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CHAPTER I 
 
 

INTRODUCTION 

 

Modern computer network research focuses on the issues of performance 

evaluation and performance optimization. This includes enhancing the performance of an 

operational network at both the traffic and the resource level. While we are trying to 

utilize network resources economically and reliably, traffic oriented performance 

requirements should be satisfied. The traffic oriented performance includes delay, delay 

variation, packet loss, and throughput.  

 Recently, many high speed networks were discovered to be self-similar. Self-

similarity is a characteristic if the object looks “roughly” the same regardless of scale. It 

is a powerful mathematics representation of a variety of physical phenomena. They have 

the long range dependence property.  

This thesis focuses on the analysis of queue length boundaries in end-to-end self-

similar networks with differentiated service. End-to-end means constant administrations 

and technical characteristic along the entire path from source to destination. Packets 

travel from source to destination by basic hop-by-hop forwarding strategy of the Internet. 

Study shows that Ethernet, TCP, FTP, TELNET and World Wide Web traffic are self-

similar.   
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It is well known that traditional analytical methods of queuing systems are based 

on Poisson and Poisson-based stochastic processes. Unfortunately, these methods, like 

Jackson theorem, are not applicable in high speed networks.  

In this thesis, a novel analytical model is proposed based on the arrival rate and 

the service rate for single hop queuing systems. Then the derivations are extended to end-

to-end differentiated service networks with self-similar traffic. The upper and lower 

bound of queue length at each hop is derived. In addition, the analytical model is also 

applied to the analysis of the traffic flow effects on queue length. The results illustrate the 

performance gain in queue length at each hop. After the application of Little’s theorem to 

queue length, the mean delay at each hop can be obtained. These parameters, queue 

length and mean delay, are parameters related to the concept of traffic engineering. The 

rest of this thesis is organized as follows: Chapter II introduces self-similar traffic 

characteristics in high speed networks. Chapter III discusses Quality of Services (QoS) 

and queue length analysis in non-preemptive differentiated services networks. Chapter IV 

is based on the Core-Stateless Fair Queuing (CSFQ) fluid algorithm model, the queuing 

length analysis extended to multi-hops in high-speed networks. The connection of each 

hop is connection oriented. Chapter V contains the simulation procedures and results 

analysis, and Chapter VI concludes this thesis and points out certain directions for future 

research.
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CHAPTER II 
 
 

SELF-SIMILAR NETWORK  

2.1 Introduction 

           “Self-similarity” describes a phenomenon whose behaviors are same whatever we 

view either at different scales on space or time dimension. In other words, a self-similar 

pattern reproduces itself at different scales. It is an important concept that has been 

applied to data communications traffic analysis as soon as it was observed in early 1990s. 

The self-similar stochastic process was introduced by Kolmogorov in a theoretical 

context and brought to the attention of Benoit Mandelbrot. Then Benoit Mandelbrot first 

presented the mathematical study of self-similar shapes and their relationship to natural 

shapes. The term “self-similar” was formally defined and applied in [2] and [14]. The 

discovery of self-similarity has launched a new examination of data traffic performance. 

In paper [33], the authors have provided a solid proof of self-similar traffic and included 

a number of useful self-similar traffic generation models. These traffic models are widely 

used as the input to analysis or simulation. 

           High speed multiplexed network data traffic can be viewed as a time series of a 

self-similar stochastic process. As illustrated by Figure 2-1, a sequence of simple plots of 

the packet counts (i.e., number of packets per time unit) for 4 different time scales are 

presented. The time unit of (a) is 10 seconds; each subsequent plot is obtained from the 

previous one by increasing the time resolution by a factor of 10. The time unit 
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corresponding to (d) is 0.01 seconds. Plots (a)-(d) look very “similar” to one another (in a 

distributional sense) [14]. The “self-similarity” is related to fractals and chaos theory 

[29]. Fractals are the images formed by recursively replacing the parts of an image with 

the entire structural template. Thus, self-similarity is created by fractal. Chaos theory 

states that a small segment of the fractal is just as detailed as the entire one. It implies that 

the same principles and patterns hold true for any scale of natural self-similar 

phenomenon, no mater how large or small [38]. Notice the scaling property (y-axis) and 

the absence of a natural length of a “burst”: at every time scale ranging from 0.01 

seconds to 10 seconds, bursts consists of bursty sub-periods separated by less bursty sub-

periods. This scale invariant or “self-similar” feature of Ethernet traffic is different from 

both the traditional telephone traffic and from stochastic models for packet traffic. This 

“proof” of self-similar nature of Ethernet packet traffic suggests that Ethernet traffic on 

one time scale is statistically identical (respect to its second-order statistical properties 

which observing the mutual relationship of two points by autocorrelation function, power 

spectral density function and correlation function.) to Ethernet traffic on a different time 

scale and, thus, motivates the use of self-similar stochastic processes for traffic modeling 

purposes [14]. 
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(a)      (b) 

 

(c)     (d) 

Figure 2-1.   Self-similar stochastic processes. 

Since self-similarity is believed to have a significant impact on network performance, 

understanding the causes of self-similarity is important. It has been revealed that the 

traffic generated and transferred over the World Wide Web (WWW) shows self-similar 

characteristics. One practical effect of self-similarity is that the buffers needed at 

switches and multiplexers must be larger than those predicted by traditional queuing 

analysis and simulations. These larger buffers create greater delay in individual streams 

than originally anticipated. An exponential trade-off relationship was observed between 

queuing delay and packet loss rate. Packet loss and retransmission rate decline smoothly 
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as the self-similarity is increased under reliable flow-controlled packet transport. One 

important discovery is that the higher the load on the Ethernet, the higher the degree of 

self-similarity [28]. 

2.2 Mathematical Definitions of Self-similarity 

            Continuous-Time Definition:  If a stochastic process is statistically self-

similar with parameter H (0.5 ≤ H ≤ 1), it will satisfy the following three conditions [29]:  

)(tx

    Mean:  Ha
atxEtxE )]([)]([ =                              (2.1) 

Variance:  Ha
atxVartxVar 2

)]([)]([ =                          (2.2) 

                          Autocorrelation: H
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x a
asatRstR 2

),(),( =                                                   (2.3) 

               For a self-similar process, the process  has the same statistical 

properties (mean, variance, autocorrelation) as  for any real a > 0. H is the Hurst 

parameter, which is a key measure of self-similarity [29].  
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                The original stationary time series can be considered as  which is the 

highest resolution the time series has. The process  is the same process reduced in 

resolution by a factor of .  

)1(x

)(mx

m

                  Definition of an exactly self-similar process [29]: ,...3,2,1=∀m  

               Variance:               βm
xVarxVar m )()( )( =                          (2.5) 

                         Autocorrelation:   )()()( kRkR xmx =                  (2.6) 

                    Hurst Parameter:   )2/(1 β−=H                (2.7) 

In other words, X is called exactly (second-order) self-similar if the aggregated 

processes  are indistinguishable from X—at least with respect to their second order 

statistical properties. An example of an exactly self-similar process parameter H is 

Fractional Gaussian Noise (FGN) with parameter 0.5 ≤ H ≤ 1 [14]. 

)(mx

Definition of asymptotically self-similarity: A stochastic process  is said to be 

asymptotically self-similar if for all large enough time domain k, it satisfies the two 

conditions below [29]: 

x

    Variance:         βm
xVarxVar m )()( )( ≈                       (2.8) 

  Autocorrelation:         as )()()( kRkR xmx → ∞→m                   (2.9) 

The asymptotic self-similarity describes a process that after -aggregated, its 

autocorrelation does not change much when  increases, its sample variance is basically 

a fixed multiple of its original series variance.  

m

m
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2.3 Self-similarity Properties 

For an exactly self-similar process, the statistics of the process (mean, variance, 

correlation, etc) are equal to its original time series for all block size . However for 

non-self-similar processes, they do not have this characteristic. For an exactly self-similar 

process, after any -aggregation, the new aggregated time domain series versus its 

original series will show autocorrelations and a linear relationship among their variances.  

m

m

                Actually in the real world, for self-similar processes, the variance of the time 

average cannot guarantee any decay, but they commonly decay very slowly. So there is a 

weaker condition called asymptotically self-similar that is defined to represent these 

cases.  

                The most striking feature of both exactly and asymptotically self-similar 

processes is that their aggregated processes possess a non-degenerate correlation 

structure as . This behavior is illustrated with the plots in Figure 2-1. If the 

original time series X represents the number of Ethernet packets per 0.01 seconds (plot 

(d)), then plots (a) to (c) represent the aggregated time series

)(mx

∞→m

)100(X , )10(X , and )1(X , 

respectively. All of the plots look “similar”, suggesting a nearly identical autocorrelation 

function for all of the aggregated processes [14]. 

 

2.4   Long Range Dependence 

              The concept of long range dependence is associated with the auto covariance 

properties. It defines the relationship between a stationary stochastic process 
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autocorrelation  with time t  increments. For many processes, such as the Poisson 

increment process, their autocorrelation decrease exponentially or faster [29]. 

)(tC

||

1~)( ta
tC       as ∞→|| t , 10 << a                 (2.10) 

They are called short-range dependent. 

               On the contrary, a long-range dependent process’s autocovarance decays more 

slowly than a short-rang dependence process [29]. 

β||
1~)(
t

tC            10 << β                           (2.11) 

     So,                                                                        (2.12) ∞=∑
∞

=0
)(

t
tC

               Note that self-similar process is not necessary long-range dependent, and vise 

versa. For a self-similar process is not necessary a long-rang dependent process, and on 

the other hand, a long-range dependent process is not necessarily self-similar. However, 

in the network communication area, these two concepts are interchangeable. 5.0=H  

implies the process is not long-range dependence. 1=H  indicates the process is exactly 

self-similarity. 

 

2.5    Approaches to Estimate the Hurst Parameter  

          The Hurst parameter plays an important role in self-similarity. Historically, self-

similar processes provide an elegant explanation and interpretation of an empirical law 

that is commonly referred to as the Hurst’s law or the Hurst effect. Briefly speaking, for a 

given set of random variable ,...}2,1,0,{ == nXX n with sample mean )(nx  and sample 

variance , the rescaled adjusted range (or the R/S statistic) is given by )(2 nS
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)],...,,,0min(),...,,,0)[max((/1)(/)( 2121 nn WWWWWWnSnSnR −= , where each W term 

)()...( 21 nXkXXXW kk −+++= , .,...,2,1 nk =  Hurst (1955) found that many real 

world processes appear to be well represented by the relation of  as 

. The variable n is the block size, R is the maximum subtracted minimum value 

for the block; and S is the standard deviation of the block. 

HcnnSnRE ~)](/)([ ,

∞→n

                In the real world, the Hurst parameter H “typically” ranges from 0.7 to 0.9. The 

larger values of H suggest a higher degree of persistent variability in the data. Exactly 

self-similar process have a Hurst parameter of 1. Network traffic can have a range of H 

value between 0.5 and 1. On the other hand, if the observation  comes from a short-

range dependent model, then , as

kX

5.0~)](/)([ cnnSnRE ∞→n . This discrepancy is 

generally referred to as the Hurst effect or Hurst phenomenon [14] [29] [37]. 

                 There are many ways to estimate the Hurst Parameter H. Three common 

methods are briefly introduced below. 

 

2.5.1 Variance-Time plot 

Recall that for the aggregated time series  of a self-similar process, the 

variance obeys the following for large  [29]: 

)(mx

m

βm
xVarxVar m )()( )( ≈                                        (2.13) 

Where the self-similarity parameter 2/1 β−=H  . This can be rewritten as [29]:                                

mxVarxVar m log)](log[](log[ )( β−≈                  (2.14) 
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Because  is a constant independent of , the result should be a straight line 

with a slope of 

)](log[ xVar m

β−  if we plot  versus  on a graph. Slope values 

between -1 and 0 suggest self-similarity. Figure 2-2 shows the program flow chart of a 

variance time plot. 

)](log[ )(mxVar mlog

 

)( )(mxVar

)]}(log[)]({log[
2
11)2/1( )(mxVarxVarH −−=−= β

 

Figure 2-2. Program flow chart for variance time plot. 

2.5.2 R/S Plot 

This is one of the oldest methods. For details, see [10]. For a stochastic discrete 

time process  = , the rescaled range of  over a time interval N is 

defined as the ratio R/S [29]: 

)(tX ,....}2,1,0,{ =txt )(tX
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              ∑
=

=
N

j
jX

N
NM

1

1)(                                                        (2.16)     

 where is the sample mean over the time period N. )(NM

For a self-similar process, the ratio has the following characteristic for large N 

[29]: 

HNSR )2/(~/    with  H > 0.5                                               (2.17) 

This can be rewritten as [29]:  

                )2log()log(~]/log[ HNHSR −                                            (2.18) 

A log-log graph plot of [R/S] versus N shows the result fits a straight line with 

slope H. Therefore, Hurst parameter H equals the slope of the line on a log-log graph 

[29]. Figure 2-3 shows the program flow chart of the R/S plot. 
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Figure 2-3. Program flow chart for R/S plot. 

 

 13



 

2.5.3 Wavelet plot 

             Since network performances are highly influenced by the level of burstiness of 

the input data, which is strongly related to the value of H, it becomes crucial to have a 

reliable tool for the estimation of the Hurst parameter. An innovative approach involves 

exploiting the scale-invariance prosperity of self-similar processes by means of a multi-

resolution decomposition technique, namely the Wavelet Transform [12]. 

             The wavelet plot uses the wavelet transform from the original signal to a m-level 

series. The Hurst parameter H is estimated by using the self-similar energy property. 

            Most signals are time-domain, i.e. measured signal is a function of time. In other 

words, when we plot the signal one of the axes is time (independent variable), and the 

other (dependent variable) is usually the amplitude”. However, the frequency domain is 

more useful. That is, “the frequency spectrum of a signal shows what frequencies exist in 

the signal” [36]. The Fourier transform only applies to stationary stochastic process, 

because the frequencies are stable regardless of time. However, the non-stationary 

process keeps changing at their frequencies in the time domain.  Therefore the wavelet 

transformation is used to keep all the information containing both time and frequency 

information. Because continous time wavelet transform is considerably difficulty and 

unrelated to our work, only the discrete time wavelet transform id discussed here. Figure 

2-4 illustrates the basic wavelet transformation concept.  

Assume the original series (t = 0, 1, 2, …16) consists of 16 random variables.  

When this series passes through high pass wavelet filters and is sub-sampled by 2, it 

becomes a level 1 DWT (Discrete Wavelet Transform) series. The number of original 

series is reduced by half. At the same time, the original series passes through the low pass 

)(tx

14 



 

wavelet filter and sub-sampled by 2, again reducing by half.  This new series 

becomes the original series for the next high pass and low pass wavelet filters, giving rise 

to  the level 2 DWT series. Then we do the same process to the level 2 product and 

finally get a level 4 DWT. In level 4,we have just one variable, whick indicates 

termination of wavelet transformation [36]. 

             Therefore, the time domain resolution has decreased by 4 and the value 

resolution increased by 4 due to the DWT. The sum of all the level coefficients will give 

the original series coefficient. 

              Due to the wavelets ability to discriminate the signal energy at different 

frequency levels, it is easy to estimate the spectral behavior of the analysis trace, which in 

case of self-similar processes is of the form γf
1 . Recall the equation (2.14), this form is 

related to Hurst parameter [12]. 
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}16,.....2,1,0,{ == tXX t

 

Figure 2-4.   Wavelet transform. 

The wavelet plot is based on the analysis of FGN traces generated by means of the well-

known Random Midpoint Displacement (RMD) algorithm. The authors of paper [12] 

start from the assumption that the generation is asymptotically correct. In order to verify 

the relationship between the estimation efficiency and the length of the analyses 

sequence, they first tested the wavelet estimator with long traces and then cut them into 

sub-traces [12].  

             Since the Wavelet transform implies the decomposition of a signal at different 

resolutions and the mother wavelet itself is defined recursively, it appear as the natural 
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tool for the analysis of self-similar processes, which present the same statistical 

characteristics at every scale [12]. 

               The wavelet plot for estimation of the Hurst parameter is derived directly from 

the following two statements [29], [32]: 

(1)  The wavelet decomposition discriminates the different frequency contributions: 

the wavelet coefficients at a given level m are associated to the mean amount of energy 

 of the analyzed signal around the frequency  where  depends upon the 

choice of the mother wavelet and 

mΓ
mav −

00 0v

0α =2 in order to obtain orthonormal decomposition. 

(2)  Self-similar processes are characterized by a γf
1  decay of the power spectral 

density and 12 −= Hγ  in the FGN case [12]. 

                   Therefore use (28) to evaluate mΓ  as the sample mean [32]: 

  
m

mnmmm
m n

xxxx 22
3

2
2

2
1 ....+++

=Γ                                                    (2.19) 

m is the resolution level of wavelet transform,  is the number of level m  wavelet 

coefficients, and   is m ’s energy at a given level. For a self-similar process, it satisfies 

[32]: 

mn

mΓ

                                                                          (2.20) 02 Γ=Γ γm
m

Therefore [29], [32], 

                                       022 log~log Γ+Γ γmm                                                 (2.21)                         

2
1 γ+

=H                                                               (2.22) 
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We use   versus m to obtain a straight line. Then the slope will be mΓ2log γ . Based on the 

relationship with H in (31), we can obtain an estimated Hurst Parameter H [12]. Figure 2-

5 shows the program flow chart of the wavelet plot. 

,.....}2,1,0,{ == tXX t

Wavelet level:  m =1

 m <=8

Wavelet level m’s EnergymΓ

Mother Wavelet )(tϕ

No

Yes
m++

γmm ~log2 Γ
 

Figure 2-5. Program flow chart for wavelet plot. 

2.7 Simulation Results and Analysis 

2.7.1 Trace files 

Two trace files from [14] and [32] are used in the analysis. In the first trace 

file BC-pAug89.TL, there are a total of two columns. The left column represents 

time in seconds. The right column represents the new Ethernet data length in 

bytes that have arrived based on the time reference in the left column. Since the 

time interval in the original file is random, the first thing that needs to be done is 

to aggregate the traffic data to fixed time intervals. The aggregation levels are set 

to 100, 10, 1, 0.1, 0.01 seconds respectively. The resulting series are ready for 

analysis.  
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For the second trace file the high quality Star Wars IV trace file was used 

[32]. The file name is Terse_StarWarsIV.dat. This file has just one column. It 

represents the frame length at different time intervals. Actually, there are three 

frame types. They are I type, B type, and P type. For the high quality trace, they 

are equal [32].  Since the frame length in the original file is random, the first thing 

that needs to be done is to aggregate the traffic data to a fixed frame length per 

group. The aggregation level is set to be 800, 400,100, 50, 12 frames per group. 

The result series are ready for analysis.  

 

2.7.2 Variance Time Plot  

 Figure 2-6 shows the simulation results of using trace file 1. Figure 2-7 shows 

the simulation results when using the trace file StarWarsIV. 

  

(a)   Time interval =0.01 second.   
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(b) Time interval = 0. 1 second. 

 

(c) Time interval =1 second.      
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(d) Time interval =10 seconds.  

 

                                          (e) Time interval =100 seconds. 

Figure 2-6. Variance time plot experimental results of trace file 1. 
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  (a) 12 frames per group. 

 

                                             (b) 50 frames per group. 
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(c) 100 frames per group.    

 

(d) 400 frames per group. 
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(e) 800 frames per group. 

Figure 2-7. Variance time plot experimental results of trace file StarWarsIV. 

2.7.3 R/S Plot 

 Figure 2-8 and 2-9 are R/S plot experimental results of the trace file 1 and 

StarWarsIV. 

 

(a)   Time interval =0.01 second. 
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(b) Time interval =0. 1 second. 

 

(c) Time interval =1 second. 
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(d) Time interval =10 second. 

 

(e) Time interval =100 second. 

Figure 2-8.  R/S plot experimental results of trace file 1. 
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(a) 12 frames per group.    

 

              (b) 50 frames per group.  
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(c)100 frames per group. 

 

(d) 400 frames per group. 
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(e)  800 frames per group. 

Figure 2-9. R/S plot experimental results of trace file StarWarsIV. 

 2.7.4 Wavelet plot result 

 Figure 2-10 and 2-11 are the wavelet plot experimental results of the trace 

file 1 and StarWarsIV.     

 

(a)   Time interval =0.01 second. 
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            (b) Time interval =0. 1 second. 

 

(c) Time interval =1 second.   
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                (d) Time interval =10 seconds. 

 

(e) Time interval =100 seconds. 

 Figure 2-10. Wavelet plot experimental results of trace file 1. 
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(a) 12 frames per group.        

        

  (b) 50 frames per group. 
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(c)100 frames per group.    

 

(d) 400 frames per group. 
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(e) 800 frames per group. 

 Figure 2-11. Wavelet plot experimental results of trace file StarWarsIV. The 

corresponding estimate Hurst parameters are summarized in Table 2-1 and Table 2-2.  

   Aggregation Level 

Plots 

0.01 

Sec 

0.1 

Sec 

1 

Sec 

10 

Sec 

100 

Sec 

Variance 0.6884 0.6893 0.6847 0.6766 0.7821 

R/S 0.6832 0.8625 0.8497 0.8092 0.8213 

Wavelet 0.8048 0.8312 0.8238 0.8458 1.1325 

Table 2-1. Estimated H for trace file 1. 

Aggregation Level 

Plot 
12Fr 50Fr 100Fr 400Fr 800Fr 

Variance 0.7257 0.7271 0.8199 0.9005 0.9544 

R/S 0.785 0.7493 0.6638 0.7618 0.8097 

Wavelet 1.0715 0.9575 0.889 0.8714 0.7678 

Table 2-2. Estimated H for trace file StarWarsIV. 
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Compared to the results of papers [14] and [32], the first trace file’s H≈0.8, and 

StarWarsIV trace file’s H is decreased along with an increase in the block size per group. 

The R/S plot’s results are good and very close to the papers’ results either using trace file 

1 or trace file 2. The variance plot’s result is also close to the papers’ results. The wavelet 

plot’s results are not as good as above two.  

Comparing the above three plots, the R/S plot and variance time plot are similar. 

Although they not be used to obtain an estimate of H, they give us a rough idea of 

whether a given data set is consistent with self-similar features (H > 0.5) or whether it 

falls within the realm of rational short-range dependent models (H 0.5). However the 

wavelet method is different from the above plots, it assumes the data set satisfies the self-

similar properties. Hence, the wavelet plot serves a different purpose than the variance-

time plot and the R/S plot. Those two techniques are used to test whether a time series is 

self-similar and if so to obtain a rough estimate of H. The wavelet plot assumes that the 

time series is a self-similar process of a particular form and provides an estimate of H 

with a confidence interval [29]. 

≈

 

2.8 Summary 

This summary introduces the mathematical definitions and properties of self-

similarity, and its application to network traffic analysis. Determining if the traffic is self-

similar or not and determining the degree of self-similarity are usually done by estimating 

the Hurst parameter. Three estimation methods, i.e., variance time, R/S, and wavelet plot 

are introduced in detail. These three approaches are then used to estimate the Hurst 

parameters of two data traffic sets obtained by other researchers. Estimations are
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performed at different aggregation levels. It is shown that the results agree with each 

other. In addition, the differences among these three approaches are also discussed.
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CHAPTER III 
 
 

DIFFERENTIATED SERVICE 

3.1 Introduction 

The Internet Protocol (IP) is a network layer protocol providing a lowest common 

denominator for network interconnection. IP can be implemented over almost any 

network layer.  An IP packet consists of a header and payload. The header contains the 

source and destination addresses, and the type of service (ToS) for the packet, along with 

other information relevant to the transport of the packet. Figure 3-1 shows the IP protocol 

header structure.  In classical IP networks, a packet traverses the network based solely on 

its destination address. A decision is taken at each router as to where the packet should 

next be sent based on the destination address contained in the packet header and the 

current contents of the router’s routing tables.  

Version  
(4 bits) 

IHL      
(4 bits) 

 Type of 
Service   
( 8 bits ) 

Total length       (16 bits) 

Identification Sequence number 
(16 bits) 

(1 
bit) 

DF   
(1 
bit)

MF   
(1 
bit) 

Fragment offset  (13 bits) 

Time to live         
( 8 bits ) 

Protocol   
( 8 bits ) Header checksum ( 16 bits ) 

Source address ( 32 bits ) 

Destination address ( 32 bits ) 

Options ( 0 or more words) 

Figure 3-1.  The IP protocol [7]. 
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Until recently, IP networks supported one service class: best effort. With the 

development of networking technology, modern networks are desired to support a wide 

variety of applications, such as interactive TV, IP telephone, on-line gamming, VPNs, 

etc. However, best-effort cannot satisfy these. Then quality-of-service (QoS) over IP-

based networks become an important issue. In 1995, the Internet community began to 

define an Integrated Services Architecture (ISA) that supports two traffic classes in 

addition to best-effort service: (1) guaranteed service supports real-time traffic flows that 

require a quantifiable bound on delay; and (2) controlled load approximates a best-effort 

service over an un-congested network. Though Integrated Services (IntServ) can support 

all of the above applications, the actual implementation may be too complicated and not 

scalable. Differentiated Services (DiffServ) is the current approach for supporting IP 

QoS.  

DiffServ is a relatively simple and coarse method to provide differentiated types 

of services. Rather than being based on the idea of per-flow resource reservation, 

DiffSServ assumes that much coarser service differentiation will be satisfied given the 

plentiful nature of bandwidth. DiffServ make the network’s support guaranteed, 

predictive, and best-effort. There are two important mechanisms that are still used today. 

They are token bucket filter and weighted fair queuing.  Packet flows are classified at the 

network ingress and receive a certain forwarding treatment in the network based on their 

priority class. Multiple queuing mechanisms offer differentiated forwarding treatments. 

Figure 3-2 shows the DiffServ (DS) field of IP packets. DS field reuses the first 6 bits 

from the former ToS byte. The other two bits are proposed to be used by Explicit 
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Congestion Notification (ECN). The DS field is used to indicate the forwarding 

treatment that a packet should receive at a node. 

 

 

Figure 3-2. Differentiated service field of IP packet [18]. 

When a packet traverses the boundary between different DS domains, the DS 

field of the packet may be re-marked according to existing agreements between the 

domains. DiffServ allows only a finite number of service classes to be indicated by the 

DS field. Resources are allocated on a per-class basis and the amount of state information 

is proportional to the number of classes rather than to the number of application flows. 

The main advantage of the DiffServ approach relative to the IS model is scalability [29], 

[28]. 

 Providing different levels of service requires two major concerns: control path 

and data path. The data path mainly includes two basic mechanisms, queue management 

and scheduling algorithm. In traditional queue management packets are dropped only 

when the queue is overflowed. The two shortcomings of this queue management are: (1) 

urgent packets can not be served in time, (2) the queue length tends to be unlimited, 

which results in longer delay. Buffer management scheme needs to control traffic fairly 

and efficiently especially under congestion periods. The priority problem can be used to 
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solve the first problem. It permits the high priority packets to be served earlier than the 

low priority ones. The queue size problem is solved with the Random Early Detect 

(RED) to provide a feedback mechanism. In order to present high-priority traffic from 

starving low-priority traffic, a token bucket filter is used to reserve some resource for 

other network flows.  

In this thesis, we focus on how to apply the queuing discipline to estimate the 

queuing boundaries in high speed networks. Next, the three common queuing disciplines 

are introduced.  

 

3.2 Queuing Disciplines 

3.2.1 FIFO Queuing 

FIFO is a traditional queuing discipline used by most of the routers around the 

world. It is very simply to implement. Figure 3-3 shows the working theory of FIFO 

queuing. Packets arriving from different flows are treated to be fair. Packets in the queue 

are dispatched in the same order strictly corresponding to their arriving order. This 

means, first packet that comes in is the first packet that goes out [31]. The shortcoming of 

this method is when the queue is full, the upcoming packets will be discarded, and then 

packets loss happens. For self-similar networks, burstness is a common phenomenon.  

How to reduce the packets loss ratio becomes a problem. 
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Figure 3-3. FIFO queuing.  

 

 3.2.2 Weighted Fair Queuing (WFQ) 

In Fair Queuing (FQ) algorithms, each queue is treated equally. Weighted Fair 

Queuing (WFQ) belongs to the family of Fair Queuing algorithms. It was designed to 

ensure that each flow is treated equally. Every queue is fairly accessed to network 

resources in order to prevent bursty flows from consuming more than its shared output 

bandwidth. Figure 3-4 shows the working theory of WFQ. WFQ has a limited number of 

queues which are selected by the user or fixed by default. WFQ uses a hashing algorithm 

to divide the entering packets. When a packet arrives, it is classified by the classifier and 

assigned to one of the queues. The entry to each queue is served in a weighted round-

robin order. Thus the service is 'fair' for every queue. The classifier distributes the 

packets to corresponding queues based on information taken from the packet header 

(source address, source port, destination address, protocol, IP precedence, etc.). See 

Figure 3-1 for the IP protocol structure.  In this method, increasing the number of queues 

as large as possible helps the fairness of the algorithm. It avoids the problems in Priority 

queuing; however, this might result in large complexity [31].  
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Figure 3-4. Weighted fair queuing. 

 

3.2.3    Priority Queuing 

The priority queuing discipline is a relatively simple algorithm where it is 

possible to implement DiffServ classes. At least two FIFO queues are needed, where 

having three or four can help improve the performance. Each of these queues has a 

different priority. For example, having three queues, their priorities were assigned to be 

high, medium, and low priority. In addition, there are two other mechanisms. One is a 

classifier, which is in charge of deciding in which of the queues to place the packet based 

on the information taken from the packet header. The other is a scheduler, which is in 

charge of emptying the queues by selecting the packets with the highest priority queue 

until it is empty, next the medium ones, and finally the lowest one. As soon as there are 

packets in the high priority queue it must be served first until there are no more packets in 

the queue [31].  

Figure 3-5 depicts the priority queuing mechanism. Based on [29] and [28], the 

structure of DiffServ can be defined as follows. The packets are marked with a 

Differentiated Service Code Point (DSCP) in the IP header, using the six most significant 

bits of the IPv4 header. A “behavioral aggregate” (BA) is a collection of flows that 

should receive the same service and are marked in the same manner. A “per-hop 
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behavior” (PHB) specifies the treatment that a BA should receive at a DiffServ 

router. Based on the information in IP, traffic metering information, edge router classifies 

each packet into a BA. Each BA is mapped to a PHB, which determines its treatment at 

each node. If traffic in a particular BA exceeds its allocated bandwidth, that BA will 

result in congestion and packet loss. 
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Figure 3-5. Priority queuing.  

 

Based on above classification discipline, packets are assigned priority values 

according to their QoS requirements, and then are transmitted out in a priority-based 

order. As a consequence, the packets of highest priority are influenced only by the 

packets of their equivalent priority. On the other hand, the traffic of the lower priority 

will be under the influence of the higher and equivalent priority traffic. Hence the packets 

of a certain priority can be served only when there are no packets available in the queues 

of higher priority. The problem is the waiting time of lower priority queue is much longer 

than that of the higher priority. When burstiness happens, the lower priority queue will 

easily become full, and the packet loss ratio will increase correspondingly.  
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3.3 Expected Queuing Length 

The following simulation is to regenerate the work of paper [25]. The main 

purpose of the simulation is to get the queue length upper bound and lower bound for 

FIFO single queue and non-preemptive priority queues in DiffServ networks. 

 

3.3.1  Simple Queuing System 

Figure 3-6 shows the node model of a simple queueing model. The data 

packets from the traffic traces file pass through the Souce Generator and then goes into 

the FIFO queue. We assumed that the server has a deterministic service rate for each 

packet. In this model, we assume all the packets have the same priority. The buffer size is 

infinitive.  The first packet that arrives at a router (or server) is the first packet to be 

transmitted. 

 

Figure 3-6. Simple queuing model [25]. 

Let  denote the queue length,   represent the number of packets arriving, 

and  be the server capacity at the nth time interval. Based on Lindley’s equation [25], 

we have [25]: 

nQ nX

nC

),0max( 1 nnnn CXQQ −+= −                                        (3.1) 
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We define a stochastic process   to be the number of the packets that the server 

can service at time interval n [25]: 

nY

),0min( 1 nnnn CXQY −+−= −                                       (3.2) 

 ),0max( 1 nnnn XQCY −−= −                                         (3.3) 

which denotes the leftover server capacity at the nth time interval. Thus, we have [25]: 

nnnnn YCXQQ +−+= −1                                              (3.4) 

Because  and  are independent, we get the equation of expected queue 

length of a singe server [25]: 
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Based on , the upper bound of the queue length is [25]: 0)( ≥YVar
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Based on , the lower bound of the expected queue length is [25]: )()( 22 CEYE ≤
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3.3.2 Non-preemptive (Head-of-Line) Priority System 

In DiffServ networks, it is necessary to recognize the priority and then provide 

control support for different QoS requests. Based on a certain classification discipline, 

packets are assigned priority values according to their QoS requirement, and then are 
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transmitted out in a priority-based order. Figure 3-7 is the HOL priority queuing model. 

In this system, we assume that there are only two queues. These queues are independent 

from each other. With a head-of-line priority scheme, once a packet is in the transmission 

of the server (or router) it will not be interrupted by a packet of higher priority that 

arrives later. We assume class 1 has the highest priority; class 2 has the lower priority. 

The packet arriving rates of different classes are the same. 
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Figure 3-7. HOL priority queuing model of one hop in networks [25]. 

 

Let denote the queue length of class j,  represents the number of packets 

arriving of class j,   be the available service capacity for packets of class j,  be 

the left over server capacity seen by class j,  represents the total capacity of the server 

(same as in a simple queuing system). We define that:  
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Then, we have 
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The expected queue length of class j is [25]: 
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Based on , the lower bound of the expected queue length of class j is 

[25]: 
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The upper bound of expected queue length of class j is [25]: 
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3.3.3 Multi-class DiffServ Queuing System under Self-similar Traffic 

The number of packets arriving at the nth time interval has the standard deviation 

of [25]: 

 matXSTD H∆=)(                                                      (3.16) 

Here,  denotes time interval, t∆ H  represents Hurst Parameter,  is the mean input rate, 

 is the variance coefficient [24]. We obtain 
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Then, the lower bound of the expected queue length of class j can be represented as 

equation (3.19) or (3.20) [25]: 
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The upper bound of the expected queue length of class j can be represented as equation 

(3.21) [25]: 
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3.4 Simulation and Results analysis 

3.4.1 Simulation 1  

In the simulation, the trace file is the same as that in paper [14]. We use equation 

(3.16), (3.17), and (3.18) to calculate the STD(X) of the self-similar traffic. The time 

interval between the nth and (n+1)th packets is 0.01 second. The unit of the packet 

arrival rate is packet numbers per 0.01 seconds. 

To calculate the lower and upper bound of expected queue length of a single 

server, we use equation (3.6), (3.7), and (3.8). The packet arrival rate is obtained from the 

number of packets per 0.01 second. In the presented examples, we consider the utilization 

of single queue be 90% and 30%. We have 
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where ρ  is the server utilization. We assume that the service rate is always 1.2 times of 

the packets arrival rate. Based on equation (3.22), we have the mean service rate. We 

assume the service rate is fixed for simulation 1. We will generate the stochastic process 

of Cn. We use the self-generated Cn process to calculate corresponding E(C) and Var(C). 

Besides, we use equation (3.19), (3.20), and (3.21) to calculate the expected queue length. 

The results are shown in Figure 3-8. 

All others assumptions are keep the same as the simulation 1.  

 

 single queue system (with utilization of 90% and 30%). 

                             Figure 3-9. Expected queue length of simulation 1. 
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3.4.1 Simulation 2 

In simulation 2, we consider there are three classes of priority queues. In the 

priority model, the percentages of class 1, class2, and class 3 are 33%, 33.3%, 33.3%, 

respectively. All others assumptions and units are similar to simulation 2.  

The results are shown in Figure 3-9. 

 

priority queuing system. 

Figure 3-9. Expected queue length of simulation 2. 

 3.4.4 Analysis of Simulation 1-2’s results 

Figure 3-8 illustrates the 30% and 90% utilization boundary conditions for a 

single queue traffic steam. The results show that the lower the utilization of the server, 

the smaller is the queue length.  
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Figure 3-9 provides an insight on how the priority assignment and the class traffic 

affects the queue length, and the tightness of the upper and lower bounds. The highest 

priority class only needs to consider the variance of its own class because no other classes 

will have any influence over it. 

Comparing the single queue 90% utilization in Figure 3-8 to the combined 90% 

utilization of class 1 through 3 in Figure 3-9, we can obtain the advantages of 

differentiated services. The queuing length bounds of class 1 and class 2 in Figure 3-9 are 

significantly lower compared to the single queue 90% utilization of Figure 3-8. In 

addition, class 3 of Figure 3-9 is only slightly worse than the single queue 90% utilization 

of Figure 3-8. 

Overall, for the above examples, the HOL priority was observed. It greatly 

reduced the queuing length (i.e. waiting time) of the class 1 and class 2. And it only 

shows a little disadvantage in class 3 compared to the FIFO single queue (e.g. 90% 

utilization case in Figure 3-9). 

 

3.5 Summary 

The upper and lower bounds of the expected queue length are estimated in 

previous paper [25]. It is based on the arrival rate and deterministic server capacity for 

both single class and multi-class steady-state queuing systems. “The derivations here 

provide a practical and effective method to analyze the effects of self-similar traffic in 

DiffServ networks based on the utilization and priority assignment of the traffic”[25]. 

Equations (3.19) through (3.21) can be used to provide the boundary of the queue length. 

They also show that the Hurst parameter, which indicates the degree of burstness, affects 
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the queuing length in high speed networks. The mean waiting time (W ) can also 

be obtained by applying the Little's theorem. The difference between lower and upper 

bounds is the most significant in the lowest priority class. On the other hand, there is not 

much difference between lower and upper bounds in the highest priority class [25].

 52



 

CHAPTER IV 

 

QUEUE LENGTH ANALYSIS IN END-TO-END DIFFERENTIATED NETWORKS 

WITH SELF-SIMILAR TRAFFIC 

 

4.1   Limitation of Previous Work and Advanced Approach 

In the previous chapter, the upper and lower bounds of the expected queue length in 

steady-state queuing systems were observed. The study was focused on priority queuing 

of 2 point-to-point nodes in self-similar networks. The queuing model in each node was 

based on GI/G/1 queuing system. For simplicity, the previous works consider a bufferless 

fluid model of a router. So, the following directions are used to improve the previous 

work of [25], [15], and [30]. 

(1) First, this approach can be extended to the situation in real routers where 

transmission is packetized. The drop-on-input scheme should be considered.  

Then queue length boundaries will no longer be a problem. The new concern 

issue of focus will be the packet loss probability. 

(2) Second, GI/G/1 queue model can be changed to GI/G/m queue model. The upper 

and lower bounds of the queue length are still the concern issue. The only 

difference is the model has 2 servers. It falls into the multiple priority queuing 

domains. A lot of research has been done in this area.  
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(3) Third, pervious work has been based on the one hop model [24] and [25]. 

However, realistic networks are composed of more than two directly-connected 

nodes. In self-similar traffic, cross traffics will influence each other. Then their 

queue lengths will change respectively. So, the next step is to setup the structure 

and extend the network to multiple networks nodes.  To extend this to multiple 

nodes with self-similar traffic, should begin with the simplest case of 3 nodes and 

then extend to more nodes. 

 

4.2 Core-Stateless Fair Queuing 

Many researchers observed that routers with fair bandwidth allocation 

mechanisms greatly benefit the end-to-end congestion-control. Until now, the fair 

allocations were achieved by using per-flow queuing mechanisms which are more 

complex to implement. In fact, fair allocation mechanisms require the routers to maintain 

the states and perform per-flow basis operations. Therefore, a number of scheduler 

designs have been proposed to reduce the complexity of the packet classification and the 

per-flow management.  

4.2.1 Definition of Core-Stateless Fair Queuing 

In high-speed networks, the routers in the network can be divided as edge 

routers and core routers as depicted in Figure 4-1 (a). There is an observation regarding 

the multihop schedulers. The edge routers still maintain per flow operation, but the core 

routers can be core-stateless as depicted in Figure 4-2 (b). In other words, the core routers 

do not maintain per-flow state in high speed networks [15]-[16].  

In this thesis, two assumptions are made, similar to [30]:  
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(1) Fair allocation mechanisms play an important role in congestion control. The 

focus on the implications if indeed they were true, not claiming whether they are true 

or not.  

(2) The complexity of existing fairs allocation mechanisms is a substantial hindrance 

to their adoption. 

Then, queue length analysis uses the architecture proposed in [30]. The approach 

identifies a contiguous region of the network to distinguish between the edge and the core 

of the routers. Edge routers region keep using per-flow operation to estimate the per-flow 

rate and label the packets passing through them. The core router region allows FIFO 

queuing and do not maintain per-flow state. The bandwidth allocation within the core 

routers is fair. That is, the bandwidth of each core router is same. Thus, if this approach 

were adopted in the high-speed networks, and fail allocation mechanisms were adopted 

for the slower links outside of these high-speed interiors, then fail allocations could be 

achieved everywhere. Assume each FIFO queue is using a HOL queuing discipline. This 

approach is called Core-Stateless Fair Queuing (CSFQ) since the core routers keep no 

per-flow state [30]. In this thesis, only the multi-node networks in the core router region 

is conserdered. 
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(b) Core-stateless fair queuing domain 

Figure 4-1. Overview of network architecture. 

4.2.2. Advantages and Disadvantages of Applying CSFQ 

Advantages: 

(1) CSFQ uses a distributed algorithm to avoid maintaining the per-flow state at each 

router so that there will be a much lower complexity scheduler in the core routers. 

(2) CSFQ uses tradition simple queuing discipline FIFO queue to avoid per-flow 

buffering and scheduling.  

(3) CSFQ is approximately fair queuing. 
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Disadvantages: 

(1) There is no guarantee on the average per-flow delay, and no guarantee of a feasible 

delay class allocation. 

(2) The CSFQ approach requires some configuration, with edge routers distinguished 

from the core routers. Moreover, CSFQ must be adopted one island at a time rather than 

router by router. 

 

4.3 Fluid Model 

The fluid analysis model enables us to accurately investigate the queue length of 

each hop in end-to-end differentiated service networks. The derivation of single hop 

differentiated service networks can be extended to multi-hop differentiated service 

networks.  

First, a simple queuing model is considered. It is assumed that the server at each 

hop has a deterministic service rate. The buffer size is infinite. Figure 4-3 (a) shows the 

queuing model. 

 

(a) Fluid Model in End-to-End High Speed Networks. 
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(b) Flows at Each Hop.  

Figure 4-3. Fluid Model. 

The flows are continuous streams of bytes. We precisely calculate each flow’s 

mean arrival rate .  denotes the mean arrival rate of flow i at time t. The fair 

share rate is the output rate of each node. Each hop has the same output rate. Let 

denote the fair share rate at time t, and C represent the output link speed. In general, 

when the total arrival rate 
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flows will be queued [30]. 
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4.4 Single Queue Length in end-to-end DiffServ networks 

Let  denote the queue length at the hhnQ ,
th hop,  represent the number of arrival 

packets at the th

hnX ,

h  hop,  be the number of packets served or available server capacity 

at the th

hnC ,

h  hop, and  denote the left over server capacity at the hhnY ,
th hop. 

 The left over server capacity of class j  at the thh  hop is defined as (4.1) or (4.2): 

),0min( ,,,1, hnhnhnhn YXQY −+−= −                                         (4.1) 

),0max( ,,1,, hnhnhnhn XQYY −−= −                                          (4.2) 

The queue is stationary, and hence have: 

   )()( ,1, hnhn QEQE −=                                                           (4.3) 

Since  and hnQ ,1− )( ,, hnhn CX −  are independent, (4.3) can be squared on both sides 

to get the equation of the expected queue length of a single server at the thh  hop as shown 

in (4.9) 
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Proof:  First, have: 
2

,,,1
2

,, )]([()( hnhnhnhnhn CXQYQ −+=− − .                                   (4.5) 

Equation (4.5) is equivalents to (4.6): 
2
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Equation (4.7) is derived from (4.6) 
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Then, based on (4.3), we can obtain (4.8) 
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Since  
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Based on , the lower bound of the expected queue length is: )()( 22
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4.5  HOL Priority in end-to-end DiffServ networks 

Let  denote the queue length of class )(
,
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hnQ j  at the h th hop,  represent the 

number of arrival packets of class 
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Then, the queue length of class j  at the thh  hop at the thn  time interval is: 
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According to (3.12), the expected queue length of class j at the th  h hop is: 
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The upper bound of expected queue length of class j at the thh  hop is: 
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4.6 End-to-End DiffServ under self-similar traffic 

Based on the self-similar model in [32], the variance of the arrival rate of class j  

at the h th hop can be expressed by equation (4.21): 

                                                               (4.21) 
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Then, the lower bound of the expected queue length of class j at the h th hop can 

be represented as shown in equation (4.22) or (4.23): 
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The upper bound of the expected queue length of class j at the thh  hop can be 

represented as shown in equation (4.24): 
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4.7 Simulation Results and Analysis 

In the simulation, two types of flows will be considered. There is one target flow, 

flow F1, entering the network through the first hop and exiting through the last hop. 

There are one cross traffic flows. They are flow F2 which traverse a single node and then 

exits the network. F1 flow is the main flow, F2 flow is considered to be interference flow.  

We assume the traffic flows, F1, F2, and F3 have the same characteristics. They 

have the same mean input rate, and Hurst Parameter. The Hurst parameter will be 

between 0.6 and 0.9 for each traffic flow. Each flow contains four classes, class 1, class 

2, class 3 and class 4. Class 1 has the highest priority; class 2 has the second highest 

priority, and so on. The combined server’s utilization is 90%. They have the same 

utilization at each hop. The upper and lower bound of the queuing length of each class 

will be investigated. 

In simulation 1, Figure 4-3 shows the result of four priority queue length at five 

hops. The arrival traffic is classified into 4 classes at each hop. The combined utilization 

is 90%. Each class occupies 25%. It depicts the queuing length for each class at a certain 

time slot, t = 410 and t = 710, at corresponding hop. It can be seen that the queue length 

of each class at each hop is a constant. 
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Figure 4-3. Priority Class Queue Length at Each Hop. 

Figure 4-4 (a)-(d) show the class 1 to class 4 expected queue length relationship to 

multiplexed traffic Utilization and Hurst Parameter. They show that higher the utilization 

of the multiplexed traffic, the larger the expected queue length is. When multiplexed 

traffic utilization is fixed, for example at 80%, class 1 always has the smallest queue 

length among the four classes at each hop. Class 2 always has a smaller queue length than 

class 1, but larger than Class 3 and Class 4 at each hop. In addition, the upper and lower 

bound of class 1 and class 2 are tighter (i.e., closer) than the other 2 classes. Hurst 

parameter also affects expected queue length of each class. For example, in Figure 4-4(a), 

the combined utilization of all the traffic is 70%, Class 1’s expected queue length is 

larger at H = 0.8 than at H = 0.6 or at H = 0.7. Hurst parameter indicates the burstiness of 

the data traffic. The degree of burstiness increases with the Hurst parameter. So, larger H 

causes longer queuing delay or waiting time at each hop. 
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     (a) Class 1 Expected Queue Length 

 

      (b) Class 2 Expected Queue Length 
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(c) Class 3 Expected Queue Length 

 

(d) Class 4 Expected Queue Length 

Figure 4-4. Expected Queue Length from Class 1 to Class 4. 

In order to improve the performance of class 1 and class 2 at burstiness time, we 

can increase class 4’s utilization at the server and decrease the utilization to class 1 
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as well. For example, in Figure 4-4 (a), the expected queue length is around 750 for class 

1 at 90% multiplexed traffic utilization. Suppose the safety queue length is 700. That is, 

the packet is queued larger than 750, it will be discarded or else it will violate the local 

deadline. Larger queue length will cause larger packet loss rate and longer waiting time at 

each hop. A novel adaptive admission controller algorithm is proposed as shown in 

Figure 4-5 (a). Figure 4-5 (b) shows how to reduce and limit admission to the lowest 

priority class traffic step by step. Initially, the four classes have the same capacity at the 

server. In order to achieve a queue length of less than 700 and keep the combined traffic 

utilization at 90%, the admission control just decreases the class 1 utilization by 

increasing server capacity percentage of class 1 at each hop, and increases the utilization 

of class 4 at the same time. The total server capacity is fixed. And class 2 and 3 keep the 

same utilization. The class 1’s queue length at the hop will be decreased. If the queue 

length is still larger than 700, the admission controller will continue to decreasing class 

1’s utilization, and increasing class 4 utilization. Figure 4-5 (c) shows the performance 

improvement. The queue length of class 2 and class 3 decreased along with the class 1’s. 

The adaptive admission controller algorithm decreases all the queue length of class 1, 

class 2, and class 3. In addition, class 4’s queue length still keeps the same as before. The 

adaptive controller algorithm can improve the performance around 8 percent.  
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(a) Flow Chart of the Adaptive Admission Controller Algorithm. 
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(b) Each Step for Adaptive Admission Controller 

 

(c) Performance Improvement. 

Figure 4-5. An Adaptive Admission Controller Algorithm. 

The benefit of using the novel adaptive admission controller algorithms is: 

It improves the performance of class 1, class 2 and class3 about 8%. It is shorter the 

queue length and waiting time of class 1, class 2 and class 3.
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CHAPTER V 
 
 

CONCLUSION AND FUTURE WORK 

 

In this thesis, a novel adaptive admission controller is proposed based on the 

arrival rate and the service rate for multiple hop queuing systems with self-similar. The 

derivations begin with the mathematical modeling of a single queue based on [25], and 

then the derivations are extended to end-to-end differentiated service networks with self-

similar traffic. The upper and lower bound of queue length at each hop is derived. In 

addition, the analytical model is also applied to the analysis of traffic flow effects on 

queue length. The results give an insight into the performance gained in queue length at 

each hop. After the application of Little’s theorem to queue length, the mean delay at 

each hop can be obtained. These parameters, queue length and mean delay, are 

parameters related to the concept of traffic engineering. In addition, a novel admission 

control mechanism is provided to improve QoS reliability performance for the higher 

classes in DiffServ networks. 

 Based on the observations of the simulation results, the following conclusion can 

be drawn: 

(1) Each hop’s queue length is related to the arrival flow’s mean, the variance 

of input, the utilization at each server, the utilization of multiplexed traffic, and 
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the Hurst parameter. The downstream hops’ queuing length has the similar 

property and value as the first hop. It is also dependent on the above parameters. 

(2) The class 1 and class 2 have a smaller expected queuing length and waiting 

time compared to class 3 and class 4. At fixed multiplexed traffic utilization, 

larger Hurst parameter will increase the expected queue length and waiting time at 

each hop.  

(3) Each class’ expected queue length will increase with the increasing of 

combined traffic utilization at each hop. The larger the utilization of the total 

traffic, the larger the queue length and the longer the waiting time. 

(4) The upper and lower bound of class 1 and class 2 are tighter closer than 

the bounds of class 3 and class 4. This demonstrates that the QoS services that 

will be provided by the DiffServ schedulers are more consistent and stable for the 

higher priority classes. This is a very desirable feature for DiffServ networks. 

(5) A novel adaptive admission controller algorithm is developed to provide 

the upper classes of the DiffServ networks the required QoS. The adaptive 

admission controller algorithm can provide a guaranteed QoS performance for the 

higher priority classes, as long as the class 1 QoS requests do not exceed the 

comprehensive network resources. 

 

In the future, the fluid algorithm model can be extended to the substantial 

buffering model [30], as the fluid algorithm model is used when the arrival rate is exactly 

known.  
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APPENDIX ACRONYMS 

 

BA    Behavioral Aggregate 

CSFQ    Core Stateless Fair Queuing 

DiffServ(DS)  Differentiated Service 

DSCP    Differentiated Service Code Point 

DWT     Discrete Wavelet Transform 

ECN    Explicit Congestion Notification 

FGN      Fractional Gaussian Noise 

FIFO     First in first out 

FQ      Fair Queuing 

HOL     Head of Line 

IP     Internet Protocol 

LRD     Long Range Dependence 

MDS    Mean Delay Scheduler 

PHB    Per-Hop Behavior 

QoS     Quality of Service 

RED     Random Early Detect 

RMD     Random Midpoint Displacement 

ToS     Type of Service 

WFQ    Weighted Fair Queuing 
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Scope and Method of Study: This thesis focuses on the analysis of queue length 

boundaries in end-to-end self-similar networks with differentiated service. First, 
the Hurst parameter was calculated by three methods. Secondly, queue length 
boundaries were estimated at a single hop with differentiated service under self-
similar traffic. Finally, the derivations are extended to end-to-end differentiated 
service networks with self-similar traffic. 

 
Findings and Conclusions:  Quality-of-Service (QoS) is a key issue in networks. 

Improving the performance with guaranteed QoS is one of the major problems. It 
is well known that traditional analytical methods of queuing systems are based on 
Poisson and Poisson-based stochastic processes. Unfortunately, these methods, 
like Jackson theorem, are not applicable in high speed broadband networks. In 
this thesis, a novel analytical model is proposed based on the arrival rate and the 
service rate for multiple hops queuing systems. Then the mathematical derivations 
are extended to end-to-end differentiated service networks with self-similar 
traffic. The upper and lower bound of the queue length at each hop is derived. The 
results illustrate the performance gain in queue length at each hop. Finally, a 
novel adaptive admission controller algorithm is proposed based on the arrival 
rate and the service rate for multiple hop queuing systems with self-similar 
network traffic. The adaptive admission controller algorithm can provide a 
guaranteed QoS performance for the higher priority classes, as long as the highest 
class QoS requests do not exceed the comprehensive network resources.  
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