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CHAPTER 1 

 
 
 

INTRODUCTION 

FOREX (Foreign Currency Exchange) is concerned with the exchange rates of 

foreign currencies compared to one another.  These rates provide significant data 

necessary for currency trading in the international monetary markets.  FOREX rates are 

impacted by a variety of factors including economic and political events, and even the 

psychological state of individual traders and investors.  These factors are correlated 

highly and interact with one another in a highly complex manner. Those interactions are 

very unstable, dynamic, and volatile. This complexity makes predicting FOREX changes 

exceedingly difficult.  The people involved in the field of international monetary 

exchange have searched for explanations of rate changes; thereby, hoping to improve 

prediction capabilities. It is this ability to correctly predict FOREX rate changes that 

allows for the maximization of profits. [25] Trading at the right time with the relatively 

correct strategies can bring large profit, but a trade based on wrong movement can risk 

big losses. Using the right analytical tool and good methods can reduce the effect of 

mistakes and also can increase profitability.   

Artificial Intelligence (AI) systems are systems designed for detecting knowledge in 

data without human interruptions. The systems are trained to create models of the 

underlying data making computers become more self-programming rather than 

implementing program structures for computers to execute. An AI system should be able 
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to generate it’s own rule sets, decision strategies and numerical values based on input 

data and targets defined by a human being [20]. Such AI systems must develop 

successful behavior just as successful human traders who use market analysis and 

combine it with their knowledge and skills. With the advances made in computer 

technology, artificial intelligence can overcome some of the limitations of humankind, 

such as lower rates of performance, less efficiency and slower communication. 

One popular technique of implementing an AI system for predictions of financial 

market (e.g., foreign currency exchange) performance is Artificial Neural Networks 

(ANN). ANN is actually an information processing system that consists of a graph 

representing the processing system as well as various algorithms. ANN is a complex and 

sophisticated computer program. It is able to adapt, to recognize patterns, to generalize, 

and to cluster or to organize data.  The ANN operation has been used to advise trading of 

FOREX to increase profitability. Today ANN can be trained to solve problems that are 

difficult when using conventional programming techniques or through the efforts of 

human beings. 

In order for ANN to recognize patterns in the data, it is necessary for the neural 

network to “learn” the structure of the data set. Learning is accomplished by providing 

sets of connected input/output units where each connection has a weight associated with 

it.  The ANN learns by adjusting the weights so that the application of a set of inputs 

produces the desired set of outputs. [3] 

There are several advantages in using ANN for the analysis of data.  First, once 

neural networks are trained, their performance does not significantly degrade when 

presented with data not encountered during the initial learning phase.  Second, they 
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handle poor quality data very well.  Such problems with data may occur from 

measurement errors or for other reasons.  Third, it isn’t necessary to make strong 

assumptions about the data presented to a neural network in the same way traditional 

statistical techniques require.  Fourth, the neural network does not require the user to 

decide the importance of variables because the network itself will make those decisions. 

Using ANN to predict foreign exchange rates has a large potential for profit returns, if it 

is successful. [3] Therefore, the use of ANN might be able to predict the fluctuations for 

foreign currency rates and are much more efficient than other systems.  For this reason, 

the decision was made to use ANN for this project. 
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CHAPTER 2 

 
 
 

DESIGNING A NEURAL NETWORK FORECASTING MODEL  

The background information used for this chapter was taken from Kaastra and Boyd 

[15].  The back-propagation neural network is the most widely used in financial time 

series forecasting. Standard back-propagation is a gradient descent algorithm. It was 

created using the Windrow-Hoof learning rule. The rule is the network weights and 

biases are updated or generated in the direction of the negative gradient of the 

performance function  [8]. The performance function is measured by MSE (mean square 

error)---the average squared error between the network outputs and the target outputs. 

This network can be used to approximate a general function. It can approximate equally 

well any function with a finite number of discontinuities.  

 

2.1 Variable selection 

Understanding the problem that one must resolve is very important. The variables of 

the selected raw data are more numerous than is needed. Choosing the variables that are 

important to the market being predicted is critical.  The frequency of data selection (e.g., 

monthly or daily) depends on the goals of the researcher. 
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2.2 Data collection 

The cost and quality of the data should be considered when collecting data for the 

variables chosen. Four issues need to be considered in the process of data selection; (1) 

the method of calculation, (2) data that cannot be modified retroactively, (3) an 

appropriate delay of the data, and (4) assurance that the source will continue to provide 

data in the future. 

 

2.3 Data preprocessing 

Data preprocessing is the process to assist the neural network in learning the data 

patterns. The input and output variables rarely are fed into the network in raw form; the 

process refers to transforming the input and output variables to minimize noise, to 

highlight important relationships, to flatten the variable distribution, and to detect trends.  

The raw data is usually scaled between 0 and 1 or –1 and +1, so it is consistent with the 

type of transfer function that is being used. 

 

2.4 Training, testing and validation sets 

Generally the process is to divide the time series (input data) into three parts called 

training, testing and validation (out of sample) sets. 

The training set is the largest set and is used by the neural network to learn the 

patterns of the data. 

The size of the testing set ranges from 10 percent to 30 percent of the training set.  It 

is used to test the network models so that the researcher can select the model with the 

best performance.  The testing set can be selected randomly either from the training set or 
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from a set of data immediately following the training set.  A more rigorous approach in 

evaluating a neural network is the walk-forward testing routine (the training-testing-

validation sets are overlapped) because it attempts to simulate real life trading.  The 

validation data set is used to make a final check on the performance of the trained neural 

network. Validation sets should be selected from the most recent contiguous observations.  

 

2.5 Neural network structure 

There are infinite ways to build a neural network. Some properties of a network must 

be defined for each new network. For example, the number of input neurons, the number 

of hidden layers, the number of hidden neurons, the number of output neurons, and the 

transfer functions.                       

Input neurons represent independent variables. In practice, one or two hidden layers 

are used widely and have very good performance. One hidden layer is sufficient because 

increasing the number of hidden layers increases the danger of over-fitting. Selecting the 

best number of hidden neurons is dependent on the complexity of the problem. It 

involves experimentation. The rule is “always to select the network that has the best 

performance on the testing set with the least number of hidden neurons [15].” The three 

methods most often used are fixed, constructors and distracters. Since multiple outputs 

produce degraded results, a single neuron is often used. The transfer function is to 

prevent outputs from getting very large values that can disable neural networks. Most 

neural network models use the sigmoid, tangent or linear functions. The sigmoid function 

is used commonly for financial markets time series data, which is nonlinear and keeps 

changing. Depending on the problem, other functions also can be used. 
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2.6 Evaluation measure 

In a financial trading system, neural network forecasting would be converted into 

buy/sell signals according to the analysis. The general neural network measurement is the 

error sum of squares. Low forecast errors and trading profits are not necessarily identical 

because one large trade predicted by the neural network could have caused most of the 

trading system’s profits. Filtering the time series to eradicate many smaller price changes 

may increase the profitability of the neural network. Additionally, it has been suggested 

by Kaastra and Boyd [15] that neural networks may be useful if the time series behave 

more like counter trend systems that do not follow the patterns of more traditional 

forecasting methods.  

 

2.7 Neural network training 

The neural network training process uses a training algorithm that adjusts the weights 

to reach the global minimum error. The process requires a set of examples of proper 

network behavior—network inputs P and target outputs T. During training the weights 

and biases of the network are adjusted to minimize the network performance function. 

Either the training is stopped, or how many training iterations should be processed must 

be determined a priori. Both the convergence approach and the train-test approach are 

used to prevent over-fitting or over-training. Over-training occurs when the error on the 

training set is driven to a very small value, but when the new data is presented to the 

network the error is large. Training also is affected by many other parameters such as the 

choice of learning rate and momentum value. The network adjusts the weights between 
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neurons based on the learning rule, and the learning rate is the size of the change of the 

weight which could control the training speed, e.g., increase the learning rate could speed 

up training time. The momentum term determines how past weight changes affect current 

weight changes. McClelland and Rumelhart (in Kaastra and Boyd [15]) indicate that the 

momentum term is especially useful in error spaces such as steep, high wall and sloping 

floor. If the error space is sloping floor, without a momentum term, a very small learning 

rate would be required to move down the floor of the ravine. It will take excessive 

training time. By dampening the oscillations, the momentum term can allow a higher 

learning rate to be used to speed up the training time. 

Using artificial intelligence systems in predicting financial markets also combines 

many other kinds of techniques to develop successful behaviors similar to successful 

methods used by human traders; e.g., various algorithms and network structures. There is 

no way to make 100 percent accurate predictions, so risk management analysis based on 

expert knowledge also is needed [21]. 
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CHAPTER 3 

 
 

 LITERATURE REVIEW OF PRECEDING WORK 

Piche [18] uses a trend visualization plot on a moving average oscillator.  For 

example, he uses an exponential moving average oscillator method to compute the 

fractional returns and then uses the trend visualization algorithm to plot the trend 

visualization matrix.  By setting different parameters on the currency exchange rates of 

various national currencies, the results show this method is useful in gaining insight into 

other aspects of the market.   

 Staley and Kim [23] have suggested that interest rates are the most important variable 

determining the currency exchange rates; “self-fulfilling” behavior may also contribute to 

the movements in the rates.  Therefore, they use two inputs:  One relates to the changes in 

interest rates, and the other is the short-term trend in the exchange rate to search for 

patterns in the data.  They indicate the model could be improved if more variables were 

added and the results were tested.  Additionally, confidence regions (or error bars) could 

be added to the predictions so more appropriate validation sets could be chosen.  This 

information could suggest whether on not the prediction should be applied on any given 

day. 

Demster, Payne, Romahi and Thompson [7] have shown two learning strategies based 

on a genetic (programming) algorithm (GA) and reinforcement learning, and on two 

simple methods based on a Markov decision problem and a simple heuristic technique. 

All methods generate significant in-sample and out-of-sample profit when transaction 
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costs are zero. The GA approach is superior for nonzero transaction costs. They also state 

that when in-sample learning is not constrained, then there is the risk of over-fitting. 

Chen and Teong [4] use a simple neural network to improve regular technical 

analyses.  The result of using a neural network not only enhances profitability but also 

turns losing systems into profitable ones.  This provides one with the opportunity to enter 

and exit trades before a majority of other traders do.  A neural network is also able to 

adapt itself to new patterns emerging in the market place.  This is important because 

currency market conditions change very rapidly. 

Refenes, Azema-Barac and Karoussos [22] demonstrate that by using a neural 

network system and an error back-propagation algorithm with hourly feedback and 

careful network configurations, short term training can be improved.  Feedback 

propagation is a more effective method of forecasting time series than forecasting without 

a feedback neural network.  They also considered the impact of varying learning times 

and learning rates on the convergence and generalization performance. They discovered 

that multi-step predictions are better than single-step predictions as well as the fact that 

appropriate training set selection is important.  

Laddad, Desai and Poonacha [16] use a multi-layer perceptron (MLP) network for 

predicting problems.  The raw data contained a considerable volume of noise so they 

decomposed the data into many less complex time series data and used a separate MLP to 

learn each of them.  Another method is to use two new weight initialization schemes.  

Both methods provide faster learning and improved prediction accuracy.  The authors use 

the Random Optimization Algorithm rather than back-propagation because it gives faster 

learning and a smaller mean squared error. 
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Chen and Lu [6] compare the performance of eight artificial neural networks (ANN), 

eight Evolutionary ANNs (EANN) and the random-walk (RW) model.  They found that 

all neural network models could generally outperform the RW model. The EAAN is the 

best model within a large search space.  Since predicting the complex nonlinear exchange 

rate is impacted by different elements, it is desirable to have an independent search 

mechanism such as an Evolutionary ANN. 

Giles, Lawrence and Tsoi [11] use hybrid neural network algorithms for noisy time 

series prediction, especially for small samples and high noise data.  By using inference 

and extraction, recurrent neural network (RNN) models are suited to the detection of 

temporal patterns compared with standard multi-layer perceptron neural networks.  They 

also provide insight into both the real world system and the predictor. 

Green and Pearson [12] used artificial intelligence tools including a neural network 

and a genetic algorithm to build a model system for financial market decision support.  

They combined the Policy and Risk Decision Support tools with a neural network to 

build a cognitive model.  The decision output is, therefore, a weighted formulation of 

probability and likelihood.  The implementation with a hybrid of hardware and software 

produces seamless system integration. 

Quah, Teh and Tan [19] indicate the hybrid system demonstrated its strengths for use 

as a decision support tool.  The system simulates human logic, merging expert systems 

based on economic statistical figures and neural networks that have efficient learning 

processes.  This system not only has a learning capability but also can handle the fuzzy 

and biased nature of human decision processes. 
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Ip and Wong [14] apply the Dempster-Shafer theory of evidence to the foreign 

exchange forecasting domain based on evidential reasoning. This theory provides a 

means for interpreting the partial truth or falsity of a hypothesis and for reasoning under 

uncertainties. Within the mathematical framework of the theory, evidence can be brought 

to bear upon a hypothesis in one of three ways: to confirm, to refuse or to ignore. 

Different factors affect the exchange rate at different degrees at different times.  Various 

competing hypotheses are assigned to the factors under consideration. Some factors 

reflect the economy of a country. The economy in turn provides evidence for the 

movement of its currency.  Based on historical data that implicitly record trends and other 

external factors, the system is able to evolve.  The accumulation of more data regarding 

time-varying parameters and past performance hypotheses is reflected in the accuracy of 

future hypotheses. 

White and Racine [24] use ANN to provide inferences regarding whether a particular 

input or group of inputs “belong” in a particular model.  The test of these inferences is 

based on estimated feed-forward neural network models and statistical resampling 

techniques.  The results suggest foreign exchange rates are predictable, but the nature of 

the predictive relation changes through time. 

Ghoshray [10] used a fuzzy inferencing method on the fuzzy time series data to 

predict movement of foreign exchange rates. A fuzzy inferencing method uses one of the 

ingredients of chaos theory, which is the results of the previous iterations fed back 

repeatedly into the next one. He used fuzzy functions to express the dynamics of 

deterministic chaos. After certain steps any specific predicted value of the data vector 

could be obtained. He also found that fundamental analysis is useful in predicting long-
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term trends but of little use in predicting short-term movements of exchange rates.  Even 

though technical analysis can be useful in predicting short-term period changes, there is a 

lack of consistent accuracy.  The author has examined several forecasting techniques, 

considered the behavior of time series data and advanced a fuzzy inferencing technique to 

predict future exchange rate fluctuations.   

Iokibe, Murata and Koyama [13] use Takens’ embedding theorem and local fuzzy 

reconstruction technology to predict short-term foreign exchange rates. The Takens’          

theory is that the vector X(t) = (y(t), y(t-τ), y(t-2τ), ……. y(t-(n-1)τ)) is generated from 

the observed time series y(t), where “τ” is a time delay. The embedded latest data vector 

is replaced with Z(T) = (y(T), y(T-τ), y(T-2τ), ……. y(T-(n-1)τ)). After one step is 

fetched, the data vector including this data is replaced with Z(T+1). The value of the time 

series data is predicted by the local fuzzy reconstruction method after “s” steps. This 

sequence is iterated up to the last data by setting dimensions of embedding (n=5) and a 

delay time of (τ=2) and the number of neighboring data vectors (N=5) on the currency 

exchange rate data of different countries.  The satisfactory results have proven this 

method suffers less on irregular phenomenon governed by contingencies of the financial 

market. . 

Muhammad and King [17] indicate fuzzy networks provide better general logic for 

modeling non-linear, multivariate and stochastic problems by using four layers; i.e., using 

fuzzy input, fuzzy rules, normalizing and defuzzifying sequences.  This method not only 

improves the root mean square error (RMSE) but also gives a good track of the actual 

change in the foreign exchange market. 
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Abraham [1] compares the performance and accuracy of neural networks, neural-

fuzzy systems, Multivariate Adaptive Regression Splines (MARS), Classifications and 

Regression Trees (CART), and a hybrid MARS-CART technique for predicting the 

monthly average FOREX rates for the next month. The test results show the hybrid 

CART-MARS has the smallest Root Mean Square Error (RMSE), compared to the other 

techniques.  It was determined that the hybrid model predicts the FOREX rates more 

accurately than all the other models when applied individually.  

Abraham and Chowdhury [2] used four Gaussian membership functions for each 

input variable, built a feed-forward two hidden layers (6-14-14-1) model, modified the 

Adaptive Neural Fuzzy Inference System to accommodate the multiple outputs and 

adopted the mixture of back-propagation (BP) algorithms and least mean squares 

estimate to decide the consequent parameters. This model reveals that correction models 

can predict the average FOREX rates accurately one month in advance.  By comparing 

the feed-forward ANN which uses the scaled conjugate gradient algorithm they found out 

that the Takagi-Sugeno type neuron-fuzzy system had better performance (35 seconds < 

200 seconds) and smaller RMSE (0.0248 < 0.251) on predicting the average monthly 

FOREX rates of the Australian dollar with respect to the Japanese yen, U.S. dollar, U.K. 

pound, Singapore dollar and the New Zealand dollar. 

Carney and Cunningham [3] indicate that neural network models are better than the 

conventional model methods in predicting foreign exchange rates on Deutsche marks 

(DEM), British pounds (GBP), Swedish krona (SEK) and U.S. dollars (USD).  They used 

two methods; single-step predictions and multi-step predictions.  Additionally, they 

discovered multi-step models had more accurate predictions than the single-step models. 
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Chen and Leung [5] combine the advantages of neural networks and multivariate 

econometric models to predict one-month-ahead exchange rates. The results from a 

number of tests and different statistical measures show that the hybrid approach not only 

produces better exchange rate predictions but also produces higher investment returns 

compared to the single-stage econometric model, the single-stage regression neural 

network model, and the random walk model.  The effect of risk conversion is also 

considered. 

     Yao and Tan [25] consider time series data and simple technical indicators, such 

as moving average, are fed to the neural networks to catch the movement in currency 

exchange rates between American dollars and five other major currencies.  The authors 

indicate that without using extensive market data, useful predictions can be made and a 

paper profit can be achieved for out-of-sample data with a simple technical indicator. 

They also point out trading strategies need to be considered. In this example “buy-and-

hold” strategy is better than “trend-follow”.  
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CHAPTER 4 

  
 

PROJECT OVERVIEW 

One of the current challenges in time series forecasting approaches is in the area of 

financial time series. It is a function approximation problem. Pattern recognitions are 

performed on the monthly foreign currency exchange rate data to predict the future 

exchange rate. The future value is predicted by using time series analysis or regression 

techniques in this project. Regression involves the learning of the function that does this 

mapping. Regression assumes that the target data fits into some known type of function 

(e.g., linear or logistics) then discerns the best function that models the given data. An 

appropriate type of error analysis (MSE, for example) is used to determine which 

function is the most efficient. 

We use neural networks to recognize patterns within the data by adjusting the weights 

and biases so that the set of inputs generates the desired set of outputs. 

 

4.1 Data description 

We use the monthly time series of foreign currency exchange rate between Australian 

dollars with the currencies of other countries (e.g., U.S. dollars, Japanese yen, Chinese 

yuan). The goal of this paper is to predict future FOREX rates. The data being used for 

training and testing is from 1969 to 1989 monthly foreign currency exchange rates. There 

are two types of basic input vectors. One is concurrent data and the other one is 

sequential data. Time series is sequential data. In this project the input data has two 
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dimensions. One is year and the other is month. The output data has one dimension, 

which is the exchange rate.  

 

4.2 Data preprocessing 

The utilized data has three columns, which are years, months and exchange rates. 

Thus the larger value input vector (e.g., year as compared to month) compares the month 

values and exchange rates value. This can lead to changes in the weights and biases that 

take a longer time for a much smaller input vector to overcome. 

The regular rule for updating weighting is: 

∆ W = (T- A) P’ = E P’                                                                                          (1) 

Where W is weight. T is target. A is output. E is error. P is input. 

As shown above, the larger an input vector P, the larger is its effect on the weight 

vector W. Thus if an input vector is much larger than other input vectors, the smaller 

input vectors must be presented many times to have an effect. 

The solution is to normalize the data; that is, compress the data into a smaller 

arrangement.  One of  the functions for normalizing data is as follows: 

X n = (X – X min) / (X max – X min)                                                                   (2) 

This compresses the data into an arrangement between 0 and 1. From the author’s 

experience in putting raw data and normalized data into the network for training, the 

performance of the network training will be more efficient after preprocessing the 

network data. 

Fortunately, Matlab [8] has a built-in function, premmx, to carry out this operation. It 

scales the inputs and targets so that their values can fall in the range [-1, 1]. For this 
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project, the input data is years and months. The target data are currency exchange rates. 

We use the following Matlab command to preprocess (normalize) the input matrix P and 

target matrix T: 

[Pn, minP, maxP, Tn, minT, maxT] = premm[P, T]; 

Now the original input data P and target T are normalized to input Pn and target Tn 

such that all fall in the interval [-1, 1]. The vector minP and maxP are the minimum and 

maximum value of the original P. The vector minT and maxT are the minimum and 

maximum value of the original T. Next Pn and Tn are put into the network to train it. 

After the network has been trained, these vectors should be used to transform any future 

input applied to the network. Subsequently, the post processing, postmmx function, is 

used to convert the output to the same units as the original target. 

 

4.3 Partitioning of the data 

 In this project 70% of the data will be used for training and 30% of the data will be 

used for testing. 

 

4.4 Creating the neural network 

This section presents the architecture of the multi-layer feed-forward network. It is 

most commonly used with a back-propagation algorithm.  

The basic type of connectivity of feed-forward networks is the connections are only 

to later layers in the structure. The network will use a two-layer network because, based 

on this project’s research, a larger and more complicated neural network can cause over-

fitting which occurs when a neural network is trained to fit one set of data almost exactly 
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but results in a very large error when new data is tested [15]. Therefore, smaller neural 

networks are recommended by the author.  

 

4.5 Choosing transform functions 

Each input vector X is weighted with an appropriate matrix W, which is the dot 

product of the matrix W with the input vector X. The bias b is summed with the weighted 

input and put into the transfer function f. The transfer function takes the output, which 

may have any value between plus and minus infinity, and compresses the output into the 

range between 0,1 or between –1,1. The range depends on which transfer function is 

chosen. The output of the node is Yi  = fi (Σ Wij Xji + bi). An additional reason to use a 

transfer function is to prevent noisy inputs from impacting the network analysis. There 

are many suggested transfer functions, including threshold, sigmoid, symmetric and 

Gussian. The Matlab Toolbox [8] has many commonly used transfer functions, including 

hard-limit, purelin, log-sigmoid and tan-sigmoid. We use tan-sigmoid as the hidden layer 

transfer function in our back-propagation network and use a linear function as the output 

layer transfer function. It is important for the back-propagation network to be able to 

calculate the derivative of any transfer function. Tan-sigmoid and purelin functions have 

corresponding derivative functions dtan-sinmiod and dpurelin. This is the reason they are 

chosen. 

 

4.6 Creating a network for exchange rates from Australia to U.S. dollars 

The first step for creating a network is to create the network object. The function 

(newff) creates a feed-forward network. The command shown below creates a two-layer 
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network. In this project there is one input vector with two elements; one element is year, 

which ranges from 1969 to 1989, the other one is month, arranged from 1 (January) to 12 

(December). The hidden layer of this network has three neurons, and the output layer has 

one neuron. The Matlab code is as follows: 

 Net = newff ( [1969, 1989 ; 1, 12], [3, 1], {‘tangsig’, ‘purelin’}, traind) 

The hidden layer transfer function is tansig, the output layer transfer function is 

purelin. The training function is traind. In the next section we present the training 

function. 

This command creates a network object and also automatically initializes weights and 

biases of the network.  The Matlab toolbox randomly assigns values to the weights and 

biases to initialize the network. 

 

4.7 Training  

 

4.7.1 Least mean square error (LMS) algorithm 

Widrow and Hoff (in Demuth and Beale [8]) found that the mean square error could 

be estimated by using the squared error in each iteration. By deriving the squared error 

with respect to the weights and biases at the kth iteration, the change to the weight matrix 

and bias will be as follows: 

W (k+1) = W (k) + 2αE (k) P’ (k)                                                                       (3) 

    b (k+1) = b (k) + 2αE (k)                                                                                    (4) 
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Here P (k) is the element of the input vector. E (k) is the mean square error. α is a 

learning rate which is related to the training speed and training stability. These two 

equations above form the basis of the Widrow-Hoff learning algorithm.  

After the network is created and weights and biases are initialized, the network is 

ready for training for function approximation. The input matrix, P, and target vector, T, 

which is a sample of the function, are approximated, then sent to the network and through 

the training process. During the process, weights and biases of the network are repeatedly 

modified to minimize the mean square error. For the currency exchange rate prediction, 

this error also measures whether or not this network model is the best or the most 

accurate prediction for the problem. 

 

4.7.2 Training function 

Before the training process begins, the training function must be chosen. The training 

process is a procedure for modifying the weights, W, and biases, b, of the network. This 

procedure also is referred to as a training algorithm. The choosing of a training algorithm 

is very important for building the best possible model for an individual problem. It 

impacts the accuracy of prediction and the network performance. In this project, different 

algorithms are tested to find the best model for each problem and to illustrate how some 

of them can optimize network performance. 

This project uses a supervised learning rule in which the weights and biases are 

modified according to the error, E, the difference between predicted target, T, and the 

network output, A. The formula is as follows: 

∆W = (T- A) P’ = E P’                                                                                           (1) 
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∆b = (T- A)  = E                                                                                                     (5) 

In this formula, P is the input vector. The practical mean square error algorithm is 

used to adjust weights and biases. We want to minimize the average of the sum of these 

errors so that the network generates more accurate predictions. This is critical. There are 

many different training algorithms for feed-forward networks. It is just this variety that 

allows for building different models to fit individual problems to improve model 

performance and accuracy.  

The back-propagation neural network is the most frequently used in financial time 

series. This network uses a back-propagation algorithm. It is a gradient descent algorithm 

in which the networks are adjusted along the negative of a gradient of the MSE. The 

basic implementation of a back-propagation algorithm is that the network weights and 

biases are upgraded in the direction of the most rapidly decreasing MSE. One iteration of 

this algorithm formula is as follows: 

X (k+1) = X (k) – α (k) G (k)                        (6) 

Where X (k) is the current weight and bias vector. G (k) is the current gradient 

descent. The α(k) is the learning rate. 

There are two different methods to implement the gradient descent algorithm; one is 

incremental mode and the other one is batch mode. In the incremental mode, the gradient 

is calculated and weights and biases are modified after each input, then sent into the 

network. In the batch mode, the gradient is computed and weights and biases are changed 

after all inputs are applied to the network.  
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CHAPTER 5  

 
 

EXPERIMENTAL RESULTS AND DISCUSSION 

 
 

5.1 Performance comparison with different algorithms 

There are many parameters we can adjust to ascertain whether or not they improve 

performance. In this project we only explore the concept of the accuracy and speed of 

training. This aspect of performance is very important because in the real world, training 

a huge and complex set of data can take hours, even days, to attain results. 

There are many variations of back-propagation training algorithms provided in the 

Matlab Toolbox [8].  We will test the following algorithms to verify the performance of 

each:  

• Batch gradient descent (traingd) 

• Batch gradient descent with momentum (traingdm) 

• Variable learning rate back-propagation (traingad) 

• Resilient back-propagation (trainrp) 

• Conjugate gradient (traincgf, traincgp, traincgb, trainscg) 

• Quasi-Newton (trainbfg, trainoss) 

• Levenberg-Marquardt (trainlm) 

 

 

5.1.1 Batch gradient descent algorithm (traingd) 
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The training function for the batch gradient descent algorithm is traingd. The 

gradients are computed at each training input and added together to determine the 

changes in the weights and biases. The weights and biases are modified in the direction of 

the negative gradient of the performance function (MSE). We use the batch steepest 

descent training function, traingd, to train the network.  

We adjust the parameters associated with the traingd function as follows: 

Epochs: The number of the iterations processed before the training is stopped 

Show: Shows the training results of every iteration of the algorithm 

Goal: The minimum MSE to achieve before the training is stopped 

Time: The training time 

Min_grad: The minimum gradient before the training is stopped 

Max_fail: The early stopping of the training technique 

lr: lr is multiplied times the negative of the gradient to determine how much to change 

the weights and biases. 

The system automatically assigns the values for each parameter as a default value. 

The two dimensions raw input matrix P0 = [1969   1969                      1989   1989 

                                              7          8                          11         12] 

The one dimension raw target matrix T0 = [1.1138  1.1091                0.7815   0.7929] 

After normalizing P0 and T0, the value of P and T are between 0 and 1. 

The real input matrix Pn  =  [0             0                             1             1 

    0.45454  0.54545                 0.8182  0.9091] 

The real target matrix Tn = [0.57988  0.57459             0.2063   0.2189] 
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 The following command creates the feed-forward network by using the batch 

gradient descent training algorithm. At this point we may want to change some of the 

default training parameters. The following codes modify the training parameters: 

Net = newff (minmax(Pn), [3,1], {‘transig’,’purelin’},’traingd’); 

Net.trainparam.epochs = 300; 

Net.trainparam.show = 50; 

Net.trainparam.lr = 0.05; 

Net.trainparam.goal = 1e-3; 

Now, we train the network. By putting the parameter object, Net, input, Pn, and target, 

Tn, into the training function, the training process is carried out. The training code is as 

follows: 

 (Net, tr) = train (Net, Pn, Tn); 

The tr is the training record and it contains the information about the training process. 

For example, it is used as a diagnostic tool to plot the training results. The training result 

is as follows: 

TRAINGD, Epoch 0/300, MSE 0.689155/0.001, Gradient 2.52655/1e-010 

TRAINGD, Epoch 50/300, MSE 0.0322265/0.001, Gradient 0.0539035/1e-010 

TRAINGD, Epoch 100/300, MSE 0.0267678/0.001, Gradient 0.0401758/1e-010 

TRAINGD, Epoch 150/300, MSE 0.0236098/0.001, Gradient 0.0311962/1e-010 

TRAINGD, Epoch 200/300, MSE 0.0216549/0.001, Gradient 0.0248931/1e-010 

TRAINGD, Epoch 250/300, MSE 0.020386/0.001, Gradient 0.0202641/1e-010 

TRAINGD, Epoch 300/300, MSE 0.0195325/0.001, Gradient 0.0167518/1e-010 

TRAINGD, Maximum epoch reached, performance goal was not met. 

 25



         

Figure 1. Training result of traingd 

From Figure 1, we find the minimum MSE is 0.0195325 and estimated training time 

is more than 300 epochs since the MSE is still dropping. 

 

5.1.2 Batch gradient descent with momentum (traingdm) 

Momentum makes weight changes equal to the sum of a fraction of the last weight 

change and the new change suggested by the back-propagation rule. The momentum 

constant, mc, can be any number between 0 and 1. When mc equals 0, the new weight 

change can only rely on the gradient. When mc equals 1, the new weight change is set to 

the same as the last weight change and any gradient is simply ignored. In this project we 

set mc = 0.9, the code is net.trainParam.mc = 0.9 and the other parameters are the same 

as the batch gradient descent algorithm. The other commands are: 
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Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’traingdm’); 

(Net, tr) = train (Net, inputint, targetinit); 

The training result is as follows: 

TRAINGDM, Epoch 0/300, MSE 3.88657/0.001, Gradient 6.17719/1e-010 

TRAINGDM, Epoch 50/300, MSE 0.0206684/0.001, Gradient 0.133611/1e-010 

TRAINGDM, Epoch 100/300, MSE 0.016531/0.001, Gradient 0.0401495/1e-010 

TRAINGDM, Epoch 150/300, MSE 0.0152145/0.001, Gradient 0.0179974/1e-010 

TRAINGDM, Epoch 200/300, MSE 0.0145931/0.001, Gradient 0.0130241/1e-010 

TRAINGDM, Epoch 250/300, MSE 0.0142507/0.001, Gradient 0.00988702/1e-010 

TRAINGDM, Epoch 300/300, MSE 0.0140481/0.001, Gradient 0.00779517/1e-010 

TRAINGDM, Maximum epoch reached, performance goal was not met. 

 

Figure 2. Training result of traingdm 
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From the training time parameter epoch in Figure 2, we can see the curve stabilizes 

earlier than in the previous algorithm. That means the batch gradient descent with 

momentum provides faster convergence because momentum makes the network respond 

not only to the local gradient but also to recent trends in the error surface. Momentum 

allows the network to ignore small features in the error area (surface), otherwise the 

network may get stuck in a shallow local minimum. 

From the result, we find the minimum MSE is 0.0140481 and estimated training time 

is about 150 epochs since the MSE is very stable after that. 

 

5.1.3 Variable learning rate back-propagation (traingda) 

This training algorithm should be faster than the previous two back-propagation 

training algorithms. It uses heuristic techniques and is developed from an analysis of the 

performance of the standard steepest descent algorithm. 

The variable learning rate back-propagation algorithm still uses the steepest descent 

algorithm. The difference is the learning rate is not held constant throughout training. 

Since the optimal learning rate changes during the training process, it is not possible 

optimally to set the learning rate before training, and the performance is very sensitive to 

the proper setting of the learning rate. 

This algorithm tries to improve performance by allowing the learning rate to keep the 

learning step size as large as possible and keeping the learning stable. The learning rate is 

made responsive to the complexity of the local error surface. If the new error exceeds the 

old error by more than a predefined ratio max-perf-inc (maximum performance increase, 

typically 1.04) the new weights and biases are decreased. In addition, the learning rate is 
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decreased (typically lr_dec = 0.7). If the new error is less than the old error, the learning 

rate is increased  (typically lr_inc = 1.05) 

In this project we set lr_inc = 1.05 and lr_dec = 0.7. In the following code we train 

the network with the function traingdx with an adaptive learning rate. The other training 

parameters are the same as those in traingd except for the additional training parameters 

lr_inc and lr_dec. The training code is as follows: 

Net = init (net);                     //this code is for reinitializing the weights and biases// 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’traingda’); 

Net.trainparam.lr_inc = 1.05;         //or Net.trainparam.lr_dec = 0.7;// 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 3. Training result of traingda 
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The training result is shown in Figure 3. From the result, we find the minimum MSE 

is 0.0185809. Its convergence is very fast, but the MSE is not stable. From the training 

performance, we find that choosing lr_inc is better than lr_dec. This is because this 

training process is without large error increases. The function, traingda, combines an 

adaptive learning rate with momentum training. This implementation shows this 

algorithm converges faster than the previous two algorithms. 

 

5.1.4 Resilient back-propagation (trainrp) 

Generally, a multi-player network uses a sigmoid transfer function in the hidden layer. 

This function compresses an infinite input range into a finite output range. This causes 

difficulties when using the steepest descent method to train a multi-layer network since 

the gradient can have a very small magnitude that can cause small changes in weights and 

biases. This condition makes that weights and biases have values far from optimal, and 

slows performance. 

The resilient back-propagation (Rprop) training algorithm is utilized to eliminate 

harmful effects of the magnitudes. In this algorithm, only the sign of the derivative is 

used to determine the direction of the weights update. The size of the weight change is 

determined by a separate update value. If the derivative of the performance function with 

respect to that weight has the same sign for two successive iterations, the weight and bias 

is increased by the factor delt_inc. If the sign of the derivative changes from the previous 

iteration the weight and bias is decreased by the factor delt_dec. If the derivative is zero 

then the update value remains the same. By using this algorithm when weights are 

oscillating, the weight change is reduced. If the weights continue to change in the same 
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direction for a few iterations then the size of the weight change will be increased. This 

speeds the change of the weights and biases in the direction of their optimal values, and 

gives the process a better performance in terms of convergence time. The training 

parameters for trainrip are epoch_show, goal, time, min_grad, max_fail, delt_inc and 

delt_dec. The first three parameters are the same as the parameters for traingd. The other 

parameters are set as the default values. The training code is as follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’trainrp’); 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 4. Training result of trainrp 

The training result is illustrated in Figure 4. From the result, we find the minimum 

MSE is 0.00517559. From the training result, we find the Rprop algorithm is generally 

much faster than the standard steepest descent algorithm and has a smaller MSE. 
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5.1.5 Conjugate gradient (traincgf, traincgp, traincgb, trainscg) 

 The basic back-propagation algorithm adjusts the weights in the direction of the MSE 

decreasing most rapidly, which is the steepest descent direction (negative of the gradient), 

but it still does not necessarily have the fastest convergence. 

 In the conjugate gradient algorithms the weights are adjusted along conjugate 

directions. That generally produces faster convergence than the steepest descent direction 

searching in the steepest descent. This algorithm begins by searching in the steepest 

descent direction (negative of the gradient) on the first iteration P0 = -g0. Then a line 

search is used to determine the optimal distance to move along the current search 

direction. The search direction will be reset periodically to the negative of the gradient 

 X (k+1) = X k + α k P k                    (7) 

 Where α is the learning rate and X is the vector of weight and bias. The next search 

direction is to combine the new steepest descent direction with the previous search 

direction  

P k = - g k  + β k P (k-1).                                                                                           (8) 

 Where g is the gradient. There are four kinds of conjugate gradient algorithms, which 

depend on how the constant β k is computed. 

 

5.1.5.1 Fletcher-Reeves Update (traincgf) 

The Fletcher-Reeves Update procedure is:           

                            g k
T

 g  k 

        β k  =   
    g k-1

T
 - g  k-1                                                                                                                            (9) 
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This is the ratio of the normalized square of the current gradient to the normalized 

square of the previous gradient. The training code follows, and the whole conjugate 

gradient algorithm training parameters are the same as traingd: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’traincgf’); 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 5. Training result of traincgf 

The training result is illustrated in Figure 5. From the result, we find the minimum 

MSE is 0.00473611. The Fletcher-Reeves Update algorithm has a slightly better 

performance than the preview algorithms, and has a smaller MSE, but it has a slower 

convergence than some of the other algorithms. 
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5.1.5.2 Palak-Ribiere (traincgp) 

The Palak-Ribiere algorithm upgrades the constant β k as computed by 

  ∆g k-1
T

 g  k 

     β k  =   
  g k-1

T
 - g  k-1                                                                                               (10) 

The code is as follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’traincgp’); 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 6. Training result of traincgp 

The training result is illustrated in Figure 6. From the result, we find the minimum 

MSE is 0.0138797. The Palak-Ribiere algorithm does not have as good a performance as 

the previous algorithms, but it has a much faster convergence. 
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5.1.5.3 Powell-Beale Restarts (traincgb) 

For all conjugate gradient algorithms, the search direction will be periodically reset to 

the negative of the gradient. The standard reset point is when the number of network 

parameters (weights and biases) is equal to the number of iterations [8]. For the Powell-

Beale Restarts algorithm, if there is very little orthogonality left between the current 

gradient and previous gradient the search direction is reset to negative of the gradient. 

Net = newff (minmax (inputinit), [3,1], {‘transig’,’purelin’},’traincgb’); 

(Net, tr) = train (Net, inputint, targetinit);  

 

Figure 7. Training result of traincgb 

The training result is illustrated in Figure 7. From the result, we find the minimum 

MSE is 0.00240661. The Powell-Beale Restarts algorithm has a much better performance 
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than the previous algorithms and has a smaller MSE, but the convergence is slower than 

some of the other algorithms.   

 

5.1.5.4 Scaled conjugate gradient (trainscg) 

Up to this point, each conjugate gradient algorithm has required a line search at each 

iteration. This line search is very expensive in terms of time. The scaled conjugate was 

designed to avoid the time-consuming line search. It combines the model-trust region 

approach with the conjugates gradient approach. The code is as follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’trainscg’); 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 8. Training result of trainscg 
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The training result is illustrated in Figure 8. From the result, we find the minimum 

MSE is 0.0137095. The scaled conjugate gradient algorithm does not have as good a 

performance as the previous algorithms, but it has a slightly faster convergence than the 

other algorithms.   

Comparing the above four conjugate gradient algorithms, some have better function 

performance (MSE); e.g., Powell-Beale Restarts algorithm, and all of them have faster 

convergence than the previous algorithms. 

 

5.1.6 Quasi-Newton (trainbfg, trainoss) 

Newton algorithms are an alternative to the conjugate gradient algorithms for fast 

optimization. The weight and bias vector X are updated as in the following equation:  

X(k+1) = Xk – Ak
–1gk.                                                                                                                                           (11) 

Where Ak is the Hessian matrix (second derivative) of the performance index at the 

current values of the weights and biases. 

Newton’s method often converges faster than conjugate gradient methods because the 

algorithm does not require calculation of the second derivative. This may not apply to 

feed-forward neural networks because it is not difficult to compute the Hessian matrix. 

 

5.1.6.1 BFGS algorithm (trainbfg) 

This algorithm requires more computation in each iteration and more memory storage 

than the conjugate gradient algorithm because the Hessian matrix is n * n dimensionals 

and each n is equal to the total number of weights and biases in the network. However, 
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for smaller networks the BFGS algorithm can be an efficient training function, especially 

for this project. The code is as follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’trainbfg’); 

(Net, tr) = train (Net, inputint, targetinit); 

 

Figure 9. Training result of trainbfg 

The training result is illustrated in Figure 9. From the result, we find the minimum 

MSE is 0.00560929. The BFGS algorithm has a good performance, but it has a slightly 

slower convergence than the conjugate gradient algorithms.   

 

5.1.6.2 One-step second (OSS) algorithm (trainoss) 

One-Step Second algorithm is trying to bridge the gap between the conjugate gradient 

algorithm and the Quasi-Newton (second) algorithm. This algorithm requires less 
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memory storage since it assumes that at each iteration the previous Hessian matrix was 

the identity matrix so it doesn’t need to store the complete Hessian matrix. The code is as 

follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’trainoss’); 

(Net, tr) = train (Net, inputint, targetinit); 

                            

Figure 10. Training result of trainoss 

The training result is illustrated in Figure 10. From the result, we find the minimum 

MSE is 0.00662054. The One-Step Second algorithm has a good performance, but it has 

slower convergence than the other algorithms.   
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5.1.7 Levenberg-Marquardt (trainlm) 

Like the Qussi-Newton algorithm, the Levenberg-Marquardt algorithm also does not 

require calculation of second derivatives. The Hessian matrix can be approximated as 

follows: 

 H = JT J                                                                                                               (12)  

The gradient can be computed as follow: 

g = JT e                                                                                                                 (13) 

Where J is the Jacobian matrix, which contains the first derivations of the network 

errors with respect to the weights and biases and e is a vector of network error. The 

computation of the Jacobian matrix is much less complex than computing the Hessian 

matrix. Therefore, this algorithm seems to be the fastest method for training moderate-

sized feed-forward neural networks. The Levenberg-Marquardt algorithm uses Newton-

like updates and Hessian matrix approximations as follows: 

 X (k+1) = X k – [JTJ + µI] –1 J Te.                                                                          (14) 

When µ = 0 it is Newton’s method. When µ is large it becomes a gradient descent 

with a small step size. The code is as follows: 

Net = newff (minmax(inputinit), [3,1], {‘transig’,’purelin’},’trainlm’); 

(Net, tr) = train (Net, inputint, targetinit); 
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Figure 11. Training result of trainlm 

The training result is illustrated in Figure 11.  From the result, we find the minimum 

MSE is 0.00190858. The Levenberg-Marquardt algorithm has the best performance and 

faster convergence than the other algorithms. It has a very efficient Matlab 

implementation.  

 

5.1.8 Summary of the performance comparison of different algorithms 

The foreign exchange rate data is a simple function approximation problem. A 1-3-1 

network, with tansig transfer functions in the hidden layer and linear transfer functions in 

the output layer, is used to approximate the trend of the exchange rate. The training 

results show the gradient descent algorithm is generally very slow because it requires 

small learning rates for stable learning. The conjugate gradient algorithms have fast 
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convergence performance, but function performances are not very good. The application 

of the Levenberg-Marquardt algorithm appears to be the fastest method for training 

moderate-sized feed-forward neural networks. The Levenberg-Marquardt algorithm is 

best suited to deal with a function approximation problem where the network has up to 

several hundred weights and the approximation must be very accurate. This project’s 

research area involves that type of task. The algorithm also has a very efficient Matlab 

implementation since the solution of the matrix equation is a built-in function, therefore 

its attributes become even more marked in a Matlab setting. From the application result 

we also found the Levenberg-Marquardt algorithm has the smallest MSE. 

 

5.2 Performance comparison with different problems 

In this section, we compare two neural network training performances by using the 

Australian dollar versus U.S. dollar exchange rates, and the Australian dollar versus 

Chinese yuan exchange rates. We’ll use different algorithms in the networks to see the 

general performance of each algorithm in the different problems. The following table lists 

the algorithms that are tested and the acronyms we use to identify them.  

GDA : traingda-Variable Learning Rate Back-propagation 

RP : trainrp-Resilient Back-propagation 

CGF : traingrf-Fletcher-Powell Conjugate Gradient 

CGP : traincgp-Polak-Ribiere Conjugate Gradient 

CGB : traincgb-Conjugate Gradient with Powell/Beale Restarts 

SCG : trainscg-Scaled Conjugate Gradient 

BFG : trainfg-BFGS Quasi-Newton 
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OSS : trainoss-One-Step Secant 

LM : trainlm-Levenberg-Marquardt 

Table I shows the mean square error for each algorithm in the different iteration 

epoch of Australia dollar versus U.S. dollar exchange rate data training process. In the 

algorithm data in the first line, e.g., 50 in 50/300, the first number represents the 

iterations and the second number, 300, is the maximum number of epochs. From this 

table we can see the relationship among the algorithms. There is further illustration in 

Figure 12, a plot of the time required to converge versus the mean square error 

convergence goal. From this figure we can see that as the error is reduced, the 

improvement provided by the LM algorithm becomes more pronounced. Some 

algorithms perform very well as the error goal is reduced (e.g., CGB). 

TABLE  I 

THE MSE FOR EACH ALGORITHM IN THE DIFFERENT EPOCH FOR 
AUSTRALIA DOLLAR VERSUS U.S. DOLLAR 

------------------------------------------------------------------------------------------------------- 
Algorithm    0/300     50/300     100/300    150/300     200/300     250/300     300/300     
------------------------------------------------------------------------------------------------------- 
   GDA   1.418310   0.018448   0.018169   0.018003   0.018242   0.017690   0.018581 

   RB      0.918038   0.012756   0.008724   0.007889   0.007242   0.006544   0.005176 

   CGF    0.704973   0.010344   0.007042   0.006717   0.005870   0.005696   0.004736 

   CGP    0.355534   0.014596   0.014006   0.014020   0.013889   0.013883   0.013880 

   CGB   1.264740   0.006409   0.003119   0.002894   0.002668   0.002455   0.002407 

   SCG    0.136152   0.018363   0.014092   0.013999   0.013950   0.013889   0.013710 

   BFG    0.537822   0.012177   0.007255   0.005676   0.005645   0.005613   0.005609 

   OSS    0.592987   0.012926   0.009704   0.009258   0.008921   0.007247   0.006621 

   LM      0.842387   0.002006   0.001906   0.001909   0.001909   0.001909   0.001909 
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Figure 12. Performance comparison for Table I 

Table II shows the mean square error for each algorithm in the different iteration 

epoch of the Australia dollar versus Chinese yuan exchange rate data training process. In 

the algorithm data in the first line, e.g., 60 in 60/300, the first number represents the 

iterations and the second number, 300, is the maximum number of epochs. The 

performance of the various algorithms can be affected by the accuracy required of the 

approximation. From Table II, we find that in the LM algorithm the error decreases much 

more rapidly than the other algorithms. It converges very quickly from the beginning of 

the training process. The relationships among the algorithms are illustrated in Figure13, 

which plots the time required to converge versus the mean squire error convergence goal. 

Here we can see that as the error goal is reduced, the improvements provided by the LM 

algorithm and BFG algorithm become more pronounced.  
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TABLE II 

THE MSE FOR EACH ALGORITHM IN THE DIFFERENT EPOCH FOR  
 

AUSTRALIA DOLLAR VERSUS CHINESE YUAN 
      -------------------------------------------------------------------------------------------- 
     Algorithm     0/300        60/300      120/300     180/300     240/300     300/300     
     --------------------------------------------------------------------------------------------- 
        GDA       0.215103   0.071355   0.030595   0.029037   0.028101   0.027857 

        RP          2.119290    0.026936   0.021331   0.016078   0.012360   0.010432 

        CGF       3.058830    0.028571   0.028333   0.028007   0.027796   0.027307 

        CGP       1.530740    0.019498   0.014582   0.009327   0.007522   0.006439 

        CGB       0.632063    0.027451   0.009045   0.006591   0.006372   0.006298 

        SCG       0.993480    0.027044   0.022846   0.013440    0.007731   0.007452 

        BFG       0.732348    0.005761   0.005004   0.004879    0.004878   0.004878 

        OSS      3.671140    0.028907    0.028469   0.028434    0.028346   0.028255 

        LM       0.417254     0.003597    0.003591   0.003590    0.003590   0.003589 
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Figure 13. Performance comparison for Table II 
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The performance of the various algorithms can be affected by the accuracy required 

of the approximation. From the above two examples we find that in the LM algorithm, 

the error decreases more rapidly than in the other algorithms. It converges very quickly 

from the beginning of the training process.  

There are several algorithm characteristics that we can deduce from the experiments 

we have completed. 

LM: In general, the Levenberg-Marquardt algorithm will have the fastest 

convergence for networks that contain up to a few hundred weights. This advantage is 

especially noticeable if very accurate training is required. In many cases trainlm is able 

to obtain a lower mean square error than the other algorithms tested. However, as the 

number of weights in the network increase, for example, increasing the network layers 

and neurons, the advantage of the trainlm may decrease. The storage requirements of 

trainlm are larger than the other algorithms tested. By adjusting the mem_reduc 

parameter, the storage requirements can be reduced, but at a cost of increased execution 

time. 

RP: The trainrp function does not perform well on function approximation problems. 

Its performance degrades as the error goal is reduced.  

SCG: The conjugate gradient algorithm, in particular trainscg, seems to perform well 

over a wide variety of problems, particularly for networks with a large number of weights. 

The SCG algorithm is almost as fast as the LM algorithm on function approximation 

problems (fast for large networks). Its performance does not degrade as quickly as trainrp 

performance does when the error is reduced.  
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BFG: The trainbfg performance is similar to that of trainlm. It does not require as 

much storage as trainlm but the computation required does increase geometrically with 

the size of the network, since the equivalent of a matrix inverse must be computed at 

each iteration.  

GDA: The traingda is usually much slower than the other methods and has about the 

same storage requirements as trainrp, but it can still be useful for some problems.  

 

5.3 Simulation of the China currency exchange rate 

In this section we put some of the ideas we previously covered together with an 

example of a typical training session. For this example, we performed a simulation of the 

Australia dollar versus Chinese yuan exchange rate to discover a pattern for this data. 

From this pattern we can predict the exchange rate.    

We trained feed-forward networks on time series of foreign currency exchange rate 

between Chinese yuan and Australia dollars. We used the Matlab built-in preprocessing 

function to normalize the raw data. 

The first step was to load the data into the workspace from an Excel database and use 

Matlab built-in preprocessing functions for scaling network inputs and targets. The 

function premnmx was used to scale input and targets so that they fall in the range [-1, 1]. 

The following code illustrates the use of this function: 

xlsread ER-China;                                   //load data into the workspace// 

[inputn, mininput, maxinput, targetn, mintarget, maxtarget] = Premnmx(input, target); 

A check of the size of the transformed data reveals: 

[R, Q] = size (inputn); 
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The next step was to divide the data into training, validation and test subsets. We took 

one fourth of the data for the validation set, one fourth for the test set and one half for the 

training set. We chose the sets as equally spaced points throughout the original data.  

iitst = 2:4:Q; 

iival = 4:4:Q; 

iitr = [1:4:Q 3:4:Q]; 

val.Input = inputpn(:,iival); val.Target = targetn(:, iival); 

test.Input= inputn(:,iitst); test.Target = targetn(:, iitst); 

inputtr = inputn(:,iitr); targettr = targetn(:, iitr); 

We created a network and trained it. We tried a two-layer network, with a tan-

sigmoid transfer function in the hidden layer and a linear transfer function in the output 

layer. This is a useful structure for function approximation (or regression) problems. We 

used three neurons in the hidden layer. The network had one output neuron since there 

was one target. We used the Levenberg-Marquardt algorithm for training, as follows; 

net = newff(minmax(inputtr), [3 1], {'tansig' 'purelin'}, 'trainlm'); 

[net, tr] = train(net, inputtr, targettr, [ ], [ ], val, test); 

When the network begins to overfit the data, the error on the validation set will 

typically begin to rise. The training stopped after 42 iterations because the validation 

error increased. It is useful to plot the training, validation and test errors to check the 

progress of training. It was done with the following commands: 

Plot (tr.epoch, tr.perf, tr.epoch, tr.vperf, tr.epoch, tr.tperf); 

Legend (‘Training’, ‘Validation’, ‘Test’, -1); 

ylabel (‘Squared Error’); xlabel(‘Epoch’); 
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The result is shown in Figure 14. The result exhibited here is reasonable, since the 

test set error and the validation set error have similar characteristics, and it doesn’t appear 

that any significant over-fitting has occurred. 

 

Figure 14. Performances for train, test and validation sets 

The next step was to perform some analysis of the network response. We put the 

entire data set through the network (training, validation and test) and performed a linear 

regression between the network output and corresponding targets. Then we needed to 

unnormalize the network outputs by using the postprocessor function postmmx: 

an = sim(net, pn); 
 
a = postmmx(an, mint, maxt); 
 
for i = 1:1 
 

figure(i) 
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[m(i), b(i), r(i)] = postreg(a(i,:), t(i,:)); 
 
end 

The results are shown in Figures 15.  The vertical axis is scaled exchange rate output 

data and the horizontal axis is scaled input data.  The output seems to track the targets 

reasonably well. 

 

Figure 15. Comparison of simulation output and time series 

 

5.4 Simulation prediction 

The trained network is the model we built for this individual problem. Based on the 

experience of training the Australia dollar versus U.S dollar currency exchange rate data 

by using different network structures and different algorithms, we chose the 1-3-1 feed-

forward network structure with tansig transfer functions in the hidden layer and linear 

transfer functions in the output layer to approximate the trend of the exchange rate. Since 

 50



the Levenberg-Marquardt algorithm appeared to be the fastest method for training 

moderate-sized feed-forward neural networks, especially for the function approximation 

problem, we used the LM algorithm as the training algorithm. It was the best suited for 

this individual problem. We used 70% of the data as training data. After this network was 

built, and the training process completed, the model for this individual problem was 

constructed (see section 5.1). Then we used this model to predict the value of future 

foreign exchange rates by using the function sim. For example, we used the remaining 

30% of the data to test the model. The code is as follows: 

Test_output  = sim (Net, Pt); where Pt is test input data. 

Then we plotted the Test_output and Target data to check the accuracy of the prediction. 

The code for the plot is:  

x = (1 : 1 : 74); 

plot  (x, Target, '-*', x, Test_output); 
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Figure 16 Simulation for the prediction 

Figure 16 is the simulation for the prediction of the future currency exchange rate 

trend. The exchange rates are represented on the vertical axis and the epochs are 

represented on the horizontal axis. The output line seems to track the target line (*) 

reasonably well as far as the trend is concerned.   
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CHAPER 6 

 
 

CONCLUSION AND FUTURE WORK 
 

This paper is the implementation of back-propagation neural networks on foreign 

currency exchange rates. We attempt to prove that by using a back-propagation neural 

network, FOREX rates can be predicted correctly, allowing maximal profits. This paper 

describes how to build an artificial neural network model to predict trends in foreign 

currency exchange rates. The back-propagation neural network was chosen for this 

research because it is capable of solving a wide variety of problems and it commonly is 

used in time series forecasting. We use feed-forward topologies, supervised learning and 

back-propagation learning algorithms on the networks. We try different network 

structures and training algorithms on different kinds of data and compare the performance 

to ascertain what type network structure and training algorithm is the best fit for what 

kind of data. 

This paper uses Matlab neural network software as a tool to test different kinds of 

algorithms and network structures to find the best model for the prediction of FOREX 

rates. To date we have found that a network model using the LM as the training algorithm 

and 1-3-1 as the network structure has the best performance for FOREX rate data. 

Neural networks have been criticized because of the black box nature of their 

solutions, extreme training times, difficulty in obtaining a stable solution and large 
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number of parameters that must be selected experimentally to generate a good forecast. 

From our project, we have provided evidence that neural networks can be used to 

correctly predict FOREX rates; thereby, decreasing the risk of making unreasonable 

decisions. There are, however, still limitations and cautions that must be considered when 

using neural networks as predictive models. 

Although a multi-layer back-propagation network with enough neurons can 

implement just about any function, back-propagation will not always find the correct 

weights for the optimal solution. While a network being trained may be theoretically 

capable of performing correctly, back-propagation and its variations may not always find 

a solution. 

Picking the learning rate for a nonlinear network is a challenge. Unlike linear 

networks, there are no easy methods for picking a good learning rate for nonlinear multi-

layer networks. 

Networks are also sensitive to the number of neurons in their hidden layers. Too few 

neurons can lead to under-fitting, too many can contribute to over-fitting.  

One may want to reinitialize the network and retrain several times to guarantee that 

one has the best solution.    

One significant direction in which we would like to expand our work is to explore 

more properties of Matlab neural network software, testing more parameters to increase 

the accuracy of the prediction, decrease the time consumed in the process and reduce 

memory usage.  

 More dimensions and more complex data should be tested to explore the potential for 

data analysis in Matlab.  Overall, using the right analytical tools and methods can 
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decrease the chance of making incorrect decisions and increase the possibility of 

profitability in the area of foreign currency exchange rates. 
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