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Abstract: Growing concern about climate change and sustainability has increased societal 
pressures toward livestock production to quantify and reduce its environmental impact. 
Through the process of enteric fermentation, ruminant animals produce methane (CH4), a 
potent greenhouse gas (GHG). To improve emission inventories and evaluate mitigation 
techniques, several methods of measuring emissions from ruminants have been 
developed. The present study evaluated a ventilated head box system capable of 
measuring CH4 and carbon dioxide (CO2) emissions, and oxygen (O2) consumption from 
cattle. Six Holstein heifers were used to measure CH4 and CO2 emissions and O2 
consumption from two ad libitum intake measurement periods and one measurement 
period with intake restricted to 2% of body weight on a dry matter basis. As a measure of 
comfort in the head box system, all cattle were assessed for lying time, and respiration 
rates and THI were evaluated for thermal comfort. Methane and CO2 emissions during 
the restricted intake period were significantly lower (P < 0.0001) than the ad libitum 
periods. Daily CH4 emission rates per animal were reported as 235.0 ± 6.19 L/day, 228.3 
± 6.18 L/day, and 193.2 ± 8.88 L/day for the first and second ad libitum and feed 
restriction periods, respectively. Carbon dioxide emission rates were reported as 3627.5 ± 
90.72 L/day, 3632.4 ± 90.47, and 3184.0 ± 104.79 L/day for the first and second ad 
libitum and feed restriction periods, respectively. Oxygen consumption rates were 
reported as 3390.59 ± 99.77 L/day, 3453.90 ± 99.57 L/day, and 3001.81 ± 111.36 L/day 
for the first and second ad libitum and feed restriction periods, respectively. Lying time 
was similar to behaviors reported in previous literature and averaged 779.17 ± 31.19 
min/day, 768.79 ± 31.19 min/day, and 842.78 ± 31.19 min/day for the first and second ad 
libitum and restriction periods, respectively. There was no difference (P > 0.05) in THI 
and respiration rate across all measurement periods, and THI and respiration rate were 
positively correlated (R2 = 0.381; P < 0.0001). The head box system provides an accurate 
method of measuring emissions from cattle and can provide information about daily 
variations and peaks in emissions.
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CHAPTER I 
 

 

ENTERIC METHANE EMISSIONS MEASUREMENT AND PREDICTION FROM CATTLE 

 

INTRODUCTION 

As public concern about climate change and sustainability continue to grow, societal 

pressures on livestock production to quantify and reduce its environmental impact are rising. 

Livestock production, specifically ruminant production, is only one of many contributors to the 

production of greenhouse gas (GHG) emissions. Through the process of enteric fermentation, 

ruminant animals produce methane (CH4), a potent GHG. Methane has a global warming 

potential 28 times that of carbon dioxide (CO2) over a 100-year period (IPCC, 2013), and enteric 

fermentation is the source of 26% of the anthropogenic CH4 emissions in the United States (US 

EPA, 2015). Therefore, CH4 accounts for a large portion of the total GHG emissions from 

livestock production. Several methods of measuring emissions from ruminants have been 

developed to quantify and estimate emissions in order to improve emission inventories and 

evaluate mitigation techniques. These methods vary in complexity, accuracy, expense, and 

application (e.g. suited for numerous or single animals, grazing or housed livestock). The 

following review presents a brief history of enteric CH4 emissions measurement from ruminants. 

In addition, methods of measuring and estimating emissions focused on beef cattle production, 

along with advantages and disadvantages of each technique, will be discussed.  
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ENTERIC METHANE EMISSIONS RESEARCH AND PRODUCTION 

In the late 18th century, Antoine Laurent Lavoisier is credited to have been one of the first 

scientists to study the relationship between metabolism and the production of heat in animals. 

Lavoisier and Pierre-Simon LaPlace determined that the major part of heat in an animal is 

produced from the combustion of oxygen with organic substances in the body (Kleiber, 1961). 

From the research of Lavoisier, LaPlace and others, the generalization that life is a combustion 

process was developed. The concept relating metabolism to combustion led to research objectives 

that established relationships between gas exchange and heat production, determined the basis for 

the evaluation of feeds that could be related to energy requirements and expenditures, and 

established the causes of energy expenditures (Johnson et al., 2003). Adam Crawford constructed 

a combustion calorimeter by the suggestions of Joseph Priestley to measure animal heat, and 

around the same time, Lavoisier and LaPlace also constructed an animal calorimeter like that of 

Crawford’s (Kleiber, 1961). However, Lavoisier and LaPlace measured the latent heat of melting 

ice rather than measuring sensible heat like Crawford (Kleiber, 1961). The development of the 

bomb calorimeter enabled the measurement of the heat of combustion of feeds and fuels and the 

determination of the gross energy content of organic compounds, feeds, feces and urine (Kleiber, 

1961; Johnson et al., 2003). Wilbur O. Atwater and Edward B. Rosa built one of the most well 

known animal respiration calorimeters in 1899, and demonstrated that heat production and work 

of humans is derived from the chemical energy of catabolized material (Kleiber, 1961). Henry P. 

Armsby’s respiration calorimeter for steers was an offspring of the Atwater calorimeter, but for 

larger animals (Kleiber, 1961). Through energy balance experiments using respiration 

calorimetry, relationships between gas exchange and heat production were established.  

Research pertaining to the energy metabolism of animals led to an interest in ingested 

gross energy lost as eructated CH4. Metabolizable energy is determined by subtracting the heat of 

combustion of the fecal matter, urine and CH4 produced after feed consumption from the heat 
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combustion of a feedstuff (Blaxter and Clapperton, 1965). Determining metabolizable energy 

depends on measurements of energy losses. Energy loss in feces and urine can be determined 

with animals housed in metabolism cages by conducting total collections of urine and feces; 

however, measurement of the gaseous losses, such as CH4 production, is more difficult, costly, 

and requires complex equipment (Blaxter and Clapperton, 1965; Moe and Tyrrell, 1979). 

Determining energy loss in the form of CH4 emissions requires either adequate direct 

measurements of CH4 production or means of estimating CH4 production through the use of 

prediction equations (Blaxter and Clapperton, 1965; Moe and Tyrrell, 1979). Cattle lose 

approximately 2 to 12% of gross energy intake as eructated CH4; hence, research has focused on 

reducing enteric methane emissions to improve production efficiency (Johnson and Johnson, 

1995). More recently, concerns about the amount of ingested gross energy cattle lose as CH4 

emissions have coupled with concerns for the climatic impact CH4 imposes on the environment. 

As a consequence, there have been efforts to improve enteric CH4 emissions measurement and 

estimation methods.  

Enteric Methane Production 

Most CH4 produced in the beef industry originates from the digestive tract of the animal 

or anaerobic manure storage systems. Methane is produced predominantly in the rumen and to a 

small extent in the large intestine of ruminants. The variation in CH4 losses (approximately 2 to 

12% of GE intake) is primarily caused by the amount of dietary carbohydrate fermented and the 

available hydrogen (H2) supply through the ratio of volatile fatty acids (VFA) produced (Johnson 

and Johnson, 1995). In the rumen, the microbial community ferments carbohydrates, proteins and 

lipids to produce VFAs and other longer-chain fatty acids, as well as H2 and CO2 (Ellis et al., 

2008; Janssen, 2010). The end products of microbial fermentation, including VFAs, H2 and CO2, 

are either used by the animal after absorption through the rumen wall, or used as substrates for 

other microbes in the rumen (Ellis et al., 2008). Carbon dioxide is additionally expelled via the 
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mouth of the animal. The three main VFAs produced in the rumen are acetate, butyrate, and 

propionate. Propionate is utilized in the production of glucose via gluconeogensis, and it is crucial 

to efficient growth and milk production (Place et al., 2011a). Acetate and butyrate are essential to 

the production of fat or oxidation for energy as described by Place et al. (2011a). Undigested feed 

components, VFAs not absorbed through the rumen wall, and microbial cells enter the remainder 

of the digestive tract (Janssen and Kirs, 2008; Janssen, 2010). The fermentation products of H2 

and CO2 represent the major substrates used by methanogenic archaea, or methanogens. 

Methanogens use H2 in an anaerobic respiration process to produce energy, which produces CH4 

as an end product (Ellis et al., 2008; Janssen, 2010). The methanogens’ utilization of H2 to reduce 

CO2 to CH4 keeps the H2 concentration in the rumen low (Figure 1) (Place et al., 2011a). 

Hydrogen is also utilized in the production of propionate (Ellis et al., 2008). Propionate competes 

for the use of H2 in the rumen and an increase in propionate production relative to acetate and 

butyrate production can lead to a decrease in overall CH4 production (Ellis et al., 2008). Although 

methanogens are only a small part of the rumen microbial biomass, they are important for the 

removal of H2, which can lead to a more favorable formation of VFA and eliminate the inhibitory 

effect of H2 on the rate of fermentation (Janssen and Kirs, 2008). Methane is released from the 

rumen through the mouth of the animal by the process of eructation or belching. Additionally, 

CH4 produced in the large intestine through fermentation in the hindgut is either released from the 

animal through absorption in the bloodstream and then expired, or is released from the rectum 

(Murray et al., 1975; Ellis et al., 2008). In experiments by Murray et al. (1975), very small 

amounts of CH4 were collected at the rectum of sheep and were mostly voided when the animal 

defecated. Approximately 2 – 3% of total CH4 emissions are expelled from the hindgut via the 

rectum (Murray et al., 1975; Muñoz et al., 2012). 

METHODS OF METHANE EMISSIONS MEASUREMENT AND PREDICTION 
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Numerous methods have been developed to estimate and measure the emission of CH4 

from cattle. Such methods differ in their complexity and accuracy. The selection of a 

measurement technique may be influenced by the complexity of the system, cost, housing 

required, mobility, or labor intensity. The following discussion will outline the numerous 

methods and provide a comparison of advantages and disadvantages (also summarized in Table 

1).   

Indirect Calorimetry 

Most of the available information relating to CH4 emissions from cattle has been 

collected through the use of respiration calorimetry techniques, such as ventilated head boxes, 

facemasks and whole animal chambers (Johnson and Johnson, 1995). Indirect calorimetry and 

direct calorimetry techniques have been developed to study animal bioenergetics as outlined in 

the previous section. Indirect calorimetry measurements are used to calculate heat production 

from O2 consumption, CO2 production, CH4 production, and urinary nitrogen using the Brouwer 

equation; direct calorimetry measurements determine the heat loss from an animal directly 

(Kleiber, 1961; Johnson et al., 2003). Most indirect calorimetry systems are open-circuit, while a 

few are closed-circuit systems. Open-circuit indirect-respiration techniques (i.e. head boxes or 

whole-animal chambers) circulate outside air around the animal’s head, mouth, and nose and 

collect the expired air (McLean and Tobin, 1987). Outside air enters the collection apparatus (i.e. 

head box or whole-animal chamber) through inlet openings, and expired air is drawn through the 

system by negative pressure created with a pump (Kleiber, 1961; McLean and Tobin, 1987). A 

diagram of an open-circuit respiration chamber is shown in Figure 2. Total airflow through the 

system is measured and the difference in concentration of CH4 gas between inspired and expired 

air is calculated to determine CH4 emissions (Johnson and Johnson, 1995). It has been reported 

that the air entering the apparatus must be the same composition as the air flowing though the 

inlet channels, therefore if air enters through leaks or another inlet opening, gaseous 
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measurements will not be affected as long as suction is maintained and no chamber air exits or 

leaks from the chamber (Kleiber, 1961). Therefore, open-circuit systems have an advantage over 

closed-circuit systems because leaks into the whole-animal chamber or head box do not 

negatively impact CH4 emissions. However, leaks occurring along the outlet air lines leading 

from the head box or whole-animal chamber to the gas analyzing equipment interfere with 

accurate CH4 emission measures.  

Ventilated head box-type systems have the capability to accurately measure gases 

eructated from the rumen in real-time measurements and calculate emission rates (Kelly et al., 

1993; Suzuki et al., 2007; Odongo et al., 2008; Place et al., 2011b). The ventilated head box 

method uses a canopy to cover the head, or the upper part of the body. Ambient air enters the 

head box either through one or more specific inlets or gaps between the head box and the animal. 

In most systems, the danger of losing expired air is negligible because of the slight negative 

pressure environment in the head box created by drawing air through the head box by a vacuum 

pump (McLean and Tobin, 1987). Head box systems designed with clear polycarbonate siding or 

windows ensure animals have visual contact with animals housed in neighboring boxes or stalls 

to warrant consistent dry matter intake when the animals are housed in the head box compared to 

their natural environment and to reduce stress (Suzuki et al., 2007; Odongo et al., 2008; Place et 

al., 2011b). Head box systems have a cost advantage over whole-animal respiration chambers and 

an accuracy advantage over the sulfur hexafluoride (SF6) technique when measuring CH4 

emissions (Johnson and Johnson, 1995). However, hindgut CH4 expelled from the rectum cannot 

be measured with the head box system. 

Emissions from the cattle in the head box system are calculated from the measured outlet 

gas concentration of each head box, background or ambient air gas concentrations, and the air 

flow rate through the head boxes (Place et al., 2011b). The volume emission rate (ER) at standard 

temperature and pressure is calculated from the net concentration and sampling flow rate of the 
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head box system (Place et al., 2011b; eq 1). The net concentration of the gas is the difference 

between the outlet gas concentration and the ambient gas concentration (Place et al., 2011b).  

𝐸𝑅 =   𝑁𝑒𝑡  𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛   𝑝𝑝𝑚 𝑥  𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔  𝑓𝑙𝑜𝑤  𝑟𝑎𝑡𝑒  
𝐿

𝑚𝑖𝑛𝑢𝑡𝑒
                                                  [1] 

Whole-animal chambers are regarded as the gold standard method of measurement for 

CH4 emissions because the instruments are reliable, stability of the instruments can be measured, 

and the environment of the chamber can be controlled (McLean and Tobin, 1987; Johnson and 

Johnson, 1995). Whole animal chambers are useful in experiments measuring CH4 emissions 

from ruminal and hindgut fermentation. However, chambers can create a non-natural 

environment and affect animal behavior, such as dry matter intake. Dry matter intake is a main 

driver of enteric CH4 emissions, and a decrease in dry mater intake would affect total CH4 

emissions, as well as derived estimates like loss of gross energy via enteric CH4 emissions (Storm 

et al., 2012). Additionally, whole-animal chambers can be costly to construct, are not portable, 

and require large buildings to house them. Chambers may have a disadvantage in applying results 

to grazing animal emissions estimates due to the restriction in animal movement, which may 

influence feeding behavior. Feeding behaviors of animals confined to chambers may differ than 

that of animals able to move about in a pasture. Whole-animal chamber and head box systems can 

provide information on the variability of emissions within a day allowing researchers to 

determine times of highest and lowest emissions on an individual animal basis (i.e. emissions are 

typically highest after feeding; Grainger et al., 2007).  

To validate and test the accuracy and precision of data collected from head box and 

chamber systems, recovery tests can be performed. Recovery tests confirm that there are no leaks 

from the system, and emissions from the animal are being accurately measured (Suzuki et al., 

2007). Recovery tests are performed by injecting a known amount of gas into the system at a 

constant flow rate, and accounting for background concentrations before and after the injection of 
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the gas (Suzuki et al., 2007; Place et al., 2011b). The recovery percent is calculated from the total 

injected and total recovered amounts of gas. Before any measurements are made with a system, 

recommendations from Suzuki et al. (2007) state that the system should achieve 95 – 105% 

recovery values.  

A measurement system using a mouthpiece or facemask, rather than a head-box, will 

work similar to the ventilated-head box system. The animal inhales and exhales directly into the 

mouthpiece of the collection apparatus (McLean and Tobin, 1987). There are many disadvantages 

of using a facemask compared to head boxes and whole-animal chambers. Whole animal 

chambers have the capability to collect foregut and hindgut emissions from the animal, while the 

facemask, like a head box system, is limited to eructated emissions. Furthermore, facemasks will 

limit the movement of the animal, which may impact their ability to eat and drink.  

In closed-circuit systems, the animal is placed in a closed chamber with CO2 and 

moisture absorbers, and the quantity of O2 needed to replace that used by the animal is measured 

as it is admitted to the system (McLean and Tobin, 1987). Oxygen is replaced continuously as it 

is used in the chamber; CH4 accumulates in the chamber, and the production rate is calculated 

from samples taken at the beginning and end of the collection period (Blaxter and Clapperton, 

1965; McLean and Tobin, 1987). The O2 consumed and CO2 produced are calculated from these 

analyses (McLean and Tobin, 1987). Methane production is determined as the difference between 

the final and initial volumes of CH4 sampled in the chamber (Blaxter and Clapperton, 1965). Heat 

production can be calculated by either substituting the measured gas quantities directly into the 

Brouwer equation or from the carbon-nitrogen balance by sampling and analyzing recorded feed 

intake and excreta for carbon and nitrogen content (McLean and Tobin, 1987). Using the carbon-

nitrogen balance method of calculation eliminates the need for O2 analysis and was useful before 

the invention of paramagnetic O2 analyzers (McLean and Tobin, 1987). Closed-circuit systems 

are suited for metabolic measurements on small animals and are more difficult for use with large 
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animals, such as cattle. The challenge of using closed-circuit systems for large animals, such as 

cattle, can be attributed to the volume of gases consumed and produced by large animals. 

SF6 Tracer Technique   

The SF6 tracer gas technique allows animals to move about in their natural environment, 

while directly measuring enteric CH4 emissions. A permeation tube with a known release rate of 

the SF6 tracer gas is placed into the rumen and a halter with a capillary tube connected to a 

sampling canister is placed on the animal’s head (Johnson and Johnson, 1995). The animals must 

be trained to wear the collection canister and halter, and the halter and canister must fit properly 

on the animal in order to avoid movement of the halter that could potential obstruct the drinking 

and feeding behaviors of the animal. The concentration of gases released from the mouth and 

nose of the animal can be quantified using SF6 as a marker, which is released at a known rate 

(Boadi et al., 2002). With the tracer method, SF6 is utilized to account for the dilution of gases as 

they exit the animal’s mouth and mix with ambient air (Johnson et al., 1994). The dilution rates 

for SF6 and CH4 are assumed to be identical due to the assumption that the SF6 emission from 

eructation simulates the CH4 emission from eructation (Johnson et al., 1994). The rate at which 

CH4 is emitted can be calculated from the measured CH4 and SF6 concentrations and the known 

release rate of SF6 from the permeation tube in the rumen (eq 2). Methane emissions (𝑄!"!; g/d) 

are calculated using the SF6 and CH4 mixing ratio sampled by the canisters (𝐶!"! and 𝐶!"!, 

respectively; mmol/mol) and the inlet air streams (𝐶!"!
!  and 𝐶!"!

! , respectively), and the 

predetermined SF6 release rate (𝑄!"!; g/d) from the permeation tube where the ratio of molecular 

weights (MW) is used to account for the difference in density between the gases (Grainger et al., 

2007; Johnson et al., 1994; McGinn et al., 2006).   

𝑄!"! =   
𝐶!"! −   𝐶!"!

!

𝐶!"! −   𝐶!"!
!   𝑄!"!

𝑀𝑊!"!
𝑀𝑊!"!

                                                                                                            [2] 
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Multiple animals can be sampled simultaneously without restraint creating an advantage 

to using the SF6 tracer technique compared to other methods that require an animal to be 

restrained (i.e. chambers, head boxes and facemasks). However, animals have to be trained to 

wear the halter and collection canister, and hindgut methane is not measured. 

When comparing the use of chambers to the SF6 technique to measure CH4 emissions, 

total CH4 emissions were similar (McGinn et al., 2006; Grainger et al., 2007). However, the SF6 

tracer gas technique underestimated CH4 emissions over a range of diets by an average of 4-8% 

relative to the chamber technique (McGinn et al., 2006; Grainger et al., 2007). Some of the 

underestimation of the SF6 technique may be attributed to the gas recovery within the collection 

canisters, as well as post-ruminal CH4 loss that is captured within whole-animal chambers but not 

the SF6 technique (McGinn et al., 2006). Additionally, the SF6 permeation rate is positively 

associated with the CH4 emission estimates leading to variability in CH4 emission estimates by 

the tracer technique (Pinares-Patiño and Clark, 2008). The SF6 tracer gas technique is best suited 

for use in grazing animals as it has been shown that agreement between the chamber and SF6 

techniques is highest when cattle are fed high forage diets at a restricted level of intake (McGinn 

et al., 2006). An additional consideration when using the SF6 tracer gas technique, as well as face 

masks and head boxes, is the use of rumen cannulated animals. Beauchemin et al. (2012) showed 

leakage of SF6 and CH4 from the rumen cannula of animals with the proportion of SF6 and CH4 

recovered at the head of the animal differing (P < 0.001) by cannula type. The SF6 tracer gas 

technique, as well as face masks and head boxes, is not recommended to be used with cannulated 

cattle as gas may exit the rumen due to leakage from the cannula (Beauchemin et al., 2012). 

Additional Techniques 

A system called GreenFeed (C-lock Inc., Rapid City, South Dakota, USA) combines an 

automated feeding system with the capability of measuring CH4 and CO2 emissions (Storm et al., 



11	
  
	
  

2012). As animals enter the feeder, they are recognized, a small amount of feed is dispensed to 

keep the animal at the feeder for a number of minutes, and CH4 and CO2 concentrations are 

measured. To quantify airflow and the emitted CH4 and CO2 during the visit to the GreenFeed, air 

is continuously pumped through the automatic feeding system (Storm et al., 2012). The 

GreenFeed system automatically performs recovery experiments by releasing small amounts of a 

known tracer gas inside the feeder’s head cabin to determine how much of the expired air from 

the animal is captured by the system during visits to the feeder (Storm et al., 2012). The 

GreenFeed system is portable and applicable to use in a grazing or tie-stall situations. As a 

disadvantage, the system only measures CH4 emissions when an animal is directly eating from 

the feeder.  

In a study done by Hammond et al. (2015), the GreenFeed system was compared to 

respiration chambers and the SF6 technique. Hammond et al. (2015) reported a non-significant 

association (P > 0.50) between the GreenFeed and chamber system. Correlation coefficients 

between the GreenFeed system and chambers were 0.1043 and 0.058 when used to measure CH4 

production and yield of individual heifers, respectively; however, the average overall CH4 

emissions were similar for both systems (Hammond et al., 2015). The authors also found less 

variability with chamber measurements of CH4 emissions (g/day) compared to the GreenFeed 

data, but state this may be due in part to measurements of the GreenFeed system that were fewer 

in number and taken less frequently than the chamber measurements. The correlation coefficient 

between the GreenFeed system and the SF6 technique to measure CH4 production from individual 

heifers was 0.602, and there was a significant (P < 0.01) association between the two techniques 

(Hammond et al., 2015). Average overall CH4 emissions were lower for the GreenFeed 

measurements than those of the SF6 technique, and Hammond et al. (2015) determined the 

differences might be due to the duration of the CH4 measurements obtained for each animal.  
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Large variations in CH4 emission rates throughout a day will make accurate estimations 

of daily CH4 emissions difficult when snapshot sampling, such as that used by the GreenFeed 

system, is used (Jonker et al., 2014). A study by Jonker et al. (2014) observed a more pronounced 

circadian variation of CH4 emissions for animals fed a restricted amount of feed and at fewer 

feeding frequencies than animals offered feed for ad libitum intake. The CH4 emission profile 

after each feeding for animals on restricted feed intake reached a peak within 40 minutes of the 

feeding and gradually declined until the next feeding (Jonker et al., 2014). To estimate daily CH4 

emissions using the GreenFeed system, snapshots of CH4 emissions spread over the whole 24 

hours of a day should be taken to reflect daily emissions due to the variation in emissions 

throughout a day (Jonker et al., 2014). If animals are not inclined to visit the GreenFeed during a 

meal, throughout the day and night, or visit immediately following a meal, accurate estimation of 

daily CH4 emission rates may be difficult. The reduced circadian variation in CH4 emissions seen 

with ad libitum feeding by Jonker et al. (2014) suggests the use of the GreenFeed system may 

provide the most accurate daily CH4 emission estimates when animals have ad libitum feed 

available. 

The micrometeorological mass difference technique measures differences in the 

concentration of gases in the atmosphere and relates these fluxes to animal emissions (Harper et 

al., 1999). Methane concentrations are calculated from measurements of wind speeds and 

atmospheric CH4 concentrations on the upwind and downwind boundaries (Harper et al., 1999). 

The flux of CH4 from the cattle is calculated by subtracting the upwind flux from the downwind 

flux. The different micrometeorological methods of measuring CH4 emissions are impacted by 

instabilities such as non-steady state wind or movement of point-emission sources (Storm et al., 

2012).  The micrometeorological technique is a nonintrusive way to measure emissions from 

cattle while they remain in an environment in which they are accustomed. This technique can be 

used for grazing cattle or feedlot cattle. The micrometeorological methods are useful in 
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measuring whole system emissions, but further development and documentation of reliability is 

necessary (Storm et al., 2012).   

In vitro methods for measuring CH4 production from rumen fermentation have been 

developed to avoid expensive whole animal in vivo measurements of enteric CH4 emissions. This 

technique can be done in a lab setting and does not require animals to be used. In vivo animal 

experiments done to measure CH4 emissions can be costly, time consuming and require large 

specialized facilities and resources (Navarro-Villa et al., 2011). In vitro cumulative gas 

production techniques were developed to simulate and predict rumen fermentation of feed and 

feedstuffs (Rymer et al., 2005; Navarro-Villa et al., 2011; Pellikaan et al., 2011). Gas production 

is measured as an indication of fermentation from incubation of a feedstuff with buffered rumen 

fluid (Rymer et al., 2005). The incubated feedstuff is degraded and either fermented to produce 

gas and fermentation acids, or incorporated into microbial biomass (Rymer et al., 2005). Gas 

production techniques combined with measures of degradation provide a measure of the 

proportion of the feed that is fermented as opposed to that which is partitioned to microbial 

growth (Rymer et al., 2005). In vitro techniques do not account for long-term adaptation of 

ruminal microorganisms to the tested feedstuffs (Storm et al., 2012). Studies comparing the in 

vitro gas production technique to other methods of CH4 measurement, such as chamber systems 

and the SF6 technique, report varied results of agreement and non-agreement between the 

methods (Storm et al., 2012). Bhatta et al. (2006) compared the in vitro gas production technique 

to the SF6 tracer method and found the correlation coefficient of CH4 production between the two 

methods to be 0.85. Bhatta et al. (2008) reported weak correlations between the in vitro gas 

production technique and respiration chambers.  In vitro CH4 measurements after 24 hours (R2 = 

0.37), and measurements after 48 hours (R2 = 0.24) were correlated with respiration chamber 

measurements recorded over 3 consecutive days.  

Prediction Models  
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In addition to measuring emissions directly from cattle, there are numerous prediction 

models that can be used to estimate CH4 emissions as an alternative to live animal experiments. 

Table 2 provides examples of common prediction models for enteric CH4 emissions in beef 

production. Since it is a gaseous loss, measuring CH4 emissions requires expensive equipment; 

therefore, the metabolizable energy of many diets is estimated from calculated rather than 

measured CH4 production (Moe and Tyrrell, 1979). The use of mathematical models to predict 

CH4 emissions can help avoid extensive and costly experiments requiring cattle (Ellis et al., 

2007). Developing prediction models for CH4 production has focused on the relationship between 

CH4 production and dry matter intake and dietary carbohydrates in the diet (Moe and Tyrrell, 

1979).  

Mathematical models can be classified as statistical models (e.g. relate nutrient intake to 

CH4 production using correlations derived from empirical data) or dynamic mechanistic models 

(e.g. estimate CH4 production using mathematical descriptions of rumen fermentation 

biochemistry; Kebreab et al., 2006). Numerous enteric CH4 emissions prediction equations use 

the Intergovernmental Panel on Climate Change (IPCC) (2006) Tier 2 methodology, including 

Nguyen et al. (2010), Pelletier et al. (2010), and Casey and Holden (2006). Ellis et al. (2010) 

evaluated several enteric CH4 emissions prediction models used in dairy whole farm system 

models, including the IPCC Tier 2 methodology with enteric CH4 emission measurement data 

from live animal experiments. The authors found that overall the models had low prediction 

accuracy. Ellis et al. (2010) compared the equations based on mean square prediction errors 

(MSPE) and concordance correlation coefficient analysis (CCC), and found values ranging from 

20.2 to 52.5 for MSPE and CCC values ranging from 0.000 to 0.493. All models evaluated had 

particular difficulty in predicting the wide range of enteric CH4 emissions observed in live animal 

experiments, which are affected by diet type and level of intake (Ellis et al., 2010). Moraes et al. 

(2014) developed new enteric CH4 prediction equations using a dataset from 2,574 indirect 
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calorimetry records from both beef and dairy cattle, and compared the newly developed models to 

IPCC Tier 2 and the Food and Agriculture Organization of the United Nations’ (FAO) (2010) 

methodology. Across all classes of animals (heifers, lactating cows, dry cows, and steers), the 

authors found their new models that use gross energy intake, as the only user required input, 

consistently outperformed both the IPCC Tier 2 and FAO models (Moraes et al., 2014). As an 

example, the model fitted to the lactating cow data set with gross energy intake as the only 

covariate had substantially lower prediction error than the IPCC model (18.14 vs 30.50 %, 

respectively) (Moraes et al., 2014). As a caveat, the dataset did not include any emissions from 

grazing cattle nor did the diets fed to the steers contain the level of concentrates found in most 

feedlot cattle diets today (Moraes et al., 2014). The difficulty in collecting grazing cattle CH4 

emissions and the consequential relative dearth of enteric CH4 emission data from grazing cattle 

in the literature is challenging for enteric CH4 prediction equations. Without datasets to evaluate 

models, little can be known about the accuracy and precision of commonly used enteric CH4 

prediction equations for grazing cattle, which typically represents the largest share of CO2-eq 

emissions in beef production.  

CONCLUSION 

Enteric CH4 emissions account for a large portion of the total GHG emissions from 

ruminant livestock production, and the beef industry has faced increasing pressure to reduce its 

environmental impact. The discussed methods of measuring and estimating CH4 emissions from 

ruminants (i.e. chambers, SF6 tracer technique, and prediction models) have been developed to 

quantify and estimate emissions in order to improve emission inventories and evaluate mitigation 

techniques. Improvement of emission inventories and mathematical models predicting GHG 

emissions is important in reducing the uncertainty associated with the contribution of ruminants 

to the total global, as well as US, CH4 emissions. The developed methods vary in complexity, 

accuracy, expense, and application (e.g. suited for numerous or single animals, grazing or housed 
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livestock). Indirect calorimetry techniques, such as whole-animal chambers and head box 

systems, are considered accurate and reliable. However, whole animal chambers can be expensive 

to construct, require extensive animal training and accurate extrapolation of results to grazing 

animal emissions is questionable. Using a ventilated head box system to measure CH4 emissions 

from cattle provides a more cost effective method than whole-animal chambers and an accurate 

method of measurement. Further research should determine the accuracy and the effects of 

chambers on dry matter intake and emissions in relation to grazing versus housed animals. A 

study at Oklahoma State University, Stillwater, Okla., was developed to validate and further 

research the use of the ventilated head box systems. Cattle were used to assess the impact of the 

ventilated head box system on feed intake and animal behavior, and to determine the variation of 

CH4 emissions within and between animals fed the same diet on an ad libitum and restricted 

basis. The results of the present study will help determine the impact of feed restriction on CH4 

production and the minimum amount of time required for animals to be housed in the head box 

system in order to achieve an accurate 24-hour emissions rate calculation for use in future studies.  
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Table 1. A comparison of the advantages and disadvantages of measurement and prediction 

techniques of methane (CH4) emissions. 

Technique Advantages Disadvantages 

Whole-animal 
chambers 

- Ability to measure CH4 
emissions from ruminal and 
hindgut fermentation 

- Expensive to construct and 
maintain 

- Restriction of animal 
movement 

Head box systems 

- Lower cost of construction 
than whole animal chamber 
system 

- Ability to measure CH4 
emissions from ruminal 
fermentation 

- Restriction of animal 
movement 

- Inability to measure hindgut 
CH4 

- May not account for emissions 
that leak from rumen cannulas 
if used with cannulated 
animals 

SF6 tracer technique 

- Eliminates need to restrain 
animal; animal can move 
freely and graze 

- Multiple animals can be 
sampled simultaneously 
without restraint 

- Animal must be trained to wear 
halter and collection canister 

- Inability to measure hindgut 
CH4  

- May not account for emissions 
that leak from rumen cannulas 
if used with cannulated 
animals 

Face masks/Mouth 
piece 

- Measures expired emissions 
from the animal 

- Restriction of animal 
movement 

- Restricted drinking and feeding 
behaviors 

- Inability to measure hindgut 
CH4  

- May not account for emissions 
that leak from rumen cannulas 
if used with cannulated 
animals 

GreenFeed             
(C-Lock, Inc.) 

- Can be used in grazing or tie-
stall situations 

- One GreenFeed unit can be 
used for numerous animals (~ 
20 animals) 

- Animals are identified and 
emissions are measured for 
each animal when using the 
GreenFeed 

- Does not capture continuous 
measurement like a chamber or 
head box system 

- Animals must be inclined to 
visit the GreedFeed multiple 
times a day, throughout the day 

- May not account for emissions 
that leak from rumen cannulas 
if used with cannulated 
animals 

Micrometeorological 
mass difference 

- Can be used in grazing or 
feedlot situations 

- Animals do not need to be 
trained  

- Further research and 
documentation of reliability is 
needed  

- Difficult to have replicated 
experimental units 
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In vitro 
- Does not require animals; can 

be less costly than chamber 
and head box systems 

- May not be able to account for 
variations found in animal 
experiments 

Prediction models 
- Does not require animals; can 

be less costly than animal 
experiments 

- May not be able to account for 
variations found in animal 
experiments 
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Table 2. Enteric methane (CH4) prediction equations commonly used to estimate CH4 emissions 

from beef production systems 

 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1 GE = gross energy intake, MJ/head/day 
2 Ym = methane conversion factor, percent of gross energy in feed converted to methane 
3 55.65 (MJ/kg CH4) is the percentage of gross dietary energy lost as methane 
4 Dry matter intake 
5 Emax = maximum possible emission, 45.98 MJ CH4/head/day  
6 c = -0.0011 · [Starch/ADF] + 0.0045, Where: Starch = starch content of diet, ADF = acid detergent fiber content of 
diet 
7 MEI = metabolizable energy intake, MJ/head/day 
8 FkgCH4 = conversion of MJ to kg of CH4, 0.018 kg CH4/MJ 
9 DMDijkl = digestibility of feed (expressed as a %)  
10 Lijkl = feed intake relative to that needed for maintenance 
11 NFC = nonfiber carbohydrate (kg/d) 
12 HC = hemicellulose (kg/d) 
13 C = cellulose (kg/d)	
  

Model Reference(s) Enteric methane (CH4) emissions prediction equation 
IPCC Tier 2 Casey and Holden 

(2006); Nguyen et al. 
(2010); Pelletier et al. 

(2010); Beauchemin et 
al. (2010);  

CH4/head/yr (kg)= (GE1 x Ym
2 x 365 days/yr) / (55.653 MJ/kg 

CH4) 

Shibata et al. 
(1993) 

Ogino et al. (2004) CH4 (L/d) = -17.766 + 42.793 x (kg DMI4/d) – 0.849 x (kg 
DMI/d)^2  

Mills et al. 
(2003) 

Stackhouse-Lawson et 
al. (2012) 

CH4/head/day (kg) = [Emax
5 - Emax(-c6 x MEI

7)] x FkgCH4
8  

Blaxter and 
Clapperton 
(1965) 

Peters et al. (2010), 
grazing emissions 

CH4/head/day (kg) = 1.3 + 0.112DMDijkl
9 + Lijkl

10
 (2.37 - 

0.050DMDijkl) 

Moe and 
Tyrrell 
(1979) 

Capper (2011); Peters 
et al. (2010), feedlot 

emissions 

CH4/head/day (MJ) = 3.406 + 0.510 NFC11 + 1.736 HC12 + 
2.648 C13  
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Figure 1. Methanogens in the rumen keep the concentration of hydrogen gas (H2) low by 

using H2 to reduce carbon dioxide (CO2) to methane (CH4) through the process of 

methanogenesis. 
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Figure 2. In an open-circuit respiration chamber, outside air enters the chamber through inlet 

openings, and expired air is drawn through the system by negative pressure created with a 

pump. The expired air is drawn through the gas analyzers for analysis.  
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CHAPTER II 
 

 

EVALUATION OF AN ENTERIC METHANE EMISSIONS MEASUREMENT SYSTEM 

 

INTRODUCTION 

As public concern regarding climate change and sustainability continue to grow, rising 

societal pressures are forcing the livestock production industries to quantify and reduce their 

environmental impact. Livestock production, specifically ruminant production, is one of many 

agricultural and non-agricultural contributors to the emission of GHG. Ruminant animals produce 

CH4, a potent GHG, through the process of enteric fermentation. Over a 100-year period, CH4 has 

a global warming potential 28 times greater than CO2 (IPCC, 2013), and enteric fermentation is 

the source of 26% of the anthropogenic CH4 emissions in the United States (US EPA, 2015). 

Methane, therefore, accounts for a large portion of the total GHG emissions from livestock 

production in the United States. Several methods of measuring and estimating CH4 emissions 

from ruminants (i.e. chambers, SF6 tracer technique, and prediction models) have been developed 

to quantify and estimate emissions in order to improve emission inventories and evaluate 

mitigation techniques. These methods vary in complexity, accuracy, expense, and application 

(e.g. suited for numerous or single animals, grazing or penned livestock). Using a ventilated head 

box system to measure CH4 emissions from cattle provides an accurate and cost effective method 

of measuring emissions from the mouth of the animal. In a ventilated head box system, the 

animal’s head is placed in an airtight box and a canopy or neck sleeve is used to cover the head or 
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upper part of the body. Outside air is circulated around the animals’ head, mouth, and nose, and 

the expired air is collected. Ambient air enters the head box through inlet openings, and expired 

air is drawn through the system by negative pressure created with a pump. Total airflow through 

the system is measured, and emissions are determined by calculating the difference in the 

concentration of gases between ambient air and expired air. A head box system has the capability 

of measuring gases eructated from the rumen in real-time measurements to calculate emission 

rates. 

The objectives of the following study were to evaluate a ventilated head box system and 

to compare emissions across measurement periods of ad libitum and restricted feed intake. 

Additional objectives of the study were to determine the effect of the head boxes on measures of 

behavior (i.e. standing and lying behavior, dry matter intake (DMI), and respiration rate) and 

emissions. The results will provide information on the minimum amount of time required for 

animals to be housed in the head box system in order to calculate a 24-hour emissions rate for use 

in future studies. 

MATERIALS AND METHODS 

Study Overview 

The study was conducted in accordance with the approved Oklahoma State University 

(OSU) Animal Care and Use Committee protocol (protocol number AG-13-16) at the OSU 

Nutrition Physiology Research Center in Stillwater, OK. Six Holstein heifers between 16 and 18 

months of age (initial live weight between 364 and 430 kg) were obtained from the OSU Dairy to 

be used for the duration of the 72-day study. The heifers were weighed and paired based on 

weight. The heifers were used to assess the impact of the ventilated head box system on feed 

intake and behavior, and to determine the variation of CH4 emissions within and between animals 

fed the same diet on an ad libitum and restricted basis. All 6 heifers were used in each period of 
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the study. In period 1 (21 days), the heifers were fed in neighboring individual pens that allowed 

for visual and social contact between animals, as well as free-movement, and were provided ad 

libitum feed for 1 week. The following week, each animal was introduced to the head box and 

attached metabolism stall for three 2-hour training periods. During the third week of period 1, 

each animal spent three 6-hour training periods in the metabolism stall and head box. In period 2 

(3 days), each animal was housed in the metabolism stall and head box for the first 3-day gas 

measurement period and remained on ad libitum feed intake. After the first gas measurement 

phase, animals were returned to their individual pens and remained on ad libitum feed intake for 

period 3 (21 days). In period 4 (3 days), each animal was housed in the metabolism stall and 

head box for the second 3-day gas measurement period and remained on ad libitum feed intake. 

In period 5 (17 days), animals were returned to their individual pens and remained on ad libitum 

feed intake. In period 6 (4 days) the animals remained in their individual pens, and feed was 

restricted to 2% of their body weight on a dry matter basis. In period 7 (3 days), each animal was 

housed in the metabolism stall and head box for a third and final 3-day gas measurement period 

and remained on restricted feed intake. Periods 1 – 7 are presented in Figure 3.  

Head Box System Design and Operation 

 The system consisted of two ventilated head boxes, and a complete cattle respirometry 

system, which was housed in an instrumentation cabinet. A diagram depicting an overview of the 

ventilated head box system can be seen in Figure 4. The following sections will describe the 

dimensions and materials used to construct the head boxes, as well as the respirometry system 

used to calculate the emission rates from cattle. 

Head Box Design 

 Two ventilated head boxes, similar in design to those in Place et al. (2011b), were 

constructed at the Oklahoma State University Biological and Agricultural Engineering Shop. The 
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head boxes were attached to metabolism stalls (96.5 cm wide) inside the OSU Nutrition 

Physiology Research Center barn and were placed side-by-side. The dimensions of the box 

measured 170.2 cm x 105.4 cm x 76.2 cm (H x W x D). Clear polycarbonate sheeting was used to 

provide full field of vision for the cattle on the back, front and two sides of the head box. The top 

and bottom of the box were made from stainless steel sheeting, and the frame was made from 

stainless steel angle iron. The bottom of the head box was designed similar to a pallet to facilitate 

easy movement of the box. The bottom measured 12.1 cm x 105.4 cm x 76.2 cm (H x W x D) 

making the total height of the box 182.3 cm. A float-type metal water bowl was attached 68.6 cm 

above the base along with an air inlet opening 7.6 cm in diameter on one side of the box. An 

extrusion, 2.5 cm in diameter, on the top of the box served as the air outlet. A door was placed on 

the front of the box to enable the feeding of animals or moving of animals in and out of the head 

box. To ensure an air tight seal during gas sampling, foam tape was placed along the edge of the 

door frame, and the door was closed with three locking catches on the top and bottom and four 

locking catches on the side. On the back of the box was an oval neck opening measuring 101.6 

cm tall and 66.04 cm wide where the heifer’s head entered the box. A Cordura fabric neck sleeve 

was attached to the head opening via a rolled steel attachment. The neck sleeve had a zipper on 

the top and bottom of the sleeve as well as a rope sewed into the end for easy placement and 

tightening over the animal’s head and neck. A chain inside the head box was attached to each side 

of the base, and another chain with a clip on the end was attached to the middle. When an animal 

entered the head box, a chain around their neck was attached to the clip on the end of the chain 

inside the box. The chain was long enough to allow the animal to stand up, lie down, eat, and 

drink. Figures 5 and 6 are photographs of the head box when empty and in use during a gas 

collection phase, respectively. 

Gas Sampling System and Operation  
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 A complete cattle respirometry system with the capability of measuring CH4 and CO2 

emissions and O2 consumption was purchased from Sable Systems Inc. (Las Vegas, NV). The 

key components of the respirometry system included two integrated vacuum pumps and mass 

flow controllers called FlowKits, a SS-4 Sub-Sampler Pump, an infrared MA-10 Methane 

Analyzer and infrared CA-10 Carbon Dioxide Analyzer, a fuel cell FC-10 Oxygen Analyzer, a 

RH-300 Water Vapor Analyzer, an analog signal multiplexer, a flow multiplexer, a UI-2 Data 

Interface, and the Expedata data acquisition and analysis software. The respirometry system was 

housed in an instrumentation cabinet that was kept at approximately 26.7 °C by a small window 

A/C unit that was placed on the side of the cabinet (Figure 7). The air inside the head box was 

drawn through the outlet at the top through a filter and into the FlowKit that supplied an air-flow 

rate of 725 L/min. Subsamples were taken from each FlowKit and an ambient air sample was 

drawn from a pump located adjacent to the head boxes and partitioned into individual channels of 

the flow multiplexer. Air was pulled from a common port on the flow multiplexer by the SS-4 

Sub-Sampler Pump, and the SS-4 pushed the air through the RH-300, the CA-10, MA-10, and 

FC-10 analyzers. The analog outputs of each FlowKit, the SS-4, RH-300, CA-10, MA-10, and 

FC-10 are sent to the UI-2 data interface, which is connected to the computer. Using the Expedata 

software, 65 minute sampling files were set to sample each of the head boxes and the ambient air 

every 5 minutes. Each file started with a 5 minute sample of ambient air, switched to sample head 

box 1 for 5 minutes, and then switched to sample head box 2 for 5 minutes. Sampling rotated 

from each of the air sampling locations (i.e. ambient air, head box 1, head box 2). The files were 

set to record continuously for the entire 72-hour sampling period and saved in a Dropbox file 

when completed to allow access to the data from numerous locations. A screen shot of the 

computer monitor was taken and updated in a Dropbox file every 5 minutes to allow the 

equipment to be remotely monitored.  



27	
  
	
  

Before the system was used in a gas collection phase, the recovery rate was calculated for 

each head box. Recovery rate calculations were determined by injecting a 99.99% CO2 standard 

gas into each head box at 2.5 and 5 L/min for about 30 minutes. Sampling before and after the 

CO2 injection was used to determine background concentrations of CO2. Figure 8 is an example 

of a recovery rate test injection of CO2. The recovery rates calculated for the boxes ranged from 

96.70 to 111.68%. The calculated recovery rates are similar to those previously reported by others 

using head box systems. Suzuki et al. (2007) reported recovery rates from 95.7 to 101.8% for a 

four head box system, and Place et al. (2011b.) reported recovery rates from 97.6 to 99.3% for a 

two head box system. Table 3 summarizes the recovery rate tests for head boxes 1 and 2. Since 

the mean recovery rate for head box 2 was around 108%, a correction factor of 1.08 used for 

emission rate calculations during the experiment. To verify that there was not a leak in the 

system, recovery tests were conducted with the FlowKits switched for the two head boxes, and 

the same recoveries were calculated. The higher recovery percent for head box 2 was recognized 

as a mass flow rate recording issue with the FlowKit. Standard deviations for recovery percent for 

head box 1 and 2 (0.0196 and 0.0168, respectively) are similar, and to confirm the recovery 

percent had not changed over the course of the experiment, additional recovery tests were 

performed after completion of the experiment. The recovery tests conducted after the experiment 

resulted in the same recovery rate of approximately 108%. Emissions rates were calculated with 

the following equation:  

𝐸𝑅 = (𝑠𝑢𝑚 𝑛 𝑄)×(𝐶𝑜𝑢𝑡 − 𝐶𝑖𝑛))/𝑛 

Where ER is the gas emission rate from the head box (L/animal/minute), Cout is the 

average volume per minute concentration in the outlet air, Cin is the average volume per minute 

concentration in the ambient air, Q is the sampling flow rate (L/min), and n is the number of total 

effective measurements. The net concentration of the gas is the difference between the outlet gas 

concentration and the ambient gas concentration.  
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To calculate the L/hour emissions rate, the L/min value was multiplied by 60, and the 

L/hour value was multiplied by 24 to calculate the L/day emissions rate. Estimates were 

converted from volume per unit time to mass per unit time for comparison to other studies. The 

following equation is an example of converting CH4 from volume per unit time to mass per unit 

time: 

𝐿
𝑢𝑛𝑖𝑡  𝑡𝑖𝑚𝑒

  ×   
1  𝑚𝑜𝑙
22.4  𝐿

  ×   
16.04  𝑔  𝐶𝐻!

1  𝑚𝑜𝑙
  =

𝑔𝐶𝐻!
𝑢𝑛𝑖𝑡  𝑡𝑖𝑚𝑒

 

All spans and zero calibrations were done within 24 hours before the start of the gas 

measurement period. The RH-300 water vapor analyzer was zeroed by pulling pure nitrogen gas 

from a cylinder and allowing the nitrogen gas to flow for at least 30 minutes to verify that the 

display reached a low, stable value before setting the zero. The CA-10 and MA-10 analyzers were 

zeroed with pure nitrogen gas at the same time the RH-300 was zeroed. The span point was set 

for the CA-10 analyzer using 1% CO2, balance nitrogen gas. The 1% CO2 gas was allowed to 

flow through the CA-10 for at least 1 minute until the value on the display approached the value 

of the calibration gas. When the CA-10 reading stabilized, the span was set for 0 – 1% CO2. The 

MA-10 analyzer span point was set using 1% CH4, balance nitrogen gas. The 1% CH4 gas was 

allowed to flow through the MA-10 for at least 1 minute until the value on the display approached 

the value of the calibration gas. When the MA-10 reading stabilized, the span was set for 0 – 1% 

CH4. Setting the O2 span for the FC-10 analyzer required dry, CO2-free air. Two Drierite drying 

tubes filled with Drierite and one drying tube filled with Soda Lime were used. Air was pulled 

through a Drierite tube, the Soda Lime tube, then another Drierite tube before entering the SS-4, 

RH-300, CA-10, MA-10, and FC-10. After the CO2 reading reached a low, stable value and the 

O2 reading stabilized, the span point was set at 20.95% to span the FC-10 analyzer with ambient 

air.  

Animal Handling during Training and Gas Measurement Periods 



29	
  
	
  

During the two-hour training periods (period 1), the animals were led into the stall and 

head box. The cattle were restrained by a head gate that restricted side-to-side, forward and 

backward movement but allowed the animal to stand and lie down. The heifer’s head was placed 

in the head gate, and the head gate was tightened. The neck sleeve was placed and tightened 

around the animal’s neck. The heifer’s neck chain was attached to the floor chain in the head box, 

leaving the animal with enough chain length to access water, feed, and to lie down. The door of 

the head box remained open for the duration of the two-hour training period. Heifers were offered 

free choice feed and water and were monitored the entire time during the training period. The 

animals were returned to their individual pens after the training. For the six-hour training periods 

(period 1), the same protocol was followed as for the two-hour training sessions; however, the 

head box door was closed and latched for the duration of the six-hour training and was only 

opened if necessary.  

 Within 24 hours before the start of each gas measurement period when the sampling 

system was calibrated, the stalls were bedded with straw for animal comfort. At the beginning of 

each gas measurement period, the heifers were moved into the head boxes following the same 

protocol as the training periods. For all three measurement periods (periods 2, 4, and 7), the 

heifers were assigned the same head box each time. After the doors of each box were latched, the 

Expedata file was loaded, and the sampling system was started. A student remained with the 

animals at all times for the duration of the 72-hour sampling periods. Any time a head box door 

was opened, the time the door was opened and closed was recorded, and those data were not used 

in emission rate calculations.  

Feed Intake Measures 

 The animals were offered a total mixed ration (TMR) for the duration of the study. 

Ingredients and composition of the TMR are listed in Table 4. The heifers were fed twice daily at 
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07:30 and 14:00 hr. During periods 1 – 5, the animals were fed ad libitum with targeted refusals 

of 5% on an as-fed basis. Refusals were collected and weighed before the morning feeding to 

calculate daily feed intakes. During the first and second gas measurement periods (2 and 4), the 

heifers were fed twice daily, and refusals were collected before the morning feeding. For periods 

6 and 7, the feed intake of the heifers was restricted to 2% of their body weight on a dry matter 

basis. The animals were fed once daily at 07:30 hr at the start of feed restriction in period 6 and 

throughout the final measurement period 7. Refusals were collected before the morning feeding 

as usual. Feed intake is commonly restricted beginning 4 days before measurement periods and 

continuing throughout the measurement period (Boadi and Wittenberg, 2001; Van Zijderveld et 

al., 2011a, 2011b). Literature suggests feed restriction should begin before the start of the 

measurement period due to the incidence of gut fill, which can impact CH4 production (Boadi and 

Wittenberg, 2001; Van Zijderveld et al., 2011a, 2011b). Throughout the study, water was 

available for ad libitum intake.  

Dry matter was calculated weekly by drying feed samples in a drying oven for 48 hours 

at 60°C. During the gas collection periods, a sample of refusals was collected for each animal for 

dry matter analysis each day. For each new batch of TMR, a representative sample was frozen for 

future analysis. At the end of the study, a composite sample from all batches of frozen TMR was 

made and sent to DairyOne Forage Laboratory (Ithaca, NY) for laboratory analysis. The 

composite TMR was made from samples of equal weight from each batch of frozen TMR. 

Behavior Measures 

Respiration Rates 

Respiration rates were measured as the number of flank movements per minute 

(Mitlöhner et al., 2001). Flank movements were counted for 30 seconds and multiplied by 2 to 

calculate the total per minute for each animal. Respiration rates were taken at both the morning 
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and afternoon feedings and were used as a measure of behavior. Before the beginning of each 

training period, respiration rates were taken while the animal was still in its individual pen before 

being moved to the head box for the training session. Heifers were moved back to individual pens 

after each training session and before respiration rates were collected for the afternoon feeding 

time. During the measurement periods (2, 4, 7), respiration rates were taken at the normal 

morning and afternoon feeding times while the heifers were in the head boxes for the collection.  

Activity Data Loggers 

Onset Pendant G data loggers (Onset Computer Corporation, Bourne, MA) were used to 

measure the frequency and duration of standing and lying behaviors as a measure of cattle 

comfort for the experiment. The Y and Z-axis of each data logger was set to record at 5-minute 

intervals following the recommendations of Ledgerwood et al. (2010). Loggers were wrapped in 

shelf liner and then with vet wrap to protect the logger, label the logger with a number, and 

provide some cushion between the logger and the heifers’ legs. Loggers were placed with the x-

axis horizontal to the ground on the outside of the right hind leg and in the middle of the leg 

(below the hock and above the metatarsophalangeal joint), as recommended by Ledgerwood et al. 

(2010). The animal’s leg was first wrapped with a thick layer of cotton roll, followed by two to 

three layers of vet wrap. Gorilla glue was placed on the back of each logger wrapped in shelf liner 

and vet wrap. Then, the logger was placed on top of the animal’s vet wrapped-leg and an 

additional two to three layers of vet wrap were placed over the logger to secure the device on the 

leg. Figure 9 shows an attached logger on a heifer. Loggers were attached at the beginning of the 

experiment and removed and re-attached at the middle of the study to check the data, placement 

of the loggers, and legs of each animal. Loggers were removed at the end of the study.  

Temperature-Humidity Index 
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To calculate the temperature-humidity index (THI), temperature and relative humidity 

were recorded using Onset Pro V2 temp/RH loggers (Onset Computer Corporation, Bourne, 

MA). One temp/RH logger was placed adjacent to the animals individual feeding pens, and 

another temp/RH logger was placed adjacent to the head boxes inside the barn to account for any 

differences in temperature and relative humidity in the outside pen area or in the barn. The 

temp/RH loggers were set to record temperature and relative humidity at 10-minute intervals for 

the duration of the study. Temperature-humidity index was calculated using the following 

equation from Mader et al. (2006): 

𝑇𝐻𝐼 = 0.8  ×  𝑎𝑚𝑏𝑖𝑒𝑛𝑡  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒

+ %  𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒  ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦   ÷ 100   ×   𝑎𝑚𝑏𝑖𝑒𝑛𝑡  𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 − 14.4

+   46.4 

Data collected by the Pendant G loggers and by the temp/RH loggers were downloaded 

using Onset HOBOware Software (Onset Computer Corporation) and exported to Microsoft 

Excel for further analysis.  

Chute Temperament and Exit Score 

While the animals were being weighed at the beginning and end of the study, each was 

evaluated and given a chute temperament score while they were in the chute and an exit score as 

they left the chute. Chute temperament scores were based on the scoring system used by Grandin 

et al. (1995).  Once the animals were in the head catch, they were observed by a trained observer 

for 15 seconds without any human interaction. The chute score was based on the 15-second 

observation period. Exit scores were based on the scoring system used by Lanier and Grandin 

(2002) as the animals were leaving the chute. The same trained individual evaluated chute 

temperament and exit score for the duration of the study to minimize variation between observers. 
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Tables 5 and 6 display the score values and definitions used to determine the chute temperament 

and exit scores of the cattle.  

Pen Temperament 

Pen temperament was scored weekly based on the scoring system used in Hammond et 

al. (1996). Table 7 represents the scoring system used to score pen temperaments of the cattle. 

Since the cattle were housed in individual pens, the cattle were scored individually in their pens. 

To score the cattle, a trained observer entered the pen, and if the animal did not notice the 

observer immediately, the observer walked counter-clockwise along the perimeter of the pen until 

the heifer was aware of the observer. When the heifer was aware of the observer, the observer 

stopped and took one step toward the heifer due to the small size of the pen. Each heifer’s 

response was evaluated to assess the temperament of the heifers in their pen. The same individual 

scored pen temperament for the duration of the study in order to minimize variation between 

observers.  

Statistical Analysis 

All data were analyzed using the Proc Glimmix procedure in SAS version 9.4 (SAS 

Institute Inc., Cary, NC). The CH4, CO2 and O2 models included period, day within period, hour, 

DMI, hour by period interaction, hour by day within period interaction, DMI by period 

interaction, and DMI by day within period interaction as fixed effects, and heifer as a random 

effect. Feed intake data was modeled with DMI as the dependent variable, period, day, and day 

within period as fixed effects, and heifer as a random effect. The CH4 g / kg of DMI was modeled 

with the ratio of CH4 g/day to kg of DMI as the dependent variable, period, day within period, 

hour, hour by period interaction, hour by day within period interaction as fixed effects, and heifer 

as a random effect. Logger data was modeled with standing time, lying time, standing bouts, 

lying bouts, standing duration, and lying duration as dependent variables, period, day, and period 
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by day interaction as fixed effects, and heifer as a random effect. Respiration rate was modeled 

with average daily respiration rate as the dependent variable, daily THI mean, period, and 

location as fixed effects, and heifer as a random effect. Temperature-humidity index was modeled 

with average daily THI as the dependent variable, period, and location as fixed effects, and heifer 

as a random effect. The Proc Corr procedure of SAS version 9.4 (SAS Institute Inc., Cary, NC) 

was used to evaluate the correlation of THI and respiration rate. Residual versus predicted plots 

were examined to check the assumption of normality for all models. Least-squares means were 

compared across periods using a Tukey adjustment. Comparisons were considered statistically 

significant when P < 0.05. Results are presented as the least squares means estimates ± standard 

error. The period variable used for data analysis consisted of the 7 periods previously described. 

The location variable used for data analysis consisted of 2 locations: the outside location used to 

describe periods 1, 3, 5, and 6 when animals were housed in their individual pens, and the inside 

location used to describe periods 2, 4, and 7 when animals were housed inside the barn in the 

head boxes during gas measurement periods.  

RESULTS 

Emissions Measurements 

 There was no difference in CH4 emissions between periods 2 and 4 (P = 0.0759) of ad 

libitum intake, which were higher than period 7 (P < 0.0001) of restricted intake. For CO2 

emissions, period 7 was lower (P < 0.0001) than periods 2 and 4, which were not different (P = 

0.9789). Oxygen consumption during period 7 was lower than that of periods 2 and 4 (P < 

0.0001), and period 2 was lower (P = 0.0190) than period 4. Table 8 presents the least squares 

means of CH4, CO2, O2, DMI, and g CH4 / kg of DMI for day within period. There were no 

differences (P > 0.05) between days for L/day estimates in periods 4 and 7 for CH4, CO2, and O2 

(Figures 10 - 12). The hour by period interactions for CH4, CO2 and O2 are illustrated in Figures 
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13 - 15. For all emissions, the hour by period interaction of the model was significant (P < 

0.0001). There was no difference (P > 0.05) across periods in CH4 emissions for hours 3 through 

7 and 10 through 12, CO2 emissions for hours 2, 4 through 6, and O2 consumption for hours 1, 2, 

4 through 6 between feeding 1 and 2. The peaks of CH4 and CO2 emissions after feedings and 

significant interactions of hour are shown in Figures 13 and 14. Figures 16 - 18 display the 

significant interactions of period by hour for CH4 (L/day) estimates. The CH4 (L/day) estimates 

for hours 13 through 24 were different (P < 0.05) than the daily estimates of other hours. The 

variation in emission estimates seen throughout the 24-hour cycle of a day (Figures 16 - 18) 

highlights the need to measure emissions for a full 24 hours in order to estimate CH4 emissions 

per day. Period and day within period for CH4 g per kg DMI were significant (P < 0.0001). 

Periods 4 and 7 were not different for CH4 (g/kg DMI) estimates (P < 0.0949). Period 2 was 

higher than period 4 (P < 0.0040) and was higher than period 7 (P < 0.0001). 

Feed Intake Measures 

 There was no difference (P = 0.3264) in DMI between periods 2 and 4. Dry matter 

intakes for period 7 were lower (P < 0.0001) than period 2, which was expected as heifers were 

fed a restricted amount during periods 6 and 7. However, DMI for period 7 did not differ (P = 

0.0884) from period 4. Period 1 was higher (P < 0.0001) than period 2, and period 3 was higher 

(P < 0.0001) than period 4. However, there was no difference (P = 0.2449) between period 1 and 

4. Average DMI for periods 2 (9.2 ± 0.450 kg) and 4 (9.8 ± 0.450 kg) was lower than the average 

DMI of periods 1 (10.4 ± 0.407 kg), 3 (11.0 ± 0.407 kg), and 5 (11.9 ± 0.409 kg). There was no 

difference in DMI between periods 6 (8.4 ± 0.438 kg) and 7 (8.4 ± 0.450 kg). There was no 

difference (P > 0.05) across days 1, 2, and 3 within periods 2, 4, and 7.  

Behavior Measures  
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Figures 19 - 24 illustrate the trends in standing and lying behaviors, as they changed over 

the three-day gas measurement periods when compared to the mean standing and lying behaviors 

of the animals when they were in their individual feeding pens. The standing and lying behaviors 

of the animals during individual feeding periods 1, 3, 5, and 6 were averaged and are represented 

as the period labeled “outside”. For the standing and lying time variables, there was a difference 

between the outside period compared to day 1 of period 2 (P = 0.0079) and period 4 (P = 0.0026). 

The second and third day of periods 2, 4, and 7 did not differ from the outside period for mean 

standing and lying time. Overall, there was a numerical increase in the number of standing and 

lying bouts during periods 2, 4, and 7 compared to the outside period, as well as a numerical 

decrease in mean standing and lying bout duration during periods 2, 4, and 7. Compared to the 

outside period, there were a higher number of standing bouts per day for day 1 (P < 0.0001) and 

day 2 (P = 0.03) of period 2; day 1 (P < 0.0001) and day 2 (P = 0.024) of period 4; day 1 (P < 

0.0001), day 2 (P = 0.0006), and day 3 (P = 0.0152) of period 7. Lying bout duration of the 

outside period was higher (P < 0.05) than all measurement period days, except for day 3 of period 

2.   

The least-squares means and differences of THI and respiration rate for each period are 

presented in Tables 9 and 10. Period 1 was different (P < 0.0001) than all other periods. There 

was no difference in THI between periods 2 and 4 (P = 0.1302), periods 2 and 7 (P = 0.3335), 

and periods 4 and 7 (P = 0.9993). There was no difference in respiration rate between periods 2 

and 4 (P = 0.6917), periods 2 and 7 (P = 0.8348), and periods 4 and 7 (P = 1). A positive 

correlation (R2 = 0.381; P < 0.0001) was found between THI and respiration rate. For all periods, 

THI remained at a normal level (≤ 74) according to the Livestock Weather Safety Index (LWSI) 

classifications for heat stress (Mader et al., 2006). There was no change in pen temperament 

scores throughout the study, as well as no change in chute temperament and exit scores from the 
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beginning to the end of the study (data not shown). The animals remained docile and non-

aggressive throughout the study.  

DISCUSSION 

Emissions Measurements 

In a study done by Jonker et al. (2014) using heifers that were 20 months old and 382 ± 

24.3 kg body weight, the authors found the CH4 emissions profile after each feeding for restricted 

feed intake periods followed an asymmetrical negatively skewed shape. Peak emissions were 

attained within 40 minutes of feedings and gradually declined until the next feeding (Jonker et al., 

2014), which was similar to the peak and decline in emissions after each feeding seen in the 

present study (Figure 13). Jonker et al. (2014) concluded that low daily DMI with infrequent 

feeding (restricted feeding) can increase circadian variation in CH4 emission rates within a day, 

but ad libitum feeding reduced the circadian variation in CH4 emissions. For cows on ad libitum 

feed, variation between minimal and peak CH4 emission rates were less than when feed was 

restricted (Jonker et al., 2014). Jonker et al. (2014) reported CH4 yield was similar among all 

periods (restricted and ad libitum feed intake; P = 0.63), and averaged 24.3 ± 1.23 g/kg DM. The 

CH4 yield reported in the current study averaged 18.07 ± 0.48, 17.45 ± 0.48, and 17.05 ± 0.48 

g/kg DM for periods 2, 4, and 7, respectively. In a study by Jiao et al. (2013), average CH4 

emissions per kg of intake was 23.5 g/kg in 6-month-old Holstein cattle. The authors reported 

average CH4 emissions per day of 96.4 g/day for steers and 90.5 g/day for heifers, and there was 

no difference (P = 0.32) between the heifers and steers. These daily emissions are lower than our 

reported CH4 emissions per day, which ranged from 127.60 to 174.05 g/day. Beauchemin and 

McGinn (2005) measured the CH4 emissions from Angus heifers fed backgrounding and finishing 

diets containing corn or barley, and observed higher emissions when cattle were fed a 

backgrounding diet than when fed a finishing diet. Emissions reported ranged from 62.1 g CH4 
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/day for cattle fed a corn finishing diet to 170.6 g CH4 /day for cattle fed a corn backgrounding 

diet (Beauchemin and McGinn, 2005). The backgrounding diets used by Beauchemin and 

McGinn (2005) consisted of 70% whole crop barely silage, 25% steam-rolled barely grain, and 

5% supplement for the barley diet, and 70% corn silage, 18% dry-rolled corn grain, and 12% 

supplement for the corn diet on a dry matter basis. The finishing diet used by Beauchemin and 

McGinn (2005) consisted of 9% barley silage, 81.4% steam-rolled barley or dry-rolled corn, and 

9.6% supplement on a dry matter basis. The emission rates observed in the present study are 

similar to the higher emissions observed in the backgrounding phase by Beauchemin and McGinn 

(2005). The backgrounding diets used by Beauchemin and McGinn (2005) contained slightly 

higher roughage percentages than the diet used in this current study. Methane emissions per kg 

DMI observed by Beauchemin and McGinn (2005) ranged from 9.2 g CH4/kg DMI for corn 

finishing diets to 24.8 g CH4/kg DMI for corn backgrounding diets. The CH4 emissions per kg 

DMI seen in the present study are in the middle of the range observed by Beauchemin and 

McGinn (2005). Chiavegato et al. (2015) conducted a 2 x 2 Latin square experiment in which 

Holstein steers (542 – 589 kg body weight) received one dietary treatment for period 1 and the 

other treatment for period 2, and also reported lower CH4 emissions than those reported from this 

study. The authors reported that steers fed a 10% crude protein diet averaged 84.6 and 77.7 g CH4 

/day for period 1 and 2, respectively, and averaged 9.4 and 7.7 g CH4 /kg DMI for period 1 and 2, 

respectively. For steers fed a 13% crude protein diet, Chiavegato et al. (2015) reported CH4 

emissions averaging 99.3 g/day and 81.5 g/day and 10.2 g/kg DMI and 8.5 g/kg DMI for period 1 

and 2, respectively. Freetly and Brown-Brandl (2013) measured CH4 production over a 6-hour 

period and recommended the CH4 emissions reported should not be used to represent daily CH4 

production. Steers produced 85.8 ± 4.6 g CH4/day or 7.7 ± 0.6 g CH4 / kg DMI (Freetly and 

Brown-Brandl, 2013). Heifers weighed 390 ± 11 kg, were under 1 year of age, and produced 95.8 

± 4.2 g CH4/day or 13.0 ± 0.7 g CH4 / kg DMI (Freetly and Brown-Brandl, 2013). Freetly and 

Brown-Brandl (2013) speculated their lower values in CH4 emissions compared to other studies 
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may be due to sampling strategy, diet differences, and the heifers used were younger compared to 

other literature. As seen with our study, CH4 emissions differed throughout the 24-hour cycle in 

the day, and measuring emissions for only 6 hours may not account for within day variation of 

CH4 production. Hales et al. (2013) reported daily CH4 emission rates between 69.8 and 101.9 

L/animal and CO2 emission rates between 2,692 and 2,968 L/animal for steers (322 kg body 

weight) fed steam-flaked, corn-based diets with wet distillers grains with solubles. Daily CH4 

emission rates per animal in this study were reported as 235.0 ± 6.19 L/day, 228.3 ± 6.18 L/day, 

and 193.2 ± 8.88 L/day for periods 2, 4, and 7, respectively, and CO2 emission rates were 

reported as 3627.5 ± 90.72 L/day, 3632.4 ± 90.47, and 3184.0 ± 104.79 L/day for periods 2, 4, 

and 7, respectively. Some of the variation in emission rates seen from the literature compared to 

this study may be attributed to differences in dietary treatments, measurement strategies (i.e. 

measuring emissions for a full 24-hours compared to 6 hours), and animals used during the 

experiment (i.e. lactating dairy cows compared to growing steers or heifers).  

 Behavior Measures 

Adequate opportunity to lie down and rest for dairy cattle is considered important for the 

well-being and comfort of cattle. Many factors can affect the lying behavior of cattle, such as stall 

surface and bedding, stall size, stocking density, stall location, pen layout, pen flooring, social 

ranking, production, and health status (Haley et al., 2000; Tucker et al., 2004; Jensen et al., 2005; 

Ito et al., 2009). It has been reported that dairy heifers are motivated to lie down for about 12 – 13 

hours/day (Jensen et al., 2005). Ito et al. (2009) studied lying behaviors from 43 commercial dairy 

farms in British Columbia using free-stall barns, and reported that the average total lying time of 

cows was 11.0 ± 2.1 hours/day. The average lying time when heifers were in individual feeding 

pens, periods 1, 3, 5 and 6, was 870.43 ± 46.82 minutes/day or 14.5 hours/day. Therefore, the 

average lying times for periods 2, 4, and 7 were shorter than the average time when heifers were 

in individual feeding pens. Lying time averaged 779.17 ± 31.19 minutes/day (13 hours/day), 
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768.79 ± 31.19 minutes/day (12.8 hours/day), and 842.78 ± 31.19 minutes/day (14 hours/day) for 

periods 2, 4, and 7, respectively. Although lying times in periods 2, 4, and 7 were shorter than the 

average lying time of the heifers in their individual pens, the averages are not lower than the 

reported average lying time of dairy heifers. Tucker et al. (2004) assessed the impact of free-stall 

size on dairy cattle behavior, and reported that time spent lying down can provide information 

about how comfortable animals find a given stall design. According to the authors, animals spent 

more total time lying down and exhibited longer lying bouts when using wider stalls. Using 3 

different stall widths, cows averaged at 13.0 hours/day in the widest stalls (126 cm wide), and 

12.3 hours/day in the narrowest (106 cm wide) (P = 0.02) (Tucker et al., 2004). Haley et al. 

(2000) compared lying and standing behaviors of Holstein cows in tie-stalls (180 cm long x 130 

cm wide) with concrete flooring and tethered by a neck chain to cows in larger pens (420 cm long 

x 390 cm wide) with a soft mattress flooring material. Cows spent significantly (P = 0.0006) 

more time lying down (14.73 ± 0.91 hours/day) in large pens; lying 40% more than in tie stalls 

(10.51 ± 1.03 hours/day) (Haley et al., 2000). In this study, the head boxes were attached to 

metabolism stalls that measured 96.5 cm wide. Although the metabolism stalls were not as wide 

as stalls previously studied, this study used dairy heifers, whereas Tucker et al. (2004) and Haley 

et al. (2000) observed lying behavior in dairy cows. The decrease in lying time while housed in 

the head boxes and metabolism stalls corresponds with previously reported literature of decreased 

lying time in narrower stalls; however, the overall average lying time for all periods did not vary 

greatly from the values reported on how long dairy cattle are motivated to lie down throughout a 

day in Haley et al. (2000) and Tucker et al. (2004). Haley et al. (2000) observed that cows spent 

significantly less (P = 0.0006) time standing in the large pens (8.53 ± 0.90 hours/day) compared 

to the tie stalls (12.80 ± 1.05 hours/day), which is expected since standing time is the inverse of 

lying time. For periods 1, 3, 5, and 6, standing times averaged 568.04 ± 46.85 minutes/day or 9.5 

hours/day, and standing time averaged 660.83 ± 31.19 minutes/day (11 hours/day), 671.11 ± 

31.19 minutes per day (11.2 hours), and 597.22 ± 31.19 minutes/day (10 hours/day) for periods 2, 
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4, and 7, respectively. Although standing time was numerically highest for period 4 and lowest 

when the heifers were in individual feeding pens, there was no significant difference (P > 0.05) in 

standing time across the periods.  

 Ito et al. (2009) reported the average number of lying bouts was 9 ± 3 bouts/day from 

cows in free-stall barns. The average number of lying bouts per day for the heifers during periods 

1, 3, 5 and 6 was 13 ± 2.20 bouts/day. The average number of lying bouts was significantly 

different between periods (P = 0.0043), and number of bouts increased during periods 2, 4, and 7. 

Lying bouts averaged 18.8 ± 1.27 bouts/day, 19.5 ± 1.27 bouts/day, and 22.6 ± 1.27 bouts/day for 

periods 2, 4, and 7, respectively. Tucker et al. (2004) observed lying bouts that averaged 12.3 to 

11.9 bouts/day (P = 0.45) for narrow to wide stalls, respectively. Haley et al. (2000) reported 

cows had significantly (P = 0.0024) more lying bouts per day (13.62 ± 1.45 bouts/day) in large 

pens compared to tie stalls (8.21 ± 1.16 bouts/day), which is the opposite of the results seen in 

this study. Haley et al. (2000) observed more (P = 0.0014) standing bouts in the large pens (15.29 

± 1.34 bouts/day) compared to the tie stalls (9.75 ± 1.07 bouts/day). In periods 1, 3, 5, and 6, 

standing bouts averaged 9.62 ± 1.93 bouts/day, and bouts averaged 18.22 ± 1.34 bouts/day, 17.72 

± 1.34 bouts/day, and 19.89 ± 1.34 bouts/day for periods 2, 4, and 7, respectively. There was no 

difference (P > 0.05) in standing bouts between periods 2, 4, and 7; however, the average of 

periods 1, 3, 5, and 6 was significantly lower (P < 0.05) than all other periods. In our study, a 

significant increase in the average number of lying and standing bouts per day was seen in 

periods 2, 4, and 7. Total lying time throughout the day was typical compared to other studies, but 

the number of bouts increased. The observed increase in lying bouts shows the heifers got up and 

down more throughout the day while housed in the head boxes compared to in their individual 

pens.   

Average lying bout duration for cows in free-stall barns has been reported to be 88 ± 30 

minutes/bout (Ito et al., 2009). The average lying bout duration for the heifers during periods 1, 3, 
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5 and 6 was 75.5 ± 5.81 minutes/bout. Average lying bout duration was significantly different (P 

< 0.0001) between periods, and periods 2, 4, and 7 had lower average bout durations. Lying bout 

duration averaged 46.4 ± 3.65 minutes/bout, 42.4 ± 3.65 minutes/bout, and 39.6 ± 3.65 

minutes/bout for periods 2, 4, and 7, respectively. Duration of lying bouts averaged 1.1 to 1.2 

hours/bout (P = 0.04) for narrow to wide stalls, respectively (Tucker et al., 2004). Lying bout 

duration was shorter (P = 0.1530) in large pens (68 ± 5.68 minutes/bout) compared to tie stalls 

(86.72 ± 13.20 minutes/bout) (Haley et al., 2000). The average lying bout duration seen in this 

study is much shorter in periods 2, 4, and 7 than average lying bout duration reported in previous 

studies. The decrease in lying bout duration relates to the increase in lying bouts in periods 2, 4, 

and 7. Haley et al. (2000) found standing bout duration was significantly shorter (P = 0.0015) in 

the large pens (36.14 ± 5.31 minutes/bout) than in the tie stalls (86.70 ± 13.23 minutes/ bout). For 

periods 1, 3, 5, and 6, standing bout duration averaged 63.09 ± 7.23 minutes/bout, and bout 

duration averaged 42.45 ± 4.92 minutes/bout, 39.61 ± 4.92 minutes/bout, and 30.53 ± 4.92 

minutes/bout for periods 2, 4, and 7, respectively. There was no difference (P > 0.05) across 

periods 2, 4, and 7, but the average of periods 1, 3, 5, and 6 was significantly higher (P < 0.05) 

than all other periods. The increase in standing bout duration also relates to the increase in 

standing bouts seen in periods 2, 4, and 7.  

Mitlöhner et al. (2001) reported respiration rates for feedlot cattle with treatments of 

shade and/or water misting during summer months in Texas. For cattle receiving shade and 

misting, respiration rates averaged 30.0 ± 3.28 flank movements/minute, and for cattle receiving 

shade only, rates averaged 33.0 ± 3.28 flank movements/minute (Mitlöhner et al., 2001). For 

cattle receiving no shade and no misting, rates averaged 46.67 ± 3.28 flank movements/minute 

(Mitlöhner et al., 2001). Respiration rates for our study were lowest in period 1 at 28 ± 0.57 flank 

movements/minute, and highest in period 4 at 36 ± 1.08 flank movements/minute. For this study, 

heifers were shaded while in their individual feeding pens, and the chamber measurements were 
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conducted inside of a barn. For all periods, THI remained at a normal level (≤ 74), and our study 

was conducted during the months of February through May. The THI for periods 2, 4, and 7 was 

higher than THI for periods 1, 3, 5, and 6 when animals were in their individual feeding pens, 

which correlates with the higher respiration rates for periods 2, 4, and 7 (Tables 9 and 10; Figure 

25). The respiration rates seen in our study are similar to those seen by Mitlöhner et al. (2001) for 

cattle provided shade conditions. Valtorta et al. (1997) also reported that respiration rates of cows 

provided shade compared to non-shaded animals differed significantly (P = 0.01) and averaged 

60.7 ± 10.57 flank movements/minute and 78.9 ± 18.04 flank movements/minute for shade and 

non-shaded animals, respectively. The rates reported by Valtorta et al. (1997) are higher than all 

rates reported in this study, however, Valtorta et al. (1997) reported THI averaged 73.1 ± 3.2 

throughout the study, which is higher than the average THI reported in this study (Table 9). 

Roman-Ponce et al. (1976) reported average respiration rates for shaded and non-shaded cattle in 

Florida during the summer months. As others have observed, respiration rates were lower (P < 

0.01) for shaded cattle at 54 flank movements/minute compared to non-shaded cattle at 82 flank 

movements/minute (Roman-Ponce et al., 1976). The average THI of periods 1, 3, 5, and 6 (56.2 ± 

1.154) was lower (P < 0.0001) than the average THI of periods 2, 4, and 7 (65.5 ± 1.626). The 

increase in respiration rates seen in this study from periods 1, 3, 5, and 6 compared to periods 2, 

4, and 7 may be attributed to the increase in THI from the outside pens to the inside of the barn 

where the head boxes were housed rather than attributed to an increase in respiration rate due to 

stress of the animal.  

CONCLUSION 

Although ruminant livestock production is one of many contributors to the production of 

GHG emissions, societal pressures to quantify and reduce the environmental impact of ruminants 

are continuing to grow. In order to improve GHG emission inventories and to evaluate mitigation 

techniques, accurate and reliable methods of measuring emissions are necessary. A ventilated 
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head box system to measure CH4 and CO2 emissions, as well as O2 consumption, from cattle 

provides an accurate and cost-effective method of measurement. Emission measurements from 

the head box system can provide information about diurnal variations in emissions, peaks in 

emissions after feedings, and can help determine the minimum amount of time required for 

animals to be housed in the head box system in order to calculate a 24-hour emissions rate. For 

the two gas measurement periods where heifers remained on ad libitum feed intake, there was no 

difference in CH4 emissions, and the emissions for the gas measurement period of restricted 

intake was significantly lower. Variation in emission rates throughout the 24-hour cycle of a day 

was observed with peaks in emissions occurring after feeding and a slow decline in emission rates 

after and between feedings. The observed variation in emission rates emphasizes the need to 

measure emissions for a full 24-cycle in order to accurately estimate daily emission rates. The 

effect of the head boxes on the animals was evaluated based on a number of behavior measures. 

There was no difference in DMI between the two gas measurement periods when the animals 

remained on ad libitum feed intake. Standing and lying behaviors of the cattle while housed in the 

head boxes did not differ greatly from previously reported literature. Lying time and lying bout 

duration increased from day 1 to day 3 of the three-day gas measurement periods, which could be 

indicative of the heifers adjusting to being housed in the head box. The respiration rates of the 

cattle, as well as THI, increased during periods of gas measurement, however there was a positive 

correlation between THI and respiration rates. The head box system will be useful in examining 

the effects of mitigation strategies on emissions, variation in emissions caused by different feeds, 

and the pattern of emissions throughout the day.   
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Table 3. Recovery rate calculations for head box 1 and 2.  

Head Box 
CO2 

Injection 
(L/min) 

Mass Flow 
Rate 

(L/min) 

Calculated 
Injected 
CO2 (L) 

Actual 
Injected 
CO2 (L) 

Recovery (%) 

1 5 724 186.40 187.17 99.59 
1 5 724 208.85 211.33 98.82 
1 2.5 724 77.84 76.21 102.15 
1 2.5 724 78.84 77.04 102.33 
1 2.5 724 78.59 77.38 101.57 
1 5 724 247.42 251.92 98.22 
1 5 724 235.14 243.17 96.70 
1 5 724 251.40 256.08 98.17 
1 5 724 182.26 182.58 99.82 

Mean (± standard deviation) recovery rate head box 1 99.71 (± 0.0196) 
2 5 723 219.77 204.08 107.69 
2 5 723 219.94 205.67 106.94 
2 5 723 219.58 203 108.17 
2 2.5 723 85.57 78.29 109.30 
2 2.5 723 76.64 68.63 111.68 
2 5 724 143.27 133 107.72 
2 5 724 136.46 128.33 106.33 
2 5 724 139.83 130.33 107.29 

Mean (± standard deviation) recovery rate head box 2 108.14 (± 0.0168) 
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Table 4. Ingredients and composition of the total mixed ration on a dry matter basis.  

Item % DM  
Feed Ingredient  
Bermuda hay 55.0 
Heifer Grain* 45.0 
  
Composition  
Dry Matter (% of as fed) 95.5 
Crude Protein 10.0 
Available Protein 9.5 
Adjusted Crude Protein 10.0 
ADF 32.3 
Lignin 4.4 
NFC 22.5 
Starch 8.4 
ESC (Simple Sugars) 6.6 
Crude Fat 2.2 
Ash 7.17 
TDN 61 
NEm (Mcal/kg) 1.25 
NEg (Mcal/kg) 0.68 
Calcium 0.42 
Phosphorus 0.30 
Magnesium 0.32 
Potassium 1.62 
Sodium 0.134 
PPM Iron 194 
PPM Zinc 51 
PPM Copper 12 
PPM Manganese 93 
PPM Molybdenum <1 
Sulfur 0.39 
Chloride Ion 0.61 
*511.8 g/kg dry rolled corn, 41.1 g/kg molasses, 211.2 g/kg dry rolled oats, 210.6 g/kg soybean 
meal, 2.8 g/kg Dical, 8.5 g/kg min./vit. pack, 2.8 g/kg salt, 11.2 g/kg limestone 
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Table 5. Chute temperament scoring system adopted from Grandin et al. (1995). 

 

 

 

 

  

Score Chute Temperament Definition 

1 Calm, no movement 

2 Restless shifting 

3 Head throwing, squirming and occasionally shaking the squeeze chute 

4 Violently and continually shaking the squeeze chute 
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Table 6. Chute exit scoring system adopted from Lanier and Grandin (2003).  

Score Chute Exit Definition 

1 Walk 

2 Trot 

3 Run 

4 Jump 
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Table 7. Pen temperament scoring system adopted from Hammond et al. (1996). 

 

 

  

Score Pen Temperament Definition 

1 
Non-aggressive (docile): Animal walks slowly, observer can approach closely, and 
animal is not excited by humans or facilities 

2 Slightly aggressive: Animal walks quickly or trots away, carries head up at attention, 
and maintains distance as human approaches 

3 
Moderately aggressive: Animal trots or runs along fences, carries head high and is 
aware of humans, will move quickly as humans move closer, and commonly separates 
themselves from the group 

4 
Aggressive: Animal runs, stays in the back of group, carries head high and is very 
aware of humans, may run into fences and gates even with some distance, and will 
likely run along fences if alone in pen 

5 
Very aggressive: Animal is excited, runs into fences, runs over humans and anything 
else in its path, also referred to as “crazy” 
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Table 8. Least-squares means (n = 6) of heifer emissions and DMI by day within period for 
periods 2✚, 4✚, and 7u. 

 Period 

 2 4 7 

Item Day LS Mean SE LS Mean  SE LS Mean SE 

CH4  (L/hr) 

1 9.8a 0.347 9.3a 0.296 7.4b 0.439 

2 9.5a 0.271 9.9a 0.275 8.0b 0.420 

3 10.1a 0.274 9.3b 0.284 8.7b 0.473 

CO2 (L/hr) 

1 160.7a 4.234 151.9b 3.895 131.5c 4.785 

2 145.6a 3.843 151.3b 3.836 132.8c 4.663 

3 147.1a 3.858 150.8a 3.905 133.7b 5.002 

O2 (L/hr) 

1 149.8a 4.531 145.3a 4.251 126.0b 4.995 

2 136.8a 4.209 143.5b 4.204 124.6c 4.891 

3 137.2a 4.221 143.0b 4.260 124.7c 5.180 

DMI (kg) 

1 10.2a 0.536 10.1a 0.536 8.4b 0.536 

2 8.9a 0.536 9.5a 0.536 8.4a 0.536 

3 8.6a 0.536 10.0a 0.536 8.3a 0.536 

CH4 (g/kg 
DMI) 

1 17.1a 0.514 17.1a 0.531 16.2a 0.511 

2 17.8a 0.512 18.2a 0.517 16.9b 0.511 

3 19.3a 0.511 17.0b 0.511 18.0b 0.512 
a, b, c Least-squares means within row without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis.  
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Table 9. The least-squares means (n = 6) of temperature-humidity index (THI) and respiration 
rates for each period✚.  

Period THI LS Mean SE Respiration 
Rate LS Mean SE 

1 46.4 1.234 28 0.567 

2 62.3 1.834 35 1.041 

3 60.1 1.234 29 0.444 

4 67.7 1.834 36 1.083 

5 62.2 1.263 33 0.498 

6 62.3 1.681 32 0.911 

7 66.7 1.834 33 1.074 
✚ For periods 1, 3, 5, and 6, heifers were fed in individual pens. For gas measurement periods 2 
and 4, animals remained on ad libitum feed intake, and for gas measurement period 7, feed was 
restricted to 2% of body weight on a dry matter basis.  
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Table 10. The differences of least-squares means of temperature-humidity index (THI) and 
respiration rate for each period✚. 

 

✚ For periods 1, 3, 5, and 6, heifers were fed in individual pens. For gas measurement periods 2 
and 4, animals remained on ad libitum feed intake, and for gas measurement period 7, feed was 
restricted to 2% of body weight on a dry matter basis.

Period Period for 
Comparison 

THI 
Estimated 
Difference 

SE P-Value 

Respiration 
Rate 

Estimated 
Difference 

SE P-Value 

1 2 -15.93 1.566 <.0001 4.40 1.269 0.0104 
1 4 -21.30 1.566 <.0001 -2.43 1.431 0.616 
1 5 -15.83 0.828 <.0001 -3.00 1.423 0.3509 
1 3 -13.69 0.783 <.0001 -0.13 1.102 1 
1 6 -15.94 1.384 <.0001 3.38 1.098 0.0357 
2 4 -5.38 2.072 0.1302 0.64 1.339 0.9991 
2 5 0.10 1.589 1 -6.83 1.198 <.0001 
2 3 2.24 1.566 0.787 -7.39 1.286 <.0001 
2 6 -0.01 1.938 1 -4.53 0.773 <.0001 
3 6 -2.24 1.384 0.669 -1.02 0.703 0.7772 
4 5 5.47 1.589 0.0112 -3.76 1.087 0.0107 
4 3 7.61 1.566 <.0001 -0.57 1.434 0.9997 
4 6 5.37 1.938 0.0844 2.30 1.092 0.3479 
5 3 2.14 0.828 0.1332 5.81 1.078 <.0001 
5 6 -0.10 1.410 1 3.07 1.331 0.2429 
7 1 20.35 1.566 <.0001 2.87 1.106 0.1306 
7 2 4.43 2.072 0.3335 6.38 1.105 <.0001 
7 4 -0.95 2.072 0.9993 3.64 1.343 0.0988 
7 5 4.52 1.589 0.0692 3.51 0.573 <.0001 
7 3 6.66 1.566 0.0005 0.77 0.969 0.9857 
7 6 4.42 1.938 0.2566 -2.74 0.954 0.0637 
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Figure 3.  Periods 1 – 7✚ presented as a timeline. 

 

✚ For periods 1, 3, and 5 heifers were fed ad libitum in individual pens. For gas measurement 
periods 2 and 4, animals remained on ad libitum feed intake. For period 6, feed was restricted to 
2% of body weight on a dry matter basis, and heifers remained in their individual pens. For gas 
measurement period 7, heifers remained on restricted feed intake.  
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Figure 4. A diagram depicting an overview of the head box system. 
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Figure 5. Two empty head boxes placed side-by-side and attached to metabolism stalls.  
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Figure 6. An example of a heifer eating in the head box during a gas measurement period.  
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Figure 7. The instrumentation cabinet containing the FlowKits (A), SS-4 sub-sampler pump (B), 
RH-300 water vapor analyzer (C), CA-10 carbon dioxide analyzer (D), MA-10 methane analyzer 
(E), FC-10 oxygen analyzer (F), computer (G), and A/C unit (H) located adjacent to the head 
boxes.  

 

A 
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Figure 8. A screenshot of a recovery rate test injection showing the start and end of CO2 injection 
into head box 1. The first horizontal line indicates when the CO2 injection began, and the second 
horizontal line indicates when the CO2 injection was stopped. 
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Begin CO2 
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Figure 9. Activity logger attached to the right hind leg of a heifer in her individual feeding pen 
during the study.  

 

  



60	
  
	
  

Figure 10. Least-squares means of CH4 per heifer for day within period for periods 2✚, 4✚, and 
7u. 

 
a, b, c Least-squares means without common superscripts differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 11. Least-squares means of CO2 per heifer for day within period for periods 2✚, 4✚, and 
7u. 

 
a, b, c, d Least-squares means without common superscripts differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 12. Least-squares means of O2 per heifer for day within period for periods 2✚, 4✚, and 7u. 

 
a, b, c, d Least-squares means without common superscripts differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 13. Least-squares means of period by hour interaction for CH4 (L/hour). Heifers were fed 
twice daily in periods 2✚ and 4✚ at hour 1 and 7, and were fed once daily in period 7u at hour 1.  

 

* Least-squares means within hour differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 14. Least-squares means of period by hour interaction for CO2 (L/hour). Heifers were fed 
twice daily in periods 2✚ and 4✚ at hour 1 and 7, and were fed once daily in period 7u at hour 1. 

	
  

* Least-squares means within hour differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 15. Least-squares means of period by hour interaction for O2 (L/hour). Heifers were fed 
twice daily in periods 2✚ and 4✚ at hour 1 and 7, and were fed once daily in period 7u at hour 1. 

	
  

* Least-squares means within hour differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 16. Least-squares means estimates of period by hour interaction for CH4 (L/Day) for 
period 2 presented with the least-squares means estimate of CH4 (L/Day) for period 2. Heifers 
were fed twice daily in period 2✚ at hour 1 and 7. 

	
  

* Least-squares means within hour differ (P < 0.05) across periods 2, 4, and 7. 

✚For gas measurement period 2, animals remained on ad libitum feed intake. 
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Figure 17. Least-squares means estimates of period by hour interaction for CH4 (L/Day) for 
period 4 presented with the least-squares means estimate of CH4 (L/Day) for period 4. Heifers 
were fed twice daily in period 4✚ at hour 1 and 7. 

 

* Least-squares means within hour differ (P < 0.05) across periods 2, 4, and 7. 

✚For gas measurement period 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 18. Least-squares means estimates of period by hour interaction for CH4 (L/Day) for 
period 7 presented with the least-squares means estimate of CH4 (L/Day) for period 7. Heifers 
were fed once daily in period 7✚ at hour 1. 

 

* Least-squares means within hour differ (P < 0.05) across periods 2, 4, and 7. 

✚For gas measurement period 7, feed was restricted to 2% of body weight on a dry matter basis. 
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Figure 19. Least-squares means (n = 6) of cattle standing duration for each day of periods 2✚, 4✚, 
and 7u shown with the mean standing time of periods 1, 3, 5, and 6 labeled as “outside”.  

a, b, c, d Least-squares means without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 20. Least-squares means (n = 6) of cattle lying duration for each day of periods 2✚, 4✚, 
and 7u shown with the mean lying time of periods 1, 3, 5, and 6 labeled “outside”.

a, b, c, d Least-squares means without common superscript letters differ (P < 0.05).	
  

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 21. Least-squares means (n = 6) of cattle standing bouts for each day of periods 2✚, 4✚, 
and 7u shown with the mean number of standing bouts per day of periods 1, 3, 5, and 6 labeled 
“outside”. 	
  

 
a, b, c Least-squares means without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 

  



72	
  
	
  

Figure 22. Least-squares means (n = 6) of cattle lying bouts for each day of periods 2✚, 4✚, and 
7u shown with the mean number of lying bouts per day of periods 1, 3, 5, and 6 labeled 
“outside”. 	
  

 
a, b Least-squares means without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 23. Least-squares means (n = 6) of cattle standing duration per bout for each day of 
periods 2✚, 4✚, and 7u shown with the mean standing duration per bout of periods 1, 3, 5, and 6 
labeled “outside”. 	
  

 
a, b Least-squares means without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 24. Least-squares means (n = 6) of cattle lying duration per bout for each day of periods 
2✚, 4✚, and 7u shown with the mean lying duration per bout of periods 1, 3, 5, and 6 labeled 
“outside”. 	
  

	
  

a, b Least-squares means without common superscript letters differ (P < 0.05). 

✚For gas measurement periods 2 and 4, animals remained on ad libitum feed intake. 

uFor the gas measurement period 7, feed was restricted to 2% of body weight on a dry matter 
basis. 
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Figure 25. The least-squares means of respiration rate (flank movements / minute) for each 

period✚.  

 
a, b, c Least-squares means without common superscript letters differ (P < 0.05). 

✚ For periods 1, 3, 5, and 6, heifers were fed in individual pens. For gas measurement periods 2 
and 4, animals remained on ad libitum feed intake, and for gas measurement period 7, feed was 
restricted to 2% of body weight on a dry matter basis. 
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