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CHAPTER I 

INTRODUCTION 

1.1 Multivariable System Synthesis 

Once a physical system has been modelled by an appropriate mathe­

matical structure, various techniques of analysis can be applied to 

characterize the behavior of the system relative to solution representa­

tion, stability, boundedness, etc. The synthesis problem, on the other 

hand, is to modify the system response to a more desirable form. 

If the modelling structure is a linear time invariant vector differ­

ential equation, two appropriate synthesis procedures are the linear 

quadratic optimal control solution and pole-placing techniques. 

The optimal control procedure is. particularly well suited to those 

systems which have desired response time histories as performance speci­

fications, and which allow off-line computation of the feedback gain 

matrix. It is often the case, however, that real time computations are 

desired, entailing updates in the feedback gains as improved estimates of 

system parameters are generated, In such cases the computationally com­

plex procedures of the quadratic regulator solution require extensive on­

line computer facilities. However, if stabilization of the system is the 

primary design objective, an alternative synthesis procedure based on 

Lyapunov's functions could be employed [1]. 

Another difficulty which may be encountered in the formulation of 

the optimal control problem is that of performance specification. 
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Whether through necessity or utility, many system performance specifica­

tions are formulated in the frequency domain rather than the time domain 

[2,3]. Such criteria are commonly presented as desirable locations for 

the closed-loop system poles (eigenvalues in the state variable formula­

tion), and pole-placement techniques thus become appropriate synthesis 

procedure . 
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based on pole-placement concepts have been developed, none have proved to 

be practical design procedures, The common difficulty is not the fault 

of the algorithms, but is really due to the inherent inability of pole 

location specifications to characterize the actual variable responses. 

For multi-input systems, the feedback control law assigning a specified 

set of eigenvalues is not unique. That is, an infinite number of control 

laws will yield the same pole locations but different eigenvectors and 

thus lead to radically different output responses. 

In the existing algorithms this nonuniqueness is a liability in 

that it either substantially complicates the selection of certain trans­

formations or is restricted at the outset, without knowledge of how such 

a restriction will affect variable responses. In essence, existing tech­

niques solve the problem as posed, but from a design perspective, solve 

the wrong problem. Since a system eigenvector determines the influence 

of its associated eigenvalue on each state variable response, control of 

the closed-loop modal matrix (matrix of eigenvectors) is as necessary as 

control of pole locations if acceptable dynamic behavior is to be 

achieved. 

The key concept of rationally utilizing the freedom in control law 

selection to satisfy eigenvector as well as eigenvalue specifications 



forms the basis for the development of the synthesis procedure reported 

in this dissertation. 

1.2 Review of Current Techniques and 

Problem Statement 

The classical pole-placement problem may be stated as follows: 

given the linear time-invariant system 

3 

x = Ax + Bu (1.1) 

where x is the state n-vector, u is the control m-vector and A and B are 

constant matrices of appropriate dimensions, find a control law of the 

form u = Kx + v, where K is an m x n matrix of constants and vis an 

m-reference input vector, such that the closed-loop coefficient matrix 

A= A+ BK has arbitrarily assigned eigenvalues. It is assumed that 

(A,B) is a controllable pair so that the matrix [B,AB,A2B,···,An-lB] has 

rank n. 

Existing algorithms for the solution of the problem stated above can 

be broadly classified as pole-shifting methods or direct methods. The 

former methods [4], classically known as modal control theory, rely 

on the knowledge of the eigenvalues and eigenvectors of the open-loop 

system in generating the control law. The obvious computational burden 

associated with such schemes make them less attractive in an on-line 

implementation framework. Further, they do not possess features to sig­

nificantly utilize the multi-input design freedom mentioned earlier, and 

hence will not be considered further, 

Anderson and Luenberger [5] have proposed a direct method which re­

duces (1,1) to a special canonical form in which the system matrix has a 
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block triangular structure, with the diagonal blocks in companion form. 

This canonical form is viewed as a set of uni-directionally coupled sub­

systems, so that pole-assignment of the first block is unaffected by the 

second, and so on. The arbitrariness in the realization of A arises be­

cause the transformation matrix is not unique, and further, after 

arriving at the canonical form, feedback gains to achieve pole-placement 

are non-unique. Thus nothing can be inferred about the dynamics of the 

resulting system for some initial restriction of arbitrariness. In addi­

tion, as the authors point out, the main computational difficulty in the 

scheme is the determination of the linear dependence among a set of 

vectors needed in the generation of the transformation matrix. 

Fallside and Seraji [6] propose a scheme which reduces the multi­

input system to an equivalent single input system by imposing a dyadic 

structure on the feedback matrix so that K = qfT, with fT indicating the 

transpose of f. Here, q is an arbitrary m-vector chosen so that (A,Bq) 

is a controllable pair, and f is an n-vector. With this structure, 

A= A+ BqfT, and the algorithm utilizes the characteristic polynomial of 

A to complete the synthesis. Using this technique the authors have been 

able to assign part of the numerator dynamics of the closed-loop transfer 

function matrix arbitrarily. 

More recently, Chidambara, et al. [7] essentially construct a closed­

loop system matrix which is similar to a block triangular matrix whose 

eigenvalues are the .ones to be assigned to the system. The procedure 

still requires determination of the linear dependence of vectors as in 

[5], but with vectors of reduced dimensions, thus alleviating to a cer­

tain extent the computational problems. Again there is no direct 

correlation between system response and the arbitrary design parameters 
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involved in the algorithm. However the technique has been used to 

arbitrarily assign some residues connected with the dominant modes of the 

closed-loop transfer function matrix [8]. 

If these algorithms are appraised in terms of the effective utiliza­

tion of the free choices in the feedback matrix K, it is apparent that 

either no meaningful interpretation can be given to the arbitrariness 

arising in the algorithms [5 ,7], or the design freedom is unduly cur­

tailed, apriori, by assigning a structure to the feedback matrix [6]. 

Furthermore, in all these methods, if a nominal design fails to yield a 

satisfactory system, the design procedures give no guidance as to the 

means of achieving a system with improved response. This failing is 

crucial, for even if an off-line solution is all that is required, the 

design process reduces to a random search procedure. The problem arises 

from the fact that there is no link between the control parameters and 

the system dynamical behavior. 

These discussions aid in developing the problem statement for the 

synthesis procedure to be presented in Chapter II. In essence, a linear 

feedback control law is to be selected for the system of (1.1) such that 

a combination of eigenvalue anq eigenvector constraints are satisfied. 

In addition the procedure developed will ensure a direct relation between 

dynamical response characteristics and control gain values. While a more 

detailed problem statement would perhaps seem appropriate, later chapters 

will show that the wide variety of performance specifications, design 

alternatives and additional applications would be unduly restricted by a 

premature attempt to structure the research objectives. 



6 

Finally, it is appropriate to mention that the multivariable syn­

thesis problem can also be analyzed from a frequency domain perspective 

[2,3]. Horowitz [3] provides an interesting comparison between the rela­

tive merits of state space oriented design and transfer function syn­

thesis procedures. The discussions in later chapters also bring out the 

role played by the closed-loop modal matrix in relating time/frequency 

domain attributes of the feedback system. 

1.3 Organization 

The dissertation is presented in the following format. Chapter II 

introduces a new formulation of the problem which maps the nonuniqueness 

in the feedback gain matrix K to an equivalent freedom in the selection 

of the modal matrix entries. This in essence leads to the spectral char­

acterization of all possible closed-loop modal structures for a given 

plant and its specified closed-loop poles (eigenvalues). Chapter III 

outlines a practical multivariable synthesis procedure based on the 

spectral characterization formulation introduced in Chapter II, by syn­

thesizing a hover controller for a helicopter. 

Chapter IV discusses the utility of the new formulation in the 

design of asymptotic state estimators and in the synthesis of systems 

insensitive to plant parameter perturbations. The feature of the, 

algorithm developed in Chapter II when used as an on-line adaptive con­

troller is also highlighted, Finally, Chapter V presents a summary of 

the results and indicates areas of future research. 



CHAPTER II 

SPECTRAL CHARACTERIZATION 

2.1 Introduction 

The need to control simultaneously the modes and the associated 

modal structure in order to ensure acceptable dynamic responses of the 

output variables was established in Chapter I. Unfortunately the process 

of coupling the effect of the individual modes to the output variables 

through the entries of the eigenvectors is nonlinear, either through the 

construction of the total solution via reciprocal basis vectors and con­

stituent solutions or the modal matrix and its inverse. However it may 

be possible to identify certain desired closed-loop system structures and 

thus the associated modal structures. For example it is often the case 

that higher order systems may be considered as a coupling of lower order 

subsystems, each with its own specifications of acceptable performance. 

In such a case, the eigenvectors should be selected so that the eigen­

values appropriate to one set of response variables do not unduly influ­

ence the other responses, Similarly it may be desirable to segregate 

short time constant variables from long time constant modes, or ensure 

that systems with both real and complex pair poles have eigenvectors 

selected so that minimal oscillatory behavior will arise in those 

responses associated with real eigenvalues, 

The eigenvectors may of course be modified without disturbing pole 

locations through the non-uniqueness of the modal control process. 

7 



Equally clearly, there is not sufficient freedom to arbitrarily select 

these eigenvectors, except in the pathological case of ann-state, 

n-input system. This makes a precise problem statement somewhat diffi­

cult to formulate, but in general the approach will be to structure the 

control design process so that maximum capabilities are achieved for 

satisfying whatever eigenvalue/eigenvector specifications exist. The 

following sections will present these results. 

1, The pole-placement problem will be reformulated, and it will be 

shown that n eigenvalues and a maximum of n • m eigenvector 

entries can be arbitrarily specified, 
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2, In general, no more than m entries of any one eigenvector can be 

chosen arbitrarily, 

3, While n eigenvalue specifications can be achieved exactly 

(for a controllable system), a superior design algorithm 

results if the specification is relaxed to 

allow the closed-loop eigenvalue to be arbitrarily close to that 

desired. 

2,2 A New Formulation 

The pole-placement problem may be reformulated as an eigenvalue/ 

eigenvector selection problem as follows. 

Given the controllable system 

x = Ax + Bu (2,1) 

find the state feedback law 

u = Kx (2.2) 
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such that the closed-loop system matrix 

A 

A = [A + BK] (2. 3) 

satisfies 

A 

AU = UJ\ (2. 4) 

where J\ is the diagonal matrix of desired eigenvalues and U is the modal 

matrix satisfying some given constraints. Note that in the more general 

case of multiple root assignment, J\ becomes the appropriate Jordon 

canonical form. The case of multiple root assignment will be considered 

in section 2.4.4. 

To see the freedom which exists in the choice of U, partition the 

matrices in (2,3) and (2.4) as 

D I E 
A = --

T 1 R 

B = 
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and 

011 °12 
u = --

021 °22 

where D, B1, K1, A1 and u11 are m x m, and the other matrices are com­

patibly dimensioned, It is also assumed that B1 is nonsingular. The 

invertibility of B1 can be obtained by at most a reordering of the state 

variables. 

For simplicity of analysis assume that the system (2.1) is already 

in rank reduced form with B1 nonsingular and B2 identically zero. This 

can always be achieved by a coordinate transformation [7] of the state 

vector by 

I 0 
m 

L = -- (2. 5) 
-1 

I B2Bl n-m 

with Ik the identity matrix of order k, 

With this transformation, (2.4) can be written in partitioned form 

as 

0 

= (2 '6) 

T R 

Completing the multiplication of the partitioned matrices in (2,6) 

yields 
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[D + BlKl]Ull + [E + BlK2]U21 = ull Al (2. 7) 

[D + B1Kl]Ul2 + [E + B1K2]U22 = u12A2 (2. 8) 

TU11 = u21A1 RU21 (2. 9) 

TU12 = U221\2 = RU22 (2.10) 

Equations (2.9) and (2,10) can also be expressed as a set of linear con-

straints on the individual eigenve~tor entries of the following form. 

and 

where 

(1) For real eigenvalues 

(2) For complex pairs in quasidiagonal form 

p. 
J 

0\. I -R 
J n-m 

Sjin-m 

a. s. 
J J 

= 
-13. a. 

J J 

-s.I J n-m 
--

0\. I 

z. 
1. 

w. 
1. 

J 
-R n-m 

and 

j = 

w. 
J 

w. 1 J+ 

z. 
J 

w. 
J 

n1+l,n1+3,•••,n-l 

= 

T 

--
0 

z. 1 J+ 

w. 1 J+ 

0 

T 

(2 .11) 

J 

z. 
J 

(2.12) 

z. 1 J+ 

are the real eigenvectors associated with eigenvalues A. and a. +iS., 
1. J -- J 
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respectively, z's are m-vectors and w's are (n - m) vectors. (For a 

derivation of the relation between complex eigenvectors and equivalent 

real eigenvectors see Appendix A.) 

If the system is not in rank reduced form (2.11) and (2.12) take the 

form 

(1) for real eigenvalues 

(t-.I - F)w. = (G + t-.H)z., i = 1,2,•••,n1 1 n-m 1 1 1 

and 

(2) for complex pairs 

a.I -F 
J n-m 

i3.I 
J n-m 

where 

-i3.I 
J n-m 

a.I -F 
J n-m 

w. 
J 

w. 1 J+ 

= 

G = T - HD 

F = R - HE 

G+a.H 
J 

i3 .H 
J 

-i3.H 
J 

G+a.H 
J 

z. 
J 

z. 1 J+ 

Equations (2,11) and (2.12) constitute a set of under-determined 

linear homogeneous equations, and even if all the eigenvalues are fixed, m 

entries in each eigenvector are arbitrary. Thus a total of n • m entries 

in the modal matrix can be arbitrarily selected subject only to the con-

straint that U be nonsingular. 

It is also crucial to note that (2.11) and (2.12) show the complete 

relationship between the eigenvalues and associated eigenvectors. This 
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property not only illustrates what can be achieved by the controller, but 

also may immediately point out that preconceived design objectives may be 

impossible to achieve. Later examples will further illustrate this 

point and emphasize that the design approach is complete in the sense 

that when it fails to satisfy specifications, it does so by showing no 

control law could satisfy them. 

It is interesting to note that the free n • m elements of U exactly 

correspond to the n • m arbitrary elements of the feedback matrix K. 

This establishes the parametric equivalence between the nonunique feed-

back matrix K and the arbitrary modal entries. 

With a nonsingular U chosen to meet the restrictions of (2.11) and· 

(2.12), the required feedback matrix K may then be easily evaluated by 

(2 .13) 

(2 .14) 

where 

" " 

UAU-l 
All Al2· 

= -- (2 .15) 
" " 
A21 A22 

and with [K1 : K2] selected as in (2.13) and (2.14), relations .(2.7) and 

(2.8) are identically satisfied. 

The validity of the above analysis of course depends on the guar-

anteed generation of the nonsingular transformation U in (2.15). 

Appendix B develops a constructive proof which assures the realization of 

such a transformation, thus establishing the solution of the pole-

placement problem posed in (2.1-2.4). However it is also apparent, from 



14 

Appendix B, that the process of mathematical validation required to meet 

exact pole-placement has unduly restricted the structure of the trans-

formation matrix U to be block triangular. From a practical synthesis 

standpoint this is truely undesirable. It is also interesting to note 

that a relaxation of exact pole specifications results in significant 

gains in flexibility of selection of a nonsingular modal structure and 

consequent better control of system response. This design philosophy has 

lead to the development of the algorithms described in section 2.4. 

These algorithms have the desirable feature of imposing minimal restric-

tions on the structure of U at the cost of constructing, in some patho-

logical cases, an n-dimensional eigenspace for a matrix (A + cA) 

arbitrarily close to the desired matrix A of (2.4). It is also empha-

sized that this is in no way a serious limitation since pole specifica-

tions are rarely intended to be exact. 

While the above flexible modal structural representation may be used 

for a variety of goals, the most readily apparent is that of mode 

decoupling, A performance specification might fix (or at least bound) 

pole locations and require minimal interaction of modes, implying that 

each state variable response be dominated by only one corresponding 

eigenvalue. From the solution representation 

-1 x(t) = U exp (At)U x(O) (2 .16) 

such performance wi 11 be achieved if both U and its inverse are domi­

nated by the main diagonal elements. While the entries of u-l are non-

linear functions of the entires of U, it is easy to show that if the 

off-diagonal elements of a matrix are of order E compared to the main 

diagonal elements, the same is true of the inverse. 
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While the diagonally dominant modal structure may be a desirable 

design specification, whether or not it can be synthesized for a plant 

description needs to be ascertained. This is vividly displayed in the 

relations (2.11) and (2.12), For the present, assume that the modes 

A. and p. to be assigned do not coincide with those of matrix R. Then 
1 1 

(2.12) can be written as 

w. = C.z. 
1 1 1 

(2 .17) 

with 

C. = (A~I - R)-lT 
1 1 n-m 

Similarly (2,13) can be expressed as 

with 

a. I -R 
J n-m 

c. = 
J 

S.I 
J n-m 

w. 
J 

w. 1 J+ 

--

= c. 
J 

-S.I 
J n-m 

a.I -R 
J n-m 

z. 
J 

z. 1 J+ 

(2.18) 

(2 .19) 

T 0 

-- (2. 20) 

0 T 

The matrices Ck define the couplings that exist among the eigen­

vector entries, and give an apriori indication of inevitable mode 

coupling that may result for a given selection of zk. Alternatively this 

representation also points out how zk could be selected to suppress cer­

tain modes from influencing selected response variables. Further, since 

Ck = Ck(Ak), selection of modes takes on a new significance. In practice 
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A is not fixed but is required to lie in a subset AE~ of the stable com-

plex plane, Then it becomes practical to search in~ for a Ck(Ak) which 

gives the closest desirable structure for the corresponding eigenvector. 

This makes pole-assignment more meaningful and the Ak 1 s become additional 

design parameters available for manipulation to meet the performance 

specification, 

Before proceeding with the development of algorithms for the solution 

of the reformulated pole-placement problem, it is worthwhile to clarify 

the concepts introduced so far with two simple numerical examples, 

2,3 Numerical Examples 

2.3,1 A First Tutorial Example 

The following problem is presented to describe the synthesis pro-

cedure and indicate the tradeoffs between design specifications and 

achievable results which may be required, Suppose the plant dynamics are 

1 1 -1 

0 3 -2 = 

1 1 -1 

0 1 

[ :: J (2.21) 0 1 + 

0 0 

and 

= Kx 

is to be selected so that: 

(1) pole locations are at approximately -1, -10, and -100; 



(2) x1, x2 and x3 should exhibit respectively the short, inter­

mediate and long time constant transients, namely 0,01, 0.1, 

1 seconds, respectively; and 
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(3) the responses should be decoupled in the sense that while x3 

may exhibit short and intermediate transients (e-t will rapidly 

dominate other terms), -t x2 should not have e terms and x1 

should exhibit neither -t -lOt e nor e transients, 

Note that this is not a trivial problem since the open-loop eigenvalues 

are at 0, 1, and 2 and the crucial long time constant is to be associated 

with x3, the variable not directly influenced by the input. 

The time solution for the closed loop system in terms of the modal 

matrix U can be expressed as 

r 

= (2,22) 

-1 where the ai's depend on U and the initial conditions, and Al ~ -100, 

A2 ~ -10 and A3 % -1, While the entries of the modal matrix influence 

the a.'s in a nonlinear fashion, dominance arguments show that the design 
1 

specifications will be satisfied if U is of the form 

u = (2.23) 

where the s's and o's should be small compared to u .. (i = 1,2,3). This 
11 



will yield minimal cross coupling and preserve the diagonal dominance 

character of u-1, 

To begin the synthesis, denote each column of U by u., and 
J 

zlj 

u. = 
z2j 

J 

wlj 

For the system (2,21) the respective matrices of (2.11) and (2.12) are 

R = -1, T = (1 1) 
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Requiring A~ Diag(-100,-10,-1), and starting with j = 3 (A3 ~ -1 is the 

most crucial eigenvalue), the procedure is to select z13 , z23 and A3 and 

evaluate w13 from 

This is seen to be a "best case" problem (at least thus far), since A3 

may be selected as exactly -1, both z13 and z23 to be zero and w13 = 1. 

Thus 

0 

0 

1 

Now for j = 2, 
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where z12 and w12 (corresponding to E1 and o3 in (2.23)) should be small 

compared to z22 , and A2 should be about -10, For numerical simplicity 

select A2 = -11, z22 = 1, z12 = 0 and w12 is then found to be -0,1, Note 

that this selection of eigenvector entries is not "best case", since w12 

and z12 cannot be both zero if z22 is to be non-zero. This implies there 

must be some coupling of system modes. Continuing 

0 

1 

-0.1 

and while a higher dimension problem might require the systematic pro-

cedures to be developed in section 2.4 to ensure linear independence of 

u3 and u2 , it is easily seen, by inspection, that for this case the two 

eigenvectors are independent. 

Now for j = 1, 

and selecting A1 = -101, it is desired that z11 dominate both w11 and 

z12 , Clearly both conditions cannot be satisfied (again implying some 

coupling is unavoidable), but by selecting z11 = 1 and z12 = -1, w11 will 

be zero and the inverse of U will preserve the diagonally dominant 

structure, Again, 

1 

-1 

0 



is clearly linearly independent of u2 and u3 by inspection. The modal 

matrix U has now been found to be 

0 0 

1 0 

-0.1 1 

with inverse 

1 0 0 

1 1 0 

0,1 0.1 1 

The closed-loop system matrix is found to be 

-101 0 0 

= 90 -11 0 

1 1 -1 

and the required feedback gains are easily calculated from (2.13) and 

(2, 14) as 

[ 
-102 

K = 
90 

- 1 

-14 

The time response of the system is given by 

20 



Thus 

= u exp [At] u-l 

-lOlt 
e 

-lOlt -llt = -xlO e + (xlO + Xzo)e 

It is seen that the performance specifications have been achieved, 

and that the only coupling is from transients which rapidly become 
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dominated by the desired time constant solutions. It is again emphasized 

that the example is "best case", since the ability to select four 

identically zero entries in the modal matrix ensured the total unidirec-

tional coupling. To now consider a "worst case" example, suppose the 

problem were the same except that 

1 1 - 1 

A = 0 3 2 

1 1 19 

The first step of the solution is to again select A3 % -1, with 

and lw13 1 >> lz13 1, Jw13 1 >> lz23 1. These conditions certainly cannot 

even be approximately satisfied, indicating that any solution will 
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exhibit considerable mode coupling. 

One particular compromise solution yielded a modal matrix 

-1 0 -10 

u = 0 -1 0 

o.os 0.033 - 0.1 

with A= Diag[-1,-11,-81], and the corresponding state variable responses 

-t = (-0.167x10 + 0.55Sx20 + 16.667x30)e 

-8lt 
+ 10(0.083x10 + 0.056x20 + 1.667x30 )e 

-llt x2 (t) = x20 e 

-t = O.OS(-0.167x10 + 0.55Sx20 + 16.667x30)e 

-llt -8lt - 0.03x20 e + O.l(0.083x10 + 0.056x20 + 1.667x30)e 

The following observations may be made about this particular solution. 

(1) The solution for x1(t) is the only one which does not meet 

specifications. 

(2) If x1 (t) were a more important variable than x2 (t), selection 

of modal matrix entries could be made to have x1 (t) free of 

. -t -lOt cross coupled trans1ents (e , e ), but this would intro-

duce e-t transient in the x2 (t) response. 

(3) If relative magnitudes of initial conditions are known, further 

improvement could be easily obtained. 

To summarize, the proposed technique yields impressive results in 

"best case" examples, and for "worst case" problems, at least forewarns 

of the type of mode couplings that will occur. Thus in these less 
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tractable problems the displaying of the system structure shows that no 

other solution will yield the desirable response. These discussions also 

demonstrate the inevitable trade off involved in any synthesis procedure, 

and highlight the need to understand fully the physical constraints of 

the plant, as exhibited by the C. (A.) matrices, to evolve acceptable 
1 1 

design goals. 

2,3,2 A Second Illustrative Example 

A simple numerical example will now be presented to highlight the 

final basis for the establishment of the design algorithm to be presented 

in section 2.4, It will illustrate that certain procedural idiosyncra-

sies, as simple as selecting the sequence of synthesizing eigenvectors, 

may induce problems which could be resolved by inspection for lower order 

systems, but do require an algorithmic process for more complex systems. 

Suppose the plant dynamics are given by 

+ 0 1 [ :~ J 
xl 1 1 -1 

:ic2 = 0 3 -2 

x3 -1 -1 0 

1 0 

0 0 

Suppose further that design specifications are >.. 1 = -1, >.. 2 = -2, >.. 3 = -1 

and an eigenvector structure 

1 -1 -1 

u = 0 1 1 

with thew's computed to meet the desired pole-specifications. 



To complete the design, Equation (2.11) can be used immediately 

(where R = 0 and T = [-1 -1]) to yield 

u = 1 

1 

0 

1 

u = 2 

-1 

1 

0 

and u = 3 

-1 

1 

0 
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It is immediately obvious that the resulting modal matrix u will be 

singular, since u2 and u3 are identical. For a 3rd order problem such as 

this, Equation (2 .11) could be examined directly for each eigenvalue, and 

a sound decision made as how to relax which specification to give a sys-

tern performance very close to that desired. Of course, for substantially 

higher order systems, or for an automated on-line controller, a precisely 

defined algorithm is required. Such an algorithm will now be presented, 

and the above problem reexamined as an illustration of its utility. 

2.4 An Algorithm for Eigenvalue/Eigenvector 

Assignment 

As the discussions in the previous sections revealed, the central 

question in the new formulation of the pole-placement problem is the 

guaranteed generation of the nonsingular matrix U satisfying (2.11) and 

(2,12). An examination of the eignvector constraints shows that there is 

an m-dimensional subspace associated with each eigenvalue. Thus the 

problem reduces to selecting a nonsingular set of n eigenvectors with one 

vector included from a subspace associated with each eigenvalue. System 

controllability assures the existence of such a set, and indeed in the 

multi-input case it is an infinite set, However this is an inefficient 

way to synthesize since the designer loses direct control of the 
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selection of arbitrary elements of the modal matrix (z-vectors). Also, 

any algorithm would become computationally intractable since it would 

involve pairing n vectors from a set of n • m vectors until a nonsingular 

set resulted. 

Alternatively, if the z-vectors are allowed to be chosen arbitrarily, 

then it is important to keep track of the linear independence of the 

eigenvectors as they are sequentially generated. It would appear that an 

easy way to accomplish this, would be to construct the projector of the 

subspace spanning the eigenvectors already synthesized in the sequence as 

(2. 24) 

where N = [u1 :u2 :···~_ 1 ] are the first (k-1) linearly independent eigen­

vectors, and selecting uk such that 

(2. 25) 

Unfortunately this procedure is potentially susceptible to the generation 

of a singular set of eigenvectors since it is quite likely that no 

closed-loop matrix with the precise set of eigenvalues/eigenvectors as 

selected would exist for any choice of control law. This is exactly what 

occurred in the example of section 2,3.2. However, it is possible to 

detect the occurrence of such a situation, and by slightly relaxing the 

specification of exact assignment of the modes and/or the corresponding 

design vectors (z), it is always possible to generate a nonsingular modal 

structure arbitrarily close to the desired one. It is emphasized again 

that the advantage of maintaining modal structural flexibility more than 

off-sets the disadvantage of not attaining exact pole assignment, 

An algorithm will now be presented which incorporates the condition 
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(2,25) without having to explicitly compute the projection matrices P(k) 

of (2,24) and allows maximal flexibility in the selection of z-vectors. 

Again for simplicity of presentation the system (2.1) is assumed to 

be in rank reduced form. In this form (R, T) is a controllable pair [7]. 

For clarity, the algorithm will be presented for real eigenvalue assign-

ment and the extension to complex pairs discussed later. 

2.4.1 An Algorithm~ Ensure det[U] ~ 0 

The following notations will be used throughout the algorithm 

presentation. 

(1) e is an n-vector with rth entry equal to unity and all other 
r 

entries zero. 

(2) '\ = [· ~~ • J is the kth eigenvector, where zk is an m-vector, 

specified in advance. 

(3) 

in (6) below. 

I and Q(i), i ~ 0 will be defined 
n 

( 4) u;~) is the rth entry of ~k) and u;~) = c\ provides notation 

compatible with Appendix C. 

(5) M(k) is an n x n matrix of the form 

I n-r 

0 

0 

(k) 
m 

a 

1 

(k) 
~ 

0 

0 

I 
r-1 

(2.26) 



where the vectors m~k) and ~k) are defined by (Appendix C without 

involving the permutation) 
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M(k) (k) 
uk = a e · k r ' 

rdt. (k)} (2.27) 

where t.(k) is a subset of integers {1,2,•••,n} containing the indices not 

already used in the construction of the matrices M(l) M(2) ••• M(k-l) 
) ' ' ' 

and t.(l) is the complete set {1,2,•••,n}, Note M(k) can be constructed 

if and only if crk ~ 0, 

(6) (2,28) 

The algorithm now proceeds as follows, 

Step 1: Fork= 1,2,···,n do Steps 2-5, 

Step 2: For A= Ak compute det[Aki - R]. n-m 

(a) If det = 0 perturb Ak to (Ak + oAk) and repeat Step 2, 

(b) If det ~ 0, go to Step 3, 

Step 3: For A= Ak compute Ck (Equation (2.18)). 

Step 4: For some rs{t.(k)} 

(a) compute 

(2 '29) 

where (f(k-l) : h(k-l)) is the rth row of the transforma-
r r 

tion Q(k-l) (Equation (2,28)), g(k) is am-vector and 
r 

h(k-l) is a (n- m)-row vector. 
r 

(b) Compute 

(2' 30) 



Step 5: For 

(a) 

(b) 

where zk is the arbitrarily specified m design vector. 

(i) If ak ~ 0, compute wk (Equation (2.17)) and M(k) 

(Equation (2,27)) and go to Step 1. 

(ii) If ak = 0, select another rs{~(k)} and return to 

Step 4a. 

(iii) If ak = 0 for all re{~(k)}, go to Step 5, 

some rd~ (k)} 

If g(k) ~ 
r o, perturb zk to (zk + ozk) to make ak ~ 0 

(Equation (2.30)), compute wk and M(k) and go to Step L 

If (k) 
gr = o, select another rs{~(k)} and repeat Step Sa. 
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(c) If 
(k) 

gr = o, all rs{~(k)}, perturb Ak to (Ak + oAk) and go 

to Step 2, 

Step 6: Compute the feedback gains using (2.13-2,15), 

Step 7: Stop, 

In order to clearly see that the kth linearly independent eigen-

vector uk can be synthesized provided ak ~ 0, assume, without loss of 

generality, that the first (k - 1) eigenvectors are generated with indices 

r = 1,2,···,(k-l), Then these vectors are transformed into a canonical 

form under Q(k-l) as 

with 

a. ~ 0 
1 

(2.31) 

i = 1,2,···,k-l 
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and the projector spanning the subspace of these transformed eigenvectors 

has the simple form 

p (k-1) = 

0 0 

Now choosing the kth eigenvector so that its transformed vector 

~k) = Q(k-l)uk' causes 

ak ~ 0 ; re{k,k+l,···,n} 

(2. 32) 

(2. 33) 

and ensures the linear independence of uk since the constraint (2.25) is 

clearly satisfied. 

The following observations can be made regarding the algorithm out-

lined above. 

1. The algorithm can be directly extended to assign complex pairs 

in quasi-diagonal form by noting that two eigenvectors are synthesized in 

one iteration and Equation (2.19) is used instead of (2.17). Further to 

ensure mutual independence between the two eigenvectors corresponding to 

pj' the test condition ak 'f 0 in Step 4.h.i is modified to testing the 

nonsingularity of a 2 x 2 matrix L., This matrix is constructed by 
J 

selecting two rows of the transformation matrix Q(j-l) obtained in the 

previous iteration and developing the condition similar to (2.30). The 

transformation matrix M(j) for the complex pair is obtained as a product 

of two transformations similar to (2.27) corresponding to the real 

eigenvectors [u. : u. 1] associated with p .• 
J J+ J 

2, Explicit evaluation of the eigenvalues of matrix R is not needed 

to detect coincident mode assignment, It is sufficient to determine the 
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appropriate determinant in Step 2, with this determinant available ~s fa 

by product in the synthesis of the kth eigenvector when Ck is evaluat~d. 
;··· 
\' 

If a mode is coincident with the spectrum of R then a perturbation of \the. 

mode is required to ensure [Aki - R] is nonsingular and hence that n-m 

(2.11) has a solution for any arbitrary zk. The degree of perturbation 

needed depends on the numerical tolerance set on the evaluation of the 

determinant. Also since the eigenvalue shift in Step 2 is a designer's 

choice, system stability is always assured, 

3. The iterative procedure in Step 4.b.ii attempts to meet exact 

eigenvalue/eigenvector specifications. In Step S.b an attempt is made to 

meet exact eigenvalue specifications with slightly relaxed eigenvector 

specifications (z-vector), The test in Step S.c indicates that the 

eigenvalue specification implies that the corresponding eigenvector will 

lie in the eigensubspace already synthesized, thus requiring a perturba-

tion in eigenvalue specification. 

4. Since the matrices M(k) have only one nontrivial column, 

coordinate transformations in (2,28) reduce to simple vector multiplica-

tions. Further, the inverse of U required to evaluate the feedback gains 

in (2,13) and (2.14) is easily evaluated by noting that Q(n)U has the 

general form 

Q(n)U = Diag[cr cr ••• cr ]S 1' 2' 'n (2. 34) 

where S is an elementary permutation dependent on the sequence of gen­

erating the indices r£{~(k)} in Steps 4 and 5, the crk are the nonzero 

pivotal elements in (2.27) and 

u-1 = s-1 Diag [.!__ .!__ • • • .!_]Q(n) 
cr 'cr ' 'cr 1 2 n 

(2' 35) 
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Also notice that 

I det [U] I = 
n 
II 

i=l 
(2. 36) 

since Jdet[Q(n)]l and Jdet[S]J are unity. 

Thus the numbers cr. provide a good measure of the 1 inear independ.­
l. 

ence between the eigenvectors provided the eigenvector entries are scaled 

to a standard basis, the largest element of each eigenvector being 

normalized to 1 for example. 

The computational advantages discussed above become apparent when 

the algorithm is mechanized for on-line applications. In Chapt~r IV 

these aspects .will be explored in greater detail when the applicability 

of the algorithm as an on-line adaptive controller is investigated. 

5. A noteworthy feature of the algorithm is that the eigenvectors 

do not explicitly undergo any change in the sequence of transformations 

(2.28). This keeps the mode coupling characteristics of Ck transparent 

during synthesis, a very desirable feature for an off-line synthesis 

problem. 

2.4.2 A Numerical Example 

The example given in section 2.3.2 will now be used to highlight 

the features of the algorithm described in section 2.4.1, Applying the 

algorithm step by step to the system in section 2.3.2 yields the follow-

ing synthesis sequence. 

First Mode: Let 

T 
Al = -1 ; z1 = (1 0) 

A(l) = {1 2 3} 
Ll ' ' 

Choose r = l 



Then 

c = (1 1) 
1 

since cr 1 r 0 the 1st eigenvector can be synthesized as u1 = (1 0 l)T; 

and the transformation matrix Q(l) becomes 

1 0 0 

0 1 0 

-1 0 1 

Second Mode: Let 

,\2 = -2 
T z2 = ( -1 1) 

Ll(2) = {2,3} Choose r = 2 

Then 

since cr2 f 0, the second eigenvector can be synthesized as 
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u2 = (-1 1 O)T; ui2) = (-1 1 l)T and the transformation Q(2) becomes 

1 1 0 

0 1 0 

-1 -1 1 

Third Mode: Let 

T z3 = ( -1 1) 

f',(3) = {3} thus r = 3 



Then 

1) a = 0 3 
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since a3 = O, the third eigenvector cannot be synthesized. Further since 

g(3) = [0 O]T, the eigenvalue specification cannot be met, This is 3 

obvious since the basis vectors spanning the 2-dimensional subspace 

corresponding to Al = -1 are 

0 

1 

1 

and {u1,u2} already span this sub-space. Thus a second eigenvector 

associated with A = -1 cannot be synthesized as revealed by the null 

vector gj3). This implies A3 must be perturbed slightly. Let 

A3 = (-1-E); E > 0, Then 

c = ( 1 1 ) 
3 l+E l+E ; 

(3) -E -E T g = c- --) and again 03 = 0 3 l+E l+E 

implying the third eigenvector still cannot be synthesized. In this 

case, since gj3) is not the null vector, the eigenvalue specification can 

be met but the eigenvector specification requires slight perturbation. 
T Let z3 = (-1 l+o); o ~ 0, Then 

and u3 can now be synthesized as 

l+o 



The closed-loop modal matrix U is 

1 

u = 0 

1 

and A= Diag[-1 -2 -1-e:]. Further 

ldet[u] I 

-1 

1 

0 

-1 

1+8 

8 
l+e; 

e:o 
1 + e; 
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since 0 1 = 0 2 = 1. Thus, in this case, setting a tolerance on the value 

of 0 3 would directly control the numerical illconditioning of U and conse­

quently influence the choice of the perturbations e; and 8. 

It is also interesting to note that if the sequence of assignment of 

modes were changed to Al = -1, A2 = -1 and A3 = -2, then both eigen­

vectors corresponding to Al = -1 could be synthesized as 

1 -1 

0 1 

1 0 

and A3 = -2 could still be assigned without perturbation since 

gj3) = (-} - })T, However the eigenvector specification could not be 

met since 0 3 = 0. T Thus a perturbation in z3 would allow completion of 

the synthesis. 



2.4.3 Algorithm to Generate Special Modal 

Structures 

For the mode decoupling designs introduced in section 2. 2 it, is 

possible to identify A. and z. which yield minimal interacting eigen-
1. 1. 

vector structures. For example if z. is chosen to be in the null space 
1. 

ofT, (2.11) has an attractive solution with withe null vector for all 

A. as 
1. 
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(2. 37) 

In the algorithm presented in section. 2.4.1, if an assignable mode 

A. happened to coincide with the spectrum of R, a perturbation in its 
1. 

assignment was needed to ensure (2.11) had a solution for any arbitrary 

z .. However for the coincident spectrum case, (2.11) also has a solution 
1. 

for z. identically zero as 
1. 

u. 
1. 

= 
0 

(2. 38) 
w. 

1. 

where w i is the eigenvector of matrix R c·orresponding to the mode Ai. 

Since u. is completely defined in (2,38) a deflation technique suggested 
1. 

in [7] can be employed not only to assign the coincident mode Ai but also 

reduce the dimension of the pole-placement problem for the remaining mode 

assignments as follows. It is assumed, in the discussion to follow that 

the eigenvalues to be assigned are distinct. 
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Case 1: Coincident real eigenvalues 

Let Al be a coincident eigenvalue. Then the corresponding eigen­

vector takes the form 

0 

.... (2. 39) 

where w1 satisfies 

(2 "40) 

It can be proved (Appendix C) that given w1 there exists a matrix F1 such 

that 

Rl 0 
-1 F1RF 1 = -- (2.41) 

rl Al 

Let 

where 

I 0 
m 

Lo = --
0 Fl 

so that (2.1) unqer this coordinate transformation is given by 



D E -1 
F1 . 

A 

X = -- X + 

I [] I :J F1T --
I r1 

Further (0) 
u1 is transformed to 

[~(O)]T = (O 0 
T with 1 crl) 

Equation (2.43) can now be written in detail as 

D 

. 
A 

X = T1 

tl 

where 

E1 

-- --
Rl 

-- --
rl 

F T = 
1 

f1 

0 X + 

A.l 
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B1 
u . (2.43) 

0 

01 ~ 0 

B1 

0 u (2. 44) 

0 

with f 1 and t 1 being m x 1 and 1 x m vectors, respectively. At this 

stage the first mode >.. 1 and its eigenvector have been synthesized. Thus 

we only need to consider the (n - l)th order subsystem for the remaining 

assignments as 
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D El 

+ [ ·> J u 

. 
xl = -- xl (2. 45} 

Tl Rl 

where x1 is an (n - 1)-vector, and [B1 : 0] is (n - 1) x m. Since it can 

be proved [8] that (T1 ,R1) is a controllable pair, the deflation tech­

nique can be reapplied to assign the second coincident eigenvalue A2 to 

the subsystem (2.45) by the transformation 

where 

Ll = 

is a (n - 1) x (n - 1) matrix 

-1 
F2R1F2 

"' 
X = L1x1 1 

I 
m 
--

0 

0 

F2 

and F2 is such that 

R2 I 0 

= --
r2 I A2 

(2. 46) 

(2. 47) 

In general after k1 deflation and reduction transformations (2.45) 

has the form 

D Ek 
1 . 

xk = --
1 

Tk Rk 
1 1 

(2.48) 



with (Tk,Rk ) forming a controllable pair, 
1 
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Now the remaining (n - k1) noncoincident eigenvalues can be assigned 
(kl) 

by the algorithm of section 2.4.1 for the system (2.48). Let U be 

the (n - k1) nonsingular modal matrix corresponding to the pole assign­

ment in (2, 48). Then the n dimensional modal matrix corresponding to 

(2. 4) can now be constructed by the following sequence of expansion/in-

flation transformations. 

The eigenvectors of (2.48) have the form 

Step 1: Expansion 

Construct 

A(kl-1) 
Uo = 

1 

z. 
1 

(kl) 
where n. is computed from the relation 

1 

(2. 49) 

(2, SO) 

(2.51) 

(kl) (kl) 
where r · and t are the first rows of Rk and Tk , respectively. 

1 1 
Also note Ai ~ Akl (i = 1,2,•••,(n-k1), The expanded 

(n - k1 + 1) x (n - k1 + 1) modal matrix has the form 



A(k1-1) 
u = 

Step 2: Inflation 

Compute 

(kl-1) 
u 
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(k1) 
0 u. 

1 

-- (2. 52) 
(k1) 

y crk 
1 

-1-Jkl-1) 
= [Lk -1] U 

1 
(2. 53) 

Step 3: Repeat Steps 1 and 2 until U(O) is constructed, which is 

the required nonsingular modal matrix. 

Case 2: Coincident complex pairs 

Let pl be a coincident mode, The corresponding real eigenvectors 

have the form 

0 

(2 0 54) 

_a I 
"'1 n-m 

= 0 (2 0 55) 

S I 
1 n-m "' I R "'1 n-m -
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It is again possible to prove (Appendix C) that.there exists a matrix F1 

such that 

Rl 0 
-1 F1RF 1 = -- (2. 56) 

-
R2 ~-1 (31 

(31 al 

and thus p1 has been deflated. Procedures similar to the real coincident 

eigenvalues ·case can now be developed to assign these complex modes. 

2.4.4 Assignment of Multiple Real Eigenv~lu~s 

Non-Coincident With Spectrum of R 

Multiple root assignment is generally of academic interest since, as 

emphasized earlier, exact assignment of modes is not needed. However the 

following observations can be ma.de regarding the possible assignment of 

multiple roots. 

As noted earlier, (2.11) has m-linearly independent solutions. Thus 

if the algebraic multiplicity r of.a repeated eigenvalue A is less than 
r 

or equal to the geometric multiplicity (r ~ m), we can indeed generate a 

diagonal canonical form for the closed-loop system. If r > m the 

canonical form degenerates to the Jordon form with m Jordon chains as 

Jl 0 0 

--
0 J2 

A = (2. 57) r 0 

-- --
0 J m 
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where each Jordon block has the form 

A 1 r 0 0 

0 A 1 0 r 

0 
(2. 58) 

0 

0 0 ~r J 
of size (n. x n.), The size of each Jordon block is arbitrary 

1 1 

m 
l 

i::;l 

For each J. (2,12) has the structure 
1 

[w1 • • • w ]J. - R[w1 n. 1 
1 

The first vector 

n. = r 
1 

••• w ] n. 
1 

•••• 

= T[z ••• z ] . 
1 n. 

1 

except 

(2. 59) 

(2. 60) 

is an eigenvector and is synthesized directly by (2 .11). The remaining 

generalized vectors of (2.60) can now be recursively synthesized using 

the algorithm in section 2.4.1, and in order to ensure all the vectors 

generated are linearly independent, it may be necessary to synthesize the 

multiple roots first, The problem becomes more.complex if many sets of 

multiple eigenvalues are to be assigned since there is no way to guaran-

tee the linear independence of all the eigenvectors. Indeed the example 
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in section 2.4.2 demonstrates graphically this fact. Thus from a prac-

tical synthesis point of view it may not be.worthwhile to attempt synthe-

sizing Jordon forms of the type (2,57), and it is better to synthesize an 

equivalent diagonal matrix which has roots arbitrarily close to A • 
r 

2.5 Summary 

In this chapter a new formulation of the pole-placement problem was 

introduced and solved. By establishing the parametric equivalence be-

tween the nonunique feedback matrix K and the arbitrary closed-loop 

modal entries (z), it was possible to directly interpret the effect of 

each design choice on the resultant closed-loop response of the system. 

This becomes possible since in ess.ence (2 .11) and (2 .12) provide the com-

plete spectral characterization of all the closed-:loop eigenvector struc-

tures for the given triple (A,B,A). This characterization has an 

important property that if the design process fails to satisfy a given 

eigenvalue/eigenvector specification, it does so by showing no control 

law could meet that specification. This completely eliminates unneces-

sary synthesis effort being expended on an unattainable design objective. 

It also became evident from the analysi.s that meeting exact pole-

specifications resulted in significant curtailment in the choice of 

eigenvector forms and consequently limited the flexibility in shaping the 

closed-loop response; However, for practical systems, pole-specifications 

are rarely intended to be exact but are usually required to lie in a sub-

set of the stable complex plane. This observation lead to the develop-

ment of the algorithm in section 2.4.1 which allows maximal flexibility 

in the choice of closed-loop modal entries and hence the dynamic re-

sponse, while assuring the generation of an n-dimensional eigenspace 



required for the solution. The simplicity of the algorithm makes it 

admirably suited for computer implementation as a powerful iterative/ 

interactive design tool for multivariable system synthesis. 
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The utility of the new formulation as a practical synthesis pro­

cedure is demonstrated in the next chapter by designing a hover control­

ler for a helicopter. The potentialities of the algorithm developed in 

section 2.4.1 as an on-line adaptive controller will be explored in 

Chapter IV. 



CHAPTER III 

APPLICATION OF SPECTRAL SYNTHESIS TO THE DESIGN 

OF A HELICOPTER HOVER CONTROLLER 

3,1 Introduction 

The design of fixed gain feedback controllers to improve the re­

sponse of a system by simultaneous control of modes and the associated 

modal structure was introduced in Chapter II, The application of the 

technique to the design of a hover controller for a helicopter will be 

illustrated in this chapter, The hover controller problem will be con­

sidered for three reasons, First, helicopter dynamics, by virtue of sub­

stantial longitudinal/lateral mode coupling and cross axis coupling, 

provide an excellent case study to illustrate the application of modal 

control to axis decoupling, stabilization and the minimization of mode. 

interaction, Second, the 9th order linear model of .the helicopter cer­

tainly represents a non-trivial problem of significant synthesis com­

plexity, Finally, helicopter hover dynamics have been used as a 

representative model in the literature to illustrate various synthesis 

techniques based on optimal control theory [9,10] and classical modal 

control theory [11], 

3.2 A Helicopter Hover Controller 

The design of controllers for helicopters is more difficult than for 

fixed-wing aircraft, since the lateral and longitudinal motions are. 
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highly interactive. This coupling not only causes unstable responses to 

affect all variables, but substantially distorts the intended non-

interactive functions of the pilot controls. A typical initial condition 

response is presented in Figure 1, in terms of variables to be defined 

later. Even if stabilizing controllers are designed (pole-placement 

only), the pilot work load is still high due to the cross-coupling which 

follows application of any one input. This example, therefore, illus-

trates the use of eigenvalue/eigenvector modification to both stabilize 

responses and decouple lateral and longitudinal motions. 

The 9th order linear perturbation model of the Sikorsky SH-30 heli-

copter in a hover mode has state variables of longitudinal (u), lateral 

(v), and vertical (w) velocities in feet/second; pitch (q), roll (p) and 

yaw (r) rates in degrees/second; and pitch (8), roll (~) and yaw (~) 

angles in degrees. The inputs are main rotor collective pitch Cue), tail 

rotor collective pitch (uT)' longitudinal cyclic pitch Cup) and lateral 

cyclic pitch (uR) , all in degrees. 

The open-loop dynamics may then be structured as 

= + 

(3.1) 

where x1 = [u w q S]T and u1 = [up uc]T are the longitudinal variables 

T T and controls, and x2 = [v p ~ r ~] and u2 = [uR uT] are the lateral 

variables and controls. The normalized system matrices [11], scaled by a 

rotor tip speed of 680 ft/sec, are given in Table I, along with the open-

loop eigenvalues, 
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TABLE I 

OPEN-LOOP DYNAMICS 

~-0.016 

I :.1666 

0 

-0.3242 

0.0843 

0,0297 

0.0021 

-0.5420 

-0.5934 -0.0047 -0.0012 

0 

0,548 

0 0 

0 0 0 0 

0 0.062 0 0 

0 0 1 0 0 0 0 0 
A = 

0.0047 -0.0007 -0.0285 0 -0.033 -0.0297 0.5934 0.0107 

0.2199 -0.0137 -1.94 0 -0.6109 -1.96 0 0.01 

0 0 0 0 0 1 0 0 

o. 0013 -0,0163 -0,0083 0 0.471 -0,0043 0 -0.303 

0 0 0 0 0 0 0 1. 

60.7609 -5,0318 -2.13 0 0.1187 0.69 0 0.005 

BT= 
0.5934 0 -6.15 0 0 0 0 0 

0 0 0 0 0.5934 21.81 0 0.174 

0 0 0 0 0 '2611 0. 34 75 0 -7.48 

Open-loop Eigenvalues: 0, -0.305, -0.324, 0.08 .:_ j0.313, -1.31 .:_ j0.65, -0.047 .:_ j0.414. 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

..j:::. 

00 
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The problem of synthesizing systems wherein independent single in­

puts influence only specified single outputs has been well studied as the 

classical decoupling problem [12,13], A combination of feedforward and 

feedback control law of the form 

u = Kx + Gv (3,2) 

where G is a m x m nonsingular feedforward matrix, is required to 

accomplish this decoupling, This is because the coupling in the system 

arises both due to input mixing through the distribution matrix B and the 

modal matrix which controls the interaction between the response vari­

ables, In systems where this complete input/output decoupling can be 

achieved, some degree of design freedom is generally lost rendering in 

some cases even arbitrary assignment of all system poles impossible [12]. 

An examination of Table I reveals that for the helicopter system the in-

put matrix B does not substantially contribute to cross-input coupling, 

Consequently if the closed-loop modal structure is chosen to be diagonal-

ly dominant, good non-interacting control will result even without re­

sorting to complex control laws of the form (3.2), while fully retaining 

the multi-input design freedom to shape the dynamics of the feedback 

system, 

To pose the specifications, a control u = Kx is desired which un-

couples lateral and longitudinal motions and also assigns eigenvalues 

selected to meet desired handling criteria. In the discussions to follow 

a response variable is assumed to be not influenced by a mode if its 

entry in the associated eigenvector is less than 1% of the dominant 

entry, 

At the outset it is seen that if a modal matrix U = I were 
n 
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synthesized, in addition to eigenvalue assignment, the specifications de-

fined earlier would be completely met, This is possible only in the 

trivial case when the system has n-inputs, Thus in the present case a 

judicious choice of the modes (A.o) and the free design entries of the 
1 

eigenvectors (zo) must be made to evolve a closed-loop modal matrix which 
1 

is at least block diagonally dominant, The role played by the coupling 

matrices C. (A..) in making these selections was discussed in section 
1 1 

2.3.1, Using these design aids it was possible to associate the follow-

ing eigenvalues with the indicated variables, 

Eigenvalue Response Variable 

-4.5 u 

-0,324 w 

-L 5 + j 1 

-0,3 v 

-LS .::._ jl p,~ 

-LS .::_jl r,l)J 

The vertical velocity mode.was specially chosen to yield the coinci-

dent spectrum case discussed in section 2.4,3, This choice gave an 

exceptionally good non-interacting structure for the associated eigen-

vector, with the vertical velocity variable having the dominant entry. 

It was also found impossible to decouple roll dynamics from lateral 

velocity response and vice-versa, without introducing coupling into the 

longitudinal and heading (yaw) response variables, For example if the 

free parameters (z-vector) corresponding to the lateral velocity mode are 

selected as 

zT = (z z z z )T = (0 1 0 O)T 
q v r u 
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where the subscripts indicate the respective response variable eigen-

vector entries, then the remaining eigenvector entries 

can be evaluated for each mode selection using (2.11). Figure 2 shows 

the variation of these coupling coefficients for the range of assignable 

modes, The best compromise between response time and low roll coupling 

appears to be achieved for a lateral velocity mode of -0,3, Notice also 

the large variation of the vertical velocity coefficient (w ) near the 
w 

mode -0.324, which corresponds to the coincident eigenvalue of matrix R 

of (2, 11), A similar analysis was adopted to select the roll mode as 

-1.5 ~ jl to minimize the influence of this mode on the lateral velocity 

variable, It is also evident from the physics of the process that this 

roll/lateral velocity coupling is acceptable since helicopters achieve 

lateral motions by rolling in the intended direction, 

With these initial selection of modes (A.) and design vectors (z.) 
1 1 

the algorithm of Chapter II was used to generate a nonsingular modal 

matrix and to compute the feedback gain matrix K, Table II gives the 

resulting control and closed-loop state matrices. Table III gives the 

final modal matrix and the diagonal matrix of eigenvalues, The block 

diagonally dominant structure of the resultant modal matrix is apparent 

with the reduction in the coupling between the longitudinal and lateral 

dynamics best measured in terms of a matrix norm as shown in Table IV. 

It is important to note that in addition to longitudinal/lateral inter-

action minimization, excellent decoupling between the motions in the 

three rotational axes has also been achieved, The initial condition 

responses in Figures 3-8 illustrate that excellent mode decoupling has 
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TABLE II 

CLOSED-LOOP DYNAMICS 

-4.5 0 0 0 0 

0.3739 -0.3235 0.0243 -0.0243 0.0001 

-0.0001 -0, OOll -3 -3.25 0.0001 

'A= I 
0 0 1 0 I 0 

--
-0.0086 -0.0008 0.0241 0. 0015 I -0.0455 

0,0036 0.0045 -0.0003 0.0386 -1.6405 

0 0 0 0 0 

0 0 0 0 0 

0 0 0 0 0 

-0.0743 -0.0001 -0.0044 0.0046 0 

0.0527 0.0139 0.4012 0.5268 0.0101 
K = I 

-0,0076 0.0009 0.0891 0.0016 -0.0482 

0 0.0022 0.001 0 0.0619 

0 0 

0.0044 0 

0 0 

0 0 

-0.0655 0.4805 

-3.2545 -4.1095 

1 0 

0 0 

0 0 

-0.0009 0 

0.0894 0 

-0.0593 -0.1884 

-0.002 -0.0044 

0 

0 

0 

0 

0.0996 

-0.0552 

0 

-3 

1 

0 

0 

-0.0087 

0.3604 

0 

0 

0 

0 

0.1093 

0.0004 

0 

-3.25 

0 

0 

0 

-0.0069 

0. 4343 

(Jl 

tN 



TABLE III 

CLOSED-LOOP MODAL STRUCTURE 

1 0 0 0 0 0 0 

-0.0895 12.9761 0.0052 -0.0254 0.0225 -0.0012 -0.0029 

0 0.002 1 0.5 0 0 0 

0 -0.0062 -0.3077 -0.5385 I 0 0 0 
u = I --

0.0019 0.0353 -0.0074 -0.0128 I 0.6550 0.006 0.2045 

0 0 0 0 0.1 1 0.5 

0 0 0 0 -0.3333 -0.3077 -0.5385 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

A=Diag [ -4. 5 -0.324 -1.5 ~j1 -0.3 -1.5 ~ j1 

0 0 

0 0 

0 0 

0 0 

-0.0337 -0.0169 

0 0 

0 0 

1 0.5 

-0.3077 -0.5385 

-1.5 !. j1 ] 

Vl 
.j:>., 
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TABLE IV 

NORMED LONGITUDINAL/LATERAL CROSS COUPLING 

II A1211 II A2111 IIA1211 IIA2111 

II A11 11 II A11 11 II A2211 II A2211 

OPEN-LOOP 0,2233 0.8099 0.1022 0.3706 

CLOSED- LOOP 0,0004 0,0066 0.0003 0.0045 

m n 
IIAII = L L 

i=1 j =1 
Ja .. I 

l.J 

• 
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resulted in all cases except for mode interactions between lateral 

velocity and roll variables, coupling required by the physics of the 

process. The closed-loop system was also subjected to step control in­

puts and the responses are summarized in Figures 9-12. The responses 

confirm that good non-interacting behavior, as predicted, has been 

achieved with intended variables independently excited by corresponding 

inputs. Notice that substantial transients in rate variables (q,p,r) are 

physically required for large steady state angular deflections (8,~,~), 

and similarly large transients are required in variables p and ~ to in­

duce large steady state values in v. These response results clearly show 

that exceptional performance has been achieved. 

3.3 Summary 

In this chapter the synthesis techniques of Chapter II were used to 

design a helicopter hover controller. This example highlights the mode­

decoupling design concepts introduced in Chapter II. By utilizing the 

spectral characterization it was possible to establish that lateral 

motions could not be made non-interacting with roll dynamics without 

introducing unwanted coupling into longitudinal/heading motions. This 

demonstrates the clear insight the new characterization provides in vis­

ualizing attainable closed-loop modal structures. The synthesis pro­

cedure discussed in this chapter is purely an off-line effort requiring 

interaction between the designer and the computer. The features of the 

algorithm of Chapter II when used for on-line applications will be 

studied in the next chapter. 
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CHAPTER IV 

RELATED TOPICS 

4.1 Introduction 

The analysis presented in Chapter II can be extended to many related 

multivariable synthesis problems since the closed-loop modal matrix plays 

such a focal role in characterizing varied attributes of the system being 

synthesized. While an extensive treatment of all these topics is beyond 

the scope of this dissertation, two important problems, observer design 

and minimum sensitivity solutions, will be analyzed in detail in sections 

4.2 and 4.3 with spectral characterization techniques emphasized. Chap­

ter V will provide some perspective into possible extensions to other 

associated problems. 

4.2 The Problem of State Estimation 

In order to generate the feedback law to assign the closed-loop 

eigenvalues, the technique of Chapter II relied on knowledge of the com­

plete state vector. In practical situations it is often the case that 

not all state variables can be measured, and thus some form of estimating 

the inaccessible states becomes mandatory. A classical solution to this 

problem is the deterministic state observer originated by Luenberger 

[14]. He established that given an nth order completely observable 

system with r outputs it is possible to construct a dynamical observer of 

order (n - r) which asymptotically estimates the state vector. Many 

67 
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algorithms have been proposed (7~15], again with varied degree of compu­

tational complexity, to design these observers. Some variants of the 

basic Luenberger design have also been proposed by converting the state 

estimation problem to an equivalent pole-placement problem (16~17]. Of 

course, observer eigenvalue specifications are again found to leave con­

siderable room for improvement by considering the associated nonunique 

transformation matrices. Specifically a decoupled structure~ or at least 

one with required coupling carefully controlled in view of time constant 

magnitudes, would minimize large estimate errors in one variable exciting 

errors in other variable estimates. Hence it is apparent that the 

algorithms of Chapter II are directly applicable to the synthesis of 

state estimators, and indeed all the previous observations made regarding 

the preservation of maximum flexibility in the design structure apply to 

this dual problem. 

Section 4.2.1 will now specifically characterize the solution of the 

observer synthesis, while section 4.2.2 will investigate the more general 

problem of combined observer and control dynamics. 

4.2.1 Observer Problem for Multi-Output 

Systems 

Consider the dynamic system 

:X = A:x. + Bu 

y = Cx 

( 4 .1) 

( 4. 2) 

where xis the staten-vector, u is the control m-vector, y is the output 

r-vector (r > 1) and A, B and C are constant matrices of appropriate 

dimensions. Assume that C is of full rank and that (A;C) is an 
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n). The problem then is to design an (n- r) order dynamic observer 

which asymptotically estimates the state vector x. For simplicity of 

presentation assume that the output matrix C is in rank reduced identity 

form C = [I 
r 

OJ. This structure can always be obtained by a coordinate 

transformation T0 of (4.1-4.2), where 

-1 -1 cl [ cl c2 
To = -- (4.3) 

I 0 I n-r 

and the nonsingularity of the r x r matrix c1 is obtained by at most a 

reordering of the state variables. Under this transformation (4.1) and 

(4.2) can be written in partitioned form as 

AH A12 . 
X = -- + u ( 4. 4) 

A21 A22 

y = [I r 0] (4. 5) 

where A11 is r x rJ B1 is r x m and x1 is a r-vectorJ and the other sub­

matrices are compatably dimensioned. Notice also that in the special 

case of incomplete state feedback (4.4-4.5) can be obtained by at most a 

reordering of state variables. Since in this new structure the output 

contains complete knowledge of x1 it only remains to construct an ob­

server to estimate x2 using the knowledge of x1 and u. 
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The following derivation of the Luenberger observer closely follows 

the method of Macfarlane [18]. 

Let x be an estimate of x and define 

X = 
I 
r 

-1 
0 

.... 
6 

where L = [L1 L2] is yet to be determined and 

8 = LX 

(4. 6) 

(4 0 7) 

is an (n - r) observation vector. Since x2 can only be estimated, we can 
A 

only generate an estimate 8 of the observation vector 8, Let e be the 

associated error in estimate defined by 

e = 8 - 8 ( 4 0 8) 

A 

and suppose 8 satisfies the differential equation 

. 
A A 

8 = F6 + ECx + Hu (4.9) 

where F, E and Hare constant matrices to be selected and C is as in 

(4, 5). Then 

e = Fe + [FL + EC - LA]x + [H - LB]u ( 4. 10) 

and ifF, E and H (which define the observer [14]) are chosen such that 

LA - FL = EC (4.11) 

H = LB (4.12) 
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the error dynamical model reduces to 

e = Fe (4.13) 

Clearly if F is a stable matrix e will decay exponentially with time. If 
A 

8 is properly initialized in (4.9) as 

A 

8 (0) = Lx(O) 

(if, for example, the initial condition of even the unobserved states are 

somehow known), the unobservable state values are tracked with zero error 

for all t > 0. Otherwise a biased estimate results, which asymptotically 

approaches zero at a rate determined by the real parts of the eigenvalues 

of F. The estimate of the state vector is available from (4.6) provided 

the indicated inverse exists. Thus the observer design involves the con-

structien of the matrix L so that (4.10) is satisfied and the transforma-

tion (4.6) is nonsingular. The following analysis adapts the algorithms 

presented in Chapter II for the design of observers. 

Writing (4,10) in partitioned form yields 

0] ( 4. 14) 

Completing the multiplication in (4.14) gives 

(4.15) 

(4.16) 

Thus L1 and L2 must be chosen to satisfy (4.16) for a specified F and at 
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the same time assure the transformation in (4.6) nonsingular. E is then 

computed using (4.15) and His evaluated using (4.12). 

Transposing (4.16) and choosing F as a diagonal matrix with desired 

observer eigenvalues yields 

( 4. 1 7) 

T T where W = L2 , Z = L1• Equation (4.17) can also be expressed in terms of 

individual vectors w. and z. (i = 1,2,•••,n-r), similar to (2.11) and 
~ ~ 

(2.12) of Chapter II, and each vector equation constitutes a set of 

(n - r) linear equations in n unknowns. The similarity to the eigen-

vector assignment problem of Chapter II is easily established by formu-

lating (4.17) as the synthesis of (n - r) linearly independent vectors 
T [z. : w.] , so that they do not lie in the subspace already generated by 

~ ~ 

C T, namely [I : 0] T, and the algorithms of Chapter II are now directly r 

applicable. 

4.2.2 Observers in a State Feedback Control 

System 

The analysis in section 4.2.1 noted that the main problem arising in 

the design of observers is due to imperfect initialization of the obser-

vation vector in (4.8). Since the initial values of the state vector are 

not always known, the observer must then apparently be designed so that 

the real part of its eigenvalues are far larger than those of the plant, 

in order to rapidly stabilize the biased estimate errors. This increases 

the bandwidth of the observation channels and consequently increases the 

noise sensitivity. In general the selection of eigenvalues is done by 

actual simulation of different configurations under predicted noisy 
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conditions [19]. However attempts have also been made to optimally lo­

cate observer eigenvalues [20] by minimizing a performance index related 

to the bias error. The objective of course is to find that compromise 

which provides fairly rapid decay of estimate errors yet.also achieve 

acceptable noise rejection properties. 

An alternative approach is suggested for those combined observer/ 

control problems where the observed values are used to generate some de­

sired control law. In these cases, the observer could be designed so 

that the biased estimate errors minimally influence the system closed­

loop dynamics. Quite simply, if one of the variables to be estimated 

influences the response of some output variables substantially, its 

biased estimate errors should be effectively supressed·in the corres­

ponding error input channels. The design freedom in choosing the obser­

vation matrix L clearly plays a vital role.in such a synthesis approach. 

This can be visualized by deriving the augmented feedback system and 

observer as follows [18]. 

Suppose a feedback control law is derived based on state feedback of 

Chapter II as 

u = Kx 

and is expressed in terms of available output y and the observation 

vector e as 

so that 

(4.18) 

( 4 .19) 

(4.20) 
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If a feedback is applied using only the estimate of e as 

/ 

(4.21) 

it is possible from (4.7) to express the combined closed-loop and 

observer error dynamics as 

. 
X A+BK X 

(4.22) 
e 0 F e 

From (4.22) it is clear that the eigenvalues of the closed-loop system 

are as they would be had the originally desired state feedback been 

directly implemented. The observer merely adds its own eigenvalues to 

those of the state feedback system [18], Further, the effect of the 

biased estimate errors can be interpreted as a disturbance input to the 

closed-loop system through the distribution matrix [BG2]. This immedi­

ately suggests the possibility of choosing the observer matrix L to sup-

press and localize the estimate error inputs, In order to see the 

relation between the matrices Land [BG2], write Kin (4.18) in parti­

tioned form as 

( 4. 23) 

where K1 is m x r. Then (4.20) can be written as 

(4.24) 

(4.25) 

and 

(4.26) 
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Thus for a given K2 (state feedback law), L2 must be chosen so that [BG2] 

possesses the desirable structure. Alternatively if the relative effect 

of the biased error on the closed-loop dynamics is to be minimized, then 

it is possible to specify a suitable matrix [BG2] of rank (n - r) such 

that 

and minimize 

(4o27) 

t where [BG2] is the ge~eralized inverse given by [43] 

Equation (4o27) together with (4.17) can now be formulated as a con-

T strained minimization problem in terms of individual vectors wi of L2 as 

follows o Let 

and 

[BG2] t [BK2] = M 

M = 

ml 

.... 
m2 

.... 

m n-r 

( 4 0 28) 

(4o29) 

where m! are (n- r)-vectorso Then minimizing I lw. - m.TI I subject to 1 1 1 
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the observer constraints of (4 .17), completes the observer synthesis, 

It should be pointed out, however, that the above analysis presup-
A 

poses that 8(0) has been initialized, based on the statistics of x(O), to 

minimize the initial biased error e(O). That is, the suggested approach 

will provide improved response only if the initial conditions of the 
A 

observation vector e can be estimated more accurately than the normally 

assumed zero mean. A numerical example will now be presented to illu-

strate the features of a.combined observer/controller design. 

4.2.3 Controllers for the Lateral Dynamics 

of Aircraft 

The linear perturbation dynamics for the lateral motions of an air-

craft can be modelled as (4.1-4.2) where xis the state vector of roll 

rate (p), yaw rate (y), sideslip (S) and bank angle (~), respectively, 

and u is the control vector of aileron (c ) and rudder (c ) angular a r 

deflections. The measured outputs are roll rate and yaw rate. Thus it 

is required to design a feedback controller which includes an observer to 

estimate the inaccessible states side slip and bank angle. 

The system of equations modelling an F8-C aircraft at an altitude of 

50,000 ft, a mach number of 1•1 and angle of attack of 8.6 degrees as 

(4.1-4.2) is shown in Table V. Initially a state feedback controller was 

designed to meet the following performance specifications [21]. The 

fourth order system can be considered as two second order subsystems, 

with side slip and yaw rate exhibiting a coupled damped dutch roll (a 

pair of complex conjugate roots), and roll rate/bank angle constituting 

the second subsystem. Experience indicates that a long time constant is 

desirable for the bank angle, indicating a pole close to the origin. 
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TABLE V 

LATERAL DYNAMICS OF AIRCRAFT 

-L38 0,223 -33.1 0 

-0,0037 -0.196 6, 71 0 
A = 

0,115 -1 - 0,107 o. 032 

0,989 0.149 0 0 

BT= [ 11.6 0, 209 -0,0014 0 

J 4.43 -1,76 0.017 0 

c = [ 

1 0 0 0 

J 0 1 0 0 



These specifications lead to the following mode/variable assignment. 

Eigenvalues 

LS.:_j2 

-3 

-0.01 

Response Variables 

y,S 

p 

~ 

It is again emphasized that the direct association of modes with output 

variables as indicated is valid only if the resulting modal matrix has 

the desirable decoupled structure. 
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The method of Chapter II yields a closed-loop system as shown in 

Table VI, If all four variables were available for control law imple­

mentation, the response of the system to a 10 degrees per second initial 

condition for the roll rate would appear as in Figures 13-16, Case A, 

displaying the desired minimal interaction of the side slip and yaw rate 

responses. 

Since S and ~ are inaccessible states an observer must be augmented 

to the feedback system. Following the analysis of sections 4,2 and 

4.2.2, in order to make the observer fast as compared to the system it­

self the eigenvalues are chosen to be -30 and -25. A nominal design 

meeting the constraint equations (4.17) resulted in the respective 

observer matrices given in Table VII. The response of the composite sys­

tem (4.22) for an initial condition of 10 degrees per second roll rate 

and an initial bias error of the same magnitude (e1(0) = e2 (0) = 10) is 

shown in Figures 13-16 as Case B. There has been considerable coupled 

response in both yaw rate and side slip indicating significant perform­

ance degradation. The cause of this behavior is apparent by noting the 

entries in the error distribution matrix BG2 in Table VII. The norm 

minimizing technique discussed in section 4.2.2 was next used to redesign 
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TABLE VI 

MODAL AND CONTROL MATRICES FOR STATE FEEDBACK DESIGN 

1 -0.1 -0.1 -0.015 

0 1 1 0.03 
u = 

-0.03 -0.085 0.486 -0.0034 

-0.329 0.004 -0.028 1.037 

A = Diag(-3,-1.5~2,-0.01] 

1.456 0,157 

0.019 J 
-0.056 

[
-0.083 

K = 
-0.156 

-0,5 76 2.733 
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TABLE VII 

OBSERVER; NOMINAL DESIGN 

F = Diag(-30,-20] 

[ 0.9 0 1 -0.001 J L = 
0.68 0 1 -0.0013 

[ 26.838 - 24.021 J 
G = 2 -66.282 65.2918 

17.695 10.59 

122.2658 -119.933 
BG = 2 -1.164 1.143 

0 0 
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the observer. Because of the special structure of the constraint equa­

tions (4.17) for this problem it was possible to directly express L; 1 as 

a function of observer eigenvalues and the resulting matrices for the 

observer are listed in Table VIII. The response of the composite system 

to the same initial conditions in Case B is shown in Figures 13-16 as 

Case C. Indeed 1 in this case the feedback controller with the observer 

behaves practically like an equivalent state feedback controller even 

though subjected to significant bias errors. 

4.2.4 Sununary 

In this section the algorithms developed for the synthesis of multi­

variable systems were shown to be directly adaptable to the design of 

observers. While the selection of observer poles faster than the plant 

dynamics alone may be adequate to track the open-loop dynamics 1 suffi­

cient caution should be exersized in the selection of the transformation 

matrix L to provide good closed-loop tracking in.presence of large bias 

errors. The flexibility inherent in the selection of the matrix L can 

thus be effectively used to limit/suppress bias errors from unduly influ­

encing the closed-loop dynamics. The ability to characterize all the 

realizable L matrices given the triple (A,C,F) finds application in the 

synthesis of special observer structures like zero sensitivity observers 

to plant variations [22]. 

4.3 Modal Sensitivity Reduction to 

Parameter Variations 

An important goal in feedback design is to guarantee achievement of 

specified tolerances on system response over specified bounds of plant 
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TABLE VIII 

OBSERVER; MINIMUM NORM DESIGN 

F = Diag[-30,-25] 

[ -135 0 -150 0.150 J L = 
-113 0 -150 0.182 

[ -0.46 0.45 

J G = 2 1.23 -L22 

-0.0108 -0.199 

-2.265 2.249 
BG = 2 0.0215 -0.0215 

0 0 
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parameter values [23]. The significant contributions towards this sensi-

tivity theory are well documented in [24]. The primary concern here is 

the modal sensitivity of closed~loop systems to parameter perturbations. 

Consider the nominal closed-loop system 

AC = A + BK ( 4. 30) 

with desired eigenvalues. The first order differential change dAC due to 

perturbations in A, B and K can be expressed as 

dAC = dA + dB • K + B • dK ( 4. 31) 

Assuming AC has been assigned distinct eigenvalues, the corresponding 

first order perturbations in the eigenvalues of AC can be expressed [25] 

as 

T 
dt... = v. [dAC] u. 

]. ]. ]. 
( 4' 32) 

where ui and vi are the eigenvectors and reciprocal basis vectors of AC 

with 

T u.u. 
]. ]. 

T = u.v. = 1 
]. ]. 

The corresponding eigenvector change is given by 

with 

du. = 
]. 

ct •• = 
lJ 

n-1 

I 
j=l 

CL .U. 
lJ J 

T 
v. (dAC)u. 

J ]. 
(A.. - A.) 

]. J 

(j -:f i) 

(j -:f i) 

(4.33) 

( 4. 34) 

(4.35) 

Similar relations can be developed for complex conjugate pairs (Appendix 

A), 
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There are primarily two approaches to reduce the differential eigen-

sensitivity coefficients formulated in (4.32) and (4.34)~ for a specified 

plant variation. One may either seek a closed-loop system which is 

inherently insensitive to the given perturbation, or design a corrective 

feedback controller which zeros the eigensensitivity coefficients. 

At the outset an examination of (4.32) and (4.35) reveals that the 

closed-loop eigenvectors directly influence the sensitivity character-

istics of the system, and the utility of direct control of their struc-

ture is quite obvious. Seraji [26] attempts to relate the design 

freedom available in a unity rank feedback system to control indirectly 

the closed-loop modal structure and hence evolves a procedure based on 

the first approach mentioned above. Tzafesta [27] develops a corrective 

controller which nulls only the first order eigenvalue sensitivity coef-

ficients defined in (4.32), The corrective feedback scheme has three 

major limitations. 

1. It is not applicable to large parameter variations Cloa .. 1 > 1). 
1J 

2. System stability is not assured since eigenvalues undergo uncon-

trolled, though limited, shifts during feedback update, 

3. Even if a stable system results there is no guarantee that sys-

tern response is held within bounds since eigenvector sensitivity coef-

ficients are not nulled. 

However it is possible to generalize the result of Tzafesta [27] to 

null as many of the eigenvalues/eigenvector sensitivity coefficients in 

(4.32) and (4.34) as the multi-input design freedom permits, using the 

following analysis. 

Consider the sensitivity matrix 

(4.36) 
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where U is the closed-loop modal matrix, VT is the matrix of reciprocal 

basis vectors. Each entry of S can be expressed as 

T 
. s . . = v. dAcu. 

l.J 1. J 
i~j = 1,2,•••,n (4.37) 

From (4.32) and (4.35) it follows that the diagona~ entries of S 

correspond to first order eigenvalue sensitivity coefficients, the off 

diagonal entries are eigenvector sensitivity coefficients normalized by 

the factor 

(A. 
1. 

1 
A.) 
J 

and s .. (i ~ j) determines the influence of the jth eigenvector on the 
l.J 

sensitivity of the ith eigenvector. 

Substituting for dAC from (4.31) in (4.36) gives 

( 4. 38) 

where K is the nominal feedback in (4.30). Let B T 
= V B and 

P = VT(dA +dB • K)U 

Then (4.38) can be written in elemental form as 

"T s . . - p . . = b . dKu . 
l.J l.J 1. J 

( 4. 39) 

where b! is the ith row of B, u. is the jth column of U and dK is the 
1. J 

corrective feedback gain matrix. 

Define the column string 

Thus we can write (4.39) as a linear constraint in then • m elements of 

k as s 
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T = c.k 
1 s (4.41) 

where 

T "T c. = (b. * u .) 
1 1 J 

and the operation (*) is defined by 

"T = (u1 . • b. 
J 1 

"T u2 . • .b. 
J 1 

... "T 
u .b.) 
nJ 1 

(4.42) 

h b"T . 1 . 1 d T ' 1 w ere . 1s x m, u. 1s n x an c1. 1s x mn. Thus the upper bound 
1 . J 2 , 

on the n first order sensitivity coefficients of S that can be set to 

zero is mn, which is the design freedom inherent in pole-placement, pro­• 
vided the corresponding system of equations 

( 4. 43) 

derived from the set (4.41) is consis.tent, where y. = -p .. is an 
1 1J 

mn-vector obt~ined by setting the corresponding sij = 0 in (4.41). Since 

for practical systems mn < n2, the best choice is to sets .. = 0 
11 

( i = 1,2,···~n) and use the remaining freedom to limit the eigenvector 

perturbations corresponding to the dominant modes of the system. If _the 

rank of C in (4.43) is less than mn, a generalized minimum norm least 

square solution can be obtained. 

Selection of a closed loop modal structure insensitive to a speci-

fied plant variation is attractive when only a few isolated parameters in 

the plant undergo perturbation. In such cases dAC will usually be sparse 

and singular and the appropriate zerosensitivity eigenvectors are the 

ones that span.the null space of dAc provided these eigenvectors can be 

synthesized under the pole-placement constraints. Indeed it is also 

possible to identify certain perturbation structures that completely 
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allow restoration of the nominal modal structure of (4.30) by a simple 

feedback update procedure. This is immediately apparent if we consider 

the plant in rank reduced form of (2.1). If Rand T do not undergo any 

variations, then the required feedback correction matrix is 

-1 dK = -B1 [D : E] ( 4. 44) 

In the framework of the above discussions it becomes clear that the 

synthesis algorithm of Chapter II possesses all the desired attributes 

for evolving minimum sensitivity designs with the added advantage of 

assuring closed-loop .stability. Thus in the next section the features of 

an adaptive controller based on the spectral synthesis algorithm will be 

examined. 

4. 3.1 ~ ~ Adap,tive Controller Design 

With the advent of inexpensive high performance digital computers, 

it appears realistic to implement control algorithms on a real time basis 

to update the feedback law as revised estimates of plant parameters be-

come available, In these on-line applications the computational com-

plexity of the algorithms naturally take paramount importance. Optimal 

control techniques [28] have been considered for such applications, 

The corrective feedback controllers of section 4.3 and the synthesis 

algorithm of Chapter II are also potential candidates for real time 

implementation; thus it is appropriate to compare these algorithms in 

terms of the two computational performance indices, operation count and 

storage requirement, Table IX provides such a comparison. For ease of 

n representation it is assumed that the number of inputs m = r· The 

optimal control algorithm is based on Kleinman's [29,30] method, where 
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TABLE IX 

COMPUTATIONAL REQUIREMENTS FOR ADAPTIVE CONTROLLERS 

Algorithm 

Optimal Control 

Eigensensitivity2 

Spectral Synthesis 
(Chapter II) 

Approximate 
Multiplications 

n6 3 5 
Cg + 8 n 5 4 .!..!. n3) 1 

+ 8 n + 4 

4 3 k1 n + (k2 + 4)n 

kl .::. 3, k2 < 7 

1Multiplications per iteration, 

2Minimum norm least squares solution, 

Approximate 
Storage 

4 2 
0.5 n + 1.5 n 

15 n2 + 12n 
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the solution to the nonlinear algebraic Riccati equation is obtained as 

an iterative solution of a set of linear equations. The number of itera-

tions depends on the system and stipulated accuracy. Narendra, et al. 

[28] consider this algorithm for their adaptive controller. The eigen-

sensitivity algorithm discussed in section 4.3 has been included to 

illustrate that it does not enjoy any computational advantage. 

For computer implementation of the synthesis algorithm of Chapter 

II, it was advantageous to use the following representation for complex 

pairs as suggested in [7] instead of Equation (2.19): 

w. P.T Q.T z. 
J J J J . . . . = -- .... ( 4. 45) 

w. 1 -Q.T P.T z. 1 J+ J J J+ 

where 

" [R2 2 S~)I ]-1 R = - 2a..R + (a. + 
J J J n-m 

" P. = R[a..I - R] 
J J n-m 

and 

" 
Q. = RS. 

J J 

The upper bound on the multiplicative constants k1 and k2 in Table 

IX are based on worst case situations wherein repetitive execution of 

steps 4 and 5 of the algorithm in section 2,4,2 are required for every 

eigenvector synthesis, which is not generally the case in practice. How-

ever even in such cases the operation counts are significantly less than 

the optimal control solution. 
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Reduced computation and storage requirements .for the new algorithm 

are to be expected since the solution of linear equations in general 

requires ~(d3/3) multiplications and ~(d2 ) storage locations, where dis 

the dimension of the system and d is n(n + 1)/2 for the optimal control 

solution, n2/2 for the eigensensitivity algorithm and n/2 for the 

spectral synthesis algorithm. 

A numerical example will be presented in the next section to illus-

trate how the spectral synthesis algorithm could be used to hold response 

deviations within close bounds, even under large plant parameter varia-

tions. 

4.3.2 Adaptive Controllers for Helicopter 

It is well recognized that the use of linear perturbation models 

about a nominal flight condition to evolve feedback control laws are in­

adequate for highly responsive aircraft systems. Thus some form of 

on-line identification/adaptive scheme becomes essential to continuously 

monitor the system and update the feedback gains in order to hold the 

closed-loop response within acceptable bounds. Narendra, et al. [28] 

have discussed an adaptive scheme based on optimal control techniques for 

the control of the longitudinal dynamics of a helicopter. The same model 

will be used here to design an adaptive controller using the algorithm 

of Chapter II. The dynamics of the helicopter can again be modelled as 

T _ . T (2.1) with state vector x = [u,v,q,e] and control vector u- [uP,uC] , 

where the notations of Chapter III are used for the variables. Table X 

gives the nominal A and B matrices corresponding to an airspeed of 135 

knots. As the airspeed changes large perturbations occur in the elements 

a32 , a34 and b21 . The bounds of these parameters over the operating 
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TABLE X 

HELICOPTER LONGITUDINAL DYNAMICS 

-0.03 0.027 0.018 -0.45 

0.04 -1.01 0.0024 -4.02 
A = 

0.368t 1.42t 0.1 -0.707 

0 0 1 0 

-7.59 4.49 :] = [ 
0.442 

[B T] 
0.176 

3.545t -5.52 

tParameters undergoing change. All other parameters are assumed to 
be constant. The bounds on the variable parameters for the speed range 
60-170 knots are (i) 0.06 ~ a32 ~ 0.505, (ii) 0.119 ~ a34 ~ 2.52, and 
(iii) 0~977 ~b21 ~ 5.11. 
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speed range are also included in Table X. It is thus required to design 

an adaptive controller which updates the feedback gains to keep the 

deviation in the closed-loop modal structure a minimum for the complete 

speed range. The modes·of the system were selected to yield as far as 

possible eigenvectors which would undergo minimal deviation under update 

feedback for the complete speed range. The needed information is readily 

available by.examining the coupling matrices C.(A.) of (2.18) and (2.20) 
1 1 

corresponding to the two range limit speeds (60 knots and 170 knots) and 

the nominal speed (135 knots), This gave the desired mode/variable 

assignments as 

Mode Variable 

- 0.2 u 

- 0.5 v 

- 1.5 ~ jl q, e 

Table XI lists the resulting modal structure an~ the feedback gains ob-

tained for the three air speeds. The free design parameters correspond-

ing to the first two rows of the modal matrix were held the same for all 

speeds, and the change in modal structure due to plant.variation is 

revealed in the last two rows of the modal matrix, For comparison pur-

poses Table XI also includes the case of a fixed gain controller based on 

the nominal 135 knots design, The significant mode coupling introduced 

at speeds of 60 and 170 knots using the fixed controller is very apparent. 

The consequent response deviations are graphically illustrated in Figures· 

17-19, where responses labelled A and C show the dynamics of the fixed 

gain system at 170 and 60 knots, respectively. Responses labelled B show 

the nominal 135 knots responses and the adaptive controller responses for 

the speed range 60-170 knots, indicating negligible deviation in dynamics 



TABLE XI 

MODAL MATRICES FOR DIFFERENT AIR SPEEDS 

Speed 60 Knots 135 Knots 

A -0.2 -0.5 -1.5 .:!:_j1 -0,2 -0.5 -1.5 .:!:. j1 

1 0 0.1 0.1 1 0 0.1 1 

Adaptive 0 1 0 0 0 1 0 0 
u Controller 

-0.04 0.004 -0.54 0.06 -0.05 -0.018 -0.54 -0.03 

0.23 0.009 0.26 0.13 0.26 0.036 0.:24 0.18 

' 
-0.124 -0.043 0.486 0.30 -0.21 -0.007 0.685 0.808 

K 
-0.009 -0.073 0.063 -0.49 -0.09 -0.07 0.32 -0.15 

A -0.16 -0.44 -1.53 .:!:_j1.41 

o. 75 -0.118 -0.13 -0.16 

Fixed Gain As Above 

Controller 0.65 0.989 0.63 0.3 

(135 knots u 
design) -0.02 0.03 1 0 

0.109 -0.07 -0.35 -0.32 
----

-0.2 

1 

0 

-0.07 

0.38 

-0.43 

-0.28 

-0.25 

-0.7 

-0.59 

0.09 

-0.38 

170 Knots 

-0.5 -1.5 .:!:. j1 

0 0.1 0.1 

1 0 0 

-0.06 -0.54 -0.19 

0.12 0.19 0.25 

-0.03 0.88 1.52 

-0.09 0.59 0.49 

-0.35 -1.05 .!.,j 2 • 04 

0.29 0.36 0.198 

0.91 0.06 0.29 

-0.09 -0.67 -0.84 

0.27 0.63 0.41 1.0 
-....! 
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from the nominal has occurred. 

4.3.3 Summary 

The modal sensitivity of systems subject to plant variations has 

been examined. Freedback update procedures, based on the differential 

eigenvalue sensitivity of Tzafesta [27], were extended to include 

eigenvector sensitivity coefficients, From system stability considera­

tions, all such sensitivity designs are less attractive for on-line 

applications. It was .also noted that despite solving the non-linear 

Riccati equations as an iterative set of linear equations, the storage 

and operational count for optimal control schemes were found to be 

greater than for the algorithm of Chapter II. Two advantages of spectral 

synthesis, identification of modes leading to modal structures minimally 

affected by apriori specified plant variations and subsequent rapid 

feedback update to synthesize these structures, were illustrated in a 

numerical example. 



CHAPTER V 

SUMMARY AND CONCLUSIONS 

5,1 Summary 

In this dissertation a new approach to the synthesis of multivari­

able systems was presented, The design process originated from the 

observation that sufficient freedom exists in a multi-input state feed­

back system to simultaneously assign eigenvalues and part of the closed­

loop modal structure arbitrarily, Since the eigenvectors determine the 

influence of the associated modes on the response variables, selection of 

the modal entries directly control the dynamic characteristics of the 

feedback system, This key concept lead to the spectral characterization 

analysis developed in Chapter II, It was shown that the maximum 

number of entries in each eigenvector that can be arbitrarily selected is 

identically equal to the number of inputs. While this design freedom 

could be effectively used to meet a variety of design objectives, the 

most readily apparent, mode decoupled structure synthesis, was analyzed 

in this chapter, Further, in order to retain maximum flexibility in the 

realization of these closed-loop eigenvector forms, a new algorithm was 

developed for the eigenvalue/eigenvector assignment problem, which 

guarantees generation of a non-singular modal matrix required for the 

solution, 

In the algorithm developed, it is quite possible that a particular 

set of eigenvalue/eigenvector specifications may lead to a singular modal 
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matrix 1 indicating that no control law exists to meet that specification, 

In such an event it becomes necessary to relax eigenvalue and/or eigen..,. 

vector specifications to meet the nonsingular modal matrix constraint, 

This is in no way a serious limiation since pole specifications are 

rarely intenqed to be exact. However the algorithm detects the 

occurrence of a. possible singular assignment and allows for a designer 

controlled corrective perturbation to be made in eigenvalue/eigenvector 

specifications. This assures the synthesis of a stable feedback system 

with its dynamical behavior arbitrarily close to the desired 

specification. 

In Chapter III a practical application of the new design procedure 

was illustrated by synthesizing a hover controller for a helicopter. 

This example highlights the features of a solution arising from a combi­

nation of frequency and time-domain specifications for the .desired re­

sponses, The analysis in this chapter also revealed that for plants 

characterized by minimum input mixing through the distribution matrix B1 

it is possible to achieve non-interacting input/output behavior by state 

feedback alone 1 provided the corresponding closed-loop modal matrix can 

be synthesized to have a block diagonally dominant structure. 

The direct applicability of the synthesis algorithm to the design of 

state observers was established in Chapter IV, Again it was noted that 

for a multi-output system significant flexibility exists in the synthesis 

of observer structures, An application of this freedom in the synthesis 

of combined observer/feedback control system insensititive to initial 

bias errors was also presented. Thus 1 in essence 1 the algorithm present­

ed in Chapter II could be used to synthesize closed-loop systems with 

acceptable dynamic response even when all the states are not available 
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for measurement, 

Finally the utility of the new formulation was exemplified in the 

design of controllers insensitive to plant parameter variations •. The 

central role the closed-loop modal structure plays in evolving minimum 

sensitivity designs was clearly demonstrated. The potentialities of the 

synthesis algorithm as an on-line adaptive controller was also investi­

gated in this chapter and found to be computationally superior to 

existing methods, 

5,2 Conclusions 

Synthesis of multivariable systems based on pole-placement tech­

niques are potentially attractive since .there is adequate freedom in the 

design to modify and control the closed-loop dynamics through the non­

unique feedback law meeting desired pole-specifications. Since the syn­

thesis algorithms reported in the literature are unable to relate this 

design freedom in terms of an attribute of the system being synthesized 

they have not emerged as a practical design tool, The new formulation 

presented in this dissertation has significantly eliminated this limita­

tion by characterizing the non-unique feedback law in terms of the 

closed-loop dynamics through eigenvalue/eigenvector assignment. By 

shifting the focus on the closed-loop spectral characteristics 

(eigenvalues/eigenvectors) as contrasted with the open-loop spectral 

characterization of the classical modal control theory, it has been 

possible to rationally relate the multi-input design freedom to shaping 

the feedback system response, while retaining all the intuitively satis­

fying concepts of mode oriented design, Thus, spectral characterization 

theory as developed in this dissertation can be successfully used as a 



complementary design methodology along with classical optimal control 

procedures. 
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The inherently simple synthesis algo~ithm is admirably suited for 

both off/on-line applications, In particular in an iterative off-line 

dynamic response optimization synthesis effort, additional savings in 

computation results since the time response histories can be efficiently 

computed using (2,16) instead of resorting to numerical integration of 

the system differential equations. 

With the advent of small inexpensive digital computers considerable 

attention is being focused on the development of computer based on-line 

adaptive controllers, These controllers attempt to hold the response of 

the plant within tight bounds even under widely varying operating condi­

tions. The computational complexity of the algorithms naturally take 

paramount importance in such applications, and for highly responsive 

systems, such as aircraft, these requirements become more critical. Con­

ventional designs based on quadratic regulator procedures, in view of 

their extensive computations associated with the solution of non-linear 

Riccati equations, have found limited applications in this area, Thus 

the new synthesis algorithm, by virtue of dual advantage of computational 

simplicity and ability to synthesize minimum sensitivity systems, shows 

promise in meeting the rigid requirements of these real-time controllers. 

5,3 Topics for Further Research 

The pivotal role the modal structure plays in characterizing varied 

system attributes makes the new formulation potentially attractive to 

many related multivariable synthesis problems, Output feedback con­

trol, transfer function synthesis, dynamic compensators [31], disturbance 
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localization [32], and inverse-optimal control problem [33], are typical 

examples. Some recommendations of future study would be as follows. 

5,3,1 Output Feedback Problem 

Consider the controllable/observable system (4.1-4,2). It is re-

quired to find a control law 

u = Ky (5 .1) 

which arbitrarily assigns eigenvalues to the closed-loop system 

" A = A + BKC (5,2) 

This problem is as yet unsolved and numerous attempts [34,35,36,37] 

have been made to provide partial solutions to this problem, In general 

the number of poles that can be "almost arbitrarily assigned" [35], close 

to the desired values has been min(n, m + r- 1). More recently [38] an 

iterative technique has been suggested which improves the number of 

attainable poles to min(n, m • r) provided a solution exists, In the 

framework of the formulation of Chapter II, it is immediately clear that 

at most max(m, r) eigenvalues can be assigned arbitrarily with m • r 

modal entries freely chosen, Indeed Shaw, et aL [39], have tried to ex-

tend the formulation suggested in Chapter II [40], for the output feed-

back case and have pointed out.the complexity of the resulting analysis. 

Kimura [36] attempts to characterize the output feedback solutions in 

terms of the closed-loop eigenspace, These efforts point towards the 

hope that the closed-loop eigenvector structures may still hold the key 

to the solution and thus warrants some more investigation, In particular 

it is of interest to see if an iterative scheme could be developed which, 
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in addition to partial pole placement, at least guarantees closed-loop 

stability. 

5.3.2 Transfer Function Synthesis 

From a frequency domain viewpoint the transfer function 

matrix with all its poles and zeros specified characterizes the dynamic 

response of the system, and attempts have been made [41,42] to use the 

multi-input freedom to specify arbitrary zeros in addition to pole-

placement, Chen [41] provides a partial solution to this pole/zero 

assignment problem from a frequency domain analysis approach. Interest-

ingly, the closed-loop modal matrix is still the link between the 

frequency/time-domain formulations since the transfer function for the 

closed-loop system (4,1-4.2) can be expressed as 

T(s) = CU[sl - A]- 1VB (5.3) 

where U is the modal matrix, A is the matrix of eigenvalues, VT = [U-l]T 

is the matrix of reciprocal basis vectors and s is the ,Laplace operator, 

By expanding (5,3) in terms of the powers of s (Leverrier's algorithm 

[41]), it is possible to derive a set of linear constraints on the, 

reciprocal vectors v!, (when C is of rank n), for each zero specifica-
1. 

tion. Unfortunately the pole-placement specifications generate con,.. 

straints on the eigenvectors and thus in general it is not possible to 

provide closed form solutions to this problem. However it is still 

important to investigate the possibility of approximate transfer function 

t t synthesis using the pseudo-inverse matrices [43] B and C . 
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APPENDIX A 

COMPLEX CONJUGATE PAIR IN QAUSI-DIAGONAL FORM 

In order to allow for real arithmetic computation in the algorithms 

developed in Chapter II the following well known transformation relating 

the complex pair of eigenvalues/eigenvectors to an equivalent real pair 

is established for reference, 

Consider the eigenvalue/eigenvector relation 

A(u + jv) = (a+ j~)(u + jv) (A.l) 

where a + jS is a complex eigenvalue of A and (u + jv) the associated 

eigenvector, (A,l) can be solved for real and imaginary parts as 

Au = au - ~v (A.2) 

Av = Su + av (A.3) 

with the same relationship holding for the conjugate eigenvalue/eigen-

vector. (A,2) and (A,3) can also be written as 

A(u : v) = (u : v)(_~ (A,4) 

where u and v are real vectors corresponding to the real and imaginary 

parts of the complex eigenvector and using the standard quasidiagonal 

representation of the complex pair of eigenvalues. 

It is also possible to derive the first order eigensensitivity 
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relations of section (4.3) for complex pairs in terms of real eigen-

vectors as follows. 

Let u , u be the real eigenvector pair corresponding to 
r c 

p = J_: : J 
and let v and v be the reciprocal vectors such that r c 

T v 
r 

T 
v 

c 

(u 
r 

Then the complex eigenvector and reciprocal vector corresponding to 

a+ jS are 

u1 = u + ju 
r c 

with the scale factor (1/12) suppressed. Then 

and for dA = 0, by equating real and imaginary parts to zero, 

T v dA u 
r c r 

T 
v dA u r c c 

T = -v dA u c c c 

T 
v dA u 

c c r 

(A.9) and (A.lO) can now be used in (4.32) to develop two relations 

corresponding to the complex pair eigenvalues. 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 9) 

(A.lO) 



APPENDIX B 

CONSTRUCTION OF THE NONSINGULAR MODAL MATRIX 

The procedure outlined is a constructive guarantee of the realiza-

tion of a nonsingular U, and ,closely follows, the development given in 

[7]. The notation of [7] is followed for clarity, and the ,matrix parti-

tions are not necessarily those of Chapter II. The matrix M is 

constructed as an intermediate step in the realization of the required 

transformation U. The matrix of eigenvalues will be denoted here by J 

so that P, artitions J. will not be confused with earlier partitions A.: 
1 1 

Rewrite (2.1) as 

X = Fx + Gu 

with matrix G such that 

G = •••• 

where G1 is a p x p nonsingular matrix. 

Step 1: Let z = Tx where 

T = 
I p 

114 

0 

I n-p 

(B .1) 



and I indicates am x m identity matrix. This reduces (8.1) to 
m 

. 
z = Fz + .Gu 

where F = TFT-l 

Gl 
A 

G = .... 
0 

A 

Express F in partitioned form as 

Fll I F12 Fl3 
-- --

A I F = F21 ill Ll2 

I -- --
A A I 81 82 A 

A A 
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(8. 2) 

where A ism x m (with m = n- p), 82 ism x r, 81 is mx(n- m- r) and r 
A 

is such that [82 : A] spans an m dimensional subspace. This is achieved 

by permuting the columns ofF [7]. 

Step 2: Find a nonsingular M such that 

(8. 3) 

0 

where J is the diagona+ matrix of desired eigenvalues. Then 
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Jl 0 I 0 

-- --
J = 0 J2 I 0 

I -- --
0 0 J3 

and 

Mll l Ml2 I Ml3 
-- --

M = M21 
I 

M22 
I 

M23 
l I -- --

M31 
I 

M32 
I 

M33 

The partitions of M and J are compatible with the partitioning in (8.2). 

Now choosing M12 , M13 , M21 as null matrices and using the method outlined 

in Chapter II, (8,3) reduces to the following equations 

A 

M31J 1 + AM31 = BlMll (B. 4) · 

M3232 + AM32 = B2M22 (B.S) 

A 

M33J3 + AM33 = B2M23 (B. 6) 

(8.5) and (B.6) can be solved using Theorem 1 of [7] to yield 

nonsingular. Now choosing M11 nonsingular results in M invertible. The 

-1 
required transformation U of Chapter II is U = T M. 



APPENDIX C 

EIGENVALUE DEFLATION TECHNIQUES 

The following well known result in matrix theory [43] is proved for 

reference in order to emphasize the computational aspects. The notations 

used in the analysis to follow are not completely compatible with those 

used in Chapter li. 

Theorem: Let x be an eigenvector of a matrix A corresponding to the 

eigenvalue A, Let Q = MP be a nonsingular matrix such that Qx = ~en. 

Then 

c 0 

(C.l) 

where e is a vector whose.nth component is unity and other components 
n 

zero, P is an elementary permutation of the form 
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i j 

1 

1 
i . . . 0 1 . . . 

p = (C.2) 

j . . . 1 0 . . . 
1 

and M is an elementary upper triangular matrix of order n and index 1 of 

the form 

with 

M = I = meT 
n n 

T e m = 0 
n 

Proof by construction. Initially let 

and 

with 

p = I 
n 

(C.3) 

(C. 4) 

(C. 5) 

(C. 6) 



Construct M such that 

(C. 7) implies 

1';1 

r;n-1 

where 

This yields 

and 

r; . 
(2:.) ]Ji = .,. 
"'n 

Mx = cre 
n 

- )..lll';n 

- )..ln-1 r;n 

r;n 

= cre n 

(i = l,Z,···,n-1) 
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(C. 7) 

(C. 8) 

(C. 9) 

Since P only permutes the elements of x.the best choice of P from a 

computational viewpoint is one that prevents numerical overflow in (C.9). 

Hence choose P such that x is permuted to have 

Is I> ls-I n 1 
(i = l,Z,•••,n-1) 

Now 



I 
n-1 I -1 MAM = --
0 I 

= 

Since x is an eigenvector 

m 

1 

a nn 

All 

a2 

al 

--

.... 
r;n 

a nn 

-a2m+a nn 

= A. 

Completing the multiplication in (C.ll) gives 

a2xl + a r = J..r nn"'n "'n 

From (C.9), (C,l2) and (C,l3) 

Thus (C.ll) can be written as 

x = -l; • m 1 n 
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I n-1 -m 

--
0 1 

(C.lO) 

(C.ll) 

(C.l2) 

(C.l3) 

(C, 14) 

(C.lS) 

(C.l6) 
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MAM-1 = (C.17) 

which is in the form (C.l). 
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