equa-

tion. The elevation sensitivity results show  oscillations in the sensitivity to  for 

values of the numerical parameter of 0.01  and larger, suggesting those values result in 

the GWCE becoming “too primitive.” This idea will be explored in more detail in Section 

3.7 where the FSM results are compared to dispersion analysis results.

The decrease in the magnitude of the sensitivity to  as  increases also makes 

sense. When  is zero, the GWCE is a close to a pure wave equation. Introduction of non-

zero  values results in the primitive continuity portion of the GWCE contributing. Even-

tually, when  gets to values resulting in the GWCE becoming “too primitive,” the system 

reduces to (3.23) because the primitive continuity equation term is dominant.

(3.23)

Thus, further increases in  will have only minimal impacts on the solution, as demon-

strated by the FSM, which shows the magnitude of the sensitivity approaching zero for 

larger  values. However, there is no absolute upper limit on . The primitive continuity 

equation is recovered when . Thus, even though the sensitivity to  is low for the 

high  values under consideration, use of the primitive equations may equate to a large 
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incremental sum of  oscillations.

The velocity sensitivity to  follows the same general trends as the elevation sensi-

tivity, although the velocity sensitivity is non-zero at node 1 and zero at the last node 

because the velocity is specified at the right-side domain boundary. Specifically, the sensi-

tivities are similar between nodes, for the same  value, as long as  is less than  . 

For values above that threshold, the sensitivities begin to have opposite signs when succes-

sive nodes are compared, with the portion of the domain adversely affected growing with 

increasing . Again, the effects are seen initially near the specified elevation boundary 

(lower node numbers). Additionally, the magnitude of the velocity sensitivity decreases as 

the  value is increased, as shown in Figure 3.8, which is a log plot of the velocity sensi-

tivities at nodes 2-7 for five simulations with different  values. As with the elevation 

sensitivities, increasing  in the low range causes the peak velocity sensitivities to occur 

earlier. 

The velocity sensitivities calculated for the 4th and 5th nodes, for both implicit and 

explicit schemes, with   are shown in Figure 3.9 and Figure 3.10, respec-

tively. These are the velocity counterparts to the elevation sensitivity results (Figure 3.4 and 

Figure 3.5) shown previously, except the plot for the 4th node has been used for the veloc-

ities whereas the plot for the 2nd node was used for elevation sensitivity results. This 

change in the nodes used to generate figures was to highlight the difference in sign between 

results for consecutive nodes. For the velocity results, the results for node 2 are similar to 

the results for node 5. As was the case with the elevation sensitivities, the choice of scheme 

(implicit vs. explicit) has minimal effect on the computed velocity sensitivity to .   

The elevation and velocity results and sensitivities for 11 nodes in the linear sloping 
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domain are shown in Appendix C.1.1 (elevation) and Appendix C.1.2 (velocity) using 

 s-1. By plotting the elevation and elevation sensitivity results on the same plot, 

it is readily apparent that the maximum elevation sensitivity to G occurs later in time than 

the maximum elevation values during a tidal cycle. The peak elevation sensitivity occurs at 

approximately the time when the elevation is at the equilibrium position for the first time 
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Figure 3.8 Velocity sensitivity to G for implicit runs on the linear sloping domain. The darkness 
decreases with increasing G for the following set of values: {0.00001, 0.0001, 0.001, 
0.01, 0.1} s-1. 
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following the occurrence of the maximum. The minimum elevation sensitivity occurs at 

approximately the same time as the water surface elevation returns to mean sea level in the 

transition from the minimum WSE value back to a maximum. These results are consistent 

throughout the domain.

In each of the plots with the elevations and elevation sensitivities, there are four sets 

of results. The four sets correspond to four different grid discretizations. The base linear 
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Figure 3.9 Velocity sensitivity results for the last two days of the simulation with G = 0.01 s-1 for 
the 4th node in the linear sloping domain. The results for the implicit scheme are shown 
in black, while the explicit results are shown in gray.
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Figure 3.10 Velocity sensitivity results for the last two days of the simulation with G = 0.01 s-1 for the 
5th node in the linear sloping domain. The results for the implicit scheme are shown in 
black, while the explicit results are shown in gray.
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sloping domain grid has 21 nodes. The other grids have 11, 41 and 81 nodes. The results 

show the elevation time series are indistinguishable from one simulation to the next. 

However, the elevation sensitivity to  is highly dependent on the grid spacing. For the 

grid with 11 nodes, the peak elevation sensitivity to G varies from about 2 ms near the ocean 

boundary to approximately 3 ms at the land boundary. For the base grid, containing 21 

nodes, the range of peak elevation sensitivities to G is about 0.5-0.7 ms. The two finer grids 

have ranges of 0.15-0.2 and 0.03-0.04 ms, respectively. 

The velocity and velocity sensitivity results show trends that are similar to those for 

elevations. That is, the maximum velocity sensitivities occur when the velocity is at zero in 

the transition from a peak positive velocity to a peak negative velocity. Likewise, the 

minimum velocity sensitivities occur when the velocity is at zero in the transition from a 

peak negative velocity to a peak positive velocity. However, the occurrence of the peak 

elevation and peak velocity do not coincide. As such, the timing of the peak elevation sensi-

tivity is offset from the peak velocity sensitivity. 

The exception to the general trend for the velocity results is near the boundary. At 

the ocean boundary node, the timing of the peak velocity sensitivity is much closer to the 

occurrence of the peak velocity value than for locations away from the ocean boundary. 

Additionally, the magnitude of the sensitivity at the specified elevation boundary condition 

location is significantly larger than for interior locations. And, as stated previously, the 

velocity sensitivity is zero at the land boundary due to the no-flow boundary condition.

The relationship between peak velocity sensitivity magnitude and grid resolution is 

consistent with results for elevation sensitivities. Decreasing the element size, by 

increasing the number of elements, reduces the velocity sensitivity to . Using the 11 node 
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grid, the peak velocity sensitivity at the mid-point of the domain is about 0.85 m2s. The 

peak sensitivities for the 21, 41 and 81 node domains at the same spatial location are 0.21, 

0.053 and 0.013 m2s, respectively.

As mentioned briefly in the introduction to this chapter, the FSM can be applied to 

analyze initial conditions. This involves computing the sensitivity of the elevation and 

velocity fields to the initial conditions (the elevation and velocity fields specified at the 

beginning of the simulation). For the system under analysis, the sensitivity to the initial 

condition goes to zero as time increases. Thus, use of the cold start initial conditions does 

not adversely impact the analyses herein. Specifically, for the linear sloping domain case 

presented here, the magnitude of the maximum sensitivity of one element of the solution to 

a change in the initial condition is 0.112 after the first time step. After 12 hours, the magni-

tude of the maximum sensitivity is 1.52 E-06 and the magnitude reduces to 6.99 E-12 at the 

end of the first day. The sensitivities to the initial condition continue to decrease as the 

simulation time increases.

3.3.4  Sensitivity Results for Tidal Problem Over a Seamount

The set-up parameters for the second test case are similar to those for the first. The 

major difference is the bathymetry, which is shown in Figure 3.11. Additionally, this 

domain consists of 31 nodes, whereas the linear sloping domain contains only 21 nodes. 

Simulations were performed for a duration of 5.0 days with a one-day ramp. 

For the seamount domain, the explicit code is unstable at  s with 

 , so results comparing implicit and explicit sensitivities are shown for the 

simulation with  . The elevation sensitivities are shown for the last day for 
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three different nodes: node 6 (Figure 3.12) is in the deep flat portion of the domain, node 

18 (Figure 3.13) resides on the plateau of the seamount, and node 26 (Figure 3.14) is at the 

transition between the linear increase in bathymetry and the flat area in the back bay. As 

can be seen, there is no discernible difference between the implicit and explicit results.   

The implicit code is stable for lower  values (using the same time step), which 

allows analysis of the sensitivities over a wider range of  values. Log plots of the eleva-

tion sensitivities for nodes 2-5 over the last day of simulation with different  values are 

0 10 20 30 40 50 60

�50

�40

�30

�20

�10

0

x �km�

B
ot

to
m

E
le

va
tio

n
�m
�

Figure 3.11 Bathymetry and node locations for the seamount domain.
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Figure 3.12 Elevation sensitivity results for the last day of the simulation with G = 0.01 s-1 for the 
6th node in the seamount domain for the implicit (black) and explicit (gray) codes.
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shown in Figure 3.15. The general trends present for simulations on the linear sloping 

domain also apply for the seamount domain. Specifically, the magnitude of the sensitivity 

decreases with increasing G, and the peak sensitivities occur earlier in time for higher G

values (although the timing trend is not seen for node 2). The node-to-node oscillation in 

the sensitivities for the highest  value used in this set of simulations,  , is readily 

apparent. The sensitivities for the even nodes (2 and 4) are different from the ones for the 

odd nodes (3 and 5). 

Close inspection of the results shows a general trend of increasing peak elevation 
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Figure 3.13 Elevation sensitivity results for the last day of the simulation with G = 0.01 s-1 for the 
18th node in the seamount domain for the implicit (black) and explicit (gray) codes.
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Figure 3.14 Elevation sensitivity results for the last day of the simulation with G = 0.01 s-1 for the 
26th node in the seamount domain for the implicit (black) and explicit (gray) codes.
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sensitivity to  as you move away from the specified elevation boundary. The peak eleva-

tion sensitivity for each node in the domain for simulations with a range of  values is 

shown in Figure 3.16. The second-lightest set of dots, from results with  , 

shows an oscillation in the magnitude of the peak sensitivity for a substantial portion of the 

domain. This indicates the  value is too high, resulting in the GWCE becoming “too 

primitive,” even though the sign of the sensitivity has not been affected, as it has for 

 . The plot of the peak velocity sensitivity (not shown) contains a smooth set 

of points for the back bay with  , while results with   show oscil-

lations in the magnitude of the peak. However, a smooth set of points is not a sufficient 

condition to conclude the  value is below the “too primitive” threshold. Inspection of the 

sign of the velocity sensitivities for the higher  value reveals the node-to-node switching 
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Figure 3.15 Elevation sensitivity to G for implicit runs on the seamount domain. The darkness 
decreases with increasing G for the following set of values: {0.0001, 0.001, 0.01, 0.1} s-1. 
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of signs on the sensitivities (  oscillations) for the higher  value that does not have 

peak magnitude oscillations. 

The elevation and velocity results with the explicit code using   for 

the seamount domain are shown in Appendix C.2.1 (elevation) and Appendix C.2.2

(velocity). For these simulations, the time step was reduced to 1 second. The smaller time 

step (previous simulations on the seamount domain were with a 5 second time step) allowed 

simulations to complete with lower  values. The elevation and velocity results with the 

explicit code using   for the seamount domain are shown in Appendix C.3.1

(elevation) and Appendix C.3.2 (velocity). Unlike the detailed results in Appendix C.1 (for 

the linear sloping domain) and Appendix C.2 (seamount domain) that were generated with 

a G value below the threshold where oscillations appear in the solution and sensitivities, 

  is in the “too primitive” range for the seamount domain, as stated previ-

ously. This scenario is worth analyzing, despite the relatively high  value, because it is a 

realistic problem. Increased  values are necessary with the explicit code for stability 

purposes. Unfortunately, spurious oscillations may be introduced.

5 10 15 20 25 30
10�4

0.01

1

100

Node

Pe
ak

Se
ns

iti
vi

ty

Figure 3.16 Peak elevation sensitivity to G for implicit runs on the seamount domain. The darkness 
decreases with increasing G for the following set of values: {0.0001, 0.001, 0.01, 0.1} s-1. 
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However, before analyzing the results for the higher  value, comments will be 

made about the results for the lower  value on the seamount domain with the explicit 

code. With  , the elevation and elevation sensitivity results near the ocean 

boundary are similar to the results for the linear sloping domain. The maximum elevation 

sensitivity coincides with the equilibrium water surface elevation during the transition from 

a maximum elevation to a minimum. The minimum sensitivity also occurs when the water 

surface elevation is at mean sea level; the minimum sensitivity occurs when the change in 

elevation with time is positive. The elevation sensitivity is zero when the elevation is at a 

maximum or minimum. Additionally, while the elevation results are visually indistinguish-

able for 16, 31 and 61 node grids, the elevation sensitivity decreases significantly with 

increased resolution (decreased element size).

Over the rise, the relationship between the timing of the elevations and elevation 

sensitivities changes. The results for the rise (labeled “Node 13,” “Node 14” and “Node 

16”) show the maximum sensitivity coincides with the maximum elevation values. Like-

wise, the minimum values coincide and so do the zero values. For “Node 18,” on the top of 

the seamount, the relationship between the elevation results and elevation sensitivities are 

similar to the relationship in the deep portion of the domain near the boundary. Then, for 

nodes on the landward side of the seamount, the maximum sensitivities occur when eleva-

tions are at minimum values and the minimum sensitivities occur when the elevations are 

at maximum values. This is opposite the behavior over the rise. Throughout the domain, the 

elevation sensitivity to  decreases with increasing resolution.

The trends for the relationship between velocity and velocity sensitivity are less 

prevalent than those for elevations. In the portion of the domain oceanward of the 
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seamount, the maximum sensitivity occurs, generally, when the velocity is zero during the 

transition from a minimum velocity to a maximum velocity. Then, throughout much of the 

rest of the domain, the velocities and velocity sensitivities are 180 degrees out-of-phase. 

The maximum velocity sensitivities coincide with minimum velocities and the minimum 

sensitivities coincide with instances of maximum velocity. 

This situation, when elevations and elevation sensitivities (or velocities and 

velocity sensitivities) are 180 degrees out-of-phase, is interesting. If the sensitivity of a 

quantity to  is a minimum when the quantity is a maximum and vice-versa, that means 

that increasing  will result in decreased amplitude maxima and minima of the solution. 

For the case of out-of-phase velocities and velocity sensitivities, increasing  will reduce 

the range of velocities encountered in the domain. Conversely, decreasing  will increase 

the range of velocities. When the quantity and the quantity sensitivity are 90 degrees out-

of-phase, the zero sensitivity values align with the maximum quantity values. In this case, 

increasing  will not have an impact on range of the quantity through the simulation. 

However, changing  will affect the timing of the zero quantity values.

The results for the seamount domain with the higher  value are more difficult to 

summarize generally because the results are not consistent for nodes in the same area of the 

domain. Additionally, there is a lack of consistency for spatial locations from one grid reso-

lution to the next. Nevertheless, for the “non-primitive”  values, the timing of the sensi-

tivity results were similar between resolutions with the magnitude of the sensitivity 

decreasing with increasing resolution. However, using   on the seamount 

domain, the results for “Node 13” show the elevation sensitivity to  is greater in magni-

tude for the 31 node grid than for the 16 node grid. Additionally, the elevation sensitivities 
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using those two grids have opposite signs for that spatial location. At the transition between 

the rise and the seamount, the elevation sensitivities for the 16 and 31 node grids are 

comparable in timing and magnitude. Near the middle of the seamount, the elevation sensi-

tivities for those two grids are 180 degrees out-of-phase.

The velocity sensitivities also show a high level of variation between spatial loca-

tions and resolutions. The velocity sensitivities for the transition from the flat portion near 

the boundary to the rise are similar in timing and magnitude for all three grid resolutions. 

For the location of node 18 in the 31 node grid, the peak velocity sensitivity is actually 

lower for the coarsest grid than for the finest grid, with the largest peak (for the three grids) 

occurring with the 31 node grid. 

One implication of the seamount domain sensitivity results is that analysis of sensi-

tivities, and thus the implications of changes in the elevation and velocity fields resulting 

from changes in , is complicated by  values that transition into the “too primitive” 

range. Additionally, though, the results for the simulations with   show that 

elevation and velocity results can depend on  even for grids with significant resolution. 

The results with  , on both the linear sloping domain and the 

seamount domain, showed the sensitivity to  tending towards zero with increasing grid 

resolution. These results suggested the possibility of generating solutions that are indepen-

dent of  if sufficient resolution is achieved. Obviously, the definition of sufficient in 

“sufficient resolution” would depend on the level of G-independence desired for a given 

application. The seamount domain results with   suggest that results for 

certain portions of the domain will remain dependent on  specification regardless of the 

level of resolution achieved.
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3.4   Comparison of FSM and Numerical Analog Sensitivities

The FSM sensitivity results presented previously predict the changes in the solution 

(elevations or velocities) that result from a change in the numerical parameter, . In order 

to validate the procedure, the numerical sensitivity can be calculated using finite differ-

ences. In particular, by comparing the results from two simulations with slightly different 

 values, an estimate of the sensitivity to  can be calculated using the difference between 

the two solutions and the difference in the  values, as shown in (3.24).

(3.24)

Figure 3.17 compares the sensitivity using the FSM with that using the numerical analog 

for the 11th node in the linear sloping domain with a  value of 0.001 . For the second 

solution used to compute the numerical analog sensitivities, a  value of 0.0011  was 

used. Thus, the difference in the specified  values, , was 0.0001 . The comparison 

of sensitivities for the same set-up with a larger difference for ,  , is 

shown in Figure 3.18. For this comparison, the same base  value, 0.001 , was used 

while the second value was  . Cases such as these, where the second value of  

used to generate the numerical analog is larger than the value of  for which the sensitivity 

is desired, are referred to herein as forward numerical analogs. The equations for forward 

and backward numerical analogs are shown in (3.25) and (3.26), respectively. 

(3.25)

(3.26)

The magnitude of the numerical analog sensitivity in each of the cases referenced 
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above is lower than the magnitude calculated using the FSM. This is a result of using a 

forward difference to compute the numerical analog sensitivity. The sensitivity to  

decreases as  increases. Thus, over a given span of  values, the maximum sensitivity 

occurs for the minimum  value. Therefore, the average sensitivity given by the forward 
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Figure 3.17 Comparison of elevation sensitivity results for the last two days of an explicit model 
simulation with G = 0.001 s-1 at the 11th node in the linear sloping domain. The FSM 
results are shown in black, while the gray depicts the numerical analog finite-difference 
sensitivities calculated using ∆G = 0.0001 s-1.
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Figure 3.18 Comparison of elevation sensitivity results for the last two days of an explicit model 
simulation with G = 0.001 s-1 at the 11th node in the linear sloping domain. The FSM 
results are shown in black, while the gray depicts the numerical analog finite-difference 
sensitivities calculated using ∆G = 0.001 s-1.
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numerical analog sensitivity calculation is less than the value from the FSM method. The 

numerical sensitivity is only a good approximation for small values of  because the 

sensitivity to  changes rapidly with  (cf. Figure 3.17 and Figure 3.18). An order of 

magnitude change in  often results in a change in the magnitude of the sensitivity to  

of a factor of 30-50 (e.g., Figure 3.7, Figure 3.8, and Figure 3.16). Backward numerical 

analog sensitivities occur in the section on data assimilation, with Figure 3.25 showing that 

the magnitude of the backward numerical analog sensitivity to  is greater than the FSM 

sensitivity. 

The results presented above show that the sensitivities computed using the FSM are 

equivalent to the sensitivities calculated using the numerical as  goes to zero. This is to 

be expected because the sensitivity is defined as the ratio of the change in one entity with 

respect to the change in another one. Therefore, if treated appropriately, the two methods 

should produce equivalent results. The comparison of FSM and the numerical analog 

confirms that the behavior predicted by the FSM actually occurs as  varies. Additionally, 

the FSM presents an opportunity to perform data assimilation based on errors between 

observations and the results from a model run with a given value of , although one could 

alternatively use a numerical analog approach to compute sensitivities for use in data 

assimilation.

The equivalence of the FSM and numerical analog gives rise to the following ques-

tion: What is the benefit of FSM over a reasonably simple and straightforward numerical 

finite difference calculation? In this chapter, constant  simulations are analyzed. In this 

case, using the numerical analog for the analysis would require a similar amount of compu-

tational effort as FSM. Instead of calculating the sensitivities using the FSM during one 
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ADCIRC simulation, two ADCIRC simulations would be performed and the output would 

be used to calculate numerical analog sensitivities. In the next chapter, however, a variable 

 parameterization will be analyzed. Using the numerical analog approach,  simula-

tions would need to be performed to calculate the elevation and/or velocity sensitivities to 

 parameters, with one base run and one simulation with a small change in each parameter. 

However, the FSM allows the sensitivity of the solution to each parameter to be calculated 

during the same simulation.

3.5   Data Assimilation using Forward Sensitivities

Application of the FSM results in a sensitivity value that can also be used to adjust 

the value of  based on some error metric. As presented by Lakshmivarahan and Lewis

[2010], using a first-order approach where only the first term in the Taylor series expansion 

is retained, the error (defined as the difference between the observation and model result) 

is equal to the product of the sensitivity and the correction, as given by (3.27), where e is 

the error, z is the observation, c is the model result, and w is the sensitivity.

(3.27)

The correction to the numerical parameter is , and the correction depends on the sensi-

tivity vector and error in the model results.

The correction can be computed in a variety of ways. The most simple correction 

calculation would be to use an observation at one point in space ( ) at one time ( ), along 

with the model results for the same location in space and time. The correction, , to a 

specified value, , based on this one observation is shown in (3.28).
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(3.28)

Least-squares minimization is a more sophisticated approach that allows for use of 

multiple observations in space or time. For the results herein, least-squares minimization 

will be applied on a nodal basis. In other words, the observations and model results for a 

given point in space, over a range of time, will be used to compute a least-squares correc-

tion to . This is analogous to the real-world situation where a buoy collects water surface 

elevation data at a fixed location in the domain over a range of times. Conversely, least-

squares minimization could be applied on a temporal basis, where errors throughout the 

domain at a given time are used to generate a correction.

The least-squares correction for node  using  values in time requires the 

vector of sensitivities shown in (3.29), and the error vector shown in (3.30).

(3.29)

(3.30)

The optimal least-squares correction, adapted from Lakshmivarahan and Lewis [2010] for 

a scalar parameter, is given by (3.31).

(3.31)

The optimal least-squares correction is a standard result that is presented proficiently in the 

text referenced above, as well as in Lewis et al. [2006], which provides additional detail 

about the origins of the analysis technique.
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3.5.1  Correction to 2-D CG Results on the Linear Sloping Domain

Corrections require computation of errors. A set of observations, to which the 

model result is compared, is necessary to generate error values. For this study, observations 

were created using the 2-D CG version of ADCIRC on a rectangular grid that is uniform in 

the y-direction. In other words, the observations used for evaluating the 1-D model are 

simulation results using the 2-D version of ADCIRC. Specifically, the 1-D domains 

presented previously were extended “into the paper” to create 2-D domains to use with the 

ADCIRC production code in linear mode. The 2-D CG code was run implicitly with the 

same parameters as the 1-D code. The 2-D domain consists of 11 nodes in the y-direction 

for each of the 21 nodes in the x-direction for the linear sloping domain. Results for the 6th 

line of nodes (the centerline) from a simulation with   are used as the obser-

vations. In this way, there is a set of observations from a node in the 2-D domain to compare 

to 1-D model results. Furthermore, the x-component of the velocity is used as the observa-

tion to compare to the 1-D velocity results; the y-component of the velocity is ignored, but 

is generally several orders of magnitude less than the x-component (and close to zero).

The root mean square error in space, , is calculated for each output record 

during the comparison period. Then, the temporal mean of these values is calculated to 

determine the average value of the root mean square error. The computation for  

is given by (3.32), which is the error metric used in this section.

(3.32)

The elevation error results are shown in Figure 3.19, while the velocity error results are 

shown in Figure 3.20. 

G 0.001= s 1–

RMSEx

RMSEx ζ( )

RMSEx ζ( ) 1
nrecs
-------------- RMSEx ζ( )( )k

k 1=

nrecs

∑=
82



The results show that the minimum error occurs when the same  value is used in 

the 1-D model as was used in the 2-D model to create the observations. This is not a 

surprising result because the 1-D results are sensitive to , so increasing or decreasing  

will cause the results to differ, thus introducing an error. The low error values for the case 

where   suggest the 2-D model is, essentially, a 1-D problem, at least along 
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Figure 3.19 RMSEx(ζ) results compared to G for the last two days of the 10.0 day simulations on the 
linear sloping domain.
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Figure 3.20 RMSEx(u) results compared to G for the last two days of the 10.0 day simulations on the 
linear sloping domain.
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the centerline.

The value of  that minimizes the error (i.e.  ) is the value of  that 

we would hope to identify using data assimilation. Generally, elevation observations are 

more prevalent in the field than velocity observations, so we will focus on using the eleva-

tion results and observations to calculate the correction to  using (3.31), although the 

procedure can be similarly applied using velocity results when available. The sensitivity, 

, and error, , vectors can include any subset of information available. When available, 

elevation data is often in the form of time series at discrete locations. Thus, unless other-

wise specified, a time series of elevation observations will be used in this study to calculate 

the errors. Then, the correction will be computed using the errors and the corresponding 

time series of sensitivity values for the selected node.

The correction varies for a given run depending on which node is used to calculate 

the correction. For example, the corrections based on results from the run with 

  are shown in Figure 3.21. The sensitivity of the elevation result to  for 

the left boundary node is zero due to the elevation being a specified value in that location. 

Thus, it does not make sense to attempt to correct  based on results at that node. However, 

the correction can be calculated for each of the other nodes in the domain, as seen in 

Figure 3.21. 

The results show the correction to be just greater than   for each of the 

nodes. However, we know the optimal correction is close to 0.0009 , based on the values 

of  used for the runs to generate the model and observation results. It makes sense that 

the predicted correction is less than the actual optimal correction because the magnitude of 

the sensitivity varies so greatly with . The sensitivity calculated for   is 
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much greater than the sensitivity for  . Thus, the correction calculated using 

the sensitivity from the run with   is expectedly low. Referring back to 

(3.31), it is apparent that large sensitivities cause the denominator on the RHS to be large, 

resulting in relatively small corrections. However, as the correction is in the proper direc-

tion, multi-step optimization could be employed to reach the optimal  value for this situ-

ation, as will be shown in Section 3.6.

In order to show how the correction varies with , the maximum, minimum and 

mean of the nodal corrections were calculated for runs with a wide range of  values. 

Referring back to Figure 3.21, which shows a set of nodal least-squares corrections, the 

maximum correction is the one calculated for node 2,  . The minimum 

correction comes from results at node 9,  . The mean correction is 

calculated as the arithmetic mean of the nodal corrections for nodes 2-21. The results are 

shown in Figure 3.22 (maximum), Figure 3.23 (minimum) and Figure 3.24 (mean). The 

black points, which are indicative of positive corrections, show that when the  value is 
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Figure 3.21 Nodal least-squares correction, ∆G, for each node based on results for an implicit 
simulation with G = 0.0001 s-1 using output from the last two days of the simulation. 
Observations are from the 2-D CG ADCIRC code with G = 0.001 s-1.
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low, data assimilation using FSM suggests increasing . Conversely, the gray points, indi-

cating negative corrections, denote that data assimilation suggests decreasing G. Therefore, 

for this application, sequential data assimilation using the forward sensitivity method 

would result in discovery of the optimal  value, as long as the original  value is not too 

high.   

As Figure 3.22, Figure 3.23, and Figure 3.24 show, for a given  value, the 

maximum, minimum and mean corrections are similar if  is less than  . 

However, for both   and  , the mean correction is negative 

and larger in magnitude than the value of  used for the simulation. For example, the mean 

correction for   is  . Thus, use of the mean correction to 

compute a new  value would result in the new  value being less than zero. Furthermore, 

the maximum correction, which corresponds to the least negative value, for  

 is  . This correction, too, would result in a negative value for  in 
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Figure 3.22 Maximum nodal least-squares correction, ∆G, for simulations over a range of G values 
using output from the last two days of the simulation. The magnitude of the correction is 
shown on the y-axis. The color of the dot corresponds to the sign of the correction. 
Positive corrections are shown in black, while negative corrections are shown in gray.
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the next model iteration. This “overcorrection” problem is a result of the magnitude of the 

sensitivity to  decreasing as  increases. The decrease in sensitivity magnitude with 

increases in  causes the correction size to be too small for low  values and too large for 

high  values, as per (3.31).
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Figure 3.23 Minimum nodal least-squares correction, ∆G, for simulations over a range of G values 
using output from the last two days of the simulation. The magnitude of the correction is 
shown on the y-axis. The color of the dot corresponds to the sign of the correction. 
Positive corrections are shown in black, while negative corrections are shown in gray.
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Figure 3.24 Mean nodal least-squares correction, ∆G, for simulations over a range of G values using 
output from the last two days of the simulation. The magnitude of the correction is 
shown on the y-axis. The color of the dot corresponds to the sign of the correction. 
Positive corrections are shown in black, while negative corrections are shown in gray.
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Furthermore, for G values of   and above some of the corrections are posi-

tive, which is opposite in sign from the mean corrections (cf. Figure 3.22). Therefore, if a 

node that suggests a positive correction is used to generate the correction, the resulting new 

 value, given by adding the correction to the previous value of , will actually be farther 

from the target value than the previous value. Obviously, this is not the optimal scenario, 

i.e., a divergent algorithm. 

In this study, the presence of positive and negative corrections for the same simula-

tion is a result of the equations becoming “too primitive.” The initial appearance (lowest  

value that experiences oscillations) corresponds to the  threshold above which spurious 

oscillations are generated. When the solution becomes “too primitive,” the sensitivities 

start to become irregular (e.g., Figure 3.4 and Figure 3.5). Rather than being similar from 

one node to the next, the sensitivities for successive nodes are opposite in sign or have 

varying magnitudes of the same sign. This transition from a normal pattern to an irregular 

one produces the aberrant correction results.

To illustrate the difficulties in generating corrections, even for this simple system, 

it is informative to return to the comparison between the FSM sensitivity and the numerical 

analog sensitivity. For the following plots (Figure 3.25 - Figure 3.29), the numerical analog 

sensitivity is calculated using the results from the 1-D model with   as the 

target. The error calculations, presented previously in Figure 3.19 and Figure 3.20, show 

the 1-D and 2-D simulations are almost equivalent when the same  value is used. Thus, 

in this case, the numerical analog sensitivity will provide a reasonable estimate of the 

average sensitivity to  over the range from the current  value to the target value, which 

is the sensitivity value that would result in a near optimal correction (using a first-order 
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approach). Note, that this numerical analog, while equivalent in the way it is computed, is 

slightly different conceptually than the numerical analogs calculated previously. In this 

case, the numerical analog is the average sensitivity and gives information about the sensi-

tivity to  over a range of  values. In contrast, previously the numerical analog was 

computed to give an estimate of the rate of change of the solution to small changes in  

value, in order to validate the FSM sensitivity calculations.

For a  value of 0.002  and a target of  , as Figure 3.25 shows, 

the calculated backward numerical analog sensitivity, given by (3.33), is greater than the 

FSM sensitivity value for the run with  .

(3.33)

In (3.33),  is the current parameter value,  is the optimal value, and  is the 

difference . However, the shape of the curves is similar. The two sets of sensitiv-

ities are in-phase and have the same sign. Returning focus to the concept of overcorrection 

mentioned above, the corrections using results from the simulation with   

were too large because the FSM sensitivities are lower than the average sensitivities over 

the  range. This is opposite the previously shown situation (i.e., Figure 3.17 and 

Figure 3.18) where a forward difference is used to calculate the numerical analog sensi-

tivity, resulting in the numerical analog sensitivities being lower in magnitude than the 

sensitivities calculated with the FSM. 

The problem of positive and negative corrections produced using results from 

different nodes for the same simulation, discussed previously, occurs for values of  equal 

to or greater than   for the current application. For most of the nodes in the domain, 

G G

G

G s 1– G 0.001= s 1–

G 0.002= s 1–

∆ζ
∆G
--------

ζ G∗( ) ζ Gopt( )–
∆G

----------------------------------------=

G∗ Gopt ∆G

G∗ Gopt–

G 0.002= s 1–

∆G

G

0.01 s 1–
89



the numerical analog and FSM sensitivities are in-phase, although the magnitudes for the 

FSM sensitivities are much lower than their numerical analog counterparts. The results for 

the 11th node in the domain, using   to generate model results, are shown in 

Figure 3.26. In comparison to Figure 3.25 (which is for results from a simulation with a  

value below the primitive threshold), the shape of the sensitivities (FSM and numerical 

analog) is the same in each graph. The difference is that the disparity in magnitude of the 

sensitivities is less in Figure 3.25 than in Figure 3.26. 

With  , the results for the 3rd node in the domain are similar to the 

results for the 11th node. The main difference is a shift of the results from the 11th node to 

the left. Specifically, the zero sensitivity occurring at about 8.2 days in the plot for the 11th 

node occurs just over 8.0 days into the simulation at the 3rd node. Figure 3.27 shows the 

results for the 3rd node with  . The difference between this plot and previous 

ones is striking. Again, the magnitude of the FSM sensitivity is much lower than the numer-

ical analog sensitivity. The difference is that the sign of the FSM and numerical analog 
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Figure 3.25 Numerical analog sensitivity (gray) between implicit 1-D results with G = 0.001 s-1 and 
G = 0.002 s-1 and FSM sensitivity (black) for G = 0.002 s-1 for the 11th node in the linear 
sloping domain.
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sensitivities is different. The numerical analog sensitivity is calculated from the results of 

two simulations, with the difference between observations and model results divided by the 

difference in the  values used to generate the two data sets (e.g., (3.25) and (3.26)). In this 

case, the difference in the parameter used,  , was nega-

tive. Thus, when the numerical analog sensitivity is negative, the error value must be posi-

tive. Conversely, when the error value is negative, the numerical analog sensitivity is 

calculated as positive. For the early times in Figure 3.27, the error is positive (the numerical 

analog sensitivity is negative). At these times, the sensitivity calculated using the FSM is 

also positive. Therefore, the correction calculated using the error and the FSM sensitivities 

will also be positive, which is obviously incorrect. 

Further increase in the  value results in further degradation of the solution and 

corrections. Specifically, the portion of the domain influenced by the model becoming “too 

primitive” increases as  increases. Figure 3.28 shows the FSM sensitivities are out-of-

phase with the numerical analog sensitivities for the 11th node when   is used 
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Figure 3.26 Numerical analog sensitivity (gray) between implicit 1-D results with G = 0.001 s-1 and 
G = 0.01 s-1 and FSM sensitivity (black) for G = 0.01 s-1 for the 11th node in the linear 
sloping domain.
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for the simulation. Compared to previous figures for the 11th node (Figure 3.25 and 

Figure 3.26), the numerical analog sensitivities maintain a similar shape. The magnitude is 

reduced because  is an order of magnitude larger and the errors are similar in magni-

tude. The difference is in the sensitivity calculated using the FSM. With this increased  

value, the sign of the FSM sensitivity is generally opposite the sign of the numerical analog 

sensitivity for this location in the domain. Therefore, the correction will be the wrong sign. 

In fact, the correction for node 11 with   is  . Conversely, the 

correction for the 12th node is  . The numerical analog and FSM sensi-

tivities for the 12th node with   are shown in Figure 3.29. Comparing the 

results for the 11th and 12th nodes, the numerical analog sensitivities are similar. However, 

the FSM sensitivities are opposite in sign. 

In summary, it is important to understand the system and the nature of the FSM 

sensitivities when attempting to generate corrections. For this system, the accuracy of the 

correction is highly dependent on the initial parameter specification. When  is too high 
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Figure 3.27 Numerical analog sensitivity (gray) between implicit 1-D results with G = 0.001 s-1 and 
G = 0.01 s-1 and FSM sensitivity (black) for G = 0.01 s-1 for the 3rd node in the linear 
sloping domain.
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and the equation becomes “too primitive,” the corrections will generally not be useful in 

recovering the target parameter value. However, recovery of a target value is possible if the 

initial specification is within a certain range and will be explored in more detail in Section 

3.6. Furthermore, while analysis and discussion focused on corrections using elevation 

sensitivities in this section, the same pattern holds for corrections using velocity sensitivi-
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Figure 3.28 Numerical analog sensitivity (gray) between implicit 1-D results with G = 0.001 s-1 and 
G = 0.1 s-1 and FSM sensitivity (black) for G = 0.1 s-1 for the 11th node in the linear 
sloping domain.
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Figure 3.29 Numerical analog sensitivity (gray) between implicit 1-D results with G = 0.001 s-1 and 
G = 0.1 s-1 and FSM sensitivity (black) for G = 0.1 s-1 for the 12th node in the linear 
sloping domain.
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ties.

3.5.2  Correction to 2-D CG Results on the Seamount Domain

The previous section details attempts to correct the  value based on observations 

from the 2-D CG model for the linear sloping domain. For the seamount domain, observa-

tions were also generated with the 2-D CG model. Once again, the observations were model 

results from the 2-D model with a  value of  . The simulation conditions are the 

same as for the simulations in Section 3.3.4.

The  for elevations and velocities, for a range of  values using the implicit 

1-D model, are shown in Figure 3.30 and Figure 3.31, respectively. The counterparts of 

these plots using the explicit 1-D model are shown in Figure 3.32 and Figure 3.33. The 

implicit results show error minima when the  value in the 1-D model is set to the value 

used in the 2-D model to generate the observations. This is consistent with results from the 

linear sloping domain. There is not a well-defined minimum error value for either of the 

explicit error graphs because the explicit code is unstable at  , as well as for 

lower values. However, it is readily apparent that the error decreases as  is lowered 

towards the optimal value that coincides with the value used to generate the observations, 

as long as  is not reduced so much as to make the model unstable. While it may not be 

readily apparent, because of the scales used on the figures, the results for the implicit and 

explicit codes, with the same  value, are similar. For example, the temporal mean nodal 

root mean square elevation error for the last day of the simulation is 0.009051 m for the 

implicit code with  , while it is 0.009100 m for the explicit code with the 

same value of . The error results suggest corrections to the  value used to generate the 

observations should be possible, assuming the model is stable at the target  value, which 
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is not the case for the explicit model at the current time step.    

The maximum, minimum and mean nodal least-squares corrections, , using the 

implicit model are shown in Figure 3.34, Figure 3.35, and Figure 3.36. The corrections for 

the  value that is too low,  , are positive regardless of the node used to 
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Figure 3.30 Implicit 1-D model temporal mean nodal root mean square elevation error results 
compared to G for the last day of the 5.0 day simulations on the seamount domain using 
the 2-D CG result as the true solution.
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Figure 3.31 Implicit 1-D model temporal mean nodal root mean square velocity error results compared 
to G for the last day of the 5.0 day simulations on the seamount domain using the 2-D CG 
result as the true solution.
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generate the correction. This is consistent with results from the linear sloping domain. The 

corrections are also lower than the optimal correction of  . In fact, the 

corrections range from a minimum of  at node 17 to a maximum of  

 at node 15. Generally, however, there is not a large deviation from node to node, as 

shown in Figure 3.37. Note that the correction has been set to zero for the specified eleva-
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Figure 3.32 Explicit 1-D model temporal mean nodal root mean square elevation error results 
compared to G for the last day of the 5.0 day simulations on the seamount domain using 
the 2-D CG result as the true solution.
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Figure 3.33 Explicit 1-D model temporal mean nodal root mean square velocity error results 
compared to G for the last day of the 5.0 day simulations on the seamount domain using 
the 2-D CG result as the true solution.
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tion boundary node (node 1) because the sensitivity and error are both zero.     

The magnitude of the corrections when   in the 1-D model are small 
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Figure 3.34 Maximum nodal least-squares correction, ∆G, for the seamount domain simulations over 
a range of G values using output from the last day of the implicit simulations and 2-D 
results as observations. The magnitude of the correction is shown on the y-axis. The 
color of the dot corresponds to the sign of the correction. Positive corrections are shown 
in black, and negative corrections are shown in gray.
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Figure 3.35 Minimum nodal least-squares correction, ∆G, for the seamount domain simulations over 
a range of G values using output from the last day of the implicit simulations and 2-D 
results as observations. The magnitude of the correction is shown on the y-axis. The 
color of the dot corresponds to the sign of the correction. Positive corrections are shown 
in black, and negative corrections are shown in gray.
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because the error is small. The only negative value occurs at node 2, with positive correc-

tions in the rest of the domain with the magnitude decreasing as you move away from the 

specified elevation boundary towards the no-flow boundary. When  , the 

corrections (not shown) are negative with the exception of the one generated using results 
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Figure 3.36 Mean nodal least-squares correction, ∆G, for the seamount domain simulations over a 
range of G values using output from the last day of the implicit simulations and 2-D 
results as observations. The magnitude of the correction is shown on the y-axis. The 
color of the dot corresponds to the sign of the correction. Positive corrections are shown 
in black, and negative corrections are shown in gray.
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Figure 3.37 Nodal least-squares corrections, ∆G, for the seamount domain simulation with G = 
0.0001 s-1 using output from the last day of the implicit simulation and 2-D results as 
observations. 
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for node 18. However, the magnitude of the correction is too large (mean correction is 

  whereas the optimal correction is approximately  ), a result of the 

decreasing magnitude of the sensitivity with increasing . When  , the 

GWCE becomes “too primitive,” resulting in corrections that show a  oscillation, as 

seen in Figure 3.38. This is consistent with the plot of the peak elevation sensitivity 

(Figure 3.16) at each node in the domain for different  values. The line of peak elevation 

sensitivity for the two lowest  values in Figure 3.16 is fairly smooth. There is a general 

increase in amplitude as you move away from the specified elevation boundary, and there 

is also a dip in the sensitivity over the top of the seamount, which resides from node 16 to 

node 21. However, there are  oscillations in peak sensitivity amplitude for the two 

higher  values. 

3.6   Sequential Optimization

In the previous section, corrections to  have been calculated based on model 

errors and sensitivities to . In this section, the correction, , is added to the previous 
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Figure 3.38 Nodal least-squares corrections, ∆G, for the seamount domain simulation with G = 0.1 s-1 

using output from the last day of the implicit simulation and 2-D results as observations. 
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 value to determine the next  value. This process is continued until the new correction 

is below a certain threshold, which signifies the optimization process has converged at the 

target value.

The linear sloping domain presented in Section 3.3.3 is used for this proof-of-

concept application. The simulation parameters are the same as those used previously, with 

the exception that the run is only 5.0 days long and corrections are generated using the 

results from the last day of the simulation. The observations are the elevation results along 

the centerline of the 2-D ADCIRC simulation with  . The correction, , 

is the mean of the nodal corrections using the elevation results to compute the errors.

The first test, using the explicit code, had a starting  value of 0.0005  and a 

convergence threshold for  of 1.0 E-10 . As expected, specification of an initial 

value that is less than the target value resulted in each correction being in the appropriate 

direction (positive) with less than optimal magnitude, as shown in Table 3.2. The target 

value for the simulation is not the  value used in the 2-D CG simulation; the target value 

is the value at which the sequential optimization finishes, 8.98 E-04 . However, it is 

close to the value used in the 2-D model to create the observations. The ratio of the correc-

tion to the optimal correction is notable. As the  value approaches the target value, the 

correction approaches the optimal correction. This is logical because as  goes to zero, 

the numerical analog and FSM sensitivities converge, assuming the target  value is not 

in the primitive range. If the numerical analog and FSM sensitivities are equal, the correc-

tion will be optimal. 

A second test was performed using the implicit 1-D code, which allows for a lower 

starting  value. The test was initialized with a  value of 1.00 E-06  and concluded 
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when the magnitude of  fell below 1.00 E-05 . The implicit and explicit codes give 

slightly different results, so the target  value, 9.48 E-04 , was slightly higher for this 

simulation. The  values for this optimization were {1.00 E-06, 2.38 E-05, 7.41 E-05, 1.69 

E-04, 3.31 E-04, 5.61 E-04, 7.97 E-04, 9.26 E-04, 9.48 E-04, 9.48 E-04} , with the ratio 

of the first correction step to the optimal correction of just 0.024 and the final correction 

ratio approaching unity.

Finally, tests were performed with initial  values greater than the target value. As 

expected, specification of a value larger than the target, but still below the primitive 

threshold, results in an overcorrection in the first step. For the explicit code with an initial 

value of 1.20 E-03 , the mean correction for the first step is  E-04 , resulting 

in a new  value of 8.06 E-04 . From there, the corrections bring the  value up to the 

target value. However, if the initial specification is significantly higher than the target, the 

overcorrection can result in negative  values. For instance, the mean correction with  

of 0.002  is  E-03 , which is larger than the previous  value. Thus, in prac-

Table 3.2  Sequential optimization of G for the linear sloping domain compared to the 2-D 
CG simulation with G = 0.001 s-1. The units for each of the columns, except for the fourth 

column, are s-1. The ratios in the fourth column are dimensionless.

 Value
Mean Nodal 
Correction, 

Optimal 
Correction,

New  
Value, 

5.00E-04 2.24E-04 3.98E-04 0.564 7.24E-04

7.24E-04 1.39E-04 1.74E-04 0.801 8.63E-04

8.63E-04 3.28E-05 3.46E-05 0.948 8.96E-04

8.96E-04 1.78E-06 1.81E-06 0.983 8.98E-04

8.98E-04 3.10E-08 3.14E-08 0.984 8.98E-04

8.98E-04 4.81E-10 4.88E-10 0.986 8.98E-04

8.98E-04 7.02E-12 7.02E-12 1.000 8.98E-04
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tice, constraints on  would have to be put into the optimization algorithm.

3.7   Comparison of FSM to Dispersion Analysis

Kolar et al. [1994] performed a dispersion analysis of the 1-D shallow water equa-

tions using the GWCE for the Bight of Abaco, Bahamas. A dispersion plot similar to the 

one included in the paper is shown in Figure 3.39. The authors note spurious  oscilla-

tions do not occur if the dispersion curve is monotonic. The frequency for the M6 tide is 

delineated in Figure 3.39, and monotonic dispersion relations exist as long as  does not 

exceed 0.075 . The frequency of the M2 tide is one third the frequency for the M6 tide, 

and  must be less than approximately 0.3  to ensure the solution remains free of 

spurious, short-wavelength oscillations for the M2 frequency. 

The dispersion analysis used a bathymetry value of 2.0 meters, an element size of 

2700 meters and a bottom friction value of 0.01 . For this study, these parameters were 

also used in 1-D simulations in a flat bottom domain consisting of 21 nodes. The time step 
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Figure 3.39 Based on work from Kolar et al. [1994], dispersion curve for the Bight of Abaco, 
Bahamas for various values of G; h = 2 m.
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size for the 1-D simulations is 5.0 seconds. Larger time steps result in differences in the 

calculated sensitivities, whereas the sensitivities were consistent between simulations with 

time steps of 2.5 and 5.0 seconds. It should also be noted that dispersion analysis is 

restricted to interior nodes. The 1-D simulations herein include boundaries that are treated 

as stated previously (specified elevation on the left, zero velocity on the right).

For the 1-D simulations with the boundary forcing with an M6 tide, the dispersion 

analysis predicts spurious oscillations for  values greater than 0.075 . The elevation 

FSM sensitivity results are free of  oscillations with  . With  

, the sensitivity results show  oscillations for the first 4 elements in from the left 

boundary. However, the interior of the domain is not impacted. Further increase of  

causes increases to the fraction of the domain where the oscillations are present in the FSM 

sensitivities.

Using an M2 tide as the boundary forcing, the dispersion analysis predicts spurious 

oscillations will appear for simulations in which  is greater than or equal to approxi-

mately 0.3 . Again, oscillations with the FSM do not occur with   and 

occur only near the open boundary with  . Similar to the case for the M6

forcing, the oscillations become more prevalent as  increases, although the M2 forcing 

simulations generally have less prominent  noise than the simulations with the M6

forcing. This is consistent with results suggested by the dispersion analysis. However, with 

a  value of 0.1 , the entire domain experiences  oscillations.

The FSM sensitivities and dispersion analysis do not produce the same values of  

for the initial appearance of  oscillations in the solution (which signifies that the  

value is too high, resulting in the GWCE becoming “too primitive”). Given the underlying 
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differences (e.g., dispersion analysis is confined to interior nodes and continuous time) in 

the analysis techniques, this is not an entirely surprising result. However, the similarity 

between the results for the two techniques points to FSM being a useful tool in analysis of 

problems (non-linear equations, non-constant bathymetry, etc.) where dispersion analysis 

is not valid.

3.8   Conclusions

The FSM was successfully applied to the linearized, 1-D version of ADCIRC with 

constant . The FSM is useful in determining the sensitivity, both in space and time, to . 

In particular, the sensitivity of the elevation and velocity fields to changes in  varies 

greatly with . The sensitivity is much greater at low values of  than at higher values 

where the GWCE effectively approaches the primitive continuity equation. Additionally, 

as  increases, the sensitivities from the FSM show the  oscillations that plague the 

continuous Galerkin solution when the primitive continuity equation is used instead of the 

GWCE. Additionally, the maximum  threshold, above which the GWCE becomes “too 

primitive” and results in generation of spurious  oscillation, can be identified through 

analysis of the FSM sensitivities. In that sense, FSM can be used as a tool like dispersion 

analysis to predict folding of dispersion relations, with the advantage of being applicable 

to non-constant bathymetry and non-linear equations.

The corrections, , calculated using the FSM are intrinsically tied to the sensitiv-

ities. The change in sensitivity over the range of possible  values makes direct estimation 

of the optimal correction difficult using first-order methods. At high  values, the correc-

tions are also hindered by the  oscillations in the sensitivities. However, sequential 

G G

G

G G

G 2∆x

G

2∆x

∆G

G

G

2∆x
104



optimization should be possible as long as care is taken in specification of the starting point 

for optimization. Specifically, use of a low initial value is optimal because the corrections 

are less than optimal when  is low, whereas the magnitude of the correction is often too 

high for high  values due to the variation in sensitivity magnitude with . The next 

chapter will extend the FSM analysis to the case of variable  on the non-linear, 1-D 

shallow water equations.
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 CHAPTER 4.  Extension of the Forward Sensitivity Method to 

Non-linear 1-D ADCIRC with Variable G

4.1   Introduction

In the previous chapter, the FSM was applied to analyze the linearized, 1-D shallow 

water equations with constant  parameterization for the GWCE. The results suggest the 

FSM is a viable tool for both the analysis of the system, specifically regarding whether the 

 specification causes spurious oscillations to be generated as a result of the GWCE 

becoming “too primitive,” and the obtention of the optimal value of  by generating 

corrections using the sensitivities and model errors.

In this chapter, the analyses in the previous chapter are extended to the non-linear, 

1-D shallow water equations with variable  parameterization for the GWCE. Whereas 

both implicit and explicit discretizations were analyzed in the previous chapter, this chapter 

will be limited to an explicit discretization. This decision was made due to computational 

concerns. For the implicit system, calculation of the sensitivities requires solution of an 

inverse problem. For the implicit linear case of Chapter 3, LU-decomposition (described in 

[Lewis et al. 2006]) was applied to the matrix for the  time level. The LU factors, 

which were constant in time, were used in the solution of the inverse problem throughout 

the entire simulation. For the non-linear case, the LU factors vary in time and must be recal-

culated each time step. The extra stability of the implicit scheme did not warrant the compu-

tational burden of the implicit scheme, especially considering the two schemes produced 
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similar results for the linear case.

The discretization, as in the previous chapter, will be addressed first, followed by 

presentation of the sensitivities. The simulation set-up is given in Section 4.4. Sensitivity 

results are analyzed in Section 4.5 and data assimilation is explored in Section 4.6. Section 

4.7 is focused on application of the FSM to analyze the impact of  on mass residuals. 

Finally, the conclusions section closes the chapter.

4.2   1-D Discretizations

4.2.1  Governing Equations

The non-linear 1-D generalized wave continuity equation (GWCE) and non-conser-

vative momentum equation (NCM) are given by (4.1) and (4.2), respectively, where  is 

the lateral eddy viscosity.

(4.1)

(4.2)

4.2.2  Continuous Galerkin Finite Element Discretization

Application of the continuous Galerkin finite element method results in the 

following equations for the GWCE (4.3) and NCM (4.4) equations.

(4.3)
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(4.4)

The boundary terms, which are normal flux values, are omitted from here on, because the 

specified elevation boundary condition used on the ocean (left) boundary makes the 

boundary flux term irrelevant on one edge of the domain. The land (right) boundary is a no-

flow boundary, which means that the flux is zero and does not need to be carried through 

the derivation. Additionally, lumping is used selectively to generate an explicit set of equa-

tions.

4.2.3  Finite Difference Time Discretization

Application of an explicit, three-level scheme centered at  for the GWCE (except 

for the eddy viscosity term which is centered at ) and an explicit, two-level scheme 

for the momentum equation results in the following set of elemental equations for constant 

grid spacing, (4.5) and (4.6):

(4.5)

(4.6)

where , , , 
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4.2.4  Explicit Equations for Interior Nodes

The linear system, analyzed in the previous chapter, could be written in terms of 

time-independent coefficient matrices multiplied by the vectors of elevations and veloci-

ties. The non-linear system could be written in a similar form, with the major difference 

being that the matrices would contain time-dependent terms. For instance, the finite ampli-

tude term ( ) in the GWCE would be split, and one  term would be in the 

matrix and another would be in the solution vector for the current time. Rather than provide 

the equations in that form, the non-linear system can be written symbolically as shown in 

(4.7), where  is the index over each of the entities in the unknown vector (elevations and 

velocities). 

(4.7)

The  values are the coefficients on the new unknowns and  and 

 are the known right-hand side values corresponding to the time levels  and 

, respectively. The applicable boundary condition values have been absorbed into 

. Equations for general interior nodes for the GWCE (4.8) and NCM (4.9) equa-

tions are shown below. 

g∆t2

2
----------- ζ2( )j

kMi j,
3 ζ

j

βj G( )cj
k 1+ M1j ck G,( ) M2j ck 1– G,( )+=

βj G( ) M1j ck G,( )

M2j ck 1– G,( ) k

k 1–

M1j ck G,( )
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(4.8)

(4.9)

where , , , , , and . The system 

of equations can be found in Appendix D.

4.3   Sensitivity to G

As mentioned in the introduction to this chapter, the major differences between this 

chapter and the previous one are the inclusion of non-linear terms in the equation and 

consideration of variable  parameterizations. For the studies herein, a three-coefficient 

parameterization of  based on total water depth and velocity will be utilized, as described 

by (4.10). 

(4.10)
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Note, the  values in the parameterization are unrelated to the time-weighting coefficients 

in the GWCE. Additionally, while  varies in space and time according to (4.10), the  

values are constant for a given simulation. This parameterization is based on past analyses 

(e.g. [Atkinson 2004; Westerink 2008]) that show  should be inversely proportional to 

water depth and proportional to velocity. It should be noted that the constant  case can be 

recovered by setting  to the desired constant  value, while simultaneously setting the 

other two coefficients to zero. The sensitivity to  will now be evaluated by the sensitivi-

ties to the coefficients in the parameterization for .

Given the system described in (4.7), the sensitivity to  can be found by taking the 

derivative with respect to each of the  values, as shown in (4.11).

(4.11)

By applying the product rule, the sensitivity is described by (4.12). As was the case in the 

previous chapter, the boundary forcing is independent of . Additionally, a more detailed 

presentation of the terms in (4.12) can be found in Appendix D.

(4.12)

where , , 

, and . 

Defining the sensitivity to coefficient  at a given time  as  

allows the system to be simplified and rearranged for solution of the new, unknown sensi-

tivity based on the previous sensitivities and computed Jacobians according to (4.13).
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(4.13)

The three time-level scheme requires two sets of initial values at times  and . Results 

herein have cold start initial conditions, where the initial elevation and velocity fields are 

zero throughout the domain. The initial conditions do not depend on ; therefore, the 

initial conditions for the sensitivity, to each  coefficient, are vectors,  

containing only zeroes. 

Application of the chain rule, , when taking the derivative with 

respect to , simplifies calculations. The derivative with respect to  is independent of 

the parameterization, so it is the same for each of the coefficients. Therefore, increasing the 

complexity of the parameterization for  is simple. 

4.4   Set-Up for Tidal Problem on East Coast Domain

The parameters for the test case are outlined in Table 4.1 and the domain is shown 

in Figure 4.1. The domain is the east coast domain utilized in Chapter 2. Simulations were 

run for 3.0 days with results (elevations, velocities and sensitivities) recorded every 5.0 

minutes (60 time steps). The bathymetry value for the first 49 nodes in the domain is 5000 

m. The bottom elevation rises up to a bathymetry value just above 4000 m over the next 5 

nodes. The rise continues dramatically over the next four nodes, with the bathymetry value 

being just under 200 m at node 58. This change in bathymetry is representative of the conti-

nental rise off the east coast of the United States. The minimum bathymetry value, 20.0 m, 

occurs at node 65, on the right boundary of the domain. This domain allows for a reasonable 

solution using the non-linear equations with a linear specified elevation boundary condition 

because the non-linear terms are not significant near the open boundary. 
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The time step and simulation duration were not arbitrary choices. Ten-day simula-

tions were performed with a constant value of   with different time step 

values. Results show the sensitivities do not vary significantly, from forcing period to 

forcing period, after the ramp phase, as seen in Figure 4.2. There is a small disturbance at 

the end of the ramp phase (1.0 days into the simulation) due to a small, abrupt jump in the 

forcing resulting from the equation used in the ramp function. However, it quickly dissi-

pates. Thus, a three-day simulation, using results from the last day for analyses, is long 

enough that the initial condition and ramp do not play any role in the results. The sensitiv-

ities were also used to determine the time step. The sensitivities were almost identical for 

the runs with  s and  s, as seen in Figure 4.3. However, when the time 

step was increased, the sensitivities started to diverge, as shown in Figure 4.4, which 

compares results with  s and  s.   

0 500 1000 1500 2000
�6000

�5000

�4000

�3000

�2000

�1000

0

x �km�

B
ot

to
m

E
le

va
tio

n
�m
�

Figure 4.1 Bathymetry and node locations for east coast 
domain.

Table 4.1  Parameters for east coast 
domain test case.

Parameter Value

Number of 
nodes

65

Domain 
length

2000 km

31.25 km

0.001 

Forcing 
amplitude

1.0 m

Forcing 
period

44714.8 s

Time step 5.0 s

Ramp dura-
tion

1.0 days

∆x

τ s 1–

G 0.001= s 1–

∆t 2.5= ∆t 5.0=

∆t 5.0= ∆t 10.0=
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Figure 4.2 FSM elevation sensitivities to α0 for a simulation with G = α0, where α0 = 0.001 s-1 at 
node 25 in the east coast domain.
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Figure 4.3 FSM elevation sensitivities to α0 for a simulation with G = α0, where α0 = 0.001 s-1. The 
black line shows results from a simulation with a time step of 5.0 s, while the gray line 
shows results using 2.5 s for the time step.
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Figure 4.4 FSM elevation sensitivities to α0 for a simulation with G = α0, where α0 = 0.001 s-1. The 
black line shows results from a simulation with a time step of 5.0 s, while the gray line 
shows results using 10.0 s for the time step.
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4.5   Sensitivity for Tidal Problem on East Coast Domain

The  parameterization requires sensitivity to G to be analyzed in terms of sensi-

tivity of the solution to the coefficients in the parameterization. Therefore, for the initial 

analysis of the non-linear, variable  simulations, attempts will be made to isolate indi-

vidual coefficients to determine their influence. For example, sensitivity to  will be 

analyzed first, with  and  set to zero. This  parameterization is simply the constant 

 parameterization, addressed in the previous chapter, applied to the non-linear system. 

Then, with  held constant, sensitivity to  will be assessed. Finally, with the first two 

coefficients held constant, the sensitivity to  will be examined. However, before the 

sensitivity studies commence, comparisons will be made between the FSM sensitivities and 

the numerical analog sensitivities to verify that the sensitivities predicted by the FSM, for 

the case under investigation, match the numerical analogs when small perturbations are 

applied to the coefficient values.

4.5.1  Comparison Between FSM and Numerical Analog Sensitivities

To compare the FSM sensitivities to the numerical analog sensitivities, a base run 

was performed using the following parameter set:  ,  , 

 . The coefficients have different units in order to make the units, , for 

each of the terms in the variable  parameterization consistent. Then, each of the coeffi-

cients were perturbed, one each run, and the numerical analog sensitivities were calculated. 

The numerical analog sensitivity for  is computed using finite differences according to 

(4.14).
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(4.14)

The numerical analog sensitivities to other parameters are computed as in (4.14) with 

different  values. The perturbations, , were one-tenth of the value of coefficients 

used in the base run (e.g.,  ). For each case, the elevation sensitivities 

are shown for node 25 (the mid-point of the deep, flat portion of the domain), node 55 (on 

the continental rise), node 58 (at the transition from the rise to the shelf) and node 62 (on 

the shelf). The units for the sensitivities vary. The units for the elevation sensitivities to 

 are , respectively. 

The comparisons between the FSM and numerical analog (forward) sensitivities are 

shown in Figure 4.5 ( ), Figure 4.6 ( ), and Figure 4.7 ( ). In each of the plots, the 
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Figure 4.5 Comparison of FSM (black) and numerical analog (gray) elevation sensitivities to α0 in 
the variable G parameterization at various nodes in the east coast domain.

α0 α1 α2
116



black line shows the evolution in time of the FSM sensitivity to a given coefficient. The 

gray line shows the numerical analog sensitivity to the same coefficient.    

The comparison shows that the sensitivities are very similar. As expected, based on 

results from the previous chapter, the numerical analog sensitivity to the constant coeffi-

cient is slightly lower than the same FSM sensitivity. This is a result of the use of the 

forward numerical analog because the magnitude of the sensitivity to constant  decreases 

as the constant  value increases, and the magnitude of the difference between the two is 

a function of the step size. However, in the comparisons of the sensitivity to both  and 

, the numerical analog is generally larger (in magnitude) than the FSM sensitivity. This 

suggests the sensitivity to these coefficients increases as their value is increased, at least in 

the range examined in this comparison. These sensitivities will receive more attention later 
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Figure 4.6 Comparison of FSM (black) and numerical analog (gray) elevation sensitivities to α1 in 
the variable G parameterization at various nodes in the east coast domain.
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in this section.

The sensitivities to each of the coefficients in the parameterization for  have 

different units, which makes intercomparison difficult. However, we can use the chain rule 

to normalize the sensitivities. For the elevation sensitivities, application of the chain rule 

results in (4.15). 

(4.15)

The normalized sensitivity, , due to change in a coefficient, , can be calcu-

lated, as in (4.16), by dividing the sensitivity of the elevation or velocity to the coefficient 

by the sensitivity of  to the coefficient. 
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Figure 4.7 Comparison of FSM (black) and numerical analog (gray) elevation sensitivities to α2 in 
the variable G parameterization at various nodes in the east coast domain.
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(4.16)

The normalized sensitivities have the same units as the sensitivities to the constant  term, 

. The units for the normalized elevation sensitivities are . A comparison of normal-

ized sensitivities is shown at the beginning of Section 4.5.3.

4.5.2  Sensitivity to α0

The sensitivity to the constant coefficient, , was assessed with the other coeffi-

cients set to zero, resulting in a constant  parameterization. Results from five simulations, 

with  , are shown. Use of constant  values less 

than or equal to  , with the explicit discretization, results in instability at the current 

time step size. 

The FSM elevation sensitivity to , for nodes 25, 55, 58 and 62 is shown in 

Figure 4.8. This type of graph is explained thoroughly in Section 3.3.3. The results are 

consistent with the linear, constant G results presented in Chapter 3. Specifically, the 

magnitude of the sensitivity decreases with increase in . Additionally, there is a phase 

shift between sensitivities for the simulations with the lowest  values (the darkest line) 

and those with slightly higher values. Furthermore, while most of the sensitivities approx-

imately line up vertically at node 55, this is not the case at nodes 58 and 62. The curves for 

the simulations with the highest  values become shifted out from underneath the curves 

for the simulations with lower values. This suggests the highest  values are in the “too 

primitive” range. This concept is discussed in detail in Section 3.3 and Section 3.4 of the 

previous chapter, but is reviewed briefly below. 

Locations where  oscillations in the sensitivities may exist can be found by 
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overlaying plots of sensitivities for successive nodes. In a regular sensitivity plot, a primi-

tive  value will result in the sensitivities for consecutive nodes being approximately 

mirror images of each other. On a logarithmic plot, the negative sensitivities are neglected 

because the minimum value on the plot is greater than zero. Therefore, on logarithmic plots 

there are gaps in the curves when the sensitivities drop out of the range of the plot. The 

elevation sensitivities to  for the node pair (25,26) are shown for a range of  values 

in Figure 4.9. For the lowest  values (which have the largest magnitude sensitivities), 

there is not very much node-to-node variation in sensitivity. Therefore, the curves for nodes 

25 and 26 are very similar and plot close to one another. At nodes 25 and 26, the sensitivi-

ties are nearly indistinguishable for  values from 0.0001 to 0.01 . On the other hand, 

by overlaying curves for multiple nodes on the same logarithmic plot, if the sensitivities at 
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Figure 4.8 FSM elevation sensitivities to α0 at nodes 25, 55, 58 and 62 in the east coast domain for 

simulations with α0 = {0.0001, 0.001, 0.01, 0.1, 1.0} s-1. The darkest line corresponds to 
the lowest coefficient value. The lines get progressively lighter for each increase in α0.
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successive nodes are mirror images, the gap in the curve for one node will be filled by the 

positive values from the adjacent node, suggesting short-wavelength oscillations. With 

 , the gap in the lines for node 25 is almost perfectly filled by the lines for the 

sensitivities at node 26. 

The FSM elevation sensitivities to  for successive nodes are plotted in 

Figure 4.10. The node number listed on each of the graphs is the lower node number in the 

pair (e.g. “Node 25” is the label for the comparison of nodes 25 and 26). For the first pair 

(nodes 25 and 26), the sensitivities for the three lowest  values are almost indistinguish-

able. For the second lightest line, from the simulation with  , the peak magni-

tude of the sensitivity is different, suggesting the parameterization is resulting in  

becoming “too primitive.” The highest  value is certainly well beyond the primitive 

threshold. As described above, the gaps for one node are almost perfectly filled by the curve 

for the next node which signifies a node-to-node oscillation in sensitivity. 
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Figure 4.9 FSM elevation sensitivities to α0 for the node pair (25,26) in the east coast domain for 

simulations with α0 = {0.0001, 0.001, 0.01, 0.1, 1.0} s-1. The darkest line corresponds to 
the lowest coefficient value. The lines get progressively lighter for each increase in α0.
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For the next pair of nodes, 55 and 56, the sensitivities for the two lowest  values 

are also similar. With an  value of 0.01 , the sensitivities have different magnitudes, 

which indicates the  value is becoming “too primitive.” The two highest  values show 

the classic node-to-node oscillation resulting from the  value becoming too large.

Skipping ahead to the last set of nodes, 62 and 63, the results for   

look the best. There is very little phase shift between the nodes and the peak magnitudes 

are almost exactly the same. Once again, the sensitivities for the values of  greater than 

or equal to 0.01  are almost exactly 180 degrees out-of-phase for successive nodes. For 

the lowest  value, there are phase and magnitude differences that are larger than with 

 . This implies that some values of  may be too small, which is evident 
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Figure 4.10  FSM elevation sensitivities to α0 at successive node pairs: (25, 26), (55, 56), (58, 59) 
and (62,63) in the east coast domain for simulations with α0 = {0.0001, 0.001, 0.01, 0.1, 

1.0} s-1. The darkest line corresponds to the lowest coefficient value. The lines get 
progressively lighter for each increase in α0.
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because there is a  threshold between  and   below which runs are unstable.

Comments on the results for nodes 58 and 59, near the shelf break, were saved for 

last because of the seemingly aberrant results. For this pairing, the sensitivity results for 

  suggest a constant value of 0.001  is too large because the sensitivities 

at nodes 58 and 59 have opposite signs. However, analysis of the actual elevation results at 

this point suggests this is the correct behavior of the sensitivities. Additionally, while there 

is a node-to-node oscillation, there is not a  oscillation. Specifically, the opposite signs 

occur for consecutive nodes only for the 58-59 pairing. The signs are the same for node 

pairs 57-58 and 59-60. Thus, there is not a pattern of  oscillations, there is just one sign 

swap between nodes 58 and 59. The consistency of the FSM elevation sensitivity results is 

apparent by looking at the results for the last four nodes on the continental rise, which are 

shown in Figure 4.11. 

Close inspection shows that the signs are consistent, although the magnitudes of the 

sensitivities are not. However, while the magnitudes are different, they do not follow a  

pattern either. The magnitude of the sensitivities at nodes 56 and 58 are similar, while the 

magnitude at node 55 is the lowest of the four nodes and the magnitude is largest at node 

57. The results on the continental shelf (node numbers 58 and larger) are also consistent in 

sign between nodes for  , rather than being plagued by  oscillations 

that occur with higher constant  values.

4.5.3  Sensitivity to α1

Before delving into an analysis of sensitivity to the first coefficient on the variable 

terms in the  parameterization, it is worthwhile to revisit the idea of normalized sensi-
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tivity. The second term in the  parameterization, , varies over orders of magnitude 

in the east coast domain because the bathymetry varies by a factor of 250 from the open 

boundary to the land boundary. The term also varies temporally, as the elevations change, 

but the temporal variation is minimal, especially in the deep portions of the domain. There-

fore, the term involving  essentially increases  in the shallow areas of the domain 

while allowing it to stay at a low value in deep areas. Thus, the comparison of normalized 

sensitivities to  or , while the other two parameters are held at zero, is fairly straight-

forward. In contrast, attempting to use only , while holding the other coefficients at zero, 

would prove difficult due to the presence of occasional instances where the velocity is zero, 

which would result in a zero  value. Furthermore, the magnitude of the velocity at a node 

is not approximately constant throughout the simulation.
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Figure 4.11  FSM elevation sensitivities to α0 at nodes 55, 56, 57 and 58 in the east coast domain for 

the simulations with α0 = 0.001 s-1. 
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Two simulations were performed using  values of 5.0 and 0.1 , with the 

other coefficients set to 0.0. These values were chosen so that areas of the domain would 

have  values of approximately 0.001 , making them comparable to the constant  

results with  . The larger  value results in a  value of approximately 

0.001  in the deep portion of the domain and 0.050  on the shelf, while the smaller 

value results in a  value on the order of 0.001  in the shallow areas and 0.00002  

in the deep portion of the domain. Comparisons for the two simulations using only  

values to sensitivities to constant  runs with an  value of 0.001  ( ) 

are shown in Figure 4.12 (deep area equivalence) and Figure 4.13 (shallow area equiva-

lence), respectively. 

The sensitivities are not equivalent for the simulations because, while the coeffi-

cient selection results in similarities in  for certain portions of the domain, there are 

portions of the domain where the  value differs greatly between the two simulations. 

Using the higher  value, the relatively high  in the shallow portion of the domain 

α1 m s⁄

G s 1– G

α0 0.001= s 1– α1 G

s 1– s 1–

G s 1– s 1–

α1

G α0 s 1– α1 α2, 0.0=

2.0 2.2 2.4 2.6 2.8 3.0

�0.5

0.0

0.5

Simulation Time �days�

Se
ns

iti
vi

ty

Node 7

Figure 4.12 Comparison of normalized FSM elevation sensitivities at node 7 in the east coast 
domain for simulations with G = α0, where α0 = 0.001 s-1 (black); and G = α1 / H, 
where α1 = 5.0 m / s (gray).
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results in the normalized sensitivity being much lower in that region than for the constant 

 case. However, despite  values around 0.025-0.25  on the shelf, the sensitivities do 

not suggest that the  parameterization is “too primitive,” which would be the case if a 

value in that range was applied to the entire domain. 

With the lower  value, the sensitivities are similar on the shelf. However, the 

sensitivities to  for the simulation using the lower  value are much larger in the deep 

ocean and continental rise portions of the domain than they are for the run with the constant 

 . This is a consequence of the  value being approximately 0.00002  

in the deep ocean. However, the normalized sensitivity, shown in Figure 4.12 and 

Figure 4.13, allows a reasonable comparison to be made on the sensitivity to  based on a 

change in a given coefficient value, whereas comparisons of the actual sensitivities to the 

change in the parameters would be difficult due to the dimensional issues.

In fact, with some idealized test cases, the normalized sensitivities are nearly iden-
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Figure 4.13 Comparison of normalized FSM elevation sensitivities at node 63 in the east coast 
domain for simulations with G = α0, where α0 = 0.001 s-1 (black); and G = α1 / H, 
where α1 = 0.1 m / s (gray).
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tical. This is the case when a simulation is performed on a flat bottom domain with a 

constant bathymetry value of 5000 m. Using a constant  value of 0.001 , the normal-

ized sensitivity to  and  is the same throughout space and time. This makes sense 

because, whether you change  or  to modify  by , the resulting elevation and 

velocity fields should be practically equivalent because the bathymetry is the same 

throughout the domain, hence  is approximately constant. Note this is because the ratio 

 is small.

In general, increases in  do not change  by a constant amount throughout the 

domain. Therefore, even when the sensitivity is normalized, the simulation dynamics 

related to the sensitivity to  result in the sensitivities to  and  behaving very differ-

ently. Sensitivities are almost the same for very early times during the ramp period (starting 

from zero, which is the initial sensitivity due to the cold start initial conditions), but they 

quickly diverge as time continues.

Simulations to assess the sensitivity to the second coefficient in (4.10), , were 

performed with  set to either 0.0001  or 0.001  and  held at zero. The  

values used as the base values are in the stable range, and they are below the threshold 

where the GWCE becomes “too primitive.” For each of the base values, the following set 

of  values was used:  . For these sets of simulations, 

the regular (not normalized) sensitivities to  will be shown. While the normalized sensi-

tivities are useful for comparing sensitivities to different coefficients, they can be 

misleading when comparing how the elevation (or velocity) field is impacted by changes 

to one coefficient. For instance, if the time series of the elevation sensitivity to  is the 

same at every node in a domain, we expect a consistent change to the elevation based on 
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change in . However, if the normalized sensitivities are examined, the time series will 

differ for different nodes because the water depth varies in space (assuming a constant 

bathymetry domain is not being used). 

The sensitivities for the four node pairs shown previously, {(25, 26), (55, 56), (58, 

59), (62, 63)}, are shown in Figure 4.14. The constant coefficient value for these simula-

tions is   and the  values are {0.1, 1.0, 10.0, 100.0, 1000.0} . The 

results for the first pair of nodes are consistent with other nodes in the deep portion of the 

domain. There is little node-to-node variation in sensitivity to  for all but the highest 

coefficient value. 
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Figure 4.14  FSM elevation sensitivities to α1 at successive node pairs: (25, 26), (55, 56), (58, 59) 

and (62,63) in the east coast domain for simulations with α0 = 0.0001 s-1 and α1 = {0.1, 
1.0, 10.0, 100.0, 1000.0} m / s. The darkest line corresponds to the lowest coefficient 
value and the lines get progressively lighter for each increase in α1.
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For the next set of nodes (55 and 56),  oscillations are seen for the two highest 

 values, while the sensitivities remain consistent between nodes for the two lowest  

values. The two pairs of nodes on the shelf show a similar behavior to the pair on the rise. 

However, the oscillations for node 62 and 63 are in the magnitude of the sensitivity at the 

highest  values, rather than being out-of-phase like the sensitivities for nodes 55 and 56. 

This suggests an upper limit of  between 1.0 and 10.0  for this application, when a 

constant value of 0.0001  is used, to avoid generation of spurious oscillations.

Results for the same four node pairs and the same range of  values, with an  

value of 0.001 , are shown in Figure 4.15. Again, for the deep portions of the domain, 

only the highest  value produces  oscillations in the sensitivities. The sensitivities 

for the two lowest  are almost identical. This is due to the constant, base  value being 

larger than in the previous set of simulations, which results in the lowest  values not 

producing a significant change to the overall  value. In the deep portions of the domain, 

the bathymetry is 5000 m, so the  term is on the order of 0.00002  for the lowest 

 value and 0.0002  when  . Thus, the total  value is close to the  

value for those two runs, whereas the  term is greater than the  term throughout 

the domain when any of the three highest  values are used. 

However, over the continental rise and landward,  oscillations in the sensitivi-

ties occur in the results for the three highest  values. The sensitivities for the two lowest 

 values become different as the domain gets more shallow. Also, comparing the results 

for the simulations with   for the two base  coefficient values, the  

parameterization appears to be more primitive (due to the sensitivities being 180 degrees 

out-of-phase) with   than with  . 
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4.5.4  Sensitivity to α2

The third coefficient was analyzed using two combinations for the first two coeffi-

cients. Both combinations had  set to 0.0001 . The  values differed for the two 

sets, with the lower value being 1.0  and the higher value being 5.0 , which is 

close to the threshold that results in  becoming “too primitive.” Simulations were run 

with a wide range of  values:  . However, results will 

not be shown for the highest  value because that coefficient value results in the simula-

tion becoming unstable for both combinations of  and .

The results for the elevation sensitivities for the simulations with the lower  

value are shown in Figure 4.16, while the results for simulations with the higher  value 
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Figure 4.15  FSM elevation sensitivities to α1 at successive node pairs: (25, 26), (55, 56), (58, 59) 

and (62,63) in the east coast domain for simulations with α0 = 0.001 s-1 and α1 = {0.1, 
1.0, 10.0, 100.0, 1000.0} m / s. The darkest line corresponds to the lowest coefficient 
value and the lines get progressively lighter for each increase in α1.
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are shown in Figure 4.17. The general trend is for the sensitivity to decrease as  

increases. However, as the plot for nodes 25 and 26 in Figure 4.16 shows, the sensitivity is 

larger with an  value of 0.1  than with a value of 0.01 . The magnitude of the 

sensitivity is also greater when the lower  value is used. Referring back to (4.10), a 

smaller  value results in lower  values throughout the domain. Lower  values are 

generally associated with larger sensitivity magnitudes. 

In general, the sensitivity results to  do not show the precise  out-of-phase 

 oscillations seen previously for large  and  values, although more jagged oscil-

lations can be seen in the results on the shelf for the higher  values when the smaller  

value is used, as is evident in the comparison of nodes 62 and 63 in Figure 4.17 to the same 
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Figure 4.16  FSM elevation sensitivities to α2 at successive node pairs, (25, 26), (55, 56), (58, 59) 

and (62,63), in the east coast domain for simulations with α0 = 0.0001 s-1, α1 = 1.0 m / s 

and α2 = {0.01, 0.1, 1.0, 10.0} m-1. The darkest line corresponds to the lowest 
coefficient value and the lines get progressively lighter for each increase in α2.
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panel (lower right) in Figure 4.16. However, while higher  values do not necessarily 

result in the  specification becoming “too primitive,” the extreme variation of the sensi-

tivities in time coupled with instability for the largest  values suggests high values of  

may cause model instability.

4.6   Data Assimilation for Tidal Problem on East Coast Domain

The least-squares correction for the coefficients for the variable  formulation 

differs from the scalar parameter case of Chapter 3; it is given by (4.17) [Lakshmivarahan 

2010], where  is the optimal least-squares correction,  is the sensitivity matrix, and 

 is the error vector.
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Figure 4.17  FSM elevation sensitivities to α2 at successive node pairs, (25, 26), (55, 56), (58, 59) 

and (62,63), in the east coast domain for simulations with α0 = 0.0001 s-1, α1 = 5.0 m / s 

and α2 = {0.01, 0.1, 1.0, 10.0} m-1. The darkest line corresponds to the lowest 
coefficient value and the lines get progressively lighter for each increase in α2.
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(4.17)

A detailed derivation of the least-squares correction is provided in Chapter 5 of Lewis et al.

[2006]. For completeness, the key steps will be included here.

The system currently under investigation is given in (4.18). 

(4.18)

The residual vector, , can be defined as the difference between  (the error vector) and 

 (the product of the sensitivity and the correction, or change in the  parameter-

ization coefficient vector) as in (4.19).

(4.19)

The least-squares problem is to find an  that minimizes  in (4.20).

(4.20)

Then, by choosing the Euclidean/2-norm, (4.20) becomes (4.21).

(4.21)

By expanding and rearranging (4.21), the expression can be written in a quadratic 

form for . The new expression for the error norm is shown in (4.22).

(4.22)

Setting the gradient of the error norm to zero and equating the two remaining terms yields 

(4.23).

(4.23)

Finally, the optimal least-squares value, , is found by multiplying both sides by the 

inverse of , as shown in (4.24), which is essentially the same as (4.17).
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(4.24)

The least-squares correction attempts to minimize the gradient of the error of the Euclidean 

norm between the error vector and the product of the sensitivities to  and the  correc-

tions.

4.6.1  Data Assimilation for Small Perturbation

In Section 4.5.1, the FSM sensitivities to each of the three coefficients in the  

parameterization ( ,  and ) were compared to numerical analog sensitivities. In 

order to isolate the coefficients, they were perturbed by a small amount one at a time. The 

results from these simulations provide a good set by which to verify the effectiveness of 

multi-parameter correction estimations using the data assimilation step in the FSM because 

the multi-parameter corrections should have one dominant value and two that are close to 

zero for these perturbation sets.

The base values used for the parameterization of  are  , 

 , and  . In each case, the perturbation was one-tenth of the 

base coefficient value in the positive direction. Therefore, to compare the sensitivities to 

, the coefficient was increased to 0.0011 . Thus, the optimal correction is 

 , while the optimal correction for the other two coefficients is zero. 

Corrections were computed based on time series of sensitivities and errors at a given node 

using (4.17). Thus, for the 65 node domain analyzed herein, there are 64 sets of corrections 

using elevation results. The nodal values were used to generate individual corrections to see 

the range in corrections throughout the domain. The elevation value is specified at the left 

boundary, which results in the elevation sensitivity to the  parameterization being zero. 

The error is zero for this node as well.
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The results for the three different perturbations are summarized in Table 4.2. The 

first column shows the perturbations from the base values for a given simulation. The other 

columns contain information about the least-squares corrections for each of the coeffi-

cients. The bold value is the mean correction to the perturbed parameter (i.e., the mean of 

all the nodal corrections). The optimal correction is the negative of the perturbation set 

shown in the first column. 

In each case, each of the corrections for the perturbed coefficient is close to the 

optimal correction. The maximum error in the corrections for the first two perturbations are 

about 15%, while the maximum error is 23% when the perturbation is applied to . 

Furthermore, the corrections for the coefficients that are held constant are relatively small. 

The mean corrections to , when the perturbation is to either  or , are on the order 

of  , so they are more than two orders of magnitude less than the base  value. 

The mean corrections to  or , when the perturbation is to a different parameter, are on 

the order of  (  or ). They, too, are more than two orders of magnitude less 

than the base coefficient values. Therefore, the methodology is effective for correction esti-

mation for multiple parameters.

Table 4.2  Perturbations from base coefficient values and nodal least-squares correction results for 
simulations on the east coast grid varying one coefficient value at a time.

Perturbations Mean, Min, Max 
Corrections to 

Mean, Min, Max 
Corrections to 

Mean, Min, Max 
Corrections to 

-1.09E-04, -1.14E-04, 
-9.94E-05

3.05E-04, -1.51E-03, 
1.51E-03

-6.96E-04, -1.53E-03, 
7.28E-04

2.20E-06, 4.41E-08, 
8.653E-06

-1.03E-02, -1.15E-02, 
-9.43E-03

-1.51E-04, -5.33E-04, 
6.88E-04

5.87E-06, -4.21E-06, 
1.10E-05

1.90E-04, -3.11E-03, 
2.68E-03

-1.09E-02, -1.23E-02, 
-1.01E-02

∆α0 ∆α1 ∆α2, ,{ } α0 α1 α2
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4.6.2  Estimation of α1-Only Parameterization

Up to this point, corrections to coefficients have been calculated to attempt to 

recover the parameterization used to create the observations. In this subsection, the obser-

vations are the model results from a simulation with a constant   value (i.e., 

, ). In contrast, the model (to generate the model results) uses 

a  parameterization where only the  value is non-zero. Furthermore, only the  value 

is allowed to be corrected. Therefore, the computed sensitivities to  and  are ignored 

and the sensitivity matrix used in the least-squares correction is just a vector with the sensi-

tivities to . This is equivalent to the scalar correction analyzed for the constant  param-

eterization in Chapter 3.

The starting point for the iterative optimization was  . The mean of 

the nodal corrections based on the results from this simulation was  , 

with the majority of the individual nodal corrections falling between 0.15 and 0.40 , 

as can be seen in Figure 4.18. The results from the next simulation, with  , 

give a mean correction of  . The pattern remains similar and the 

majority of the nodal corrections fall between 0.50 and 1.2 . That mean correction 

results in a value of   for the next simulation. Again, the corrections 

suggest this value is too low and the new mean correction is  . For the 

majority of the domain, the nodal corrections lie between 1.0 and 4.5 . Using the mean 

correction leads to an  value of 6.166  and a subsequent mean correction of 

 . Again, the mean correction is in line with the nodal corrections 

throughout the majority of the domain. Applying the mean correction brings about a new 

coefficient value,  , that is fairly large (the lowest  values during the 
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simulation are greater than 0.006 ). However, the mean nodal correction based on 

results for this simulation is 239.1  which would result in  being even larger for the 

next simulation. 

Based solely on the growth of , it would appear that the least-squares correc-

tion procedure is ineffective on this system because the corrections are resulting in  

values in the “too primitive” range. However, as  increases, the elevation error (which 

is used to compute the corrections) decreases. The  is 0.0147 m when  

. After two correction steps, the error is down to 0.0123 m (  ). After 

two more correction steps, the error has reduced to 0.0089 m (  ). The 

corrections to the coefficient are intended to reduce the error in the system. Thus, while  

climbs into a range where the  parameterization is beginning to be “too primitive,” the 

errors continue to be reduced. 

For the simulation with  equal to 32.47 ,  oscillations in the sensitivi-
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Figure 4.18 Nodal least-squares corrections, ∆α1, for a simulation with G = α1 / H, where α1 = 
1.0 m / s. This is the starting point for the iterative optimization. The observations are 
results from a simulation with G = 0.001 s-1. The horizontal lines depict corrections 
of 0.15 and 0.40 m / s, respectively. 
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ties occur near the deep ocean boundary (the magnitude of the sensitivity at the odd nodes 

is lower than the magnitude for even nodes) and landward of node 47. The oscillations near 

the ocean boundary are consistent with results presented previously. Section 3.7 compares 

analysis of the generation of oscillations using the FSM to dispersion analysis results. For 

low  values, the sensitivities are free of  oscillations. The short wavelength oscilla-

tions appear first near the open boundary as  is increased. Further increase in  results 

in more of the domain being subject to oscillations.

The oscillations at the higher node numbers start as node-to-node discrepancies in 

the magnitude of the sensitivity and transition to sensitivities of opposite signs and different 

magnitudes over the continental rise and shelf. These oscillations in the sensitivities result 

in less consistent nodal corrections over an increased range of the domain, as Figure 4.19

shows. In contrast to the corrections shown in Figure 4.18, there are node-to-node oscilla-

tions in corrections near the left boundary in Figure 4.19. Additionally, there is less consis-

tency in the nodal corrections between nodes in the upper 40s and lower 50s when the 

higher  value is used. 

Using the mean correction step,  , and running the next simula-

tion with   results in an even smaller mean elevation error. However, the 

larger coefficient value also increases the  oscillations in the sensitivity. Furthermore, 

while there is generally less elevation error, the right-hand plot of Figure 4.20 shows signif-

icant  oscillations in the nodal . Additionally, while the total error for the 

simulation is reduced, the most significant reduction is in the deep ocean portion of the 

domain, as Figure 4.20 shows. The nodal RMS error rises almost linearly from zero at node 

1 (because the elevation is specified at that boundary) to 0.0166 m at node 40 for the simu-

G 2∆x

G G

α1

∆α1 239.1= m s⁄

α1 271.6= m s⁄

2∆x

2∆x RMSEt ζ( )
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lation with  . The nodal RMS error at node 40 decreases as the corrections 

increase , as shown by the error values for the five subsequent runs using  based on 

corrections: {0.0157, 0.0137, 0.0111, 0.0092, 0.0069} m. This suggests it is important to 

be selective in the information used to correct the coefficients for the  parameterization. 

If a parameterization that will give accurate results on the shelf is desired, using observa-

tions dominated by values for the deep ocean to generate corrections might not produce the 

desired results. 
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Figure 4.19 Nodal least-squares corrections, ∆α1, for a simulation with G = α1 / H, where α1 = 32.47 

m / s. The observations are results from a simulation with G = 0.001 s-1. 
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Figure 4.20 Nodal RMS elevation errors for simulations on the east coast domain with α1 = 1.0 m 
/ s (left) and α1 = 271.6 m / s (right). The observations used to compute the errors are 

the results for a constant G simulation with G = 0.001 s-1.
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4.6.3  Estimation for Parameterization Using α1 and α2

In the previous subsection, simulations were performed using only  for the 

parameterization of . The goal in this section is to find an optimal combination of  and 

 to match results generated by using a different parameterization, in this case a constant 

 parameterization with  . The observations were results from a simulation 

with a constant  value of 0.001 . In this section, the same observations will be used, 

and both  and  will be used in the  parameterization;  will remain zero, and the 

sensitivities to  will be ignored in the correction generation process. The sensitivities to 

 are ignored and  is held at zero because the observations were generated using only 

. Under ideal conditions, use of the sensitivities to  and correcting  would just 

recover the -only parameterization used to create the observations. 

The following set of  values ( ) was used to start the first sequential 

optimization: . It should be noted that this is the same starting point as for 

the sequential optimization of  detailed in the previous subsection. The sequential 

corrections for this set are shown in Table 4.3. In the previous case, using only , the 

correction was  . However, when the sensitivities to both  and  

are used to compute the corrections, the mean nodal corrections are   

and  . The coefficient set resulting from the third correction yields a 

parameterization of  that is unstable. 

Use of  as the coefficient set for the start of a second sequential opti-

mization attempt results in a negative  large enough that  is negative in the next 

coefficient set. This parameterization is also unstable. 

From the two sequential optimization attempts, it is obvious that optimization of a 

α1

G α1

α2

G G 0.001= s 1–

G s 1–

α1 α2 G α0

α0

α0 α0

α0 α0 α0

α0

αi α0 α1 α2, ,{ }

0.0 1.0 0.0, ,{ }

α1

α1

∆α1 0.328= m s⁄ α1 α2

∆α1 0.498= m s⁄

∆α2 0.142= m 1–

G

0.0 1.0 1.0, ,{ }

∆α1 α1
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variable  parameterization using only  and , based on observations from a constant 

 simulation, is not a trivial process. Certainly, there is a parameter set that minimizes the 

elevation error. Unfortunately, arbitrary specification of initial coefficients does not result 

in the optimal coefficient set being recovered. The end goal of this study is not to optimize 

 and  based on constant  observations, so it is not practical to continue this pursuit. 

However, if the problem at hand was of greater interest (for instance, if it was an actual 2-

D application with a true observation set), it would be worth pursuing a wider range of 

alternative starting points or a different method to compute the correction set (rather than 

using the mean nodal correction).

4.6.4  Full Variable G Parameter Estimation

Thus far in this chapter, efforts have been confined to perturbations of only one 

parameter or optimization of the coefficients for the non-constant  terms based on obser-

vations from a constant  simulation. In this section, attempts are made to recover the 

parameter set  ,   and  .

The starting coefficient set for the first attempt is . Thus, the 

Table 4.3  Mean nodal corrections to α1 and α2 using observations from a simulation with constant G = 
0.001 s-1.

Simulation 
#

1 0.000 1.000 0.000 0.000 0.498 0.142

2 0.000 1.498 0.142 0.000 -1.475 0.696

3 0.000 0.023 0.838 0.000 -0.648 0.378

4a

a. This coefficient set is unstable for the conditions of the simulation. Therefore, it did not cre-
ate results to compute corrections.

0.000 -0.625 1.216

α0 α1 α2 ∆α0 ∆α1 ∆α2

G α1 α2

G

α1 α2 G

G

G

α0 0.0001= s 1– α1 2.0= m s⁄ α2 0.2= m 1–

0.001 0.0 0.0, ,{ }
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optimal corrections are . However, using the mean of the nodal correc-

tions calculated based on the initial simulation yields the following set of corrections: 

. Rather than decrease  and increase the other coefficients, the 

data assimilation process gives corrections that further increase  and decrease the coef-

ficients that were initially zero. Application of these corrections results in an unstable 

second simulation.

A second attempt was made using an initial coefficient set of . 

This, too, proved unsuccessful. The correction set, , yielded nega-

tive values for all three coefficients for the next simulation.

Rather than continue to guess random coefficient sets to generate corrections, 

perturbations were made to the base coefficient set. Five perturbations were performed: 1) 

+10%, 2) +50%, 3) +100%, 4) -10%, and 5) -50%. The percentage was applied to each of 

the coefficients. Thus, for the first perturbation, the trial coefficient set is 

 and the optimal correction set is .

For the first perturbation of +10%, the actual mean correction set is 

. This is a fairly good correction set. All three corrections 

are in the appropriate direction. The corrections to  and  are about three-quarters of 

the optimal value while  is overcorrected by 17.5%. For the second perturbation (+50%), 

the optimal correction set is . The mean correction set for this simu-

lation is . This correction set follows the same pattern as the 

previous one, although the correction is almost exactly right for the third coefficient. The 

optimal and actual corrections for the third run (+100%) are  and 

, respectively. These mean corrections are significantly worse. 

0.0009– 2.0 0.2, ,{ }

0.0084 2.77– 0.036–, ,{ } α0

α0

0.001 5.0 1.0, ,{ }

0.0018– 9.26– 2.22–, ,{ }

0.00011 2.2 0.22, ,{ } 1.0 5–×10– 0.2– 0.02–, ,{ }

7.37 6–×10– 0.235– 0.015–, ,{ }

α0 α2

α1

5 5–×10– 1.0– 0.1–, ,{ }

2.38 5–×10– 1.76– 0.099–, ,{ }

0.0001– 2.0– 0.2–, ,{ }

1.97 5–×10 5.13– 0.267–, ,{ }
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The overcorrection for  is so severe that it causes an increase in , pulling the first 

coefficient in the wrong direction. The third coefficient is in the appropriate direction and 

of a reasonable magnitude.

The optimal and actual corrections for the fourth perturbation (-10%) are 

 and , respectively. Similar to the small 

perturbation in the positive direction, when the coefficients are perturbed by a relatively 

small amount in the negative direction, the corrections are fairly good. The corrections, 

optimal ( ) and actual ( ), for the larger 

negative perturbation of -50% are decent as well. The first coefficient is slightly overcor-

rected, while the two others are undercorrected by about 60%, but the corrections are all in 

the correct direction. The undercorrections for the negative perturbations are consistent 

with results seen previously due to the magnitude of the sensitivity reducing with 

increasing  (and increasing  values).

The implication is that multi-coefficient corrections can recover an optimal variable 

 parameterization under certain conditions. However, use of the mean nodal correction 

based on elevation errors and sensitivities is not a robust correction scheme. Consistent 

with previous results presented in Chapter 3, the general trend of decreasing sensitivity to 

a coefficient with increase in that coefficient causes undercorrections when the coefficients 

are lower than optimal and overcorrections when the coefficients are greater than optimal. 

Additionally, the correction process is complicated by the feedback between parameters, as 

was seen with the corrections for the third perturbation.

α1 α0

1.0 5–×10 0.2 0.02, ,{ } 8.36 6–×10 0.18 0.013, ,{ }

5.0 5–×10 1.0 0.1, ,{ } 5.99 5–×10 0.403 0.040, ,{ }

G α

G
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4.7   Sensitivity of Mass Residual to G

In Chapter 2, mass residual based on the finite volume flux is used as an error metric 

for evaluating different  specifications. Furthermore, analyses in that chapter show mass 

balance error is highly dependent on . In this section, the sensitivity of the mass residual 

to  is analyzed. Additionally, mass residuals and mass residual sensitivities are used to 

generate corrections to attempt to minimize local mass balance error.

4.7.1  Derivation of Sensitivity

The mass residual is presented in (2.9) and is equal to the sum of the accumulation 

and net flux portions of the continuity equation. For an element defined by nodes  and 

, the accumulation and net flux over one time step, from time level  to , are given 

by (4.25) and (4.26).

(4.25)

(4.26)

Rewriting the net flux term, (4.26), in terms of water surface elevations and velocities 

results in (4.27).

(4.27)

The total accumulation and net flux at a given time are obtained through summation of the 

values over the time steps. For the accumulation term, the total accumulation (assuming a 

zero initial accumulation value) is simply a function of the current water surface elevation 

values, as shown by (4.28).

G

G

G

j 1–

j k k 1+
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2
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k 1+ ζj 1–

k 1+ ζj
k– ζj 1–

k–+( )=
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2
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k 1+– qj

k qj 1–
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2
----- h ζ+( )u( )j

k 1+ h ζ+( )u( )j 1–
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(4.28)

The total net flux depends on previous total net flux value and the net flux over the time 

step according to (4.29).

(4.29)

The sensitivity to  is obtained by calculating the derivative with respect to . The 

sensitivity to  will be presented here, but the same procedure is valid for sensitivity to 

coefficients in a parameterization. For the accumulation term, the sensitivity to  is given 

by (4.30).

(4.30)

The elemental accumulation sensitivity to  is easily computed using nodal elevation 

sensitivity values, as represented by the terms in the parenthesis. 

The sensitivity of the elemental net flux is slightly more complicated. The sensi-

tivity of the total net flux is given by (4.31).

(4.31)

The sensitivity due to the latest time step is computed using (4.32).

(4.32)

As with the accumulation sensitivity, the net flux sensitivity can be computed using the 

variables computed for the earlier studies, specifically the elevation and velocity sensitivi-
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ties and the elevation and velocity fields.

4.7.2  Mass Residual Sensitivity to Parameterization Coefficients on 
East Coast Domain

Before addressing the sensitivity of the mass residual to the coefficients in the  

parameterization, it is informative to show the elemental mass residuals under investiga-

tion. The elemental mass residuals for six elements in the east coast domain for a simulation 

with a constant  value of 0.001  are shown in Figure 4.21. For reference, the 

maximum value of the accumulation term for elements near the ocean boundary is about 

30,000 , for elements on the continental rise is about 6,000 , and for elements on the 

continental shelf is about 3,000 . 

The mass residual for element 2 has a decreasing trend. This is due to a negative 

average net flux. However, the mass error is relatively small. Elements 36 and 47 reside in 

the deep flat portion of the domain away from the ocean boundary, and results for these 

elements are consistent with results for elements in the deep portion of the domain that are 

not in the immediate vicinity of the boundary. The error is consistent from one element to 

the next and the magnitude of the mass residual is a very small percentage of the total mass 

passing through the element. If we assume that all the mass residual is due to an error in the 

accumulation term, the maximum water surface elevation error is on the order of 0.1 mm. 

Element 50 is in the transition from the deep ocean to the steep continental rise, and the 

mass residual at element 50 is two orders of magnitude larger than at element 47. Element 

57 is the last element on the continental rise and, aside from the boundary element (not 

shown), is the location of the largest mass residual. Element 62 shows there is less mass 

error on the continental shelf than over the continental rise for this application.

G

G s 1–

m2 m2

m2
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The mass residual sensitivity to , for the same six elements, is shown in 

Figure 4.22. The mass residual sensitivity is a maximum at the ocean boundary, specifically 

elements 1 and 2. The sensitivity for element 3 is in line with the sensitivity for most of the 

deep portion of the domain, which can be seen in the graph for element 36. The mass 

residual sensitivities for elements 47 and 50 show an increase as the deep portion of the 

domain transitions to the continental rise. Other than at the ocean boundary, the largest 

mass residual sensitivity values are on the continental rise and shelf, specifically near the 
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Figure 4.21 Elemental mass residuals for select elements in the east coast domain. The results are for 
a constant G simulation with G = 0.001 s-1.
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shelf break at node 58 (elements 56, 57 and 59). 

For the same set of elements, the mass residual sensitivity to  is shown in 

Figure 4.23. There are a couple main trends. The sensitivity is large near the ocean 

boundary, as the results for element 2 show. For the deep portion of the domain not in the 

immediate vicinity of the ocean boundary, the sensitivities are a minimum (e.g., element 

36). The sensitivities increase over the continental rise, with the maximum sensitivity 

occurring at elements 56, 63 and 64. The sensitivities are also high for elements 57-59, 
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Figure 4.22 Elemental mass residual sensitivity to α0 for select elements in the east coast domain. 

The units of the sensitivity are m2s. These results are for a constant G simulation with G 
= 0.001 s-1.
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which is the range spanning the shelf break. The pattern is consistent with the results for 

sensitivity to . 

Figure 4.24 shows the mass residual sensitivity to  for the same set of elements.

The same general trends exist for the sensitivity to  as for the sensitivities to the other 

coefficients. The sensitivity is high near the ocean boundary, low in the deep ocean, then 

high again over the continental rise, especially near the shelf break. The plot for element 57 
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Figure 4.23 Elemental mass residual sensitivity to α1 for select elements in the east coast domain. 
The units of the sensitivity are ms. These results are for a constant G simulation with G = 
0.001 s-1.
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shows a negative bias. This same bias exists for elements 58 and 59, while element 56 has 

a positive bias.

4.7.3  Coefficient Corrections Based on Mass Residuals

In order to generate corrections based on mass residuals, the negative of the mass 

residual is used as the error. This is done because the error is the difference between the 

observations and model. The observations are taken as zero mass residual. In other words, 
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Figure 4.24 Elemental mass residual sensitivity to α2 for select elements in the east coast domain. 

The units of the sensitivity are m3. These results are for a constant G simulation with G = 
0.001 s-1.
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it is assumed that conservation of mass, in a finite volume sense, applies to the system under 

exploration. The least-squares corrections are computed from the mass residual sensitivity 

to  and the mass residual error vector. The elemental  corrections, based solely on the 

elemental mass residual and mass residual sensitivity to , are shown in Figure 4.25. For 

most of the domain, the corrections are small. The magnitude of the corrections are espe-

cially small based on results for elements 2 and 47 because the sensitivities are relatively 

large and the mass residuals are still relatively low. The largest corrections are for elements 

57 and 58. These are the elements on either side of the shelf break. 

The elemental  corrections, based solely on the elemental mass residual and mass 

residual sensitivity to , are shown in Figure 4.26. For most of the deep portion of the 

domain, the corrections are negative, with a local maximum (magnitude) occurring for 

element 45. The largest correction in the entire domain is based on the results for element 

1 (19.9 ) and it is outside the range of the plot. The area from element 48 through 

element 58 yields a wide range of corrections. The correction for  based on element 57 
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Figure 4.25 Elemental corrections to G based on mass residuals and sensitivity to α0. The results are 

for a constant G simulation with G = 0.001 s-1 on the east coast domain.
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(the element with the largest mass residual) suggests better mass balance can be achieved 

by decreasing . However, the majority of the elements on the continental rise yield posi-

tive corrections, although there is not a consistent pattern to the corrections. The corrections 

based on results for elements on the shelf are close to zero. 

The elemental  corrections, based solely on the elemental mass residual and mass 

residual sensitivity to , are shown in Figure 4.27. The results are consistent with the 

results for the other two coefficients. Specifically, the corrections for the majority of the 

domain are close to zero. However, there is a range of corrections suggested using the 

results for elements 48-58, although there is not a consistent trend to the corrections. The 

maximum positive correction is based on results for element 53 (  ), while 

the largest negative correction is based on the results from element 57 (  

). 
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Figure 4.26 Elemental corrections to G based on mass residuals and sensitivity to α1. The results are 

for a constant G simulation with G = 0.001 s-1 on the east coast domain.
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4.7.4  Analysis of Errors and Corrections for α0-Only Simulations

The appropriate correction to attempt to minimize mass residuals, based on the 

analysis in the previous section, is not readily apparent. In an attempt to shed some light on 

the interaction between the mass residual sensitivity to  and the mass residual, four 

constant  simulations were performed with  values of 0.0001, 0.001, 0.01 and 0.1 . 

The mass residual results for element 47 are presented in Figure 4.28. The mass residual 

results for element 57 are shown in Figure 4.29. Figure 4.30 contains the results for element 

62.    

The results for element 47 show that the minimum mass residual occurs with a 

constant value of  . The results for element 47 are consistent with the results 

throughout the deep portion of the domain. In contrast, the results for element 57 show 

decreases in mass residual with increases in  over the range of  values used in these 

simulations. The results for element 62 show a minimum mass residual for this set of simu-

lations with  , as well. For this set of simulations, the minimum mass 
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Figure 4.27 Elemental corrections to G based on mass residuals and sensitivity to α2. The results are 

for a constant G simulation with G = 0.001 s-1 on the east coast domain.
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Figure 4.28 Mass residual results for element 47 for simulations with G = 0.0001 (top left), 0.001 (top 
right), 0.01 (bottom left) and 0.1 (bottom right) s-1.
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Figure 4.29 Mass residual results for element 57 for simulations with G = 0.0001 (top left), 0.001 (top 
right), 0.01 (bottom left) and 0.1 (bottom right) s-1.
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residual for element 50 occurs with  . 

Based on the mass residual results for element 47, the correction using the results 

from the simulation with   should be positive while the corrections using 

the results from the simulations with  values of 0.01 and 0.1  should be negative. This 

is the case, as seen in Table 4.4. The corrections for element 62 should have the same sign 

as the ones for element 47. This, too, is the case. 

Based on the mass residual results for element 57, the corrections should be positive 

using sensitivities to  for element 57, at least over the range of constant  values used 

here. The corrections for the three simulations with the lowest  values are 0.00503, 

0.00591 and 0.0247 , respectively. Finally, the corrections for element 50 show positive 

values when  is less than the value that produces the smallest mass residual, and negative 
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Figure 4.30 Mass residual results for element 62 for simulations with G = 0.0001 (top left), 0.001 (top 
right), 0.01 (bottom left) and 0.1 (bottom right) s-1.
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when  is higher than the optimal  value. Based on these results, the sensitivity of the 

mass residual to  gives insight into how to adjust coefficients to reduce mass balance 

locally.

4.7.5  Analysis of Errors and Corrections using α1 Only

For this section, five simulations were performed using , with  

values of 0.1, 0.3, 1.0, 3.0 and 10.0 . These values were considered because they span 

two orders of magnitude, and the highest value was previously associated with the equa-

tions becoming “too primitive.” The mean and maximum elemental mass residual for each 

of the simulations is shown in Figure 4.31. The results for the last day of the simulation 

were used to compute maximum and mean values (i.e., for a given element, the mean is the 

average of the elemental mass residual over the last 24 hours of the simulation and the 

maximum is the highest (magnitude) elemental mass residual during that same time span). 

The general trends are similar to the trends seen for the constant  simulations. The 

error is high at the ocean boundary then decreases to a minimum in the deep ocean away 

from the boundary. The transition to the continental rise results in an increase in mass 

Table 4.4  Corrections to G value, ∆α0, based on mass residuals and mass residual sensitivities to α0 for 
different elements in the east coast domain. The  value listed is the  parameter value used for the 

simulation.

Element     

47 0.000142 minimuma

a. For a given element, the distinction “minimum” denotes the G value (from the set of four val-
ues) at which the mass residual is a minimum. The corrections are not identically zero for 
these elements as the actual minimum mass residual values do not generally occur at the 
exact G values used for the simulations. 

-0.00640 -0.114

50 0.000213 0.00192 minimum -0.158

57 0.00503 0.00591 0.0247 minimum

62 0.0000662 minimum -0.00882 -0.505

G α0

G 0.0001= G 0.001= G 0.01= G 0.1=

G G

G

G α1 H⁄= α1

m s⁄

G
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residual with the maximum mass error occurring near the transition from the continental 

rise to the continental shelf.

More specifically, though, the mass residual results show different trends for 

different areas. For element 2, the mean mass residual decreases with increasing  

through most the range with a slight increase in error moving from  to 

 . The results for element 30 show the same behavior. Element 50 shows 
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Figure 4.31 Maximum (black) and mean (gray) elemental mass residual for the east coast domain 
using different values of α1. The absolute value of the mass residual is used in 
computation of the maximum and mean values.
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reduced mass error due to each increase in , which is also the case for the elements on 

either side of the shelf break (57 and 58). However, elements 56 and 59 have mean mass 

residuals that generally grow with increasing . The elements on the continental shelf 

also show a general growth of mean mass residual with increasing .

Based on the discrepancy in mean mass residual trends associated with increasing 

, it is not surprising that the corrections to  based on mass residual and sensitivity to 

 show a fair amount of variation throughout the domain. Figure 4.32 shows the 

elemental corrections to  using mass residual results and sensitivity to  over the last 

day of the simulation with  . Focusing on particular data points, the correc-

tions based on results from elements 2, 30, 50, 57 and 58 are all positive, as predicted by 

analysis of the mean mass residual results. Likewise, the corrections are negative based on 

results for elements 56 and 59. Table 4.5 shows the corrections using information for the 

different elements for different simulations. As is readily apparent from analysis of the 

elemental corrections, the least-squares correction using the elemental mass residuals and 

mass residual sensitivity to  results in a decrease in the mass residual for the element 

used to generate the correction. However, the minimization of elemental mass residual at a 

given element does not necessarily result in improvement in elemental mass residual 

throughout the domain. In fact, as seen by the results for elements 56-59, a decrease in 

elemental mass residual for a given element does not even mean the mass residual is 

improved for the adjacent elements. Furthermore, the results for element 62 show that 

multiple local minimum mean mass residual values may exist for a given element. And, in 

that case, the final value of the coefficient resulting from sequential optimization may be 

influenced by the starting point for the coefficient in the optimization process. 
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Figure 4.32 Elemental corrections to α1 based on mass residual and sensitivity of mass residual to α1 
for a simulation with α1 = 1.0 m / s on the east coast domain.

Table 4.5  Corrections to α1 based on mass residuals and mass residual sensitivities to α1 for different 
elements in the east coast domain.

Element     

2 1.03 1.16 1.5 minimuma

a. For a given element, the distinction “minimum” denotes the coefficient value at which the 
mass residual is a minimum.

-8.82

30 0.182 0.0398 0.710 minimum -26.7

50 0.960 0.608 1.59 6.39 minimum

56 minimum -0.204 -1.62 -10.6 -84.3

57 0.0457 1.64 2.79 14.4 minimum

59 0.0612 minimum -2.34 -24.2 localb

b. For elements 59 and 62, there was a decrease in mean mass residual at high values of α1 
resulting in a local minimum value.

62 minimum -0.285 -2.88 0.022 local

α1 0.1= α1 0.3= α1 1.0= α1 3.0= α1 10.0=
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4.7.6  Mass Residuals and Mass Residual Sensitivities for Seamount 
Domain with Linear ADCIRC

While this chapter is dedicated to analysis of the non-linear shallow water equa-

tions, this subsection is included because of the focus on sensitivity of mass residual to . 

The mass residuals and sensitivities for the seamount domain with the explicit, linear code 

are shown in Appendix C.2.3 (  ) and Appendix C.3.3 (  ). The 

results for “Element 20” with   (Figure C.23) are an example of difficulty 

in attempting to eliminate mass balance error with ADCIRC. For the 31 node domain, the 

net flux term is positive throughout the time period shown in the plot (the third day of the 

simulation), and there is an increasing trend from tidal cycle to tidal cycle. The accumula-

tion term is periodic and centered around zero. Thus, there is obviously non-zero mass 

residual (resulting from the sum of the accumulation and net flux terms). 

The logical correction necessary to remedy the mass balance error is to decrease the 

net flux, rather than decrease the accumulation. The sensitivity of the net flux term to  is 

generally positive, so the net flux can be decreased by decreasing . However, the zero 

sensitivity values in time coincide with the maximum net flux values, suggesting that 

decreasing  might not be effective in reducing the maximum net flux values to reduce the 

mass residual at those instances in time. 

In Section 3.3.4, it was noted that the velocity sensitivity to  in the seamount 

domain does not tend towards zero as grid resolution is increased when  . The 

seamount results with   show the mass residual does not tend towards zero 

throughout the domain as grid resolution is increased. Element 15 in the 31 node grid shows 

a net flux sensitivity value of approximately -2,000,000 m2s near the end of the third day 
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of the simulation. Element 30 in the 61 node grid has a corresponding net flux sensitivity 

value of approximately -1,500,000 m2s. Per element length, there is actually a larger 

magnitude sensitivity for the element in the 61 node grid than the corresponding one in the 

31 node grid.

4.8   Conclusions

In this chapter, the forward sensitivity method was successfully applied to the 1-D 

non-linear version of ADCIRC with a three coefficient variable  parameterization. The 

sensitivity to the coefficients in the  parameterization was validated by comparing the 

FSM sensitivities to finite difference numerical analog sensitivities using multiple simula-

tion results to compute sensitivities to . Additionally, corrections to coefficients were 

calculated using elevation errors or mass residuals; the corrections using mass residuals 

also used the sensitivity of the mass residuals to . 

The results presented in this chapter show data assimilation using the FSM is useful 

in minimizing error through corrections to coefficients in the  parameterization. The 

majority of the focus was on correcting  coefficients using elevation errors because 

elevation observations are more prevalent than velocity observations for real applications. 

The  optimization in Section 4.6.2 showed sequential optimization can result in 

decreasing error. However, that case also showed it is important to focus corrections to 

important areas. The mean of the nodal corrections was used to compute the new  value 

for that set of simulations. The majority of the nodes are in the deep ocean portion of the 

domain. As a result, the mean correction was dominated by the errors and sensitivities in 

the deep ocean portion, rather than over the continental rise and on the continental shelf, 
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where it might be more desirable to minimize the error locally.

The analysis in Section 4.6.4 shows that multiple parameter estimation can be 

performed successfully. However, as in the constant  cases analyzed in Chapter 3, the 

corrections are highly-dependent on the  resulting from the parameterization. For terms 

in the  parameterization that increase with increasing coefficient values, the magnitude 

of the sensitivity to  generally decreases with increasing coefficient value. And, eventu-

ally, if the coefficient is increased too much, the resulting  parameterization will become 

“too primitive” and introduce spurious short-wavelength oscillations into the results and 

sensitivities. 

The implications of the sensitivities for corrections based on elevation errors are 

similar to the implications noted for the constant  case in the previous chapter. Specifi-

cally, sequential optimization is possible, as long as the initial coefficient set is close 

enough to the target value. Additionally, sequential optimization is more effective if the 

values in the initial set are too low; coefficient values that are too high generally result in 

overcorrections and the overcorrections can be extreme if the coefficient set is too far from 

the target set. When the coefficients result in the specification becoming “too primitive,” 

sensitivities often take the wrong sign (compared to the numerical analog sensitivities). 

This results in the correction being in the wrong direction.

The sensitivity of the mass residual to  is analyzed in Section 4.7. Results show 

that the FSM accurately predicts the change in mass residual based on a change in the  

parameterization. As a result, it is possible to decrease local mass balance error using 

elemental least-squares corrections to the  parameter. However, changing  to decrease 

the mass residual for a given element does not necessarily reduce the overall local mass 
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balance error. As the results in Section 4.7.4 and Section 4.7.5 demonstrate, the coefficient 

values that minimize the local mass residual are different for different elements. Thus, 

changing the coefficients in the  parameterization will, generally, increase the local mass 

residual at certain instances in the domain. And, as is the case on the east coast domain, 

decreasing the local mass balance error in the area with the highest mass residuals based on 

the elemental least-squares correction from element with the highest error may not actually 

reduce the maximum mass residual. The mass residual will be reduced at the previous peak 

location. However, a new peak location may arise, and the new maximum may be in the 

adjacent element.

The majority of the mass balance error results from inconsistent net flux values. The 

accumulation term, which is simply a function of the current elevations for the nodes 

defining an element, is fairly consistent from element to element. The net flux term 

involves the elevations and velocities. Using elevation errors to generate corrections may 

result in increased mass residuals. Therefore, it is important to understand the goal of a 

particular  optimization. The  parameterization that produces the optimal elevation 

field for a hurricane storm surge application may not result in the most mass conservative 

(locally) elevation and velocity field for a contaminant transport simulation. 
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 CHAPTER 5.  1-D Coupling of Channel Routing Models to ADCIRC

5.1   Introduction

A holistic coastal flood inundation model can be produced by coupling a hydrologic 

model for overland processes to a hydrodynamic model for coastal processes. There are 

numerous reasons to couple models and there are multiple ways to do so. One set-up is the 

coupling of a land surface-hydrology model with a mesoscale model. The land surface-

hydrology model supplies surface heat fluxes as boundary conditions to the mesoscale 

meteorology model MM5 [Chen 2001]. That set-up is similar in form to the one followed 

in this chapter, where different models pass information back and forth across a boundary 

between them, and it allows models to be combined to create a more comprehensive model. 

Another form of coupled modeling is nested grid modeling that simulates different parts of 

the domain with different model set-ups, which may include varying the model, grid reso-

lution and domain extent used. Nested grid models are common in meteorology and allow 

critical areas to be modeled at high-resolutions without incurring the computational 

expense of modeling the entire domain at the high-resolution, e.g. [Frohn 2002]. Research 

is currently underway to use a nested approach coupling ADCIRC to HYCOM (Hybrid 

Coordinate Ocean Model) in order to model baroclinic flow in the Gulf of Mexico and 

western Atlantic Ocean. This project uses initial and boundary conditions from HYCOM, 

a global ocean model to drive ADCIRC [Dresback 2009]. A nested approach is also used 

to couple wave models to ADCIRC, e.g. [Westerink 2008; Ziljema 2010; Dietrich 2010b]. 

Additionally, model coupling can use output from one model as the underlying physics for 
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another model, as in contaminant transport modeling, e.g. [Ng 1996], where the velocity 

field from a flow model drives the advective transport. 

In coupling a hydrologic model to a hydrodynamic model, a location must be spec-

ified where information is exchanged. This location (or set of locations if multiple 

exchanges are required, e.g., for multiple rivers within a single domain) is herein referred 

to as a “hand-off point” (or hand-off location). The goal of this study is to provide guidance 

for the location of the hand-off point based on the channel routing algorithm used in the 

hydrologic model. To this end, 1-D channel routing models have been developed that solve 

the continuity equation in conjunction with either the kinematic, diffusive or dynamic wave 

approximation to the momentum equation. 

The chapter begins with an overview of the channel routing models developed for 

the study. Then, the domains for the majority of the testing are presented in Section 5.3, 

which is followed by a brief comparison of the channel routing model results (Section 5.4). 

An outline of the coupled simulations is given in Section 5.5, which leads in to the one-way 

coupling (Section 5.6 through Section 5.8) and two-way coupling (Section 5.9 and Section 

5.10) portions of the chapter. The last section contains conclusions based on the 1-D 

coupling analyses.

5.2   1-D Channel Routing Models

Channel routing is a standard component of distributed hydrologic models that is 

used to represent river flow through the domain. However, the implementation of channel 

routing within hydrologic models is far from standard. Even among physics-based models, 

which use a combination of conservation of mass, momentum and energy equations, there 
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are a variety of approaches. For this study, we will focus on utilization of conservation of 

mass and momentum, which is generally the approach adopted for channel routing in 

physics-based hydrologic models. 

Three standard approximations to the momentum equation are employed frequently 

in hydrologic models. Yeh et al. [2005] describe WASH123D, an unstructured grid hydro-

logic model that can solve the continuity equation in conjunction with any of three 

momentum equation approximations (kinematic, diffusive or dynamic wave), and note that 

while the dynamic wave equation completely describes water flow, it is difficult to solve 

on steep slopes. Conversely, the kinematic and diffusive wave approximations are easier to 

solve, but errors occur when inertial terms are significant.

The structure of hydrologic models is also highly variable. For example, 

WASH123D uses a triangular, unstructured grid and solves 1-D channel flow along the 

edges of triangular elements that are used for 2-D overland flow and 3-D subsurface flow. 

TREX [Velleux 2006] also solves 1-D channel flow in elements along the edges of the 2-D 

overland cells, but differs in that it uses a structured grid. Vflo [Vieux 2002, 2004], like 

TREX, is a structured grid model. However, it uses a 1.5-D (1-D network) approach to 

represent the 2-D domain, with cell-to-cell connections being made using either an over-

land or channel specification. However, the 1-D coupling study is independent of the treat-

ment of channel routing within the larger 2-D domain and focuses simply on the channel 

routing component.

5.2.1  Kinematic Wave Approximation

Kinematic wave routing combines the continuity equation with the kinematic wave 
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approximation to the momentum equation. The continuity equation, assuming no lateral 

inflow or outflow, is given by (5.1) where  is depth of flow and  is the discharge per unit 

width, referred to as the “unit discharge” throughout the chapter (this is unrelated to the 

theory of the unit hydrograph [Sherman 1932] that is described in hydrology texts, 

including [Bedient 2002]).

(5.1)

The kinematic wave approximation, (5.2), assumes the friction slope, Sf, is equal to the 

bottom slope, S0. 

(5.2)

The velocity, u, can be related to the friction slope using Manning’s Equation, shown in 

(5.3), with the hydraulic radius, , calculated as shown in (5.4), where  is the cross-

sectional flow area,  is the wetted perimeter of the cross-section,  is Manning’s rough-

ness value, and  is the coefficient in Manning’s equation (equal to 1.0 for units in meters).

(5.3)

(5.4)

In order to create a numerical model for testing purposes, finite difference approx-

imations will be used to discretize the equations. In time, explicit time stepping will be used 

so the new variable quantities depend only on values from the previous time level. In space, 

upstream one-sided difference will be used. Using a reference system of the ocean on the 

left and the river flowing from right to left, discretization of (5.1) results in (5.5). 
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(5.5)

Rearranging (5.5) to the form shown in (5.6) allows the new depth values to be calculated 

explicitly, using the depth and unit discharge values from the previous time level.

 (5.6)

The numbering scheme for the nodes and elements for the kinematic and diffusive wave 

models is shown in Figure 5.1. 

For each time step, the calculation of the new water depths is the first step. Then, 

these depth values are used to update the velocity and unit discharge values. First, the 

velocity is calculated using Manning’s equation with the simplification of , which 

results from assuming representation of a rectangular channel cross-section with width, , 

much greater than depth. The simplification process for  is shown in (5.7) and is consis-

tent with the 1-D approach, assuming no variation “into the paper.” The resulting velocity 

and unit discharge updates are given by (5.8) and (5.9), respectively. The negative sign in 

(5.8) is necessary because the river flows from right to left (in the negative x-direction).

(5.7)

(5.8)

(5.9)
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Figure 5.1 Schematic representation of the discretization of nodes and elements for kinematic and 
diffusive wave channel routing models.
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5.2.2  Diffusive Wave Approximation

The diffusive wave approximation to the momentum equation differs from the kine-

matic wave approximation in that it assumes the friction slope is equal to the slope of the 

water surface rather than the bottom slope. The continuum equation for the diffusive wave 

approximation to the momentum equation is given by (5.10), where  is water surface 

elevation above a horizontal datum. Thus, the diffusive wave approximation allows water 

to move upstream depending on the gradient of the water surface, as water moves from 

areas of higher water surface elevation to areas of lower water surface elevation.

(5.10)

Upstream, one-sided finite differences were used for the continuity equation for the 

kinematic wave model because this model limits flow to the downslope direction. 

However, centered finite differences will be used for the continuity equation for the diffu-

sive wave routing model. Application of centered finite differences for the continuity equa-

tion, (5.1), using explicit time stepping results in (5.11).

(5.11)

The momentum approximation term, given by (5.10), can be treated using a one-

sided or centered finite difference approximation. Using the upstream one-sided difference, 

the discretized equation is (5.12). Using a centered difference, the discretized equation is 

(5.13). 

(5.12)

Z

Sf S0 x∂
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--------------------------------------- qj 1+
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(5.13)

Examination of a wave in the water surface represented by three nodes, as shown in 

Figure 5.2, shows why the centered difference may be the better choice for this set of equa-

tions. The wave will attempt to propagate in both directions, with water moving down-

stream (left) as well as upstream (right). If one-sided differences are used, the calculation 

of the friction slope at node  will have one sign (positive) if an upstream difference is used, 

and the opposite sign (negative) if a downstream difference is used. However, using 

centered differences, the friction slope at node  will be calculated using values at nodes 

 and . The friction slope at node j will be zero, resulting in zero velocity, and the 

water will move upstream at node  and downstream at node , which makes sense 

based on the continuum equations. 

The velocity for the diffusive wave model depends on the calculated friction slope. 

The magnitude of the velocity is calculated with Manning’s equation using the magnitude 

of the friction slope; the velocity takes the sign of the friction slope. Using the same approx-

imation for hydraulic radius as for the kinematic wave model, the velocity is given by 

Sf( )j
k Zj 1+

k Zj 1–
k–

∆x( )j ∆x( )j 1++
---------------------------------------–=

j

j

j 1– j 1+

j 1+ j 1–

j j + 1j - 1

Figure 5.2 Wave in water surface elevation represented by values at three successive nodes.
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(5.14). 

(5.14)

The unit discharge is calculated using the same method as for the kinematic wave equation, 

as shown in (5.9), with the new unit discharge being the product of the new water depth and 

velocity.

5.2.3  Dynamic Wave Approximation

The dynamic wave approximation to the momentum equation includes the advec-

tive terms that are neglected in both the kinematic and diffusive wave approximations. 

Solution of the dynamic wave equation model requires use of a staggered grid where equa-

tions for water depths and velocities are not solved at the same nodes; the finite difference 

approximation to the dynamic wave equations on a regular grid is inherently unstable 

[Chaudhry 1993]. As the velocities are offset from the water depths, the continuity equation 

used for the first two models, (5.1), has to be modified to the form found in (5.15), where 

 has been rewritten as . 

(5.15)

Applying the chain rule and moving the spatial derivative terms to the right-hand side 

results in (5.16).

(5.16)

Use of explicit centered finite difference yields the discretization given in (5.17), 

where  depends on the direction of flow.
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(5.17)

The numbering scheme for the dynamic wave model is similar to the one used for the kine-

matic and diffusive wave models. The difference for the dynamic wave model, as shown in 

Figure 5.3, is that the velocities use the same numbering as the elements and grid spacing, 

while the water depths remain at the previous node positions. 

Updated velocities come from solution of the momentum equation, given in 

continuum form in (5.18), where the first term on each side of the equations is new 

(compared to the momentum equation approximation (5.10) for the diffusive wave model). 

(5.18)

The  term is the local acceleration, while the convective acceleration is repre-

sented by the first term on the right-hand side, . Assuming constant grid 

spacing, which will be used for the 1-D simulations, the explicit finite difference equation 

for the momentum equation is given by (5.19). An upstream, one-sided difference is used 

for the advective term. The flow is assumed from right to left in the discretization in (5.19). 

The indexing on the finite difference approximation to the derivative in the advective term 

would be different for flow from the left to right.
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Figure 5.3 Schematic representation of the discretization of nodes and elements for the dynamic 
wave channel routing model, with velocities and depths staggered for stability.
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(5.19)

The calculations for the bottom and friction slope are given by (5.20) and (5.21), respec-

tively.

(5.20)

(5.21)

5.3   1-D Domains

Two domains have been created for this study. The first is the linear sloping domain 

containing 243 nodes shown in Figure 5.4. The total elevation change in the grid is 24.0 m, 

and the length of the domain is 120 km. Along the x-axis, the distance between nodes is 

500 m. The slope is 0.0002 m/m, which is consistent with the slopes of the Tar and Neuse 

Rivers in coastal North Carolina. This will be the primary domain considered in this 

chapter. 
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Figure 5.4 Linear sloping domain for 1-D simulations.
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The second domain, shown in Figure 5.5, has a linear sloping river discharging into 

a flat estuary with a depth of 3.0 meters. The flat estuary is similar to the Pamlico Sound at 

the mouth of the Tar and Neuse Rivers. After 10 km, the flat estuary transitions to a series 

of linear sloping regions, with the maximum depth of 10.0 m occurring at the ocean 

boundary 71 km from the upstream boundary. The same node spacing, 500 m, is used for 

this grid. Therefore, a total of 143 nodes are included in the variable sloping domain. 

5.4   Channel Routing Model Comparison

To test the three channel routing models, which will also be referred to as 

“hydraulic” models at times throughout this chapter, simulations were performed on the 

linear sloping domain. The upstream boundary forcing was the unit discharge hydrograph 

shown in Figure 5.6. The downstream boundary was treated with . The 

other simulation parameters are given in Table 5.1. The Manning’s roughness value was 

selected so normal depth would be the same in the 1-D ADCIRC and channel routing 

models with a unit flux of 2.0 .  

Table 5.1  Parameters for channel routing test case on linear sloping domain.

 m duration = 5.0 days

 s output every 15 min
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Figure 5.5 Variable sloping domain for 1-D simulations.

∂h( ) ∂x( )⁄ 0=

m s⁄

n 0.01934= nn 241= ∆x 500=

∆t 1.0= S0 0.0002=
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The unit discharge time series at locations 30, 60 and 90 km from the upstream 

boundary are shown in Figure 5.7. There is not a large difference in the unit discharge time 

series for the different models. However, it is apparent that there is a difference between the 

kinematic wave model and the others near the changes in the forcing; the diffusive and 

dynamic wave models have smoother transitions between the constant flow rate and the 

variable flow rate portions of the time series. The diffusive and dynamic wave models 

attenuate the peak and spread out the hydrograph more than the kinematic wave model 

does. However, despite the differences, all three models do a sufficiently good job of 

routing an inflow hydrograph downstream to the outflow from the domain. 

5.5   Outline of Coupling Simulations

The first four sections of simulations use the parameters outlined in Table 5.2. The 

first three sections investigate different variations of one-way coupling, where results from 

one model are used as boundary conditions for a different model simulation, while the 

fourth section deals with dynamic two-way coupling, in which information is passed 

between two models in a single simulation. 
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Figure 5.6 Upstream boundary forcing for the channel routing model test.
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The first set of simulations (Section 5.6) uses results from the full-domain ADCIRC 

model as the downstream boundary condition in hydraulic simulations. The full-domain 

ADCIRC simulation, as the name suggests, is an ADCIRC simulation performed on the 

entire domain. In terms of this study, “full-domain” implies forcing with the specified 

ocean elevation and upstream flow boundary conditions at their respective edges of the 

domain. Time series of elevations and velocities are output from the model at specified 

locations to be used as boundary conditions for subsequent partial-domain hydraulic simu-

lations. These hydraulic simulations are performed on varying domain sizes, with the 
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Figure 5.7 Unit discharge results for the three channel routing models at three locations on the linear 
sloping domain.

 

Table 5.2  Base simulation parameters for Section 5.6 through Section 5.9.

 duration = 2.5 days

 s output every 15 min 
for last 1.5 days

n 0.01934= Cf 0.003= G 0.01=

∆t 1.0= S0 0.0002= ε 0.0=
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upstream boundary location held constant. The downstream boundary (hand-off point), 

where the ADCIRC results are used as boundary conditions, varies between simulations.

The second of these sections (Section 5.7) focuses on partial-domain ADCIRC 

simulations forced with upstream boundary conditions from full-domain simulations (both 

ADCIRC and channel routing). The partial-domain ADCIRC runs have a constant ocean-

ward extent, which corresponds to the oceanward extent of the full-domain simulations. 

However, the inland extent of these simulations varies between simulations as the location 

of the hand-off point is modified.

The simulations in Section 5.8 do not use full-domain results as the boundary condi-

tions. Instead, partial-domain simulations are used to generate boundary conditions. The 

term partial-domain is, perhaps, a bit misleading when it is applied to simulations used to 

generate boundary conditions for one-way coupled simulations. The partial-domain 

ADCIRC simulation used to generate boundary conditions is actually an ADCIRC simula-

tion run on the entire domain. The difference between the partial-domain and full-domain 

ADCIRC simulations to produce boundary conditions is that the partial-domain ADCIRC 

simulation has all portions of the domain above mean sea level initialized as dry and the 

upstream boundary is treated as a zero flow boundary. Thus, while the partial-domain 

ADCIRC simulation uses the same grid file as the full-domain ADCIRC simulation, there 

is no river inflow. Furthermore, portions of the domain are dry in the partial-domain simu-

lation, while the entire domain is wet during the full-domain simulation because there is a 

river inflow at the right boundary. In contrast, the partial-domain ADCIRC simulations in 

Section 5.7 do not include the entire extent of the domain, but all the elements within the 

domain are active (wet) because there is a river flow applied at the upstream boundary.
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The partial-domain hydraulic simulations (to produce boundary conditions) also 

use the same grid file as the full-domain simulations. Furthermore, the entire domain is 

modeled as wet. Similar to the partial-domain ADCIRC simulation (to produce boundary 

conditions) described above, the major difference between the partial-domain and full-

domain hydraulic simulations is in one of the boundary conditions. In the full-domain 

hydraulic simulations, the boundary condition on the left side (ocean) boundary is a speci-

fied tide and surge elevation time series. In the partial-domain hydraulic simulation to 

produce boundary conditions for ADCIRC, the boundary condition at the left side 

boundary is normal depth. This treatment allows water to flow downstream without being 

subject to the tides and surge that cause backwater effects. Also, the initialization is 

different between the full- and partial-domain hydraulic simulations because the partial-

domain simulation treats the entire domain as a river, with a specified initial depth, whereas 

the full-domain simulation initializes with a minimum water surface elevation of mean sea 

level. Therefore, in the areas on the left side of the domain, the initial water surface eleva-

tion is lower in the partial-domain hydraulic simulations than in the full-domain hydraulic 

simulations.

The fourth simulation section (Section 5.9) uses the same grid files, but divides the 

domain so that ADCIRC models the ocean portion and the dynamic wave hydraulic model 

computes results on the river portion, although the extent of the domain handled by each 

model varies between simulations (as the hand-off point is moved). Information is passed 

from ADCIRC to the hydraulic model at each time step as the downstream boundary condi-

tion for the hydraulic model. Similarly, results at the downstream end of the hydraulic 

model are used as the upstream boundary condition in ADCIRC, i.e., dynamic two-way 
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coupling.

The final simulation section (Section 5.10) builds on aspects of the previous 

sections and explores two-way coupling using a different grid and different boundary forc-

ings than were applied previously. Specifically, the elevation ocean forcing time series is 

an approximation to elevation data captured during Hurricane Isabel. Additionally, the 

upstream flux forcing is adapted from USGS gauge data for Hurricane Floyd.

5.6   Hydraulic Simulations Using Full-Domain ADCIRC Forcing

In order to assess the impact of the momentum equation approximation on the 

ability to utilize downstream boundary conditions to model flow in the near-shore reaches 

of the river, simulations were performed using the three hydraulic models with downstream 

boundary conditions drawn from a full-domain ADCIRC simulation. This is a one-way 

coupling application, with information from ADCIRC used as a boundary condition in the 

hydraulic model. The full-domain ADCIRC simulation is run before the coupled simula-

tion; the ADCIRC simulation utilized the full grid with the elevation ocean boundary 

condition shown in Figure 5.8, as well as a constant upstream unit discharge value of 2.0 
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Figure 5.8 Elevation ocean boundary forcing for 1-D simulations.
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The downstream boundary conditions used for the one-way coupled hydraulic 

simulations come from the elevation and velocity fields in ADCIRC. Specifically, at the 

various hand-off locations chosen for coupling for different simulations (to assess the 

impacts of the location of the coupling), time series of elevations and velocities are output 

every time step during the ADCIRC simulation. For elevation downstream boundary forc-

ings, the water surface elevation values from ADCIRC are used as the boundary forcing. 

For flux forcing at the downstream boundary, the flux ( ) is the product of the depth from 

ADCIRC and the ADCIRC velocity at the hand-off point,  as shown in (5.22), where 

the depth is given by the sum of the water surface elevation, , and the bathymetry value 

at the boundary, . This value is applied as the boundary condition for the hydraulic 

model.

(5.22)

The channel routing codes are run with a 1.0 second time step, which matches the 

ADCIRC time step. The upstream boundary condition is the same constant discharge as is 

used in the full-domain ADCIRC simulation to create the boundary conditions: 2.0  

into the domain. This unit discharge is consistent with values often experienced by the Tar 

and Neuse Rivers. The error for the coupled simulation is calculated as the difference 

between the coupled simulation result and the full-domain ADCIRC simulation at a given 

location at a given point in time. The elevation RMS error in time, given by (5.23), is calcu-

lated in time for each node in the coupled simulation domain for a particular simulation.

(5.23)
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Less of the domain contains results for coupled simulations with the downstream boundary 

(hand-off point) further upstream (to the right). The  is computed for each node 

in the coupled simulation domain, as in (5.23), except the velocity results from the two 

models are substituted for the water surface elevations.

5.6.1  Kinematic Wave Channel Routing Results

The hydraulic code using the kinematic wave approximation for the momentum 

equation is independent of the downstream boundary condition except at the downstream 

boundary node. Thus, only one set of results will be shown for the kinematic wave routing 

model. Elevations from ADCIRC were applied as the downstream boundary condition, 

which has the result of creating zero elevation error at the downstream boundary location, 

as can be seen in Figure 5.9. The velocity error is shown to the right of the elevation error 

in the same figure. 

Graphs similar to those found in Figure 5.9 are prevalent in this chapter, so detailed 

discussion is warranted. The left panel shows the  for elevations in meters and the 

right graph shows the  for velocities in meters per second. There are seven lines, 
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Figure 5.9 Elevation and velocity RMSEt for the kinematic wave channel routing model on the 
linear sloping domain, forced with elevation results from ADCIRC at the downstream 
boundary. The lines decrease in darkness from the results for the simulation with the 
most oceanward hand-off point to the results for the simulation with the hand-off point 
farthest upstream.
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each corresponding to a different simulation. The only difference in the seven simulations 

is the extent of the channel routing domain and, therefore, the location of the downstream 

boundary specification (hand-off point). For the simulations on the linear sloping domain, 

the first hand-off location is at node 101, which has a bathymetry value of 2.0 m below sea 

level. The hand-off points occur in 1.0 m elevation intervals (10 node intervals), with the 

seventh location occurring 4.0 m above sea level at node 161.

A  is computed for each node in the coupled simulation domain. The black 

line in each of the graphs corresponds to the error results from the simulation using the most 

oceanward boundary location. The lines get successively lighter to denote the results for 

simulations with hand-off points farther upstream. 

Finally, addressing the results shown for the kinematic wave model in Figure 5.9, it 

is apparent that the boundary condition does not affect the model results except at the 

boundary. It appears that the black line disappears when the next lighter line starts, then that 

line disappears when the line for the third boundary location starts, and so on until the 

lightest line takes over. This is not the case. Instead, the lines simply plot over the top of 

each other because the same RMS error values occur for each simulation. The number of 

lines plotted on top of each other increases as one moves upstream. The same situation 

exists for the velocity errors. The main difference between the elevation and velocity plots 

is that specified elevation boundary condition causes the elevation error to be zero at the 

boundary and creates an increased error in the velocity at the boundary. There is a discon-

tinuity in the elevation fields between the models at the downstream boundary. Using 

Manning’s equation, the velocity is directly related to the water depth so there is also a 

discontinuity in the velocity field, which causes the error for the boundary node to be much 

RMSEt
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different than the error for the first non-boundary node.

The results for the variable sloping domain are presented in Appendix E.1.1. There 

are nine hand-off points with the downstream-most location at node 26, the second hand-

off point at node 33, and the rest in ten node increments upstream. The results for the vari-

able sloping domain are consistent with results for the linear sloping domain.

The interpretation of the results for the kinematic wave routing algorithm is 

straightforward. The solution is better as one moves farther inland, away from the areas 

affected by tidal action and storm surge, which are both combined in the elevation boundary 

condition at the ocean boundary for the full-domain ADCIRC simulation. The kinematic 

wave approximation to the momentum equation does not provide a mechanism for “back-

water” effects to be handled. As one moves upstream, the “backwater” effects for this simu-

lation become increasingly less important, which results in the kinematic wave model 

producing better results near the upstream boundary than it does in areas downstream. For 

node 171 in the linear sloping domain, which is 5.0 m above mean sea level (and 10 nodes 

upstream of the most inland hand-off point), the RMS errors for elevation and velocity are 

0.0031 m and 0.0020 , respectively. 

5.6.2  Diffusive Wave Channel Routing Results

There are three sets of results for the diffusive wave model on each domain, corre-

sponding to simulations with a variety of downstream boundary condition specifications: 

1) elevation, 2) flux, and 3) velocity. Centered finite difference was used for the diffusive 

wave approximation to the momentum equation for stability purposes; upstream treatment 

of the momentum equation produced more prevalent short wavelength oscillations in the 

m s⁄
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solutions. 

The  results for the different simulation sets on the linear sloping domain 

are shown in Figure 5.10. The results for the variable sloping domain can be found in 

Appendix E.1.2. The results are similar for all three boundary condition specifications. For 

the linear sloping domain, the RMS elevation error is in the range of 0.05 m, and the RMS 

velocity error is around 0.03 . However, the boundary condition has an impact on the 

shape of the error plots. When an elevation downstream boundary condition is used, the 

elevation error at the most oceanward node is zero. The elevation error increases to a 

maximum, then returns toward zero in the river upstream of the major backwater effects. 

The velocity error is a maximum near the boundary and decreases as you move upstream. 

It is worthwhile to note that there are also errors near the upstream boundary. However, 

these errors were not cause for major concern because they do not pollute the solution 

throughout the river. For example, with the elevation specified at the most oceanward hand-

off point, the RMS elevation and velocity errors at node 201 are 0.00046 m and 0.000098 

, respectively. This study is concerned with the near-coastal interface rather than the 

channel routing upstream boundary. 

When velocity is specified at the downstream boundary, the velocity error is zero at 

the boundary. However, for non-boundary nodes, the velocity boundary condition does not 

seem to have a major effect on the velocity errors. When the elevation boundary condition 

is used, the elevation errors gradually increase from zero at the boundary. However, when 

the velocity boundary condition is used, the velocity error increase is abrupt. This is a result 

of the diffusive wave model equations. The velocity boundary condition is used, in 

conjunction with the calculated depth, to compute the flux at the boundary. The flux, in 

RMSEt

m s⁄

m s⁄
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turn, is used in the calculation of the new depths at the first two nodes in the domain. 

However, there is no direct momentum advection due to the specified velocity. The move-

ment of water upstream results only from water surface elevation gradients. Additionally, 

the elevation errors are a maximum at the boundary. Thus, the flux that is calculated for use 

in the continuity computations is different than the ADCIRC flux at the location of the 

boundary.
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Figure 5.10 Elevation and velocity RMSEt results for the diffusive wave channel routing model on 
the linear sloping domain. Boundary conditions come from the full-domain ADCIRC 
simulation.
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Use of flux as the downstream boundary condition does not result in either zero 

elevation or velocity error at the boundary. In fact, it produces the largest elevation error at 

the boundary. However, it yields the lowest elevation error for nodes in the range of 130-

160. The velocity error is less than when the elevation boundary condition is used and on 

par with the results for simulations with the specified velocity boundary condition.

Overall, several general trends are present. First, regardless of boundary condition 

and boundary location, the errors tend toward zero as one moves upstream away from the 

backwater effects (although unrelated errors are present near the upstream boundary). 

Additionally, moving the boundary farther upstream reduces the error in the simulation. 

This is not particularly surprising because the presence of adverse velocities (upstream, 

opposite the direction of the bottom slope) decreases as one moves upstream. Thus, the 

inertial terms ignored in formulation of the diffusive wave model are less important, and 

the error from neglecting them is reduced. 

The results for the variable sloping domain support the findings from the linear 

cases. Specifically, solutions using centered differences are better than corresponding 

results using one-sided differences. Additionally, similar error levels exist regardless of the 

type of information used at the downstream boundary for the diffusive wave model. The 

overall error levels are slightly higher, but this is primarily due to the use of more ocean-

ward hand-off points for the variable sloping domain.

5.6.3  Dynamic Wave Channel Routing Results

Two sets of simulations were performed using the dynamic wave channel routing 

model, with the only difference being the information used as the downstream boundary 
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condition: 1) elevation and 2) velocity. The results for the linear sloping domain are shown 

in Figure 5.11. The graphs on the left are elevation errors, while the graphs on the right are 

velocity errors. The ADCIRC velocity applied as the boundary condition is the value from 

the ADCIRC node that coincides with the first elevation node in the dynamic wave simu-

lation. Due to the staggered finite difference grid, this treatment introduces a small error in 

the velocity forcing, which is why the velocity error is not zero at the hand-off point. 

The plots for the dynamic wave channel routing model show similar results for both 

domains (the variable sloping domain results are presented in Appendix E.1.3), and general 

patterns seen with the other momentum equation approximations hold for the dynamic 

wave model as well. However, before addressing the general results, a few graph genera-

tion specifics should be noted. First, the error scales are different for the different sets of 
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Figure 5.11 Elevation and velocity RMSEt for the dynamic wave channel routing model simulation 
sets on the linear sloping domain. The downstream boundary conditions come from a 
full-domain ADCIRC simulation.
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results. The range of elevation errors for the dynamic wave results is 0-0.05 m, whereas the 

range for the diffusive wave results is 0-0.15 m. Additionally, the non-zero velocity errors 

when velocities are used as the specified boundary condition are a result of the use of a stag-

gered grid. The velocities for the dynamic model are offset from the velocities for ADCIRC 

by . Rather than average the velocities so the locations coincide, the upstream 

velocity from the dynamic wave results is compared to the ADCIRC result. 

Returning focus to analysis of the results, the errors for the dynamic wave simula-

tions are about half as much as the errors for simulations using the diffusive wave approx-

imation to the momentum equation for both domains. Trends that hold from the previous 

simulations (with the different momentum equation approximations) are that results are 

better for upstream locations within the domain and simulations with more upstream hand-

off locations. Additionally, the choice of information specified at the downstream boundary 

does not have a significant role in peak errors in elevations or velocities. However, as with 

the diffusive wave approximation, the shape of the error graphs and the location of the 

maximum errors is dependent on the boundary condition specification.

5.7   ADCIRC Simulations Using Full-Domain Simulation Forcing

Previously, the effects of changing the downstream boundary condition, hand-off 

location, and complexity of the momentum equation in the channel routing model were 

investigated. In this section, a similar investigation will be performed to gain an under-

standing of the implications of upstream boundary forcings on the 1-D ADCIRC model.

The full-domain channel routing model was run to obtain results to use as the 

upstream boundary forcing for the ADCIRC simulations. The overall boundary forcings for 

∆x( ) 2⁄
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this investigation are the same as for the previous inquiry. Specifically, a constant upstream 

flux of 2.0  into the domain is used and a tidal signal with a surge wave superimposed 

is used as the elevation forcing at the ocean boundary. A total of six sets of simulations 

result from using both domains (linear sloping and variable sloping) with the three 

hydraulic models (kinematic wave, diffusive wave and dynamic wave).

Before examining the effects of the boundary conditions on the ADCIRC model, it 

may be useful to better understand the information being passed into ADCIRC at the 

upstream boundary. This was not a major issue in the previous study using ADCIRC results 

as the boundary conditions because the model used to produce all the boundary conditions 

was consistent across all the simulations. The plots in Figure 5.12 show the elevation and 

velocity errors for each of the hydraulic models, as compared to the full-domain ADCIRC 

results on the linear sloping domain. It is important to note that the error ranges are not 

consistent between graphs. 

As expected, the dynamic wave full-domain results most closely resemble the full-

domain results from ADCIRC. The peak error for the dynamic wave elevation results is 

about one-half the largest elevation error for the diffusive wave results. This is also true for 

the results on the variable sloping domain shown in Appendix E.2.1. The dynamic wave 

model excels, compared to the diffusive wave and kinematic wave models, in capturing 

similar velocity fields to those produced by ADCIRC. This result is not surprising; the kine-

matic and diffusive wave approximations neglect the acceleration terms found in the 

dynamic wave approximation. One source of error that may account for a portion of the 

difference seen between the dynamic wave and ADCIRC solutions is the bottom friction 

scheme employed. The channel routing models use Manning’s equation for friction, which 

m2 s⁄
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is different than the scheme used in this particular ADCIRC simulation. The Manning’s 

roughness value was chosen to produce equivalent steady-flow results in the river at the 

base river inflow, but that value does not produce equivalent results for all locations (i.e., 

the ocean portion of the domain) in the domain or for different flow rates. 
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Figure 5.12 Elevation and velocity RMSEt for the full-domain hydraulic models compared to the 
full-domain ADCIRC results on the linear sloping domain. 
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5.7.1  Elevation Upstream Boundary Condition from Hydraulic 
Models

The first round of simulations using ADCIRC on the partial domain consisted of 

specifying the elevation from the full-domain hydraulic solutions as the upstream boundary 

condition. The elevation and velocity  results can be seen in Figure 5.13. It is 

important to note the scales used on the graphs when comparing results between plots. 

Additionally, the full-domain ADCIRC result is used as the true solution. 
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Figure 5.13 Elevation and velocity RMSEt for ADCIRC on the linear sloping domain using elevation 
upstream boundary conditions from the three different channel routing models.
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Not surprisingly, the higher the error in the boundary conditions, the more error 

there is in the simulation solution. Thus, the solution is much better when forced with the 

dynamic wave results at the upstream boundary than with the diffusive wave results. Simi-

larly, ADCIRC produces better results using boundary conditions from the diffusive wave 

hydraulic model than when boundary conditions from the kinematic wave model are spec-

ified. However, if the hand-off point is far enough upstream that the tides and surge do not 

impact the channel routing solution in that area, boundary conditions from the kinematic 

wave model can be used to produce satisfactory ADCIRC simulation results.

At the ocean boundary, the elevation boundary condition specification constrains 

both models (the full-domain ADCIRC and the partial-domain ADCIRC using upstream 

boundary conditions from the hydraulic routing model), yielding zero  error. For 

each set of elevation error results, the error increases incrementally as one moves upstream 

until a maximum is reached at the hand-off location, where the elevation boundary condi-

tion from the hydraulic model is specified. The velocity errors follow the same trend. They 

decrease as one moves from the upstream boundary to the ocean boundary. One trend that 

exists for both the elevation and velocity results is that, for a given node, the elevation and 

velocity errors are lowest for the simulation with the hand-off point farthest upstream. The 

error at a given node increases as the upstream boundary location is moved downstream. 

This is not particularly surprising given the errors shown in Figure 5.12. Over the range of 

hand-off points, the elevation error between the full-domain hydraulic and full-domain 

ADCIRC simulations increases from upstream to downstream.

In general, the same trends hold for partial-domain ADCIRC simulations, using 

elevation upstream boundary conditions, on the variable sloping domain. These results are 

RMSEt
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presented in Appendix E.2.2. Simulations with boundary conditions from the dynamic 

wave model produce the best results, whereas using results from the kinematic wave model 

to force ADCIRC produce the worst set of results. Due to the fact that hand-off locations 

do not exist as far upstream for the variable sloping domain as they do for the linear sloping 

domain, the errors using boundary conditions from the kinematic wave model do not 

approach zero like they do for the linear domain. However, if the boundary was moved 

upstream, away from locations where tides and surge play a prominent role in the solution, 

ADCIRC could produce satisfactory results on the variable sloping domain using boundary 

conditions from the kinematic wave model.

5.7.2  ADCIRC Forced with Upstream Boundary Condition from 
Dynamic Wave Model

Based on the previous results, the full-domain dynamic wave results are the best 

choice for limiting ADCIRC error because the dynamic wave algorithm provides the 

results most consistent with the full-domain ADCIRC results. Thus, for testing the different 

types of upstream boundary conditions for ADCIRC, the full-domain dynamic wave results 

will be used. Using the time series elevation and velocity results from the full-domain 

dynamic wave hydraulic model as upstream boundary conditions, elevation and velocity 

errors were generated (again comparing to the full-domain ADCIRC solution) for two 

boundary forcings: 1) specifying elevation, as in the previous section, and 2) specifying 

flux. The plots for the linear sloping domain can be found in Figure 5.14. The corre-

sponding plots for the variable sloping domain are provided in Appendix E.2.3. 

Comparing the results with elevations specified at the upstream boundary to the 

results with flux specified, the error plots are similar in shape. The results, again, are better 
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with the boundary farther upstream. This is reasonable because the full-domain hydraulic 

results are most like the full-domain ADCIRC results near the upstream boundary of the 

domain. The error results differ in the magnitudes of the errors. When elevations are spec-

ified, the  for both elevations and velocity is approximately twice as much as the 

corresponding error when flux is used as the upstream boundary condition. The error results 

for the variable sloping domain show the same trends as the results for the linear sloping 

domain.

Up to this point, elevation and velocity errors have been reported. However, since 

flux is used as a quantity for boundary condition specification, it seems prudent to use flux 

 as a tool for analyzing both the error in the boundary condition time series and the 

partial-domain flow fields. Additionally, the discharge is an important quantity for analysis 
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Figure 5.14 Elevation and velocity RMSEt for ADCIRC using elevation or flux upstream boundary 
conditions from the dynamic wave hydraulic model on the linear sloping domain.
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of river systems. The flux  for the full-domain dynamic wave channel routing 

model on the linear sloping domain, compared to the full-domain ADCIRC model, is 

shown in Figure 5.15. The flux error is negligible for the most upstream portions of the 

domain. This is expected due to the constant upstream flux boundary condition used in each 

of the models. 

The specified elevation ocean boundary condition constrains neither the velocities 

nor, by extension, the fluxes. The different numerical schemes introduce some error 

between the solutions for portions of the domain influenced by tides and surge, and the flux 

 is 1.22  at the ocean boundary. Referring back to Figure 5.12, the velocity 

 for the dynamic wave model at the ocean boundary node is 0.096 . These 

results, fortunately, equate. If the water depth is constant at a location and there is no error 

in the water depth calculation, the flux  value is simply the velocity  value 

multiplied by the depth of flow. The bathymetry value at the ocean boundary is 12 m. The 

depth is not constant throughout the simulation, but the deviation of the tidal signal is less 

than 10% (plus or minus) of the bathymetry value. The average depth is greater than the 

bathymetry value because of the surge signal superimposed on the tidal oscillation. 
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Figure 5.15 Flux RMSEt for the full-domain dynamic wave channel routing model on the linear 
sloping domain. The full-domain ADCIRC solution is used as the true solution.

RMSEt m2 s⁄

RMSEt m s⁄

RMSEt RMSEt
195



However, the bathymetry value gives a good estimate of the depth throughout the simula-

tion. The ratio of the RMS flux error to the RMS velocity error is 12.7 m, which is slightly 

greater than the bathymetry value. Therefore, the flux errors are consistent with the velocity 

errors.

The flux  for the two sets of partial-domain ADCIRC simulations on the 

linear sloping domain, forced with upstream boundary conditions from the dynamic wave 

channel routing model, are shown in Figure 5.16. The flux errors for the variable sloping 

domain are provided in Appendix E.2.3. As is to be expected from the elevation and 

velocity , the flux  are smaller when flux is used as the upstream boundary 

condition than when elevations are specified. The shape of the flux error lines is different 

than the elevation and velocity error lines for the same simulation sets. Specifically, for the 

simulations with the most oceanward hand-off points, the RMS flux errors are higher near 

the boundary than near the hand-off location. The elevation and velocity errors decrease 

from the maximum values at the hand-off to minimum values at the ocean boundary. This 

increase in flux error is due to the increasing bathymetry as the ocean boundary is 

approached. 
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Figure 5.16 Flux RMSEt for ADCIRC using elevation or flux upstream boundary conditions from the 
dynamic wave hydraulic model on the linear sloping domain.
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5.7.3  ADCIRC Forced with Upstream Boundary Condition from 
ADCIRC

An alternative for looking at the effect of boundary conditions on ADCIRC is to use 

the full-domain ADCIRC solution to provide the upstream boundary condition values. The 

results for the partial-domain simulations on the linear sloping domain, with elevation or 

flux boundary conditions, are shown in Figure 5.17. The errors for this scenario are directly 

related to the boundary condition (location and type of information specified), i.e., not due 

to any internal model differences. Note the error scales are two orders of magnitude lower 

for these results than for the partial-domain ADCIRC results using upstream boundary 

conditions from the full-domain dynamic wave hydraulic routing model (c.f. Figure 5.14

and Figure 5.16). 

When full-domain ADCIRC results are used as the upstream boundary condition 

for the partial-domain ADCIRC simulation, the errors are about 80% less when the flux is 

specified than when the elevation is specified. The scales on the velocity plots make the 

comparison of the velocity errors somewhat difficult. However, the flux errors at the ocean 

boundary provide some insight into the relative velocity errors at that location using the 

simplified relationship between velocity and flux RMS errors mentioned previously. The 

flux errors differ by a factor of five at the ocean boundary. The velocity errors differ by 

approximately the same factor. For example, with the hand-off point at node 131, the ratio 

of the flux  values (  with elevation forcing divided by  with flux 

forcing) at the boundary is 4.84. The corresponding ratio of velocity  values is 4.77. 

The results, shown in Appendix E.2.4, are mixed on the variable sloping domain. 

Specifying flux at the upstream boundary produces significantly better results than speci-
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fying elevations for the boundary locations upstream of the estuary. Additionally, for the 

one location in the middle of the estuary, the results are significantly better with the flux 

specification. However, for the boundary locations that occur at changes in the slope of the 

domain (the two most oceanward locations and the middle location of the seven), the eleva-

tion specification produces better results, especially for elevations on either end of the flat 

estuary.
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Figure 5.17 Elevation, velocity and flux RMSEt for ADCIRC using elevation and flux upstream 
boundary conditions from the full-domain ADCIRC model on the linear sloping domain. 
Note the scales are not the same.
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5.8   Simulations Using Boundary Forcing from Partial-Domain 
Simulations

Previously, results were shown for simulations using boundary conditions from 

full-domain simulations. This treatment of the problem, while providing useful insight, is 

not analogous to real world, one-way coupling of models. Generally, hydraulic routing 

components within hydrologic models do not cover the ocean and accept ocean elevation 

boundary conditions. Similarly, hydrodynamic models do not cover significant portions of 

the river basin system and, thus, do not ingest precipitation forcing to generate river 

discharges. 

For the one-way coupled results presented below, the partial-domain ADCIRC 

simulations use upstream boundary conditions from the partial-domain dynamic wave 

hydraulic model results. The hydraulic model run assumes the depth does not vary in space 

at the downstream boundary, rather than using the tides and surge elevation boundary time 

series. Despite using the entire 241 node linear sloping grid, it is referred to as a partial-

domain simulation because it only receives the forcing information at one of the two bound-

aries (in this case, the upstream boundary). Revisiting Figure 5.7, the momentum approxi-

mation used in the channel routing model has minimal effects on the results on the linear 

sloping domain when there is not a downstream boundary condition causing backwater 

effects. Thus, to avoid redundancy, only dynamic wave results will be used to force the 

partial-domain ADCIRC simulations. However, the simulations could have just as easily 

been performed using results from the kinematic or diffusive wave models without intro-

ducing significant error. Similar to previous simulation sets, the different boundary condi-

tion sets for the partial-domain ADCIRC simulations are derived from the results of one 

hydraulic model run. The elevation and velocity fields are recorded at different hand-off 
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locations. 

Subsequently, the 1-D ADCIRC model is run without any river discharge input at 

the upstream boundary. The elevations are specified as the ocean boundary condition and 

ADCIRC handles the problem as a moving boundary problem on the river side, with the 

extent of the active elements moving in and out with the tides and surge. Results from 

ADCIRC will be used as downstream boundary conditions for the partial-domain hydraulic 

simulations. 

Simulations for this section have the same parameters as previous simulations. 

However, the length of the simulations has been changed to 5.0 days, with output recorded 

every 15 minutes for the last four days. Additionally, the timing of the surge signal on the 

ocean boundary has been delayed half a day, as seen in Figure 5.18. Finally, a non-constant 

river discharge is used as the upstream boundary condition. The unit discharge hydrograph 

is shown in Figure 5.19. 
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Figure 5.18 Elevation ocean boundary forcing for 1-D simulations.
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5.8.1  ADCIRC Forced with Upstream Boundary Condition from 
Dynamic Wave Hydraulic Model

The dynamic wave hydraulic model was run on the entire domain using the 

discharge hydrograph, Figure 5.19, as the upstream boundary condition. However, rather 

than specify a time series of elevation as the downstream boundary condition, the condition 

 is used at the downstream boundary. Thus, the elevation depends on the 

flow at the downstream boundary location. Elevation or flux results from this simulation 

are used as the upstream boundary condition in the one-way coupled ADCIRC simulations. 

ADCIRC uses the elevation tides and surge boundary condition as the ocean forcing and 

results are compared to the full-domain ADCIRC simulation using the elevation ocean 

boundary condition and the discharge hydrograph upstream boundary condition.

The  for the partial-domain ADCIRC simulations on the linear sloping 

domain are shown in Figure 5.20. The plots clearly show the errors are significantly less 

when flux is used as the upstream boundary condition forcing for the partial-domain 

ADCIRC model. The elevation and velocity  are generally about 4-5 times larger 

for the simulations when the elevations from the dynamic wave model are used as the 
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Figure 5.19 Unit discharge hydrograph used as the upstream boundary condition.
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upstream ADCIRC boundary condition. The flux  follow the same trend. For the 

middle hand-off location (boundary at node 131), the average ratio of nodal flux  

(  with elevation forcing to  with flux forcing) is 3.11 with a maximum of 

3.40 and a minimum of 2.89. 
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Figure 5.20 Elevation, velocity and flux RMSEt for ADCIRC using elevation and flux upstream 
boundary conditions from the partial-domain dynamic wave model on the linear sloping 
domain. Note the scales are not the same.
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Additionally, the results show the partial-domain ADCIRC errors decrease as the 

hand-off location is placed farther upstream. This is not a new result. The impact of the 

ocean boundary condition decreases as one moves upstream towards the upstream 

boundary of the domain. Placing the hand-off location upstream of major backwater effects 

is particularly important in this scenario because the channel routing model used to create 

the boundary conditions is not subject to the ocean boundary forcing. Therefore, when the 

hand-off location is in a region with significant backwater effects, the coupled model result 

will not accurately represent the full-domain true solution because the upstream boundary 

condition forcing will not be consistent with the actual hand-off location values. The results 

for the variable sloping domain, shown in Appendix E.3.1, follow the same trends.

5.8.2  Dynamic Wave Hydraulic Model Forced with Downstream 
Elevation from ADCIRC

For this set of simulations, the full-domain ADCIRC simulation used the elevation 

ocean boundary condition time series, Figure 5.18, and allowed wetting and drying to occur 

on the right side of the domain throughout the simulation. There was no flux input at the 

upstream boundary of the domain. The elevation results at the different hand-off locations 

were used to force the dynamic wave hydraulic model at the downstream boundary. When 

the specified elevation resulted in a flow depth of less than 0.5 m at the boundary, the spec-

ified elevation was adjusted so the depth was equal to 0.5 m. The discharge hydrograph, 

Figure 5.19, was applied to the upstream boundary in the partial-domain dynamic wave 

hydraulic simulation.

The elevation and velocity  results for the partial-domain dynamic wave 

model simulations on the linear sloping domain are presented in Figure 5.21, while the 

RMSEt
203



results for the variable sloping domain are contained in Appendix E.3.2. The results are not 

surprising. There is a large amount of error in the elevation boundary conditions used 

because the ADCIRC simulation used to generate the boundary conditions assumes the 

river is dry, so the elevations are vastly under-predicted in the regions of the domain that 

are dominated by river flow. The error in the elevation boundary condition specified at the 

hand-off, in turn, results in large error values adjacent to the hand-off point. However, the 

farther one moves away from the boundary, the better the coupled results become. The 

elevation and velocity  do not go to zero at the upstream boundary because the fric-

tion parameterizations are not equivalent for the range of flow rates encountered in this set 

of simulations. However, away from the hand-off point, the  reach an asymptotic 

value. 

5.9   Two-Way Coupling of ADCIRC to the Dynamic Wave 
Hydraulic Model

The previous simulations were all one-way coupled simulations where one model 

(either ADCIRC or a hydraulic model) was running and accepting boundary conditions 

from a previous simulation. Thus, the flow of information was one-way. This section, 
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Figure 5.21 Elevation and velocity RMSEt for the partial-domain dynamic wave model using 
elevation and downstream boundary conditions from the partial-domain ADCIRC 
simulation on the linear sloping domain.
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examines a series of two-way coupled simulations using ADCIRC and the dynamic wave 

hydraulic model. At each time step, the flux is passed from the hydraulic model to ADCIRC 

as the upstream boundary condition. Additionally, the hydraulic model uses elevation 

results at the hand-off point as its downstream boundary condition. For the first set of simu-

lations, the upstream boundary condition is a constant unit discharge of 2.0  into the 

domain. For the second set, the upstream boundary condition for the hydraulic model is the 

5.0 day variable unit discharge time series (Figure 5.19). For both sets, the ocean boundary 

condition for ADCIRC is the 5.0 day tides and surge elevation time series (Figure 5.18).

Figure 5.22 (constant upstream boundary flux) and Figure 5.23 (non-constant 

upstream boundary flux) show the elevation and velocity , compared to the full-

domain ADCIRC simulations, for the two-way coupled simulations on the linear sloping 

domain. Similar to previous data sets, each line corresponds to a run with a particular hand-

off location, with ADCIRC used oceanward of the boundary and the hydraulic model 

covering the domain upstream of the coupling location. The corresponding figures for the 

variable sloping domain are provided in Appendix E.4. 
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Figure 5.22 Elevation and velocity RMSEt for the two-way coupled simulations with a constant 

upstream unit discharge boundary condition of 2.0 m2 / s into the linear sloping domain. 
The full-domain ADCIRC simulation is used as the true solution.
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Throughout the domain, the error tends towards zero as the hand-off location 

between the models is moved upstream. In other words, given two simulations that are 

equivalent aside from the hand-off point, the  will generally be lower for the simu-

lation with the hand-off point farther upstream. Conversely, the largest errors are found 

when the coupling boundary is most oceanward. The error is less than the error using the 

same model set-up but forcing the partial-domain ADCIRC simulations with flux upstream 

boundary conditions from the full-domain dynamic wave simulation using a one-way 

coupling. However, the errors are higher than for the partial-domain ADCIRC simulations 

using full-domain ADCIRC flux results as the upstream boundary condition. The results 

are better for hand-off locations farther upstream due to the flow field being more uniform 

in the river than down in the areas influenced by backwater effects, especially when the 

constant flow rate (2.0 ) used to calibrate the Manning’s roughness value is used as 

the river boundary condition. The full-domain ADCIRC and dynamic wave hydraulic 

models do not produce the exact same results, so there is some error inherent to the choice 

of the true solution.

There is more error when the non-constant flux discharge is used for the upstream 
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Figure 5.23 Elevation and velocity RMSEt for the two-way coupled simulations with a non-constant 
upstream unit discharge boundary condition into the linear sloping domain. The full-
domain ADCIRC simulation is used as the true solution.
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boundary forcing. Specifically, the error near the upstream boundary is constant, as in the 

previous case, but the asymptotic value is non-zero. This is due to the full-domain ADCIRC 

model producing larger flow depths than the dynamic wave channel routing models for unit 

discharges above 2.0 . The larger flow depths with ADCIRC are a result of the differ-

ences in the friction treatment. With the same unit discharge, the larger flow depths for 

ADCIRC (than for the dynamic wave hydraulic model) result in lower velocities in the river 

for the true solution than for the coupled simulations.

5.10   Two-Way Coupling Application Using North Carolina 
Information

In order to further test the two-way coupled model, information from the Tar River 

and Pamlico Sound domain explored in the next chapter was used to create grid and input 

files for the 1-D model.

5.10.1  Grid

The Tar and Neuse Rivers discharge into the Pamlico Sound in North Carolina. The 

sound is separated from the Atlantic Ocean by barrier islands. In order to create a realistic 

grid for 1-D simulations, elevations from the 2-D ADCIRC grid [Blanton 2008] were used 

as the background to create the bottom profile down the river, through the estuary and out 

into the Atlantic Ocean. Points were extracted every 5 km along the Tar River in the 2-D 

ADCIRC grid, starting at the upstream boundary northwest of Tarboro, NC. The profile of 

the Tar River is shown in Figure 5.24, with a third-order polynomial fit given by (5.24), 

where x is distance from the upstream boundary in km. 

(5.24)

m2 s⁄
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Elevations from the Pamlico Sound through the barrier islands into the Atlantic Ocean can 

be seen in Figure 5.25, with a fit line given by (5.25), where x is distance from the outlet of 

the Tar River in km. 

(5.25)

Points for the Pamlico Sound and Atlantic Ocean were selected every 10 km. The fit lines 

do not provide an exact representation of the system, but they pick up the large scale topo-

graphic/bathymetric trends and introduce a more realistic domain than the domains used 

previously. 
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Figure 5.24 Smooth channel (solid line) for generation of 1-D domain points plotted against 
elevations for the Tar River from the ADCIRC grid (points)
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The bottom elevations for the 1-D grid were created by combining the two elevation 

functions, reversing the x-coordinate values so the ocean is on the left and the river is on 

the right, and enforcing a minimum slope of 0.00001 m/m from right to left. The minimum 

slope criterion was enforced to minimize problems if the kinematic wave model was used 

(although it was not applied to this domain for this study). With the kinematic wave approx-

imation, the velocity depends on the bottom slope. If the bottom slope is zero, the velocity 

will also be zero. Thus, the water will not be able to travel past a section of zero or negative 

slope. Additionally, the grid was extended on the upstream side to 15.0 m using a linear 

slope of 0.0001 m/m. The bottom elevations for the 1-D grid are shown in Figure 5.26. 

5.10.2  Hydrologic Input

The worst riverine flooding on the Tar and Neuse Rivers resulted from rainfall from 

Hurricane Floyd in 1999 [Bales 2000, 2003]. The daily data (discharge and stage) from 

USGS Station 02083500 for the Tar River at Tarboro is plotted in Figure 5.27. In order to 

use the data from Hurricane Floyd in a 1-D framework, an estimate of the unit discharge 

hydrograph must be made so the stage values for the 1-D simulations are similar to the 

values encountered during the event. Using estimates of bottom slope and Manning’s 
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Figure 5.26 Bottom elevations for 1-D North Carolina grid.
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roughness value of 0.00015 m/m and 0.025, respectively, a reasonable match can be 

achieved to the USGS flow rates by assuming a 60 meter wide rectangular channel and 

calculating the flow rate using Manning’s equation, with R = h, and the USGS stage values. 

A comparison of the calculated discharges (with this stage-discharge relation) to the actual 

values is shown in Figure 5.28. 

The fifth-order best fit polynomial to the USGS results (black dots) for days 13 

through 28 of Figure 5.28 is given by (5.26), where x is the number of days for the data set, 

and the line for this polynomial is shown in Figure 5.29. 

(5.26)
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Figure 5.27 Estimated discharge and stage values for the USGS station for the Tar River at Tarboro, 
NC due to rainfall run-off from Hurricane Floyd.
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Figure 5.28 Comparison of discharges calculated using USGS stage values assuming uniform flow 
and a rectangular channel (gray) to the actual USGS daily discharge values (black).
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Then, the stage for the rectangular section described above can be calculated from the best 

fit polynomial for the discharge. A comparison of the computed stage for the 1-D system 

with the actual data is shown in Figure 5.30. Note that no stage values are available for the 

time period just before the peak. The unit discharge hydrograph for the 1-D simulation 

system for Hurricane Floyd is shown in Figure 5.31. 

5.10.3  Hurricane Elevation Boundary Forcing

Information from Hurricane Isabel (2003) was used to generate the ocean elevation 

boundary condition. This storm was chosen because it is a recent hurricane that made land-
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Figure 5.29 Plot of a fifth-order polynomial fit to the USGS Hurricane Floyd discharge hydrograph 
for the Tar River at Tarboro, NC.
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Figure 5.30 Comparison of stages calculated using USGS discharge values, assuming uniform flow 
and a rectangular channel (gray), to the actual USGS daily stage values (black).
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fall in the target study area. Rather than use actual results, an approximate time series was 

generated that facilitated implementation consistent with the current ocean elevation 

boundary forcing in the 1-D model. Furthermore, the implementation would allow for 

simple modifications to the boundary forcing to examine different scenarios (e.g., changes 

to the amplitude or timing of the storm surge).

The water surface elevation time series from the NOAA gauge at Duck Pier 

(#8651370) is shown in Figure 5.32. There are two plots corresponding to mean low low 

water (MLLW) and North American Vertical Datum 1988 (NAVD88) datums. The 

NAVD88 datum will be used because the 2-D ADCIRC domain elevations are in NAVD88. 

Additionally, the difference between NAVD88 and MSL is small in North Carolina, 

whereas the MLLW datum is significantly different than MSL. The MLLW value is 0.667 

m above the NAVD88 value at Duck Pier. 

The main tidal signal at Duck Pier can be approximated using a sine wave with an 

amplitude of 0.5 m and a period of 12.4 hours. This is shown in the plot on the left side of 

Figure 5.33. The portion of the signal that is not represented by the simple sine wave is 

shown on the right side of Figure 5.33. 
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Figure 5.31 Unit discharge hydrograph for Hurricane Floyd for 1-D simulations.
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The majority of the signal that is not represented by the sine wave is the surge signal 

resulting from Hurricane Isabel. The surge signal, , can be reasonably represented 

using (5.27), where  is the number of days into September.

 for (5.27)

Figure 5.34 shows, on the left, the comparison of the surge signal to the difference between 

the signal and the sine wave. Finally, the combined sine and surge are compared to the 

gauge data on the right side of Figure 5.34. The water elevations for the Duck Pier gauge 

are represented reasonably well by the sum of the tidal sine wave and the parabolic surge 

signal. 
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Figure 5.32 Water surface elevation from the NOAA gage at Duck Pier (8651370). The plot on the 
left is based on mean low low water (MLLW), and the plot on the right is in North 
American Vertical Datum 1988 (NAVD88). The conversion from MLLW to NAVD88 is 
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5.10.4  Two-Way Coupled Simulations

The intent of the simulations based on information from North Carolina was to 

demonstrate the abilities of the coupled system. Specifically, the 1-D grid is much less 

idealized than the grids used for previous simulations. Additionally, the ocean and river 

boundary forcings are based on historical data. However, this is not an attempt to hindcast 

a particular event or provide an estimate of the maximum inundation level for coastal North 

Carolina based on a hypothetical combination of boundary forcings.

The base parameters were kept at the values used in previous simulations. The grid 

contains 1201 nodes with equal spacing of 250 m. The boundary forcings are given in 

Figure 5.35. The ocean boundary condition consists of a 1.0 m amplitude tide with a period 

of 12.4 hr. This tidal amplitude is twice the amplitude used to match the historical data at 

Duck Pier, NC. The 1.0 m amplitude was maintained to be consistent with the tidal forcing 

used in previous simulations. The 1.25 m surge signal derived from the Hurricane Isabel 

data at Duck Pier, NC is superimposed on top of the tidal signal. The surge signal is present 

during the 5th and 6th tidal cycles. The river boundary condition has a linear, two-day ramp. 

The unit discharge is based on the polynomial expression derived from the Hurricane Floyd 
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Figure 5.34 The plot on the left shows the surge signal (gray) compared to the difference between the 
NOAA values and the sine wave (black). The plot on the right is a comparison of the 
NOAA gage values (points) to the combined sine and surge signal (line).
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data from the USGS gauge for the Tar River at Tarboro, NC. The Manning’s roughness was 

set at 0.025 (constant). This is a slight increase over the previous value used. However, 

results from previous simulations suggested that the dynamic wave model needed a higher 

roughness value to match ADCIRC at higher flows. The higher roughness value decreases 

the velocity of flow and increases the flow depth. 

Two simulations were performed. Both were 15.0 days in duration with nodal eleva-

tion and velocity values output every hour. Additionally, both consisted of ADCIRC 

coupled with the dynamic wave model. The first simulation placed the hand-off point for 

the models at node 482. This coincides with a bathymetry value of 3.0 m and is consistent 

with the bathymetry where the Tar River discharges into the Pamlico Sound. The second 

simulation places the hand-off location at node 1191. This latter set-up was created to allow 

ADCIRC to model the majority of the domain while still using the two-way coupled code. 

This second set-up is used as the true solution in this section, and it is essentially a full-

domain ADCIRC simulation for all but the most inland elements in the domain. For gener-

ation of a comparison solution, use of the two-way coupled code was preferable over the 

full-domain ADCIRC model only because use of the regular ADCIRC code for a full-

domain ADCIRC simulation would have required implementation of the Hurricane Floyd 
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Figure 5.35 Ocean and river boundary forcing time series for the 1-D North Carolina simulations.
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river forcing in the ADCIRC code. While this endeavor is trivial, it is also unnecessary 

because the coupled system can be used (with the hand-off point located near the upstream 

domain boundary).

The water surface elevations for the first simulation (results from second simulation 

are not shown because it is the true solution), with the hand-off point at node 482, are shown 

in Figure 5.36. For reference, the grid bottom elevations are shown in gray on the plots. 

After one day, the river is still ramping up from the starting conditions of a depth of 0.5 m 

in the river. After two days, the depths in the entire river have increased substantially from 

the initial conditions. The third plot is at the time with the largest ocean boundary forcing 

elevation, near 2.25 m. The surge increases the water surface elevations both in the 

ADCIRC domain and in the portion of the domain upstream of the hand-off location. 

Four days into the simulation, the ocean forcing is simply the sinusoidal tidal signal. 

However, the unit flux at the upstream boundary is now greater than 10  and the flow 

depth is 7.03 m. The discharge at the upstream boundary reaches a maximum of just under 

34  at a time 8.75 days into the simulation. This flow rate produces a flow depth 

exceeding 14 m at the boundary. The water surface profile is influenced both by the flow 

rate and the channel bottom slope. Larger slopes correspond to more rapid flow and, thus, 

smaller depths. The presence of larger depths, due to small bottom slopes, can be seen in 

the area around nodes 500-600, where the river is discharging into the estuary. Additionally, 

the specified elevation boundary condition at the ocean boundary constrains the elevations. 

The final figure, twelve days into the simulation, shows the water level in the river has 

decreased from the peak. It is worthwhile to note that the large flow depths in the estuary 

area of the domain are unrealistic. The flow depths are higher than would be seen in an 
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Figure 5.36 Water surface elevation output (black lines) for the entire domain at various times during 
the coupled simulation with the hand-off location at node 482. The gray lines depict the 
bathymetry. The peak ocean boundary forcing occurs 2.708 days into the simulation.
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actual 2-D application because the unit discharge is too high; the effective flow width 

increases in the transition from the river to the estuary, so the discharge per unit width 

decreases. However, in the 1-D model used here, this decrease in discharge per unit width 

is not taken into account, aside from the changes that occur in space and time within the 1-

D model simulation.

The elevation and velocity  between the two simulations are shown in 

Figure 5.37. The results are consistent with results from the previous studies. The dip in 

error near the upstream boundary corresponds to the hand-off location in the second simu-

lation, which uses ADCIRC to model the vast majority of the domain. The errors are lowest 

near the ocean boundary. This is the region handled by ADCIRC in both simulations. In 

addition, it is the area farthest from the hand-off location and nearest to the boundary where 

the elevation is specified and the elevation error is zero. 

The errors in the river portion of the domain are consistent with errors seen previ-

ously. Referring back to the results for the non-constant upstream discharge two-way 

coupled simulation on the linear sloping domain, Figure 5.23, the asymptotic elevation and 

velocity RMS error values in the river were about 0.27 m and 0.11 , respectively. The 
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Figure 5.37 Elevation and velocity RMSEt between the two 1-D North Carolina simulations.
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elevation errors are slightly higher for the NC simulation set, while the velocity errors are 

similar. However, much larger flows were employed for the latest set of simulations. 

5.11   Summary and Conclusions

In this chapter, coupled simulations were performed using a 1-D ADCIRC model 

and 1-D finite difference hydraulic models using different approximations for the 

momentum equation. Results show that the dynamic wave approximation for the 

momentum equation is vastly superior to the diffusive wave approximation for handling 

backwater effects due to tides and surge in the near-ocean region, while the kinematic wave 

approximation does not provide a mechanism to handle backwater effects. However, if the 

boundary for coupling is moved far enough inland that significant backwater effects are 

handled by ADCIRC, coupling to kinematic and diffusive wave hydraulic routing models 

provides satisfactory results.

Additionally, while the type of boundary condition specified at the downstream 

boundary of the hydraulic models did not have a large impact on the results, ADCIRC 

performs significantly better when flux values are used at the upstream boundary than when 

elevations are specified. This result is favorable because hydrologic models are primarily 

interested in correctly calculating discharge values. Thus, discharge is not only a natural 

quantity to be used as the upstream boundary condition for ADCIRC when coupling to 

hydrologic models, it is also the optimal quantity for accuracy and ease of implementation.

ADCIRC is able to model flow in the river portion of the domain (above sea level). 

However, there were errors present when comparisons were made between ADCIRC 

results and dynamic wave hydraulic results. The difference in treatment of the friction term 
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in the models contributes to the error. The difference can be minimized for certain flow 

rates through adjustment of the roughness coefficients in the models. This discrepancy in 

results highlights an aspect of modeling: The model is supposed to produce a reasonable 

representation of the physical system. Attempting to produce a reasonable representation 

of a physical system is a major focus of the next chapter, where the knowledge obtained in 

this chapter is applied to coastal North Carolina using 2-D ADCIRC.
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 CHAPTER 6.  2-D Coupling of Hydrologic Models to ADCIRC for 

Coastal Flood Inundation

6.1   Introduction

The geographical study area for this research is coastal North Carolina, specifically 

the Tar-Pamlico (Tar) and Neuse River basins, as well as the Pamlico Sound (part of the 

Croatan-Albemarle-Pamlico Estuary system) and the Atlantic Coast. The two river basins 

stretch from north of Raleigh, NC, southeast to the southwest section of the Pamlico Sound. 

The area is subject to flooding due to both rainfall-runoff (Hurricane Floyd, Tropical Storm 

Alberto) and storm surge (Hurricane Floyd, Hurricane Isabel). The near coastal regions 

where river flows are affected by tides (and surge) constitute a service gap in forecasts by 

the National Weather Service [Van Cooten 2011].

Initial implementation of the coupled system will use hydrologic models that 

employ the kinematic wave approximation for channel routing. Use of hydrologic models 

that use kinematic wave channel routing is primarily due to those models being set-up for 

the study area, whereas output from models using more complex momentum approxima-

tions for channel routing was not readily available at the outset of the project. Thus, the 

coupled system will be a one-way coupled system with the hydrologic model providing 

upstream boundary conditions for ADCIRC. Two models have been set up for the Tar and 

Neuse River basins for the purpose of implementation in a coupled system. These two 

models are the Hydrology Laboratory Research Distributed Hydrologic Model (HL-
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RDHM) [Koren 2004; Smith 2004; Reed 2004; Moreda 2006; Hydrology Laboratory 2008] 

and Vflo [Vieux 2002, 2004]. The use of hydrologic models using kinematic wave routing 

requires the ADCIRC domain to include river regions subject to backwater effects. 

However, as presented in Chapter 5, the results for one-way coupled simulations are rela-

tively independent of the momentum equation approximation as long as the hand-off point 

is far enough upstream that backwater effects are not prevalent in the hydrologic model 

domain.

A study by Peng et al. [2004] showed peak surge in excess of 4 m for hypothetical 

Category 3 storms in this area. In order to ensure enough coverage by ADCIRC, the deci-

sion was made to place the boundary of the ADCIRC domain near the 8 m elevation value 

(ADCIRC grid river bottom elevation) on the Tar and Neuse Rivers. It is not currently 

desirable to discretize additional (unnecessary) stretches of rivers in the ADCIRC domain 

above 8 m because ADCIRC does not possess the necessary components to model rainfall-

runoff processes. The only mechanism for bringing river flows into the domain is as a 

boundary condition. Thus, precipitation falling on the portion of the coupled domain allo-

cated to ADCIRC will be lost under the current implementation. Therefore, it is optimal to 

place the ADCIRC boundary just upstream of prevalent backwater effects that would 

adversely impact the kinematic wave model solutions. As results from Chapter 5 show, as 

long as ADCIRC covers enough of the domain to handle the major backwater effects, there 

is not any increase in coupled model accuracy by modeling additional upstream areas of the 

river with ADCIRC instead of the hydrologic model. The selection of the hand-off points 

was conservative to allow for modeling of major storms without having to modify the grid, 

depending on the storm being modeled.
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While rivers have been modeled in ADCIRC previously, including the Mississippi 

and Atchafalaya Rivers in Louisiana [Westerink 2008], the nature of the Tar and Neuse 

Rivers, besides the fact that they are not defined by levees, presents unique grid, initializa-

tion, and boundary flux specification issues that will be explored in future sections. Subse-

quently, results from application of ADCIRC to tropical events will be presented. 

6.2   Grid Modifications and River Initialization

6.2.1  Re-positioning of ADCIRC Grid Boundary

The original ADCIRC grid contained areas in the coastal plain up to at least the 15 

m contour line, as shown in Figure 6.1 [Blanton 2008]. The Tar and Neuse Rivers were 

discretized, in most of the domain, using a line of nodes on each side of the river. Addition-

ally, near the upland grid boundary, the river resolution is relaxed to the extent that their 

definition is lost. Therefore, at the original grid boundary, the rivers are not delineated in 

the grid. Rather than increase the extent of the fine resolution on the rivers, the decision was 

made to move the boundary of the ADCIRC domain seaward to locations where adequate 

river resolution existed. This decision reduced grid modifications, while still maintaining 

adequate coverage to allow ADCIRC to handle backwater effects. Additionally, the 

boundary placement avoided the use of increasingly small elements in the upland portions 

of the rivers, which may have detrimentally affected the maximum stable time step. 

The locations of the hand-off points on the Tar and Neuse Rivers, where informa-

tion will be exchanged between the hydrologic and hydrodynamic models, are shown in 

Figure 6.2. Additionally, as mentioned earlier, the placement of the boundary near the 8 m 

elevation contour attempts to minimize the extent of the rivers in ADCIRC while still main-
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Tar River

Neuse River

Figure 6.1 ADCIRC v20 grid zoomed in to show the discretization for North Carolina, with the Tar 
and Neuse Rivers labeled. The rivers are the paths that transition from blue where they 
discharge into the Pamlico Sound to green, yellow and orange in upstream areas.

Figure 6.2 Modified ADCIRC grid with the upper extent of the Tar and Neuse Rivers removed. The 
hand-off points on the Tar River (TR) and Neuse River (NR) are marked on the plot as 
dots. The areas upstream of the hand-off points, shown in Figure 6.1, have been 
removed from the ADCIRC modeling domain.
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taining enough coverage to account for major surge inundation. 

6.2.2  Resolution of River

The main channels of the Tar and Neuse Rivers are discretized using two nodes 

across, one on each edge of the rivers, with elevations derived from high-resolution LIDAR 

data. This corresponds to resolution of these rivers on the order of 30-40 m, which is a far 

different scenario than for larger rivers previously modeled using ADCIRC. Westerink et 

al. [2008] note significant local refinement of the southern Louisiana coastal floodplain 

including, generally, “five or more nodes across the major rivers and inlets with grid sizes 

of 100-200 m” to minimize errors caused by under-resolution, which can significantly 

reduce conveyance of waterways. This discrepancy highlights one difference between the 

rivers in coastal North Carolina and those in southern Louisiana: the width. 

Additionally, the Tar and Neuse Rivers are not confined by levee systems. There-

fore, the lateral extent of the rivers is flow dependent, whereas the lateral extent of the 

Mississippi and Atchafalaya is approximately constant with depth due to the levee systems. 

Furthermore, the bottom elevations of the Mississippi and Atchafalaya are below sea level 

significantly inland from the coast; the bottom of the Mississippi is 17.5 m below sea level 

(in the ADCIRC grid) at Baton Rouge, LA (approximately 120 km inland from New 

Orleans). Conversely, the ADCIRC grid for the current study has river bottom elevations 

of approximately 8 m above sea level for the Tar and Neuse Rivers, about 60 km inland 

from the Pamlico Sound. 

6.2.3  Relationship between Channel Resolution and Geometry

The original ADCIRC grid discretizes the bulk of the Tar and Neuse Rivers with 
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two nodes for the main channel in a given cross-section. An increase in resolution, as in 

Figure 6.3, can allow grid points (locations between line segments) to better capture 

channel geometry. However, the implications for accurate modeling of low flows for rivers 

within ADCIRC are not as obvious. Figure 6.4 shows the flow area for a given discretiza-

tion based on a given water surface elevation. 

Section 1 in Figure 6.3 shows the discretization of the cross-section with two nodes 

for the channel. Based on this section, it is obvious that ADCIRC cannot model flows at 

elevations below the river bottom in the grid. For water surface elevations between the river 

bottom and the elevation of the lowest adjacent floodplain node, the river will resemble a 

rectangular section (assuming the elevation of both points defining the river bottom is 

Figure 6.3 River and floodplain geometry representation based on various channel representations: 
1) two nodes for the channel, 2) three nodes for the channel, and 3) four nodes for the 
channel. The dashed line shows a theoretical cross-section, while the solid line depicts 
the ADCIRC representation based on different discretizations.

1

2

3
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equal), because ADCIRC only activates an element once the local water surface exceeds a 

minimum depth for all the nodes for that element. The case of an approximately rectangular 

cross-sectional flow area is shown in section 1a of Figure 6.4. If the first node on each 

floodplain is wet, the geometry for the flow is defined by four points, as shown in section 

1b of Figure 6.4. The flow area consists of a trapezoidal section in the bottom with a rect-

angular section on top of it. 

The bottom three sections in Figure 6.4 show the implications for adding another 

node in the middle of the river. Until the water surface elevation exceeds the second-lowest 

node in the channel section (assuming the lowest nodes in the section are defining the 

river), ADCIRC will not treat the river as wet. So, despite matching the overall channel 

geometry better and one of the three nodes in the discretization having a lower elevation 

than the minimum elevation in section 1, the increased resolution actually results in a larger 

range of shallow depths that cannot be represented. Certainly, the two nodes on either bank 

in the refined section could be lowered to the same heights as the corresponding (spatially) 

nodes in the original discretization. This could, potentially, improve the stage-discharge 

relationships for these sections if detailed cross-sections existed for the entire extent of the 

rivers. However, the improvement by increasing the channel resolution by a factor of two 

(by switching from one element defined by two nodes to two elements defined by three 

nodes) is marginal. The minimum water surface elevation that can be represented is equal 

to the sum of second lowest nodal elevation in the section (assuming the two lowest nodes 

in the section are consecutive and the 3rd node defining the element, which is part of the 

next section, has a similarly low elevation value) and the defined minimum water elevation 

for wetting. A non-symmetric cross-section with a flat portion between two nodes near the 
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Figure 6.4 Schematic of ADCIRC flow area (filled regions) based on water surface elevation (top 
horizontal line) for a channel defined by two nodes (1a and 1b) and three nodes (2a, 2b 
and 2c).

1a

1b

2a

2b

2c
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level of the actual channel bottom with a higher third channel node would probably be 

necessary to improve the stage-discharge relationship for low flows.

Further increase in resolution in the river, by adding a fourth node in the river 

section (third section in Figure 6.3), allows reasonable overall representation of channel 

geometry, while also allowing stage at low flows to be modeled accurately. However, this 

requires grid spacing to be one-third of the spacing in the original discretization and would 

require significant river bathymetry data for accurate representation. The elements defining 

the Tar and Neuse Rivers are already among the smallest elements in the grid. A decrease 

in the grid spacing by a factor of three might adversely impact the time step, as well. 

Because the focus of this study is flood inundation, which corresponds to high-flow events, 

the decision was made to use the original spatial discretization and sacrifice accuracy at low 

flows. With regards to element size and time step, an important application of ADCIRC is 

operational flood forecasting. Thus, while decreases in stable time step may be tenable for 

hindcasts or planning simulations, grid modifications that result in simulation run times 

increasing by a factor of two or three may preclude operational flood forecasting with 

ADCIRC because of computational resource issues.

6.2.4  Original Channel Representation

The original ADCIRC grid elevations along the Tar and Neuse Rivers’ profiles can 

be seen in Figure 6.5 and Figure 6.6, respectively. In many locations, the left and right sides 

of the rivers are at approximately the same elevation, which is the situation depicted in the 

schematic drawing in Figure 6.3. However, there are also a number of locations where there 

is a significant difference in elevation from one side of the river to the other. As Figure 6.5

shows, the most glaring instances of this along the Tar River are 1, 5, 20, 32, 36 and 51 km 
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from the upstream boundary. Looking specifically at the elevations 32 km down from the 

boundary along the Tar River, the water surface elevation would have to approach 14 m in 

order for the river to be wet in that location. With a water surface elevation of 14 m in that 

location, one side of the river would barely be wet, while the depth on the other side would 

be approximately 8 m (the difference between the two lines in the figure at that location). 

Figure 6.6 shows that discrepancies in nodal elevations, from one side of the river to the 

other, exist along the Neuse River as well, with the most notable instances 4, 25 and 29 km 

down from the hand-off point. It is important to remember that, while the main river nodes 
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Figure 6.5 Original river node elevations along the Tar River in the ADCIRC grid from the upstream 
boundary to the Pamlico Sound. 
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are located near the banks spatially, the elevations of the main river nodes define the eleva-

tion of the channel bottom in the model. 

Results from a simulation forced with baseflow rates and using the original river 

elevations demonstrate the need for modifications to the river elevations. As can be seen in 

Figure 6.7, the ADCIRC bathymetry, on initial inspection, follows the river in this section.

The dark blue areas correspond to the lowest elevations, and these occur along the Tar 

River. The initial results show a fair amount of flow in the floodplains adjacent to the river, 

which is due to the initialization for this simulation, but the baseflow should be contained 
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Figure 6.6 Original river node elevations along the Neuse River in the ADCIRC grid from the 
upstream boundary to the Pamlico Sound. 
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in the main channel. The flooding is due to the initialization procedure, which used the 

elevations along the channel to determine local high points and ensure the initial water 

surface was above the channel bottom for the entire length of the river. Subsequently, adja-

cent areas were initialized wet if they were below the starting water surface elevation in the 

river. The image at the bottom right of Figure 6.7 shows discontinuities in the wet areas in 

the domain. By the end of the simulation, the Tar River is a series of ponds. This result 

clearly demonstrates the need for adjustments to the river portion of the ADCIRC grid. 

Figure 6.7 Images for the Tar River around Tarboro, NC and Princeville, NC with SMS output 
overlaid on Google Earth maps: original ADCIRC bathymetry (top left) and ADCIRC 
elevations at the beginning of the simulation (top right), 6 hours into the simulation 
(bottom left), and 42 hours into the simulation (bottom right). This location is about 19 
km downstream of the hand-off point on the Tar River.
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Even if the river was contiguous from the boundary all the way to the Pamlico Sound, 

adjustments to the river elevations would still be necessary because of the unphysical river 

flooding created by efforts to initialize the river as a continuous body of water. 

6.2.5  Modifications to River Geometry

The preliminary ADCIRC grid, with bathymetry/topography from high-resolution 

LIDAR data, was problematic in the rivers because the elevations specified for the nodes 

along the sides of the Tar and Neuse were not consistent or realistic. Aerially, these nodes 

were essentially creating the river bottom boundary shown in Figure 6.8 (Figure 6.16

shows a set of images that further illustrates this idea). Each side of the river was defined 

by a line of grid points and the triangular elements created between these two lines define 

the river. However, the elevations for these nodes were often comparable to the values in 

the adjacent floodplains. The nodes that define the river should have lower elevations than 

the nodes that define the adjacent floodplains. In other words, the main channel for each 

river was not well-defined. An example of the discrepancy in elevation between one side 

of the river and the other is shown in Figure 6.8. The black circle outlines a location on the 

Tar River, upstream of Tarboro, NC, where the nodal elevations on the south edge of the 

river are about 7 m. The nodal elevations on the north edge of the river are close to 14 m. 

For reference, this location is about 5 km down from the boundary, and the discrepancy can 

be seen in the top left panel of Figure 6.5. 

In order to create more realistic rivers in the ADCIRC grid, the bathymetry for the 

rivers needed to be adjusted. The same issue that caused unrealistic flows along the river 

proved problematic in modifying the bathymetry because river elements could not be 

clearly identified. Typically, river elements (elements that make up the river at low flows) 
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could be selected based on elevation, i.e., river elements should be lower than adjacent 

floodplain elements. However, elevation-based criteria in automated selection routines 

created for this study were often incorrect in selecting the next river element down river for 

the ADCIRC grid. Similarly, criteria based on grid size (the smallest elements are generally 

the ones in the river in this domain) and element orientation (locally, the river is usually 

fairly straight) are helpful for automatic selection, but certainly not infallible. 

A pre-processing program was created to select river elements from the ADCIRC 

boundary down to the ocean. After the most upstream element in the river has been 

selected, the following main steps are utilized in the program to select river elements. 

• Determine the potential river elements that share a face with the last river 

Figure 6.8 ADCIRC v20 grid along a stretch of the Tar River upstream of Tarboro, NC. The black 
circle outlines a location where the nodal elevations are about 7 m on the north edge of 
the main river channel than on the south edge.
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element; the term potential river element implies the element has not already 
been determined to be a river element.

• Calculate the vectors between the areal center of the last river element and 
the areal centers of the new possibilities, as well as the vector between the 
last river element and the river element two prior (the element two prior was 
used because the elements are triangles and this method gives a more 
consistent direction for the local river path).

• Calculate the dot product between the previous vector and the vectors for 
the new possibilities.

• A heuristic metric for comparing possibilities was developed by trial-and-
error, and is given by (6.1), where p is the vector between the centroid of the 
last river element and the river element two prior; vi is the vector between 
the centroid of the last river element and the centroid of a potential new river 
element; zi is the bathymetry of the highest node associated with the poten-
tial river element (the addition of 20.0 is to make values positive and is 
necessary because bathymetry values at the top of the Tar and Neuse Rivers 
are on the order of -10.0 m, meaning the elevations are 10.0 meters above 
the datum, which is mean sea level); and Ai is the area of the potential river 
element. The elevation of the highest node is used, rather than the lowest 
node, because river elements should have low values for all three nodes, 
whereas floodplain elements should have at least one node that has a higher 
elevation than the river node elevation in the vicinity.

(6.1)

• The new river element is the possible element with the highest metric score 
(increases in score result from a larger dot product, lower elevation, and 
smaller element area).

When there are no longer any possibilities for new river elements, or a sufficiently 

low elevation has been reached, the program produces a file containing one value for nodes 

associated with selected river elements and a different value for nodes that are not associ-

ated with selected river elements. This file, which is written in the same format as the 

fort.63 (water surface elevation) output file for ADCIRC, can be visualized using SMS, 

Metric
p vi⋅( ) zi 20.0+( )2

Ai
--------------------------------------------=
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FigureGen, or a similar program, and an image showing the selected river elements can be 

exported in KMZ format. The KMZ file can be read into Google Earth and the aerial extent 

of the selected river elements can be analyzed. Specifically, the string of elements can be 

compared to actual river geometry. Locations where the selection criterion fails to choose 

the correct element can be hardwired to do so. Then, the program must be re-run until it 

produces a complete set of elements for each of the rivers in the domain. In creating the set 

of river elements for the Tar River, 30 elements were hardwired into the selection routine, 

while hardwiring of 14 elements was required on the Neuse River. For reference, there are 

approximately 2500 elements along the Tar River and 3000 along the Neuse River.

Subsequently, the selected river elements were processed to create a more realistic 

river profile in the ADCIRC grid. For each node belonging to a river element, the nodal 

elevation was adjusted to the elevation of the lowest node of any of the nodes belonging to 

the river elements that contain that node. Then, an averaging process was used to smooth 

the elevations of the nodes that belong to the river elements. The following steps were used 

during each smoothing iteration:

• Each node is checked to determine if it is a river node.
• If a node is not a river node, it is ignored.
• For each river node, each element is checked to determine the elements to 

which the current node belongs.
• Each element containing the current river node as one of its three nodes has 

all three of its nodes (including the current node) flagged.
• The arithmetic average of the elevations of the flagged nodes is calculated 

and saved as the new elevation of the current river node.

The number of iterations used in the smoothing process is somewhat arbitrary 

(subsequent iterations repeat the procedure with the most recently adjusted nodal eleva-
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tions). For the Tar and Neuse Rivers, one hundred iterations were used. The resulting 

bottom elevations along each side of the channel can be seen in Figure 6.9 (Tar River) and 

Figure 6.10 (Neuse River). The result of the modification is that the two lines of nodes 

defining each river have more consistent elevations. However, the large scale variation in 

slope throughout the rivers is maintained. Furthermore, no modifications were made to 

floodplain elevations, although the first line of floodplain elements (one each side of the 

river) uses one or two river nodes.   

0 5000 10 000 15 000 20 000
0

2

4

6

8

10

12

14

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

20 000 25 000 30 000 35 000 40 000
0

2

4

6

8

10

12

14

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

40 000 45 000 50 000 55 000 60 000

�4

�2

0

2

4

6

8

10

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

60 000 65 000 70 000 75 000 80 000

�4

�2

0

2

4

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

80 000 85 000 90 000 95 000 100 000

�4

�2

0

2

4

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

Figure 6.9 River node elevations along the Tar River in the ADCIRC grid from the upstream 
boundary to the Pamlico Sound after lowering and smoothing. 
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The river initialization procedure is the same before and after the grid elevation 

modifications. The high points in the river are determined and a minimum water depth is 

assigned at those points. Then, the water surface elevation between consecutive high points 

varies linearly. Elements that are lower than the local water surface elevation are initialized 

as wet, including “non-river” elements in some areas. Before the elevation modification, 

large amounts of the floodplain were initially wet, as seen in Figure 6.7. Following the 

elevation modification, the areal extent of the river is accurately represented at the start of 

the simulation, i.e., it stays within the channel banks.

0 5000 10 000 15 000 20 000
0

2

4

6

8

10

12

14

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

20 000 25 000 30 000 35 000 40 000
0

2

4

6

8

10

12

14

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

40 000 45 000 50 000 55 000 60 000

�4

�2

0

2

4

6

8

10

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

60 000 65 000 70 000 75 000 80 000

�4

�2

0

2

4

Bank Station, m
E

le
va

tio
n,

m

Right Side

Left Side

80 000 85 000 90 000 95 000 100 000

�4

�2

0

2

4

Bank Station, m

E
le

va
tio

n,
m

Right Side

Left Side

Figure 6.10 River node elevations along the Neuse River in the ADCIRC grid from the upstream 
boundary to the Pamlico Sound after lowering and smoothing. 
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The cross-sections of the rivers in the ADCIRC grid were compared to “real” 

sections (fine-resolution HEC-RAS [Brunner 2001, 2002] sections) provided by the North 

Carolina Floodplain Mapping Program (NCFMP). These comparisons were done before 

the modifications previously presented. However, for each cross-section, the ADCIRC 

calculations were performed both for the original grid geometry and for the original grid 

geometry with the higher river node lowered to the elevation of the lower river node 

(similar to the first step in the process to create the smoothed grid).

Plots of water surface elevation versus discharge for sections across the Tar and 

Neuse Rivers in the ADCIRC grid were compared to equivalent plots for the real sections. 

In order to focus on the geometric differences in sections for both ADCIRC and NCFMP 

sections, a bottom slope of 0.00015  and Manning’s roughness of 0.025 are used for 

all computations. Thus, the actual water surface elevation vs. discharge curves will differ 

from the ones that were created. However, the chosen bottom slope and Manning’s rough-

ness are realistic values for these rivers and are useful in assessing the geometry of the river 

discretization in the ADCIRC grid. The water surface elevation values are based on 

uniform flow depth for a given flow rate.

The locations analyzed on the Tar and Neuse Rivers are listed in Table 6.1 and 

Table 6.2, respectively. Additionally, the locations are shown graphically in Appendix F.1. 

The locations were estimated based on descriptions for the NCFMP cross-sections, which 

is the reason more precision was not included in the coordinates. The comparisons for the 

first four sections on the Tar River are shown in Figure 6.11. The ADCIRC water surface

elevations differ from NCFMP water surface elevation values at low flows because of reso-

lution constraints (NCFMP HEC-RAS sections on order of meters, ADCIRC on order of 

m m⁄
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10’s of meters). The rivers in ADCIRC are represented as fixed width until elements on the 

floodplain become wet. Thus, the cross-sectional flow area for in-channel flow is approxi-

mately rectangular, as discussed earlier in Section 6.2.3. Conversely, the actual geometry is 

represented well in the HEC-RAS sections. Generally, the width of flow increases as the 

flow rate increases. At high flows, the rating curves for ADCIRC tends to more closely 

Table 6.1  Locations of cross-sections for 
comparisons on the Tar River.

Number Latitude 
(North)

Longitude 
(West)

1 35.930 77.559

2 35.939 77.523

3 35.922 77.509

4 35.894 77.528

5 35.873 77.535

6 35.843 77.544

7 35.800 77.549

8 35.784 77.546

9 35.761 77.516

10 35.640 77.417

11 35.618 77.391

12 35.618 77.377

13 35.616 77.367

14 35.609 77.331

15 35.598 77.310

16 35.594 77.271

17 35.609 77.227

18 35.589 77.194

19 35.573 77.170

Table 6.2  Locations of cross-sections for 
comparisons on the Neuse River.

Number Latitude 
(North)

Longitude 
(West)

1 35.224 77.767

2 35.220 77.740

3 35.226 77.697

4 35.235 77.659

5 35.261 77.619

6 35.241 77.568

7 35.258 77.531

8 35.295 77.496

9 35.324 77.466

10 35.338 77.422

11 35.343 77.394

12 35.334 77.367

13 35.319 77.325

14 35.298 77.294

15 35.261 77.244

16 35.247 77.208

17 35.240 77.179

18 35.216 77.139

19 35.189 77.097

20 35.164 77.087
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match the curve for HEC-RAS. Comparisons for all of the sections on the Tar and Neuse 

Rivers are shown in Appendix F. 

The first section available downstream of the hand-off point on the Tar River, 

section 1 in Figure 6.11, shows agreement within 0.30 m for all flow rates greater than 50 

cms. However, there is a large discrepancy (2-3 m) in water surface elevation predicted for 

low flows. At low flows, which correspond to relatively small flow depths, the water 

surface elevation is higher for the ADCIRC section because the channel bottom is higher 

than the minimum channel elevation in the NCFMP HEC-RAS sections. 

Sections 2-4 on the Tar River do not show the same level of agreement between the 

ADCIRC and NCFMP results as section 1. At sections 2 and 4, ADCIRC underpredicts the 

water surface elevation for high flows. The transition from ADCIRC overprediction to 

underprediction occurs at about 200 cms for section 2 and around 150 cms for section 4. 
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Figure 6.11 Water surface elevation vs. flow rate plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for the first four locations on the Tar 
River downstream of the ADCIRC boundary.
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Conversely, ADCIRC overpredicts water surface elevation for all flows for section 3. As 

expected, at low flows, ADCIRC overpredicts the water surface elevation for all four 

sections. It should also be noted that there are two ADCIRC lines. Generally, the two 

ADCIRC sets produce almost identical results. This is the case for sections 1, 2 and 4. 

There is separation in the two ADCIRC lines for section 3. The darker line corresponds to 

the adjusted ADCIRC section, with the higher river node lowered to the elevation of the 

lower river node. This adjustment decreases the water surface for a given flow rate, if there 

is a discrepancy in the node elevations in the original grid. 

The comparisons for the first four sections on the Neuse River are shown in 

Figure 6.12. As was seen for the results for the Tar River, the ADCIRC water surface eleva-

tions are significantly higher than the water surface elevations for the NCFMP sections at 

low flows. However, there is good agreement for flows greater than 75 cms for sections 1-

4 on the Neuse River. 

Some locations on the Tar River show errors of more than a meter for high flow 

rates. However, errors are generally larger for in-channel flows and smaller for out-of-bank 

flows. The target application of this study is flood forecasting due to tropical and extratro-

pical systems. Therefore, the errors in stage at low flows are acceptable. 

A summary of all the sections compared on the Tar River is shown in the left panel 

of Figure 6.13. Each small black dot is the error between the water surface elevation using 

the adjusted ADCIRC section data and the water surface elevation using the HEC-RAS 

section data from the NCFMP. Thus, there are 19 small dots for the Tar River comparison, 

one for each section. Positive error values occur when the water surface elevation using the 

ADCIRC section is higher than the corresponding water level using the NCFMP data. The 
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errors were calculated for discharges of 10, 25, 50, 100, 200, 300, and 500 cms. The large 

dots in each vertical series are the arithmetic average of the individual section errors.

The plot for the Tar River shows that for flows above 100 cms, the average error is 

close to zero. Thus, on average, for the target flows rates, the predicted water surface eleva-

tion using ADCIRC should be fairly accurate, provided the discharge results in ADCIRC 

correspond to the actual flow rates experienced by the Tar River. For flow rates of 100, 200, 

300 and 500 cms, the average errors are 0.27, -0.30, -0.39 and -0.43 m. Thus, the bias for 

high flows is for ADCIRC to underpredict water surface elevation by 1-1.5 ft. Additionally, 

for flows equal to or exceeding 200 cms, most of the individual section errors are less than 

1.5 m. While this may not be optimal, future work improving the representation of rivers 

in ADCIRC could further reduce model errors, especially for high flows. 

The right panel of Figure 6.13 shows the results for the Neuse River. There are 20 
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Figure 6.12 Water surface elevation vs. flow rate plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for the first four locations on the Neuse 
River downstream of the ADCIRC boundary.
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small black dots for each flow rate for the Neuse River. Once again, ADCIRC produces 

unrealistically high water surface elevation levels for low flows, due to the channel discret-

ization. However, for flows equal to or exceeding 100 cms, the average error is close to zero 

and most of the individual error values are less than 1.0 m. The average errors for flow rates 

of 100, 200, 300 and 500 cms are -0.14, -0.01, -0.13 and -0.20 m. As was the case for the 

Tar River results, the bias is for ADCIRC to underpredict water surface elevations at high 

flows. It is readily apparent, from a comparison of results from the Tar River to those from 

the Neuse River, that there is substantially less difference for the sections on the Neuse 

River. This is consistent with the results shown in Figure 6.11 and Figure 6.12. The reason 

for the better match on the Neuse River is unclear. The two rivers are geometrically similar 

and handle similar flow rates, although the Neuse is slightly more sinuous. Additionally, 

the grid generation and analysis tools were consistent for each of the rivers.

The variation in error with respect to distance from the boundary is shown in 6.14

(Tar River) and 6.15 (Neuse River). These figures were created to see if there was a system-

atic cause for the error. If discernible trends in the difference were present, adjustments 

could be made to the ADCIRC grid to attempt to reduce the grid-induced error in water 

surface elevations. The plots for the locations on the Neuse River show low errors for high 
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Figure 6.13 Comparison of ADCIRC sections to detailed sections from the NCFMP for the Tar River 
(left) and Neuse River (right).
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flows and consistency from section to section. 

However, the results are not as good for the Tar River locations. Additionally, there 

is not a consistent pattern that can be exploited. For example, for flow rates of 200 and 500 

cms, the only locations where ADCIRC overpredicts the water surface elevations are at 

sections 3 and 12. The sections before and after both section 3 and section 12 (sections 2, 

4, 11 and 13) all have negative differences for flow rates of 500 cms. Section 8 on the Tar 
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Figure 6.14 Difference in water surface elevation between results with the adjusted ADCIRC grid 
sections and the NCFMP sections at different locations on the Tar River for six different 
flow rates.
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River is an example of another difficulty regarding grid modification. The predicted water 

surface elevations when the flow is 100 cms is about 2 m too high. However, the water 

surface elevations are good with flows of 200 and 500 cms. Grid modifications to reduce 

the water surface elevation for a discharge of 100 cms would also have to maintain the 

water surface elevation for the higher flow values. 

A different issue related to grid modification was that resolution was added to the 
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Figure 6.15 Difference in water surface elevation between results with the adjusted ADCIRC grid 
sections and the NCFMP sections at different locations on the Neuse River for six 
different flow rates.
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middle of a horseshoe bend in the Tar River, because the original ADCIRC grid did not 

have non-river edge nodes in the floodplain in that area. In ADCIRC, if all three nodes for 

an element are wet, that element is wet. The river nodes are wet at base flows. This resulted 

in a three-element wide cut-off that allowed water to move down the river without going 

all the way around the bend. The addition of four nodes on the floodplain created floodplain 

elements and kept low flows in the actual river. This grid modification is illustrated in 

Figure 6.16.    

6.2.6  Grid Stability

Along with the initialization problems discussed previously, the grid is also subject 

to severe stability constraints on the time step. The maximum stable time step is around a 

half second. This is not a strict criterion, but attempts to use ADCIRC parameters ( , 

lateral eddy viscosity, advective term options) to increase stability so a one-second time 

step could be used were unsuccessful. The following sequence of images, Figure 6.17, 

shows the evolution of the water surface elevations on the Neuse River just upstream of 

Kinston, NC, for an unstable simulation. This simulation was performed using the regular 

parameters for runs with the North Carolina grid with two exceptions: a time step of 0.9 

seconds and a constant G value of 1.0 . The elevations appear reasonable through the 

Figure 6.16 Images showing a portion of the ADCIRC grid that illustrates grid issues with sharp 
river bends: overlain on Google Earth (left), the original bathymetry (middle) and the 
modified grid and bathymetry (right).

G

s 1–
247



first three time steps. However, the solution begins to degrade starting with the output for 

the fourth time step. The errors appear initially near the bottom right side of the “S” curve 

shown, and the simulation quickly becomes unstable as time evolves further. 

Attempts to create a more stable grid in order to reduce simulation run times were 

partially successful. As Figure 6.18 shows, the width of the river varies widely in this 

Figure 6.17 Water surface elevations for the six steps of a simulation. Areas shown in white have 
reasonable values, while black areas have water surfaces ten meters too high.
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region. For the most part, the main river channel is just a series of single elements (as previ-

ously presented) through this section. For this reason, the different widths of the river 

implies vastly different grid sizes throughout this stretch of the Neuse River. Specifically, 

the width of the river in the straight stretch near the bottom left of Figure 6.18 is about 60 

meters, whereas the width in the “S” curve section is often 10-15 meters. 

By sequentially increasing the width through the skinny stretches where stability 

problems are present, the simulations become more stable. Initially, simulations with a one-

second time step always crashed before a minute of simulation time was reached. With 

limited movement of nodes, the simulation ran for over 6 hours of simulation time with a 

one-second time step and a constant  value of 0.1 . The simulation using the grid with 

the nodes moved crashed in the same stretch of the Neuse River as the previous grid, 

Figure 6.18 Initial width of the Neuse River just upstream of Kinston, NC.
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without being subject to large flows. The specific reason for the instability is unknown. 

While the end goal of increasing the stable time step (which would have decreased the 

computational expense of the simulations) was not achieved, the procedure of moving 

nodes was partially successful. Additional focus on river delineation in the future could 

result in increased stability at larger time steps. Thus, it is recommended that element sizes 

be kept approximately constant, when possible, for river delineation. 

6.3   Boundary Flux Specification

6.3.1  Reduced River Grid

In order to test the upstream boundary condition for the Tar and Neuse Rivers, a new 

grid was created from the full ADCIRC grid. The extents of the two grids can be seen in 

Figure 6.19. For the reduced grid, 90% of the computational nodes were removed. The 

nodes that remain span the entire extent of the Tar and Neuse Rivers, as well as portions of 

the Pamlico Sound that connect the two rivers. The reduced grid contains 50,266 nodes, 

whereas the full domain is discretized by 539,879 nodes. In creating the river grid, the only 

nodes removed that are upstream of the boundary in the Pamlico Sound are in the higher 

elevation area between the two rivers down near the sound. These nodes are far (tens of 

kilometers) from the upstream river boundaries and were removed for computational effi-

ciency. 

6.3.2  Boundary Flux Based on Conveyance

Results from Chapter 5 show that, compared to full-domain ADCIRC results, 

coupled hydraulic-ADCIRC results are better when flux boundary conditions are used. 

Therefore, in this study, the focus will be on applying discharge values at the upstream 
250



ADCIRC river boundaries. One method for distributing the discharge at the upstream 

boundary is by using the conveyance of a given node, shown in (6.2), where Ci is the 

conveyance of a node along the boundary, ni is the Manning’s roughness value for the node, 

Figure 6.19 Extent of the reduced grid for river testing (top) and the full ADCIRC grid for 
simulations for North Carolina (bottom).
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wi is the active flow width (along the boundary) for the node, and hi is the water depth at 

the node.

(6.2)

For a dry node (a node that is associated only with dry elements), the active flow width is 

obviously zero. For a node associated with one wet face (side of an element) along the 

boundary, the active width is equal to one half the length of that face. For a node between 

two wet faces, the active width is equal to one half the sum of the lengths of the two adja-

cent faces. 

The total conveyance is calculated through a summation of the nodal conveyances 

over the nodes along a given boundary segment, as (6.3) states. 

(6.3)

The nodal discharges are calculated using the total discharge, total conveyance and nodal 

conveyances using (6.4), which essentially assumes discharge for a section is proportional 

to conveyance. 

(6.4)

Finally, the discharge per unit width, herein referred to as the “unit discharge,” for each 

node is calculated by dividing the nodal discharge by the active width of a given node, as 

(6.5) shows. 

(6.5)
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Obviously, this calculation is only performed for nodes with a non-zero active width, in 

order to avoid division by zero. However, the nodal discharge is zero for dry nodes. The 

summation of conveyances and distribution of discharges is performed separately, at each 

time step, for each river in the domain.

The specification of boundary flux using conveyance requires the active width for 

nodes along the upstream river boundaries to be known throughout the simulation. Thus, 

the lateral extent of the river at the boundary must be known. The current ADCIRC frame-

work requires specification of the nodal unit discharge before the run starts, with non-peri-

odic flows contained in the fort.20 file or periodic flows specified in the fort.15 file. 

Conversely, code modifications could allow the boundary specification to be done during 

the simulation.

In order to test the use of conveyance to distribute discharges at the upstream 

boundary, modifications were made to the serial version of ADCIRC that allow dynamic 

distribution of boundary discharges. The active width is calculated, and the previously 

introduced equations, (6.2) through (6.5), are used each time step during the simulation. 

Two separate implementations were considered: 1) conveyance calculated using the nodal 

depth (the difference between the computed water surface elevation for the node and the 

elevation of the node) and 2) conveyance calculated using nodal depth computed as the 

difference between an average water surface elevation for wet nodes along the boundary 

and the elevation of the node. Implementation 1 uses (6.2). The conveyance calculation for 

implementation 2 is of the same form as (6.2), and it is shown in (6.6), where the nodal 

water depth, , in (6.2) has been replaced by a representative nodal depth that is the sum 

of the average water surface elevation along the boundary and the bathymetry value for a 

hi
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node.

(6.6)

Simulations were performed to assess the ability of ADCIRC to bring the specified 

boundary discharge into the domain. The simulations used a constant flow rate of 500 cms 

as the upstream boundary forcing for both the Tar and Neuse Rivers. The total length of 

each simulation is 0.5 days, with a ramp applied to the boundary forcing for the first half 

(0.25 days) of the run. The time step for the simulations is 0.5 seconds. The  value is set 

to 0.1 , and Manning’s roughness values and horizontal eddy viscosity values are 

spatially variable and consistent with normal values used for simulations of the region. 

The elevation and velocity fields were post-processed to calculate flux across 

sections which are 5, 10, 25 and 40 nodes into the domain along each of the two rivers. 

These locations are shown in Figure 6.20, with the top panel showing the locations on the 

Tar River and the bottom panel showing the cross-sections on the Neuse River. The results 

are shown in Figure 6.21 through Figure 6.24. 

The discharge hydrograph results for the Tar River, using conveyances calculated 

with the computed water surface elevations (implementation 1), can be seen in Figure 6.21. 

The same set of results, using conveyances based on an average boundary water surface 

elevation (implementation 2), are shown in Figure 6.22. The equivalent sets of graphics for 

the Neuse River are found in Figure 6.23 (implementation 1) and Figure 6.24 (implemen-

tation 2).     

The results for the Tar River show the computed discharge across the sections is too 
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Figure 6.20 Locations of the cross-sections on the Tar River (top panel) and Neuse River (bottom 
panel) 5, 10, 25 and 40 nodes from the hand-off point on each river. The color of the lines 
delineating the elements corresponds to the ground elevation value.
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Figure 6.21 Discharge hydrographs for sections which are 5 (top left), 10 (top right), 25 (bottom left) 
and 40 (bottom right) nodes into the ADCIRC domain along the Tar River using 
implementation 1. The black line denotes the constant boundary forcing, 500 cms.
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Figure 6.22 Discharge hydrographs for sections which are 5 (top left), 10 (top right), 25 (bottom left) 
and 40 (bottom right) nodes into the ADCIRC domain along the Tar River using 
implementation 2. The black line denotes the constant boundary forcing, 500 cms.
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Figure 6.23 Discharge hydrographs for sections which are 5 (top left), 10 (top right), 25 (bottom left) 
and 40 (bottom right) nodes into the ADCIRC domain along the Neuse River using 
implementation 1. The black line denotes the constant boundary forcing, 500 cms.
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Figure 6.24 Discharge hydrographs for sections which are 5 (top left), 10 (top right), 25 (bottom left) 
and 40 (bottom right) nodes into the ADCIRC domain along the Neuse River using 
implementation 2. The black line denotes the constant boundary forcing, 500 cms.
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high when the nodal water surface elevations are used to distribute the flow across the 

boundary. However, when the average water surface elevation at the boundary is used to 

distribute the boundary flux, the computed discharges near the boundary are a better match 

to the constant forcing value. For both boundary forcing implementations, the computed 

discharge is less for sections three and four than for sections one and two. As mentioned 

briefly in the outline of the simulation set-up, there was a 0.25 day ramp on the discharge 

boundary forcing, which is why the ADCIRC results underpredict the flow during the 

initial portions of each time series.

The results for the Neuse River show consistency between results for the two 

different boundary forcing implementations. At each of the four sections, the discharge 

nears steady-state at the end of the simulation and approaches the specified constant 

discharge value. However, there are small differences in the computed discharge from 

section to section. For both forcing implementations, the discharge is greater for the fourth 

section than for the other three.

A comparison of the flux across each of the segments in the cross-sections on the 

Tar River is shown in Figure 6.25. The equivalent set of plots for the Neuse River are 

presented in Figure 6.26. The results are consistent with the discharge hydrographs for the 

different sections. The two implementations produce different results on the Tar River, but 

they produce very consistent results for the Neuse River. The use of nodal elevations 

(implementation 1) to distribute conveyances results in higher flow rates. The elevated flow 

rates are fairly consistent from segment to segment. In other words, the discharge across 

each of the segments on the Tar River is higher with implementation 1 than with implemen-

tation 2, except for one segment location 40 nodes into the domain. 
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Figure 6.25 A comparison of flux across each of the segments in the cross-sections for the Tar River 
with boundary forcing implementations 1 (black) and 2 (gray) from above. The results 
are from the end of the 0.5 day simulations.
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Figure 6.26 A comparison of flux across each of the segments in the cross-sections for the Neuse 
River with boundary forcing implementations 1 (black) and 2 (gray) from above. The 
results are from the end of the 0.5 day simulations.
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The first implementation should be less stable because there is a positive feedback 

between water surface elevation and discharge when conveyance is used to calculate 

boundary forcing. An increase in water surface elevation at a specific node, compared to 

the rest of the nodes on the boundary, results in an increase in the conveyance associated 

with that node. Therefore, using implementation 1, the discharge assigned to that node will 

increase. Subsequently, the higher discharge will tend to further increase the water surface 

elevation at that node. However, the second implementation uses an average water surface 

elevation across the entire boundary at a given time step to calculate the nodal depths and 

conveyances, so local maxima and minima in the water surface along the boundary do not 

cause unrealistic boundary forcing values and distributions to occur. Thus, it is recom-

mended that implementation 2 be used, rather than implementation 1.

6.3.3  Boundary Flux Applied to Main River Nodes Only

An alternate method to the use of conveyance to assign the discharge at the 

boundary is the specification of all the discharge to only the two main river nodes. The two 

main river nodes at the boundary on the Neuse River are shown in Figure 6.27. As the 

figure shows, the main channel of the Neuse River is lower in elevation (corresponding to 

a higher bathymetry value) than the adjacent floodplains. Thus, for low flows, only the 

elements making up the main channel of the river will be wet, and the active width for each 

of the circled nodes will be one half the distance between those nodes. However, once the 

river stage reaches a level that causes the elements adjacent to the river to be wet, the active 

width for each of the nodes circled in Figure 6.27 will increase, as depicted in Figure 6.28. 

The increase in active width is problematic because the quantity used in the ADCIRC 

calculations is the unit discharge, which is the nodal discharge divided by the active width. 
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Thus, if the elements adjacent to the main channel are wet, as well as the main channel 

elements, the unit discharge needs to be reduced to maintain the correct total discharge 

specified at the model boundary. 

Figure 6.27 Discretization and bathymetry of the ADCIRC grid at the upstream boundary of the 
Neuse River. The two river nodes at the boundary are circled.

Figure 6.28 Active width for main river boundary nodes for in-channel flow (left) and out-of-bank 
flow (right).
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It seems reasonable to use a stage-discharge relationship for the model channel to 

generate the pre-run nodal unit discharge specification. The stage-discharge relationship 

could be easily derived from a series of constant discharge river simulations or a simulation 

with a wide variation in discharge forcing, although a series of constant discharge simula-

tions would not provide a looped rating curve. The water surface elevation for a given river 

discharge would give a fairly accurate estimate of the extent of the river at a given time 

during the simulation. The conveyance, based on the water surface elevation and river 

extent, could then be used to distribute the river flux across the boundary.

Unfortunately, this procedure could result in major mass balance errors due to the 

way rivers are represented in ADCIRC. For example, the water surface elevation in the 

model might be slightly lower than predicted just before the river reaches bank-full condi-

tions. While the simulation has only the main river elements wet, the stage-discharge rela-

tionship predicts the first floodplain elements, adjacent to the river on each side, to be wet 

as well. Therefore, the predicted active width for the two main river nodes, for the purposes 

of computing the unit discharge, will be approximately twice as large as the actual active 

width. Thus, the specified unit discharge, based on the predicted water surface elevation 

and extent, will be approximately half as large as it should be according to the model 

results. This small error in predicted water surface elevation will result in only half of the 

necessary boundary flux entering the domain. This error will cause an immediate reduction 

in the discharge entering the ADCIRC domain. As a result, the water surface elevation will 

drop and the river may never reach bank-full depth at the boundary because the active width 

will remain lower than predicted. As the total discharge increases, the amount of discharge 

applied to floodplain nodes will rise. However, if the floodplain elements are not wet, the 
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discharge applied to the floodplains will be neglected.

The opposite situation is possible as well. If the active width in the model is greater 

than expected from the stage-discharge relationship, the mass entering the domain will be 

too high. For instance, if the river and the first floodplain elements on each side are wet, but 

the rating curve predicts that only the river will be wet, the amount of flow entering the 

domain will be too large because the active width is incorrect.

Given these problems, it is desired to use an implementation for discharge at the 

boundary that uses a fixed width to avoid mass balance problems resulting from the a priori 

unit discharge assignment. The active width for the two main channel nodes along the 

boundary can easily be made constant with a minor modification to the ADCIRC grid. This 

modification process consists of two steps, of which the order is not important. One step is 

lowering one node along the boundary on each side of the main channel to an elevation that 

is similar to the elevation of the main channel nodes. The result of this change can be seen 

in the left panel of Figure 6.29, where the lowered nodes (circled) are now lighter in color, 

as compared to Figure 6.28. The other step is to make sure the orientation of the elements 

is such that the elements adjacent to the river elements containing faces along the upstream 

boundary create a funnel from the boundary into the main channel. The original discretiza-

tion has this orientation for the element directly south of the main channel. However, the 

element configuration on the north floodplain must be modified. The result of this modifi-

cation can be seen in the right panel of Figure 6.29. The adjustment is an application of the 

“Swap Edges” tool in SMS to the face marked with an “X” in the left panel. 

Following this modification, a line of four elements (numbered from north to south) 

should always be wet. In this way, the active width of the two main channel nodes will be 
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constant throughout the simulation and the unit discharges can be calculated a priori. This 

new boundary forcing implementation, with discharge limited to the main river nodes, is 

tested in the next section. This set-up does not preclude additional elements along the 

upstream boundary from becoming wet. However, such inundation will not affect the active 

width of the main channel nodes. 

6.3.4  River Application (Hurricane Floyd)

In order to test the boundary specification, simulations were performed using 

hydrographs from Hurricane Floyd (1999). USGS discharge values for the Tar River at 

Tarboro, NC and the Neuse River near Fort Barnwell, NC were used as the upstream 

forcing on each river, respectively. Simulations were performed using a ramp for the first 

day of simulation time. Discharge near the boundary is compared to the specified discharge 

to assess the boundary condition implementation. Theoretically, water surface elevation 

and discharge hydrographs could be compared to USGS values at select stations to evaluate 

1

2
3
4

Figure 6.29 Modifications to grid boundary necessary to fix the active width of the main river nodes 
for discharge specification. The left panel highlights the modification to the elevation for 
the first node on the floodplain (on each side of the river) along the boundary, as well as 
the element edge that must be reoriented. The right panel shows the line of four elements 
along the boundary that will be wet, at baseflow, throughout the simulation.
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the river system. However, the analysis at gauge stations is limited by the nature of the 

boundary specification. Specifically, because the discharge from USGS data at Tarboro and 

Fort Barnwell is applied at the ADCIRC grid boundary (Fort Barnwell is about 68 km, 

along the river, away from the hand-off point on the Neuse River), there is an inherent time 

lag introduced. Additionally, the flood wave will have an opportunity to be attenuated 

during the stretch from the boundary to the gauge station. As mentioned previously, 

ADCIRC does not account for precipitation or lateral inflows over the region discretized in 

the ADCIRC grid, which also introduces error in comparisons to data from USGS gauge 

locations.

Simulations using discharge results from Hurricane Floyd were performed using 

three different boundary forcing implementations: 1) computed water surface elevations 

used in conveyance calculations, 2) average water surface elevation used in conveyance 

calculations and 3) discharge applied to two river nodes only. The first two are the same 

implementations used previously in Section 6.3.2. Implementation 3 has the additional 

benefit that the current parallel ADCIRC framework can be used without any modifica-

tions, because the discharge values are split only between the two river nodes and can be 

done so a priori. The active width is fixed, so the unit discharge values are just the nodal 

discharges divided by the active width. The  value for the simulations was a constant 

value of 0.1 . 

The discharge hydrograph results from implementation 1 can be seen in 

Figure 6.30. The results are consistent with the findings for the constant discharge simula-

tion presented previously (Figure 6.21 and Figure 6.23). Specifically, the Tar River 

discharge calculated from the ADCIRC results is greater than the amount of flow that is 

G
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Figure 6.30 Comparison of ADCIRC (gray) to forcing (black) hydrographs for Hurricane Floyd 
simulations using boundary implementation 1, for both the Tar and Neuse Rivers. Results 
for the first day of the ADCIRC results include a ramp function to smooth the transition 
from a cold start.
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supposed to be entering the domain. The peak ADCIRC discharge is approximately 20% 

higher across the first section (5 nodes along the river in from the boundary) than the actual 

peak forcing used for the boundary condition calculation. However, the ADCIRC results 

are close to the boundary forcing hydrograph on the Neuse River. Additionally, there are 

high-frequency oscillations in the discharge results on the Tar River. The oscillations are 

due to instability related to the use of nodal elevations to compute the nodal discharges to 

input as the boundary condition. 

The results for the Tar River for implementations 2 and 3 are shown in Figure 6.31. 

The results using implementation 2 are shown in the left panels, while the results using 

implementation 3 are shown in the right panels. The results are not identical. For instance, 

the peak discharge at the first section, 5 nodes into the domain, using implementation 3 is 

2,090 cms, while the peak discharge using 2 is 2,064 cms; the peak discharge used to 

generate the forcing is 1,996 cms. However, the results are more consistent for the locations 

farther downstream. 

The results for implementations 2 and 3 on the Neuse River are shown in 

Figure 6.32. Again, results using implementation 2 are shown in the left panels and the 

results at the same locations, using implementation 3, are shown in the right panels. The 

discharge hydrographs for the different boundary implementations are consistent. Addi-

tionally, there is not much error compared to the boundary forcing. The computed 

discharges for the third section on the Neuse are slightly low, regardless of implementation. 

The distribution of flow in the cross-section depends on the boundary implementa-

tion. The discharge across each segment in each of the four cross-sections, three days into 

the Hurricane Floyd simulation, is shown in Figure 6.33. Focusing on the comparison 
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Figure 6.31 Comparison of ADCIRC (gray) to forcing (black) hydrographs on the Tar River for 
Hurricane Floyd simulations using boundary implementations 2 (left panels) and 3 (right 
panels). Results for the first day of the ADCIRC results include a ramp function to 
smooth the transition from a cold start.
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Figure 6.32 Comparison of ADCIRC (gray) to forcing (black) hydrographs on the Neuse River for 
Hurricane Floyd simulations using boundary implementations 2 (left panels) and 3 (right 
panels). Results for the first day of the ADCIRC results include a ramp function to 
smooth the transition from a cold start.
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Figure 6.33 Comparison of distribution of discharge, for different boundary forcing implementations, 
in the sections three days into the Hurricane Floyd simulations. The results for 
implementation 1 are shown in black, whereas the results for implementations 2 and 3 are 
shown in light and dark gray respectively. Results for the Tar River are on the left, while 
the graphs in the right panels show information for the Neuse River.
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between implementations 2 and 3, there is a different distribution for the first section on 

each of the rivers. For the Tar River, the discharge in the second and third segments is lower 

for implementation 3 than for implementation 2. This result is consistent with analysis of 

sections near the boundary. Specifying flux only on the main river nodes results in higher 

flows through the main channel of the river (and lower flows near the extents of the inun-

dation) than when the boundary flux is specified based on conveyance. However, the flux 

quickly spreads out from the main channel and influences the entire wet extent of the river 

and floodplain. Just ten nodes into the river, the differences in distribution of discharge is 

almost indistinguishable for implementations 2 and 3.

The equivalent set of distributions, for results five days into the simulation, is 

shown in Figure 6.34. Five days into the simulation corresponds to the transition between 

the rising limb and the peak of the forcing hydrograph. The peak forcings for the Tar and 

Neuse Rivers are six and seven days into the simulation, respectively. The discharge five 

days into the simulation is 96.0% of the maximum on the Tar River, while on the Neuse 

River the forcing at that time is 91.6% of the maximum. 

The impact of pushing the entire boundary forcing into the domain through the main 

channel can easily be seen. Again, analysis will focus on implementations 2 and 3. At the 

section five nodes into the domain along the Tar River, the maximum flows are found 

through sections eight and nine, regardless of forcing implementation. The discharges 

through segments eight and nine are 9.9% and 8.7% larger, respectively, when the entire 

discharge is input at the main river nodes (implementation 3). However, the discharges 

through segments one through four are lower when implementation 3 is used, with a 

decrease in discharge through segments one and two of more than 30%, compared to results 
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Figure 6.34 Comparison of distribution of discharge, for different boundary forcing implementations, 
in the sections five days into the Hurricane Floyd simulations. The results for 
implementation 1 are shown in black, whereas the results for implementations 2 and 3 are 
shown in light and dark gray respectively. Results for the Tar River are on the left, while 
the graphs in the right panels show information for the Neuse River.
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from implementation 2. These results are not surprising. Near the hand-off point, imple-

mentation 3 artificially increases the amount of flow through the main channel while sacri-

ficing flow near the lateral extent of the river.

The results on the Neuse River are consistent with the results on the Tar River. For 

the section five nodes into the domain, the discharge through the segments near the main 

channel (five through ten) are higher with implementation 3 than with 2. Towards the 

lateral boundaries on each side, less discharge is found when 3 is utilized instead of 2.

Contrary to results three days into the simulation, five days into the simulation there 

is a noticeable difference in the discharge distribution for the section ten nodes into the 

domain on each river. For the section ten nodes into the domain on the Tar River, the 

discharge is higher with 3 than with 2 for segments eight through thirteen. This portion of 

the section corresponds to the area with the higher flow rates. The maximum percentage 

difference is across segment eleven, where the discharge is 3.5% higher with 3 than with 2. 

At the section twenty-five nodes into the domain, the discharges between 2 and 3 are within 

1% for all segments in the cross-section. The same trends hold true on the Neuse River. For 

the section ten nodes into the domain, there are overestimates as high as 5.7% and under-

estimates of 6.5% comparing discharges across segments with 3 to results from 2. The over-

estimates are near the main channel areas with the highest flow rates. The differences 

decrease as one moves farther away from the boundary. At the section twenty-five nodes in 

along the Neuse River, the discharges across segments are all within 0.5% of each other 

comparing results from 2 and 3.

The results show specifying the entire discharge to the main river nodes does not 

have a deleterious impact on results. The amount of water entering the domain is consistent 
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with more physically realistic implementations. Furthermore, while there is an impact in 

the immediate vicinity of the boundary, the error is relatively small, even for the highest 

recorded flow rates on the Tar and Neuse Rivers, and even that spreads out 25 nodes into 

the domain, which is about 1.5-2% of the total river length being simulated. Therefore, it 

seems that constraining the non-zero boundary unit discharge forcings to the main river 

nodes is a reasonable practice. 

This study does not assess flows in excess of approximately 2,000 cms. However, 

it does not seem logical to assess the ability of an implementation to handle a non-physical 

condition that is not necessary, such as forcing the Tar River with a flow rate of 20,000 cms 

(consistent with the average flow on the Mississippi River). 

Rivers that handle larger flows generally have larger main channel widths than the 

Tar and Neuse Rivers. As such, the main channel would probably be delineated with more 

nodes in a river cross-section than just the two that define the width of the main channel. 

This added resolution would reintroduce mass balance issues related to the active width. 

Certainly, a similar boundary implementation could be used that limits the forcing to two 

(or a different fixed number) of nodes. However, a better method might be to use a rating 

curve to distribute the flow with a bias towards the nodes that are wet at low flows, as 

described below. 

Specifically, implementation 3 has four nodes wet at the boundary on the Tar and 

Neuse Rivers. However, the non-zero unit discharges are limited to the two middle (main 

channel) nodes. A rating curve could be used to estimate the expected water surface eleva-

tion for a given discharge. The expected lateral extent can be obtained from the expected 

water surface elevation. To be conservative, a threshold (such as 0.5 m) could be used so 
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the depth at a node, based on the expected water surface elevation, has to be at a certain 

level before the node will be assumed to be wet. Then, based on the conservative wet 

extent, the discharge could be specified to all the interior wet nodes (the last wet node on 

each side of the floodplain will still be given zero unit discharge). Thus, the lateral extent 

of forcing is variable, but the mass balance issues related to boundary forcing can be miti-

gated.

6.4   Tributary Additions

Both the Tar and Neuse Rivers have confluences with substantial tributaries within 

the ADCIRC domain. Fishing Creek empties into the Tar River just upstream of Tarboro, 

NC, and flow from Contentnea Creek joins the Neuse River upstream of Fort Barnwell, 

NC. The locations of the confluences are shown in Figure 6.35. Neither Fishing nor 

Contentnea Creek is adequately resolved in the original ADCIRC grid. However, the 

discharges experienced by the tributaries are considerable portions of the downstream 

flows on the Tar and Neuse Rivers, respectively. There are additional, smaller tributaries on 

both the Tar and Neuse Rivers within the ADCIRC domain. However, the vast majority of 

flow on the Tar and Neuse Rivers is accounted for by incorporating Fishing and Contentnea 

Creeks. 

The magnitude of flows in Fishing and Contentnea Creeks, compared to the Tar and 

Neuse Rivers, is shown in Table 6.3. The data presented is the maximum flow at the 

ADCIRC grid boundary (hand-off location) for each river boundary location from an 

hourly time series output generated by HL-RDHM. The HL-RDHM results are consistent 

with the USGS gauge data to which the model has been compared [Van Cooten 2011]. For 
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Hurricane Floyd, Hurricane Isabel and Tropical Storm Alberto, the peak flow at the Fishing 

Creek hand-off is always more than half the peak flow at the Tar River hand-off point. For 

Hurricane Isabel, the peak flow at the Fishing Creek hand-off point actually exceeds the 

maximum discharge for the hand-off point on the Tar River, and the peak magnitude at the 

Fishing Creek boundary during Hurricane Floyd is more than 80% of the peak forcing on 

the Tar River. Similar trends apply to the Neuse River - Contentnea Creek system. The peak 

flow at the hand-off point for Contentnea Creek during Hurricanes Floyd and Isabel is 

about two-thirds of the largest flows at the hand-off point on the Neuse River. 

A number of alternatives were considered to handle flows from Fishing and 

Contentnea Creeks given the ADCIRC framework. If contributions from the tributaries are 

neglected, the result would be discharges that are substantially lower than they should be 

downstream of the confluences with those tributaries. The first alternative was to add the 

Figure 6.35 Modified ADCIRC grid with the upper extent of the Tar and Neuse Rivers removed. The 
hand-off points on the Tar River (TR) and Neuse River (NR) are marked on the plot. 
Additionally, the location of the confluence of the Tar River and Fishing Creek is marked 
(TC) and the confluence of the Neuse River and Contentnea Creek is shown (NC).
276



flow from Fishing Creek to the flow for the Tar River and apply the combined flow at the 

ADCIRC boundary on the Tar River. Similarly, the Neuse River and Contentnea Creek 

flows would be added together and applied at the Neuse River hand-off point. 

While this would have been a simple modification in procedure, two main problems 

exist, both of which are more prevalent on the Neuse River system. First, the distance from 

the ADCIRC boundary to the confluence is different for the different reaches. The distance 

along the Neuse River from the boundary to the confluence is much greater than the 

distance along Contentnea Creek from the boundary. Thus, an inherent time lag will be 

introduced into the system for the Contentnea Creek flow if it enters at the Neuse River 

hand-off point. Additionally, the discharge upstream of the confluence would be artificially 

inflated by the tributary discharge being applied upstream of the actual tributary location. 

This increased flow rate would have implications on the flow speed, further complicating 

the discharge timing. Furthermore, the increased discharge rates upstream of the confluence 

would render flood forecasts in those areas useless, or at least less useful. Therefore, the 

decision was made to modify the ADCIRC grid to delineate Fishing and Contentnea 

Creeks.

Table 6.3  Peak flow rates (cms) at ADCIRC boundary locations from HL-RDHM 
simulations producing hourly discharge values.

Event Tar River 
Upstream

Fishing 
Creek

Neuse River 
Upstream

Contentnea 
Creek

Hurricane Floyd 1106 915 1195 777

Hurricane Isabel 138 223 301 192

T.S. Alberto 363 214 308 107
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Two alternatives related to grid modifications were considered. Cross-section data 

from the NCFMP could have been used to generate nodes for the river and floodplain. 

However, due to time constraints (as well as the geometric concerns related to discretiza-

tion), a more simple procedure was used for each tributary:

• Each edge of the tributary was traced using the “Path” tool in Google Earth, 
with points selected becoming nodes for the tributary addition in the 
ADCIRC grid; an example of this is shown in Figure 6.36.

• Two paths along each side of the river on each floodplain were selected 
using the “Path” tool in Google Earth.

• Channel elevations were assigned assuming a constant change in elevation 
from one node to the next, with the elevation assigned to the node at the 
confluence based on the ADCIRC grid value in the main river at the conflu-
ence location; this creates an approximately linearly sloping tributary.

• Floodplain elevations were assigned in the same manner, with constant 
change from one node to the next along a line:

• First floodplain line on each side is 2 m higher than the channel.
• Second floodplain line on each side is 3 m higher than the channel.

• The XYZ data points were imported into the ADCIRC grid in SMS.
• Nodes in the current ADCIRC grid in regions defined by the new tributary 

nodes were removed.
• New nodes were triangulated to create elements.
• Selective addition, subtraction and movement of nodes was used to improve 

the mesh, with nodal elevations of added nodes being generated automati-
cally by SMS based on the elevations of surrounding nodes.

The implementation is consistent with the treatment of the Tar and Neuse Rivers in that the 

main channels are defined by a line of nodes on each side. Modifications can be made to 

the elevations of the ADCIRC nodes in the future, as necessary, to have accurate inundation 

prediction for the tributaries upstream of the confluences. Also, this treatment is not unlike 

the approach often used in distributed hydrologic models, where the river channel is 

assumed to have a particular geometric shape (e.g., parabolic).
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Figure 6.36 shows the delineation of Fishing Creek for the tributary addition to the 

original ADCIRC grid. Just to the right of where the white lines connect to the Tar River, 

it looks like Fishing Creek actually wraps around to the east of the horseshoe bend in the 

Tar River, so the actual confluence is on the southeast corner of the horseshoe bend. The 

decision to not follow that path for Fishing Creek was twofold. First, the aerial image shows 

water throughout a fair amount of that region and it is hard to tell whether or not there is a 

connection, although it appears that there is a line of trees between Fishing Creek and the 

Tar River in that location. Regardless, however, it is likely that at high flows, the two chan-

nels are connected at the chosen location. Second, and more importantly, the target grid 

resolution did not allow elements to be added without modifying the path of either the Tar 

River or Fishing Creek, unless the dividing area was defined as a levee system. While 

ADCIRC possesses this capability, a levee elevation would have to be defined. Currently, 

no levee systems exist in this grid and addition for this feature seemed unnecessary for the 

current application. 

Figure 6.36 Definition of the edges of Fishing Creek just upstream of the confluence with the Tar 
River using paths in Google Earth.

Tar

Fishing Creek

River
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The original (where Fishing Creek is not considered) and new discretizations of 

area around Fishing Creek are shown in Figure 6.37. Fishing Creek was not specifically 

delineated in the v20 ADCIRC grid, although the elevations suggest that there is a 

waterway in that area. The impact of the modifications can clearly be seen in the image on 

the right. The elevations are lower in the main channel than in the surrounding areas. The 

channel elevations and widths are consistent with values for the Tar River in that area. 

Figure 6.38 shows the modifications to the ADCIRC grid to delineate Contentnea 

Creek. The upland areas of Contentnea Creek were removed so the hand-off location (loca-

tion of ADCIRC boundary) on Contentnea Creek was placed just downstream of the 

confluence on Contentnea Creek, which occurs upstream of Grifton, NC. This allowed one 

hand-off point to be used for Contentnea Creek. If the ADCIRC grid extended farther up 

Contentnea Creek, hand-off points would be needed on the main stem of Contentnea Creek 

(shown on the west side of the left panel of Figure 6.38) and the tributary to Contentnea 

Creek (shown on the north side of the left panel of Figure 6.38). 

Figure 6.37 Fishing Creek discretization in v20 (left) and in the modified grid (right) for the tropical 
event hindcasts.
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6.5   Full-domain Hindcasts

Hindcasts of Hurricane Floyd (1999), Hurricane Isabel (2003) and Tropical Storm 

Alberto (2006) were performed using the full ADCIRC grid with the tributary additions to 

allow for discharge specification on Fishing and Contentnea Creeks, as well as on the Tar 

and Neuse Rivers. The discharge hydrographs are hourly time series from HL-RDHM for 

each of the four hand-off locations at the ADCIRC boundary. 

The simulations were all performed using a 20-day ramp on the tides, a 0.25-day 

ramp on the river forcings and 0.0 for the flux settling time, which is the amount of time 

the rivers are allowed to ramp up before tidal forcing is initially applied. The time step for 

the simulations was 0.5 seconds and the  parameter was set to -3, which is a variable  

setting. The spatially variable parameters specified in the nodal attributes (fort.13) file for 

all simulations were Manning’s roughness, horizontal eddy viscosity and .

The main difference between the simulations is that tides, winds and waves 

Figure 6.38 Contentnea Creek discretization in v20 (left) and in the modified grid (right) for the 
tropical event hindcasts.

G G
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(through use of the coupled ADCIRC+SWAN code, which uses the unstructured version of 

the wave model SWAN [Dietrich 2010b; Zijlema 2010] for the period when wind forcing 

is available, simulation days 45-50.47) were used for the hindcast of Hurricane Isabel, 

while only tides were used for Floyd and Alberto. The inclusion of winds and waves for the 

Hurricane Isabel hindcast was to demonstrate the capabilities of the entire system. With the 

wind forcing applied, nodal attributes for the surface canopy coefficients and surface direc-

tional effective roughness length values were also used for Hurricane Isabel. The peak 

surge during Isabel occurs about 50 days into the simulation, while the peak discharge just 

downstream of the confluence with Fishing Creek on the Tar River occurs about 56 days 

into the simulation. Thus, the two factors, surge and river flooding, are fairly decoupled 

during Hurricane Isabel.

6.5.1  Boundary Forcing

The boundary forcing for each of the four hand-off points for each of the simula-

tions is seen in Figure 6.39 (Hurricane Floyd), Figure 6.40 (Hurricane Isabel) and 

Figure 6.41 (Tropical Storm Alberto).    The black line in each of the graphs shows the 

values from HL-RDHM used to compute the boundary forcing for ADCIRC. The gray line 

shows the discharge, calculated from the elevation and velocity results, across an ADCIRC 

river section just inside the boundary (7 nodes in from the boundary on both the Tar River 

and Fishing Creek, 5 nodes from the boundary on the Neuse River, and 9 nodes from the 

boundary on Contentnea Creek). More detail on the HL-RDHM simulations can be found 

in Van Cooten et al. [2011] and Vergara et al. [2010].

An important aspect of coupled simulations is that the specified discharge actually 

enters the ADCIRC domain. Generally, as the values in Table 6.4 and Table 6.5 show, the 
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Figure 6.39 Comparison of input (black) and computed discharge (gray) values at the boundary for 
each of the hand-off points for Hurricane Floyd.
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Figure 6.40 Comparison of input (black) and computed discharge (gray) values at the boundary for 
each of the hand-off points for Hurricane Isabel.
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total volume of discharge specified approximately equals the total volume calculated using 

the output water surface elevations and velocities from ADCIRC. The total volume is the 

area under the discharge hydrograph. 

The largest errors occur during different events for different hand-off points. The 

worst error for the Tar River boundary, -5.7%, occurs for Hurricane Floyd. Fishing Creek 

reproduces the specified volume very well for Hurricane Floyd, but has errors of approxi-

mately -8% for both Hurricane Isabel and Tropical Storm Alberto. On the Neuse River 

system, Contentnea Creek performs worst for Hurricane Floyd, -3.9%, while the Neuse 

River has almost perfect mass balance for Hurricane Floyd but has errors close to -10% for 

both Hurricane Isabel and Tropical Storm Alberto.

Along with the small errors in volume entering the domain, there are short-wave-
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Figure 6.41 Comparison of input (black) and computed discharge (gray) values at the boundary for 
each of the hand-off points for Tropical Storm Alberto.
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length oscillations in the discharge at some locations.Oscillations in the discharge results 

are generated during ADCIRC simulations when bank-full depth is exceeded and the initial 

floodplain wetting occurs. When the flow rates are within a given range for each of the 

channels, the oscillations occur, which may be caused by elements alternately wetting and 

drying. The most dramatic instances of this are the Tar River hand-off for Hurricane Isabel 

(top left panel of Figure 6.40) and the hand-off on Contentnea Creek for both Hurricane 

Isabel and Tropical Storm Alberto (bottom right panels of Figure 6.40 and Figure 6.41). 

The oscillations for the Tar River hand-off location occur for flow rates around 100 cms. 

Table 6.4  Comparison of specified volume (cubic meters) of boundary forcing to volume 
calculated near the boundary from ADCIRC output fields for channels in the Tar River 

system.

Event Tar Specified Tar Output Fishing 
Specified

Fishing 
Output

Hurricane 
Floyd

8.55 E08 8.06 E08 5.92 E08 5.80 E08

Hurricane 
Isabel

2.44 E08 2.35 E08 1.90 E08 1.75 E08

TS Alberto 3.31 E08 3.23 E08 1.92 E08 1.76 E08

Table 6.5  Comparison of specified volume (cubic meters) of boundary forcing to volume 
calculated near the boundary from ADCIRC output fields for channels in the Neuse River 

system.

Event Neuse 
Specified Neuse Output Contentnea 

Specified
Contentnea 

Output

Hurricane 
Floyd

2.00 E09 1.97 E09 9.92 E08 9.53 E08

Hurricane 
Isabel

4.81 E08 4.37 E08 3.00 E08 3.00 E08

TS Alberto 4.32 E08 3.88 E08 1.36 E08 1.45 E08
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Similar oscillations occur for the Tar River location for the other events as well, but they 

are less noticeable because the flow is not near 100 cms for the entire duration of the event. 

The oscillations occur at the Contentnea Creek hand-off for flows between 30-100 cms. 

The oscillations are less prevalent for Hurricane Floyd because the flows are above the 

range that produces the oscillations for the majority of the event. Also, for Hurricane Isabel, 

the oscillations disappear when the flow rate passes 100 cms, but they come back after the 

flow rate drops back under 100 cms. The oscillations are less prevalent during Hurricane 

Floyd because the flow rates are high enough that the floodplain is inundated for a large 

portion of the simulation. Additionally, the range of discharges experienced minimizes the 

oscillations that do occur for the flow rates near bank-full because of the overall scale on 

the figure.

6.5.2  Confluence

Along with mass balance at the grid boundaries, mass conservation should apply for 

river confluences. Table 6.6 shows the total volumes calculated upstream and downstream 

of the confluences on the Tar and Neuse Rivers for the three events. For the Tar River, the 

upstream value is the sum of the volume calculated on the Tar River upstream of the conflu-

ence with the volume calculated on Fishing Creek upstream of the confluence. Similarly, 

the upstream value for the Neuse confluence is the volume for the Neuse upstream of the 

confluence added to the volume for Contentnea Creek upstream of the confluence. These 

values are compared to the total volume calculated for sections on the Tar and Neuse Rivers 

downstream of the confluences. 

The results are fairly consistent in that the downstream total volume always exceeds 

the total volume upstream of the confluence. The error for the confluence on the Tar River 
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is negligible for Hurricane Floyd and is less than 2% for Tropical Storm Alberto, while the 

confluence experiences a gain of almost 7% during Hurricane Isabel. The confluence on 

the Neuse River experiences larger mass balance errors, ranging from 12.8% for Hurricane 

Floyd to 19.3% for Tropical Storm Alberto.

6.5.3  Overall River Behavior

Thus far, most of the analysis of river behavior has been focused on the locations 

just downstream of the hand-off locations, with additional attention given to the conflu-

ences of the main stems and tributaries. In this section, results from locations throughout 

the river reaches will be presented.

The total discharge was computed through fifteen sections (combined) on the Tar 

River and Fishing Creek. Additionally, sixteen total sections were used on the Neuse River 

and Contentnea Creek. The locations of all the sections for computing discharge can be 

found in Table 6.7 (Tar River and Fishing Creek) and Table 6.8 (Neuse River and 

Contentnea Creek). The locations for the cross-sections on the main rivers are shown 

graphically in Figure 6.51. For each of the three events, the total discharge through each 

Table 6.6  Comparison of the sum of the calculated volumes (cubic meters) at sections just 
upstream of the confluences with the volume calculated just downstream of the 

confluence on the Tar and Neuse Rivers.

Event Upstream Tar 
Plus Fishing

Downstream 
Tar

Upstream 
Neuse Plus 
Contentnea

Downstream 
Neuse

Hurricane 
Floyd

1.58 E09 1.59 E09 4.21 E09 4.75 E09

Hurricane 
Isabel

4.81 E08 5.14 E08 1.94 E09 2.26 E09

T.S. Alberto 5.89 E08 5.97 E08 1.14 E09 1.36 E09
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cross-section is shown in Figure 6.42. The total volume comparisons have some inherent 

error because the rivers are not allowed to reach steady-state discharge conditions at the 

beginning and end of the volume calculation period. However, this error is relatively small, 

and it should cause the total discharge volume to decrease with distance downstream from 

the ADCIRC grid boundary. The error is small because the discharge boundary forcing 

values at the start of the simulations are low, so they are in the same range as the flow rates 

Table 6.7  Locations of cross-sections on the Tar River and Fishing Creek for calculating discharge from 
ADCIRC simulations.

Tar Basin ID Description Latitude Longitude

1 Top of Tar River (8 nodes in) 35.9289 -77.5556

2 Tar River 3.6 km from hand-off point 35.9349 -77.5340

3 Tar River upstream of confluence (6.0 km 
from hand-off point)

35.9458 -77.5269

4 Top of Fishing Creek 35.9777 -77.5390

5 Fishing Creek intermediate location 35.9658 -77.5351

6 Fishing Creek 0.5 km upstream of the con-
fluence with the Tar River

35.9486 -77.5183

7 Tar River downstream of confluence (8.7 km 
from hand-off point)

35.9357 -77.5168

8 Tar River 11.7 km from hand-off point 35.9194 -77.5105

9 Tar River at Tarboro (18.9 km from hand-off 
point)

35.8939 -77.5324

10 Tar River 24.6 km from hand-off point 35.8482 -77.5424

11 Tar River 33.7 km from hand-off point 35.7753 -77.5325

12 Tar River 50.0 km from hand-off point 35.6608 -77.4629

13 Tar River at Greenville (62.3 km from hand-
off point)

35.6168 -77.3728

14 Tar River near Grimesland (84.8 km from 
hand-off point)

35.5744 -77.1771

15 Pamlico River at Washington 35.5422 -77.0628
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throughout the rivers early in the simulations. Additionally, for most of the hand-off point 

hydrographs, the discharge is close to zero and decreasing with time near the end of the 

simulation. This helps offset errors due to higher discharge rates for the uppermost reaches 

early in the simulation. Furthermore, the large discharge peaks that occur for relatively 

Table 6.8  Locations of cross-sections on the Neuse River and Contentnea Creek for calculating 
discharge from ADCIRC simulations.

Neuse Basin 
ID Description Latitude Longitude

1 Top of Neuse River (6 nodes in) 35.2244 -77.7647

2 Neuse River 4.7 km from hand-off point 35.2190 -77.7313

3 Neuse River 10.4 km from hand-off point 35.2281 -77.6927

4 Neuse River 16.9 km from hand-off point 35.2400 -77.6513

5 Neuse River upstream of Kinston gauge 
(26.8 km from hand-off point)

35.2644 -77.6036

6 Neuse River at Kinston (30.0 km from hand-
off point)

35.2532 -77.5873

7 Neuse River downstream of Kinston gauge 
(30.3 km from hand-off point)

35.2507 -77.5861

8 Neuse River 35.2 km from hand-off point 35.2460 -77.5447

9 Neuse River 45.5 km from hand-off point 35.3007 -77.4876

10 Neuse River upstream of confluence with 
Contentnea Creek (50.6 km from hand-off 

point)

35.3256 -77.4651

11 Top of Contentnea Creek 35.4217 -77.4707

12 Contentnea Creek at Grifton (upstream of 
confluence with Neuse River)

35.3776 -77.4477

13 Neuse River downstream of confluence (60.1 
km from hand-off point)

35.3339 -77.3777

14 Neuse River near Fort Barnwell (67.5 km 
from hand-off point)

35.3137 -77.3039

15 Neuse River 79.9 km from hand-off point 35.2527 -77.2185

16 Neuse River 99.5 km from hand-off point 35.1626 -77.0817
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large portions of the middle of the simulations account for the majority of the total 

discharge. The major flood waves for each event are allowed to pass through the entire 

domain during the simulation. 

The general trend shows the discharge volume increases with distance downstream 

from the grid boundary. This occurs on both the Tar River and Fishing Creek upstream of 

their confluence, although the mass error is relatively small on Fishing Creek. The most 

dramatic increase on the Tar River system is downstream of the confluence. The mass 

balance error (increase in discharge volume) downstream of the confluence is in the same 

0

5.0�108

1.0�109

1.5�109

2.0�109

2.5�109

Cross�Section

T
ot

al
V

ol
um

e
of

D
is

ch
ar

ge
,m

3

Hurricane Floyd: Tar River System

0

1�109

2�109

3�109

4�109

Cross�Section

T
ot

al
V

ol
um

e
of

D
is

ch
ar

ge
,m

3

Hurricane Floyd: Neuse River System

0

2.0�108

4.0�108

6.0�108

8.0�108

1.0�109

1.2�109

Cross�Section

T
ot

al
V

ol
um

e
of

D
is

ch
ar

ge
,m

3

Hurricane Isabel: Tar River System

0

5.0�108

1.0�109

1.5�109

2.0�109

Cross�Section
T

ot
al

V
ol

um
e

of
D

is
ch

ar
ge

,m
3

Hurricane Isabel: Neuse River System

0

2.0�108

4.0�108

6.0�108

8.0�108

1.0�109

1.2�109

Cross�Section

T
ot

al
V

ol
um

e
of

D
is

ch
ar

ge
,m

3

T.S. Alberto: Tar River System

0

2.0�108

4.0�108

6.0�108

8.0�108

1.0�109

1.2�109

1.4�109

Cross�Section

T
ot

al
V

ol
um

e
of

D
is

ch
ar

ge
,m

3

T.S. Alberto: Neuse River System

Figure 6.42 Total volume of discharge for different cross-sections on the rivers in the ADCIRC grid 
for Hurricanes Floyd and Isabel and Tropical Storm Alberto.
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range as the discharge values just downstream of the confluence. Thus, there is a mass 

balance error of approximately 100% along the Tar River downstream of the confluence 

with Fishing Creek.

In the Neuse River system, the majority of the mass balance error occurs on the 

Neuse River upstream of the confluence. The gain in discharge volume from the Neuse 

River hand-off point to the cross-section on the Neuse River just upstream of the conflu-

ence (cross-section 10 in the Neuse River system) is 238% during the Hurricane Isabel 

simulation. The increase between those two locations during the Hurricane Floyd simula-

tion is about 62%. It is worth noting that the confluence on the Neuse River occurs signif-

icantly farther downstream from the boundary than the confluence on the Tar River.

The cause of the oscillations and mass error is inundation of the river floodplain in 

ADCIRC. Tests with idealized river domains (prismatic channels) show consistent mass 

balance throughout the reach for in-channel flows. However, mass balance errors occur 

when the discharge is increased to induce floodplain inundation. On the idealized domain, 

the floodplain inundation causes growing mass errors as the inundation moves down the 

floodplain. Eventually, if the floodplain wetting is not impeded by topography changes 

(which is the case on the idealized domain), it causes the simulation to crash due to overly 

large build up of water, creating unrealistic water surface gradients. Attempts to control the 

mass balance errors and instability with model parameter selections were ineffective. 

Future endeavors to model rivers with ADCIRC should include a focus on the wetting and 

drying algorithms, especially as they pertain to river inundation. 
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6.5.4  Hurricane Isabel Validation

The Hurricane Isabel hindcast is different from the hindcasts for Hurricane Floyd 

and Tropical Storm Alberto because the Hurricane Isabel simulation included the use of 

wind fields and computation of wave fields to model the storm surge from the tropical 

cyclone. Therefore, the Hurricane Isabel validation utilized the following forcing fields: 1) 

river discharge boundary conditions from HL-RDHM at the four hand-off locations, 2) tidal 

forcings on the ocean boundary, and 3) wind field forcings from Hurricane Isabel applied 

as a surface stress within the domain. Additionally, wave radiation stresses are accounted 

for through use of the coupled ADCIRC+SWAN model.

The wind field was present (in the simulation) for the period of 0:00 UTC on 

September 14, 2003 to 11:30 UTC on September 19, 2003. The beginning of the wind 

forcing coincides with a simulation time of 45.0 days. Hurricane Isabel made landfall as a 

Category 2 storma at approximately 16:00 UTC on September 18, 2003 and the center 

passed just east of the Tar and Neuse River basins, as shown in Figure 6.43, which is 

adapted from a figure first published in Van Cooten et al. [2011]. The locations of the 

National Data Center Buoy (NDBC) stations used for validation are also shown in 

Figure 6.43, with the wave height validation stations on the left panel and the water surface 

elevation (tidal gauge) validation stations on the right panel. 

The coupled ADCIRC+SWAN model provides wave and water level information 

through time for the entire domain. Snapshots of the significant wave height and water 

surface elevation fields just prior to Hurricane Isabel making landfall on the outer banks, 

from Van Cooten et al. [2011], are shown in Figure 6.44. The wave field shows the largest 

a.  On the Saffir Simpson scale
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waves are on the right side of the hurricane in the region slightly off-shore. The waves break 

and reduce in amplitude across the continental rise just seaward of the outer banks, and the 

maximum significant wave heights in the Pamlico Sound are in the 2-3 m range. The water 

surface elevation field shows 2-3 m water rise along the outer banks, between Beaufort and 

Cape Hatteras, on the northeast side of the hurricane. There is drawdown on the east side 

of the Pamlico Sound and water is piling up in the area on the southwest side of the sound, 

where the Neuse River discharges into the sound.

Water surface elevations from ADCIRC were compared to NOAA tidal station data. 

A comparison of the results for the tidal stations in North Carolina is shown in Figure 6.45.

The comparisons at 8658120, 8656483, 8654400, and 8651370 are included in Van Cooten 

et al. [2010]. The locations in the figure start with the northernmost station, Duck Pier, and 

end with the southernmost station, Wilmington. Oregon Inlet is on the outer banks about 

Figure 6.43 Hurricane Isabel track along with wave and tidal gauge locations. The wave height 
stations are 41001 (East of Cape Hatteras, NC), 41002 (South Cape Hatteras, NC), 
FPSN7 (Frying Pan Shoals, NC) and 41025 (Diamond Shoals, NC). The tidal stations 
are 8658120 (Wilmington, NC), 8656483 (Beaufort, NC), 8654400 (Cape Hatteras, 
NC), 8652587 (Oregon Inlet, NC) and 8651370 (Duck Pier, NC).
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Figure 6.44 Significant wave heights (top) and water surface elevations (bottom) 49.67 days into the 
Hurricane Isabel simulation. The wind vectors are shown on each plot, and this time 
corresponds to slightly before Hurricane Isabel makes landfall on the Outer Banks on 
September 18, 2003.
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halfway between Duck Pier and Cape Hatteras. The ADCIRC tides and storm surge are an 

accurate representation of the measured values during Hurricane Isabel at all of the loca-

tions except for Oregon Inlet. ADCIRC underpredicts the maximum water surface eleva-

tion by about 0.75 m at Oregon Inleta. The timing and peak of the surge at Duck Pier and 

Beaufort are captured by ADCIRC. Additionally, the model does a decent job at Cape 

a.  The results for Oregon Inlet have subsequently been improved through local improvements to the 
ADCIRC grid in the area around Oregon Inlet [Luettich, personal communication, 2011].
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Figure 6.45 ADCIRC (solid) results for Hurricane Isabel compared to NOAA tidal station (dots) 
measurements.
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Hatteras. Unfortunately, the tidal station at Cape Hatteras did not record the peak surge 

from Isabel, because it was not recording data at the time of the peak surge. Wilmington, 

NC did not experience significant surge from Isabel because it was on the west side of the 

storm and was about 100 miles away from the center track of the storm. However, the tides 

were accurately represented by ADCIRC for the Wilmington station.

Wave heights computed by SWAN were compared to NDBC wave data. A compar-

ison of the wave results for the Hurricane Isabel hindcast is shown in Figure 6.46. The 

results at stations 41001 and 41002 are included in Van Cooten et al. [2011]. For reference, 

the Diamond Shoals buoy is located on the continental shelf south-southeast of Cape 

Hatteras and the Frying Pan Shoals buoy is located on the continental shelf southeast of 

Wilmington, as shown in the left panel of Figure 6.43. The two other buoy locations are in 

deeper water seaward of the continental shelf. 
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Figure 6.46 Comparison of SWAN (lines) and NOAA (dots) wave height results for Hurricane Isabel.
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The results show good agreement between the measured wave heights and the wave 

heights computed in the model hindcast. Specifically, the peak wave heights for the deep 

water locations off Cape Hatteras were captured by the model. The wave results are under-

predicted, across the board, for early times (before September 16th) because the wind 

forcing (and SWAN computations) started at the beginning of the day on September 14, 

2003. As one would expect, it takes time for the wave heights to ramp up and approach the 

actual values. The results are not as good for the buoys in the shallower depths as for the 

deep water locations. Specifically, for Frying Pan Shoals, the SWAN results have the 

correct magnitude, but the timing of the peak is off by about 12 hours. For Diamond Shoals, 

the buoy stopped recording on September 18, so the last value in the record is the one 

exceeding 13 m that is in agreement with the peak computed by SWAN. However, the 

SWAN wave heights reach that level at a later time, and it is unknown whether or not the 

last record from the buoy was the maximum experienced at that location.

The river portion of the ADCIRC domain was assessed by comparing ADCIRC 

results to daily data from USGS gauge locations. The seven gauge locations within the 

ADCIRC domain are shown in Figure 6.47. The daily data was used so there would be 

consistency from location to location. Higher frequency discharge data is available through 

the USGS instantaneous data archive and the stage (and water surface elevation) can be 

obtained using the discharge data in conjunction with a rating curve. However, the 

discharge data is not available for all the stations on the Tar River. Furthermore, for these 

locations, the temporal variation in discharge is not particularly large. Therefore, the high 

temporal resolution data from the instantaneous data archive is not necessary to evaluate 

hindcast results for rainfall-induced flooding from tropical systems in this geographical 
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area. However, the instantaneous data archive was used to determine the timing of the peak 

surge at Washington in order to compare to the timing of the surge modeled in ADCIRC. 

The locations of the gauge locations on the Tar River, from upstream to down-

stream, are Tar River at Tarboro (02083500), Tar River at US 264 near Rock Springs 

(02083893), Tar River at Greenville (02084000), Tar River at SR 1565 near Grimesland 

(02084173) and Pamlico River at Washington (02084472). Elevation and discharge results 

are available at Tarboro, Greenville and Washington. Thus, water surface elevation and 

discharge results from ADCIRC are compared to USGS values for those three locations. At 

the gauges near Rock Springs and Grimesland, only stage results are available, so only 

water surface elevation comparisons are done at those two locations.

The comparisons for the river locations on the Tar River are shown in Figure 6.48.

Figure 6.47 Hand-off locations (NR = Neuse River, CC = Contentnea Creek, TR = Tar River, and 
FC = Fishing Creek) and USGS gauge locations (8-digit numbers) on the Tar and Neuse 
Rivers within the ADCIRC domain.
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Figure 6.48 Hurricane Isabel hindcast comparison between ADCIRC results (lines) and USGS daily 
gauge data (black dots are mean, while the gray dots for Washington are max. and min.) 
for locations on the Tar-Pamlico River. The left panels are discharge, while the WSE is 
shown on the right, except for the second row of panel (both elevation).
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Before starting discussion of results, it is worth pointing out that the daily USGS values are 

plotted at the end of the day for which they occur. For example, the first day of the simula-

tion is July 31, 2003. The mean USGS values for that day are reported at the 1.0 day time 

in the graph. However, the USGS results for North Carolina use eastern time, rather than 

UTC. The offset for eastern daylight time (EDT), compared to UTC, is -4 hours. Noon EDT 

is 16 hours into the day in UTC. Rather than report the USGS value for July 31 at 0.67 days 

into the simulation, it is reported at 1.0 days.

The Nash-Sutcliffe model efficiency coefficient, , was computed for each of the 

locations within the domain where USGS discharge data was available. The efficiency 

coefficient is given by (6.7), where  and  are the observed and modeled discharge at 

time , and  is the mean observed discharge [Nash 1970].

(6.7)

The efficiency coefficient was calculated using mean USGS and ADCIRC values for the 

last 60 full days of the simulation. The first four full days were ignored to allow the model 

to have time to spin-up the river conditions. The time offset was accounted for in computing 

the daily mean ADCIRC discharge values. The Nash-Sutcliffe model efficiency coeffi-

cients for the Hurricane Isabel hindcast are listed in Table 6.9. The efficiency coefficient 

ranges in value from  to 1. A value of 1 results from a perfect match between observed 

and modeled discharge. An efficiency of zero signifies the model performance is equivalent 

to the observation mean. Negative values occur when the model predictions are worse than 

the observation mean. 
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At Tarboro (02083500), the discharge results match fairly well, as shown in 

Table 6.9 and Figure 6.48. The efficiency of the coupled model at Tarboro is 0.832. There 

are some instances of overprediction of discharge by ADCIRC that cause the efficiency to 

drop below 1, but the model results are significantly more accurate than the mean of the 

observed data. However, the errors that are present are good examples of ADCIRC river 

issues that have been presented earlier in the chapter. The largest error occurs at the peak 

discharge resulting from the Hurricane Isabel precipitation. The ADCIRC result shows an 

overprediction of the peak discharge of about 50%. Analysis of discharge results for cross-

sections upstream of Tarboro shows that the spike in the discharge results at Tarboro is a 

result of a gain in volume as the flood wave moves downstream. The amplified peak is not 

present in the signal just downstream of the confluence of the Tar River and Fishing Creek.

The water surface elevation results for the Tar River at Tarboro show that the error 

is larger at lower flows than at higher flows. When the discharge is at baseflow levels 

(around day 35 of the simulation), the water surface elevation in ADCIRC is about 6 m, 

while the USGS results give a value around 4 m. However, at the peak flow resulting from 

Hurricane Isabel, even though the discharge is too high, the water surface elevation error is 

only about 1 m.

The next station downstream on the Tar River, USGS 02083893, shows that the 

ADCIRC elevation results match the USGS results throughout the simulation. The largest 

Table 6.9  Nash-Sutcliffe model efficiency coefficients for the Hurricane Isabel hindcast using USGS 
mean daily discharge values and mean daily ADCIRC discharge results.

USGS Gage 02083500 02084000 02084472 02089500 02091814

0.832 0.423 -0.268 -1.27 -5.61E
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error occurs in the week prior to the landfall of Hurricane Isabel when the elevations in 

ADCIRC are too large. The ADCIRC flow results were higher than the USGS values at 

Tarboro for this time as well. The elevation errors at station 02083893 are probably a result 

of erroneous discharge values, possibly due to errors in the boundary forcing from HL-

RDHM. Referring back to Figure 6.40, there is more discharge in the boundary time series 

from HL-RDHM for the Tar River hand-off point at day 40 than at days 30-50. The USGS 

discharge and elevation results do not show an increase in discharge or elevation around 

day 40. Therefore, it stands to reason that there is an error in the HL-RDHM forcing 

provided to ADCIRC.

The results for the Tar River at Greenville (0208400) are also, generally, good. 

However, the peak flows are too high, which result in the Nash-Sutcliffe efficiency being 

significantly lower than at Tarboro (0.423 vs. 0.832). The overly-high model discharges are 

a result of mass balance error for rivers in ADCIRC. Comparing the peak flows at Green-

ville to those at Tarboro, the peak discharge rates for the first flood wave (10-15 days into 

the simulation) are almost twice as high at Greenville as at Tarboro. The USGS data shows 

higher flow rates as well. However, there is not currently a physical mechanism in 

ADCIRC to amplify flows via lateral inflows, i.e., the tributaries that provide additional 

flow to the Tar River between Tarboro and Greenville are not modeled in ADCIRC. Addi-

tionally, precipitation over the ADCIRC domain is not used. Thus, the increase in flow rates 

is a result of mass balance error caused by wet/dry algorithm idiosyncrasies for floodplain 

inundation.

The elevation errors are relatively small, compared to the Tarboro gauge location. 

However, for the time period 30-35 days into the simulation, the flow rates are approxi-
302



mately equal. There is an error of approximately 0.5 m for the elevations associated with 

those small discharges. As expected, based on comparisons to NCFMP cross-sections in 

Section 6.2.5, ADCIRC overpredicts the elevation for low flows. At both 13 and 53 days 

into the simulation, the flow rates (slightly less than 300 cms) are approximately equal and 

the water surface elevations agree. 

The results for the station near Grimesland (02084173) show similar elevation 

errors to the results at Greenville. Specifically, the water surface elevations are overpre-

dicted after the peaks in the USGS elevation results. This is a result of the mass balance 

error from inundation upstream. Additionally, the results for Grimesland show the tidal 

signal at low flows. The peak flows mask the tidal signal. Furthermore, just before 50 days 

into the simulation, there is a spike in the water surface elevations resulting from the Hurri-

cane Isabel storm surge. The mean stage values provided by the USGS do not accurately 

represent the peak surge values, at least as represented in the ADCIRC hindcast. This is not 

particularly surprising because the peak surge does not span an entire day. Thus, the mean 

water surface elevation will be less than the peak surge. The tidal signal is not present in 

the USGS results because the mean daily data is used, so the tidal signal is averaged out.

The last station on the Tar River is the station for the Pamlico River at Washington 

(02084472). The maximum, minimum and mean stage and discharge values are available 

at Washington. The mean values are plotted with black dots and the maximum and 

minimum values are shown with gray dots. The same trends are continued at Washington. 

There is an overprediction in discharge after the peaks that contributes to the negative 

Nash-Sutcliffe efficiency of -0.268. On the other hand, there is excellent agreement of the 

peak elevation and minimum discharge related to the Hurricane Isabel storm surge. In fact, 
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the minimum peak discharge from the instantaneous data archive results occurs at the time 

that corresponds to 49.896 days into the ADCIRC simulation. Presumably, the minimum 

discharge occurs at the same time as the peak surge. The peak surge in the ADCIRC simu-

lation occurs 49.833 days into the simulation. Therefore, at the USGS gage location at 

Washington, the peak water surface elevation and timing for the surge is almost exactly 

reproduced. Additionally, the peak negative discharge calculated from the ADCIRC output 

is in good agreement with the USGS value. However, the maximum USGS discharge 

values immediately after Hurricane Isabel passes are higher than the ADCIRC flow rates. 

The elevation and discharge comparisons for the two stations on the Neuse River 

are shown in Figure 6.49. Kinston, NC (02089500) is above the confluence of the Neuse 

River and Contentnea Creek, while Fort Barnwell, NC (02091814) is just downstream of 

the confluence. Thus, it is not surprising that the flow rates are higher at Fort Barnwell than 

they are at Kinston. However, the peak flow during the event before Isabel is almost 500 

cms at Kinston, whereas the peak discharge at the hand-off point on the Neuse, for the same 

event, is less than 300 cms. This is another example of mass balance errors for rivers in 

ADCIRC. The Nash-Sutcliffe efficiencies for the locations on the Neuse River show the 

model is less accurate than the observation mean. The calibrated HL-RDHM model gener-

ally produces high Nash-Sutcliffe efficiency values. Therefore, the negative efficiency 

values are probably due to issues with river routing in ADCIRC, as has been discussed 

previously. 

Using Figure 6.49, it is difficult to ascertain how the water surface elevations 

compare for similar flow rates for the two stations on the Neuse River because the discharge 

results do not match. The best point for comparisons is at Kinston, just prior to the drastic 
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rise in discharge around day eight of the simulation. The water surface elevations are 

similar even though the ADCIRC discharge is lower than the USGS discharge. This shows 

ADCIRC overpredicts water surface elevation for low discharge values at Kinston, which 

is consistent with results throughout this chapter. 

In order to compare the water surface elevations for the ADCIRC grid to those for 

the USGS stations, the elevation and discharge time series were used to create rating curves 

for the locations on the Neuse River. The rating curves are shown in Figure 6.50, with the 

ADCIRC points plotted in gray and the USGS points shown in black. The rating curves 

show that the water surface elevations are overpredicted by ADCIRC for flows less than 

300 cms at Kinston, with errors close to 1 m for low flows, while ADCIRC overpredicts 

water surface elevations for flows less than approximately 80 cms at the gauge location 
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Figure 6.49 Hurricane Isabel hindcast comparison between ADCIRC results (lines) and USGS gage 
data (dots) for locations on the Neuse River.
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near Fort Barnwell. At low flows, the water surface elevations are better for the Fort Barn-

well gauge location than the Kinston location. However, ADCIRC underpredicts the water 

surface elevation at Fort Barnwell by about a third of a meter for higher flows between 300 

and 500 cms. It is noteworthy that looped rating curves, shown by the USGS data, are also 

produced by ADCIRC.

6.6   Analysis of ADCIRC River Results

The previous section details results from hindcasts of Hurricane Floyd, Hurricane 

Isabel and Tropical Storm Alberto. The results show significant mass balance errors occur 

for river discharges in ADCIRC when the flow leaves the main channel and enters the 

floodplain. In this section, the focus will shift from presentation of the results for the rivers 

in the ADCIRC domain to analysis of the river results and errors.

6.6.1  River Reach Delineations

The locations of the cross-sections used to compute the discharge for the rivers in 

the ADCIRC domain are shown in Table 6.7 and Table 6.8. The cross-section locations are 

shown graphically in Figure 6.51, along with the maximum extent of inundation for the Tar 
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Figure 6.50 Rating curves for the USGS locations on the Neuse in the ADCIRC domain. The gray 
points are water surface elevation and discharge pairs from the ADCIRC hindcast for 
Hurricane Isabel and the black points are USGS mean daily values.
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and Neuse River basins during the Hurricane Floyd hindcast. For this analysis, river 

reaches are defined between consecutive sections on the Tar and Neuse Rivers as outlined 

in Table 6.10 (Tar) and Table 6.11 (Neuse). For this analysis, two different lengths will be 

utilized for reach length and slope calculations. The first is the length along one edge of the 

main channel in the ADCRIC grid. This is similar to the thalweg length, that is the length 

along the deepest part of the channel. Herein, this length will be referred to as the channel 

length and denoted as . The other length is analogous to the valley length, which gives 

the distance from the top of the reach to the bottom along the valley centerline. There is not 

a well-defined valley for the Tar or Neuse River within the ADCIRC domain, so the valley 

length is an estimate. The valley length is an estimate of the distance along the centerline 

of the river inundation during high flow events; the valley length does not follow the sinu-

osity of the channel. The valley length gives a better estimate for the length of the flood-

plain and the flow length for high flow conditions. This length will be referred to as the 

valley length and denoted as  [Rosgen 1996]. 

The difference between the channel length and the valley length is shown graphi-

cally in Figure 6.52. The white line is indicative of the valley length. The valley length line 

is relatively straight and independent of the local sinuosity of the river. Thus, for sinuous 

stretches, the valley length can be considerably shorter than the channel length. For this 

reach, the fourth reach on the Neuse River, the channel length is 9.90 km, whereas the 

valley length is about 5.56 km. While the channel length is determined from the ADCIRC 

grid, there is variability in the estimated valley lengths because the points are not defined. 

The mean channel slope, , is calculated using the channel length of the reach and 

the change in elevation. The change in elevation is calculated using nodes at the beginning 

L0

Lv

S0
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and end of each reach. Herein, the nodes defining the left side of each of the rivers (facing 

upstream) will be used to determine the elevation change and channel length. This selection 

is somewhat arbitrary. The right side of each river could have been used just as easily. 

However, because of the adjustments to the main channel river nodes described in Section 

6.2.5, the channel lengths and elevation changes are similar based on the geometry of the 

rivers in the modified ADCIRC grid, so the choice is inconsequential.

The standard deviation of the channel slope, , is computed using (6.8), where 

Figure 6.51 Maximum extent of inundation on the Tar and Neuse Rivers during the Hurricane Floyd 
hindcast. The black dots show the locations of nodes in the cross-sections to compute 
discharge.

σslope
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 is the number of segments (element edges) in the reach along the left side of the channel, 

 is the slope of a given segment,  is the mean channel slope, and  is the length 

of the segment. 

 (6.8)

The values in Table 6.10 and Table 6.11 are the reach channel length, channel slope and 

standard deviation of channel slope for reaches on the Tar and Neuse Rivers in the ADCIRC 

grid. It should be noted that the tributaries are not analyzed in this section. Therefore, some 

of the cross-sections presented in Section 6.5 will not be used here. 

Figure 6.52 The path used to compute the valley length (shown in white) for the fourth reach on the 
Neuse River overlain on the ADCIRC grid. The channel length is calculated as the sum of 
the line segments defining one side of the main channel and tracks channel sinuosity.
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Using the valley length to characterize the reach, the change in elevation for the 

reach is the same, so the mean valley slope, , can be computed, as shown in (6.9), using 

the mean channel slope, channel length and valley length.

(6.9)

Additionally, the sinuosity of the reach, denoted by  and given by (6.10), can be evalu-

ated using the ratio of the two lengths.

(6.10)

The mean valley slope and sinuosity of each reach are listed in Table 6.12. 

Table 6.10  Tar River reach delineation and physical properties. The length, mean slope and slope 
standard deviation are based on the elevations for the nodes that define the left side of the channel 

(facing upstream). The values are similar to the values based on the nodes defining the right side of the 
channel.

Tar Reach 
ID

Upstream 
Section

Downstream 
Section

Channel 
Length (km)

Mean 
Channel 

Slope 
( )

Channel 
Slope 

Standard 
Deviation 
( )

1 Tar 1 Tar 2 3.16 0.430 0.420

2 Tar 2 Tar 3 2.40 0.261 0.706

3 Tar 7 Tar 8 2.96 -0.0873 0.188

4 Tar 8 Tar 9 7.24 0.0738 0.327

5 Tar 9 Tar 10 5.70 0.0625 0.340

6 Tar 10 Tar 11 9.09 0.0724 0.356

7 Tar 11 Tar 12 16.32 0.124 0.258

8 Tar 12 Tar 13 12.29 0.202 0.489

9 Tar 13 Tar 14 22.52 0.0840 0.235

m km⁄ m km⁄

Sv

Sv
L0
Lv
-----S0=

SI

SI
L0
Lv
-----=
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The geometric analysis shows that the slopes and sinuosity vary throughout the 

grid. The Tar River is steepest and most sinuous near the hand-off point. The two steepest 

stretches on the Neuse River are also in the uppermost areas (near the hand-off point on the 

Neuse River). Additionally, the Neuse River is most sinuous upstream of Kinston. And, 

generally, the Neuse River is more sinuous than the Tar River. There is also quite a bit of 

scatter in the slopes, as shown by the relatively high standard deviation values for the 

slopes. The distribution of slopes for two reaches on the Tar River are shown in Figure 6.53.

The first reach on the Tar River is the reach with the largest slope. And, the majority of the 

Table 6.11  Neuse River reach delineation and physical properties. The length, mean slope and slope 
standard deviation are based on the elevations for the nodes that define the left side of the channel 

(facing upstream). The values are similar to the values based on the nodes defining the right side of the 
channel.

Neuse 
Reach ID

Upstream 
Section

Downstream 
Section

Channel 
Length (km)

Mean 
Channel 

Slope 
( )

Channel 
Slope 

Standard 
Deviation 
( )

1 Neuse 1 Neuse 2 4.33 0.0863 0.136

2 Neuse 2 Neuse 3 5.68 0.284 0.478

3 Neuse 3 Neuse 4 6.47 0.192 0.680

4 Neuse 4 Neuse 5 9.90 0.0824 0.784

5 Neuse 5 Neuse 7 3.52 0.0512 0.494

6 Neuse 7 Neuse 8 4.84 0.160 0.503

7 Neuse 8 Neuse 9 10.33 0.103 0.425

8 Neuse 9 Neuse 10 5.10 0.164 0.303

9 Neuse 13 Neuse 14 7.42 0.172 0.276

10 Neuse 14 Neuse 15 12.35 -0.0109 0.487

11 Neuse 15 Neuse 16 19.66 0.0851 0.258

m km⁄ m km⁄
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slopes are between 0.0003 and 0.001 . However, there are numerous individual 

segments with adverse slopes as well. For the third reach delineated on the Tar River, the 

overall slope is negative. However, the distribution is more symmetric than for the first Tar 

Table 6.12  Tar and Neuse River reach properties based on the valley characteristics for the reach. 

Tar ID
Valley 
Length 
(km)

Mean 
Valley 
Slope 

( )

Sinuosity Neuse 
ID

Valley 
Length 
(km)

Mean 
Valley 
Slope 

( )

Sinuosity

1 2.07 0.656 1.53 1 3.30 0.113 1.31

2 1.50 0.418 1.60 2 3.70 0.436 1.54

3 2.16 -0.120 1.37 3 4.34 0.286 1.49

4 5.80 0.0921 1.25 4 5.56 0.147 1.78

5 5.53 0.0644 1.03 5 2.62 0.0688 1.34

6 8.75 0.0752 1.04 6 4.33 0.0179 1.12

7 14.61 0.139 1.12 7 8.11 0.131 1.27

8 9.90 0.251 1.24 8 3.50 0.239 1.46

9 20.19 0.0937 1.12 9 7.04 0.181 1.05

10 10.51 -0.0128 1.18

11 16.35 0.102 1.20
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Figure 6.53 Distribution of slopes for two different reaches on the Tar River. The dots show the 
percentage of a given reach for different slopes. The slope for each individual segment 
was placed in the closest bin (rounded to 0.0001). For example, approximately 19.5% of 
Tar Reach 1 has a slope between 0.00045 and 0.00055.
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River reach. Additionally, the most severe adverse slopes are less than the most severe 

adverse slopes for reach 1. 

6.6.2  Mass Errors for Each Reach

For a given storm and reach, the total mass error per reach length, , is calcu-

lated using (6.11), where  is the total volume of discharge through the section at the 

upstream end of the reach,  is the total discharge through the section at the end of the 

reach and  is the valley length of the reach. Multiplication by 100 is used to convert the 

error to a percent error.

 (6.11)

The mass balance error in each of the reaches for each of the storms is listed in 

Table 6.13 (Tar) and Table 6.14 (Neuse).   The results show the stretch with the largest error 

εreach

QTstart

QTend

Lv

εreach 100
QTend

QTstart

--------------
 
 
  1 Lv⁄

1–
 
 
 

=

Table 6.13  Percent mass balance error per km, calculated using (6.11), of reach valley length for Tar 
River reaches.

Tar Reach ID Hurricane Floyd Hurricane Isabel T.S. Alberto Mean of Eventsa

a. Arithmetic mean of the errors for the three events.

1 2.192 0.185 0.209 0.862

2 10.653 16.387 14.714 13.918

3 -1.012 0.869 -2.272 -0.805

4 1.346 0.718 3.966 2.010

5 -0.976 -0.388 -2.750 -1.371

6 -0.132 0.839 1.035 0.581

7 0.764 1.528 1.021 1.105

8 1.705 2.236 2.068 2.003

9 0.215 -0.021 0.063 0.086
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on the Tar River is reach 2. There is also significant gain in mass in the reach just upstream 

of Tarboro (reach 4) and the two upstream of Greenville (reaches 7 and 8). On the Neuse 

River, the mass gain generally occurs at the highest rate in the most upstream areas, which 

causes the flow rate to be significantly overpredicted at Kinston. The mass balance in the 

stretch of the Neuse River downstream of Kinston is better than the mass balance between 

the hand-off point and Kinston. It is worth noting that the sixth cross-section on the Neuse 

River was not used to create reaches. The fifth reach on the Neuse uses sections 5 and 7. 

The sixth section was included only because it is was desired to have a section for the 

Kinston USGS gage location. However, the sections in close proximity upstream and 

downstream were included because the location of the Kinston gauge is not a good location 

for a cross-section in ADCIRC. In particular, the Neuse River is very sinuous near Kinston 

and it was difficult to cut a section that would be approximately perpendicular to the flow 

Table 6.14  Percent mass balance error per km, calculated using (6.11), of reach valley length for Neuse 
River reaches.

Neuse Reach ID Hurricane Floyd Hurricane Isabel T.S. Alberto Mean of Events

1 3.056 6.834 6.331 5.407

2 2.196 9.758 5.215 5.723

3 0.932 4.752 0.913 2.199

4 3.265 3.226 4.846 3.779

5 -1.101 -3.817 -2.908 -2.609

6 -0.340 1.981 1.446 1.029

7 1.287 2.895 1.932 2.038

8 0.793 1.811 0.672 1.092

9 -0.091 0.328 0.190 0.142

10 -0.057 0.232 0.141 0.105

11 -0.034 -0.488 -0.423 -0.315
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for major flood events like Hurricane Floyd. The Neuse River passes through the sixth 

cross-section three times.

The mass errors on the Tar and Neuse Rivers do not correlate particularly well with 

distance from the hand-off point. And, while the error on the Neuse River is generally less 

for Floyd, showing a bias towards less error for larger flows, the results are mixed for the 

Tar River. It seems reasonable that the percent error might be less for larger flows, 

depending on the extent of wetting that occurs for a given storm. The current theory is that 

poor handling of inundation causes the mass balance problems. If the extent of wetting 

correlates with mass balance error, and the extent of wetting is relatively unchanged despite 

a higher volume, the percent mass error will be less for the larger flood.

6.6.3  Correlation Between Reach Slope and Mass Error

In an attempt to find an indicator for river mass balance error, the reach mass error 

was graphed against the mean valley slope. The initial thought was that lower river slopes 

may result in higher floodplain inundation, thus resulting in increased mass balance error 

for reaches with small slopes. The Tar River data is shown in Figure 6.54. Generally, the 

opposite is true. If the points for the reach with the largest slope are neglected, the error 

seems to increase with river reach slope. However, the correlation is fairly weak, especially 

considering the near zero mass error for the reach with the largest slope. And, for that reach, 

the mass error is only significant for Hurricane Floyd. The error for Hurricane Isabel and 

Tropical Storm Alberto is less than 0.25% per km. 

The comparison of mass error to reach slope for the Neuse River is shown in 

Figure 6.55. The mass error is fairly high for the steepest reach, and the reach with the 
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smallest slope has almost no mass error. However, there are a number of reaches with mean 

slopes around 0.1  and a wide array of reach mass error rates. So, while there may 

be a correlation between reach slope and ADCIRC mass error, it is not apparent from this 
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Figure 6.54 Reach mass error against reach valley slope for Tar River reaches for Hurricane Floyd 
(black diamonds), Hurricane Isabel (dark gray squares) and Tropical Storm Alberto 
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�

�

�

�

�

�
�

�
��

�

�

�

�

�

�

�
�

�

��
�

�
�

�

�

�
�

�
�

�� �

�0.1 0.0 0.1 0.2 0.3 0.4 0.5
�5

0

5

10

Reach Valley Slope, m�km

E
ve

nt
R

ea
ch

M
as

s
E

rr
or

,

�k

m

Neuse River

Figure 6.55 Reach mass error against reach valley slope for Neuse River reaches for Hurricane Floyd 
(black diamonds), Hurricane Isabel (dark gray squares) and Tropical Storm Alberto 
(gray circles).

m km⁄
316



analysis. However, it is also unclear if the mean valley slope in the ADCIRC grid, even 

after the modifications to the river node elevations, is a satisfactory representation of the 

actual valley slopes, which may be related to the floodplain extents. 

The comparisons of the reach mass error rates to the standard deviation of the reach 

channel slope are shown in Figure 6.56. Again, there does not seem to be a significant 
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correlation. In fact, if the reach on the Tar River with the largest standard deviation is 

ignored, there is no distinct trend. A positive correlation based on the results for one reach 

does not seem justified. The results on the Neuse River support the findings for the Tar 

River. Specifically, there is not a discernible trend. As with the river slope, the standard 

deviation of the river slope is based on the representation of the Tar and Neuse Rivers in 

the ADCIRC grid, which may or may not be fair representation of the actual rivers. In fact, 

it is hard to imagine that the actual bottom slopes of the Tar and Neuse Rivers are accurately 

represented by the ADCIRC river bottom slopes. It is more likely that the floodplains are 

accurately represented in the ADCIRC grid than the main river. Attempting to characterize 

the floodplain based on the ADCIRC representation of the main river may not be mean-

ingful. 

6.6.4  Correlation Between Sinuosity and Mass Balance Error

A comparison of the event mass error to the sinuosity of the reaches is shown in 

Figure 6.57. Unlike the slope and standard deviation of the slope, the sinuosity of the rivers 

in ADCIRC is a reasonable representation of the actual sinuosity on the Tar and Neuse 

Rivers. As was the case for slope and standard deviation, there is not a significant pattern. 
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Figure 6.57 Reach mass error versus sinuosity of the channel for the Tar (left panel) and Neuse (right 
panel) River reaches for Hurricane Floyd (black diamonds), Hurricane Isabel (dark gray 
squares) and Tropical Storm Alberto (gray circles).
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The relatively high rate of mass error in the most sinuous reach on the Tar River creates the 

illusion of an upward trend that is not supported by the rest of the data. For the results on 

the Neuse River, there appears to be a more widespread correlation between reach sinuosity 

and mass balance error. Generally, the more sinuous stretches of the Neuse River have more 

mass balance error.

6.6.5  Correlation Between Inundation Area and Mass Balance Error

The maximum extent of inundation for the Hurricane Floyd hindcast was shown 

previously in Figure 6.51. The inundation extent and cross-section locations were used to 

estimate the inundation area using the polygon feature in Google Earth Pro that allows the 

extents of inundation to be delineated and calculates the area extent inside the polygon. 

Then, the mass error per area was computed using the total discharge rates and the inunda-

tion area, , using (6.12).

(6.12)

It is worth noting that the inundation area includes the areal extent of the river under low 

flow conditions. However, the main channel width is small in comparison to the average 

inundation width, especially for an event like Hurricane Floyd (40 m versus 2 km). The  

values for each of the reaches on the Tar and Neuse Rivers can be seen in Figure 6.58. 

The average inundation width was generally around 2 km. However, the reach with 

the smallest average inundation width (0.771 km), based on the inundation area and valley 

length, is the second reach on the Tar River. This is the reach with the largest mass error per 

valley length on either the Tar or the Neuse River. Additionally, there is a wide variation in 
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mass error per area on both the Tar and Neuse Rivers, which suggests that the total inunda-

tion area is not a good indicator of mass balance error.

The limited amount of detailed analysis of mass balance river errors has been 

confined to idealized domains previously. Additionally, the analysis has focused on mass 

balance and relation to model instability. The first instance was a result of instability in 

attempts to use sequential wetting to wet an initially dry river. The second instance was 

during attempts to optimize parameter selection for river inundation simulations. In both 

cases, instability resulted as a consequence of sequential dam break-type wetting. 

During the river initialization application, water entered at the boundary where 

there were initially wet elements (because the discharge boundary condition will not enter 

the domain if the boundary elements are dry). An idealized domain with a constant bottom 

slope was used, so the water travelled downstream, wetting elements during the propaga-

tion. However, over time, the amount of water immediately behind the wetting front would 

increase and, eventually, cause the simulation to terminate.

A similar problem resulted during the river inundation simulations. Again, an ideal-

ized channel was used. And, as long as the flow was confined to the main channel (which 
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Figure 6.58 Mass error per inundation area for each reach on the Tar and Neuse River during the 
Hurricane Floyd hindcast.
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was initialized wet) the mass balance during the simulation was close to perfect. However, 

when the flow rate was increased to initiate floodplain inundation, the inundation would 

move downstream along the floodplain and the water would build up behind the floodplain 

dam break wetting front. Eventually, the errors reached a level that cause the simulation to 

terminate.

The Tar and Neuse River systems are much more complex than the idealized 

domains. As such, they may have geometric irregularities that curb the sequential dam 

break wetting that causes simulation termination using the idealized grid. However, the 

mechanism causing mass balance error and instability in the idealized simulations may also 

be present in the simulations for coastal North Carolina. But, due to the non-idealized 

nature of the ADCIRC grid for simulations for North Carolina, the mechanism may be 

regulated by the local floodplain and channel geometry to maintain stability. The valley 

slope, standard deviation of channel slope, sinuosity and inundation extent may not be good 

indicators of sequential dam break locations that cause substantial mass balance errors.

6.6.6  Nash-Sutcliffe Efficiencies and Elevation Errors

Previously, the Nash-Sutcliffe efficiency values were reported for the Hurricane 

Isabel hindcast. The efficiencies were computed for the last 45 full days of the simulations 

for Hurricane Floyd and Tropical Storm Alberto and tabulated in Table 6.15, along with the 

values for the last 60 full days of the Hurricane Isabel hindcast. As with the results for 

Hurricane Isabel, the first four full days were ignored to allow the rivers time to spin-up.

The Nash-Sutcliffe efficiency at Washington is not available for Hurricane Floyd because 

there are not USGS discharge values available for that time period. The results are fairly 

consistent from event to event. In general, the efficiency values are lower for locations 
321



farther from the hand-off point. However, for Hurricane Floyd, the efficiency values are 

very close for the Tar River at Tarboro and Greenville and the efficiency is higher at Fort 

Barnwell than at Kinston.

Figure 6.59 shows a comparison of discharge results for Hurricane Floyd. The 

USGS daily mean discharge values (dots) and ADCIRC discharge values (lines) are shown. 

The results are similar for the two locations on the Tar River. There is underprediction 

ahead of the rising limb and slight overprediction of the peak flow. Then, the recession is 

too fast during the falling limb. The results for the Neuse River are significantly worse than 

the results for the Tar River. Some of this error is due to mass balance problems within the 

ADCIRC domain. However, the peak forcing (approximately 1200 cms) is also higher than 

the peak discharge at Kinston. Furthermore, the second peak seen in the ADCIRC discharge 

results at Kinston is a result of a second peak in the HL-RDHM boundary forcing. 

The second HL-RDHM peak is error in the hydrologic model hindcast. Future work 

to quantify ADCIRC skill in riverine areas should incorporate information about error in 

boundary conditions provided by the hydrologic models. The hand-off points were not 

placed at USGS gauge locations, such as the Tar River at Tarboro, to allow those gauge 

Table 6.15  Nash-Sutcliffe model efficiency coefficients for the Hurricane Floyd, Hurricane Isabel, and 
Tropical Storm Alberto hindcasts, at USGS discharge gauge locations on the Tar and Neuse Rivers 

within the ADCIRC domain.

USGS Gauge 02083500 02084000 02084472 02089500 02091814

Hurricane 
Floyd

0.751 0.731 N/A -0.788 -0.272

Hurricane 
Isabel

0.832 0.423 -0.268 -1.27 -5.61

T.S. Alberto 0.922 0.748 -0.591 -1.72 -7.79
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locations to be used as validation points for ADCIRC simulations. There are no actual 

discharge or water surface elevation values available at the hand-off points, but the accu-

racy of the boundary conditions provided can be assessed using stations upstream and 

downstream of the hand-off points on the rivers and tributaries.

The discharge comparisons for Tropical Storm Alberto are shown in Figure 6.60. 

The results are satisfactory at Tarboro. At Greenville, the peak is represented reasonably 

well, but there is overprediction of flow towards the end of the simulation that is less prev-

alent at Tarboro. The error in overprediction at Washington is significantly higher than the 

error at Greenville and is due to higher flow rates in ADCIRC at Washington, whereas the 

flow rates from the USGS stations are comparable. In other words, the actual flow rates at 

Greenville and Washington are similar, but ADCIRC has higher flows at Washington than 
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Figure 6.59 Hurricane Floyd hindcast comparison between ADCIRC results (lines) and USGS gauge 
location data (dots) for locations on the Tar and Neuse Rivers. 
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at Greenville, as a result of the mass balance error, which causes the larger discharge over-

prediction at the Washington gauge location. The overprediction on the Neuse River is also 

a result of ADCIRC error, because the peak flow in the HL-RDHM boundary condition is 

comparable to the expected peak flow at Kinston. 

The maximum elevation and inundation extent in the areas upstream of Kinston 

during the Tropical Storm Alberto hindcast are shown in Figure 6.61. In the middle of the 
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Figure 6.60 Tropical Storm Alberto hindcast comparison between ADCIRC results (lines) and USGS 
gauge location data (dots) for locations on the Tar and Neuse Rivers. 
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image, there is an area of red and yellow that signifies maximum elevations that are much 

greater than the maximum elevations at other locations in the immediate vicinity. This 

particular location is on the outside of a horseshoe bend in a sinuous area. This elevation 

error may be at least partially responsible for the overpredicted flow rates downstream.

A quantitative analysis of the water surface elevation error throughout the simula-

tion was not completed for two reasons. First, data is missing for different USGS gage loca-

tions at different times during the simulations. This difficulty could be overcome by 

estimating values for the missing points using the discharge value in conjunction with a 

Figure 6.61 Maximum elevation during the ADCIRC hindcast of Tropical Storm Alberto for areas 
on the Neuse River upstream of Kinston.
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rating curve. The second reason is the larger obstacle. The water surface elevation results 

are coupled to the discharge results. Given the large amount of error in the discharge results, 

especially for the locations on the Neuse River, an error metric using only the water surface 

elevation results would not be particularly useful. Instead, comparison of rating curves 

using the USGS and ADCIRC data will be completed in the next section. 

The water surface elevation results for select USGS gage locations for Hurricane 

Floyd and Tropical Storm Alberto are presented in Figure 6.62 and Figure 6.63, respec-

tively. For Hurricane Floyd, the peak water surface elevation is underpredicted using 

ADCIRC for the three locations analyzed. The peak discharge for the Tar River was a good 

representation of the actual flow experienced during Floyd, so the underprediction in peak 

elevation means there is a problem with the ADCIRC grid. At the peak flow, ADCIRC 
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Figure 6.62 Hurricane Floyd hindcast comparison between ADCIRC water surface elevation results 
(lines) and USGS gage location data (dots) for locations on the Tar and Neuse Rivers. 
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underpredicts the water surface elevation by about 2 m. That amount of difference has large 

impacts on the amount of inundation. The inundation may be underpredicted, depending on 

the tool used to convert stage to inundation. The underprediction for the Neuse River at 

Kinston is worse than Figure 6.62 suggests. The underprediction is about 1 m. However, 

the peak flow in ADCIRC is significantly overpredicted. The elevation error would be 

much larger if the flow rate was represented more accurately. 

The elevation results for Tropical Storm Alberto, Figure 6.63, show that ADCIRC 

underpredicts the elevation at Tarboro and Greenville for the peak flow rates. The results 

for the locations on the Neuse River are generally decent. The water surface elevation is too 

high at low flows, which is expected. However, the overprediction for the last half of the 

simulation is due, at least in part, to overpredicted discharge rates.
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Figure 6.63 Tropical Storm Alberto hindcast comparison between ADCIRC water surface elevation 
results (lines) and USGS gage location data (dots) for locations on the Tar and Neuse 
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6.6.7  Rating Curves at USGS Gage Locations 

In order to isolate the error in water surface elevation predicted for a given flow rate, 

rating curves were developed from the USGS and ADCIRC data. Rating curves for the 

Neuse River at Kinston and Fort Barnwell were presented previously for the Isabel hindcast 

results. The left panels in Figure 6.64 shows the rating curves created using USGS mean 

daily values (black dots) and ADCIRC results (gray dots). The results for Hurricane Floyd 

were used to create the rating curves for Tarboro, Greenville and Kinston. Hurricane Floyd 

results were used because the results provided a larger range of values. The stage values 

were not available at Fort Barnwell for Hurricane Floyd, so the Hurricane Isabel results 

were used. As such, the rating curve for Fort Barnwell is a reproduction of the right panel 

in Figure 6.50, presented in the Hurricane Isabel hindcast section.

The idealized rating curve comparisons between curves based on uniform flow 

analysis of the ADCIRC grid and NCFMP sections are shown on the right side of 

Figure 6.64. The idealized comparison from the location closest to each of the USGS gauge 

locations was selected. It is worth noting that the water surface elevation is significantly 

underpredicted in ADCIRC for high flows at Tarboro, Greenville and Kinston. This result 

is consistent with the idealized analysis, which suggests ADCIRC will underpredict 

maximum water surface elevation for high flows, compared to the NCFMP elevations. The 

idealized results predict that the same underprediction would not occur at Fort Barnwell, 

although the lack of availability of water surface elevations for Hurricane Floyd makes 

evaluation of this prediction difficult.

The actual rating curves give insight into the skill of ADCIRC at predicting water 

surface elevations, if the flow rates are accurately represented. Generally, ADCIRC will 
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Figure 6.64 Comparison of actual USGS (black dots) and ADCIRC (gray dots) rating curves (left 
panels) to idealized NCFMP and ADCIRC rating curves for the Tar River (Tarboro, 
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perform satisfactorily for flood flows as long as they are not too extreme. The elevation 

errors predicted by the rating curves are fairly low for flow rates of 100-500 cms. Addition-

ally, the consistency between the actual rating curves and the idealized rating curves 

suggests the high-resolution NCFMP data could be used to improve the ADCIRC grid in 

the future. Furthermore, the NCFMP cross-sections could be used to generate rating curves 

to compare to ADCIRC results for stretches of the rivers that do not have USGS gauge loca-

tions.

6.7   Conclusions

A coupled model has been set up to model inundation in the Tar-Pamlico River/ 

Neuse River/Pamlico Sound area of coastal North Carolina. Results from a simulation 

using the tightly coupled ADCIRC+SWAN version of ADCIRC to hindcast Hurricane 

Isabel produce realistic water surface elevations and wave heights in the Atlantic Ocean, 

outer banks and at Washington at the mouth of the Tar-Pamlico River.

While the model was able to capture the waves and surge for Hurricane Isabel in the 

coastal areas of the domain, there is room for improvement in results for the river portion 

of the domain. The main problem is related to the current treatment of wetting and drying 

within ADCIRC. The current system requires elements to either be wet or dry. Elements 

cannot be partially wet. Therefore, it is not currently possible to match the actual river 

rating curves for the entire range of reasonable flows. The current ADCIRC grid overpre-

dicts the water surface elevations at low flows. 

Additionally, ADCIRC has mass balance problems. Specifically, for out-of-bank 

flows, the amount of mass grows with distance downstream. However, on the positive side, 
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ADCIRC is able to model flow in small rivers and obtain good mass balance near the 

boundary for specified river boundary forcings. Additionally, the modeled water surface 

elevations are generally fairly good for relatively high flows, which are the flow rates of 

concern for this modeling effort.
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 CHAPTER 7.  Summary and Future Work

7.1   Summary

Near the end of Chapter 1, the impetus for this study related to use of ADCIRC for 

modeling inundation in the coastal plain was presented:

The hypothesis driving this work is that systematic improvements and addi-

tions to the ADCIRC hydrodynamic model can improve forecasting and 

hindcasting of coastal flood inundation, as well as be useful in future studies 

of theoretical storms.

The work completed for and presented in this dissertation culminated in the Hurricane 

Isabel hindcast that demonstrated the capability of ADCIRC to model total water level and 

storm surge inundation in coastal North Carolina. This application included use of a vari-

able  formulation and discharge boundary conditions on the Tar and Neuse Rivers from 

HL-RDHM.

The effects of the numerical parameter, , on ADCIRC solutions are investigated 

in Chapter 2, Chapter 3 and Chapter 4. In Chapter 2, constant  values, a variable  

formula based on dispersion analysis by Atkinson et al. [2004], and a variable  formula 

suggested by Westerink (based on experience modeling with ADCIRC) were applied to a 

variety of test cases. Additionally, Fourier analysis was applied to analyze the propagation 

characteristics of ADCIRC. The results show elevation fields, velocity fields and mass 

residuals are all impacted by specification of . Furthermore, similar results can be 

obtained between constant and variable  specifications, with lower average  values for 

G

G

G G

G

G

G G
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the variable  simulations, by selectively increasing  for certain nodes at certain 

instances of time. However, the analysis in Chapter 2 did not result in the generation of an 

optimal parameterization of .

The failure of the analysis in Chapter 2 to yield the desired final product, an auto-

mated routine for computing variable  that can be effectively applied to a wide range of 

applications, was a catalyst for the analysis in Chapter 3 and Chapter 4, which focus on the 

application of the forward sensitivity method to 1-D ADCIRC. Unlike Fourier and disper-

sion analysis, the forward sensitivity method is applicable to non-linear systems.

In Chapter 3, the forward sensitivity method, which has not previously been applied 

to GWCE-based shallow water models, is applied to the linearized version of 1-D ADCIRC 

with constant  parameterization. The linear, constant  case was chosen for the initial 

analysis due to its relative simplicity. The analysis shows spurious, short-wavelength oscil-

lations appear in the nodal sensitivity results when  is set too high. Spurious, short-wave-

length oscillations result from application of the continuous Galerkin finite element method 

to the primitive continuity and momentum equations; use of the GWCE alleviates the pres-

ence of the oscillations as long as  is not too high. As  is increased too much, a 

threshold is exceeded that results in the presence of spurious oscillations. Additionally, by 

combining the computed sensitivities with errors between the model results and observa-

tions, corrections can be calculated. In this work, the data assimilation process consisted of 

generating least-squares corrections.

The forward sensitivity method analysis in Chapter 3 is extended to a three-coeffi-

cient, variable  parameterization for non-linear 1-D ADCIRC in Chapter 4. The elevation 

and velocity sensitivities to the coefficients in the  parameterization are analyzed. Addi-
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tionally, mass residual sensitivity to  is assessed. Least-squares corrections based on 

results and sensitivities are computed.

The results from Chapter 3 and Chapter 4 show the elevation and velocity sensi-

tivity to  generally decrease as  increases; increases to coefficients that increase  also 

decrease sensitivities. Eventually, as  gets too high, spurious oscillations are generated. 

Both of these facets of the sensitivities have implications for the least-squares corrections 

that are generated. The decrease in sensitivity to  as  increases results in undercorrec-

tions when  is lower than the optimal value and overcorrections when  is higher than 

the optimal value. However, as long as the initial  value is not too far away from the target 

value, the target value can be recovered using sequential optimization. 

When  causes the GWCE to become “too primitive,” the sensitivities are no 

longer representative of the change in the fields (elevations and velocities) with  on a 

larger scale. Thus, the least-squares corrections generated using the sensitivities may be 

erroneous, in that they do not result in G being corrected towards the target value. For some 

 values, the sensitivities for consecutive nodes are 180 degrees out-of-phase, i.e., the 

sensitivities at one node are positive when the sensitivities at the next node are negative and 

vice-versa. The errors compared to observations, however, do not follow the same trend; 

the errors are often still fairly consistent. The least-squares corrections for , based on the 

errors and sensitivities, have opposite signs for those nodes. Thus, understanding of the 

system under investigation is essential when attempting to correct G using the data assim-

ilation step in the FSM.

The analysis of sensitivity of mass residuals to  in Chapter 4 shows the forward 

sensitivity method is effective for computing sensitivity of mass residuals. Additionally, 
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least-squares corrections to  can be computed that result in decreased local mass balance 

error. However, changes to  that cause a decrease in mass residual for one element do not 

necessarily result in decreased local mass error throughout the domain, or even immedi-

ately adjacent to the element where the decrease occurs. 

The last two chapters focus on model coupling; the end goal of the coupling was to 

have a hydrologic model coupled to ADCIRC to produce total water level predictions for 

coastal inundation. The 1-D coupling analysis in Chapter 5 suggested the utility of one-way 

coupling from a hydrologic model to ADCIRC using discharge boundary conditions at a 

hand-off point upstream of major backwater effects. ADCIRC produced better elevation 

and velocity results when discharge was used as the upstream boundary condition than 

when elevations from the channel routing model were specified. Additionally, as long as 

the hand-off point was upstream of major backwater effects, the complexity of the 

momentum equation in the channel routing algorithm did not greatly impact ADCIRC 

results for the coupled model. Therefore, the 2-D coupled modeling in Chapter 6 was 

completed with ADCIRC handling areas affected by storm surge inundation and receiving 

discharge values, from a hydrologic model using kinematic wave routing, at the river 

boundaries in the grid.

The 2-D studies show promising results for discharge boundary conditions in 

ADCIRC as a way of incorporating hydrologic model results to model total water level in 

the coastal plain. The discharge is applied to the main river nodes to avoid potential mass 

balance problems resulting from the lateral extent of the river (at the boundary) not being 

known throughout the simulation a priori. Analysis of the discharge through cross-sections 

in the first few kilometers inside the boundary show the specified discharge rate is accu-
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rately brought into the ADCIRC domain. Furthermore, the Hurricane Isabel hindcast 

results show ADCIRC accurately models total water level along the outer banks of North 

Carolina and in the Pamlico Sound at the end of the Tar-Pamlico River. Unfortunately, 

severe mass balance errors, due to the wet/dry algorithms operating within the river portion 

of the ADCIRC domain, detract from the utility of the coupled system because the water 

surface elevation and discharge values are overpredicted in areas downstream from the 

hand-off points, such as Greenville, Kinston and Fort Barnwell. The deficiencies in the 

current system point to areas for future research.

7.2   Future Work

As was the case with this dissertation, the future work can be divided into two main 

sections. First, extension of the FSM to the 2-D ADCIRC model would allow the sensitivity 

of elevations, velocity and mass residual to G to be analyzed in more realistic domains. 

Additionally, the impact of different geometric (e.g., grid size) and flow (e.g., bottom fric-

tion and vorticity) variables within a  parameterization could be assessed. Furthermore, 

the elevation data available would allow for meaningful data assimilation and parameter 

correction estimation.

While parameter estimation for the variable  formulation is an interesting and 

important topic, the more pressing area of concern is mass balance in rivers. Analyses point 

to the current wetting and drying implementation as the culprit for the mass balance errors. 

The current ADCIRC system uses a step-wise wetting and drying procedure [Luettich

1995; Dietrich 2004]. An element is treated as either completely wet or completely dry, and 

elements become wet when a sufficient water surface gradient is reached. While results are 
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generally adequate for the flooding-type wetting applications most commonly encountered 

in ADCIRC applications, the Tar and Neuse Rivers are subject to both flooding-type 

wetting and dam break-type wetting. Dam break-type wetting occurs when the water is 

moving from a location of higher elevation to a location of lower elevation, while flooding-

type wetting is the opposite situation. 

Partially wet elements have been successfully incorporated into shallow water 

codes [Bates 1999; Defina 1994, 2000; Hervouet 1999]. Partially wet element implemen-

tations utilize a scaling parameter on the accumulation term of the continuity equation that 

results in a physically-realistic relationship between accumulation and water depth in an 

element. Partially wet elements may be useful in representing low flows in rivers because 

the entire elements are not required to be wet. Initial 1-D testing shows promising results 

for flooding-type wetting in ADCIRC using partially wet elements, and simulations have 

also produced reasonable results for 1-D dam break-type wetting using mass balance as the 

criterion for flood propagation [Dick 2011]. Both flooding- and dam break-type wetting and 

drying are necessary for accurate representation of rivers in ADCIRC.
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 Appendix A.  Nomenclature 

Symbols

Roman Letters

SWE system matrix for  time level (  where  is the 
number of nodes in the domain)
cross-sectional flow area for hydraulic routing 
area of element 
coefficient multiplier in Westerink variable  formula 
SWE system matrix for time level  (  where  is the number 
of nodes in the domain) 
SWE system matrix for time level  (  where  is the 
number of nodes in the domain) 
bottom friction coefficient 
numerical parameter in the generalized wave continuity equation 
sensitivity vector (  where  is the number of sensitivity values 
for each of the  parameters) 
total fluid depth, equals  
symbol for primitive continuity equation 
symbol for primitive momentum equation, conservative form 
net flux out of the element 
bottom slope for channel routing models 
friction slope for channel routing 
time period for wave period, except in the section for Fourier anal-
ysis of the finite difference approximation to the SWE 

 symbol for the wave continuity equation 
symbol for the generalized wave continuity equation 
vector of variables consisting of the water surface elevations and 
velocities (  where  is the number of nodes in the domain) 

A k 1+ R2n 2n× n

A
Ae
AJJW G
B k R2n 2n× n

C k 1– R2n 2n× n

Cf
G
H Rn p× n

p
H h ζ+
L
Mc

Qnet
S0
Sf
T

W
WG

c
R2n n
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error value calculated using one observation and one model result 
error vector defined as the difference between observations and 
model results,  (  where  is the length of the observa-
tion vector) 
Coriolis parameter, equals  
specified boundary forcing at time  (  where  is the 
number of nodes in the domain) 
magnitude of gravity  
bathymetry 
depth of flow for channel routing models 
spatial index 
temporal index 
coefficient in Manning’s equation equal to 1.0 for units in meters and 
1.49 for units in feet 
the number of elements necessary to represent a wave 
Manning’s roughness value
wetted perimeter of channel cross-section 
unit discharge equal to the product of velocity and depth,  
hydraulic radius equal to the flow area divided by the wetted perim-
eter,  
time 
depth-averaged velocity component in the x-coordinate direction 
single sensitivity to  defined as  
vector of sensitivity to  defined as  (  where  is 
the number of nodes in the domain) 
velocity of the fluid in 2D  
Cartesian space coordinate 
observation vector (  where  is the number of observations) 

Greek Letters

scaling factor for variable formula based on Quasi-Bubble 
lateral eddy viscosity 
nodal mass balance residual difference 
nodal mass balance residual 
mass balance residual 

e
e

e z c–= Rn n

f 2Ω φsin
fbc
k 1+ k 1+ R2n n

g g
h
h
j
k
kn

m
n
P
q q uh=
R

R A P⁄=
t
u
w G ∂cj

k( ) ∂G( )⁄
w G ∂ck( ) ∂G( )⁄ R2n n

v u v,
x
z Rn n

αJHA
ε
εd
εn
εv
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surface elevation above the datum 
propagation factor 
discrete propagation factor 
amplification factor 
2D bottom friction term, which is determined from either a linear 
relationship or through the Chezy formulation 
wave frequency 
time-weighting parameter for Euler time stepping 
phase change per time step 
wave number 
term to account for wind stress and atmospheric pressure variations 
in the momentum equation

 

Special Symbols and Operators 

nabla (grad) operator 
divergence operator 

ζ
λ
λ′
λd
τ

ω
θ
θd
σ
ψ

ι 1–

∇
∇•
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 Appendix B.  Discrete Time Formulation for the Forward 

Sensitivity Method

B.1   Introduction

The discrete time formulation of the forward sensitivity method presented in this 

appendix is based on the work presented in Lakshmivarahan and Lewis [2010].

B.2   Model System

The system of equations for the 1-D version of ADCIRC, consisting of the gener-

alized wave continuity and momentum equations, requires three time levels due to the 

second derivative of elevation with respect to time in the GWCE. The ADCIRC model 

equations can be written succinctly, as in (B.1), where  is a coefficient matrix, 

 is the solution vector consisting of the water surface elevations and depth-aver-

aged velocities,  is the control vector, and :  are the compo-

nents of the system at the current and past time levels.

(B.1)

B.3   Forward Sensitivity Functions

The forward sensitivity functions for the discrete time system can be found by 

aggregating the individual components. To begin, consider the  component of (B.1), as 

β Rn n×∈

ck Rn∈

α Rp∈ M1 M2, Rn Rp× Rn→

βck 1+ M1 ck α,( ) M2 ck 1– α,( )+=

ith
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shown in (B.2), where  is the  row of the coefficient matrix .

(B.2)

B.3.1  Sensitivity to the Control Vector

Differentiation with respect to the  component of the control vector, as in (B.3), 

results in (B.4), where the terms on the RHS are given by (B.5) and (B.6).

(B.3)

(B.4)

(B.5)

(B.6)

Defining the sensitivity of the solution to parameter  to be , (B.4) can be 

rewritten as (B.7).

(B.7)

The equations can then be combined, as shown in (B.8), where 

 and  are Jacobians of  with 

respect to  and , respectively.

(B.8)

The updated sensitivity can be isolated by moving the first term on the LHS of (B.8) to the 
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RHS, resulting in (B.9).

(B.9)

If the initial elevation and velocity fields do not depend on the control vector (i.e., 

), the initial conditions for the sensitivities are .

B.3.2  Sensitivity to the Initial Conditions

Generation of the equation for evolution of the sensitivity to the initial conditions 

follows the same procedure used to generate the equation for the sensitivity to the control 

vector. Differentiation of (B.2) with respect to the  element of the initial condition, , 

results in (B.10).

(B.10)

This expression contains fewer terms than the equation for the evolution of the sensitivity 

to the control vector because the elements of the control are assumed to be independent of 

the initial conditions. Defining the sensitivity of an element of the solution to an element of 

the initial condition as  allows the equations to be aggregated in matrix 

form as (B.11).

(B.11)

In this case, the initial conditions for the sensitivities are identity matrices, i.e. 

.

B.4   Model Errors

Let  be an observation at time level  and spatial location . The observation 
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is a function of the true state of the system, , as well as the unobservable noise in the 

system. This is shown in (B.12), where  is the mapping from the model space to the 

observation space and  is the noise in the observation.

(B.12)

For the studies included in this dissertation, the observations are values from model output. 

Thus, the noise in the observations is negligible, so (B.12) reduces to (B.13).

(B.13)

Furthermore, the model output for the simulation to generate observations is taken as the 

true state of the system. Therefore, there is a direct mapping from the model space to the 

observation space, i.e. . For the case of observations at  time levels at spatial 

location , the observation vector is .

B.4.1  Error Based on One Observation

The model error, , is found by computing the difference between the observation 

and the model predicted value, , as shown in (B.14).

(B.14)

However, there is a direct mapping from the model space to the observation space. There-

fore, the model-predicted value is just a value from the model at the appropriate combina-

tion of space and time, , and the model error is given by (B.15).

(B.15)

B.4.2  Error Based on Multiple Observations at One Spatial Location

For spatial location , the model error vector based on observations and model 
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k h ĉ( )=

zj
k cj= m

j zj Rm∈

ej
k

h c( )

ej
k zj

k h c( )–=

h c( ) cj
k=

ej
k zj

k cj
k–=

j

351



results at  time levels is given by (B.16), where .

(B.16)

B.5   First-Order Corrections

Using a standard Taylor series expansion, the change, , in the solution 

 resulting from a change in  of  is given by (B.17), where  is the  

variation of .

(B.17)

Analysis in this dissertation is limited to first-order analysis, with  approximated by the 

first variation, , i.e., .

The evolution of the ADCIRC model results depends on the initial conditions and 

control parameters. Thus, . Therefore, at a given time, the change in the 

model state depends on perturbations to both the initial conditions and the control vector, 

as shown in (B.18), where  and  are the Jacobians of the 

model state with respect to the initial condition and the control vector, respectively.

(B.18)

However, these Jacobians are simply the sensitivity functions presented previously.

B.5.1  Corrections Based on One Observation

The goal of the correction process is to generate a correction to eliminate the model 

error, i.e. . Applying (B.18) to a given error value, at node  and time , results 

in (B.19), where the  subscript on the Jacobian indicates the  row of each respective 

m cj ej zj, , Rm∈

ej zj cj–=

∆f

f t( ) f t a,( )= a δa δjf jth

f t( )

∆f f t a δa+,( ) f t a,( )– δjf
j

∑= =

∆f

δf ∆f δf≈

ck c t c0 α, ,( )=

Dc0 c( ) Rn n×∈ Dα c( ) Rn p×∈

∆c δc≈ Dc0 c( )δc0 Dα c( )δα+=

δcj
k ej

k= j k

j jth
352



Jacobian matrix.

(B.19)

(B.19) can be rewritten as (B.20), where  and 

.

(B.20)

The correction vector, , is given by solution of the inverse problem. The least-squares 

solution is given by (B.21).

(B.21)

B.5.2  Corrections Based on Multiple Observations at One Location

Frequently, multiple observations are available at a given spatial location. One 

example is the collection of the temporal evolution of water surface elevation values 

measured by a tidal gauge. As before, the goal of the correction process is to generate a 

correction to minimize model error. Applying (B.18) to error values at node  results in 

(B.22), where  and  are given by (B.23) and (B.24), respectively.

(B.22)

(B.23)

(B.24)

(B.22) can be rewritten as (B.25), where  and .

(B.25)

The correction vector, , is given by solution of the inverse problem. The least-squares 
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solution is given by (B.26).

(B.26)ςLS Hj( )T Hj( )[ ] 1– Hj( )Tej=
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 Appendix C.  Forward Sensitivity Method Results for Linear 1-D 

ADCIRC with Constant G

C.1   Linear Sloping Domain

C.1.1  Elevation and Elevation Sensitivity Results

The results presented in this section are for four different simulations on the linear 

sloping domain. All the simulations utilized a constant  value of 0.001 . Additionally, 

the simulations were performed using the explicit version of ADCIRC. The difference 

between the simulations was the number of nodes used to discretize the domain and, thus, 

the element size. The base domain consists of 21 nodes (20 elements). The three other 

domains had 11, 41 and 81 nodes, respectively.

The elevation results are shown in Figure C.1 and Figure C.2. There are eight lines 

on each plot. The four solid lines are the elevation results for the different simulations, 

which have units of m. The four dashed lines are the corresponding elevation sensitivity 

results which have units of ms. The black, dark gray, gray and light gray lines are for the 

11, 21, 41 and 81 node simulations, respectively. Additionally, the node number listed on 

each of the panels is the node number associated with the 21 node grid. For instance, in the 

sixth panel of Figure C.1, the label is “Node 11.” The results are for the 6th, 11th, 21st and 

41st nodes in the 11, 21, 41 and 81 node domains. 

G s 1–
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Figure C.1 Elevation and elevation sensitivity results for a simulation on the linear sloping domain 
using a G value of 0.001 s-1. The solid lines depict the elevation results, which have 
units of m. The dashed lines show the temporal evolution of the sensitivity of the 
elevation to G. The units for elevation sensitivity to G are ms. The node number listed in 
the title for each panel is the node number in the 21 node grid associated with a given 
location (i.e., a fixed coordinate). The black lines are for results from the 11 node grid. 
The dark gray, gray and light gray lines depict results from the 21, 41 and 81 node grids, 
respectively.
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C.1.2  Velocity and Velocity Sensitivity Results

The results presented in this section are for four different simulations on the linear 

sloping domain. All the simulations used a constant  value of 0.001 . The difference 

between the simulations was the number of nodes used to discretize the domain and, thus, 

the element size. The base domain consists of 21 nodes (20 elements). The three other 
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Figure C.2 Elevation and elevation sensitivity results for a simulation on the linear sloping domain 
using a G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.1.
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domains had 11, 41 and 81 nodes, respectively.

The results are shown in Figure C.3 and Figure C.4. There are eight lines on each 

plot. The four solid lines are the velocity results for the different simulations, which have 

units of . The four dashed lines are the corresponding velocity sensitivity results which 

have units of m. The black, dark gray, gray and light gray lines are for the 11, 21, 41 and 81 

node simulations, respectively. Additionally, the node number listed on each of the panels 

is the node number associated with the 21 node grid. For instance, in the sixth panel of 

Figure C.3, the label is “Node 11.” The results are for the 6th, 11th, 21st and 41st nodes in 

the 11, 21, 41 and 81 node domains.   

m s⁄
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Figure C.3 Velocity and velocity sensitivity results for a simulation on the linear sloping domain 
using a G value of 0.001 s-1. The solid lines depict the velocity results, which have units 
of m / s. The dashed lines show the temporal evolution of the sensitivity of the velocity 
to G. The units for velocity sensitivity to G are m. The node number listed in the title for 
each panel is the node number in the 21 node grid associated with a given location (i.e., 
a fixed coordinate). The black lines are for results from the 11 node grid. The dark gray, 
gray and light gray lines depict results from the 21, 41 and 81 node grids, respectively.
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Figure C.4 Velocity and velocity sensitivity results for a simulation on the linear sloping domain 
using a G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.3.
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C.2   Seamount Domain Using “Non-Primitive” G Value

C.2.1  Elevation and Elevation Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations used the explicit version of the code with a 

constant  value of 0.001 . The difference between the simulations was the number of 

nodes used to discretize the domain and, thus, the element size. The base domain consists 

of 31 nodes (30 elements). The two other domains had 16 and 61 nodes, respectively. The 

time step for these simulations was 1 s. This allowed the explicit code to be stable at a G

value that was not stable with a time step of 5 s.

The elevation results are shown in Figure C.5, Figure C.6 and Figure C.7. There are 

six lines on each plot. The three solid lines are the elevation results for the different simu-

lations, which have units of m. Note that the water surface elevation values have been 

multiplied by 10 so it is easier to see the temporal (within a given panel) and spatial 

(comparing panels) variation in the results. The three dashed lines are the corresponding 

elevation sensitivity results which have units of ms. The elevation sensitivities are not 

scaled. The black, dark gray and light gray lines are for the 16, 31 and 61 node simulations, 

respectively. Additionally, the node number listed on each of the panels is the node number 

associated with the 31 node grid. For instance, in the sixth panel of Figure C.15, the label 

is “Node 11.” The results are for the 6th, 11th and 21st nodes in the 16, 31 and 61 node 

domains. 

Unlike in the linear sloping domain case presented earlier, there are instances where 

geometry of the domain varies slightly between the coarsest grid and the two finer grids. 

The break points between the sections for the original grid are at node 1, 11, 16, 21, 26 and 
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31. These correspond to nodes 1, 21, 31, 41, 51 and 61 for the grid with 61 nodes. However, 

for the grid with just 16 nodes, the break points occur at nodes 1, 6, 9, 11, 14 and 31. In the 

grid with 16 nodes, node 9 is the first node on the seamount. On the original grid, node 16 

is the first node on the seamount. The x-position of node 9 in the 16-node grid is the same 

as node 17 in the 31-node grid. For the comparisons, the break points were used as controls, 

so the graph labeled “Node 16” consists of results from node 9, node 16 and node 31 for 

the three grids. Comparisons are made for each of the points in the coarsest domain. The 

point used from the 31 node grid is the closest node corresponding to the same location 

along a given linear stretch. The node from the 61 node grid is the node from the same x-

position as the node from the 31 node grid.

C.2.2  Velocity and Velocity Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations were with a constant  value of 0.001 . 

The difference between the simulations was the number of nodes used to discretize the 

domain and, thus, the element size. The base domain consists of 31 nodes (30 elements). 

The two other domains had 16 and 61 nodes, respectively.

The velocity results are shown in Figure C.8, Figure C.9 and Figure C.10. There are 

six lines on each plot. The three solid lines are the velocity results for the different simula-

tions, which have units of . As with the elevations, the velocities are multiplied by 10. 

The three dashed lines are the corresponding velocity sensitivity results (not scaled) which 

have units of m. The black, dark gray and light gray lines are for the 16, 31 and 61 node 

simulations, respectively. Additionally, the node number listed on each of the panels is the 

node number associated with the 31 node grid. For instance, in the sixth panel of 
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Figure C.18, the label is “Node 11.” The results are for the 6th, 11th and 21st nodes in the 

16, 31 and 61 node domains.      
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Figure C.5 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.001 s-1. The solid lines depict the elevation results, which have 
units of m. The dashed lines show the temporal evolution of the sensitivity of the 
elevation to G. The units for elevation sensitivity to G are ms. The node number listed in 
the title for each panel is the node number in the 31 node grid associated with a given 
location (i.e., a fixed coordinate). The black lines are for results from the 16 node grid. 
The dark gray and light gray lines depict results from the 31 and 61 node grids, 
respectively.
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Figure C.6 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.5.
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Figure C.7 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.5.
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Figure C.8 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.001 s-1. The solid lines depict the velocity results, which have units of m / s. 
The dashed lines show the temporal evolution of the sensitivity of the velocity to G. The 
units for velocity sensitivity to G are m. The node number listed in the title for each 
panel is the node number in the 31 node grid associated with a given location (i.e., a 
fixed coordinate). The black lines are for results from the 16 node grid. The dark gray 
and light gray lines depict results from the 31 and 61 node grids, respectively.
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Figure C.9 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.8.
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C.2.3  Mass Balance and Mass Balance Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations used a constant  value of 0.001 . The 

difference between the simulations was the number of nodes used to discretize the domain 

and, thus, the element size. The base domain consists of 31 nodes (30 elements). The two 

other domains had 16 and 61 nodes, respectively.

The results for mass balance and mass balance sensitivity are elementally-based. 

The elements used for the comparisons are the elements to the left of the nodes evaluated 

for the comparisons previously. For instance, the last element in the deep portion of the 

domain oceanward of the seamount is element 5 in the 16 node grid, element 10 in the 31 
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Figure C.10 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.001 s-1. Specifics about the panels can be found in the caption for 
Figure C.8.
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node grid and element 20 in the 61 node grid. Consistent with previous presentations in this 

appendix, the label in the figure corresponds to the element from the 31-node grid. In this 

case, this comparison receives the label “Element 10.” The line color scheme is also consis-

tent with previous results for the seamount. The black, dark gray and light gray lines (solid 

and dashed) are used to illustrate results from the 16-node, 31-node and 61-node grids.

Previously, elevation results were shown with solid lines, while elevation sensi-

tivity results were depicted using dashed lines. Likewise, velocity results were provided 

using solid lines, while the velocity sensitivity to  was shown using dashed lines. For the 

mass balance and mass balance sensitivity presentation, the mass balance is shown in the 

left panel, while the mass balance sensitivity is shown in the corresponding right panel. The 

accumulation term is shown using a solid line, while the net flux term is delineated with 

dashing. The mass balance sensitivity graphics use the same template, with sensitivity of 

the accumulation term to  shown in solid lines and sensitivity of the net flux term to  

rendered using dashed lines. The first three comparisons are shown in Figure C.11. The rest 

of the comparisons are presented in Figure C.12 through Figure C.14.     
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Figure C.11 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.001 s-1. The mass balance 
terms have units of m2, while the mass balance sensitivity results have units of m2s. The 
solid lines show the accumulation results, while the dashed lines show the net flux terms. 
The element number listed in the title for each panel is the node number in the 31 node 
grid associated with a given location. The black lines are for results from the 16 node 
grid. The dark gray and light gray lines depict results from the 31 and 61 node grids, 
respectively.
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Figure C.12 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.001 s-1. Specifics about the 
panels can be found in the caption for Figure C.11.
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Figure C.13 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.001 s-1. Specifics about the 
panels can be found in the caption for Figure C.11.
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Figure C.14 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.001 s-1. Specifics about the 
panels can be found in the caption for Figure C.11.
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C.3   Seamount Domain Using “Primitive” G Value

C.3.1  Elevation and Elevation Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations used the explicit version of the code with a 

constant  value of 0.01 . The difference between the simulations was the number of 

nodes used to discretize the domain and, thus, the element size. The base domain consists 

of 31 nodes (30 elements). The two other domains had 16 and 61 nodes, respectively. The 

time step for these simulations was one second.

The elevation results are shown in Figure C.15, Figure C.16 and Figure C.17. There 

are six lines on each plot. The three solid lines are the elevation results for the different 

simulations, which have units of m. The three dashed lines are the corresponding elevation 

sensitivity results which have units of ms. The black, dark gray and light gray lines are for 

the 16, 31 and 61 node simulations, respectively. Additionally, the node number listed on 

each of the panels is the node number associated with the 31 node grid. For instance, in the 

sixth panel of Figure C.15, the label is “Node 11.” The results are for the 6th, 11th and 21st 

nodes in the 16, 31 and 61 node domains. 

Unlike in the linear sloping domain case presented earlier, there are instances where 

the geometry of the domain varies slightly between the coarsest grid and the two finer grids. 

The break points between the sections for the original grid are at node 1, 11, 16, 21, 26 and 

31. These correspond to nodes 1, 21, 31, 41, 51 and 61 for the grid with 61 nodes. However, 

for the grid with just 16 nodes, the break points occur at nodes 1, 6, 9, 11, 14 and 31. In the 

grid with 16 nodes, node 9 is the first node on the seamount. On the original grid, node 16 

is the first node on the seamount. The x-position of node 9 in the 16-node grid is the same 
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as node 17 in the 31-node grid. For the comparisons, the break points were used as controls, 

so the graph labeled “Node 16” consists of results from node 9, node 16 and node 31 for 

the three grids. Comparisons are made for each of the points in the coarsest domain. The 

point used from the 31 node grid is the closest node corresponding to the same location 

along a given linear stretch. The node from the 61 node grid is the node from the same x-

position as the node from the 31 node grid.   
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Figure C.15 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.01 s-1. The solid lines depict the elevation results, which have units 
of m. The dashed lines show the temporal evolution of the sensitivity of the elevation to 
G. The units for elevation sensitivity to G are ms. The node number listed in the title for 
each panel is the node number in the 31 node grid associated with a given location. The 
black lines are for results from the 16 node grid. The dark gray and light gray lines 
depict results from the 31 and 61 node grids, respectively.
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Figure C.16 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.01 s-1. Specifics about the panels can be found in the caption for 
Figure C.15.
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C.3.2  Velocity and Velocity Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations used a constant  value of 0.01 . The 

difference between the simulations was the number of nodes used to discretize the domain 

and, thus, the element size. The base domain consists of 31 nodes (30 elements). The two 

other domains had 16 and 61 nodes, respectively.

The velocity results are shown in Figure C.18, Figure C.19 and Figure C.20. There 

are six lines on each plot. The three solid lines are the velocity results for the different simu-

lations, which have units of . The three dashed lines are the corresponding velocity 

sensitivity results which have units of m. The black, dark gray and light gray lines are for 

the 16, 31 and 61 node simulations, respectively. Additionally, the node number listed on 
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Figure C.17 Elevation and elevation sensitivity results for a simulation on the seamount domain 
using a G value of 0.01 s-1. Specifics about the panels can be found in the caption for 
Figure C.15.
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each of the panels is the node number associated with the 31 node grid. For instance, in the 

sixth panel of Figure C.18, the label is “Node 11.” The results are for the 6th, 11th and 21st 

nodes in the 16, 31 and 61 node domains.   
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Figure C.18 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.01 s-1. The solid lines depict the velocity results, which have units of m / s. 
The dashed lines show the temporal evolution of the sensitivity of the velocity to G. The 
units for velocity sensitivity to G are m. The node number listed in the title for each 
panel is the node number in the 31 node grid associated with a given location. The black 
lines are for results from the 16 node grid. The dark gray and light gray lines depict 
results from the 31 and 61 node grids, respectively.
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Figure C.19 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.01 s-1. Specifics about the panels can be found in the caption for 
Figure C.18.
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C.3.3  Mass Balance and Mass Balance Sensitivity Results

The results presented in this section are for three different simulations on variations 

of the seamount domain. All the simulations used a constant  value of 0.01 . The 

difference between the simulations was the number of nodes used to discretize the domain 

and, thus, the element size. The base domain consists of 31 nodes (30 elements). The two 

other domains had 16 and 61 nodes, respectively.

The results for mass balance and mass balance sensitivity are elementally-based. 

The elements used for the comparisons are the elements to the left of the nodes evaluated 

for the comparisons previously. For instance, the last element in the deep portion of the 

domain oceanward of the seamount is element 5 in the 16 node grid, element 10 in the 31 

node grid and element 20 in the 61 node grid. Consistent with previous presentations in this 

appendix, the label in the figure corresponds to the element from the 31-node grid. In this 

case, this comparison receives the label “Element 10.” The line color scheme is also consis-

tent with previous results for the seamount. The black, dark gray and light gray lines (solid 

and dashed) are used to illustrate results from the 16-node, 31-node and 61-node grids.
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Figure C.20 Velocity and velocity sensitivity results for a simulation on the seamount domain using a 
G value of 0.01 s-1. Specifics about the panels can be found in the caption for 
Figure C.18.
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Previously, elevation results were shown with solid lines, while elevation sensi-

tivity results were depicted using dashed lines. Likewise, velocity results were provided 

using solid lines, while the velocity sensitivity to  was shown using dashed lines. For the 

mass balance and mass balance sensitivity presentation, the mass balance is shown in the 

left panel, while the mass balance sensitivity is shown in the corresponding right panel. The 

accumulation term is shown using a solid line, while the net flux term is delineated with 

dashing. The mass balance sensitivity graphics use the same template, with sensitivity of 

the accumulation term to  shown in solid lines and sensitivity of the net flux term to  

rendered using dashed lines. The first three comparisons are shown in Figure C.21. The rest 

of the comparisons are presented in Figure C.22 through Figure C.24.    
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Figure C.21 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.01 s-1. The mass balance terms 
have units of m2 while the mass balance sensitivity results have units of m2s. The solid 
lines show the accumulation results while the dashed lines show the net flux terms. The 
element number listed in the title for each panel is the node number in the 31 node grid 
associated with a given location. The black lines are for results from the 16 node grid. 
The dark gray and light gray lines depict results from the 31 and 61 node grids, 
respectively.
380



2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Element 8

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Se
ns

iti
vi

ty

Element 8

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Element 10

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Element 12

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Element 13

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Se
ns

iti
vi

ty

Element 10

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Se
ns

iti
vi

ty

Element 12

2.0 2.2 2.4 2.6 2.8 3.0
�10 000

�5000

0

5000

10 000

Simulation Time, days

A
cc

um
ul

at
io

n
or

N
et

Fl
ux

Se
ns

iti
vi

ty

Element 13

Figure C.22 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.01 s-1. Specifics about the 
panels can be found in the caption for Figure C.21.
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Figure C.23 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.01 s-1. Specifics about the 
panels can be found in the caption for Figure C.21.
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Figure C.24 Mass balance (left panels) and mass balance sensitivity (right panels) results for a 
simulation on the seamount domain using a G value of 0.01 s-1. Specifics about the 
panels can be found in the caption for Figure C.21.
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 Appendix D.  Derivation of Equations and Sensitivities for Non-

Linear 1-D ADCIRC Using a Variable G Parameterization

D.1   Elemental Equations

The elemental equations for 1-D GWCE and NCM, as presented in Chapter 4, are 

given by (D.1) and (D.2), respectively.

(D.1)

(D.2)

where , , , 

 and . Again, constant grid spacing has been utilized.

D.2   Matrix Assembly

Using 5 nodes (4 elements) to discretize the domain allows the system matrices to 

be of reasonable size. Assembly results in (D.3) for the GWCE and (D.4) for the NCM.

1 G∆t
2

----------+ 
  Mi j,

L ζj
k 1+ 2Mi j,

L ζj
k G∆t

2
---------- 1– 

  Mi j,
L ζj

k 1– ∆t2 Hu( )e G( )j
kMi j,

5

∆t2 Huu( )j
kMi j,

3

–

g∆t2Mi j,
2 ζj

k– g∆t2

2
----------- ζ2( )j

k
Mi j,

3– ε∆tMi j,
3 ζj

k– ε∆tMi j,
3 ζj

k 1–

∆t2 G τ–( ) Hu( )[ ]j
kMi j,

4

+ +

+ +

=

1 τ∆t
2

--------+ 
  Mi j,

L uj
k 1+ 1 τ∆t

2
--------– 

  Mi j,
L uj

k ∆t
2
----- u2( )j

k
Mi j,

5– g∆t2ζj
kMi j,

5
– ε∆tMi j,

3 uj
k–=

Mi j,
L ∆x 1 2⁄ 0

0 1 2⁄
= Mi j,

2 hj hj 1++
2∆x

---------------------- 1 1–
1– 1

= Mi j,
3 1

∆x
------ 1 1–

1– 1
=

Mi j,
4 1

2
--- 1– 1–

1 1
= Mi j,

5 1
2
--- 1– 1

1– 1
=
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(D.3)1 G∆t
2

----------+ 
 

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

ζ1
ζ2
ζ3
ζ4
ζ5

k 1+

2

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

ζ1
ζ2
ζ3
ζ4
ζ5

k

G∆t
2

---------- 1– 
 

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1

ζ1
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ζ4
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k 1–

2ε∆t
∆x( )2

--------------

1 1– 0 0 0
1– 2 1– 0 0

0 1– 2 1– 0
0 0 1– 2 1–
0 0 0 1– 1

ζ1
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ζ3
ζ4
ζ5

k

–

g ∆t( )2

∆x( )2
-----------------

h1 h2+ h1 h2+( )– 0 0 0

h1 h2+( )– h1 2h2 h3+ + h2 h3+( )– 0 0

0 h2 h3+( )– h2 2h3 h4+ + h3 h4+( )– 0

0 0 h3 h4+( )– h3 2h4 h5+ + h4 h5+( )–

0 0 0 h4 h5+( )– h4 h5+

ζ1
ζ2
ζ3
ζ4
ζ5

k

–

2ε∆t
∆x( )2

--------------

1 1– 0 0 0
1– 2 1– 0 0
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ζ2
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ζ4
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2 ∆t( )2

∆x( )2
-----------------

1 1– 0 0 0
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Huu( )1
Huu( )2
Huu( )3
Huu( )4
Huu( )5

k

–

∆t( )2
2∆x

-------------

H1u1 H2u2+( )– H1u1 H2u2+ 0 0 0

H1u1 H2u2+( )– H1u1 H3u3– H2u2 H3u3+ 0 0

0 H2u2 H3u3+( )– H2u2 H4u4– H3u3 H4u4+ 0

0 0 H3u3 H4u4+( )– H3u3 H5u5– H4u4 H5u5+

0 0 0 H4u4 H5u5+( )– H4u4 H5u5+

G1
G2
G3
G4
G5

k

g ∆t( )2

∆x( )2
-----------------

1 1– 0 0 0
1– 2 1– 0 0

0 1– 2 1– 0
0 0 1– 2 1–
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2
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ζ2

k
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-------------

1– 1– 0 0 0
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k τHu( )1
τHu( )2
τHu( )3
τHu( )4
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 
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+

+

+
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(D.4)

D.3   System Equations

As stated in Chapter 4, the system can be written for each node as shown in (D.5).

(D.5)

The entire system can be written similarly, as shown in (D.6).

(D.6)

However, presentation is done more easily if the equations for elevations (from the GWCE) 

and velocities (from the NCM) are kept separate.

The GWCE system can be rewritten as

(D.7)

where the  terms in the GWCE are at the current time level and the  terms are 

1 τ∆t
2

--------+ 
 

1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1
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k

∆t
4∆x
----------
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u4
u5

k
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u3
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k
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βj G( )cj
k 1+ M1j ck G,( ) M2j ck 1– G,( )+=

β G( )ck 1+ M1 ck G,( ) M2 ck 1– G,( )+=

βG G( )ζk 1+ ζbc
k 1+ M1iG
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∑+ +=
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at the previous time level. The terms are as follows:

(D.8)

(D.9)

(D.10)

(D.11)

βG G( )

1

2 1
G2∆t

2
------------+ 
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2
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2 1
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2
------------+ 
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1
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2
------------+ 

 
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0
0
0
0
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M11G

0
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--------------–

0
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ζ4– ζ5+

k

=
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(D.12)

(D.13)

(D.14)

(D.15)

(D.16)
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(D.17)

(D.18)

(D.19)

Similarly, the NCM system can be rewritten as

(D.20)

where the  terms in the momentum equation are at the current time level. The terms 

are as follows:

M18G
∆t( )2

∆x
-------------

0
τHu( )1 τHu( )3–
τHu( )2 τHu( )4–
τHu( )3 τHu( )5–
τHu( )4 τHu( )5+
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M21G

0

2
G2∆t

2
------------ 1– 
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2
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2
------------ 1– 

  ζ3

2
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2
------------ 1– 
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G5∆t
2

------------ 1– 
  ζ5
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=

M22G
2ε∆t
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--------------

0
ζ1– 2ζ2 ζ3–+
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=
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(D.21)

(D.22)

(D.23)

(D.24)

βM G( )

1 τ∆t
2

--------+ 
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2 1 τ∆t
2

--------+ 
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2 1 τ∆t
2

--------+ 
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2 1 τ∆t
2

--------+ 
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1

=

M11M

1 τ∆t
2

--------– 
  u1

2 1 τ∆t
2

--------– 
  u2

2 1 τ∆t
2

--------– 
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2 1 τ∆t
2

--------– 
  u4

0

k

=

M12M
∆t

4∆x
----------–
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∆x
---------
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0
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(D.25)

D.4   Sensitivity to G

As noted in Chapter 4, the sensitivity to each of the coefficients in the parameter-

ization for  are given by (D.26).

(D.26)

where , , 

, and .

Following the format used previously, the derivatives and Jacobians will be shown for the 

individual terms in the GWCE and NCM.

(D.27)

M14M
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--------------–
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0
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=

G
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---------------+ Dc M1( )∂ck
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-------- Dαi

M1( ) Dc M2( )∂ck 1–
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-------------- Dαi
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Dαi
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-------------------

0
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=
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(D.28)

(D.29)

(D.30)

(D.31)

(D.32)

(D.33)
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-----------------–
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0 0 u3( )2– 2 u4( )2 u5( )2– 0 0 2 Hu( )3– 4 Hu( )4 2 Hu( )5–

0 0 0 u4( )2– u5( )2 0 0 0 2 Hu( )4– 2 Hu( )5
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=

Dx M15G( ) ∆ t( )2
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-------------
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0 0 u3 G4 G3–( ) u4 G5 G3–( ) u5 G5 G4–( ) 0 0 H3 G4 G3–( ) H4 G5 G3–( ) H5 G5 G4–( )

0 0 0 u4 G5 G4–( ) u5 G5 G4–( ) 0 0 0 H4 G5 G4–( ) H5 G5 G4–( )
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(D.34)
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(D.37)
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----------------–
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k

=
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-------------
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0 0 τu( )3 0 τu( )5– 0 0 τH( )3 0 τH( )5–

0 0 0 τu( )4 τu( )5 0 0 0 τH( )4 τH( )5

k

–

=

Dx M21G( )
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0 2
G2∆t

2
------------ 1– 
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(D.39)

(D.40)

(D.41)

(D.42)

(D.43)

Dx M22G( ) 2ε∆t
∆x( )2

--------------
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=

∂βM G( )
∂αi

--------------------

0
0
0
0
0
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Dx M11M( ) 1 τ∆t
2

--------– 
 
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4∆x
----------–
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=
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∆x
---------
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–=
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--------------–

0 0 0 0 0 1 1– 0 0 0
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The Jacobians with respect to the coefficients in the  parameterization will not be 

shown. Rather, the derivative with respect to a given coefficient, , will be shown. The 

GWCE and NCM have been combined for the following terms.

(D.44)

G

αi

∂M1
∂αi
----------- ∆t( )2

2∆x
-------------

0

H1u1 H2u2+( )
∂G1
∂αi
----------– H1u1 H3u3–( )
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----------+ +
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----------+ +
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----------+ +
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----------+

0
0
0
0
0

k

∆t( )2
∆x

-------------

0

H1u1
∂G1
∂αi
---------- H3u3

∂G3
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∂G2
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∆tζ4
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-----ζ5
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----------
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0
0
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 Appendix E.  1-D Coupling Results on Variable Sloping Domain

E.1   Hydraulic Simulations Using Full-Domain ADCIRC Forcing

The simulations in this section were performed using the constant unit discharge 

upstream boundary condition and the 2.5 day water surface elevation ocean boundary 

condition (Figure 5.8) presented in Chapter 5.

E.1.1  Kinematic Wave Channel Routing
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Figure E.1 Elevation and velocity RMSEt for the kinematic wave channel routing model on the 
variable sloping domain. The downstream boundary conditions come from a full-
domain ADCIRC simulation. Each of the nine different lines corresponds to a 
simulation with a different hand-off point. The darkest lines show results for the 
simulation with the most oceanward hand-off point. The lines get successively lighter as 
the hand-off point is moved upstream.
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E.1.2  Diffusive Wave Channel Routing
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Figure E.2 Elevation and velocity RMSEt for the diffusive wave channel routing model on the 
variable sloping domain. The downstream boundary conditions come from a full-domain 
ADCIRC simulation.
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E.1.3  Dynamic Wave Channel Routing
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Figure E.3 Elevation and velocity RMSEt for the dynamic wave channel routing model on the 
variable sloping domain. The downstream boundary conditions come from a full-domain 
ADCIRC simulation.
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E.2   ADCIRC Simulations Using Full-Domain Hydraulic Forcing

The simulations in this section used the constant unit discharge upstream and the 

2.5 day water surface elevation ocean boundary conditions presented in Chapter 5.

E.2.1  Full-Domain Comparisons
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Figure E.4 Elevation and velocity RMSEt for the full-domain channel routing models on the 
variable sloping domain. The full-domain ADCIRC simulation results are used as the 
true solution.
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E.2.2  ADCIRC Forced with Upstream Elevation Boundary 
Conditions from Channel Routing Models
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Figure E.5 Elevation and velocity RMSEt for ADCIRC on the variable sloping domain. The 
upstream boundary conditions come from the full-domain channel routing simulations.
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E.2.3  ADCIRC Forced with Upstream Boundary Condition from 
Dynamic Wave Model
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Figure E.6 Elevation, velocity and flux RMSEt for ADCIRC on the variable sloping domain. The 
upstream boundary conditions from the full-domain dynamic wave channel routing 
simulation.
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E.2.4  ADCIRC Forced with Upstream Boundary Condition from 
ADCIRC Model
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Figure E.7 Elevation, velocity and flux RMSEt for ADCIRC on the variable sloping domain. The 
upstream boundary conditions from the full-domain ADCIRC simulation.
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E.3   Simulations Using Boundary Forcing from Partial-Domain 
Simulations

The 5.0 day simulations in this section use the non-constant unit discharge upstream 

(Figure 5.19) and WSE ocean (Figure 5.18) boundary conditions presented in Chapter 5.

E.3.1  ADCIRC Forced with Upstream Boundary Condition from 
Partial-Domain Dynamic Wave Model

0 20 40 60 80 100 120 140

0

1

2

3

4

5

Node Number

R
M

S
E

le
va

tio
n

E
rr

or
,m

Elevation Forcing From Dynamic Wave Model

0 20 40 60 80 100 120 140

0

1

2

3

4

5

Node Number

R
M

S
V

el
oc

ity
E

rr
or

,m
�s

Elevation Forcing From Dynamic Wave Model

0 20 40 60 80 100 120 140

0

2

4

6

8

10

12

14

Node Number

R
M

S
Fl

ux
E

rr
or

,m
2
�s

Elevation Forcing From Dynamic Wave Model

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Node Number

R
M

S
E

le
va

tio
n

E
rr

or
,m

Flux Forcing From Dynamic Wave Model

0 20 40 60 80 100 120 140

0.0

0.2

0.4

0.6

0.8

1.0

Node Number

R
M

S
V

el
oc

ity
E

rr
or

,m
�s

Flux Forcing From Dynamic Wave Model

0 20 40 60 80 100 120 140

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Node Number

R
M

S
Fl

ux
E

rr
or

,m
2
�s

Flux Forcing From Dynamic Wave Model

Figure E.8 Elevation, velocity and flux RMSEt for ADCIRC on the variable sloping domain. The 
upstream boundary conditions come from partial-domain dynamic wave channel routing 
simulations.
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E.3.2  Dynamic Wave Hydraulic Model Forced with Downstream 
Elevation from ADCIRC
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Figure E.9 Elevation and velocity RMSEt for the dynamic wave hydraulic model on the variable 
sloping domain. The downstream boundary conditions come from the partial-domain 
ADCIRC simulation.
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E.4   Two-Way Coupling of ADCIRC to the Dynamic Wave 
Hydraulic Model

The simulations in this section were 5.0 day simulations using the 5.0 day water 

surface elevation ocean boundary condition. The first set simulations used a constant unit 

discharge (2.0 ) and the second set used the non-constant unit discharge hydrograph.

E.4.1  Constant Upstream Discharge

E.4.2  Non-Constant Upstream Discharge
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Figure E.10 Elevation and velocity RMSEt for the two-way coupled model on the variable sloping 
domain. The coupled model is compared to the full-domain ADCIRC simulation to 
compute the errors.
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Figure E.11 Elevation and velocity RMSEt for the two-way coupled model on the variable sloping 
domain. The coupled model is compared to the full-domain ADCIRC simulation to 
compute the errors.
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 Appendix F.  Comparison of ADCIRC Grid Geometry to North 

Carolina Floodplain Mapping Program Cross-Sections

F.1   Locations for Comparisons

HEC-RAS cross-sections provided by the North Carolina Floodplain Mapping 

Program (NCFMP) were used to evaluate the river geometry representation in the ADCIRC 

grid. The locations were estimated using descriptions of distances from landmarks on the 

NCFMP stations. The nineteen locations used on the Tar River are shown in Figure F.1. The 

twenty locations used on the Neuse River are shown in Figure F.2. 

Figure F.1 NCFMP to ADCIRC grid comparison locations and USGS gauge station locations (8-
digit numbers) on the Tar River.
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F.2   Idealized Water Surface Elevation vs. Discharge Plots for 
Locations on the Tar River

The water surface elevation vs. discharge plots for the sections were developed 

using a bottom slope of 0.00015 and a Manning’s roughness value of 0.025. The water 

surface elevation values are based on uniform flow depth for a given flow rate. The plots 

for the first eight locations on the Tar River can be found in Figure F.3. The comparisons 

for locations nine through sixteen are shown in Figure F.4. The data for the last three 

sections on the Tar River is plotted in Figure F.5. 

 

Figure F.2 NCFMP to ADCIRC grid comparison locations and USGS gauge station locations (8-
digit numbers) on the Neuse River.
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Figure F.3 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for the first eight locations on the Tar 
River.

1 2

3 4

6

87

5

409



0 200 400 600 800
0

2

4

6

8

10

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�2

0

2

4

6

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

0

2

4

6

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�4

�2

0

2

4

6

Flow Rate, cms
W

at
er

Su
rf

ac
e

E
le

va
tio

n,
m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�2

0

2

4

6

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�2

0

2

4

6

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�2

0

2

4

6

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

0 200 400 600 800

�4

�2

0

2

4

Flow Rate, cms

W
at

er
Su

rf
ac

e
E

le
va

tio
n,

m

Adjusted Grid

Original Grid

NCFMP

Figure F.4 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for locations nine through sixteen on 
the Tar River.
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F.3   Idealized Water Surface Elevation vs. Discharge Plots for 
Locations on the Neuse River

The plots for the first eight locations on the Neuse River can be found in Figure F.6. 

The comparisons for locations nine through sixteen are shown in Figure F.7. The data for 

the last four sections on the Neuse River is plotted in Figure F.8. 
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Figure F.5 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for locations seventeen through 
nineteen on the Tar River.
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Figure F.6 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for the first eight locations on the 
Neuse River.
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Figure F.7 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for locations nine through sixteen on 
the Neuse River.
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Figure F.8 Water surface elevation vs. discharge plots to compare the ADCIRC cross-section to the 
actual channel cross-sections (from NCFMP data) for locations seventeen through 
twenty on the Neuse River.
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