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Abstract 

Past studies have demonstrated that synoptic events play an important role in the spatial 

and temporal variations of carbon dioxide (CO*). In this study, in order to investigate whether 

cold fronts have impact on synoptic CO* concentrations, we collect 83 cold frontal cases over 

United Sates, east Pacific Ocean and west Atlantic Ocean (or the contiguous United States: 

CONUS) from 2015 to 2017 with data from Orbiting Carbon Observatory-2 (OCO-2) and 

Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), 

calculate the Column-averaged carbon dioxide dry air mole fraction (𝑋	-./ ) difference 

anomalies across the fronts, and apply significance test in each season based on non-frontal 

days climatology to decide whether cold fronts relate to horizontal CO* changes. The large 

day-to-day CO*  variability at the same location from Weather Research and Forecasting- 

Vegetation Photosynthesis and Respiration Model (WRF-VPRM) suggest that randomly 

selected orbits which are not crossing any fronts are a better reference than 𝑋	-./ monthly mean 

on the same spatial resolution in one month.  

Seeing that OCO-2 measures well on mesoscale and synoptic scale, we regard OCO-2 

data as the truth and examine whether simulations from WRF-VRPM are simulating well over 

the contiguous United States (CONUS). Based on land cover classifications given by the 

Moderate Resolution Imaging Spectroradiometer (MODIS), we compute the difference 

between the model simulations and OCO-2 observations for each land cover type in each 

season. The evaluation reveals that the model agrees well with OCO-2 for some specific land 
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cover and season, like forests in the winter, while still relative high bias in summer for most 

surface types.  

In summary, the result that 𝑋	-./ frontal gradients have similar pattern with past studies 

in boundary layer demonstrates that OCO-2 is a good tool to see mesoscale or synoptic and 

seasonal variations over the CONUS. Accordingly, regarding OCO-2 data as the truth, outputs 

from WRF-VPRM are evaluated based on 7 land cover types, which was proved generally well 

in winter over some land cover types, but may not ideal for others.
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Chapter 1 : Introduction 

1.1 Background 

1.1.1 Global warming situation and local measurements 

The 30-year period from 1983 to 2012 has been reported to be the warmest period in the 

past 800 years (Pachauri et al. 2014). Also, sea level rise explained by about 75% by glacier 

mass loss and ocean thermal expansion, and CO2 concentrations increased at the fastest 

observed decadal rate of change for 2002-2011 by IPCC Fifth Assessment Report (Pachauri et 

al. 2014). From 1970 to 2014, cumulative anthropological CO2 emissions have tripled from 

fossil fuel combustion, cement production and flaring, and increased by about 40% from 

deforestation and other land use (IPCC Fifth Assessment Report, (Pachauri et al. 2014)). Before 

the Industrial Revolution, the amount of carbon moving between trees, soil, oceans and the 

atmosphere was relatively balanced. As greenhouse gases (GHGs), the increase of CO2 

concentrations and unbalanced carbon cycle drive global climate warming via trapping 

outgoing longwave radiation emitted from the Earth to keep the Earth warm. Global warming 

alters the carbon cycle as well, for example, releasing dissolved CO2 from warmer oceans and 

lakes enhanced sources. The major components of the carbon cycle are shown in Fig 1.1. The 

large growth in global CO2 emissions has had a significant impact on the concentrations of 

CO2 in Earth’s atmosphere. Local CO2 emission along with transported CO2, can be measured 

by several methods like airborne LIDARs, satellites such as the Orbiting CarbonObservatory-

2 (OCO-2), the Total Carbon Column Observing Network (TCCON), which is a network of 

ground-based Fourier Transform Spectrometers recording direct solar spectra in the near-
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infrared spectral region (https://tccon-wiki.caltech.edu), and etc. With the in-situ or satellite 

measurement, we can better understand the carbon emissions, which plays an important role in 

global carbon cycle. 

 
Figure1.1 - The global carbon cycle. The main sources of carbon are oceans, soils and 
vegetation respiration, fossil fuel& cement production. Carbon sinks include terrestrial 
biosphere, soils, oceans, and fossil fuels, http://globecarboncycle.unh.edu 

Synoptic weather, like fronts, coupled with surface carbon dioxide flux, is related with 

day-to-day CO2 variations in atmosphere (Geels et al. 2004; Gerbig et al. 2003; Lauvaux et al. 

2008; Law et al. 2002; Lin et al. 2004; Parazoo et al. 2008; Peylin et al. 2005). TCCON data 

from Park Falls, Wisconsin, suggest that even on hourly timescales, CO2 variations in a column 

is dominated by non-local effects (Keppel-Aleks et al. 2012). Keppel-Aleks et al. (2012) 

illustrated that more robust flux estimates can be inferred if looking into the CO2 variability 

over the local or large-scale based on potential temperature. Fronts are believed to be related 
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to temperature and moisture discontinuity from the earliest , simplest model developed by 

Margules (1906), may also be a starting point to assess the relationship between CO2 variations 

and synoptic weathers, and furthermore, the examination of the precision of CO2 measurements 

from OCO-2. 

 

1.1.2 Fronts and CO2 contrasts 

Fronts are defined as the zones of transition between two different air masses (Hewson 

1998; Holton and Hakim 2012; Renard and Clarke 1965). The scales of fronts are variable in 

space and time — surface fronts often last for about three days on time scale and span about 

800 km horizontally, 3km vertically on spatial scale (Bluestein 1992), but from one side of a 

front to the other, one clearly would sense that the properties of an air mass had changed 

significantly (e.g., contrasts in temperature and dew point, wind direction, cloud cover, and 

sensible weather). There are four types of fronts defined: cold front, warm front, stationary 

front, and occluded front (vertical cross-section of cold fronts, warm fronts are shown in Figure 

1.2). The type of front depends on both the direction in which the air mass is moving and the 

characteristics of the air mass. A cold front is a front in which cold air replaces warm air at the 

surface, whose typical frontal slope is 1:100 (vertical to horizontal). The temperature transition 

zone is a band between warmer and cooler air masses which drop by 8K over 50 miles (Miles 

1962). A warm front is a front in which warm air replaces cooler air at the surface, with a 

typical frontal slope 1:200 (more gentle than cold fronts). The warm air is above the cold wedge, 

which is not only warmer but also moister than the cooler air in the wedge (Miles 1962; Renard 



 4 

and Clarke 1965), because of density differences. A stationary front is a front that does not 

move or barely moves, which typically forms when polar air masses are modified significantly 

so as to lose their character. If, as often happens, a warm front is overtaken by a cold front 

moving around a low-pressure center, then occluded fronts form, when cold fronts move faster 

than warm fronts, catch up and overtake their related warm front. In spite of the common 

density or the temperature criterion, many other features may distinguish a front, such as a 

pressure trough, wind direction changes, moisture discontinuities, and a band of clouds from a 

satellite imagery and precipitation. Fronts are often initiated by large-scale horizontal 

deformation field — the tendency of air parcels to change shape, and result in some sharp 

temperature contrasts and precipitation (Wallace and Hobbs 2006). Hurwitz et al. (2004) 

demonstrated that abrupt changes in CO2 mixing ratio happened in the presence of inclement 

weather and low pressure system using water vapor mixing ratio, temperature, wind speed and 

wind direction data measured by flux tower. Also a lot of past studies (Bianchi et al. 2009; 

Boutin et al. 2008; Keppel-Aleks et al. 2012; Lee et al. 2012; Mahadevan and Archer 2000; 

Parazoo et al. 2008) indicate that spatial CO2 variations are also related with fronts. 

The research done by Keppel-Aleks et al. (2012) illustrates that the changes of vertically 

integrated CO2 mixing ratio are primarily driven by non-local effects as seen from TCCON 

data at Park Falls, Wisconsin. And large-scale gradients of integrated CO2 are correlated with 

synoptic-scale variations in potential temperature q. Thus we can also regard CO* gradients as 

seen from TCCON as a reference. CO*  frontal changes were observed by in-situ data in 

Parazoo et al. (2008), in which 96-hour in-situ data were applied to see the whole frontal 
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passage. Frontal CO* changes as seen from in-situ continuous sites were found to have higher 

prefrontal CO* than postfrontal CO* at some sites like SGP (Southern Great Plains of North 

America, characterized by agriculture), WKT (Great Plains of North America in a region of 

strong moisture gradient, characterized by cattle grazing) and SBI (Sable Island, Island off the 

coast of Nova Scotia) in summer. 

 

Figure 1.2 - From (Miles 1962), schematic cross-section through a front (a). A warm front (b). 
A cold front 

 In this thesis, we only look at the cases when there is a cold front because cold fronts are 

more easily spotted from satellite imagery, which often go along with cloudy zones. Parazoo 

et al. (2008) found that in midlatitudes, horizontal advection is responsible for 60-70% of CO2 

daily variations on average in boundary layer, along with moisture convection and surface flux, 

are three components of boundary layer CO2 budget equation. Hence the surface flux is more 

important in days when advection and moist convection is weaker. However, whether the 

OCO-2 can see the variation in that scale is still unknown. With the work done before, we can 

compare results from OCO-2 to verify the accuracy of OCO-2 data.  
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1.1.3 ACT-America 

Surface measurements like TCCON (site map is given in Fig 1.3) are made only where 

instruments can be positioned, while weather phenomena will not always pass where the 

instruments are located. The Atmospheric Carbon and Transport – America (ACT-America) 

(https://act-america.larc.nasa.gov) campaign has conducted five airborne campaigns across 

three regions in the eastern United States to study the transport and fluxes of atmospheric 

carbon dioxide and methane (Davis et al. 2017). Each 6-week campaign measures how weather 

systems transport these greenhouse gases. The objective of the study is to enable more accurate 

and precise estimates of the sources and sinks of these gases by better understanding 

atmospheric transport mechanisms. Better estimates of greenhouse gas sources and sinks are 

needed for climate management and for prediction of future climate. ACT-America addresses 

three primary sources of uncertainty in our ability to infer carbon dioxide and methane sources 

and sinks - transport error, prior flux uncertainty and limited data density. 

 
Figure 1.3 -  TCCON site locations. Current operational sites are indicated with filled red 
circles, planned future sites are indicated with filled blue squares, and previous sites are 
indicated with grey triangles. From https://www.esrl.noaa.gov/gmd/annualco 
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According to flight experiments from ACT America, the seasonal variations of CO2 

concentration frontal gradients (CO2 concentration at warm sector minus the one at cold sector) 

is apparent in the boundary layer in the mid-Atlantic, mid-west U.S., and south U.S. to Gulf of 

Mexico regions in summer 2016, winter 2017, fall 2017, and spring 2018 (shown in Fig 1.4). 

In the boundary layer, the average CO2 concentration frontal gradient in summer for mid-west 

U.S. are demonstrated to be about 12.5 parts per million by volume (ppmv), -2.5 ppmv in 

winter, -5 ppmv in fall and -3 ppmv in spring (shown in Fig 1.5).  

 

	
Figure 1.4 - (a) ACT-America OCO-2 underflight diagram, and flight tracks from the (b) 
Summer 2016, (c) Fall 2017, and (d) Winter 2017 campaigns, provided by Davis et al. (2017)	
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Figure 1.5 - CO2 frontal gradient measured by ACT-America campaign. (a) is in mid-west US, 
the grey bars in each season are measured CO2 frontal gradients in each flight; (b) is same with 
(a), but over mid-Atlantic; (c) is same with (a), but over Gulf of Mexico, (d) is the average of 
CO2 frontal gradients in campaigns in (a)-(c) with respect to season. This figure is credit to 
Sandip Pal. 

 
 

1.1.4 OCO-2 

Most scientific satellites and many weather satellites are in a nearly circular, low Earth 

orbit. In order to enable coordinated science observations, the Earth Observations System has 

created the A-Train (or “afternoon train”) (Stephens et al. 2002). The satellites have low polar 

orbits 438 miles (705 km) above Earth at an inclination of 98 degrees. Together, their 

overlapping science instruments give a comprehensive picture of Earth weather and climate. 

The A-Train is so named because the lead satellite, Aqua, crosses the equator at the mean local 

time of approximately 1:30 pm. The A-Train satellite formation currently consists of six 

satellites flying in close proximity: Aqua, CloudSat, Cloud-Aerosol Lidar and Infrared 

Pathfinder Satellite Observation (CALIPSO), Aura, Global Change Observation Mission – 
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Water 1 (GCOM-W1) and OCO-2 (shown in Fig 1.6) (https://www.nasa.gov/mission_pages/a-

train/a-train.html). Bakwin et al. (1998) suggested the mid-afternoon is the best time in a day 

for inferring the regional and synoptic influence on tracer concentrations in well-mixed 

atmospheric boundary layer because the effect is maximized at that time. 

 

 
Figure 1.6 - The International Afternoon Constellation includes the A-Train satellites (OCO-2, 
GCOM-W1, Aqua, and Aura) as well as the C-Train satellites (CALIPSO and CloudSat), 
https://atrain.nasa.gov 

OCO-2 is NASA’s first dedicated satellite for monitoring atmospheric carbon dioxide 

distributions over the global scale. It is a replacement for The Orbiting Carbon Observatory 

(OCO), which was lost in a launch failure in 2009 

(https://www.jpl.nasa.gov/news/news.php?release=2014-211). Introductions on OCO given by 

(Crisp et al. 2008; Crisp et al. 2004) are valid for OCO-2. OCO-2 is designed to provide space-

based global measurements of atmospheric carbon dioxide (CO2) with the precision and 

resolution needed to identify and characterize the processes that regulate this important 

greenhouse gas. With its three high spectral resolution grating spectrometers, data collected by 
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OCO-2 could be combined with meteorological observations and ground-based CO2 

measurement to help characterize CO2 sources and sinks on regional scales at monthly intervals. 

CO2 	concentration	frontal gradients detected by ACT-America flight can be seen as the 

reference to judge qualitatively if OCO-2 has sufficient precision to see changes in the 

atmosphere. If the variations from OCO-2 are similar to the results attained from flight, OCO-

2 data will be considered as accurate. Especially in this thesis, the 𝑋	-./ gradients across cold 

fronts are considered as a test for the accuracy of OCO-2 and whether OCO-2 is appropriate 

for looking at CO2 variations in the atmosphere. Frontal contrasts observed from OCO-2 may 

be smaller because it collects the column integrated CO2 from the surface to the top of 

atmosphere, while carbon dioxide concentration varies more in the boundary layer because of 

the respiration of vegetation, fuel burning etc. (Keeling et al. 1976; McClure et al. 2016; 

Thoning et al. 1989). OCO-2 measures the intensity of the sunlight reflected from the presence 

of CO2 in a column of air rather than measuring CO2 directly (shown in Figure 1.7). The 

intensity of 3 wavelength bands (Weak CO2 at 1.61 microns, Strong CO2 at 2.06 microns and 

Oxygen O2 at 0.765 microns) from the spectrum is measured, each wavelength band is specific 

to one of the three spectrometers. OCO-2 will be able to track the variations in gas density in 

the atmosphere over time by repeatedly sampling the globe over days, seasons, and years. 
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Figure 1.7 - A simple model for OCO-2 CO2 measurements in a column in glint mode. OCO-
2 measures the sunlight reflected at the Earth surface. When passing through the atmosphere 
twice, energy in sunlight are absorbed by carbon dioxide and molecular oxygen molecules at 
some specific wavelengths (https://oco.jpl.nasa.gov/observatory/instrument/). 

Nadir and glint are the two main viewing geometries of satellite observation for OCO-2. 

In nadir mode, the satellite points the instrument to the local nadir, in which the data is 

representative of the column of air between the satellite and the subsatellite point directly on 

the ground track. Each OCO-2 spectrometer will have 10 km – wide cross track field of view 

at nadir that is divided into eight cross-track elements, or “footprints”. While in the glint mode, 

the spacecraft points the instrument in the direction of the bright “glint” spot, where solar 

radiation is reflected from the surface. Glint measurements provide much higher signal-to-

noise ratios (SNR). Originally, the observatory was set to exclusively operate in one mode – 

nadir or glint for each period in 16 periods. In order to reduce the error caused by thermal 

changes, since July 2nd, 2015, the measurement pattern was changed to switching by cycle (i.e., 

switching to nadir after one orbit of glint, followed by an orbit of glint, then nadir, and so on). 
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1.1.5 WRF-VPRM 

WRF-VPRM simulates Gross Ecosystem Exchange with temperature data from the 

Weather Research and Forecasting (WRF) model and Land Use and Land Cover information 

from MODIS. WRF and the Vegetation Photosynthesis and Respiration Model (VPRM) 

(Mahadevan et al. 2008) were coupled (WRF-VPRM) to evaluate CO2 fluxes and their 

subsequent atmospheric transport/dispersion (Ahmadov et al. 2007). WRF is a next-generation 

mesoscale numerical weather prediction system which is widely used by atmospheric research. 

It provides temperature and photosynthetically active radiation (PAR) information in WRF-

VPRM. VPRM is based on the MODIS data, developing from the Vegetation Photosynthesis 

Model (VPM) (Xiao et al. 2004a; Xiao et al. 2004b). VPM was developed to estimate Gross 

Ecosystem Exchange GEE —the amount of chemical energy as biomass that primary 

producers create in a given length of time, with vegetation indices and environmental data from 

MODIS. VPRM additionally simulates Ecosystem Respiration (ER), the sum of 

all respiration occurring by the living organisms in the ecosystem, and then estimates Net 

Ecosystem Exchange (NEE) of CO2 through (Mahadevan et al. 2008): 

NEE = 	GEE + ER	, 1  

GEE	=	λ ∙ TCDEFG ∙ WCDEFG ∙ PCDEFG ∙ FAPARLMN ∙ PAR ∙
O

OP QRS
QRST

	,		(2) 

ER	=	α×T + β	,		(3)	

where Ecosystem Respiration is linearly proportional to environmental temperature 𝑇  in 

Equation (3). In Equation (3), 𝛼 and 𝛽 are two empirical parameters, which vary by land cover 

type. PAR in Equation (3) stands for Photosynthetically Active Radiation, which is the amount 
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of light in the 400 to 700 nanometer wavelength range, provided by WRF, as well as 𝑇 _`ab, 

which is a parameter accounting for effects of temperature.		𝐹𝐴𝑃𝐴𝑅ghi  is the Fraction of 

𝑃𝐴𝑅, (µmol m−2 s−1) absorbed by the photosynthetically active portion of the vegetation (𝑃𝐴𝑉). 

MODIS provides Land Surface Water Index (LSWI) and Enhanced Vegetation Index (EVI) for 

VPRM, which are given as follows (Xiao et al., 2004a, 2004b): 

EVI = G	 ∙ 	 mnopq	mprs
mnopP -t	×	mprsq	-/	×	muvwr 	Px

	,	(4)	

where 𝜌{|} and 𝜌}b~ are satellite-derived reflectance from the near infrared and red bands, 𝐺 = 

2.5, 𝐶O = 6, 𝐶* = 7.5 and 𝐿 = 1. 

LSWI = 	 mnopq	m��op
mnopP	m��op

	,	(5)	

where 𝜌^�|} is short wave infrared reflectance. 𝑇 _`ab is a function of temperature, provided by 

WRF, and 𝑃 _`ab and 𝑊^_`ab are functions of LSWI, given by MODIS. Functions are as follows: 

TCDEFG =
(�q��on)(�q����)

[(�q��on)(�q����)q(�q����)/]
	, (6) 

where T��� , T�E� , and T���  are minimun, maximum and optimal temperature (°C) for 

photosynthesis. For evergreen classes, PCDEFG  is always set to be 1, while for deciduous 

vegetation and grasslands, PCDEFG is computed as a linear function of LSWI: 

PCDEFG =
OPx���

*
	. (7) 

WCDEFG is computed as: 

WCDEFG =
OPx���

OPx������
 , (8) 

where LSWI�E� is the maximum LSWI within the plant growing season for each site. Detailed 

explanations are available in Mahadevan et al. (2008). 
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In addition to vegetation contributions to CO2 flux, WRF-VPRM also takes anthropogenic 

emissions into account using data from Emission Database for Global Atmospheric Research 

(EDGAR, Petrescu et al. (2012)) and monthly ocean CO2 fluxes (Takahashi et al. 2009) for 

simulations over oceans. Atmospheric initial conditions and boundary conditions are taken 

from CarbonTracker (https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). 

(https://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea_flux_2000.html).  

WRF-VPRM was evaluated over the South California Air Basin (Feng et al. 2016; Park 

et al. 2018), which is greatly affected by anthropogenic emissions. It demonstrated that 

compared with in atmospheric model , high spatial resolution in the anthropogenic 

CO2 emissions, especially fossil fuel is more needed to capture CO2 concentration variability 

across the LA megacity (Feng et al. 2016). However, WRF-VPRM hasn’t been evaluated over 

the CONUS. In this study, WRF-VPRM simulations in 2016 over the CONUS are evaluated 

by comparing with OCO-2 𝑋	-./ if OCO-2 data are verified to be precise on the same scale 

WRF-VPRM is simulating. 

 

1.2 Thesis overview 

In this thesis, we study the 𝑋	-./ frontal gradient with data from OCO-2 to compare what 

was seen in the studies with TCCON data by Parazoo et al. (2008), and S.Pal et al in ACT-

America to quantitatively evaluate OCO-2 data in the CONUS scale. All of these studies found 

gradients of ~10 ppmv in summer.  
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We will compare WRF-VPRM simulations with the observations from OCO-2 in terms 

of land cover types and different seasons, preliminary evaluations of factors of simulation 

biases are also included. This thesis has 4 chapters: Chapter 1 gives a brief introduction for 

global carbon cycle, OCO-2, and WRF-VPRM. Chapter 2 describes Data and Methods, where 

detailed OCO-2 data are discussed, and the method to locate and define a cold front on a 

weather map, satellite orbiting map and potential temperature at 700 hPa. This chapter also 

describes how we compute the 𝑋	-./  gradient across a cold front and the method for 

significance test for frontal gradients. Chapter 3 gives results of this research and Chapter 4 

incorporates discussion and summary. 
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Chapter 2 : Data and Methods 

2.1 Detailed discussion of OCO-2 data 

The Orbiting Carbon Observatory 2 (OCO-2), launched in 2014 by NASA (The National 

Aeronautics and Space Administration), flies in a sun-synchronous, near-polar orbit over a 16-

day (233-revolution) repeat cycle and crosses the equator at about 1:30 PM Mean Local Time 

(MLT) (https://oco.jpl.nasa.gov/mission/quickfacts/). OCO-2 does not measure CO* directly, 

but the intensity of the sunlight reflected from the presence of CO* in the column of air. The 

OCO-2 level 2 data product includes column-averaged carbon dioxide (CO* ) dry air mole 

fraction (𝑋	-./), surface pressure, surface-weighted estimates of the column-averaged water 

vapor, atmospheric temperature and other diagnostic products from mostly cloud-free scenes. 

𝑋	-./is the primary product delivered by OCO-2, and is defined as the average concentration 

of carbon dioxide in a column of dry air extending from Earth’s surface to the top of the 

atmosphere. Estimates of CO2 are derived by taking the ratio of the column integrated number 

densities of carbon dioxide and molecular oxygen along the optical path between the Sun, the 

surface footprint, and the instrument, and then multiplying these results by the global mean 

column-averaged oxygen concentration (0.20935) (function is given in Equation (9)). 

𝑋	-./ = 	
-./��v

(./
��v/./��) ,  

(9) 

where CO*D�F is retrieved absolute CO2 column (in molecules/cm2), O*D�F is retrieved absolute 

O2 column (in molecules/cm2), and assumed (column-averaged) mole fraction of O2 used to 
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convert the O2 column into a corresponding dry air column and is equal to 0.20935 (Schneising 

et al. 2008). 

The OCO-2 spacecraft carries a single instrument that incorporates 3 spectrometers 

collecting high spectral resolution spectra of reflected sunlight, one in the molecular oxygen 

(O2) A band, centered near 765 nm, and other twos in the CO2 bands centered near 1610 and 

2060 nm. Collecting 24 spectra per second, each spectrometer yields about a million 

observations each day over the sunlit hemisphere. Radiance measurements are made from the 

three spectrometers and then produce the estimates of 𝑋	-./  with a “full-physics” retrieval 

algorithm, with O2 A band and CO2 bands as prescreeners before processing (O'Dell et al. 2018). 

Two prescreeners are applied: the first is A-band Preprocessor (ABP), which uses the oxygen A 

band and assumes no clouds or aerosol throughout the detection. This pre-processor identifies 

where surface pressure differences between the retrieved and a priori greater than 25 hPa are and 

screens these scenes assuming cloud and/or aerosol contamination. The second is the Iterative 

Maximum A Posteriori-Differential Optical Absorption Spectroscopy preprocessor (IMAP-

DOAS, or IDP), which performs fast, clear-sky fits to the two CO2 bands centered near 1610 and 

2060 nm separately, and screens based on excessive differences in retrieved CO2 between the 

two bands. Clouds and optically thick aerosols preclude observations of the full atmospheric 

column in many regions, especially where there is a weather phenomenon like fronts, storm and 

snow. Retrievals of 𝑋	-./ also fail when the solar zenith angle is too high, or when there are is 

low surface albedo such as in the case of snow and ice, which causes the Signal to Noise Ratio 

to be too low. The fraction of soundings passing in the tropics is larger than at higher latitudes 
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mainly due to sub-solar latitudes—regions between 23.5˚S and 23.5˚N are brighter than surface 

in higher latitudes, where surface albedos are stronger (O'Dell et al. 2018) and solar zenith angles 

are smaller. With this approach, over 100,000 cloud-free full-column 𝑋	-./  observations are 

collected by OCO-2 each day. 

 

Figure 2.1 - An example for OCO-2 tracks in August 5th, 2016. The satellite flies from east to 
west, south to north. The colors of the soundings vary with 𝑋	-./. 

In this study, we use Version 8 𝑋	-./  from OCO-2 Level 2 (L2) dataset 

(http://oco2.gesdisc.eosdis.nasa.gov/data/s4pa/OCO2_DATA/OCO2_L2_Lite_FP.8r/) 

(O'Dell et al. 2018) from 2015 to 2017. Before Version 9, which is released in October, 2018, 

Version 8 (also referred to as build 8 or B8) is the latest version of OCO-2 data after version 7, 

which has the lowest biases and highest throughput of any version so far. It has been processed 

with an updated version of the OCO-2 Level 1 (L1) and Level 2 algorithms. The latest versions 

of the algorithms include updated radiometric calibration for the L1b product, updated 

spectroscopic parameters, the addition of a stratospheric aerosol type, and a more realistic 

treatment of surface reflectance in the L2 algorithm. For large scale measurements, a 

previously reported positive bias with respect to models over southern hemisphere mid-latitude 

oceans is nearly removed in B8, while regionally coherent biases still remain at a significant 
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level (~1 ppmv) (O'Dell et al. 2018). Data in 𝑋	-./  is marked with quality flag including 

number 0 and 1. 𝑋	-./  marked with number 1 are determined as bad data due to reasons like 

‘calibration door not open for science’, ‘invalid attitude data received’, ‘algorithmic errors 

detected in the frame’… and those marked with number 0 are in good quality 

('xco2_quality_flag’=0). Bad quality data are removed when analyzing 𝑋	-./ gradients across 

cold fronts in our study. 

 

2.2 The method to locate and define a front 

3-hourly weather maps of surface analysis, mostly at 18UTC or 21UTC from Weather 

Prediction Center in NOAA (Figure 2.2) are applied to locate cold fronts. In this example at 

August 5th, 2016, the cold front was over Nebraska and Kansas, where it was cloudy according 

to the satellite map and there was cold front sign in the surface analysis. Because OCO-2 

overpass times range from 15 UTC over the western Atlantic Ocean to 21 UTC over west coast 

of the U.S. on each day. We examine the weather map at 18UTC or 21 UTC over most regions 

in U.S.: reading time information at each sounding along tracks over U.S., find the closer time 

between 18UTC and 21UTC. Here we also make use the “OCO-2 MODIS Vistool” 

(https://github.com/hcronk/oco2_modis_vistool) developed by Heather Cronk from Colorado 

State University, which is to pull MODIS Aqua RGB images from Worldview using the NASA 

GIBS API and overlay various OCO-2 data fields for case study analysis in support of OCO-2 

cloud and aerosol screening validation, filtering with warning level or quality flag in OCO-2 

Lite files. We zoom in the satellite track images to our interested domain in this study, and 
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retain soundings marked with quality flag ‘0’. In this domain (50˚W-140˚W, 20˚N-55˚N), we 

can find at most 4 tracks, because the ground track repeat cycle of OCO-2 is 16 day/233 orbit, 

approximately 25˚ of Longitude (Figure 2.1). We compare the Weather Prediction Center 3-

hourly surface analysis with satellite images we produced with the OCO-2 MODIS 

Vistool(https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/), find the same location 

where the front is in the surface analysis, and determine when the frontal case meets the 

requirement that satellite tracks are ahead and behind the fronts. 

In this thesis, we utilize an updated version of WRF-VPRM, in which VPRM 

parameters was calibrated by (Hilton et al. 2013) using covariance tower data over North 

America, to simulate CO2 over CONUS with a resolution of 12 km for year 2016 in a 

continuous run using an optimal downscaling configuration justified in (Miles 1962) and then 

integrate CO2 on 47 pressure levels up to 10 hPa to compute 𝑋	-./. CO2 between 10 hPa to 

0hPa (i.e., the top of atmosphere) is neglected because it is less than 0.1 ppmv, which will 

contribute even less in 𝑋	-./. 
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Figure 2.2 - An example for weather prediction center surface analysis in August 5th, 2016, 18 
UTC. This surface analysis is used to compare with OCO-2 tracks in Figure 2.1 to locate the 
cold front. 

(https://www.wpc.ncep.noaa.gov/archives/web_pages/sfc/sfc_archive_maps.php?arcdate=08/
05/2016&selmap=2016080518&maptype=namussfc) 

 

Frontal zones, usually marked by sharp horizontal gradients and outright discontinuities 

in wind and temperature, are often observed with a cloud band and precipitation. A potential 

problem is that 𝑋	-./  frontal anomalies are hidden under clouds for satellite observations 

(Corbin and Denning 2006). Moisture varies at the frontal area, as seen from the strong 

gradients in dew point and equivalent temperature, especially when the cold air is of continental 

origin and the warmer air is of marine origin, as is often the case over the eastern United States. 

Water vapor in the warm air mass ascends to saturation due to cold air approaching, and is 

lifted to higher altitudes to form the clouds. The strong temperature gradient and moisture 

gradient across the front account for clouds over the frontal zone. In the process that we are 

looking for frontal zones corresponding to instantaneous satellite images, the frontal zones are 
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often characterized by clouds parallel to front lines. However, the 3-hourly surface analysis 

cannot provide the front location at the exact time when the satellite passing across the front, 

we consider the band-like cloudy areas near the front line from the satellite image are all frontal 

zones, and the track to the north of the cloudy area is crossing the cold sector, and similarly the 

one to the south of the cloudy area is crossing the warm sector. 

The potential temperature of a parcel of a fluid at pressure P is the temperature that the 

parcel would attain if adiabatically brought to a standard reference pressure P , usually 1000 

millibars (Wallace and Hobbs 2006). The potential temperature is denoted q and, for a gas 

well-approximated as ideal, is given by 

θ = T(LT
L
)
¢
-�,  (10) 

where 𝑇 is the current absolute temperature (in K) of the parcel, 𝑅 is the gas constant of air, 

and 𝐶£ is the specific heat capacity at a constant pressure. 𝑅 𝐶£ = 0.286 for air. 

Potential temperature at 700 hPa over the CONUS (20°N~55°N latitude, 50°W~140°W 

longitude) from The Modern-Era Retrospective analysis for Research and Applications, 

Version 2 (MERRA-2) (Gelaro et al. 2017) is used to define the boundaries of cold fronts. The 

MERRA-2 data product is 3-hourly, instantaneous, at 0.5°  latitude by 0.625°  longitude 

resolution with 42 vertical pressure levels. Following the criteria from Wunch et al. (2011), we 

overlap satellite tracks from OCO-2 on 700 hPa potential temperature map from MERRA-2, 

and verify the length of fronts both at warm sector and cold sector. Due to the missing OCO-2 

𝑋	-./ data at cloudy areas, we find the first soundings from blank area at both sectors (A, B) 

and the first sounding (C, D) which has 2 K potential temperature difference from the former 
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soundings (A, B) (i.e., 𝜃_= 𝜃h − 2𝐾,	𝜃«= 𝜃¬ + 2𝐾, 𝜃_ is the potential temperature at sounding 

C), take the average of 𝑋	-./ at soundings between the start sounding A (or B) and the end 

sounding C (or D) . Also 3-sounding running mean is used to “smooth” the soundings — reduce 

outliers which are apparent larger or smaller than nearby soundings. For example, assuming 

there are N+1 soundings between A and C, the original soundings of 𝑋	-./ between A and C 

are: 

[PM, 	PMPO, PMP*, PMP­, PMP®, …, PMP¯q­, PMP¯q*, PMP¯qO, PMP¯], (11) 

where PM is 𝑋	-./ at soungding A, PMPO is 𝑋	-./ at the sounding next to A towards C, PMP­ is 

𝑋	-./ at the sounding next to A+1 towards C, similar for PMP®, PMP¯q­, PMP¯q*, PMP¯qO, PMP¯. 

PMP¯ is 𝑋	-./ at the sounding C. If applying 3-sounding running mean on that sounding series, 

(11) turns out to be: 

[LRPLR°tP	LR°/
­

, LR°tPLR°/P	LR°±
­

, LR°/PLR°±P	LR°²
­

,… 

…, LR°³´±PLR°³´/P	LR°³´t
­

, LR°³´/PLR°³´tP	LR°³
­

], (12) 

where there are N-1 soundings in (12). 𝑋	-./ at warm sector are operated similarly from (11) 

to (12) between B and D. 

 In this way, the moving-averaged mean — the average of elements in (12) 𝑋	-./ between 

A and C (XCO*	M-) is the average 𝑋	-./ at cold sector and the one between B and D (XCO*	¶·) 

is at warm sector. Then 𝑋	-./ frontal gradient in this case is: 

∆𝑋	-./ = 𝑋	-./	¶· − 𝑋	-./	M- ,  (13) 

where ∆XCO* is the 𝑋	-./ frontal gradient, 𝑋	-./	¶· is the mean 𝑋	-./ at warm sector, 𝑋	-./	M- 

is the mean 𝑋	-./ at cold sector. 
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Figure 2.3 - An example for OCO-2 tracks over the potential temperature at 700 hPa. We can 
find the boundary on this map according to the potential temperature differences along the 
tracks.  

 

        We apply above method in the cases from January 2015 to December 2017, in which there 

was a cold front and an instantaneous satellite track from OCO-2 over the U.S. and nearby 

oceans, and classify them into four seasons. 

 

2.3 Significance test 

We utilize a statistical method to explore the significance of the frontal gradients over and 

above the day to day local variability of 𝑋	-./ as well as the scatter of the OCO-2 data itself.  

A null hypothesis is required in significance tests, and is denoted H  .  The null 

hypothesis is a general statement or default position that the value of a population parameter is 

equal to some claimed value. In this research, the null hypothesis is the relationship between 

X	-./  frontal gradients we collected and the climatology. The method we use to attain the 

climatology is: (1) Compute the mean length of gap between warm and cold sector (i.e., where 

the cloud band is and data are not available) and the length of warm sector and cold sector in 
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latitudes; (2). Randomly select an orbit when there is not a front if the length of that orbit is 

longer than [length of gap + length of warm sector + length of cold sector], and compute the 

𝑋	-./ “frontal” gradient with those lengths; (3). Repeat the random selection and computing 

for 1500 times for each season. 

A significance test (P<0.1) is then applied to disprove the null hypothesis, which is that 

𝑋	-./ gradients across fronts are no different than non-frontal spatial gradients in 𝑋	-./: if X	-./ 

frontal gradients lie in top 5% or bottom 5% of random samples, they are statistically 

significant. A two-tailed test will test both if the 𝑋	-./ frontal gradient is significantly greater 

than non-frontal gradients and if it is significantly less than non-frontal gradients. To test 

whether the real 𝑋	-./  frontal gradients are significantly different from the non-frontal 

gradients, we apply two-tailed significance test with a significance level of 0.1 (P<0.1). Details 

are as follows: We randomly select OCO-2 tracks over the CONUS when there is not a front 

along the selected satellite track, and then randomly set a gap with the length of the mean length 

of collected cases according to the real weather map before and find the boundary of both 

sectors according to our ‘2K-Criterion’, then take the average of both sides of 𝑋	-./, and the 

difference as well. For each season, we choose 1500 random samples and sort them from small 

to large. The 𝑋	-./ frontal gradient is considered significant if the test statistic is in the top 5% 

(top 75 samples) or bottom 5% (bottom 75 samples) of its probability distribution, resulting in 

a P-value less than 0.1. Test when P<0.3 can also be applied to find which one interpreting 

better. 
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Another method to test the significance is that we calculate the mean 𝑥 and standard 

deviation 𝑠 of 1500 sampling assumed frontal gradient for each season, and consider gradients 

greater than 𝑥 + 𝑠 or less than 𝑥 − 𝑠 as significant and those falling in between as insignificant. 

These two methods are equivalent for a Gaussian distribution of samples. 

The statistical results can be qualitatively compared with cases collected by flight in ACT-

America mission. The main concerns are: (1) 𝑋	-./ frontal gradients are significantly different 

from assumed gradients in non-frontal orbits; (2) 𝑋	-./ frontal gradients in summer are greatly 

positive, while other seasons’ are slightly positive or slightly negative; (3) 𝑋	-./  frontal 

gradients in summer are statistically significantly different from other seasons; if all three of 

these criteria are met, we can consider 𝑋	-./ from OCO-2 are precise on synoptic scale and 

mesoscale and we can verify whether WRF-VPRM simulates over the CONUS well or not 

based on OCO-2 data.  

The assumed ‘frontal’ gradients of non-frontal orbits over the CONUS from 2015 to 2017 

are applied to calculate the climatology and be compared with real 𝑋	-./ frontal gradients.  

 

2.4 Evaluate WRF-VPRM with OCO-2 𝐗	𝐂𝐎𝟐  

2.4.1 Evaluate on seasonal time scale 

Both monthly mean of X	-./  from OCO-2 and WRF-VPRM are gridded into 1˚ 

Latitude´1˚ Longitude, and difference between WRF-VPRM and OCO-2 refer as the model 

bias, in which OCO-2 soundings correspond to instantaneous model outputs. The biases for 

each season are evaluated as follows: based on land cover types, compute the difference 
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between X	-./ from OCO-2 and WRF-VPRM. Evaluate the bias of WRF-VPRM X	-./ on each 

surface type. For example, over the U.S. domain, (1). Grid X	-./  from OCO-2 and WRF-

VPRM in January into 1˚ Latitude´1˚ Longitude, and acquire time from soundings measured 

by OCO-2 on each grid box; (2). Match WRF-VPRM X	-./ grid box with gridded X	-./ from 

OCO-2 according to time; (3). Take the difference of WRF-VPRM X	-./ grid box in (2) and 

OCO-2 X	-./ grid box in (1); (4). Divide grid boxes in (3) with respect to land covers (shown 

in Figure 2.4), evaluate on seasonal time scale. Methods are the same for other land cover types 

in other months. Months can also be combined to evaluate WRF-VPRM seasonally. Land cover 

classifications are plotted according to MODIS data cover dataset. 

 

Figure 2.4 - The land covers over the CONUS. There are seven types: Evergreen Forest, 
Deciduous Forest, Mixed Forest, Savannah, Shrubland, Cropland, Grassland. 

 

Overall, once confirm the OCO-2 𝑋	-./  is an appropriate measurement via comparing 

𝑋	-./ frontal gradients with previous work done in ACT-America, 𝑋	-./ from OCO-2 can be 

seen as a metric to evaluate how well the WRF-VPRM simulates over the CONUS.  
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2.4.2 Separate factors of NEE 

As stated in Equation (1) - (3), the estimation of NEE is the sum of GEE and Ecosystem 

Respiration. we can extend WRF-VPRM analysis using OCO-2 monthly or seasonal SIF 

(Solar-Induced chlorophyll Fluorescence) (Baker 2008; Baret et al. 2007; Meroni et al. 2009; 

Papageorgiou 2007) data correlations to isolate Gross Primary Production (GPP) and 

Ecosystem Respiration (ER) parameterizations, and continue to refine WRF-VPRM for 

regional scale study, where GPP is the amount of chemical energy as biomass that main energy 

producers of ecosystem create in a given length of time 

(https://en.wikipedia.org/wiki/Biomass_(ecology)), which equals to (−1) ∙ GEE. SIF, which 

can be directly measured from space, can serve as a physiological indicator or proxy for GPP 

(Cui et al. 2017). SIF is related to vegetation growth, which is greater when there is a stronger 

vegetation growth and corresponding greater GPP (or (−1) 	 ∙ GEE ). We can preliminary 

compare SIF from OCO-2 (at 757 nm) with GPP simulated by WRF-VPRM to evaluate the 

two factors in Equation (1). For example, when there is a strong bias in a specific season 

between WRF-VPRM and OCO-2, and SIF from both has a strong correlation, the bias may 

be caused by ecosystem respiration simulation. 
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Chapter 3 : Results 

3.1  𝑿	𝐂𝐎𝟐  gradients across cold fronts 

3.1.1 Cases and significance tests 

We collect 83 cases from 2015 to 2017 in which a cold front was observed by OCO-2: 22 

in spring, 31 in summer, 16 in fall, and 14 in winter. Per year, there are 17 frontal cases in 2015, 

37 in 2016, 29 in 2017. 
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Figure 3.1 - Four X	-./ frontal gradient in seasons. Each panel has three sections separated by 
black vertical lines: the first section is the warm sector in a cold front, blue dots in this section 
are the satellite soundings in warm sector, and the red triangles are corresponding WRF-VPRM 
simulations along the track. Similar for the third section, but in the cold sector. The blank 
second section is invalid soundings because of clouds or other reasons. The gradients marked 
in the figures are the X	-./ in warm sector minus that in cold sector and ‘R’ is the correlation 
coefficient between OCO-2 observations and WRF-VPRM simulations. (a) is for Febuary 16th, 
2016, (b) is for May 28th, 2016, (c) is for August 5th, 2016, (d) is for November 20th, 2016. 
(Other days are given in Appendix I.) 

 

The average length of gaps between warm and cold sectors for those cases are 4.959° in 

latitudes. The average 𝑋	-./ frontal gradients for all three years in the spring is -0.2495 ppmv, 

the fall average is -0.5241 ppmv, -0.7657 ppmv for winter frontal gradients, and +2.0957 ppmv 

for summer cases. Most cases are at central or eastern U.S.. From Table 3.1, we see that the 

average of summer 𝑋	-./  frontal gradients is much greater than other seasons’, and most 

summer gradients are greater than 2 ppmv (20 in 31), indicating that in terms of average, 

absolute 𝑋	-./  frontal gradients in summer is greater than all other seasons. Also, cases in 

spring fall and winter span over smaller ranges (-3.020 ppmv to 1.720 ppmv for spring, -3.064 

ppmv to 1.592 ppmv for fall, and -2.757 ppmv to 0.536 ppmv for winter), which means 𝑋	-./ 

frontal gradients in spring, fall and winter vary less case by case. The pattern can also be seen 

in Figure 3.2. 
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 Case 
Counts 

Average 
(ppmv) 

Standard Error 
(ppmv) 

Median 
(ppmv) 

Min 
(ppmv) 

Max 
(ppmv) 

Spring 22 -0.3835 0.2722 -0.4020 -3.0197 1.7205 

Summer 31 2.5788 0.3360 2.5729 -2.3166 6.6914 

Fall 16 -0.6075 0.3238 -0.3379 -3.0636 1.5922 

Winter 14 -1.2591 0.2094 -1.2736 -2.7570 0.5365 

Seasons 
except 

Summer 

52 -0.6882 0.1698 -0.7600 -3.0636 1.7205 

All Seasons 83 0.5320 0.2391 0.1640 -3.0636 6.6914 

Table 3.1 - Counts, mean and standard error, median, minimum and maximum of 𝑿	𝐂𝐎𝟐 frontal 
gradients in each season 
 

 
Figure 3.2 - Histograms for 𝑋	-./  gradients across fronts. Bars are counts of 𝑋	-./  frontal 
gradients, red dashed lines are mean of 𝑋	-./ gradients in each season, and blue dashed lines 
are normal distribution lines. (a) is for spring, (b) is for summer, (c) is for fall, (d) is for winter. 
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Figure 3.3 - Error bars for single 𝑋	-./ frontal gradients from OCO-2. Black dots are 𝑋	-./ 
frontal gradients and the range of black lines are the average of two standard deviations: one 
at warm sector and the other at cold sector. Seasons are divided by blue dashed lines. (a), (b), 
(c) are for 2015,2016, and 2017. 

 

However, in spite of the effect from cold fronts, surface fluxes are also another big part 

of the size of the gradient. For example, the 𝑋	-./ OCO-2 observations in January at latitudes 

more than 40°N and in February at latitudes more than 45°N are rare because data marked with 

‘xco2_quality_flag’=1 is filtered — large solar zenith angles in higher latitudes in winter 

resulting in less sunlight for good retrieval, which indicates that most cold front cases we 

collect locate between 20°N − 40°N. Smaller the domain we work on, fewer land cover type 

there will be, so the CO2 horizontal distribution is less affected by plants’ respiration and 

photosynthesis. For example, in the winter, the land cover types that impact the 𝑋	-./ frontal 
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gradients are mainly shrubland in southwest U.S., grassland in central U.S., and savannah in 

southwest and southeast U.S. However, in the summer, there are more good quality soundings 

between 40°N − 55°N, which results in more active biosphere over the domain, for example, 

lower 𝑋	-./  over corn belt in the mid-western U.S. and higher 𝑋	-./  over shrublands and 

savannahs in south and central U.S., especially in north Mexico, New Mexico and south 

Colorado. Also, active plants in the summer take effect on CO2 distributions, because strong 

photosynthesis and respiration varies a lot from daytime to nighttime for forests, but for land 

covers like grassland and shrubland, the CO2 concentration varies not that much. Since the 

OCO-2 flies over the equator at about 1:30 pm local time, in the summer, 𝑋	-./ over evergreen 

forests, deciduous forests, and mixed forests is less than other surface types, i.e., in July (shown 

in Fig 3.7 (a)), the monthly mean 𝑋	-./ from OCO-2 over forests is ~396 ppmv, while ~409 

ppmv over shubland at southwest U.S. The land cover type difference from north to south is 

also different at east and west: in Figure 3.4 (b), in summer in 2016, from the simulation of 

𝑋	-./ from WRF-VPRM, along the longitude 105˚W, the gradient is about 10 ppmv from 50˚ 

latitude to 30˚ latitude and along the longitude 80˚W, the gradient is about 6 ppmv from 50˚ 

latitude to 30˚ latitude. As shown in Figure 3.4, the 𝑋	-./ gradient in the summer is generally 

northeast-southwest, approximately from 395 ppmv to 407 ppmv, while  𝑋	-./ south-to-north 

gradient is smaller in winter. Our frontal cases are located in western and central U.S., where 

there are smaller seasonal average 𝑋	-./  gradients, but 𝑋	-./  frontal gradients are still 

significant in these regions. 



 34 

 
Figure 3.4 – (a) Monthly mean of 𝑋	-./  in January 2016 over the CONUS. Filled circles 
indicate very 20 seconds mean of 𝑋	-./ from OCO-2. (b) is for July. This figure is credit to 
Xiao-Ming Hu. 

 
Figure 3.5 - Assumed ‘frontal’ gradients based on random non-frontal days over the 
CONUS. (a) is for spring, the blue dashed line is normal distribution, red dashed line 
indicates the mean of 1500 samples in spring, the left (right) green dashed line is the mean of 
samples in spring minus (plus) their standard deviation, the left (right) yellow dashed line is 
the mean of samples in spring minus (plus) their doubled standard deviation; (b) is for 
summer, (c) is for fall and (d) is for winter. 
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Figure 3.6 - 2015-2017 𝑋	-./ frontal gradients (black dots) grouped by season. In (a), the mean 
(red) and a single standard deviation (blue) of assumed frontal gradients on non-frontal days 
are included. In (b), the upper blue dashed lines for each season is the top 5% value and the 
lower blue dashed line is for bottom 5% of samples (P < 0.1). And (c) is using significance test 
with P < 0.3: cases greater than top 15% samples or less than bottom 15% samples are defined 
to be significant.  
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Figure 3.7 - Seasonal mean frontal gradients and associated uncertainties. The red triangle is 
the average of 𝑋	-./ frontal gradients in specific seasons, and the blue triangle is the computed 
“frontal” gradients based on non-frontal samples. The error bars on the triangles are averages 
of standard error of soundings at warm sector and cold sector, where the numbers of cases are: 
summer: 31; winter: 14; fall: 16; spring: 22.  

 

As we wrote in Section 2.4, we randomly select 1500 non-frontal orbits and calculate the 

assumed frontal gradients (shown in Fig 3.5). The significance test results are shown in the Fig. 

3.6: most samples fall in between mean ± 1 standard deviation. In our random sampling 

significance test, we compare frontal gradients with computed gradients from non-frontal orbits 

in Fig 3.6. In the middle panel, X	-./ gradients across fronts greater than 95% of climatological 

gradients or less than 5% of them are considered significant. In Table 3.2, in spring, 2 cases 

are greater than the upper limit, and 3 less than 5% of samples— 5 in 22 in spring are significant. 

4 cases in fall are significant: 1 greater than top 5% and 3 less than bottom 5%. Only one in 14 

winter cases is significant—less than bottom 5%. For summer, there are 8 in 31 cases are 

significant: 7 greater than top 5% and 1 less than 5%. Except for winter, other fractions are all 
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about O
®
. If lower confidence is applied — P value less than 0.3, i.e., gradients falling within 

15% or bottom 15% are significant, there are more cases should be considered to be significant: 

21 in summer, 11 in spring, 7 in fall and 5 in winter. If we test the significance with the mean 

and standard deviation of sampled assumed frontal gradients, ie., for each season, cases greater 

than x − s or less than x + s are significant, where x is the mean of 1500 samples and s is the 

standard deviation in corresponding season. With this testing method, the fractions turn out to 

be: O 
**

, *O
­O

, ¿
OÀ

, and ®
O®

 — only summer cases are greater than 1/2, which is very similar to the 

results of the method with mean and standard deviation of non-frontal samples. Due to a lot of 

reasons like local fuel burning, plants’ respiration, X	-./ retrieval bias, as well as strength of 

the frontal gradient, the anomalies between climatological warm sector and cold sector may 

vary between 1 standard deviation of samples. The climatological X	-./  gradient is due to 

atmospheric "standing waves" in 𝑋	-./, which might be the result of land cover difference, 

polar vortex or other reasons. However, some of the measurements (outstanding gradients 

greater than 1 standard deviation in each season) have such great difference in X	-./ so that it 

can not be explained by this "standing wave" pattern. In Fig 3.7, the X	-./ frontal gradients and 

their spread in summer and spring out of the range of non-frontal samples, which indicates the 

X	-./ frontal gradients in those two seasons are beyond the average spatial variations of X	-./ 

distributions when there is not a cold front. If compared with CO2 frontal contrast in ACT-

America campaign in Figure 1.5, we can find similar patterns: positive gradients in summer, 

negative in others, and the magnitudes in summer are about 3 times of any other season’s. The 

thought is that these gradients are caused by land cover difference and large-scale CO2 transport, 
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which causes climatological X	-./ gradient. But the reason why fronts causing strong X	-./ 

gradient in summer and weaker ones in other seasons is still unknown. 

 Spring Summer Fall Winter 

x ± s 10 21 7 4 

P<0.1 5 8 4 1 

P<0.3 11 21 7 5 

Total 22 31 14 16 

Table 3.2 - Numbers of significant cases with three standards: 1. Cases greater than mean of 
non-frontal samples plus their standard deviation or less than mean minus standard deviation 
are significant; 2. Cases in top 5% or bottom 5% of samples are significant (P<0.1); 3. Cases 
in top 15% or bottom 15% of samples are significant (P<0.3). The first row is seasons. Second 
row indicates numbers of significant cases with standard 1; third row for standard 2; fourth row 
for standard 3. The last row indicates the number of all cases collected in each season. 
 

 The simulated differences of assumed cold and warm air mass on 3-year monthly 

climatological X	-./  may vary between ±standard deviation, but those falling outside of 

±standard deviation are not reasonable only because of occasional gradient, and we should 

consider those cases are influenced by other reasons like fronts, or other weather phenomena. 

 

 

 

 

3.1.2 The relationship between the strength of cold fronts and 𝑿	𝐂𝐎𝟐 gradients 

Surface fronts are coincident with cyclones at upper levels, probably evolving from 

baroclinic waves, which tend to be strongest over the ocean, but can develop over land (Wallace 

and Hobbs 2006). The strength of the upper-level cyclone is associated with the scale and 

strength of surface fronts, which is also relative to surface temperature gradient, pressure 
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gradient, wind speed and direction. Considering wind speed, temperature and specific humidity, 

Parazoo et al. (2008) illustrated that frontal CO2 is related to deformational compression and 

strong advection along the front, which is also sensitive to locations and seasons. In order to 

find the relationship between the strength of cold fronts and the magnitude of 𝑋	-./ frontal 

gradient, we select several cases when there was a strong temperature gradient across the cold 

front from NOAA weather prediction center’s surface analysis. For example, at July 14th, 2016, 

18 UTC, the temperature difference between two nearby surface stations near Chicago across 

the front is 12 K, which is a very strong temperature gradient, whereas the normal temperature 

gradient is ~5K. This front also caused a strong 𝑋	-./  gradient (7.696 ppmv), which is the 

largest one in the summer in this three years. Another example is at December 25th, 2016, the 

temperature gradient is nearly 20 K for two surface stations in Oklahoma, which also came 

with a surface cyclone in Colorado. Coincidentally, the 𝑋	-./ gradient across that cold front is 

the only one which is significant in that winter, which may indicate that frontal strength in 

terms of the temperature gradient is related to the strength in the 𝑋	-./ gradient. 

In short, results of above two significance testing method suggest the 𝑋	-./  frontal 

gradient is generally statistically significant in the summer, but less so in other seasons. 

Compared with the airborne measurements from ACT-America, seasonal difference of OCO-

2 𝑋	-./ gradients across the frontal have similar pattern: great positive in summer and small 

negative in other seasons, even though the magnitude is smaller. Thus we can draw the 

conclusion that the OCO-2 data has sufficient precision to see synoptic scale and mesoscale 
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changes in the atmosphere. In this way, we can evaluate WRF-VPRM simulations using OCO-

2 data. 

 

3.2 Evaluating the precision of WRF-VPRM with OCO-2 data 

In this section, we aim to evaluate the accuracy of WRF-VPRM with respect to 

observations from OCO-2 in 2016 based on the difference of gridded monthly mean of 𝑋	-./ 

from WRF-VPRM and from OCO-2. In Figure 3.5, in July, WRF-VPRM overestimates 𝑋	-./ 

in areas from 20˚ to 40˚ latitudes and underestimates from 40˚ to 55˚. However, few OCO-2 

soundings above 40˚ latitudes are valid after filtered with ‘xco2_quality_flag’. In the winter, 

resulting in less bias grid boxes in winter (like Fig 3.8 (c)), which may be the reason of 

relatively better simulations. Also, grid boxes of some land cover types reduced because of our 

method to decide the land cover type of a grid box: Consider the type taking up most fractions 

in a grid box is the land cover type for this grid box. For example, in Figure 2.4, in central 

Colorado, there are some regions are combined of Evergreen Forest and Grassland, but when 

gridding, more fraction of land cover of grassland than Evergreen Forest resulting in more 

grassland grid boxes in this region. The accuracy of WRF-VPRM varies from regions not only 

with latitudes, for instance, the model performs better in northwest than in northeast U.S. in 

July, even at the same latitudes. If land cover types are considered, we find that WRF-VPRM 

underestimates OCO-2 in the summer over the forested land cover (Fig 2.4, 3.9 and 3.10). 
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Figure 3.8 - (a) is monthly mean of OCO-2 𝑋	-./ in 2016 July, filtered with quality flag and 
gridded into 1˚´1˚. (b) is corresponding simulations from WRF-VPRM to grid boxes in (a), 
and each grid box in (b) matches the time of that in (a). (c) is the difference of (b) and (a). 
(Other months are given in Appendix II.) 
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Figure 3.9 - The model bias (𝑋	-./ in WRF-VPRM minus in OCO-2, example is given in 
Figure 3.7 (c)) with respect to surface types. The box plot in ‘violins’ indicating median and 
quartile, the widths of the violins indicate the probability of different bias values and the length 
is the range of bias including outliers. The numbers at the bottom are the counts of grid boxes 
in this land cover types. 

 

 
Figure 3.10 - Scatters of bias with respect to season and land cover types. Colors are respect 
to land cover types in Fig 2.4. 
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  Spring  Summer  
  Sa

mpl
es 

sWRF-VPRM sOCO-2 Bias R  Sampl
es 

sWRF-VPRM sOCO-2 Bias R  

Evergreen  109 
 

0.638 1.519 0.253 0.152  249 2.736 2.818 -0.921 0.737  

Deciduous  42 0.460 1.204 -0.629 0.308  58 2.134 1.931 -0.257 0.741  

Mixed  176 0.443 1.224 0.645 -0.187  279 2.942 2.683 -0.176 0.784  

Shrubland  306 0.910 1.224 0.866 0.678  309 2.086 1.778 1.582 0.821  

Savannah  100 0.672 1.169 0.235 0.511  146 2.638 2.354 0.884 0.797  

Cropland  211 0.607 1.332 0.545 0.421  302 2.843 2.397 0.047 0.711  

Grassland  671 0.698 1.175 0.584 0.422  954 
 

2.794 2.452 0.547 0.791  

All  161
8 

0.716 1.248 0.562 0.402  2299 3.177 2.629 0.376 0.807  

  Fall  Winter  

  Sa
mpl
es 

sWRF-VPRM sOCO-2 Bias R  Sampl
es 

sWRF-VPRM sOCO-2 Bias R  

Evergreen  92 1.448 1.629 -0.278 0.610  14 0.525 1.825 -0.629 -0.171  

Deciduous  73 2.014 1.640 -0.385 0.697  31 0.878 1.329 -0.294 0.481  

Mixed  159 1.897 1.974 -0.032 0.707  64 0.900 1.049 -0.002 0.667  

Shrubland  314 1.057 1.420 1.173 0.764  291 0.802 0.930 0.471 0.449  

Savannah  150 1.395 1.564 -0.014 0.819  119 0.914 1.206 -0.197 0.676  

Cropland  279 1.814 1.814 0.486 0.790  109 0.915 1.437 0.163 0.494  

Grassland  855 1.432 1.571 0.632 0.735  501 0.933 1.364 0.073 0.437  

All  229
9 

3.177 2.629 0.376 0.807  1131 0.924 1.319 0.132 0.510  

Table 3.3 - Standard deviation, bias, and correlation coefficient for each land cover type for 
seasons in 2016. 
 

Statistics of time-matched 𝑋	-./  data pairs between WRF-VPRM and OCO-2 are 

calculated for each season in 2016 (Fig. 3.10) over 7 land cover types over the U.S. domain, 

i.e., evergreen forest (EF), deciduous forest(DF), mixed forest (MF), shrubland (SL), savannah 

(SV), cropland (CR), grassland (GL) (see the spatial distribution of land covers in Fig 2.4).  In 

Fig. 3.10, each marker stands for data aggregated in a 1°×1° grid box. Outliers falling outside 

of 3 standard deviations of biases are removed, which might be due to errors in the OCO-2 

data, e.g., contaminated by cloud.  Overall, as seen from Figure 3.10, WRF-VPRM performs 

the best in winter in terms of bias and correlations with OCO-2 data followed by fall, during 

which seasons 𝑋	-./ spans over larger ranges than in other seasons, especially over cropland 

(396.57-406.44 ppmv) and grassland (395.26-406.22 ppmv).  Particularly, WRF-VPRM 
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simulations are biased low relative to OCO-2 in growing seasons (month 4-9) over forests.  For 

different land categories WRF-VPRM performs the best over cropland and grassland while it 

overestimates 𝑋	-./ during all year long over shrubland which dominates in the southwestern 

U.S. where temperature is high (Table 3.3). The positive bias of 𝑋	-./ over shrubland may be 

due to model error associated with the current simple parameterization of respiration (eq. (3)), 

which simply linearly depends on air temperature. High correlation between Gross Primary 

Production (GPP) simulated by WRF-VPRM and Solar Induced Chlorophyll fluorescence (SIF) 

from OCO-2 (in Figure 3.10) also suggests that bias in summer is more due to respiration 

simulation because GPP is simulated well. However, Savannahs are spreading mainly at three 

regions over the CONUS: southwest U.S., southeast U.S. and northeast U.S. (marked in Figure 

3.11) — most grid boxes standing for savannahs (60%-86.67% with respect to month) are 

located at southeast U.S., Region #1-#3 are marked with red, blue, and green squares. 

Simulation precisions may vary with not only land cover types, but also locations because to 

climate and albedo differences. So it is also needed to separate savannahs into different 

locations because they are far apart. Results are shown in Figure 3.12 Are grid boxes in Region 

#2 has similar pattern with Figure 3.8 (e): WRF-VPRM overestimates 𝑋	-./ in growing season 

(April to August). In Region #1 at west coast U.S., 𝑋	-./ are also overestimated in spring. Grid 

boxes in Region #3 in July, August and September show that 𝑋	-./ is largely underestimated, 

but uncertainty remains due to few grid boxes in this region. Differences by separating 

savannahs with respect to locations reveal that WRF-VPRM overestimates 𝑋	-./  in grow 

season in all savannahs, and those in west coast U.S. in spring as well. Estimates for savannahs 
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in north can be taken for granted because too few grid boxes too be considered as statistical 

results. 

 

 

 

 

 

 

 

 

Figure 3.11 - An example to divide Savannah Regions into three (marked with squares) in 
August, 2016, filtered with quality flag and gridded into 1˚ Lat ´1˚ Lon. Each grid box is the 
average of difference between WRF-VPRM outputs and OCO-2 observations within this grid 
box. Region #1 is denoted by red square, Region #2 is denoted by blue square, and #3 is denoted 
by green square. 

 

 

X-./[WRF-VPRM]	–	[OCO-2]	(ppmv)	
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Figure 3.12 - Difference of grid boxes between WRF-VPRM simulations and OCO-2 data on 
Savannahs in 2016, which is separated by regions marked in Figure 3.11 The numbers at the 
bottom are the counts of grid boxes in this land cover types. 

Generally, the WRF-VPRM simulates 𝑋	-./  over the CONUS well in winter — small 

biases between simulations and observations (as seen from Figure 3.10), but not ideal in 

summer since the ratios span a greater range in summer. In terms of land cover types, the model 

overestimate 𝑋	-./  all year long over shrubland and in most months except January over 

grassland, which may be caused by strong respiration or high temperature in Equation (3) and 

overestimated NEE in Equation (1). In growing season from April to September, WRF-VPRM 
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underestimates 𝑋	-./ in Evergreen Forest, Deciduous Forest, Mixed Forest and Cropland due 

to strong GPP — dependent on chlorophyll content of the plant. 

As stated in Section 2.4.2, we can also separate the factors of model estimation from GEE 

and ER. Thus we directly compare SIF from measured by OCO-2 and GPP simulated by WRF-

VPRM, and results are given in Figure 3.13. Each dot or marker in other shapes stand for one 

grid box in specific season over specific surface type, and values falling out of mean ± 3 

standard deviation (of all grid boxes in one season for each panel) are removed. In Figure 3.13, 

GPP and SIF in spring, summer and fall have strong correlations, but those in winter not, which 

indicates that GPP in spring, summer and fall are evaluated well by WRF-VPRM, thus 

respiration biases are more responsible for overall bias of NEE in these three seasons. For 

example, 𝑋	-./ is overestimated over the grassland by about 1 ppmv in the summer according 

to Figure 3.9 (g), however GPP in Figure 3.13 is strongly correlated. Thus respiration over the 

grassland in summer may be overestimated more, which can also be explained by high 

temperature and Equation (3). But the correlation of GPP and SIF is bad in winter, which 

illustrates that GPP estimation in winter can be further improved to modify the overall 

estimation of NEE.  
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Figure 3.13 - Comparison between GPP from WRF-VPRM and SIF from OCO-2 with respect 
to season. Colors represent land cover types as in Figure 3.10. 
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Chapter 4 : Summary and Conclusions 

CO2 gradients across cold fronts in Atmospheric boundary layer was found vary with 

seasons in a similar qualitative fashion to Parazoo et al. (2008), etc.. In their work, they found 

the gradients in summer might be 10-30 ppmv more than other season — gradients in spring, 

fall and winter are slightly positive (~5ppmv) or negative (3-10 ppmv), while those in summer 

are between 15-30 ppmv, because CO2 concentration varies less in upper atmosphere, the 

magnitude of 𝑋	-./ gradients across cold fronts may be smaller than the contrast in boundary 

layer. Whether OCO-2 can detect the variability in a smaller scale like a front was still an open 

question. Through our work on collecting 𝑋	-./ gradients across cold fronts over the CONUS, 

we find 𝑋	-./ from OCO-2 can detect a similar pattern: great positive contrast in summer and 

small negative contrast in spring, fall and winter. 

After testing the significance via random sampling in each season, we can conclude that 

gradients are statistically significant in summer and spring, but other seasons not, especially in 

winter. Therefore, it’s not sufficient to say that cold fronts are responsible for large scale 𝑋	-./ 

variability for all seasons. 

Since the OCO-2 data has sufficient precision to see synoptic scale changes in the 

atmosphere, we can use OCO-2 to evaluate whether WRF-VPRM simulates 𝑋	-./ well on the 

CONUS scale. With regard to land cover types provided from MODIS, we draw the conclusion 

that WRF-VPRM simulates generally well over the CONUS in winter — small bias, but for 

some surface types like shrubland, WRF-VPRM overestimates CO2 concentration all year long. 

For all seven land cover types, the bias is high in growing season, when the plants’ respiration 
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and photosynthesis change rapidly. Either strong temperature or strong GPP may reduce the 

quality of WRF-VPRM simulations, because the Ecosystem Respiration is linearly 

proportional to temperature in the simple model, while in nature respiration may be also 

relative to CO2 concentration, water content and light (Davidson et al. 1998). The correlation 

between simulated GPP and SIF from OCO-2 helps to find whether the GEE or respiration 

parameterization need be more modified. Results show GPP of shrubland and savannah are 

overestimated in spring, fall and winter, while overall high bias indicates that respiration bias 

and fossil fuel emission may be causing strong model bias. 

The model simulations can also be verified on a smaller scale: computing the 𝑋	-./ frontal 

gradients. Compared with 𝑋	-./  frontal gradients collected from OCO-2. WRF-VPRM 

gradients are of a similar magnitude. After all the simulations have similar bias at both sides 

of the cold front, for example, WRF-VPRM overestimates 𝑋	-./ by 1 ppm in warm sector, as 

well as in cold sector, while the overestimates at both sides cancel when calculating the 

gradients. 

 

 

 

 

 

 

 



 53 

Chapter 5 : Future Work 

  𝑋	-./ and SIF data can help to separate flux and transport and evaluate their bias when 

simulated by WRF-VPRM. We look forward to improve flux model in VPRM with 𝑋	-./ and 

SIF, and furthermore, coupled with temperature and radiation information, WRF-VPRM will 

be able to simulate NEE better. 

In our definition for the length of cold fronts, they often span about 10˚ latitudes, in which 

case the fronts may happen over both ocean and land. Concerning vegetation respiration and 

photosynthesis, fossil fuel burning and carbon exchange through ocean surface, the gradients 

of 𝑋	-./ may vary if the one sector of the front is over the ocean but the other is over the land. 

We should take this condition into consideration in our future work. 

Weather condition is complicated in the frontal zone, which can help understand the 

weather changing process and improve weather forecast. While satellite data cannot provide 

since retrievals cannot be received due to clouds.  
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Appendix I: Figures for all collected 83 cases of 𝑿	𝐂𝐎𝟐 from 2015-2017 

 

Figure I.1 – 3-sounding moving averaged 𝑋	-./ gradient across cold front on Jan 30th, 2015, 

blue dots in left sections are 𝑋	-./ in warm sector and right ones are in cold sector. Means and 

standard deviations are given at both sectors. 

 

Figure I.2 – Same with Figure I.1 on Feb 1st, 2105 

 

Figure I.3 – Same with Figure I.1 on Mar 26th, 2015 
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Figure I.4 – Same with Figure I.1 on Apr 4th, 2015 

 

Figure I.5 – Same with Figure I.1 on Apr 5th, 2015 

 

Figure I.6 – Same with Figure I.1 on Apr 12th, 2015 
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Figure I.7 – Same with Figure I.1 on Apr 13th, 2015 

 

Figure I.8 – Same with Figure I.1 on May 31st, 2015 

 

Figure I.9 – Same with Figure I.1 on Jun 6th, 2015 
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Figure I.10 – Same with Figure I.1 on Jun 24th, 2015 

 

Figure I.11 – Same with Figure I.1 on Jun 27th, 2015 

 

Figure I.12 – Same with Figure I.1 on Jun 28th, 2015 
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Figure I.13 – Same with Figure I.1 on Jul 11th, 2015 

 

Figure I.14 – Same with Figure I.1 on Jul 16th, 2015 

 

Figure I.15 – Same with Figure I.1 on Jul 25th, 2015 
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Figure I.16 – Same with Figure I.1 on Aug 28th, 2105 

 

Figure I.17 – Same with Figure I.1 on Nov 12th, 2015 

 

Figure I.18 – Same with Figure I.1 on Feb 16th, 2016 
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Figure I.19 – Same with Figure I.1 on Apr 9th, 2016 

  

Figure I.20 – Same with Figure I.1 on Apr 16th, 2016 

  

Figure I.21 – Same with Figure I.1 on Apr 29th, 2016 
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Figure I.22 – Same with Figure I.1 on May 4th, 2016 

  

Figure I.23 – Same with Figure I.1 on May 14th, 2016 

  

Figure I.24 – Same with Figure I.1 on May 15th, 2016 
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Figure I.25 – Same with Figure I.1 on May 28th, 2016 

  

Figure I.26 – Same with Figure I.1 on Jun 4th, 2016 

  

Figure I.27 – Same with Figure I.1 on Jun 22nd, 2016 
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Figure I.28 – Same with Figure I.1 on Jun 25th, 2016 

  

Figure I.29 – Same with Figure I.1 on Jul 9th, 2016 

 

Figure I.30 – Same with Figure I.1 on Jul 12th, 2016 
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Figure I.31 – Same with Figure I.1 on Jul 14th, 2016 

  

Figure I.32 – Same with Figure I.1 on Jul 16th, 2016 

  

Figure I.33 – Same with Figure I.1 on Jul 17th, 2016 
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Figure I.34 – Same with Figure I.1 on Jul 18th, 2016 

  

Figure I.35 – Same with Figure I.1 on Jul 21st, 2016 

  

Figure I.36 – Same with Figure I.1 on Jul 24th, 2016 
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Figure I.37 – Same with Figure I.1 on Jul 25th, 2016 

  

Figure I.38 – Same with Figure I.1 on Aug 4th, 2016 

  

Figure I.39 – Same with Figure I.1 on Aug 5th, 2016 
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Figure I.40 – Same with Figure I.1 on Aug 30th, 2016 

 

Figure I.41 – Same with Figure I.1 on Sep 10th, 2016

 

Figure I.42 – Same with Figure I.1 on Sep 23rd, 2016 
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Figure I.43 – Same with Figure I.1 on Sep 24th, 2016 

 

Figure I.44 – Same with Figure I.1 on Oct 7th, 2016 

 

Figure I.45 – Same with Figure I.1 on Oct 12th, 2016 
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Figure I.46 – Same with Figure I.1 on Oct 17th, 2016 

 

Figure I.47 – Same with Figure I.1 on Oct 21st, 2016 

 

Figure I.48 – Same with Figure I.1 on Nov 5th, 2016 
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Figure I.49 – Same with Figure I.1 on Nov 19th, 2016 

 

Figure I.50 – Same with Figure I.1 on Nov 20th, 2016 

 

Figure I.51 – Same with Figure I.1 on Nov 26th, 2016 



 78 

 

Figure I.52 – Same with Figure I.1 on Dec 6th, 2016 

 

Figure I.53 – Same with Figure I.1 on Dec 14th, 2016 

 

Figure I.54 – Same with Figure I.1 on Dec 25th, 2016 
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Figure I.55 – Same with Figure I.1 on Jan 25th, 2017 

 

Figure I.56 – Same with Figure I.1 on Jan 26th, 2017 

 

Figure I.57 – Same with Figure I.1 on Feb 1st, 2017 
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Figure I.58 – Same with Figure I.1 on Feb 2nd, 2017 

 

Figure I.59 – Same with Figure I.1 on Feb 9th, 2017 

 

Figure I.60 – Same with Figure I.1 on Feb 13th, 2017 
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Figure I.61 – Same with Figure I.1 on Feb 16th, 2017

 

Figure I.62 – Same with Figure I.1 on Mar 1st, 2017 

 

Figure I.63 – Same with Figure I.1 on Mar 2nd, 2017 
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Figure I.64 – Same with Figure I.1 on Mar 21st, 2017 

 

Figure I.65 – Same with Figure I.1 on Mar 26th, 2017 

 

Figure I.66 – Same with Figure I.1 on Apr 4th, 2017 
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Figure I.67 – Same with Figure I.1 on Apr 30th, 2017 

 

Figure I.68 – Same with Figure I.1 on May 2nd, 2017 

 

Figure I.69 – Same with Figure I.1 on May 20th, 2017 
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Figure I.70 – Same with Figure I.1 on May 26th, 2017 

 

Figure I.71 – Same with Figure I.1 on Jun 14th, 2017 

 

Figure I.72 – Same with Figure I.1 on Jun 15th, 2017 
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Figure I.73 – Same with Figure I.1 on Jun 26th, 2017 

 

Figure I.74 – Same with Figure I.1 on Jul 12th, 2017 

  

Figure I.75 – Same with Figure I.1 on Jul 13th, 2017 
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Figure I.76 – Same with Figure I.1 on Jul 14th, 2017 

  

Figure I.77 – Same with Figure I.1 on Jul 20th, 2017 

 

Figure I.78 – Same with Figure I.1 on Jul 25th, 2017 
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Figure I.79 – Same with Figure I.1 on Sep 29th, 2017 

 

Figure I.80 – Same with Figure I.1 on Oct 15th, 2017 

 

Figure I.81 – Same with Figure I.1 on Oct 22nd, 2017 
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Figure I.82 – Same with Figure I.1 on Nov 28th, 2017 

 

Figure I.83 – Same with Figure I.1 on Dec 16th, 2017 
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Appendix II: Figures for monthly distribution and difference between 𝑿	𝐂𝐎𝟐 from WRF-
VPRM and OCO-2 in 2016 

 
Figure II.1 – (a) is monthly mean of OCO-2 𝑋	-./ in January 2016, filtered with quality flag 
and gridded into 1˚´1˚. (b) is corresponding simulations from WRF-VPRM to grid boxes in 
(a), and each grid box in (b) matches the time of that in (a). (c) is the difference of (b) and (a). 
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Figure II.2 – Same with Figure II.1 in February, 2016 
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Figure II.3 – Same with Figure II.1 in March, 2016 
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Figure II.4 – Same with Figure II.1 in April, 2016 
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Figure II.5 – Same with Figure II.1 in May, 2016 
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Figure II.6 – Same with Figure II.1 in June, 2016 
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Figure II.7 – Same with Figure II.1 in July, 2016 
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Figure II.8 – Same with Figure II.1 in August, 2016 
 
 
 



 97 

 
Figure II.9 – Same with Figure II.1 in September, 2016 
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Figure II.10 – Same with Figure II.1 in October, 2016 
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Figure II.11 – Same with Figure II.1 in November, 2016 
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Figure II.12 – Same with Figure II.1 in December, 2016 


