
A MATRIX MODEL OF DIGITAL SYSTEMS AND ITS

APPLICATION TO AUTOMATIC

TEST GENERATION

By

CHARLOTTE COUCH ACKEN
if

Bachelor of Science
Uni ve r,s i ty of Arkansas
Fayetteville, Arkansas

1969

Master of Science
Un i,Ners i ty of Arkansas
Fayetteville, Arkansas

1971

Master of Science
Oklaho~a State University

Stillwater, Oklahoma
1977

Submitted to the Faculty of the Graduate College
of the Oklahoma State University

in partial fulfillment of the requirements
for the Degree of

DOCTOR OF PHILOSOPHY
May, 1982

/hes/~
)qi;).. !)
A I~~~
C,9p. :L

A MATRIX MODEL OF DIGITAL SYSTEMS AND ITS

APPLICATION TO AUTOMATIC

TEST GENERATION

Thesis App roved:

Thesis Adviser

~ tt.l m'o/IAHL!

Dean of the Graduate College

ii
tt378so I

ACKNOWLEDGMENTS

My sincere appreciation is extended to Dr. Ronald P. Rhoten, chair­

man of my doctoral committee and my thesis adviser, for his invaluable

assistance throughout the course of my graduate education in electrical

engineering. I am grateful to the other members of my doctoral commit­

tee, Dr. C. M. Bacon, Dr. M. E. Daniel, Dr. J. \4. Maxwell, and Dr. R. J.

Mulholland, for their critical reviews of the manuscript and for their

encouragement and friendship.

Financial support for this research has been provided by Sandia

National Laboratories. Sandia management directly involved in providing

me the opportunity to conduct this work were D. M. Olson, D. M. Schuster,

C. W. Gwyn, A. A. Lieber, M. E. Daniel, and W. F. Roherty. Their exhib­

ited confidence in my abilities are much appreciated.

Special thanks are extended to the staff of the Sandia National

Laboratories technical 1 ibrary, word processing center, and graphic arts

division for their assistance. The typing of the final copy was perform­

ed by Charlene Fries, to whom I am most grateful.

Well deserved gratitude is extended to my parents, whose personal

sacrifice, encouragement, and understanding have inspired me throughout

my education. I am thankful for my wonderful husband, John, who has

provided loving encouragement and enthusiastic confidence in me during

the preparation of this thesis.

iii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION AND BACKGROUND .

I I. REVIEW OF RELATED LITERATURE

Introduction
Path Sensitization ..
Equation Manipulation
Summary

I I I. MODELING DIGITAL SYSTEMS

Introduction
Notation
Combinational Circuit Model
Sequential Circuit Model
Summary

IV. MODEL CHARACTERISTICS AND EXTENSIONS

Introduction
Combinational Circuit Topology.
Combinational Circuit Matrix Complexity
Model Extensions
Sequential Circuit Topology
Sequential Circuit Matrix Complexity
Summary

V. A MATRIX APPROACH TO AUTOMATIC TEST GENERATION

Introduction
Path Sensitization Using the Matrix Model
Boolean Difference Using the Matrix Model
Summary

VI. CONCLUSIONS AND RECOMMENDATIONS

Conclusions
Recommendations for Further Research

A SELECTED BIBLIOGRAPHY

iv

6

6
6

16
22

23

23
23
26
39
42

45

45
45
48
50
53
54
56

57

57
57
75
83

85

85
86

91

Table

I.

II.

LIST OF TABLES

Boolean Difference Identities .

Truth Tables for 11 AND11 and 11 0R 11 Functions

v

Page

19

25

LIST OF FIGURES

Figure Page

1. Sample Circuit Illustrating Path Sensitization and Signal
P ropa ga t i on 1 0

2. An AND Gate With Its Singular Cover and D-Cubes 11

3. A Simple Combinational Circuit With Its Singular Cover
and D-Cubes. 13

4. Sequential Circuit Modeled as an Iterative Combinational
Array 17

5. Circuit Viewed as Composite Functions 21

6. Labeled Generic Logic Diagram 27

7. A NANO, OR, NOT Circuit 29

8. Model Representation of Logic Gates 32

9. Exclusive-OR (XOR) Representation 34

10. Combinational Circuit Modeling 35

11. NOT and OR Gates Represented in Terms of NANO Gates 37

12. Compact Matrix Formulation 38

13. Sequential Circuit Modeling 40

14. Clocked D-Fl ip Flop 43

15. Directed Graph of Figure lO(a) 47

16. Fanout of a Circuit Input. . 51

17. Labeling Extended to Forks in a Fanout Path

18. Labeled Comb i national Circuit

19. Combinational Circuit

20. Schneider 1 s Example .

VI

52

60

63

67

Figure Page

21. Circuits With Undetectable Faults 69

22. Gate Level Representation of a Clocked S-R Flip Flop 72

23. Flow Diagram for Combinational Circuit Test Genera-
ti on Using Single Path Sensitization and the Acken
Matrix Model . . 74

24. Example Circuit for Illustrating Boolean Difference 78

25. A Simple Redundant Circuit . . . 88

vii

CHAPTER I

INTRODUCTION AND BACKGROUND

Physical faults can occur at any point during the life of a digital

system. Generally speaking, a fault can be defined as anything which

causes the system to operate in a manner other than that for which it

was designed. Faults can originate during the manufacture, assembly,

storage, and/or service phase of the system life. Open circuits, short

circuits, and incorrect impedance are example faults. Those which alter

the magnitude of a circuit parameter with a resultant modification in

circuit speed, current, or voltage are termed parametric faults. Faults

which alter the logical behavior of the system are termed logical faults.

Because faults can, and do, occur at any time during the life of a digit­

al system, it is necessary to determine, via some testing procedure, the

operational status of the device.

A test for a logical fault is defined to be a set of inputs (or in­

put sequences) for which a faulty system will exhibit an unintended

logical behavior. Only tests for logical faults will be considered in

this research.

The advent of large-scale integration (LSI) and very large-scale

integration (VLSI), as well as the increased complexity of digital inte­

grated circuits (!Cs), has made manual test generation extremely time­

consuming, unreliable, and physically difficult. For this reason, auto­

matic test generation (ATG) algorithms are desirable. However, most ATG

2

algorithms are also constrained by the size and complexity of present

day ICs. An obvious algorithm for ATG for combinational circuits is to

generate all possible input combinations and compare the output of the

device under test (DUT) with a known output. This procedure detects

all possible logical faults within the system. The disadvantage to this

approach becomes apparent as the number of primary inputs, n, increases.

Assuming a testing system with a stimulus/response cycle of 1 microsec­

ond, it would take 1 second to exhaustively test a combinational logic

circuit with 20 primary inputs. The amount of time required rises ex­

ponentially as the number of primary inputs increases, and for n = 50,

the time required becomes 35 years!

One approach to narrowing the problem to feasible limits is to con­

sider a subset of all possible faults whose detection will result in a

high confidence that all 1 ikely faults of interest have been detected.

The fault subset is generally defined via a logical fault model.

There are three basic requirements of any logical fault model. The

model should indicate what effect the fault will impose upon the opera­

tion of the circuit, how many such faults are assumed to be present at

one time, and how long the fault is present. The most common logical

fault model (also to be utilized in this research) is the single perma­

nent stuck-at model. This model assumes that only one primary input/

output or internal signal line in the circuit will be permanently stuck

at logical zero or logical one during the duration of any test.

If a circuit has n primary input 1 ines and p internal signal lines

(including primary outputs), then the total possible number of single

faults (i.e., occurring one at a time) is 2 (n + p) since each line

could be stuck-at-zero or stuck-at-one.

3

If two or more of the signal 1 ines are simultaneously faulty, there

are a total of 3n+p - 1 such multiple faults to consider. Because this

number tends to become large as circuits increase in size, this multi­

ple fault model becomes intractable. Even though the multiple fault

model is a valid model, it has not been utilized in practical implemen­

tations because of the exponential growth in the number of faults that

have to be considered.

One method of generating tests for logical faults is to have a test

engineer determine input vectors which would cause a change in signal

value on every signal 1 ine in the device under test. To achieve this,

as well as try to minimize the test length and perform fault location

simultaneously, would require a lot of detailed and repetitive work-­

the type of work that is more efficiently done by a computer.

Automatic test generation refers to the process of generating a

set of inputs to an integrated circuit via a computer algorithm. Most

algorithms utilize information about the system topology and/or behav­

ior and the faults for which tests are being generated. Almost all auto­

matic test generation methods are based upon models of the digital cir­

cuit in addition to fault models, some of which were discussed earlier.

Many digital system models exist. The two utilized most extensive­

ly for automatic test generation are the gate level logic diagram and

the register-transfer level (RTL) diagram. The gate level logic diagram

characterizes the system as an interconnection of one or more of the

basic logic gates (AND, OR, NOT, NAND, NOR). An RTL diagram character­

izes the circuit as an interconnection of functional blocks such as

registers, counters, or ALUs. Functional level test generation utilizes

an RTL circuit model and attempts to generate tests which wil 1 detect

4

whether or not the functional blocks are performing the function for

which they were designed (shifting, counting, ect.). Modeling the cir­

cuit at the register-transfer level tends to decrease the execution

time and memory requirements for ATG, compared to that required for ATG

algorithms which uti 1 ize a gate level circuit description. However,

functional level test generation methods lack the ability to isolate

faults to a gate or signal level, may generate invalid tests, and suf­

fer from a lack of adequate fault models.

The efficiency of ATG algorithms which utilize a gate level circuit

description depends upon how much information concerning the circuit be­

havior and topology is passed and how concisely the information is for­

mulated for use in the algorithm. Completely random ATG formulates no

information about the circuit behavior and topology to guide it in gen­

erating tests. Other algorithms formulate the behavior and/or topologi­

cal information in various ways.

Chapter I I is a review of some of the best known and most widely

used gate level automatic test generation methods. The manner in which

the behavior and/or topological information is formulated and utilized

by each is reviewed, and the advantages and weaknesses of each method

and its underlying mathematical formulation are pointed out.

A matrix formulation for digital integrated circuits is introduced

in Chapter 111. This representation contains the information about the

logical behavior and topology of a circuit necessary for gate level auto­

matic test generation. The concise matrix formulation can be easily

stored in and manipulated by a computer. Characteristics of and exten­

sions to the formulation are given in Chapter IV.

5

Chapter Vil lustrates several ways in which the matrix representa­

tion can be utilized to automatically generate tests. Approaches using

path sensitization and Boolean equation manipulation for test genera­

tion are presented.

Along with the thesis conclusions, Chapter VI contains suggestions

for other possible uses of the matrix representation of a digital sys­

tem. These include the analytical detection of circuit redundancy and

the use of the matrix model as a structure in which to perform testabil­

ity analysis.

Numerous examples are included in Chapters I I I through VI to illus­

trate concepts and techniques.

CHAPTER I I

REVIEW OF RELATED LITERATURE

Introduction

The first ATG algorithms were based upon gate level circuit models

and the single permanent stuck-at fault model. Boolean equation manipu­

lation was an early ATG technique followed by path sensitization ap­

proaches. Most of today's gate level ATG algorithms are based upon one

or a combination of both these procedures.

In order to fully understand why certain characteristics of digital

system models such as topology, behavior, and compact representation are

essential to ATG, a close look at digital circuit test gener~tion methods

is necessary. Two path sensitization approaches are reviewed, the D­

algori thm (Roth, 1966) and critical path sensitization (Thomas, 1971).

One equation manipulation technique, the Boolean difference approach

(Sellers, Hsiao, and Bearnson, 1968) is outlined. Emphasis will be

placed on the type of circuit information needed for the technique and

the way the information is formulated.

Path Sensitization

The D-algorithm (Roth, 1966) has formed the basis for most of the

ATG programs in use today because it introduced the fundamental concept

of path sensitization. Variants of the original path sensitization pro­

cedure have proven to be successful.

6

7

As it was originally conceived, path sensitization was to be per­

formed on a gate level model of the circuit and generate tests for

stuck-type faults. Others have used the idea of path sensitization on

partitioned blocks of logic circuitry and on higher level primitives

such as registers, counters, etc. (Breuer and Friedman, 1980; Bennetts,

Brittle, Prior, and Washington, 1975). Other fault models have also

been used in conjunction with the D-algorithm (Breuer and Friedman,

1976).

The basic idea of path sensitization will first be explained, fol­

lowed by a description of two path sensitization algorithms and their

associated model formulation. The advantages and disadvantages to these

two techniques and their models will be pointed out.

We first explain the concepts of I ine justification and error prop­

agation. A value of jdO,l} on the output to gate G is justified by

assigning values to the gate inputs which, when applied to G, wi 11 re-

sult in the value j. For example, the value

gate can be justified by assigning the value

on the output of an AND

to each of the gate in-

puts. Similarly, the value 0 on the output of an AND gate can be justi­

fied by assigning the value 0 to any one or more of the inputs to the

gate. Hence, justifying a 0 output to a 2-input AND gate al lows three

choices. If the inputs are u1 and u2 , we may choose u 1 =1, u2 =0; u1 =

O, u2 : 1 ; or u 1 = u2 = O.

Adopting the symbolism of (Roth, 1966) the letter D will be used

to represent the value of a signal line which has the value I in the

normal (fault-free) circuit and 0 in the faulty circuit, and 0 1 to repre­

sent the value of a signal 1 ine which has the value 0 in the fault-free

8

circuit and 1 in the faulty circuit. Hence, if a line has value D, it

is stuck-at-0 and 0 1 represents the stuck-at-1 condition.

The error signal Don an input 1 ine of gate G is propagated through

the gate by assigning values to the other inputs of gate G which will

result in a Dor D1 on the gate output. For example, if an input to an

AND gate is assigned the error value D, it wil 1 be propagated to the

output of the gate only if all other inputs are assigned the value 1.

If any other input to the AND gate takes the value 0, the output wi 11

be zero and the error value cannot be propagated. To propagate an error

signal (either Dor D1) through an OR gate, all other inputs must be

zero; through a NANO gate, all other inputs must be one; through a NOR

gate, all other inputs must be zero. Hence, no choice in assignments

exists in fault propagation for a given gate type.

The path sensitization procedure for combinational circuits can be

described as fol lows:

Step 1. Select a fault (stuck-at-j, jdO,l}) and fault site (some

signal line, a).

Step 2. Justify the value j 1 on the signal line a by assigning

values to the primary inputs. This justification step may require some

choices when assigning values to signal lines and/or primary inputs.

Step 3. Propagate the faulty signal value to a primary output

along one path or simultaneously along multiple paths through the cir­

cuit. Note that a choice of paths may exist. Propagation of a signal

value wi 11 require assignments to be made along the chosen path; how­

ever, as noted earlier, these assignments are never arbitrary.

Step 4. Justify the assignments made in Step 3 so that they are

consistent with the assignments made in Step 2. If a consistent

9

assignment is not possible, then no test exists for the specified fault.

The following example illustrates the path sensitization procedure.

Figure l is a simple combinational circuit. Assume line x4 is stuck-at-

0. According to Step 2, we wish to justify al on line x4 , and this is

done by setting input u1 = l and u2 = l. Next we wish to propagate the

fault through the OR gate to line x6 , a primary output. This is done by

assigning x5 =o. Step 4 involves justifying x5 =0 consistent with the

other values already assigned. x5 will equal zero if u2 =0, u3 =l; u2

=l, u3 =0; or u2 =u 3 =o. We must choose u2 =l, u3 =o to be consistent

with the assignment made in Step 2. Thus our test consists of the in­

put u 1 = l , u2 = l , u 3 = 0.

It is apparent that there are two items of information about the

circuit necessary to perform path sensitization. The topology, i.e.,

the gate interconnection or network information, is needed to determine

the path through the circuit. In addition, the behavior of each gate

must be known. For example, the information that an AND gate output is

l only if both inputs are l, and 0 only if at least one input is 0, is

essential.

Path sensitization procedures differ in the manner in which the

topological and behavioral information is stored and manipulated to gen­

erate tests. The D-algorithm uses 11 cubes 11 to pass behavioral informa­

tion. An operation called intersection of cubes is performed to estab-

1 ish a chain or path through the circuit. Figure 2 illustrates the cube

concept. The inputs to the AND gate are labeled l and 2, and the output

line is labeled 4. At the right in Figure 2 is a table whose heading

has the input/output labels. The first row specifies that the output is

1 when both inputs are l, and the second and third, that the output is 0

0
I
co
I
in
~

><

U)

><

N
::::s

c
0

.µ
ro
N

VI
c
<!)

I.fl

O'l
c
.µ c
ro o
I...·-
.µ .µ
VI re
:::; CT;

- re
- 0..
- 0

I...
.µ 0..

::::i­
u re
I- c
·- O'l
u ·-

Vl
<!)

- "O c.. c
E re
re

I.fl

1 0

1----"'-
2 o 4

1 2 4

1 1 1

0 0

0 0

D 1 D I
I
I

I 1 D D I
L _______ _J

Figure 2. An AND Gate With Its Singular Cover and D-Cubes

12

when either input is 0. This is termed the singular cover of the func-

tion, and each row in the singular cover is called a cube. Below the

singular cover is the error propagation information for the function.

These are called D-cubes of a failure. The first cube indicates that a

fault on input l can be propagated to output 4 if input 2 is 1. These

five cubes contain the behavioral information of an AND gate needed to

generate a test in a circuit containing an AND gate.

Figure 3 repeats the circuit of Figure l showing its singular cover

and, within dashed lines, D-cubes. This example is by Roth (1966). The

intersection of two cubes determines how circuit conditions specified

by the two cubes can be simultaneously satisfied. If the intersection

does not exist, the two conditions assign different values to the same

line, implying that the conditions are inconsistent. The intersection

of cube A= (a 1, a2 , ... , an) with cube B = (b 1, b2 , ... ' b) designat-
n -

ed as C= (c 1 , c2 , ... ,cn)=A+B is defined as

c. = a.
J J

if a.= b. or if b. is unspecified.
J j J

If a. # b. for some j, then the
J J

intersection C does not exist.

The algorithm itself involves intersecting the D-cubes in a trial

and error fashion unti 1 a chain is formed from the site of the fault to

a primary output. Selected node fanin and fanout information is saved

as the algorithm progresses so that the topology of the network is pro-

gressively learned. Nodes not specified in the D-cube intersecting

phase are assigned by intersecting the incomplete test cube with cubes

from the singular cover until all Jines for which it is possible to

assign values have received them. The entire process may require a

1

2

13

1 2 3 4 5 6

1 1 1

0 : 0
4

Q Q
6

1 1 1

0 0 ,. 5
:

0 0

1 1

1 ~

Q 0 0

. . '
r~--:--~ -7"1
I 0 1 ; DI
I . . : . I
I ; D : 01
L~T~-~--+.L~1

:11;>,: 1;>1
: I : : : : I
: I 1 0 ; 0 I ·
: L.:__..:..r...:.-~....L_;l
: : : I I;> 0 l;>I
: : : I : : I
: : ; : 0 D DI
: : : I : I
~ ~ : I I? (> (>I
. . L-----~J

Figure 3. A Simple Combinational Circuit With Its
Singular Cover and D-Cubes

great deal of backtracking. A detailed description of the algorithm

appears in Breuer and Friedman (1976, pp. 46-49). Detailed examples

are also given in the former reference as well as in Roth's original

paper (Roth, 1966) .

14

In its most general form, the D-algorithm can always find a test

if one exists.

no test exists.

If the fault is undetectable, the procedure proves that

Schneider (1967) has shown that in some cases it may be necessary

to sensitize several paths simultaneously in a reconvergent fanout net­

work to detect a fault. (A network has reconvergent fanout if at least

one primary input and/or gate output branches out to two or more gates

whose outputs 1 ie on paths through the circuit which later reconverge

as inputs to a single gate.) While multiple path sensitization is pos­

sible with the D-algorithm, Breuer (1981) asserts that multiple path

sensitization cases are rare, and that practical implementations of the

D-algorithrn are often restricted to single path sensitization in order

to reduce computation time.

The cube notation and calculus used by the D-algorithm is adequate

with respect to behavioral information and is expressed in a format that

is easily stored and manipulated by a computer. The representation of

the behavioral information suffers from a lack of compactness, however.

The need for so much backtracking in the algorithm execution is an indi­

cation that a lack of adequate topological information is available in

the circuit model. Paths are discovered and problems such as those en­

countered in circuits containing reconvergent complemented fanout cannot

be avoided due to a lack of topological information. (Reconvergent com­

plemented fanout is defined and discussed in Chapter V.)

15

A variant of the D-algorithm, critical path sensitization, was in­

troduced by Thomas (1971) and is employed in the stimulus generation

section, STIMGN, of the D-LASAR system. The procedure involves first

selecting a primary output line and assigning to it a critical I (0)

value. Using sensitizing cubes, this value is driven back toward the

primary inputs as in the justification procedure of the D-algorithm.

Whenever a choice exists, one alternative is selected. In order to con -

sider all possibilities, the other choices are reserved and used later

by backtracking to the site of the choice and making an alternate assign­

ment. For each choice of assignments, all implications of that choice

are made. Each line assignment that is critical to the justification

procedure is marked as it is generated, and all critical Jines are driv­

en back, all noncritical lines are justified using primitive cubes.

When an inconsistency arises, making it impossible to justify a critical

value by using a sensitizing cube, one can backtrack and use a primitive

cube. This procedure is then repeated for each primary output.

The critical path test generation procedure is outlined in detail

with examples in Breuer and Friedman (1976). It may fail to generate a

test for a fault which requires multiple path sensitization but detects

many faults along a sensitized path in one pass. This later character­

istic makes it a fault-independent algorithm.

The D-LASAR system models all circuits in terms of their NAND gate

equivalent network. This decreases the amount of behavioral information

required, thus comp2cting that information. The disadvantaqes in model­

ing everything in terms of NAND gates are twofold. The number of gates

in the circuit model can be significantly greater than in the original

network. More storage may be required for the network description but

16

less for the cube description. The NANO gate equivalent description

has been criticized because it is an abstraction of the original cir­

cuit and there may not be a one-to-one correspondence between the stuck­

at faults on the signal I ines in the model and those of the original

circuit.

The significant amount of backtracking and arbitrary assignment of

I ine values when choices arise indicate here, as in the D-algorithm,

that not enough topological information is contained in the model. Paths

are discovered, as in the D-algorithm, by intersecting cubes to form a

long path through the circuit.

Both the D-algorithm and D-LASAR utilize the iterative combination-

al array to model sequential circuits. In this model, the feedback

loops are cut and the circuit reproduced into cells corresponding to an

assigned time frame (see Figure 4). The feedback lines form pseudo out­

puts of ti me frame j in ce 11 j and pseudo inputs to ti me frame j + 1 in

eel I j + 1. The test generation procedure results in a sequence of input

vectors for each fault. Due to the memory characteristic of sequential

circuits, it is desirable to obtain a test sequence that is independent

of the initial circuit condition since initialization sequences may be

difficult or sometimes impossible to generate. In addition, the pre-

sence of a fault in the circuit may invalidate an initialization sequence.

Equation Manipulation

The final test generation procedure to be reviewed is the Boolean

difference algorithm. The Boolean difference approach to ATG is a fault­

dependent Boolean equation manipulation procedure which utilizes the

stuck-at fault model. As a mathematical concept, difference methods can

x (0)

u

X(output)

U(O) U<1>

clocked
F/F

q atate

clock

17

y

X (excitation)

U(I}

,---------t-' , ,
x (i+1)

Y(O) I Y(1) Y(i)

time frame o 1time frame I I time frame i
cell o I cell 1 I cell i

Figure 4. Sequential Circuit Modeled as an Iterative
Combinational Array (Breuer and Friedman,
1976)

I :
I ;
I :
I :

I :
I :

1 G

be traced to G. Boole in 1872. The elegant mathematical formulation of

the Boolean calculus was first introduced by Akers (1959). The use of

this calculus to derive tests for logic faults in digital circuits was

first suggested by Professor E. Stabler to L. W. Bearnson at Syracuse

University (Bearnson, 1965). Further development of the idea appeared

in a paper by Sellers et al. (1968) and has since undergone extensive

development. It is considered to be the classical equation manipulation

approach to ATG.

Assume that a combinational circuit with inputs u1, u2 , ••• , un

realizes the function f(u 1 , u2 , .. , un). Let fi(O)=f(u 1, . ' u i -1 '

. , u. 1 , l , u. 1 , ••• , u) . These
1- 1+ n

represent the condition when input u. is stuck-at-0 and stuck-at-I, re-
1

spectively. The objective in test generation is to find an input vector

U = (u 1, u2 , ... , un) that causes f(U) and fi (0) (fi (1)) to take on

different values so that the presence of the fault will be detectable

at the primary output. Equivalently, we wish to solve the equation

f (U) f. (0) = 1 (f(U)
I

f.(1) = 1) for U.
I

By Shannon's expansion algorithm, we have

f(U) @ f.(O) = [u.f.(1) + u!f.(O)] @ f.(O)
I I I I I I

= [u.f.(l) + u!f.(0)] f!(O)
I I I I I

+ f.(O)[u.f.(l) + u!f.(0)] 1
I I I I I

u.f.(1) f!(O) + u.f!(l) f.(O)
I I I I I I

= u.[f.(l) @ f.(O)]
I I I

The factor f. (1) ~ f. (0) is referred to as the Boolean difference of
I I

f with respect to u. and is given the symbol df/du .. This symbol should
I I

19

not be confused with the derivative notation in the calculus. The test

for u. stuck-at-0 is the
I

input vector (or vectors) U that satisfy the

equation

df
l u.

du.
=

I
I

Similarly, it can be shown that a test for u. stuck-at-1 is the solu-
1

tion of the equation

df u'. -- = 1 •
I du.

I

The circuit of Figure l realizes the Boolean function f(u 1 , u2 , u3)

u2 (u 1 + u3). The test for u 1 stuck-at-0 is the solution of u 1 [f(O,

u2 , u3) $ f(l, u2 , u3)] = u1 [u2 u3 Et1 u2] = 1 or u 1u2 u3 1. The solu-

tion is (l,1,0) which tests for u 1 stuck-at-0 (see Table 1).

TABLE I

BOOLEAN DIFFERENCE IDENTITIES

df 1 (U)
=

df (U)
(l)

du. du.
I I

d(f(U) • g(U)]
f (U) •

dg (U)
$ g (U)

d f (U) Gi df (U) dg(U) (2)
du. du. du. du. du.

I I I I I

d[f(U) + g(U)] f I (U). dg (U) EfJ '(U) df(U) Gl df(U) . dg (U) (3)
du. du. 9 du. du. du.

I I I I I

d[f(U) $ g(U)]
=

df (U)
Ei1

dg (U) (4)
du. du. du.

I I I

20

The use of the identities listed in Table I reduces the amount of

algebraic manipulation required in order to determine df/du ..
I

If one

of the functions, say g(U), is independent of the variable ui, then

dg/du. = 0. When this situation exists, Equations (2) and (3) simplify
I

as follows:

d[f(U) • g(U)]
g (U) df (U) ---du. du.

(2a)
I I

d[f(U) +g(U)]
= g I (U) df (U)

du. du. (3a)
I I

In its original formulation, the Boolean difference approach could

generate tests for stuck-at faults on primary input 1 ines only. The

concept of a chain rule to enable the computation of composite Boolean

differences from the partial Boolean differences of the component func-

tions was introduced by Marinos (1971). For example, the circuit of

Figure 5 may be thought of as a composite of the functions f and g,

where f = x 1

stuck-at-0, we solve

The tests are (1, 1,0,x) and (l, l ,x,O), where x represents a "don't care"

va 1 ue.

If each circuit element is considered to be a separate subcircuit,

the method resembles the path sensitization procedure. A general form

of the chain rule was derived by Chang, Reed, and Banes (1972). Their

formula is closely related to the multiple path sensitization concept.

Applications of the Boolean difference approach for fault detection in

-

r------------------1

....
)(

C? ~ L----- _______ _?_~ ___ _J

------;= ----,
>< I

""' N = =

I
I
I
I
I
I
I
I
I
I L __________ .J

l/1
c
0

.µ
u
c
:::i

LL..

<fl
0
Q_

E
0

u

<fl
ro

"O
Q)

3
Q)

>

u

21

22

both asynchronous and synchronous sequential machines exist (Prior and

Bennetts, 1974; Hsiao and Chia, 1971).

The Boolean difference approach derives al 1 possible tests which

detect a given fault. Since the equation for the circuit is needed, the

time and memory requirements for generation of the circuit equations may

be excessive for large circuits. Computers are not known to be particu­

larly efficient at manipulation of symbols and simplification of equa­

tions.

Summary

The fundamental concepts involved in two basic approaches to auto­

matic test generation have been presented. The path sensitization pro­

cedure introduced in Roth's D-algorithm (1966) and later modified for

use in D-LASAR (Thomas, 1971) is performed by representinq the behavior

of a circuit by cubes. A path is traced through the circuit by inter­

secting the cubes according to the rules of the cube calculus. It was

noted that in both instances, the behavioral information was adequately

supplied to make the algorithm efficient; however, lack of adequate

topological information in the cubical representation led to time con­

suming backtracking in the algorithms.

The Boolean Difference procedure was shown to be an elegant mathe­

matical concept which generates all possible tests for stuck-type faults.

However, since it requires the Boolean equation of the circuit, time and

memory requirements for generating the equation for large circuits may

be excessive.

CHAPTER 111

MODELING DIGITAL SYSTEMS

Introduction

Automatic test generation algorithms based upon a gate level cir­

cuit model can benefit from both topological and behavioral information.

The efficiency of the algorithm depends, to a large extent, on the mathe­

matical formulation of this information. The mathematical model should

be capable of simultaneously describing the gate level interconnection

structure and the logical behavior of each individual gate in a concise

mathematical representation suitable for easy storage in and manipula­

tion by a computer.

In this chapter, a mathematical model of digital systems is intro­

duced. The model represents a digital system as a set of discrete time

Boolean equations expressed in matrix notation. The emphasis of this

chapter is to illustrate how the model is formulated from a gate level

circuit diagram and to illustrate the representation of behavioral in­

formation. The following chapter emphasizes the features of the model

pertaining to the network topology and to the machine storage complexity

of the model itself.

Notation

A Boolean function is a function f with domain {0,l}n = Bn and

range B = {O,l}, where n is an integer and Bn represents then-fold

23

24

Cartesian product of the set B with itself. A set of m Boolean func-

n tions f 1, f2 , ... , fm' each of which maps B into B, can be represented

by a single function f whose domain is Bn and whose range is B~.

There are exactly four Boolean functions from B into B. These

functions are:

Identity f. (x) = x
I

Complement (NOT) f (x) x'
c

Constant Unit f (x)
LI

Constant Zero f (x) = 0
0

for xsB. The notation can be simplified by dropping the f and the

parentheses from the functional notation.

Identity ix = x

Complement (NOT) ex = x'

Constant Unit ux =

Constant Zero ox = 0

Two other very important functions are the Boolean AND and Boolean

OR functions whose truth tables are exhibited in Table I I. These func-

tions are used so frequently that a shorthand notation exists for them:

f 0R(x1 ,x2) = x1 + x2 , fAND (x 1 ,x2) = x1 ·x2 . One canonical representa­

tion of a Boolean function is the disjunctive normal form (DNF) which

is formed by composition of the AND, OR, and NOT functions. Because

every Boolean function can be represented through functional composition

of the three functions AND, OR, and NOT, these three functions form a

basis set for the set of all Boolean functions. Other basis sets exist,

e.g., {OR, NOT} and {AND, NOT}. When the two functions AND and NOT are

composed, the resulting composition function is called the NAND (NOT

25

AND) function. Similarly, the NOR (NOT OR) function arises from the

composition of the OR and NOT functions. Each of these functions also

forms a basis for the set of all Boolean functions.

TABLE I I

TRUTH TABLES FOR ''AND'' AND 11 0R11 FUNCTIONS

xl x2 f AND (xl ,x2) xl • x2 xl x2 f 0 R (x 1 ' x2) = xl + x2

0 0 0 0 0 0

0 0 0 1

0 0 l 0

1

Let C = {i ,o,c,u} be the set of functions from B into B and F be

the set of all mxn matrices whose entries are functions from the set

C. The elements of Fare called transformations from En into Bm. In

pa rt i cul a r for U = (u 1 , u2 , ... '
ation matrix A operating on U as

a 11 aln u 1

AU
u2

alm a u
mn n

u)T sBn, we define the mxn transform­
n

..,
a 11 ul+a12 u2 + · · · +al n u

n

a
ml u1 +am2 u2 + •.. +a u

mn n

The set F contains an (n xn) identity transformation I = (ak.),where
n J

akj = i when k = j and akj = 0 when k ¥ j. The identity transformation

26

maps every vector Xt:Bn into itself. The (mxn) zero transformation,

0 =(a ..), is the matrix, all of whose entries are ot:C. The zero
m,n IJ

transformation maps every Xt:Bn into an m-vector, all of whose elements

are zero.

n m
If A, BsF and X,UsB then AX+ BUt:B , where addition is understood

to be the Boolean OR operation on vectors in Bm.

A transformation Tt:F is, in general, nonlinear. This can be easily

proven by exhibiting a counter example.

T
= (cu 1,o) .

3 2 Let T:B ~ B be the transform-

Then T = [~ ~ ~] in matrix form. For a, BsB,

T(aU+ f3V) = fc o ol rau 1+Sv 1 = l'c(au
01

+sv 1)] = [(ca+cu 1)
0
(cB+cv 1)]

·· loo o au2+sv2

Lau3 +(3v 3

:f aTU + STV .

Combinational Circuit Model

Logic circuits physically realize Boolean functions through compo-

sition of functions from the basis set {AND, OR, NOT}. The gate level

logic diagram of a combinational circuit describes the interconnection

of basic logic gates which represent the Boolean functions AND, OR, NOT,

NANO, and NOR. Given a gate level logic diagram, we adopt the following

line labeling convention: Primary inputs are labeled u1 , u2 , ... , un,

and the internal lines are labeled x., where the subscript j must be
J

greater than n and greater than the subscript of any line label on any

path between the primary inputs and the line x .. Figure 6 is a labeled
J

It)

>C

~

Q)
>C

q--
I

co
>C

C'll -
I

O>
>C

It) -

......
>C

C? -

27

E
Ill
I...
c;
Ill

0

u

L
c;
0

_J

u
I...
Q.)
c
<!)

c..?

u
<!)

<!)
..0
Ill
_J

~

<!)
I...
::i
01

LL.

28

generic logic diagram where f. represents one of the Boolean functions
I

AND, OR, NOT, NAND, or NOR.

The logic diagram can be thought of as a graph of the chain of

Boolean function compositions. For example, in Figure 6

xl = i u1

Xz = i u2

X3 iu 3

X4 = iu4

X5 = fl (x l 'x2)

x6 = f2(x2,x3)

X7 = f3(x3)

XS = f4(x5,x6)

X9 = f5(x4,x7)

where x1 through x4 represent data steps, and x5 through x9 represent

computation steps. This is called a 9-step chain. (See Savage [1976]

for a definition of k-step computation chains.)

If we restrict the logic diagram to contain only gates which repre-

sent the Boolean functions NAND, OR, and NOT, the computation chain

takes on a linear-looking form. The circuit in Figure 7 contains only

NAND, NOT, and OR gates. The original circuit was an AND,OR circuit.

The output lines of NOT gates inserted during modeling are not labeled.

The computation chain of the modeled circuit is as follows:

xl = i u l /

Xz i u2 > DATA STEPS
I

x3 = . I
1u3J

29

......

:J
u
~

u

I-
0
z

a::
.q- &t)

0

)()(
0
z
<(
:z
<(

r-..

Q)
~

:J
Ol

LL

...
:::s

30

X4 = cx 1 + cx2)

x5 cx2 + cx3 t COMPUTATION STEPS

\ = cx4 + cx5

In matrix notation the set of equations is written:

xl

1:
0 0 0 0

0 l r xl - i 0
01 rul -

x2 0 0 0 0 o x2 0 i 0 l "2
x3 0 0 0 0 0 x3 0 0 u3J

= 1: +
X4 c 0 0 0 0 X4 0 0 0

al X5 0 c c 0 0 X5 0 0 0

cc oj l x6 0 0 0 x6 0 0 0

[y]=[oooooi] X

where the entries .in the matrices are functions from the set C =

{i ,o,c,u} of Boolean functions of one variable.

In general, the equations describing the behavior of a digital com-

bi national logic circuit with n primary inputs u1, u2 , ..• , un; p logic

gates of the type AND, OR, NOR, NANO, NOT, whose outputs are labeled

xn+l' xn+2 ' .•. ,xn+p; and m primary outputs y1 , y2 , ... ,ym can be ex­

pressed in the form

X = AX + BU

Y = DX

T where X = (x1, x2 , ... , x) n+p
"Bn+p, U () T Bn d "- = u 1 , u2 , . . . , u n s , an

y = (y l ' y 2' ... ' y m) T sBm. The matrix AsF is an (n+p, n+p) matrix

which can be partitioned into submatrices.

31

The matrix BsF, a (n+p,n) matrix, can also be partitioned into sub-

matrices.

B=l-~"·"l·
p,n_

De:F is an (m,n+p) matrix. Because of the labeling convention, the

A matrix is lower triangular, as is the matrix A2 .

During modeling, all circuit gates are represented in terms of

NAND, OR, and NOT gates to achieve the 1 inear-looking equations. Three

questions arise:

1. How difficult is it to model a circuit in terms of these gates

only?

2. What relationship does the signal 1 ine in the model have to the

actual gate level circuit description?

3. What effect does modeling with NAND, OR, and NOT gates have on

test generation for stuck-at faults?

The first two questions will be addressed simultaneously. Figure 8

shows how easily each circuit element can be represented in terms of the

NAND, OR, NOT gates. There is a one-to-one correspondence between the

signal 1 ines in the standard representation and the model representation

since the output to inserted inverters are not labeled.

A test for the output of an AND (OR) gate stuck-at-1 is also a test

for the output of a NAND (NOR) gate stuck-at-0. When an ATG algorithm

tries to generate tests for all stuck-at-] and stuck-at-0 faults in the

Figure 8.

U1 --r-"-"
U2---.__ __

-f>o----Y

Model Representation of Logic Gates

32

y

y

33

circuit model, the test derived will also test for the stuck-at-faults

in the original circuit. Knowledge of the fact that ANDs are modeled

with NANDs followed by inverters and NORs as ORs followed by inverters,

and knowledge of the above facts concerning the relationship between

stuck-at faults in the modeled circuit and the actual circuit enables a

straightforward fault location and diagnosis procedure.

Figure 9 illustrates the modeling process using an exclusive-OR

(XOR) gate. Two ways to model it are shown. The matrix equation asso-

ciated with each model appears on the right.

To further illustrate the modeling procedure for combinational cir-

cuits, Figure 10 shows a gate level diagram of a circuit and the repre-

sentation from which a transformation matrix can be written. The matrix

equation is

I xi r:
0 0 0 0 0

xii
i 0

:1
ul

0 0 0 0 0 x2 0 i u2 i x2
I I I
I 0 0 0 0 0 0 x3 j 0 0

I u3 i X3
= I +

I X4
i

oi c c 0 0 0 0 X I 0 0

J 4!
!

I X5 0 i 0 0 0 X I 0 0 0
5'

I x6 0 0 0 c c o _ x6j 0 0 0

[y] = [o 0 0 0 0 i] x

The modeling of all logic gates in terms of NAND, OR, and NOT gates

is an intermediate step between the logic circuit described with AND,

OR, NOT, NAND, NOR, and XOR gates and that proposed by Thomas (1971) of

using only NAND gates. While the NAND gate model can also be represent-

ed in the matrix formulation, the complexity of modeling is slightly

X1= U1 X1 i 0 0 0 0 U1
U2' X5 X2 0 0 0 0 U2

y X3 - c i 0 0 0 X3
U1 I X4 i c 0 0 0 X4

X2= U2
X5 0 0 c c 0 X5

X1 = U1 X1 0 0 0 0 U1

U2' X2 0 0 0 0 U2
X3 - i c 0 0 0 X3

U1' X4 c i 0 0 0 X4
X2= U2 X5 0 0 c c 0 X5

Figure 9. Exclusive-OR (XOR) Representations

(a) Gate Level Combinational Circuit
Diagram

y

(b) Gate Level Transformation

Figure 10. Combinational Circuit Modeling

35

y

36

larger. Figure 11 shows the OR gate and NOT (inverter) modeled as NAND

gates. The matrix representations, however, have the same dimensions.

It is possible to use the idea of computatton chains to model the

combinational circuit and omit the data steps. When this is done, a

smaller-dimensioned representation is obtained; however, it is not as

useful in ATG as the one presented. For completeness, however, Figure

12 illustrates the labeling procedure and matrix representation for the

same circuit as Figure 10. Note that the matrix operating on the U vec-

tor in Figure 12 is the same as the submatrix A1 in the representation

fo r Fi g u re l 0.

Before introducing the sequential circuit model, one other inter-

esting observation is made. It is possible to represent a Boolean func-

tion in the matrix representation, independent of a gate level diagram.

For example, if

let

xl =

:~~ x2 DATA STEPS

x3 = u3)

X4 = cx1 + cx2 + i x3 I
l

XS = i x2 + cx3 I
COMPUTATION STEPS

x6 cx4 + cxs

and

y = i x6

~ X1=U1~Y

0 0
+

c 0 0

[y] - [0 i] [:!]
x1= u1

x 1=u1~
X =U y ~

2 2
X2=U2

X1 0 0 0 ~ iO [~!] X2 - 0 0 0 X2 + oi

X3 0 X3 00

[v] - [o 0 i] x,
X2
X3

Figure 11. NOT and OR Gates Represented in Terms
of NANO Gates

X3

37

y

U1 '-- X1
~J--1

X3
y) I

~

U2 --I
x2 .

U3

39

In matrix form

,...

ro
I x1 0 0 0 0 0 xl 0 0 ul
I

x2 10 0 0 0 0 0 x2 0 i 0 u2

I x3'
0 0 0 0 0 0 x 0 0 u3

= 3 I +

I X4
c c 0 0 01 x4 I 0 0 0

I

lo X5j j X5 c 0 0 0 0 0 0

l x6 la 0 0 c c 0 x6 0 0 0 -
[y] [o 0 0 0 0 i] x

Sequential Circuit Model

The sequential circuit will be modeled as an iterative combination-

al array (Breuer and Friedman, 1976). The matrix formulation achieves

a concise representation for this model. The delay symbol pictured in

Figure 13 will be incorporated into the gate level diagram in feedback

loops to denote the time frames (not to be confused with clock pulses

in synchronous sequential circuits or with actual circuit delay).

The computation chain for the circuit of Figure 13b is

x1 (t) u 1 (t)

x2 (t) = u2 (t)

x3(t) = ex 1 (t) + cx4 (t-l)

x4 (t) cx2 (t) + cx3(t-l)

The computation chain is shown in matrix form on page 41. In general, a

sequential circuit can be represented in the form

X(t) = AX(t) + BU(t) + CX(t-1)

Y (t) = DX (t)

---c()'""--

(a) Delay Symbol

X4

(b) Delay Symbol in Feedback Loop

Figure 13. Sequential Circuit Modeling

40

xi (t) I lo 0 0 ol

x2 (t) I lo 0 0 oj

x3(t) c 0 0 0

x4 (t) 0 c 0 0

[
YI (t)l = [o o ; ~i
v2 (t) o 0 O 1

I xi (t) I
I x2 (t) I

x3 (t)

x4 (t)

x1 (t)

x2 (t)

x3(t)

x4(t)

I i ol [u1(tll Jo 0 0 ol lx 1 (t-1)

0 i u2 (t) I o 0 0 ol I x2 (t-1)

+ . +
0 0 0 0 0 c x3 (t-1)

0 0 0 0 c 0 x4 (t-I)

.i:-

42

where A, B, C, and DEF, t is an integer time step, U(t) sBn, Y(t) sBm.

A and B can be partitioned as in the combinational case and the matrix

C can be partitioned

Figure 14 is a labeled gate level diagram of a clocked D-fl ip flop.

The matrix representation for this synchronous sequential flip flop is

shown on page 44.

Summary

Mathematical matrix representations which describe the behavior of

digital systems have been derived. The gate level logic diagram is repre-

sented in terms of NAND, OR, and NOT gates and a k-step computation

chain is formed. The coefficients of each variable in the computation

chain is a Boolean function from the set C = {o,i ,c,u}. Sequential cir-

cuits are represented as iterative combinational arrays and represented

in the matrix format through the introductions of a delay element in

each feedback loop. Mathematically, the delay is represented by an

integer, t, which corresponds to the iteration number.

(

(')

>'.

...
= II ...
><
II
c

~

0 0
11 II
,... N

> >

>'.'ft

N

= II
N

><
II
~
..J
0

43

CL
0

LI..

CL

LI..
I

Cl

u
Q)

.;;L
u
0

u

..::t

Q)
!....
:J
O"l

LI..

xi (t) I lo 0 0 0 o!

x2 (t) 0 0 0 0 0

x3(t) = c c 0 0 0

xlt(t) 0 i 0 0 0

XS (t) 0 0 c c 0

[
YI (t)] = ro o o o i]
y2 (t) o o o o c

lx1(t)I

x2 (t)

x3(t)

x4(t)

xs(t)

x 1 (t)

x2 (t)

x3(t)

x4(t)

xs(t)

+

I i oj ["l(t)l lo 0

0 i u2 (t) lo 0

0 0 + I 0 0

0 0 0 0

0 0 0 0

0 0

0 0

0 0

0 0

0 0

ol

ol

ol

c

0

lx1(t-I)

I x2 (t-1)

I x 3(t-1)

x4(t-1)

xs(t-1)

..i::­

..i::-

CHAPTER IV

MODEL CHARACTERISTICS AND EXTENSIONS

Introduction

The logical behavior of digital systems is a dominant feature of

digital circuits when generating tests for logical faults. Because it

is necessary in automatic test generation to derive an input to the cir­

cuit which allows one to observe a fault on an internal signal line at

a primary output, most fault-dependent algorithms have taken the path

sensitization approach. Locating and tracing specific paths through the

circuit requires some topological information. Both the logic behavior

and topological information must be presented in a concise, efficient

manner that is amenable to computer storage and manipulation.

Characteristics of the matrix model of digital circuits as they re­

late to the topology of the system will be given in this chapter. Other

features of the circuit contained in the matrix description will be

pointed out, and the relationship between the size of the describing ma­

trix and circuit size will be presented. The original model will be ex­

tended to include variables associated with each fork in a fanout path

in the circuit so that complete coverage of single permanent stuck-at

faults can be achieved.

Combinational Circuit Topology

A combinational circuit can be thought of as a directed graph whose

45

46

vertices consist of the primary inputs and logic gates and whose edges

are represented by the signal lines. A directed graph corresponding to

Figure lO(a) is given in Figure 15. The adjacency matrix associated

with a directed graph G having n vertices and no parallel edges is an

n x n binary matrix AG = (a ..) such that
IJ

a .. = 1 if there is an edge directed from the ith vertex
IJ

to the jth vertex, and

= 0 otherwise

(Deo, 1974). The adjacency graph for Figure 15 is

ul u2 u3 GI G2 G3

ul 0 0 0 0 0

u2 0 0 0 0

U3 0 0 0 0 0

AG =

Gl 0 0 0 0 0

G2 0 0 0 0 0

G3 0 0 0 0 0 0

It can be seen by inspection that the transpose of AG and the A ma­

trix for Figure 10 have corresponding entries. In particular, every

nonzero entry in A corresponds to a nonzero entry in the transpose of

AG. This direct correspondence indicates that the network connection

(topological) information is contained in the A matrix of the model.

Since the network interconnection information is present in A, the fan-

in (fanout) of the individual vertices (primary inputs and logic gates)

can be computed by counting the number of nonzero entries in the row

(column) associated with that vertex.

ro -0

.._
0

..c:
0..
cu ,_

c..!J

"'O
Q)
~

u
Q) ,_

Q) ,_
::i
O'l

LI...

47

48

In particular, define r. equal to the number of nonzero entries in
I

row i of the A matrix and k. equal to the number of nonzero entries in
J

co 1 umn j of the matrix A. Then r. is the fanin of the gate with output
I

labeled x., and k. is the fanout of the gate with output labeled x. or
I J J

of a primary input u ..
J

T The vectors R = (r.) and K = (k.) will be re-
1 J

ferred to as the fanin and fanout vectors, respectively.

The fanin vector for the network of Figure 15 is R= (0,0,0,2,2,2)T.

The fanout vector is K = (l ,2,l ,l ,l,O)T.

Combinational Circuit Matrix Complexity

Define the complexity, y, of a matrix to be the number of nonzero

elements in the matrix. In the adjacency matrix of a graph, G, the in-

teger y equals the number of edges in G. The matrix parameter y is re-

lated to the amount of computer storage necessary to represent the

matrix.

For conciseness, the system of equations

X = AX + BU

will be rewritten as

where

and

49

X = (x 1, x 2 , ... , x) p n+ n+ p

This formulation takes advantage of the fact that x. = u. for
I I = 1' 2'

... , n. For example, for the circuit of Figure 10,

0 0 0 0

:1 0 0 0 0

0 0 0 0
M =

:J
c c 0 0 0

0 0 0

0 0 0 c c

The matrix M wi 11 be referred to as the defining matrix for the

system since it contains both the behavioral and topological i nforma-

ti on. ft can be easily seen that the number of nonzero elements in M

n+p
Y = n + l

n+l
r.

I

n+p
n + I

j=l
k.

J

The lower limit of the first summation is n+l because the first n rows

of A contain only the null element o. The complexity measure, y, corre-

spends to the number of primary inputs plus the sum of all fanin (fan-

out) connections in the circuit including primary outputs. For the cir-

cult of Figure 10, y = 3 + 6 = 9. The upper l i mi t on y is y = n + min
max

{p·(r.) , (n+p)(k.) }.
1 max J max

A measure of the sparsity of a matrix is given by its density. The

density is defined to be the number of nonnull elements divided by the

total number of matrix elements. The density of Mis

d = -~y--=­
(n+p) 2

The density of the defining matrix M for Figure 10 is d 9/36 = 0.25.

50

Model Extensions

To completely test a combinational circuit for single permanent

stuck-type faults, fanout on primary input signals and at the output of

internal gates must be considered. Figure 16, an example from Breuer

and Friedman (1976), illustrates the necessity to differentiate between

the different forks on a signal path. The input signal u2 fans out to

gates G1 and G2 . This signal may appear normal at one gate and faulty

on the other. If u2 is stuck-at-1, then both a and b are also 1 and

the output y becomes u2 + u3. However, the fault in which the input

lead a to G1 is stuck-at-1 but the signal b still corresponds to u2 re­

sults in the output y = u1 + u2u3. Similarly, if the input lead b to

G2 is stuck-at-1 while signal a still corresponds to u2 , y = u1u2 + u3.

This situation can be included in the model by labeling each fork

in a fanout path. With this expansion, note that p is no longer equal

to the number of gates in the circuit, but is equal to the number of

gates plus the number of newly labeled forks. Figure 17 illustrates the

labeling procedure for the circuit in Figure 16. The computation chain

becomes

xl ul

X2 = u2

X3 u3

X4 = Xz

X5 = x2

x6 = cx 1 + cx4

x7 = cx3 + cx5

Xg CX6 + cx7

N =

N
C!>

.µ
:::J
0.
i:::

\.0
.µ ,.......

·- O'"\
:::J ~
u
~

·- i:::
u l'O

E
l'O "O

(\)

4- ·-
0 ~

I.I...
.µ
:::J "O
0 i:::
i::: l'O
l'O

I.I...

(\)
~

:::J
Cl

51

52

..!:
.µ

'l<m
ro

Cl..

.µ

::J
0
c::
ro

LJ..

ro
c::

IJ)

~
!...
0

LJ..

0
.µ

-0

co ~
Q)
-0

'I(c::
Q)
.µ

><
LU

Ol
c::

Q)
..Cl
ro

_J

~ It) ,...._
>< ><

Q)
!...
::J
Ol

LJ..
~ "' (')

:::s :::s = II II II
~ "' (')

>< >< ><

53

In matrix form

r xi 0 0 0 0 0 0

:1
ul

I
0 i ; x2 0 0 0 0 0 u2

I
x3 0 0 oooooj u3

I
0 i

I
X4 0 0 0 0 0

:1
X4

I X5' 0 i 0 0 0 0 0 X5 I

x6 c 0 0 c 0 0 0 ol x6

X7 0 0 c 0 c 0 0 ol X7

XS 0 0 0 0 0 c c oj XS -
[y] = [o o 0 0 0 0 0 i] x

The dimension of M is increased by 2 rows and 2 columns, the den-

sity of Mis 0. 17 compared to d • 0.25 before the extension, and y = 1 l

compared toy= 9 prior to the extension. It is expected that when more

details of the circuit are modeled, the complexity of the model will in-

crease.

T The fanout vector K = (1,2,1,l,l,l,l,O) indicates explicitly that

x2 = u2 is the line which forks. In general, when k.>1, the defininq
J -n+p

matrix will contain I
j=l

k., more elements than the nonextended matrix.
J

The maximum increase in complexity, ~ , due to extending the model is max

equal to (k.) times the number of gates plus primary inputs. The J max

maximum complexity of the extended model is equal to the maximum complex-

ity of the unextended model plus ~ . This quantity is 1 inear in the max

number of gates plus primary inputs.

Sequential Circuit Topology

The adjacency matrix for the circuit in Figure 13 (not including

54

the delay symbols as vertices) is

0 0 0

0 0 0

0 0 0

0 0 0

In the model, topological (directed interconnections) information is

contained in both A and C. The entries in the transpose of AG corre­

spond to entries in A+ C, where addition in C is defined by the table:

+ 0 c u

0 0 c u

u u

c c u c u

u u u u u

and matrix addition in F is defined as in ordinary matrix algebra, i.e.,

A+ B =(a ..)+ (b •.) =(a .. + b .•).
I J I J I J I J

In particular, A+ C for the model of Figure 13 is given by

0 0 0 0

0 0 0 0
A + C =

c 0 0 c

0 c c 0

For sequential circuits, the fanin (fanout) vectors are found by count-

ing the number of nonzero elements in the rows (columns) of A+ C. The

T
fanin vector for the above example is R = (0,0,2,2) and the fanout vec-

tor i s K = (1 , l . l , l) T.

Sequential Circuit Matrix Complexity

The defining matrix for a sequential circuit is defined to be

where the submatrices A1, A2 , and c2 are submatrices of A and C. The

general equation can now be expressed as

X(t) = M

u

x (t)
p

x (t-1)
p

where X = (xn+l, x 2 , ... , x) . p n+ n+p

For the circuit of Figure 14,

0 : 0 0 o:o 0
I I

0 i: 0 0 o:o 0

0

0

----------------------M = c c1 0 0 o:o 0 0 I
I I

0 i: 0 0 o:o 0 c
I I

0 o: c c o:o 0 0 ...

and the equation is written as

xi (t) 1 0 0 0 0 0 0 0

x2 (t) 0 i 0 0 0 0 0 0

x3 (t) c c 0 0 0 0 0 0

l X4 (t) 0 i 0 0 0 0 0 c
=

x5 (t) loo c c 0 0 0 0

u 1 (t)

u2 (t)

x3(t)

x4(t)

x5(t)

x3(t-l)

x4(t-l)

x5 (t-1)

55

56

For the defining matrix, M, the complexity of the matrix is defin-

ed identically as for the combinational defining matrix. The complex-

ity of M above is y = 2 + 6 = 8. The density is again defined as the

number of nonzero elements divided by the total number of elements in

the matrix. In general, for a sequential circuit,

d = y
(n+p) (n+2p)

In situations where lines fan out in a sequential circuit, the model

can be extended as in the combinational case.

Summary

The matrix representation for both combinational and sequential

circuits contains the network interconnection information such as node

adjacency, fanin, and fanout. The number of elements in the defining

matrix of a system corresponds to the number of primary inputs plus the

sum of all fanin (fanout) connections in the circuit, including primary

outputs and feedback lines in sequential circuits.

CHAPTER V

A MATRIX APPROACH TO AUTOMATIC TEST GENERATION

Introduction

In this chapter, the matrix model of digital systems forms the

framework in which the path sensitization approach of Roth is carried

out. Behavioral and topological features of the model enable tests to

be generated for several faults at once. When choices arise as to line

assignments during path sensitization, the model contains enough inform­

ation to make the assignments intelligently, thus reducing the require­

ment for backtracking. Self-initializing test sequences for sequential

circuits can be generated and untestable faults flagged.

The application of the model in the context of automatic test gen­

eration using the Boolean difference method is also exhibited. An algo­

rithm for deriving Boolean equations for each internal line in terms of

primary inputs is presented. The Boolean difference of sums of comple­

mented and uncomplemented variables is very straightforward. Because

the matrix model represents lines in this manner, differences are quick­

ly and easily calculated when needed, thus saving the computer storage

space once necessary for storing the differences.

Path Sensitization Using the Matrix Model

The matrix model introduced in Chapters I I I and IV represents each

internal I ine in terms of the sum (OR) of complemented and/or uncomplemented

57

58

variables. The variables may be either primary inputs or internal I ines.

The flow of behavioral information proceeds through the matrix model

from inputs to outputs by data steps followed by computation steps.

Line justification and error propagation for the Boolean OR opera-

tion is reviewed again at this point for reference.

then x4 = 1 can be justified by the assignment x2 = I or x3 = 0.

justify x4 = 0, the assignment x2 = 0 and x3 =I is required. To propa­

gate the fault x2 = D to 1 ine x4 requires that x3 = 0 (x3 = 1). To

propagate the fault x3 = D to I ine x4 (x4 = D1), it is necessary that

x2 = 0.

In general, to justify a 1, at least one uncomplemented summand

must be 1, or at least one complemented variable in the sum must be 0.

To justify a 0, all uncomplemented summands must be 0 and all comple­

mented summands, I. To propagate an error signal (Dor D1), each uncom­

plemented variable in the sum must be 0 and each complemented variable,

].

The path sensitization approach outlined in Chapter I I involved

first deciding on a fault and fault site. The fault-free value of the

faulty variable is immediately justified at a primary input and the

error signal is then propagated to a primary output. The last step in­

volves the consistent justification of I ine values assigned during the

justification and propagation steps.

The manner in which this procedure is carried out within the matrix

model can best be understood by illustration. Examples showing the basic

path sensitization method for combinational circuits, multiple path sen­

sitization, the undetectable fault case, and self-initialization

59

procedures for sequential circuits are presented. A flow diagram gener-

alizing the procedure follows the illustrations.

The combinational circuit of Figure 18 has matrix representation:

xl 0 0 0 0 0 0 0 0 0 0

I~~ 1 x2 0 i 0 0 0 0 0 0 0 0 0

x3 0 0 0 0 0 0 0 0 0 0 u3 Ii

1

X4 c c 0 0 0 0 0 0 0 0 0 X4

X5 0 c c 0 0 0 0 0 0 0 0 X5

x6 0 0 0 0 0 0 0 0 0 0 x6 (5. l)

X7 0 0 0 0 0 0 0 0 0 0 x7

X3 c 0 c 0 0 0 0 0 0 0 0 X3 i
I

x9 0 c 0 c 0 c 0 0 0 0 0 X9 I
I

xlO 0 0 c 0 0 0 c c 0 0 0
xlO I

xl l 0 0 0 0 0 0 0 0 c c 0 xl l

A test will first be generated for line x4 stuck-at-0. As in the

D-algorithm, the letter D will indicate the value of a line that isl

in a fault-free circuit, but has taken the value 0 due to the presence

of a fault (D = 1/0).

On the right-hand side of Equation (5. l), replace x4 by the value

D. This substitution is labeled as Step l in Equation (5.2).

Column 4 indicates that line x4 connects to line x9 and the error

propagation rules indicate that each of the other nonnull variables in

row x9 must take the value l. These values (x2 = u2 = l, x6 = l, and

x9 = D1) are entered in the right-hand vector and labeled Step 2.

The error signal has been propagated to line x9 . Column 9 indi­

cates that line x9 connects to primary output x11 and the error propaga­

tion rules indicate that the nonnull variables, x10 , in row 11, takethe

value l. These values (x 11 = D and x10 = l) are entered in the right-

~
><

...
:I

II ...
><

O>
)(

... ...
)(

co
><

It)
ll(

....
)(

60

.µ

::i
u
I..

u

0 co
c ... 0

>< .µ
co
c:

..Cl
E
0

u

"'O
aJ

CD
Q))(..Cl
co

...J

o::>

aJ
I..
::i
O')

LL

...
:I

61

hand vector and labeled Step 3. Due to the nature of the propagation

procedure, the variables x9 and x 11 wi 11 not require justification and

can be removed from the list of variables to be justified.

The justification procedure now begins. The signal x4 = 1 (the

fault-free value on the faulty signal line) is justified if x = 0 or
l

x2 = 0. Since x2 = 1 has been previously assigned, we choose x 1 = 0.

This assignment is labeled Step 4.

To ensure consistency, the implications of this assignment are made

immediately. Column 1 indicates that x1 connects to x4 and x8. Since

x 1 = 0 and the entry in row 8, column is c, then x8 must equal 1.

This implication is entered as Step 5. The imp] ication assignment of

x8 = 1 implies that x8 has been justified (since x 1 = 0); thus x8 can

be removed from the list of variables which need to be justified.

The justification procedure is continued by justifying x6 = l. The

justification rules indicate that x5 = l (Step 6).

The implication of this assignment is made by investigating column

5 which leads to x7 = 1 (Step 7). x7 can now be removed from the 1 i st

of variables requiring justification. Only x 10 and x5 remain to be jus-

tified.

The value x10 = 1 is now justified. The rules indicate that either

x3 =o, x7 =o, or x8 =0. Since x7 =xs= 1 has already been assigned, the

zero value is given to x3 (Step 8). Implications of the assignment

x3 =o indicate that x5 =1, x8 =1, and x 10 =1. It is noted that x8 =x 10

= I is consistent with previous assignments, and x5 is removed from the

list requiring justification.

The test derivation is complete. The test T = (u 1 , u2 , u3) = (x 1 ,

x2 , x3) = (0, 1, 0) is a test for x4 = D (i.e., x4 stuck-at-0). In

addition, it will detect the faults x9 = D1 and x11 = D.

Column No. = l 2 3 4 5 6 7 8 9 10 11 T

I XS

i x6
I

I. x7

XB
X9

xlO

xl l

=

r:i 0 0 0 0 0 0 0 0 0

0000000 0

oiooooooo

le cooooooo 0

lo ccoooooo 0

10 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

cocoooooo 0

ocococooo 0

lo
0

o c o o o c c o o

oooooooc c

0

0

0

0

0

0

0

0

0

0

0

0

0

D

Step 4

Step 2

Step 8

Step l

Step 6

Step 2

Step 7
Step 5

D~J' Step 2 Step 3

Step 3

62

(5. 2)

In the above example, we were 11 Jucky 11 because in instances where

choices had to be made, the values could be uniquely determined (Steps

4 and 8). The next example illustrates the procedure when choices must

be made.

Figure 19 is a small combinational circuit whose matrix representa-

tion is given by Equation (5.3) (see page 63).

Derive a test for x9 stuck-at-0 (Step I in Equation [5.4]). Propa-

gate the fault x9 = D. Column 9 indicates that x9 connects to x12 and

the fault is propagated if x8 = l (Step 2). Propagate x12 = D'. Column

12 indicates that x12 connects to the primary output variable x13 and

the fault is propagated if x10 = l and x11 = 0 (Step 3).

The justification procedure begins by justifying x9

true if x1 = 0 or x6 = 0. Which should we choose? Column

l. This is

indicates

that x1 fans out to line x10 as well as x9 . Check to see if x1 = 0

would interfere with the value already assigned to x10 . It does not;

in fact, it will justify x10 = l. Therefore, the assignment x1 = 0 is

xl

x2

X3
X4
X5
x6

X]

x8

X9

xlO

xl 1

x12

l xl3

X2 =U2

.., 1 r- 1 o o o o o o o o o o o o I u1

o i o o o o o o o o o o o i u~2~
1

IJ,

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

\00000

=loo o o o o

oooooooi
us
u6

u7

x8

0 0 0 0 0 0

loco o o o coo o o o o

i c 0 0 0 0 c 0 0 0 0 0 0 0

I c o c o o c o o o o o o o
I
I

io o cc coo o o o o o o
I

loo o o o o o cc o o o o

'X

I x~o
I x11

x12

c o x 13 ,
- L j

loo o o o o o o o c
L

x 7 = u 7 ---,__..,

X1 =U1
xe =ue-_,_--

Figure 19. Combinational Circuit

63

(5. 3)

y

made. It turns out in this case that the assignment x6 = 0 is also

val id because column 6 indicates that x6 also connects to x 10 as well

as x9, and the same argument would hold for assigning it the value 0.

Once a value that 11works 11 is found, however, the search is abandoned.

Therefore, we assign the value x1 = 0 (Step 4) with no fear of con­

flicts later.

Next justify x8 = 1. A choice between x2 = 0 or x7 = 0 exists.

64

Column 2 indicates that x2 only fans out to x8 and its assignment wil 1

not affect any other variable. Hence, we make the assignment x2 = 0

(Step 5).

Next justify x 11 = 0.

=x4 =x5 =1 (Step6).

We have no choice here. We must assign x3

The

The

the

Since no other unjustified values remain, the test is complete.

unassigned inputs,

test (u 1 ' u2' u3,

faults X9 and xl 3

Column No. =

xl

x2

x3

X4

X5
x6

X7
x8

X9

xlO
i

I x 11 1

l xl 2 J

_ xl 3_1

u6 and u7' are treated as ''don 1 t ca re"

u4, us' u6' u7) = (0' o, 1 ' 1 ' 1 ' x, x)

stuck-at-0 and x12 stuck-at-1.

2345678910111213 T

000000000 0 0 0

0 i 00000000 0 0 0

00 0000000 0 0 0

000 000000 0 0 0

0000 00000 0 0 0

00000 0000 0 0 0

000000 000 0 0 0

0 Step 4
0 Step 5

Step 6

Step 6

Step 6

o c o o o o c o o o o o o 1 Step 2

c o o o o c o o o o o o o D Step 1

cocoocoooo 0 0 0 Step 3

o o c c c o o o o o o o o 0 Step 3

0 0 0 0 0 0 0 c c 0 0 0 0 D1 step 2

I o o o o o o o o o c
L

variables.

detects

(5. 4)

65

Fanout paths that reconverge are referred to as reconvengent fan­

out paths. Schneider (1967) showed, through example, that some faults

on a reconvergent fanout path cannot be detected by single path sensi­

tization but can be detected through multiple path sensitization.

Armstrong (1966) showed that multiple path sensitization can, in some

cases, prohibit the effect of a fault from propagating beyond the point

of reconvergence. One case, in particular, where this situation can

occur is when some reconverging fanout paths between a specified node

and a specified node of reconvergence have different inversion parity.

Armstrong defines the inversion parity of a reconvergent fanout path to

be the number of inversions, modulo 2, along the path between the speci­

fied fanout node and the specified node of reconvergence.

This presents a dilemma. If only single path sensitization is per­

formed, some faults may remain undetected and a trial-and-error exhaus­

tion of all single paths must be done before discovering the need for

multiple path sensitization. If a procedure involving only multiple

path sensitization is followed, some faults may be untestable because

of reconvergent complemented fanout.

Several approaches have been taken with regard to this problem by

path sensitization algorithms. The D-algorithm is capable of either

single or multiple path sensitization. However, multiple path sensiti­

zation is extremely time-consuming when done by the D-algorithm. Breuer

(1981) asserts that the need for multiple path sensitization does not

occur often enough to warrant the time expenditure when generating tests

for large systems. D-LASAR can detect some, but not all, faults for

which multiple path sensitization is required. In most cases, no attempt

is made to detect those faults not found by the standard algorithm.

66

The Boolean difference algorithm, in its most general form, can detect

faults requiring multiple path sensitization and is not hindered by re-

convergent complemented fanout. This is due to the fact that the gener-

al Boolean difference formula covers each single path (first-order terms)

and all possible multiple paths (higher-order terms). To speed up the

algorithm, the higher-order terms may be omitted.

In general, the approach to be adopted in this thesis is to follow

the single path procedure in order to avoid the problem associated with

reconvergent complemented fanout. One advantage lost due to the single

path assumption is that more faults can be detected at once if multiple

paths are sensitized. For reference, however, the fol lowing example

illustrates how multiple path sensitization can be accomplished using

the matrix formulation.

Figure 20 is Schneider's example (1967). The fault x6 stuck-at-1

requires multiple path sensitization. The matrix formulation of

Schneider's circuit is given in Equation (5.5).

xl

1
0 0 0 0 0 0 0 0 0 0 0 ul

x2 0 i 0 0 0 0 0 0 0 0 0 0 u2

X3 0 0 0 0 0 0 0 0 0 0 0 u3

X4 0 0 0 0 0 0 0 0 0 0 0 U4
i i I xs 0 0 0 0 0 0 0 0 0 0 x5
I 0 i 0 0 0 0 0 0 0 0 0 x6 I x6 = (5. 5)
I X7 0 i 0 i 0 0 0 0 0 0 0 0 X7
I I
I X3 iQ 0 0 c 0 0 0 0 0 0 0 X8
I

! X9 0 0 0 0 c 0 0 0 0 0 0 X9

I xlO 0 0 0 0 c 0 0 0 0 0 0 xlO

I xl l 0 0 0 0 0 c 0 0 0 0 0 xl 1

lx12 0 0 0 0 0 0 0 c c c c 0 xl2

X2 =U2 ----'"'
X3 = U3 --.--..i--1

Figure 20. Schneider's Example (Schneider, 1967)

67

y

68

The column on the right of Equation (5. 6) shows the steps involved

in double path sensitization.

Column No. = 1 2 34567891011 12 T Step

j
0 (2) . xl 0 0 0 0 0 0 0 0 0 0 0

x2 0 i 0 0 0 0 0 0 0 0 0 0 0 (4)

x3 0 0 0 0 0 0 0 0 0 0 0 0 (4)

X4 0 0 0 0 0 0 0 0 0 0 0 0 (2)

X5 i 0 0 0 0 0 0 0 0 0 0 0 (5)

x6 0 i 0 0 0 0 0 0 0 0 0 D' (1)
= (6) (5. 6)

x7 0 i 0 i 0 0 0 0 0 0 0 0 0

Xg 0 i 0 0 c 0 0 0 0 0 0 0 (3)

X9 0 0 0 0 c 0 0 0 0 0 0 D (2)

xlO 0 0 0 0 c 0 0 0 0 0 0 D (2)

xl l 0 0 0 0 0 c 0 0 0 0 o I l (3)

o J l D~ xl2 0 0 0 0 0 0 0 c c c c (3)

Because of the way a circuit is designed, some faults may not be

testable. This is the case when redundancy is built into the circuit.

The single fault model is not appropriate in this case because the cir-

cuit redundancy masks single faults.

Figure 2l(a) illustrates a circuit containing an undetectable

fault. The value 0 on line x4 can never be observed at a primary out­

put. This means that a test cannot be generated for the fault x5 stuck­

at-1. Some faults may not be detectable because it is not possible to

justify the line to a particular value. Figure 2l(b) illustrates this

situation in a very simple circuit. The 1 ine x5 can never be set to the

value 1 and hence can never be tested for the stuck-at-0 condition. Both

circuits are nonminimal constructs, and each possesses reconvergent com-

plemented fanout.

69

x2=u2
~= u 3 --r-~...__,

(a) Circuit With Unobservable 0 on Line x4

(b) Circuit With Unjustifiable 1 on Line x5

Figure 21. Circuits With Undetectable Faults

70

A test generation algorithm can waste a lot of time trying to gen-

erate a test for an undetectable fault. The test algorithm needs to be

able to determine, within a reasonable length of time, whether a fault

is undetectable. The path sensitization approach of Roth (1966), imp le-

mented either in the D-algorithm or D-LASAR, can determine when a fault

is undetectable. When the matrix model is used in conjunction with path

sensitization, undetectable faults can be similarly identified.

The steps involved in determining that the fault x4 = D' in Figure

20(a) is not detectable are shown in Equation (5.7). It is determined

in Step 5 that the value D' on line x4 cannot be justified in a consis­

tent manner with the values specified in the propagation phase. The

fault-free value x4 = 0 can never be achieved as long as x3 =o. If one

attempts to propagate the error x4 = D' along the path through x6 to x8 ,

the value of x7 cannot be justified. Double path sensitization also

fails because x7 cannot be justified consistent with the assignments

made during the propagation phase and during the justification of the

fault-free value x4 = 0.

Co 1 umn No. = 2 345678 T Step I xi l
0 0 0 0 0 0 0 - - l (4)

x2 ! 0 i 0 0 0 0 0 0

01 I
0 0 0 0 (3) x3 j 0 0 0

D''
X4 I 0 c c 0 0 0 0 0 (1)

I
0 0 0 ID I (2) (5. 7)

XS i c 0 0 0 0
!

1 I (4) x6 ! 0 c 0 c 0 0 0 0
I I 0 0 i 0 0 0 0 Di (3) X7 I i

xs_I c 0 0 0 0 c oj Di (4) I

The iterative combinational model of sequential circuits formulated

in matrix form provides a convenient tool for test generation using the

71

path sensitization approach. To illustrate the self-initialization pro-

cedure, a test will be generated for x4(t) stuck-at-0 in the circuit

pictured in Figure 22.

The matrix formulation for the clocked S-R flip-flop is given by

Equation (5.8).

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

c 0 c 0 0 0 0 0 0

= 0 c c 0 0 0 0 0 0

0 0 0 c 0 0 0 0 c

0 0 0 0 c 0 0 c 0

S(t)

R(t)

CLK(t)
x4(t)

x5(t)

x6 (t)

x7(t)

x6 (t-l)

lx7(t-l)j

(5. 8)

Test generation begins by assigning x4 (t) = D. See Equation (5.9).

Inspection of column 4 indicates that the fault can be propagated to

primary output x6 (t) if x7(t-l) = 1 (Step 2). To justify a D value on

line x4 (t) requires either x1(t) = 0 or x3 (t) = 0. Since x1(t) does not

fanout, it is assigned the zero value (Step 3).

The value x7(t-1) is shifted into the x7 position of the time t-1

vector (Step 4) and the D value on x4 (t-l) justified. Justification of

x7(t-l) = 1 is performed in Step 5 by assigning x5(t-1) = 0. The value

on x5 (t-l) is justified in Step 6 by assigning x2 (t-l) = x3 (t-1) = 1.

The test sequence is complete. It is (0, 1, 1) followed by (0, x, x).

The flow diagram in Figure 23 indicates the general procedure for

combinational circuit test generation using the matrix model. The vec-

tor T in the flowchart corresponds to the vector on the right-hand side

of the matrix equation X = M[U X]T. It is initially in an unknown state

x1<t> == S(t) x4<t>
v-~=--~~~-.-~

u - , Q(t)

X3 (t) =Clk (t)

) > ,

x2<t>= R <t> xs<t> ~ ·-~ a <t>

Figure 22. Gate Level Representation of a Clocked S-R Flip Flop

'-.J
N

Co 1 umn No. = 1 2 3 4 5 6 7 -6 - 7 T(t)

x1 (t) i 000000 0 0 0

x2(t) oiooooooo

x3 (t) ooioooooo

x4(t) = cocoooo 0 0 D

x5(t) occoooo 0 0

x6(t) ooocooo 0 c D'

x7(t) 0 0 0 0 c 0 0 c 0 ___ ...

Step T(t-1)

(3) 0

1

1

(1) D

0

(2)

l_J_J

(2)

Step

(4)

(6)

(6)

(1)

(5)

(4)

(5.9)

"-...J
I.Al

""'"

y

/:,INPUT
CIRCUIT
SCRIPTION

+
NUMBER LINES

AND CONSTRUCT
MATRIX ,M

t
INITIALIZE TEST
VECTOR,T , TO

(5,5, ••• ,S)T
I

'
CIRCUIT TEST

SELECT A FAULT NONE LEFT GENERATION r
STOP

Xj = D(D') COMPLETE \.

• PROPAGATE D(O')
TO PRIMARY

OUTPUT
ALONG PATH P

+
NOT NO TEST EXISTS

JUSTIFY D(O') POSSIBLE FOR FAULT.
ON X• CIRCUIT IS

J REDUNDANT

' t NONE LEFT

JUSTIFY t~
NOT SELECT NEW

ti(* 0(0' POSSIBLE PROPAGATION
tK :f 5 PATH

t
FILL IN

IMPLICATIONS IN
T

t NONE
EXISTS TEST COMPLETE

SELECT NEW K FOR Xj = D(D')

Figure 23. Flow Diagram for Combinational Circuit Test
Generation Using Single Path Sensitization
and the Acken Matrix Model

74

)

75

with each entry denoted as tk = 5. When justifying tk (tk # D(D') or

tk # 5), choices may exist and should be handled in the manner describ­

ed for the circuit of Figure 19.

Boolean Difference Using the Matrix Model

The Boolean difference approach to ATG is essentially an equation

manipulation procedure which can, in its most general form, generate

all possible tests for stuck-at faults. An algorithm which uses the

Boolean difference as a means to generate complete test sets for combin-

ational logic circuits has been set forth by Yau and Tang (1971). This

algorithm will be used to illustrate the ways in which the matrix formu-

lation can be used in conjunction with Boolean difference.

Stated briefly, the steps of the algorithm include:

1. Number all lines and write the Boolean equation for each line

x. and its complement x~ in terms of the primary input variables. List
J J

them in Table A.

2. Find the Boolean difference of the logic function f, realized

by the logic circuit, with respect to each fanout 1 ine using the defini-

ti on of Boo 1 e an di ffe ren ce , i . e. , compute d f I dx. = f (x 1 , . . . , x. 1 , 0 ,
J r

xj+l, ... , xn) Gl f(x 1, ••• , xj-l, l, xj+l, ... , xn), where j ranges

over all fanout lines.

3. Find the Boolean differences df/dx., where j starts from the
J

largest line number (a primary output) to the smallest line number that

is not a fanout line. List them in Table B.

4. From Tables A and B, express x. (df/dx.) and x~ (df/dx.), j = l,
J J J J

2' . . . ' n, in terms of the primary input variables. The set of terms

76

of x.(df/dx.) and x'.(df/dx.) represent the complete test set of the sin-
J J J J

gle permanent stuck-at faults on line j.

The matrix formulation is particularly convenient in Steps 1 and 3.

Step 1 in the Yau and Tang algorithm calls for numbering the lines and

writing the logic equation for every 1 ine in terms of primary inputs.

The following algorithm can be used to generate these equations using

the matrix model.

First, partition the matrix Mas in Equation (5. 10) and remove the

data steps. See Equation (5. 11).

(5. 1 0)

(5.11)

When expanded, Equation (5.11) can be written

X r = A 1 U + A2 X r . (5. 12)

The A2 matrix is lower triangular because of the line numbering

convention. The entries in the matrices A1 and A2 are Boolean func-

tions of one variable from the set c = {o, i' c' u}.

The algorithm to gene rate the logic equations for the 1 i nes x. in
J

the logic circuit, in terms of the primary inputs, proceeds as fol lows:

Step 1. Write the matrix equation leaving out the data steps as

in Equation (5. 12). Expand the right-hand side into a

vector.

Step 2. Operate on the vector generated in Step 1, by A2 .

Step 3. Add the vector A1U.

77

Step 4. Check to see if any entry in the vector generated by Step

3 contains any x-variables.

Yes--go to Step 2.

No--Stop.

This algorithm will be illustrated for the example of Figure 24

taken from Yau and Tang. The complete matrix equation is given in Equa-

t i on (5 . 1 3) .

=

o o o o o o o o o o o o o o ol

0 i 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

c c 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 c c 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 c c 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0

I o o o o o o o o c o o o o o o

loo o o o o o o o o o o cc co

The reduced equation is given by Equation (5. 14).

(5.13)

X1 =U1 .-

X2 =U2 I

X3=U3~

X4 =U4

X5 =U5

X6 = U 6 I

X10

X11

x12

Figure 24. Example Circuit for Illustrating Boolean
Difference (Yau and Tang, 1971)

y

'-I
co

79

lx7
- c c 0 0 0 0 ul 0 0 0 0 0 0 0 0 0 0 x7

I x8
0 0 c c 0 0 u2 0 0 0 0 0 0 0 0 0 0 Xg

X9 0 0 0 0 c c u3 0 0 0 0 0 0 0 0 0 0 X9

xlO 0 0 0 0 0 0 u4 I 0 c 0 0 0 0 0 0 0 0 xlO

xl 1 0 0 0 0 0 0

"51
0 c 0 0 0 0 0 0 0 0 xl 1

+
xl2 0 0 0 0 0 0 u6 0 c 0 0 0 0 0 0 0 0 xl2

X13 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0 x13

x14 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0 x14

xl5 0 0 0 0 0 0 0 0 c 0 0 0 0 0 0 x15

xl6 0 0 0 0 0 0 0 0 0 0 0 0 c c c 0 x16

(5. l 4)

Computing the right-hand side of Equation (5. 14) and writing the result

in vector notation, we obtain

rx
7

cu 1 + cu2 u' l + u' 2

Xg cu 3 + cu4 u' + u'
3 4

X9 cu5 + cu6 u'
5

+ u' 6

xlO cx8 x' 8

xl l CX8 x'
x 8 = = =

r x' x12 cx8 8

XJ3 cx7 + xlO x' +
7 xlO

x14 cxl l x] 1

x15 cx9 + x12 x' +
9 x12

x16 cxl3 + cx14 + cxl5 I + I
xl3 xl4 + x]5

(5. 15)

Operating by A2 on the left of Xr, we obtain

0 0 0 0 0 0 0 0 0 0 u 1 + u 1

l 2
0 0 0 0 0 0 0 0 0 0 u 1 + u 1

3 4
0 0 0 0 0 0 0 0 0 0 u 1 + u!

5 b
0 c 0 0 0 0 0 0 0 0 x3
0 c 0 0 0 0 0 0 0 0 x3
0 c 0 0 0 0 0 0 0 0 x3
c 0 0 0 0 0 0 0 0 X I + X

7 l 0
0 0 0 0 c 0 0 0 0 0 I

xl l
0 0 c 0 0 0 0 0 0 X I + X

9 12
0 0 0 0 0 0 c c c 0 X 1 + x 1 + x 1

13 14 15

0

0

0

U3U4

= U3U4

u3u4

ulu2+x3

XS
u5u6 + xg

x?xl 0 + xl l + x9xl 2

80

(5. 16)

Add A1 U.

u1 + u' 0
l 2

,....
+ u'

... , I

ul 2
u1 +
3

u1
4 0 u1 +

3
u'
4

u1
5

+ u1
6 0 u1 +

5
u' 6

0 U3U4 U3U4

0 LI3LI4
+ =

u3u4

0 LI3LI4 LI3LI4

0 ulu2 + x1
8 ulu2 + x1

8

0 X8

0 u5u6 + x'
8 + x'

8

0 I + X + X9XJ 2 _l x?xlO 11
~ + x' ,

12J

(5. l ?)

Since x. appears on the right-hand side of Equation (5. 17), an­
J

other iteration is necessary. At the end of Step 3 in the third itera-

tion, we obtain the vector

81

rx7 u' l
+ u' 2

i u' + u' x8 3 4

X9 u' +
5

u' 6

xlO U3U4

xl l U3U4
(5. 1 8) =

xl2 U3U4

xl3 ulu2 + U3U4

xl4 u' +
3

u' 4

xl5 u5u6 + u3u4

xl6 (u' +u 1)(u 1 +u 1)
1 2 3 4 + U3U4 + (u 1 +u 1)(u 1 +u')

5 6 3 4

which contains only primary input variubles. This vector contains the

Boolean equation for each internal line in terms of primary inputs.

In Step 3 of the Yau and Tang algorithm, the Boolean differences

df/dx. must be computed. The index j progresses from the largest line
J

number to the smallest line number that is not a fanout 1 ine. These

differences are easily calculated using the matrix model and the follow-

ing lemmas.

Lemma 1 (Sellers, Hsiao, and Bearnson, 1968):

then

df df
dx. - dx!

I I

Lemma 2 (Chaing, Reed, and Banes, 1972):

f (x 1 , x2 , . . . , x n) = x 1 + x2 + . . .

df
dx. =

I

x 1 • x' x 1 • x 1 x 1
l 2 · · · i-1 i+l · · · n

If

+ x
n

If

then

df
d x. - x l • xz · · · x i - l • xi + l • · · x n

I

82

Since the matrix model expresses each line in terms of the sum of

11 preceding 11 lines, Lemma 2 can be directly applied. For reference, the

matrix equation for the circuit of Figure 24 is repeated. The data

steps are again removed.

X7 c c 0 0 0 0 0 0 0 0 0 0 0 0 0

XB 0 0 c c 0 0 0 0 0 0 0 0 0 0 0

X9 0 0 0 0 0 c c 0 0 0 0 0 0 0 0 0

xlO 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

xl l
=

0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

(5.l3a)
X]2 0 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

xl3 0 0 0 0 0 0 c 0 0 0 0 0 0 0 0

xl4 0 0 0 0 0 0 0 0 0 0 c 0 0 0 0 0

xl5 0 0 0 0 0 c 0 0 0 0 0 0

I l xl6 0 0 0 0 0 0 0 0 0 c c c 0

83

Beginning with j = 16' we see from the matrix that x 16

+ xj 5· It fo 11 ows f rorn Lemmas 1 and 2 that

df dxj 6 _

dxl6 = dxl6 -

df dxj 6
--= --= xl3 xl4 dxl5 dxl5

df dxj 6
dxl4 =

--= xl3 xl5 dxl4

df dxj 6
--=

dxl 3 = xl 4 xl 5 dxl3

By inspection of the matrix in Equation (13a), we have

dxl5
--= X9 dxl2

dxl5 -
I

dx9 - xl2

There is no need to compute these differences and store them in

tabular form as the Yau and Tang algorithm suggest since they can be

computed by inspection of the matrix.

Summary

In this chapter, the matrix model for digital systems forms the

framework through which a path sensitization algorithm is carried out.

Using this technique and structure, tests for single permanent stuck-at

faults are generated for both combinational and sequential circuits.

The model contains both behavioral and topological information which

84

enables error propagation and line value justification to be performed

in a concise methodical manner.

An algorithm based upon the matrix model is introduced for deriving

the Boolean equation of each internal 1 ine in terms of primary inputs.

Boolean differences of the function with respect to each 1 ine can be

computed directly by inspection of the defining matrix.

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

Conclusions

A mathematical model of digital systems formulated for use by auto­

matic test generation algorithms has been described in this thesis. The

general formulation and capabilities of the model are exhibited through

numerous examples.

Gate level automatic test generation algorithms can benefit from

two types of circuit information, behavioral a~d topological. The ma­

trix model relates the behavioral information through the data and com­

putation steps of a k-step chain. The steps are written in a linear­

looking form by using the basis functions OR and NOT. Gate level cir­

cuit diagrams are transformed into this basis by using only NAND, OR,

and NOT gates. The resulting matrix equation, in addition to containing

behavioral information, contains the same topological information held

in the adjacency matrix of the logic gate-level circuit diagram. The

correlation of the topological information to the gate level logic dia­

gram is valuable in the path sensitization approach because it contains

information about the various paths from inputs to outputs. Fanin (fan­

out) information is also available for each gate.

The number of nonnull elements in the defining matrix of the model

is equal to the number of primary inputs plus the sum of all fanin (fan­

out) connections in the logic circuit description. The linear storage

85

36

complexity of the model indicates the probable ease of extension to the

modeling of very large circuits.

Examples were given which illustrate the use of the matrix model as

a structure in which the path sensitization approach to automatic test

generation and the Boolean difference approach can be carried out.

The concise matrix formulation of digital systems will offer con­

siderable potential for use in a variety of digital systems analysis

problems. Several topics for further research will be discussed in the

next section.

Recommendations for Further Research

Within the analytical framework established by this thesis, several

additional areas of research arise for the application of the matrix

model to digital systems analysis. The problems are, for the most part,

associated with the efficient utilization of the topological information

contained in the defining matrix to address problems associated with

automatic test generation.

The ATG algorithms based upon the approaches of Roth (1966) and

Sellers, Hsiao, and Bearnson (1968) utilize the topological information

of the matrix model implicitly in test generation. Explicit uti 1 ization

of this information to determine in advance which faults wil 1 require

multiple path sensitization or to locate paths which contain reconver­

gent complemented fanout could increase the computation time efficiency

of the algorithms in generating tests for all possible stuck-type faults.

One possible approach to identifying paths through a network having

particular properties is to determine the pattern of a submatrix with

the desired property. Next, introduce various row and column interchange

37

operations on the defining matrix which will result in forming the pat-

tern in a submatrix when such a pattern exists.

Consider a circuit which realizes the function fa in the presence

of a given fault a, and the function f in the fault-free instance. If

fa EE? f = 0, then the fault a is said to be undetectable and the cir-

cuit is said to be redundant with respect to the fault a. When a cir-

cuit is known to be redundant with respect to a stuck-type fault, cer-

ta in circuit simplification rules can be applied to condition the circuit

for automatic test generation (see Breuer and Friedman, 1976). In gen-

eral, there is no simple way to determine when redundancy in combina-

tional circuits exist other than proving that no test exists for some

fault or faults. The method of proof is to try to generate a test and

ultimately show that none exists. A great amount of computation may be

required for this method. It is desirable to determine the redundancy

prior to test generation.

The circuit in Figure 25 illustrates an extremely simple redundant

circuit. The matrix equations for this circuit are

= :~l[~l]
0 0 2

0 0

[y] = [o o o o i] X

Note that rows 3 and 4 in the A-matrix are identical, indicating a

redundancy. The redundancy can be eliminated from the circuit by delet-

ing the row and column associated with x3 (or x4). The resulting matrix

equat i ans are

88

y

Figure 25. A Simple Redundant Circuit

39

xl 0 0 0
01 xl i 0 [~~ l x2 0 0 0

:J
x2 0 i

= +
X4 c c 0 X4 0 0

X5 0 0 X5 0 0

[y] = [o 0 0 i] x .

Not all redundancies are this obvious, but this simple example

seems to indicate that certain row and column operations could be de-

fined which transform the A-matrix into one containing two or more iden-

ti cal rows (columns), thus indicating redundancies.

The third area in which the matrix model for digital systems has

potential application is that of testability analysis. Testability

analysis deals with the determination of measures which describe how

easily the OUT can be tested. The measures can describe either the in-

trinsic or extrinsic testability of the device. Intrinsic testability

measures consider the circuit behavior and topology alone and do not

depend upon stimulus/response considerations. They are computed during

the early design phase to provide an indication of how difficult it will

be to generate test vectors either manually or automatically. Extrinsic

testability measures are associated with a particular test. After the

test has been generated, either manually or automatically, it is graded

to determine the percent of faults detected and/or located. This per-

centage is the extrinsic testability measure and is generally computed

by a fault simulator which generates statistics. Extrinsic testability

measures can also be computed during the design phase.

Goldstein (1979) defined some intrinsic testability measures of

controllability and observability. The controllability of a combina-

tional node (e.g., AND, OR, NOR, NANO gates or primary input nodes) is·

90

a measure of the minimum number of combinational node assignments in the

circuit required to justify a zero or a one value on the node. The ob-

servability measure of a combinational node is related to both the dis-

tance between the node and a primary output and the difficulty of propa-

gating the logical value on the node to a primary output. Sequential

observability/controllability measures are similarly defined.

As in ATG, these intrinsic testability measures depend, to some ex-

tent, upon knowledge of the behavior of individual gates in the circuit

and upon the interconnection of those gates (circuit topology). Since

the matrix model contains this information in a concise formulation, it

can perhaps be used as a structure for testability analysis. The speci-

fies of the utilization of the model would depend upon the particular

testability analysis procedure.

One way, in particular, that the model could be utilized in comput-

ing the observability measure is in the computation of the distance be-

tween a node and a primary output. ·The entries in the matrix, A, for

combinational circuits correspond to the entries in the transposed adja-

cency matrix of the associated logic diagram. Hence, an entry a .. in
lj

the matrix (AT)r (AT multiplied by itself r-times) is related to the

number of different paths of length r between the ith and jth nodes

(Deo, 1974).

A SELECTED BIBLIOGRAPHY

Abramovici, Miron. "Fault Diagnosis in Digital Circuits Based on Effect­
Cause Analysis. 11 (Unpub. Ph.D. dissertation, University of Southern
California Electronic Sciences Laboratory, 1980.)

Agarwal, V. K., and G. M. Masson. "Recursive Coverage Projection of Test
Sets. 11 IEEE Trans. on Computers, C-28, 11 (1979), 865-870.

Akers, S. B. 11 0n the Theory of Boolean Functions. 11 SIAM J. of Applied
Mathematics, 7 (1959), 487-498.

Akers, S. B. 11A Logic System for Fault Test Generation. 11 IEEE Trans.
on Computers, C-25, 6 (1976), 620-630.

Armstrong, D. B. 110n Finding a Nearly Minimal Set of Fault Detection
Tests for Combinational Logic Nets. 11 IEEE Transactions on Comput­
ers (1966), 66-73.

Batni, Ramachendra P., and C. R. Kime. 11A Module-Level Testing Approach
for Combinational Networks. 11 IEEE Trans. on Computers, C-25, 6
(1976), 594-604.

Bearnson, L. W. 11Arithmetic Error Detection in Digital Computers. 11
(Unpub. M.S. thesis, Syracuse University, 1965.)

Bearnson, L. W., and C. C. Carrol I. 110n the Design of Minimum Length
Fault Tests for Combinational Circuits. 11 IEEE Trans. on Computers,
20 (1971) ' 1 353-1 356.

Bennetts, R. G., D. C. Brittle, A. C. Prior, and J. L. Washington. 11A
Modular Approach to Test Sequence Generation for Large Digital Net­
works.11 Digital Processes, 1 (1975), 3-24.

Bennetts, R. G. 11Algebraic Models for Clocked Flip-Flops. 11 Electronic
Engineering (1978), 60-62.

Bouricius, W. G., E. P. Hsieh, G. R. Ptuzolu, J.P. Roth, P.R. Schneider,
and C. J. Tan. 1 ~lgorithms for Detection of Faults in Logic Cir­
cuits.11 IEEE Trans. on Computers, C-20, ll (1977), 1258-1264.

Breuer, M. A. 11A Random and an Algorithmic Technique for Fault Detec­
tion Test Generation for Sequential Circuits. 11 IEEE Trans. on Com­
puters (1971), 1364-1370.

Breuer, M.A. 11Testing for Intermittent Faults in Digital Circuits. 11

IEEE Trans. on Computers, C-22, 3 (1973), 241-246.

91

92

Breuer, Melvin A. 11Modeling Circuits for Test Generation." Digest of
Papers. International Symposium on Fault Tolerant Computing, 1974,
3/13-3/18.

Breuer, Melvin A. 11The Effects of Races, Delays, and Delay Faults on
Test Generation. 11 IEEE Trans. on Computers, C-23, 10 (1974), 1078-
1092.

Breuer, Melvin A., and R. L. Harrison. 11Procedures for Eliminating Sta-
tic and Dynamic Hazards in Test Generation. 11 IEEE Trans. on Com-
puters, C-23, 19 (1974), 1069-1078.

Breuer, M.A., and A. D. Friedman. Diagnosis and Reliable Design of
Digital Systems. New York: Computer Science Press, Inc., 1976.

Breuer, M.A., and A. D. Friedman. 11 Functional Level Primitives in Test
Generation.'' IEEE Trans. on Computers, C-29, 3 (1980), 223-235.

Breuer, M. A. "Test Generat i on. 11 (Presentation at Aerospace Symposium
on Testing and Verification of Large Scale Integrated Circuits,
Los Angeles, California, June, 1981.)

Brittle, D. C.
Modules • 11

"Notation Describing the Fault-Related Behavior of Logic
Electronics Letters, 10-7 (1974), 215-216.

Brittle, David Charles. 11Test Sequence Generation for Large Sequential
Networks. 11 (Unpub. Ph.D. dissertation, University of Southampton,
England, 1976.)

Carroll, B. D., H. G. Shah, and D. M. Jones. 11 An Examination of Alge-
braic Test Generation Methods for Multiple Faults. 11 IEEE Trans.
on Computers, 23 (1974), 743-745.

Chappell, Stephen Gilbert. 11Automatic Test Generation for Asynchronous
Digital Circuits. 11 Microfilm copy. (Unpub. Ph.D. dissertation,
Library, Northwestern University, 1973.)

Chiang, A. C., I. S. Reed, and A. V. Banes. 11 Path Sensitization, Par-
tial Boolean Difference, and Automated Fault Diagnosis. 11 IEEE
Trans. on Computers, C-21 (1972), 189-194.

Chiang, A. C. L., and Rick McCaskill. 11 Two New Approaches Simplify
Testing of Microprocessors. 11 Electronics, 49-2 (1976), 100-105.

Clegg, F. W. 11 Use of SPOOFS for Faulty Logic Network Analysis. 11 IEEE
International Symposium on Fault Tolerant Computing (1972), l~
l 7.

Deo, M. Graph Theory With Applications to Engineering and Computer
Science. Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1974.

Eichelberger, E. B., and T. W. Williams. 11A Logic Design Structure for
LSI Testability. 11 Proc. 14th DAC, 1977.

93

Eldred, Richard D. 11 Test Routines Based on Symbolic Logic Statements. 11

JACM, 6-1 (1959), 33-36.

Friedman, A. D., and P.R. Menon. Fault Detection in Digital Circuits.
Englewood Cliffs, N.J.: Prentice-Hall, Inc., 1971.

Fujiwara, H., and K. Kinoshita. "On the Computational Complexity of
System Diagnosis. 11 IEEE Trans. on Computers, C-27, 10 (1978), 881-
885.

Gal iay, J., Y. Crouzet, and M. Vergniault. ''Physical Versus Logical
Fault Models in MOS LSI Circuits, Impact on Their Testability. 11

Digest of Papers. International Symposium on Fault Tolerant Com-
puting, 1979, 195-202.

Goldstein, Lawrence H. Computational Complexity/Confidence Level Trade-
offs in LSI Testing. Report No. SAND77-2068. Albuquerque, N.M.:
Sandia National Laboratories, 1978.

Goldstein, L. H.
Ci re u i ts • ''
693.

"Controllability/Observability Analysis of Digital
IEEE Trans. Circuits & Systems, CAS-26, 9 (1979), 685-

Harper, L. H., \./. N. Hsieh, and J .. E. Savage. 11 A Class of Boolean Func-
tions With Linear Combinational Complexity. 11 Theor. Comp. Science,
1-2 (1975), 161-183.

Hayes, J. P. "The Fanout Structure of Switching Functions." J. Assoc.
Comput. Mach., 22 (1975), 551-571.

Hayes, John P. "Path Complexity of Logic Networks." IEEE Trans. on
Computers, C-27, 5 (1978), 459-462.

Hsiao, M. Y., F. F. Selle rs, and D. K. Chia. "Fundamentals of Boolean
Difference for Test Pattern Generation. 11 Proc. 4th Annual Prince­
ton Conference on Information Sciences and Systems, 1970, 50-54.

Hsiao, M. Y., and D. K. Chia. "Boolean Difference for Fault Detection
in Asynchronous Sequential Machines." IEEE Trans. on Computers,
C-21 (1971), 1356-1361.

Hsieh, E. P., R. A. Rasmussen, L. J. Vidunas, and W. T. Davis. "Delay
Test Generation." Proc. 14th Design Automation Conference, 1977,
486-491.

Ibarra, 0. H., and S. K. Sahni. "Polynomially Complete Fault Detection
Problems. 11 IEEE Trans. on Computers, C-24, 3 (1975), 242-249.

Kodandapani, K. L, and S. C. Seth. 11 0n Combinational Networks With Re-
stricted Fan-Out. 11 IEEE Trans. on Computers, C-27, 4 (1978), 309-
138.

Kovijanic, P. G. "Testability Analysis. 11 Proc. IEEE 1979 Semiconduc-
tor Test Conference, 1979, 310-316.

94

Ku, Chia-Tai, and G. M. Masson. 11 The Boolean Difference and Multiple-
Fault Analysis. 11 IEEE Trans. on Computers, C-24, 7 (1975), 691-
695.

Kuhl, J. G., and S. M. Reddy.
Faults. 11 IEEE Trans. on

11 0n the Detection of Terminal Stuck
Computers, C-27, 5 (1978), 467-469.

Latino, Carl D., and J. G. Bredeson. 11The Cell Method--A New Approach
to Multiple Stuck-at-Fault Test Generation. 11 International Jour-
nal of Electronics, 46-5 (1979), 465-482.

Lofti, Z. M., and A. J. Tosser. 11 lnhibited Expressions of Boolean Dif-
ferences.11 International Journal of Electronics, 43-1 (1980), 57-
64.

MacDonald, F 11 LSI Changes Basic Test Rules and Strategies. 11 Electron-
ics Test (1978), 59-60.

Mano, M. M. Computer System Architecture. Englewood Cliffs, N.J.
Prent i ce-Ha l l , Inc. , 19 76.

Marinos, P. N. 11 Derivation of Minimal Complete Sets of Test-Input Se-
quences Using Boolean Differences. 11 IEEE Trans. on Computers, C-20
(1 9 71) ' 2 5- 32 •

Muehldorf, E. I. 11 Designing LSI Logic for Testability. 11 Digest of
Papers. Semiconductor Test Symposium, 1976, 45-49.

Muth, Peter. 11 A Nine-Valued Circuit Model for Test Generation. 11 IEEE
Trans. on Computers, C-25, 6 (1976), 630-636.

Nanda, N. L., and R. G. Bennetts. 11 Reconvergence Phenomenon in Synchro-
nous Sequential Ci rcuits. 11 Electronics Letters, 16-8 (1980), 303-
304.

Pomeroy, Bruce A. 11 Automatic Stimulus Generation for Digital Testing. 11

Wescon Tech. Papers, W. Elect. Show & Conv., 19 (1975), 1-6.

Powell, Theodore J. A Module Diagnostic Procedure for Combinational
Logic. Final Report AD688-743. Urbana: Illinois Univ. Urbana
Coordinated Sci. Lab., 1969.

Prior, A. C., and R. G. Bennetts. 11Application of the Boolean-Difference
Technique to Sequential Logic. 11 Electronics Letters, 10,23 (1974),
486-488.

Rai, Suresh, and K. K. Aggarwal. 11 An Efficient Method for Reliability
Evaluation of a General Network. 11 IEEE Trans. Reliability, R-27,
3 (1978)' 206-211.

Ramanoorthy, C. V., and W. Mayeda. 11 Computer Diagnosis Using the Block-
ing Gate Approach. 11 IEEE Trans. on Computers, C-20 (1971), 1294-
1300.

Reed, I. S. "Boolean Difference Calculus and Fault Finding. 11 SIAM
Journal of Applied Math., 24 (1973), 134-143.

Roth, J. Paul.
Method. 11

281.

"Diagnosis of Automata Failures: A Calculus and a
IBM Journal of Research & Development, 10 (1966), 278-

95

Savage, John E. The Complexity of Computing. New York: John Wiley &
Sons, 1976.

Savir, J. "Syndrome-Testable Design of Combinational Circuits. 11 IEEE
Trans. on Computers, C-29, 6 (1980), 442-451.

Schneider, R. R. 11 0n the Necessity to Examine D-Chains in Diagnostic
Test Generation. 11 IBM Journal of Research & Development, 11 (1967),
114.

Sellers, F. F., M. Y. Hsiao, and C. L. Bearnson. 11Analyzing Errors With
the Boolean Difference. 11 IEEE Trans. on Computers, C-17 (1968),
676-683.

Si, S. C. 11 Dynamic Testing of Redundant Logic Networks. 11 IEEE Trans.
on Computers, C-27, 9 (1978), 828-832.

Snethen, Thomas J. 11 Simulator-Oriented Fault Test Generator. 11 14th De-
sign Automation Conference Proc., New Orleans, LA. (1977), 88-93.

Suresh, R. , and K. K. Agga rwa 1.
in Combinational Circuits. 11

251.

11 A Computer Method for Fau It Detection
Int. J. Electronics, 47-3 (1979), 247-

Thayse, A., and Marc Davia. 11 Boolean Differential Calculus and Its
Application to Switching Theory. 11 IEEE Trans. on Computers, C-22,
4 (1973)' 409-420.

Thomas, J. J. 11 Automated Diagnostic Test Programs for Digital Networks. 11

Computer Design (1971), 63-67,

Williams, T. W .. and K. P. Parker. 11Testing Logic Networks and Design-
ing for Testabi 1 ity. 11 Computer (1979), 9-21.

Wolfgang, J. Paul. 11 A 2.5N-Lower Bound on the Combinational Complexity
of Boolean Functions. 11 Proc. 7th Annual ACM Symposium on Theory
of Computing (1975), 27-3.

Yau, S. S., and Y. S. Tang. 11 An Efficient Algorithm for Generating
Complete Test Sets for Combinational Logic Circuits. 11 IEEE Trans.
on Computers, C-20 (1971), 1245-1251.

/,

J-.,
VIT.A .

Charlotte Couch Acken

Candidate for the Degree of

Doctor of Philosophy

Thesis: A MATRIX MODEL OF DIGITAL SYSTEMS AND ITS APPLICATION TO AUTO­
MATIC TEST GENERATION

Major Field: Electrical Engineering

Biographical:

Personal Data: Born in Harrison, Arkansas, August 10, 1947, the
daughter of Mr. and Mrs. William H. Couch.

Education: Graduated from Bruno High School, Bruno, Arkansas, in
May, 1964; received the Associate of Science degree from the
College of the School of the Ozarks, Point Lookout, Missouri,
in May, 1966; received the Bachelor of Science degree in Mathe­
matics from the University of Arkansas, Fayetteville, Arkansas,
in January, 1969; received the Master of ScieMce degree in
Mathematics from the University of Arkansas, Fayetteville,
Arkansas, in January, 1971; received the Master of Science de­
gree in Electrical Engineering from Oklahoma State University,
Stillwater, Oklahoma, in July, 1977; completed requirements
for the Doctor of Philosophy degree at Oklahoma State Univer­
sity, in May, 1982.

Professional Experience: Instructor of Mathematics, Mathematics
Department, University of Arkansas at Monticello, Monticello,
Arkansas, 1970-1976; Member of Technical Staff, Sandia Nation­
al Laboratories, Albuquerque, New Mexico, 1978 to present.

Professional Organizations: Member of Pi Mu Epsilon, Eta Kappa Nu,
and Phi Kappa Phi Honor Society; former faculty member of the
Mathematics Association of America.

