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1.0 INTRODUCTION

For many years, lagoons have been widely used to treat agricultural and animal

wastes. Compared to activated sludge and other advanced treatment systems, lagoons are

simple to build, economical to operate, and easy to manage. However, lagoons are open

to the atmosphere, and can contribute large amounts of nitrogen (Jones et aI., 2000)

methane (CH4) and carbon dioxide (C02) (Sharpe and Harper, 1999) into the air.

Agricultural ammonia (NH3) emissions are linked to various negative effect on

ecosystem and human health, such as acidification, eutrophication, particulate matter

fonnation, and loss of biodiversity (Kurvits and Marta, 1998). Both methane and carbon

dioxide are greenhouse gases and have been proven to be very effective at trapping

infrared radiation. These gases also persist for relatively long periods in the atmosphere,

which can lead to global warming (El Fadel and Massoud, 2001).

Some researchers indicate high ammonia emission from lagoons, while others

believe that ammonia gas emission is not as significant as dinitrogen gas emission (Jones

et aI., 2000; Aneja et aI., 2000; Harper and Sharpe, 1998). Current estimates of methane

emissions are based on biogas production from anaerobic digesters and covered lagoons

(Hashimoto, 1983; Hill, 1984; Safley and Westemlan, 1988). However, most of the

digesters have higher volumetric loading rate, which would increase biogas production.

No ~iterature was found with quantified carbon dioxide emission from anaerobic and

facultative lagoons.

This thesis reports the results of studies that were conducted to address the

gaseous emissions under varying conditions such as mixing, heating, lighting, etc. in a



pilot facility built to simulate anaerobic/facultative lagoons. The first objective was to

measure methane, carbon dioxide and ammorua emiSSions from simulated

anaerobic/facultative lagoons during mid-summer in Oklahoma. The second objective

was to investigate the influence of different physical and operational factors on these

emissions. The final objective was to find possible pathways for the gas formation. These

research objectives address a significant area of concern in biological treatment of animal

waste. The negative impact of the mentioned gases is directly connected with the amount

of gases produced.
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2.0 LITERATURE REVIEW

2.1 TYPES OF LAGOONS

Lagoons typically are designed as one of three distinctive types: aerobic,

anaerobic and facultative.

A lagoon is aerobic when sufficient dissolved or free oxygen is available to allow

aerobic bacteria to flourish. Usually, these lagoons have a depth range from 2 to 5 feet for

easier oxygen diffusion and light penetration, which is necessary for the survival of the

aerobic bacteria and the growth of algae (Hamilton et aI., 2002). Aerobic lagoons

typically produce a minimal amount of odor and are biologically lightly loaded, i.e. the

organic matter added per unit volume of lagoon per unit time is very low. However, they

have much larger surface areas than other types of lagoons.

Anaerobic lagoons are generally deep and have small surface areas compared to

organic loading rate. The primary characteristic of anaerobic lagoon is that they contain

anaerobic bacteria that thrive and grow without free oxygen. Anaerobic bacteria are very

efficient and effective at decomposing most kinds of organic matter. However, they

frequently give off unpleasant odors due to the fact that decomposition progresses

primarily to the point of volatile organic compounds, CH4 and NH3. Most manure

han4ling systems in use on livestock fanns today use either earthen storage ponds or

anaerobic lagoons. The primary design criterion for anaerobic lagoons is pounds of

organic matter per unit volume per day (volumetric loading rate or VLR). As this loading

rate increases, the likelihood of objectionable odors increases. Lagoons are designed
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based on a given loading rate. The optimal pH for strictly anaerobic lagoons is about 6.5.

When pH is below this level, methane producing bacteria are inhibited by free hydrogen

ion concentration; therefore, loading of anaerobic lagoons should be done carefully,

because overloading organic matter can stimulate the facultative acid-producing bacteria

(USDA, 1992).

A facultative lagoon is a hybrid system with both aerobic and anaerobic features.

The anaerobic digestion of organic matter is maintained in the bottom zone of the lagoon.

The top zone may be dilute enough to allow dissolved oxygen to be present and maintain

an aerobic layer. This results in clarification of this surface layer and keeps odor release

to a minimum. The intennediate zone favors the growth of facultative bacteria which are

capable of operating, growing and thriving in either aerobic or anaerobic conditions as

the lagoon characteristics change (Tchobanoglous and Burton, 1979). Typically,

facultative lagoons generate minimal odor due to the presence of photosynthetic bacteria,

which reduce odors (Halnilton et al., 2002).

2.2 ENVIRONMENTAL CONCEQUENCES OF CH4, CO2 AND NH3 EMISSIONS

Atmospheric ammonia (NH3), methane (CH4), and carbon dioxide (C02) are very

important constituents of the global environmental system.

NH3 is known to affect ecosystems at relatively low concentrations, due to its

high water solubility. The lifetime of released ammonia in the atmosphere is 1-5 days. In

the atmosphere, NH3 can react with acidic species to [ann ammonium sulfate, ammonium

nitrate or ammonium chloride, or it may be deposited to the earth's surface close to its
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source (Aneja et aI., 2001). There are several environmental concerns associated with

atmospheric NH3 and its deposition, such as the biological transformation of NH4+ to

N03- in soils (nitrification) and plant uptake release acidity into the soil, contributing to

acidification. NH3 deposition can also give rise to eutrophication, where nutrient

enrichment changes ecosystems. Among all contributors to ammonia emission,

agriculture is a major source. Recent measurements of ammonia in the UK have shown

that ammonia loss fron1 agriculture is 406 x 103 tons of NH3-N per year (Sutton et aI.,

1995). In North Carolina, which is the currently the second largest pork producing state

in US, emission of alnmonia from swine waste was 65,540 tons per year, which

corresponds to 20.6% of total nitrogen emission in North Carolina as estimated in 1995

(Walker et al.,2000). Moreover, Harper and Sharp (1998) measured ammonia flux near

the surface of three lagoons in the south-eastern US Coastal Plain and found an1monia

emission in the range 4.9-10.5 kg NH3-N ha- 1 day-I.

Carbon dioxide (C02) is the n10st important anthropogenic greenhouse gas, which

is expected to contribute about 50% of total global warming over the next 50 years. The

second important greenhouse gas, expected to contribute 18% of total expected global

warming, is methane (Milich, 1999). As greenhouse gas builds up in the atmosphere, it

traps energy from the sun like a layer of insulation.

Methane emissions from domesticated animals and animal wastes in the US are

about.8,400,000 tons year-I, or about 30% of the total US annual anthropogenic

emissions. Swine waste contributes about 1,100,000 tons year-I. Daily methane emission

from anaerobic swine lagoons ranged from 20 to 115 kg CH4 ha-1 day-l (Sharpe et aI.,

200Ia). The average concentration of CO2 in the atmosphere reached 360 parts per
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million by volume (ppmv) in 1994 compared to 280 ppmv almost 100 years ago

(Schlosser et. aI., 2002). In contrast, the concentration of methane in atmosphere is 1.75

ppmv (Shively et aI., 2001). However, one molecule of CH4 traps about 30 times more

heat than CO2 (Alberto et aI., 2000). Microbial decomposition accounts for 86% of the

carbon dioxide produced, followed by animal carbon dioxide production at 10% (Shively

et al., 2001).
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2.3 COSTITUENTS OF SWINE WASTE

The composition of SWIne waste IS complex. The largest constituents are

carbohydrates, fats and proteins. Carbohydrates (particularly hemicellulose, cellulose and

lignin) are primarily found in undigested feed materials. Fats are usually in form of lipids.

These are mainly from vegetable feeding. The VFA content ranges from 8,000 to 14,000

mg/l (Masse et aI., 2000). Proteins are mainly [roln undigested feed and microbial

biomass. Major components of swine waste are presented in table 2.1.

Table 2.1. Some representative analyses of swine waste.

Solids (%)
Lipids
Cellulose
Hemicellulose
Lignin
Crude protein
AmmoniaN
P
K
Ash
Starch
Supernatant (% wt/vol)
Total N
AmmoniaN
P
K

Adapted from Hobson et al.,1981

13.72
15.48
22.31

8.12
19.88
2.15
1.67
0.93

13.96
0.00

0.25
0.21
0.014
0.06

Variations in manure slurry characteristics are possible due to differences In pIg

metabolism and diets. (Masse et aI., 2000)
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2.4 MICROBIAL AND CHEMICAL DEGRADATION OF ORGANIC MATTERS

Manure degradation is a multi-step chemical and biological process. Once manure

is deposited to the lagoon, settable solids fall to the bottom, where they are converted to

sludge, soluble liquids and gases. Soluble solids enter directly into the liquid portion of

the treatment system (Hamilton et aI., 2002). This can be represented by the scheme

shown in Fig. 2.1.

NHs
Volatile Organics

So'uble Organics-~--......

Settleable Solids --4~ij~iI••illI.~

Liquid
Volume

Active Sludge

Inert Sludge

Fig. 2.1 Degradation of manure in uncovered anaerobic/facultative lagoons (Hamilton et

aI., 2002)

The microbiological degradation of organic materials In an anaerobic

environment can only be accomplished by organisms which are able to use molecules

other than oxygen as hydrogen acceptor. This anaerobic decomposition ultimately results
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in biogas production which consists of methane (50-70%) and carbon dioxide (25-45%)

and small amounts of hydrogen, nitrogen and hydrogen sulfide (Price and Cheremisinoff,

1981). There are four metabolic stages in anaerobic digestion of biological materials (Le

Mer and Roger, 2001; Veeken et aI., 2000):

Hydrolysis - complex insoluble organic n1aterial is solubilized by enzymes

excreted by hydrolytic microorganisms. For example cellulose hydrolysis (equation 1).

Endogluconase

(1) Cellulose + H20 _C_e_"u_las_e_--+) Cellodextrin + Cellobiose

Cellodextrin + Pi
Cellodextrin
phosphOl:vlase Glucose-I-P + Cellobiose

Cellobiose

Cellobiose + Pi phosphOl)'lase) Glucose + Glucose-l-P

Acidogenisis - soluble organic components including the products of hydrolysis

are converted into organic acids, alcohols, hydrogen and carbon dioxide. For example,

glucose fermentation, where the final products are butyric acid, carbon dioxide and

hydrogen (equation 2).

Acetogenisis - the products of acidogenesis are converted into acetic acid,

hydrogen and carbon dioxide. For example, butyrate can be converted to acetic acid, and

hydrogen (equation 3). With propionate as a substrate, carbon dioxide is produced in

addition to acetate and hydrogen (equation 4).
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Methanogenesis - methane is produced from acetic acid (equation 5), hydrogen,

and carbon dioxide (equation 6) as well directly from other substrates such as fonnic acid

(equation 7) and methanol.

During anaerobic digestion, various organic substances are depolymerized, then

gradually decomposed and changed to VFA. Carbohydrates and fats are the main sources

of fennentation acid and hydrogen (Hobson et aI., 1981). The microorganisms

responsible for fennentation of carbohydrates are described in the table 2.2.

Table 2.2 Metabolic Products Released During the Anaerobic Fennentation of
Carbohydrates

Organism Substrate Products'"

Bacteroides succinogenes
Bacteroides fibrisolvens

Bacteroides ruminicola

Ruminococcus flavefaciens
Neocallimastix frontalis

Rumen spirochetes
Rumen treponemes
Lachnospira multiparus

Acetivibrio cellulolyticus
Clostridium thermocellum
Clostridium papyrosolvens

Cellulose
Cellulose
Hemicellulose
Pectin

Hemicellulose
Pectin
Cellulose
Cellulose

Pectin
Pectin
Pectin

Cellulose
Cellulose
Cellulose

F,A,S
F,L,H2,C02

F,B,L, H2,C02

F,A,B,L,M,
H2,C02

F,A,P,S
F,A,P,B,L,S
F,A,S,H2,C02

F,A,L,E,COz

F,A,M,L,S
F,A,S,M
F,A,L,M,E,
H2,C02

A,E, H2,C02

A,E, H2,C02

F,A,L,E

iF = formate; A = acetate; P = propionate; B = butyrate; S = succinate; L = lactate ; M =
methanol;E = ethanol; Adapted from Chynoweth and Isaacson, 1987
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The most important source of carbohydrates in faeces, especially in animal

excreta, is a residue of vegetables matter from the feedstuffs passing through the gut

(Hobson et aI., 1981). These are cellulose, hemicellulose and lignin.

The degradation of cellulose can be initiated by two extracellular enzymes. These are ~­

1,4-endoglucanase and ~-1 ,4-exoglucanase. The endogluconase hydrolyzes cellulose

molecules randomly within the polymer, producing smaller and smaller cellulose

molecules. Exogluconase consequently hydrolyzes two glucose subunits from the

reducing end of the cellulose molecule, releasing the disaccharide cellobiose. A third

enzyme, ~-glucosidase (or cellobiose) then hydrolyzes cellobiose to glucose (Maier et

aI., 2000). Degradation of hemicellulose is similar to the cellulose degradation process,

except that many more extracellular enzymes are involved, because the molecule is more

heterogeneous. An example of a hemicellulose polymer is a pectin molecule. The final

product of hemicellulose is also glucose. Biodegradation of lignin is slower and less

complete than degradation of other organic polytners. This is because it is constructed as

a highly heterogeneous polymer, and, in addition, contains aromatic residues rather than

carbohydrates residues. Biodegradation of lignin occurs only under aerobic conditions,

because reactive oxygen is needed to release lignin residues; however, once residues are

released, they can be degraded under anaerobic conditions (Maier et aI., 2000).

Glucose, which is the final product in cellulose, hemicellulose and lignin

degradation, can undergo further breakdown. Glycolysis, Krebs cycles, and glucose

fennentation are three n1ajor pathways for aerobic and anaerobic degradation of glucose.
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The flIst pathway, glycolysis involves 10 enzyme reactions and produces two

molecules of pyruvic acid and two molecules of ATP from one molecule of glucose

(Bergquist and Pogosian, 2000) (equation 8)

(8) C6H1206 + 2ADP +2Pi glycolysiS) 2CH3COCOOH +2ATP

No oxygen is required for glycolysis to occur. The end product of glycolysis, pyruvate or

pyruvic acid, participates in many reactions in cells. The two pyruvic acid molecules

formed in glycoslysis may be used by homofermentative lactic acid bacteria to produce

lactic acid by a simple expedient of enzymatic addition of two hydrogens. Or, it may be

converted into ethanol, acetate and carbon dioxide by other enzymes (Anderson, 1973).

This is presented in the Fig. 2.2

Glucose

Pyruvate

Acetyl-CoA

Ethyl
alcohol

Lactic
acid

Citric acid

Figure 2.2 Pathways of glucose degradation
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In aerobic respiration, pyruvate connects glycolysis to the citric acid cycle by an

enzyme converting the pyruvate to acetyl-coenzyme A (acetyl-eoA) and carbon dioxide

while transferring two hydrogen ions to NAD+. The two electrons and hydrogen ions

accepted by NAD+ reduce this molecule to NADH + H+. Coenzyme A (eoA) is a sulfur

containing carrier molecule that transports the acetyl group to the citric acid cycle

(Bergquist and Pogosian, 2000). (equation 9)

(9) CH3COCOOH +CoA-SH + NAD+~ 2CH3CO-S-CoA + CO2 + NADH

Anaerobic fermentation is not as efficient as aerobic respiration in gaining energy

from sugars. In most fermentations, the net yield is the two molecules of ATP. The end

products of anaerobic fermentation are alcohols and CO2. The overall reaction for

glucose in an alcoholic fermentation is described in equation 10.

(10) C6H 120 6 + 2ADP +2Pi~2C2H50H+ 2C02 + 2ATP

Anaerobic homofennentative organisms can produce lactic acid. These bacteria are

Streptococcus thermophilus and Lactobacillus bulgaricus. The overall reaction for

homofermentatation of glucose is described as equation 11.

(11) C6H 120 6 + 2ADP +2Pi~2C3H 60 3 + 2ATP

Heterofennentative microorganisms produce mixhlres of acids, alcohols, and gases as the

end products of fermentation. The produced alcohols from anaerobic fermentation may

be converted to acetate in the absence of H2. For instance, Inethanol is converted to

acetate, by means of CO2 (equation 12)

(12) 4CH30H + 2C02~ 3CH3COOH + 2H20

This reaction is strictly dependent on the presence of Na+. The bacteria that accomplish

this transfonnation are B.methylotrophicum and Sporon1usa acidovorans (Drake, 1994).

13



Fats are found in swine waste, as they are constituents of vegetable matter. Swine

waste fats are mostly lipids, compounds of glycerol, and long chain fatty acids. Besides

residue from food lipids, faecal waste also contain lipids of the intestinal bacteria, and

these can amount 5-10% of the bacterial weight (Hobson et aI., 1981). Lipids are large

molecules and cannot be transported across the ll1embrane of bacteria. Consequently,

lipids are broken down to acid by extracellular enzynles called lipases. The result of this

digestion is a hydrophilic glycerol molecule and long-chain fatty acids of various chain

length. Fatty acids are then degraded by a ~-oxidation mechanism. First, a fatty acid is

activated by the addition of coenzyme-A to the end. This activation requires energy in the

form of ATP, but is performed only once per molecule. The ~-carbon is then oxidized

from CH2 to C==O by three reactions. An enzyme called fJ-ketothiolase splits the fatty

acid into acetyl-Co-A and adds another coenzyme-A to the previously oxidized ~-group

on the fatty acid. The fatty acid is now two carbons shorter and an Acetyl-eoA has been

generated. The overall reaction for LCFA oxidation can be represented as an equation 13

(Anonymous, 1992).

(13) CH3(CH2)nCH2CH2COOH+2H20~ CH3(CH2)nCOOH+CH3COOH + 4H

Hobson (1981) indicated that the acids found in the digesters are predominantly

acetic, with little or no propionic or butyric acids. No lactic or succinic acids were found.

This was explained by high populations of lactic and succinic acid fennenting bacteria

present in the digester. For instance, the concentration of bacteria fermenting lactic acid

to acetic and propionic was about 3 x 107 cells per ml of swine waste digester sludge.

Thus, any lactic or succinic acid from the fennentation of sugars would be immediately
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used up (Hobson et. aI., 1981). A well functioning anaerobic digester usually has a VFA

concentration below 800 mg/I.

2.5 METHANOGENESIS

Methane production is a slow process. It is a rate limited step of anaerobic

degradation (Henze and Harremoes, 1983). Generally, it is assumed that methane

production can only occur in absence of oxygen. However, some methanogens were able

to survive in aerobic phase, even in pure culture. The methanogens Methanosarcina

barkeri, Methanobacterium bryantii, Methanothrix soehngenii, Methanobacterium

therma-tropicum and Methanobrevibacter arboriphilus all exibit tolerance to low oxygen

level (Zitomer, 1998). There are four types of strictly anaerobic bacteria known to

produce methane (Price and Cheremisinoff, 1981):

1. Methanobacteriuln, a nonspore-forming rod;

2. Methanobacillus, a spore-fanning rod;

3. Methanococcus, a nonspore-forming coccus; and

4. Methanosarcina, a nonspore-forming coccus in packets of eight

Each specie within the four groups is very restrictive to its carbon source. Some of the

methanogenic bacteria and their substrates are presented in the table 2.3
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Table 2.3 Methanogenic bacteria and their substrates.

Species

Methanobacterium therlnoautotrophicum

Methanobacteriunl wolfei DSM 2970

Methanococcus vannielii DSM 1224

Methanococcus jannaschii JAL-1

Methanosarcina barkeri MS

Methanosarcina mazei S-6

Methanothrix soehngenii Opfikon

Methanothrix concilii GP6

Methanolobus tindarius Tindari 3

Substrates

H2, CO2

H2, CO2

H2, CO2, formate

H 2, CO2

H 2, CO2, methanol, acetate

Methanol, acetate, TMA'"

Acetate

Acetate

Methanol, TMA'"

Methanobrevibacter rU111.inantiu111 M1 H2, CO2, fonnate

Adapted from (Chynoweth and Isaacson, 1987) TMA* - trimethylamine

The main substrates for methanogenesis are acetic acid, hydrogen and carbon dioxide

(Henze and Harremoes, 1983). Approximately 70 % of the digester methane comes from

acetate and the rest of it is from CO2 and H2 (Chynoweth and Isaacson, 1987). The

bacteria producing methane from hydrogen and carbon dioxide are fast growing, as

compared to the acetic acid utilizing bacteria (Henze and Harremoes, 1983). The

fonnation of methane from propionic and byturic acids has been demonstrated in cultures

obtained from diluted digesters. However, such cultures contained a mixture of bacteria.

Degradation of propionic acid is unfavorably affected by hydrogen, so if methane

16



fannatian from hydrogen is stopped, propionic acid will tend to accumulate in digesters

(Hobson et aI., 1981).

Many methanogens metabolize fonnic acid as an energy source. Formate may be

oxidized by formate dehydrogenase to CO2 and protons. The mechanism of methane

fonnation from acetate proceeds through the following steps. First, acetate is cleaved by

decarboxylation and then the methyl group is reduced to methane with its hydrogen

intact. Very little of the methyl group of acetate is converted to CO2. Conversely, almost

none of the carboxyl group of acetate is reduced to methane by axenic strains of

Methanosarcina or Methanothrix soehngenii. Coenzyme M is probably involved in the

final reduction step of Inethane production froIn acetate (Chynoweth and Isaacson, 1987).

Methanogenesis from CO2 and H2 is achieved through seven biochemical steps.

CO2 is bound to coenzyme methanofuran (MF) and subsequently reduced to formil-MF.

This reaction is most probably driven by an electrochemical ion gradient across the

membrane. The reaction is catalyzed by fonnil-MF dehydrogenase and is not yet fully

understood. The enzyme contains a pterin cofactor as well as iron-sulfur centers. The

formyl group is then transferred from formyl-MF to H4MPT raising formyl-H4MPT. The

methenyl group is reduced via methylene intermediate. The produced methyl- H4MPT

combines with coenzyme M (CoM) with following methane formation (Drake, 1994).

Methanogenic organisms can tolerate extren1e salinity and pH conditions, and

generally show increased production with increased temperatures (Milich, 1999; Hill et

aI., 2001). Henze and Harremoes (1983) stated that acid production rate is high compared

to the methane production rate, which means a sudden increase in easily degradable

organics will result in increased acid production with accumulation of the acids. This
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However, this reaction requires oxygen, and, therefore, should be only considered in

aerobic lagoon systems (Arogo and Westerman, 2000).

Misselbrook et aI., (2001) stated that amnl0nia enlission is primarily from urea

content of urine deposits, with possibly a small proportion from faeces. After urine and

faeces are mixed, urea is hydrolyzed to NH3 by the enzyme urease, which is produced by

microorganisms present in faeces.

(15)CO(NH2)2 + H20 Urease) 2NH3 + CO2 (Francis et al. 2002).

Important parameters influencing NH3 emission frotTI urea are urea concentration of the

urine, urease activity, pH, temperature, air velocity, and contact area (Erisman and

Monteny, 1998; van der Peet-Schwering et aI., 1999). Son1e scientists believe that this

reaction occurs very rapidly and can be assumed to occur mostly in buildings, just after

the manure is produced (Arogo and Westerman, 2000). However, urea could be fanned

in lagoons through amino acid hydrolysis (equation 16) (Cantarow and Schepartz, 1962).

(16) NH==C-NH2

I
HN-(CH2)2 - CHCOOH + H20 ~ Urea +

I
NH2

Agrinine (AA)

CH2-NH2

I
(CH2)2-CHCOOH

I
NH2

Ornithine

Ammonia may be produced from dietary amino acids and by catabolism of amino

acids, particularly glutamine and glutamate, amines and nucleic acids (Cantarow and

Schepartz, 1962). Anaerobic production of ammonia from proteins is relatively slow

process compared to urea degradation (Arogo and Westennan, 2000).
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The reaction of glutamine hydrolysis is described below (equation 17)

Tyrosine and tryptophan, which are largely present in feces and urine can contribute in

ammonia emission equations 18 and 19 (Cantarow and Schepartz, 1962).

(18)Tyrosine -C02) Tyramine +2H) CH3NH2 + Cresol~ Phenol

~ -NH2

p-Hydroxyphenylpropionic acid ~ p-Hydroxyphenylacetic acid -C02 ) Cresol

(19) Tryptophan - H2 ) Indolepropionic acid -C02) Ethylindole~Sckatole

~ -C02

Indole ethylamine +2H) Indole +C2HsNH2

Amides also nlay undergo hydrolysis In either acidic (equation 20) or basic

conditions (equation 21) (Solomons, 1992 )

(20) R-C-NH2 + H30+~ R-COOH + NH4+

II
o

(21) R-CNH2 + NaOH + H20 ~ R-COONa + NH3

II
o Amides hydrolysis (basic)

However, chemical reactions 20 and 21 are unlikely to occur in lagoons since, they

require extreme pH(7.0>pH>8.0) and high temperature(t>40) (Solomons, 1992).
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2.7 NITRIFICATION AND DENITRIFICATION PROCESSES

2.7.1 AUTOTROPHIC NITRIFICATION

Autotrophic nitrification is the oxidation ofNH4 or NH3 to N03- via N02-. This is

an aerobic biological process, which uses two groups of microorganisms called

Nitrobacteriaceae (Wrage et aI., 2001). The oxidation of ammonia, via hydroxylamine, to

nitrite includes three steps (reactions 22, 23 and 24).

(22)NH3 + O2 + 2e +2H+ AMO) NH20H + H20

(23) NH20H + H20 _H_AO--.) N02- + 5H+ + 4e

(24) 2N02- + O2

The first step is oxidation of ammonIa to hydroxylamine by ammonIa

monooxygenase (AMO). Here, two electrons are needed for the reduction of one of the

atoms of O2 to water. The second reaction is catalyzed by hydroxylamine oxidoreductase

(HAO). Hydrazine is an inhibitor of this enzyme. Finally, nitrite is oxidized to nitrate by

Nitrobacter (Wrage et aI., 2001; Jones et aI., 2000). The highest activity of Nitrobacter

was observed at pH==7.9 and t==37°C (Grunditz and Dalhammar, 2000).

2.7.2 DENITRIFICATION

Denitrification is the stepwise reduction of N03- to N2. In heterotrophic

denitrification, organic compounds are used as electron donors. This is the most common

form of denitrification (Jones et aI., 2000). This conversion proceeds in fOUf steps
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(reactions 25, 26, 27 and 28) (Richardson and Watmough, 1999; Jones et aI., 2000). The

reactions are carried out by many organism including: Bacillus, Achromobacter,

Pseudomonas, Micrococcus, Propioni-bacteriu111. Most of these bacteria are facultative

and able to use N03- in place of oxygen as an electron acceptor in respiration in low

oxygen or anaerobic conditions (Wrage et aI., 2001).

Nitrate
reductases

Nitrite
reductase

Nitric. oxide

(27) 2NO +2H++2e_r_cd_IiCf_OS_e--+) N20 + H20

itrous .oxide

(28) N
2
0 + 2H++2e_'_'ed_lJC_tas_e_-+) N2 + H20

Heterotrophic denitrifiers can use VFA or alcohols as a source of carbon (C). For

example, in reaction (29) acetic acid is used as a substrate.

(29) N03- + CH3COOH~ N02- + C02 + H20 (Tchobanoglous and Burton, 1979)
* Bacillus, Achromobacter, Pseudomonas, Micrococcus

2.7.3 CHEMODENITRIFICATION

Chemodenitrification is the chemical decon1position of intermediates from the

oxidation of~+ to N02-. These non biological reactions are known to occur in anoxic

systems, usually at low pH (5.6-6.25) (Wrage et aI., 2001; Jones et al., 2000). For

example,in the van-Slyke reaction (30), amino groups react with nitrous acid (HN02-), to

produce dinitrogen gas (N2) (Jones et aI., 2000; Cantarow and Schepartz, 1962).
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In ammonium nitrite (NH4N02) decomposition, one mole of ammonium reacts with one

mole of nitrous acid to [ann ammonium nitrite, which then decomposes to fann

dinitrogen gas, water, and hydronium ion (Jones et aI., 2000) (equation 31).

(31) NH4NOz ---). N2 + H20 + H30 +

Chemical denitrification is also possible at neutral pH in the range of 6-8. For example, in

reaction (32) NOz- decolnposition is by Fez
+ (Jones et aI., 2000).

(32) M red + N02- +2H+ ---).MoX + H 20 + NzO,

where M is a metal cation, in our case Fe2
+.

Chemodenitrification is closely linked with nitrification, so it is often difficult to

determine whether NO and N20 are developed through nitrification from NH4+ or

dinitrification from N02- (Wrage et aI., 2001).

2.7.4 ANAMMOX

Anaerobic amlnonia oxidation (ANAMMOX) is a process where ammonIa IS

oxidized to dinitrogen gas using ammonia as an electron donor and nitrite as an electron

acceptor (Jetten et aI., 2001; Richardson and WatInough, 1999). ANAMMOX is more

favorable energetically than oxic nitrification (reactions 33 and 34) (Jetten et aI., 2001):

(33) Nitrification: NH4+ + Oz -----» NOz- ~G=-275 kJ/mol

(34) ANAMMOX: NH4+ + N02- -----»Nz ~G==-357 kJ/mal

Jetten et. all., (2001) proposed the mechanism of dinitrogen gas formation through the

hydrazine step. These reactions are 35,36 and 37 (Richardson and Watmough, 1999).

(35) N02- + 5H+ + 4e -----» NHzOH + H20
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(36) NH20H + NH3 -----,) N 2H4 + H20

(37) N2H4 -----,)N2 + 4H+ + 4e

ANAMMOX is detectable in the temperature range, 20 to 43°C and the pH range, 6.4 to

8.3 (Schmidt et aI., 2000). Moreover, Thamdrup and Dalsgaard, (2002) reported that

ANAMMOX is active at temperatures between 6 and 43°C. However, in completely

anaerobic conditions, these reactions are not favorable, because of the absence of nitrite

(N02-) and nitrate (N03-)'

The current literature has data about VFA, carbon dioxide and methane emission

in digesters, peatlands and swamps. However, there is no such data from animal waste

treatment lagoons. Also, there is a huge gap in the literature for ammonia and methane

emission quantification in lagoon systems. This is 111ainly because of the difficulties with

analytical methods. In this work we will try to fill the gaps in this area.
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3.0 METHODS AND MATERIALS

3.1 EXPERIMENTAL APROACH

This study focused on the facultative lagoon emission of n1ethane, carbon dioxide

and ammonia gasses. The analytical Inethods, experimental procedures and chemicals

used are described below.

3.2 REAGENTS-GRADE MATERIALS AND LABORATORY PROTOCOLS

The water (> 18 Mn CIn purity) used in all the experiments was produced by a Mill-Q

purification system (Millipore Corp., CA) using deionization and reverse osmosis

technology. The chemicals used in this experiment are acetic, propionic acids (both

reagent grade, purchased from Spectrum Quality Products, Inc., Gardena, CA), butyric

acid (99+%, Lancaster Synthesis, Pelham, NH); lactic acid (85%, EM Science,

Gibbstown, NJ); Methansulfonic acid (99%, ACROS, NJ); ammonia standard (1000

±5ppm as N, ORION Research, Inc., Beverly, MA); sodium hydroxide (98.3%, Fischer

Scientific, Fair Lawn, NJ); COD (100-4500 n1g COD/L range, Bioscience , Inc.,

Bethlehem, PA). The gasses used were: methane (99%, MATHESON TRI-GAS Inc.,

Twinsburg, OH); carbon dioxide (100%, MATHESON TRI-GAS Inc., Twinsburg, OR)

and the gaseous mixture of carbon dioxide (5%), carbon monoxide (5%), nitrogen (50/0),

oxygen (5%), methane (40/0), and hydrogen (4%) (MATHESON TRI-GAS Inc.,

Twinsburg, OR). Potassium hydrogen phthalate (99.97%, Scientific, Fair Lawn, NJ).
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All glassware was washed with detergent, followed by triple-rinsing with tap water, Mili­

Q water, and drying for 12 hours at room temperature (24°C) before use.

3.3 BIOLOGICAL REACTORS

To study methane, carbon dioxide, amlTIOnIa emISSIon processes, lagoon

simulators were designed to reproduce the same environmental conditions as in

anaerobic, aerobic and facultative lagoons. The design was developed taking into account

heating, cooling, lighting, aeration, mixing, feeding and ventilation Fig 3.1 (Hamilton,

1998).

The columns were used to recreate the same thennal and chemical conditions

present in commercial lagoons during midsummer in Stillwater, OK (35N). These

conditions were established by an extensive survey of the lagoon at the OSU Swine

Research Center during the Summer of 1997. The columns are 12 inches in nominal

diameter, and 12 feet in depth (Fig 3.2). Two sets of two columns are coupled with the

same lighting and heating systems to achieve two replicated sets of conditions from four

columns. Column sets were connected by tubing at 0.5 and 4.5 ft to circulate of liquid

using a recycling pump. The circulation was done on the daily basis at 7:00 am (lagoon

time). Water baths were used to control the temperature as described in Hamilton (1998).

The lights, designed to have the same intensity and wavelength of sunlight (Hamilton,

1998), were turned on at 7:00 am and turned off at 19:00 every day. An air conditioning

system and wind tunnels (Cumba, 2000) controlled atmospheric conditions on one

column of each two column set. The cross-section area of the wind
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Figure 3.1 Pilot plant conceptual drawing (Hamilton, 1998)
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Figure 3.2 Pilot facil~ty construction details (Hamilton, 1998)
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tunnel was 0.0214 m2 and the average wind speed through this cross-section area was

1.609 km/h. Therefore, the volumetric flow rate was 34.43 m3/hour.

In August of 1998, the first inoculum for the columns was taken from the lagoon

(Oklahoma State University swine facility). Then, in September 2001, the columns were

partially drained of effluent, leaving the sludge layer intact. New liquid from the same

lagoon was collected and transferred to the columns.

The columns were fed manually on a daily basis, as close to 12:00 as possible,

with manure collected from pigs fed a fortified cOIn-soybean meal. The manure \\las

collected from the Oklahoma State University swine facility. The amount of manure fed

to the columns corresponded to the loading rate 1.5 Ib.VS/103
ft3. The characteristics of

manure used on August 10, 2002 are shown in table 3.1.

Parameters Values

TS, mg/l 122,360

VS, mg/l 95,545

pH 6.77

COD, gil 102

TKN (dry), % 4.67

TKN, mg/l 10,968

NH4+, mg/l 4,807

TC,% 47.36

Acetate, mg/l 4,941

Propionate, mg/I 5,033

Butyrate, mgll 8,376

Lactate, mg/I 2,181

Table 3.1 Raw manure characteristics (08/10/2002)
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65 ml of raw manure was diluted with 685 ml ofRO water to make a 750 ml mixture fed

every day.

To detennine if an equilibrium had been reached, samples from the reactors were

monitored for: total solids, volatile solids~ total and volatile suspended solids, pH,

ammonia nitrogen, and total Kjeldahl nitrogen. After equilibrium was achieved (no major

changes in the monitored parameters) in July of2002, volatile fatty acids, NH3, CH4, and

CO2 were analyzed in addition to monitored parameters.

3.4 STANDARD CHARACTERIZATION METHODS

Lagoon simulator performance was evaluated by regularly monitoring and

recording the following parameters for influent and effluent: total suspended solids

(TSS), total solids (TS), volatile suspended solids (VSS), volatile solids (VS), total

Kjeldahl nitrogen (TKN) according to APHA et aI., (1998). The pH and redox potential

were measured by Accumet 1001 pH/mY/Ion meter purchased from Fischer Scientific

Inc. equipped with DO (Cole-Palmer) electrode. COD was measured by low range (100­

4500 mg COD/I) accu-TEST TM, Chemical aD system EPA approved MICRO-COD

(Bioscience Inc., Bethlehem, PA). Potassium hydrogen phthalate (KHP) served as a COD

standard. For electro-conductivity (EC) measurement, a YSI 30 salinity, conductivity,

temperature meter (YeIlow Springs Instruments Company Inc., OR) was used.
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3.5 METHANE AND CARBON DIOXIDE EMISSION

The release of methane and carbon dioxide from the lagoon simulator was

measured by closed chamber system. The atmosphere immediately above the liquid

surface was covered by a chamber and sampled 30 minutes after closure or at regular

intervals over 30 min period after closure. For a constant net emission of methane and

carbon dioxide, we have found that the concentration of carbon dioxide within the closed

chamber is linear over a period of up to 1.5 h, and for methane up to 1h. Therefore, the

time we have chosen was below 1 h.

The manual chalnber was a modernized version of chamber used by Ball et aI.,

(1999) for soil analysis. It was a 0.2 m-tall, 0.09 111 diameter polypropylene (Nalgene)

cylinder, pushed into piece of Styrofoam 0.15xO.15 In giving a headspace of 1.3x10-3 m3
.

A piece of tubing was inserted into the top of the cylinder as an outlet. During sample

collection, the tubing outlet was closed by a clamp. Samples were taken using a 5 ml

glass syringe (VICI precision sampling, Baton Rouge, LA), by inserting the syringe

needle to the tubing located on the top of the cylinder. After the sample was collected, the

manual chamber was removed from the water surface to release accumulated gases and

flushed with the air by an air compressor (GAST DOA, Benton Harbor, MI) for

approximately 1.0 min. The sampled gas was immediately analyzed using an SRI 8610 C

gas chromatograph (SRI, CA) fitted with the thenl1al conductivity (TCD) and helium

ionization (HID) detectors. Separation was performed using a steel packed column

8'x1/8"xO.085 OD, SS, packed with HaySep Q, 80/100 mesh. Helium was used as a

carrier gas with a constant pressure of 20 psi. The GC column was held at 32°C for 4.0
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min and then temperature was ramped to 72°C for 8.0 min at 5.0 °c Imino The detector

temperature was 150°C. The GC was calibrated before and after each set of

measurements in triplicate. For this purpose 99% methane and 100% carbon dioxide were

used. One ml of the gas was diluted in a syringe with 39, 19,9,4,3, 1 and °ml of carbon

dioxide (for methane- calibration) or methane (for carbon dioxide calibration). This gave

2.5, 5, 10, 20, 25, 50 and 100% of measured gas. Data were collected using SRI GC

Peak Simple for Windows software data handling program. The average of the three

measures was used.

3.6 AMMONIA GAS EMISSION

Ammonia gas elnitted from columns equipped with wind-tunnels was measured

with a single point meter (SPM) (Zellweger Analytics, IL). The SPM was equipped with

a MDA continuous Chemcassette EP Monitoring System for aliphatic amines/ammonia

(Zellweger Analytics, IL). The meter was connected to the wind tunnel. The gas was

measured continuously. Flow rate on the SPM was set at 1.0 l/min; therefore, the sampled

portion was 0.174% of the total air flow.

3.7 VOLATILE FATTY ACIDS MEASURMENT

Volatile fatty acid content was analyzed by ion chromatography. A Dionex DX

600 Ion Chrotatograph (IC) (Dionex) equipped with a conductivity detector ED50,

AC11-HC IonPack column 4x250 mm, ASRS supressor and ATC-I trap column and 25
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J.llioop was used. Eluents used were deionized water (A), 5mM NaOH (B) and 50mM

NaOH (C). Total flow was 2.0 ml./min. During the sample run, eluents were mixed in

the following proportions:

Run time, min Eluent proportion, %

0-2 93°~ A, 70/0 B
2 -6 1000/0 B
6-9 50% B , 500/0 C
9 -18.99 hold 50% B , 500/0 C
19 -26 93%A,7%B

Table 3.2 Ion Chromatography Eluent Concentration Gradient

Acetic, lactic, propionic and buturic acids were used for VFA standards.

Triplicate standards (1, 2, 3, 4, 5, 10, 15, and 20 tng·r1
) were prepared in de-ionized

water. Standards were filtered through OnGuard-H cartridges (Dionex ) and analyzed by

IC. The liquid samples were collected every hour from the lagoon simulator column at

depth of 0.3, 1.22 and 3.0 m At a depth of 3.0 ill, sludge had accumulated. 2.0 ml of

sludge and 4.0 ml of colunln liquid were transferred to the separate 10.0 ml test tubes,

and the aliquots of 8.0 and 4.0 ml respectively of reverse-osmosis pretreated water were

added. The diluted samples were centrifuged at 3,400 rpm using ultra-centrifuge (lEe

Centra GP8R, Need ham MA) for 15.0 min. The centrate was removed, filtered out

through OnGuard-H cartridges (Dionex ) and stored at 4.0 °C prior to analysis by the IC.
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3.8 AMMONIUM MEASUREMENT

Ammonium content of the lagoon simulators was analyzed by Ion chromatograph

(IC). A Dionex DX-600 Ion Chrotatograph, equipped with a conductivity detector ED50,

CS12-A IonPack column 3x150 mm, CS12A 4-mm and CTC-l trap column, and 25 f.11

loop was used. The eluent used was 33 mN Methansulfonic acid. The total flow rate was

1.0 mUrnin The Ie was calibrated with a minimum of seven calibration standards (20, 30,

40, 50, 100, 150 and 200 mg/L) of standard ammonia solution (1000±5 ppm. as N,

ORION Research, Inc.,Beverly, MA). Three measurements were tnade for each salnple

or standard. The average of the three measurements was used for analysis.
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<) column A

. column B

I 6. column C

L x columnD

4.0 RESULTS AND DISCUSSION

As mentioned in chapter 1, key objectives of this research were to measure

methane, carbon dioxide and ammonia emissions from a simulated facultative lagoon.

The lagoon simulators described in chapter 3 were used. Parameters used to detennine

an equilibrium were TS, VS, pH, EC, TKN and NH4+.

Since the major analyses for Cfu, CO2 and VFA were conducted in the column A, most

other analyses given in this section are taken from column A.

4.1 TEMPERATURE

Daily temperature trend at 0.5 ft. depth for all columns IS shown In Fig. 4.1.
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Figure 4.1. Daily temperature trend at 0.5 ft for all columns
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The upper water baths began their heating cycle and lights switched on,creating a

rise in temperature that is first noticeable in figure 4.1 at 9:00. On all columns, there is a

spike around 12:00, which may be due to water baths compensating for a drop in

temperature caused by feeding of the mixture. At 12:00, all columns were fed. After

manure was deposited to the column, the temperature decreased at 0.5 ft. The sensor,

which controls the water baths, was situated at 0.5 ft, in the middle of the column. The

hot water ran through the upper coil, heating the liquid around it. The thermocouple,

which reads the temperature shown in figure 4.1, was situated close to the wall of the

column. The thermocouple picked up this local heating as a rise in the temperature right

after the feeding.

The maximum temperature at 0.5 ft was reached about 19:00. This corresponds to

the time when the light is turned off and water baths began their cooling cycle. The

temperature at 0.5 ft. in all columns differs by I-2°C. This may be due to the fact that the

columns C and B were equipped with Plexiglas wind tunnels. The Plexiglas absorbs and

reflects radiation heat from the lamps, causing a relative decrease in the temperature.

Columns A and D, did not have tunnels, and the lights radiated heat directly to the liquid

surface.

Temperatures were not measured above 0.5 f1. Given the fact that this is the layer

most affected by radiant heat from the lamps, it is difficult to speculate on actual liquid

temperature above 0.5 ft.

During the course of experiments, the temperature profile for entire column was

approximately the same as presented in Fig. 4.2. from 09/09/2002. The major temperature

changes were above 2 ft. The mixing of the liquid at 7:30 seems to have no effect on the
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temperature. This is due to the fact that the recycling pump was turned on (for 5 min.) at

a time when the temperature at 4.5 ft was equal to the temperature at 0.5 ft.

There are very little daily temperature fluctuations below 2 ft. The lowest

temperature was below 9.5 ft, and remained constant throughout the day. The highest

temperature was at 0.5 [t and was equal to 34°C at 19:00.
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Figure 4.2. Temperature profile column A, 09/09/2002
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4.2 TS & VS

TS and VS profile of column A are sho n in Fig. 4.3. There is no major

difference in solids concentrations between 0.5, 4.0 and 8.0 ft. TS and VS concentrations

at these depths were about 3.5 gil (TS) and 2.5 gil (VS), respectively. Depths below 10ft

contained accumulated sludge; thus, TS and VS concentrations at 10ft were much

higher than for 0.5, 4.0 and 8.0 ft.

Solids Concentrations, gil

605040302010o
o -a----------------------------------......

4

2

12 -a.- ......

Figure 4.3. TS&VS profile of column A, 3/19/2002

The daily TS and VS trends for the period from 3/19/2002 to 9/7/2002 are presented in

Fig. 4.4 and Fig. 4.5.

38



o

, ::lI--+- Column A,4ft

1---Column B,4ft

I --- Column C, 4ft
: -+- Column D, 4ft
; --*- Column A, 10ft

i~Column B, lOft
-A- Column C, 10ft

--Column D, 10ft

80

70 0

60

50

~

~ 40
crJ
~

30

20

10

• • •
0

I-Mar 31-Mar 30-Apr

o

30-May 29-Jun

Date

29-Jul 28-Aug 27-Sep

Figure 4.4. Daily Total Solids trend for all columns

---+- Column A, 4ft

. ---- Column B, 4ft

---- Column C, 4ft

--.- ',,---- Column D,4ft

I---*- Column A, 10ft

, ~Column B, 10ft

: -.-Column C, lOft

: --Column D, 10ft
~--------

50

45

40 0

35 •
30,

~ 25-
crJ
>

20

15

10.

5

• • I0

I-Mar 31-Mar 30-Apr

o

30-May 29-Jun
Date

29-Jul

o

28-Aug 27-Sep
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At 4 ft depth, there is a little change in TS and VS concentrations during the investigated

time. The solids concentration at this depth is approximately the same for all columns.

However, there is a significant difference in solid concentrations between the group of

columns A, C, D and column B at the depth below 10ft. Column B apparently had more

sludge at a depth of 10 [1. TS and VS concentrations at 10ft in column B were 70 gil and

39 mg/I, respectively, compared to 50-55 gil and 34-35 gil for colun1ns A,C and D. Even

though the liquid between columns A and B, was circulated, the solid concentration in

column B was higher than in column A. This is due to the fact that recycling occurred at

the depth above 8 ft; therefore, sludge was not disturbed below a depth of 8 ft.
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4.3 pH

The pH profile for all columns taken on 08/17/2002 is shown in Fig. 4.6. There is

a slight decrease in pH with depth from 0.5 to 10ft; however, pH in the sludge zone

(below 10ft) is considerably lower than in the liquid zone above 10ft.

pH
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Figure 4.6. pH profile for all columns, 08/17/2002

During the tested period from February 3 to September 29, pH in the sludge level

at lOft and below was constantly lower than at 1 and 4 ft, and was in the pH range of

6.9-7.2 (Fig. 4.7-4.10). Figures 4.7 through 4.10 show that pH in all columns was

relatively stable throughout the experimental period.
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4.4EC

The Ee profile for all columns on 08/6/20 is shown in Fig. 4.11.
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Figure 4.11. EC profile for all columns, 08/06/2002

There is little variation in EC for the liquid portion of the columns. EC values in each

individual column were relatively constant from 0.5 ft to 10ft. In all columns, EC trends

could be divided into two parts, before and after July 1 (Fig. 4.12-4.14). After July 1, the

Ee values became more uniform. This may be explained by the fact that the recycling

pump was plugged and liquid circulation was not reliable before July 1. After July 1, the

tubing in the pump was cleaned out (algae was removed), the liquid started circulating

and the Ee values tended to be more homogenous. Thus, we can conclude that the

amount of ions during the time was approximately the same after July 1.
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4.5TKN

The TKN profile for columns Band C is presented in Fig. 4.19
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Figure 4.16. TKN profile for columns Band C, 07/17/2002

The TKN profiles of columns Band C are very close. From 0.5 to 8 ft, TKN

values are constant and approximately equal to 350 mgll. Below 8 [1. TKN of both

columns increased to 4000 mg/I. Consequently, TKN of sludge is ten times higher than

TKN of the liquid. The TKN data for columns Band C were collected from 02/21/2002

to 09/27/2002 and shown in Fig. 4.17 and 4.18. In both columns at the depth above 10 ft,

TKN'values are relatively constant throughout the period of observation.
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4.6 AMMONIUM

The ammonium profile for all columns is presented in Fig. 4.19. The ammonium

concentrations in all columns above 10ft are very close. At the depth of lOft, there is an

increase in the ammonium concentrations for all columns. Also, columns A and B had

lower concentration of ammonium than columns C and D in the sludge zone. The

ammonium trends for each individual column are presented in Fig. 4.20-4.23. In the

liquid part of the columns the ammonium concentration was in the range 0[220-450 mg/l

compared to 250- 450 mg/I of the liquid TKN; therefore, in liquid zone TKN is

approximately 900/0 ammonium. In the sludge zone (below 10 it), ammonium

concentrations were 750-1500 mg/I compared to the TKN values of 3000-4500 mg/l;

therefore, ammonium accounts for only 25-33 % of the total nitrogen in the sludge zone.

1200 1400

11~~cOlumnA I
---Column B I

I -x-Column C I
~ __=Co~umn D J

NH4+-N concentration, mg/I
600 800 1000400200o

o -i-----------........------------------------....
1 -

2

3

4

c:: 5­
~a 6-
~

Q 7-

8 -

9

10 -

11

12 -'-----------------------------....

Figure 4.19. Ammonium profile for all columns, 07/11/2002
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4.7 AMMONIA EMISSION

Columns Band D were equipped with wind tunnels for this study. Ammonia

emission was measured on column B. Fig. 4.24. shows the daily ammonia emission trend

from column B.
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Figure 4.24 Ammonia emission from column B, 6/22/2002

Ammonia emission started around 7:30, about 30 minutes after the lamps were

turned on, and increased from 380 mmole m-2 min- 1 to 600 mmole m-2 min-1 until 12:00.

At about 12:00, emission slightly decreased. This can be explained by the fact that the

wind tunnels extensions were removed, for approximately 5-10 min., so that algae could

be removed from the top of the columns. This drop was observed in all ammonia trends

of our study as shown in Fig. 4.25.
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Figure 4.25 Daily Ammonia emission trend from column B, 6/21/2002-6/23/2002

Maximum ammonIa emISSIon occurs around 18:00, which corresponds to the

highest temperature in the liquid in the upper 1 ft of column liquid (Fig 4.1 and 4.2). At

19:00, the emission started decreasing, and frOITI 21:00 until 7:30 of the following

morning, very little ammonia emission occurred. This trend is repeated on a daily basis

(Fig. 4.25).The observed phenomenon can be explained by the temperature dependent

solubility of ammonia in liquid. Increase in temperature decreases the NH3 solubility in a

liquid (Stephen and Stephen, 1963). Increase in temperature also increases biological

activity. Using the regression equation derived from the ammonia solubility data adopted

from Stephen and Stephen (1963), we can conclude tllat the maximum increase in the

temperature from 27.5 °c (the lowest temperature, at 6:00) to 34°C (the highest

temperature, at 18:00) ,vould decrease the ammonia solubility 12.2%. However, this

would not explain why the emission began to decrease at 20:00. The temperatures in
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column B at 20:00 were 31°C, at 1 ft and 34°C at 0.5 ft which are higher than the

morning temperature at 7:30 (27.5 DC), at which emission was started. Unfortunately, the

temperature directly on the surface in the liquid, where ammonia emission phenomena

occur, was not measured; so, the exact effect of temperature is not known.

Some researchers (Aneja et aI., 2001; Sommer, 1997; Dewes, 1996) found

temperature to be a strong factor controlling ammonia volatilization. Aneja et aI., (2001)

observed similar diun1al emission pattern in anaerobic lagoons, with the maximum

emission rate corresponding to the highest liquid temperature.

The total mass of ammonia (NH3-N) released from the simulated lagoon was in

the range 300-400 mg/day, which corresponds to a daily flux of 65.2-86.9 kg! ha day.

Mass ofTKN loaded per day was 713 mg; therefore, 42-56% of the nitrogen added to the

column is accounted for the ammonia emission. These results are higher than those

reported by Harper and Sharpe (1998). The reported range for ammonia emission was

4.9-10.5 kg!ha day for anaerobic/facultative lagoons in North Carolina at the volumetric

loading rate of 0.02-0.03 kg VS 1m3 day. Our volumetric loading rate was 0.024 kg

VS/m3 day, which is in the middle of their range. Consequently, volumetric loading rate

is not the only factor affecting ammonia emission.

Higher emission rates from the simulated lagoons may be due to: feeding and

sampling location, and oxygen concentration at the lagoon's effluent. Since we measured

ammonia emission at the same location where we fed, our emission was higher than if the

emission was measured away from the feeding place (less nitrogenous materials are

available there). In addition, this difference could be explained by the fact that lagoons

which were used in the North Carolina studies could have sufficient oxygen to allow
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ammonia oxidation and dinitrification to dinitrogen gas. Their dinitrogen gas emission

was much higher than ammonia emission and was 8.9-120 kg N2-Nlha day. Presumably

they used the same lagoons to measure methane and ammonia emissions. If so, their

reported values for dissolved oxygen in methane emission study was> 0.5 mg/I (Sharpe

and Harper, 1999), which is sufficient for denitrifying organisms (Jones et aI., 2000). In

our columns, no oxygen was detected throughout the depth. Redox potential was much

lower than -200 mY, which means the column is completely anaerobic (Maier et aI.,

2000). Therefore, no significant ammonia conversion to dinitrogen gas was possible. This

would lead to higher ammonia emission.
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4.8 VFA

The VFA measurements were taken on 7/17/2002 and 8/10/2002 during 19-20

hour periods, every hour at the depths of 1, 4 and 10 [1. On a third occasion (9/01/2002)

VFA concentrations were measured at random times at the san1e depths. All studies were

perfonned in the column A. The major detected acids were acetic and lactic. However, no

lactic acid was detected on 7/17/2002. Propionic and butyric acids concentrations were

very close to detection limit. The chromatograms in each study contained a large variety

of other acids, which were not identified. The same general trend was observed every

day. At 1 ft., acetate concentration on July 17 was in the range of 0-30 lng/I, 0-14 mg/l on

August 10 and 0-20 mg/l on September 1 (Fig. 4.26).

From 8:00 to 12:00 the acetate concentrations were very low (close to detection

limit). However, once the columns were fed, at 12:00, acetate concentration started to

increase. A possible explanation for this is that acidogenic bacteria immediately began

converting easily-degradable products to acetate. In the time period from 6:00 to 14:00

the acetate concentration profiles were similar. However, on August 10 the acetate

concentration reached its maximum at approximately 14:00 and remained constant until

2:00. Then it began to decrease. On July 17 and September 1, the maximum acetate

concentration was at 18 :00. At 20:00, acetate concentration began decreasing and 23 :00 it

was about 4 mg/I.

A similar acetate concentration trend was observed at a depth of 4 ft (Fig 4.27).

56



I -0- Acetate 7/17/021

- Acetate 8/1 0/02 I
I ---.- Acetate 9/01102

6:004:008:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 0:00 2:00

Time, hours

50 .,.--------------------------------.

45
~e40

:: 35
.9
t: 30
e':.......

~ 25
~c
8 20
Qj

~ 15
.......
Qj<10

5

0+--.......----..-LJ-~....&.ja--T_-...,...--r__-_.._-___,....__""'"-...._-__r--....._-__4

6:00

Figure 4.26 Acetate concentration trend, column A, 1 ft, 7/17/2002, 8/10/02 &
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However, acetate concentrations were three times lower than at a depth of 1 ft. As the

material fed at the top of the column settles into the column, less and less of the easily

degradable material is available for acidogenic microorganisms.

The acetate concentrations at 10ft are shown in Fig 4.28. Acetate concentration is

relatively constant, and within the range of 2-16 n1g/l. Compared to 1 and 4 ft, acetate

concentration appears to be less dependent on the feeding cycle. This could be explained

by the fact that acidogenesis and acetogenesis in the sludge are more complex than in the

upper layers. In other words, in upper part of the lagoon, acetate is created from easily

degradable, soluble materials added with feeding. In the lower zone, acetate is created

from slowly degradable materials (lignin, cellulose) that settle to the bottom. As was

discussed in chapter 2, cellulose and lignin degradation involves several steps before it is

converted to the acetate.
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Figure 4.28 Acetate concentration trend, column A, 10 ft, 7/17/2002, 8/10/02 &

9/01/2002
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As it was mentioned before, no lactic acid was detected on July 17. However,

when the experiments were perfonned again on August 8 and September 1, lactic acid

was detected at all measured depths and was in the range of 4-33 mg/l (Fig 4.29).
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Figure 4.29 Lactic acid concentration trend, column A, 8/10/2002 & 9/01/2002

The concentration of lactic acid at 10ft was in the range of 15-30 mg/I and always

higher at 10ft than in the upper depths. Below 10ft, columns have large storage of

sludge, which consist of 47% TC (Table 3.1). This is mainly lignin, cellulose and pectin,

which are great substrates for lactic acid producing bacteria (Table 2.2). At 1 and 4 ft the

lactate concentrations were very close and in the range of 4-12 mg/I. Feeding does not

appear to affect lactic acid production. This trend was repeated on September 1.
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As it was discussed in the literature review, no lactic acid was observed in swine

manure digesters. Moreover, there was not any literature data found on lactic acid

production in swine lagoons. To confinn whether the columns had VFA concentrations

similar to a full-sized lagoon or not, VFA concentrations were measured from Oklahoma

State Swine Research Center lagoon. The data was collected on 8/21/2002 at 9:30.

Results are shown in Fig 4.30
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Figure 4.30 Lactic acid concentration profile in OSU swine lagoon, at 9:30 on
8/21/2002

The samples were taken from two connected lagoons. One of them had more

accumulated sludge ("sludge side"), so it was only possible take the sample no deeper

than at 9.5 ft. Second lagoon had less accumulated sludge ("clear side"); so, there wasn't
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any problem in taking sample at 10 ft. As in the column A, both sides had more lactate in

the deeper layers than in the upper parts. Concentration at 1 ft. of the depth in the "sludge

side" was about 8 mg/l compared to 10 mg/l in the "clear side" (same level). At 4 ft, the

concentration in the "sludge side" was 7 mg/l, which is a little bit lower than at 1 ft.

However, in the clear side it was 13 mg/l, which is a little bit higher than at 1 ft. of this

lagoon.

Even though the "clear side" had less sludge than the "sludge side", the lactic acid

concentrations at 9.5 and 10ft. in those lagoons were very close (34 and 35 mg/l

respectively). In column A, lactic acid concentration at 10 ft was lower than in the

lagoons. This could be due to columns operation differences (mixing, feeding etc.).

In the upper layers of COIUnul A on August 10, and upper layers of the lagoon ("clear

side"), the lactic acid concentration was in the same range of 7-8 mg/I. No acetic,

propionic or butyric acids were detected in the OSU swine lagoon on 8/21/2002 at 9:30.

This time of sampling corresponds to the time between when the liquid in the columns

was mixed and fed. Very little of acetic, propionic or butyric acids were detected (close

to the detection limit) in the upper layers of the columns at that time (Fig. 4.26.; Fig.

4.27). However, at the lower zone (below 10ft) of the column, acetate concentrations

were detected at 5-15 mg/l (Fig. 4.28) and no acetate was detected in the full-sized

lagoons at this depth. This difference can be explained by the fact that the samples were

taken in the middle of the lagoon. The lagoons were fed 6-8 m. from the place where the

samples were taken. Supposedly, most of the acetate would be available there after the

lagoons were fed. In addition acetate could be immediately converted to methane by

methanogenic bacteria. Butyrate could be immediately converted to acetate by acetogenic
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bacteria and butyrate could undergo conversion to lactic or acetic acids. All mentioned

acids finally converted as carbon dioxide and methane gases.
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4.9 METHANE AND CARBON DIOXIDE EMISSION

Daily CH4 and CO2 emission from the column A are presented in Fig. 4.31 and 4.32.
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Figure 4.31 Daily CH4 emission trend from column A
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The data was collected in the following sequences:

on June 22, data were taken every 30 min fron1 6:00 to 18:00, and on June 24 from

16:00 to 6:00. Then, they were combined in to one plot;

on July 17 and August 10, data were taken continuously for 19-20 hours at 30 min.

intervals;

on September 1, data were taken randomly, at 30 min intervals.

Although the data were collected in the different tilnes, methane and carbon dioxide

plots follow the same trends. However, CH4 emission rate was always higher than CO2

emission rate, and was in the range of 0.6 - 1.8 mmole/min*m2
, with short maximum at

7:00 of 2-2.7 mmole/min*m2
. The CO2 daily emission rate range was 0.5-1.4

mmolelmin*m2
, and 1.4-2.4 mmole/min*m2 at 7:00. The increase in the emission rates at

7:00 for both gases can be explained by the fact that at this time the recycling pump was

operating and mixing the liquid, which is highly saturated with gases. The gas-liquid

equilibrium was shifted and gas bubbles were released from the liquid. The emission of

both gases went down slightly lower than it 'was before ll1ixing, and was constant until

12:00. Acetic acid concentrations also dropped after 7:00 (Fig. 4.26, Fig. 4.27) indicating

a burst ofbiogas production from acetate where the upper layer is mixed.

At 12:00, the methane emission rate began to increase, reached its maximum

almost immediately and stayed at the same level during the night (Fig. 4.31). The CO2

emission rate had the same trend until 19:00. However, after 19:00 carbon dit?xide

emission started declining and reached its minimum at 7:00. These points correspond to

turning on and off the light. Therefore, the conclusion could be made that photosynthetic
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bacteria are involved in this process. However, photosynthetic organisms, for example

algae, use carbon dioxide in photosynthetic activity during the day to produce new cells

and release carbon dioxide during the night (Tchobanoglous and Burton 1991). This does

not correspond to our data.

To better understand methane- carbon dioxide correlation, CH4/C02 ratio graph

was plotted and presented in Fig. 4.33.
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Figure 4.33 Daily CH4/C0 2 ratio for column A

Diurnal CH4/C02 ratio may be divided into two sections. First of all, from 7:30 to

19:00, the ratio of CH4/C0 2 was close to 1.0 (1-1.4). From 19:00 to 6:00, the ratio

increased to 1.6-2.0. Methane production was almost twice that of carbon dioxide during

the night. As it was discussed in chapter 2, methane could be produced either from direct

microbial degradation of low molecular weight acids or from microbial conversion of

carbon dioxide. Methane emission increased once the columns were fed. After manure
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was applied to the liquid, the microbes immediately began to convert easily digestible

material to acetate and propionate. The newly created acetate as well as the VFAs

presented in the fed are immediately converted to CH4 and CO2• After, the major part of

acetate is consumed, the methane production switches to microbiological carbon dioxide

conversion to methane. Correlation of CH4/C02 ratio and acetate concentrations on

7/17/2002 is shown in Fig. 4.34.
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Figure 4.34 CH4/C02 ratio and acetate concentration, column A, 7/17/2002

At 14:00 methane and carbon dioxide emission rates began to increase. This

corresponds to increase in the acetate concentration. However, the methane/carbon

dioxide emission ratio was constant. At 19:00 acetate concentration started to decrease

and as a result methane and carbon dioxide emission also went down (Fig. 4.31, Fig.

4.32), but the methane/carbon dioxide ratio started to increase (Fig. 4.34). At 21 :00

methane emission began to increase, but carbon dioxide emission remained at the low
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level, which resulted in elevation of methane/carbon dioxide ratio. This can be explained

by the fact that methanogenic bacteria started using carbon dioxide as a carbon source

instead of acetate. The same phenomenon was observed on 8/10/2002 (Fig. 4.35).
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Figure 4.35 CH4/C02 ratio and acetate concentration, column A, 8/10/2002

On 8/10/2002, acetate concentration was lower than on 7/17/2002 (Fig. 4.34) and

remained constant from 14:00 to 2:00. As a result, the methane production was also lower

than in other days and stayed constant during the night (Fig. 4.31). However, on

7/17/2002 the acetate concentration was twice as high. In general, methane and carbon

dioxide emissions are well correlated with acetate data.

Daily carbon dioxide emission was in the range of 350-530 kg/ha day. As it was

stated before, no literature data was found on carbon dioxide emission from anaerobic

lagoons; thus, these values can not be compared.
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Daily methane emission was in the range 190-280 kg/ha day. As in the case of

ammonia emission, this is higher than methane enlission measured by Sharpe et aI.,

(200Ia). Sharpe et aI., (2001a) measured emission of CH4 from anaerobic lagoon in

Southeastern US in the range of 20-115 kg CH4 Iha day. Such difference may be

explained by the same hypotheses described in amn10nia emission (Chapter 4.7). These

factors are presence of oxygen in the lagoon's effluent, and feeding and sampling

locations.

It is known that presence of oxygen in solution even as low as 0.18 mg/l inhibits

methanogenic processes. Methanogenic reaction occurs only at the Eh range of -200 mV

(Le Mer and Roger, 2000). The dissolved oxygen in the studied lagoons by Sharpe and

Harper (1999) was always higher than 0.18 mg/l, consequently met11anogenic activity

was suppressed. However, in our lagoon simulators Eh was always lower than -200 mV

at all depths. This may explain differences in the methane emission.

Safley and Westenunan (1988) stated that most agricultural lagoons are loaded at

one or to points resulting in higher loading rates in these areas. Consequently, methane

emission may vary, depending on the areas of the lagoon. The gaseous emissions were

measured from the same place were the lagoons simulators were fed.

The theoretical biogas (CH4 and CO2) production may be calculated from the

COD .of the feed. The COD of the raw manure used as a feeding material on 8/10102 was

102 gil (Table 3.1). Based on the loading rate, the volume of the manure fed on this day

was 0.065 1; therefore, the theoretical methane and carbon dioxide production should be

4.64 1 (Tchobanoglous and Burton, 1979). The actual CH4 and C02 gas production on

8/10/2002 was 3.79 1, which is approximately 82% from the theoretical gas production.
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Thus, we can conclude that our daily COD removal rate from gas production is about

82%. The rest of this COD, 18% may be accounted as slowly degradable or non

degradable materials, which accumulate in the sludge layer.
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5.0 CONCLUSIONS

The major aIm of this study was to measure methane, carbon dioxide and

ammonia emissions from an anaerobic/facultative lagoon simulator. The ammonia

emission from the lagoon simulator was 65.2-86.9 kg/ha day, methane was 190-280

kg/ha day and carbon dioxide was 350-530 kg/ha day. The emission of all gases was

higher than those reported in the literature. Acetic, lactic and very little of propionic,

butyric acids were found in the lagoon simulator. At the time of the day lagoons (loaded

at the lower loading rate than the columns) were sampled, VFAs were similar in the

columns and full-sized lagoons. TKN, ammonium and pH values of the lagoon simulators

were close to the values found in the full-sized lagoons.

Based on the results of this study, the following conclusions can be drawn:

the columns have fair representation of full size lagoons

emissions of methane, carbon dioxide and ammonia depend on change of

temperature, mixing of the liquid, lighting, loading rate and other physical factors.

emission of biogas (methane and carbon dioxide) depends on VFA concentration,

particularly acetic acid

practical biogas emission was very close to theoretical (82%)

the studied column had high COD removal rate of 82%

Recommendations for future research in this area may be provided based on our

experimental methodology. To better understand emission of CH4 , CO2 and NH3,

measurements should be made over a wide range of lagoon sizes, covering the range of

yearly lagoon temperatures, redox potentials and other parameters.
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