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Abstract

The advance in human genome sequencing technology has significantly reduced the

cost of data generation and overwhelms the computing capability of sequence anal-

ysis. Efficiency, efficacy and scalability remain challenging in sequence alignment,

which is an important and foundational operation for genome data analysis. In this

dissemination, I propose a two stage approach to tackle this problem. In the prepro-

cessing step, I match blocks of reference and target genome sequences based on the

similarities between their empirical transition probability distributions using belief

propagation. I then conduct a refined match using our recently published SCoBeP

technique. I extract features from neighbors of an input nucleotide (a genome se-

quence of neighboring nucleotides that the input nucleotide is its middle nucleotide)

and leverage sparse coding to find a set of candidate nucleotides, followed by using

Belief Propagation (BP) to rank these candidates. Our experimental results demon-

strated robustness in nucleotide sequence alignment and our results are competitive

to those of the SOAP aligner and the BWA algorithm .

In addition, Most genomic datasets are not publicly accessible, due to privacy

concerns. Patients genomic data contains identifiable markers and can be used to

determine the presence of an individual in a dataset. Prior research shows that the

re-identification can be possible when a very small set of genomic data is released.

To protect patients, the data owners impose an application and evaluation procedure

which often takes months to complete and limits the researchers. One solution to

the problem is to let each data owner publish a set of pilot data to help data users

xiii



choose the right datasets based on their needs. The data owners release these pilot

data with the noise parameters and the mechanism that they used. A data user can

run any kind of association tests and compare the outcomes with the other datasets

outputs to get an idea which datasets can be useful. I present a privacy preserving

genomic data dissemination algorithm based on the compressed sensing. In my

proposed method, I am adding the noise into the sparse representation of the input

vector to make it differentially private. It means I find the sparse representation

using using the SubSpace Pursuit and then disturb it with sufficient Laplasian noise.

I compare my method with state-of-the-art compressed sensing privacy protection

method.

xiv



CHAPTER 1

INTRODUCTION

Advances in DNA information extraction techniques have led to huge sequenced

genomes from organisms spanning the tree of life. This increasing volume of genomic

information requires Algorithms that can accurately compare multiple genome se-

quences to aid in the study of populations, pan-genomes, and genome evolution [5,6].

For a particular research, many individual genomes may be sequenced to investigate

genetic diversity. For example, the Cancer Genome Atlas [10] and 1000 Genomes

Project [11] will generate genome sequences from several thousand people. The

complete bacterial genomes in public databases are already over one thousand.

In this dissertation, I propose a novel nucleotide sequence Indexing and align-

ment method based on empirical transitional probability, sparse coding and belief

propagation to compare the similarity of the nucleotide sequences. The alignment

method of this dissemination is inspired by my recent works, 3D-SCoBeP described

in chapter 2. Thanks to the sparse representation, my mechanism can handle long

sequences with reduced memory footprint. I also leverage belief propagation to com-

bine local and neighboring information of candidate nucleotides into consideration

and generate matching scores to determine the best match. First, I index the refer-

ence and the read genome sequence using empirical transitional probability and pick

the top score indexes from the reference genome sequence to build an over–complete

dictionary. I then find a set of candidate nucleotide for each nucleotide of the test

sequence using sparse coding from the constructed dictionary.
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In addition, Most genomic datasets are not publicly accessible, due to privacy

concerns. Prior research shows that the re-identification can be possible when a

very small set of genomic data is released. To protect patients, the data owners

release these pilot data with the noise parameters and the mechanism that they

used. I present a privacy preserving genomic data dissemination algorithm based

on the compressed sensing. In my proposed method, I am adding the noise into

the sparse representation of the input vector to make it differentially private. In

this chapter, I will briefly review four core techniques need in this dissemination:

Sparse Coding(SC), Compressed Sensing(CS), Belief Propagation(BP) and Differ-

ential Privacy(DP).

1.1 Belief Propagation (BP)

Belief Propagation (BP) is an efficient inference method used on graphical models

such as factor graphs [12], Bayesian networks [13] and Markov random fields [14].

It was performed by passing messages through the factor graph of my problem.

A factor graph is a graph that represent a function of multiple variables factors

into a product of multiple functions with few variables. For example, a function

h(x1, x2, x3, x4) can be written as

h(x1, x2, x3, x4) = fa(x2)fb(x1, x2, x3)fc(x2, x4)fd(x4) (1.1)

where fa, fb, fc ,and fd are factor functions and the corresponding graph is shown

in Fig. 1.1.

Define N(i) and N(a) as two sets of neighbors of a variable node i and a factor

node a, respectively, and denote mi→a and ma→i as the forward and backward

messages from node i to node a, respectively. A message itself is a vector containing

current beliefs of a node mapping to all candidate pixels in the reference image.

2



x1

fa x2

fb x3

fc x4

fd

Figure 1.1: Corresponding factor graph of the equation (1). x1, x2, x3, and x4 are
the variable nodes and fa, fb, fc, and fd are the factor nodes.

For example, ma→i(gi) can be interpreted as the belief of node a of how probable

that the pixel of node i in the test image should map to location xi in the reference

image. Message updates for mi→a and ma→i are based on the messages received by

the incoming messages towards nodes i and a, respectively. More precisely, in my

factor graph, the message update rules are given by [12]

mi→a(xi) =
∏

b∈N(i)\a

mb→i(xi), (1.2)

ma→i(xi) =
∑

xa\xi

f(xa)mj→a(xj), (1.3)

where N(a)\i means all neighbors of node a excluding node i; the factor node xa is

located between variable nodes xi and xj. Also, I model f(xa) as follows:

f(xa) = f̃(xi, xj) = e−
||Li−Lj ||2

σ2 (1.4)

where σ2 is a parameter to control the relative strength of the geometric constraint

imposed by a neighboring node. If I increase the value of σ2, the belief of each

variable node will have less effect on its neighbors.

3



1.2 Sparse Coding

Consider a signal y ∈ RM and a fat matrix D ∈ RM×N , where I say the matrix is

“fat” since M � N . I am interested in representing y with the column space of

D ∈ RM×N , i.e., finding α ∈ RN such that y = Dα. Since D is fat, α is not unique.

However, if I also restrict α to be the sparsest vector to satisfy y = Dα (i.e., α that

has fewest number of non-zero elements), then in theory there is a unique solution.

Sparse coding precisely considers the aforementioned problem of finding a sparse α

such that y = Dα is satisfied.

Mathematically, I can write the problem as

α̂ = arg min||α||0 subject to y = Dα. (1.5)

However, this l0 optimization problem is NP-complete [15] and thus several alter-

native methods have been proposed to solve it [16]. For example, when a sufficiently

sparse solution actually exists, substituting the l1 norm for the l0 pseudo-norm in

(1.5) as below

α̂ = arg min||α||1 subject to y = Dα (1.6)

will still result in the same solution [15] . Moreover, solving this modified problem is

much easier since it can be readily transformed into a linear programming problem.

Besides linear programming, many other suboptimal techniques have been proposed

to solve (1.6), including orthogonal matching pursuit [17], gradient projection [18]

and subspace pursuit [19].
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Figure 1.2: The sparse representation of the natural signals; d is a one dimensional
signal that can be represented in a transformation domain by a sparse vector x
where the transformation basis are the columns of the matrix Ψ ∈ Rn×n. Note that
a vector is sparse if most of its elements are equal to zero. Here, the white squares
are representative of the zero elements.

1.3 Compressed Sensing

In this section, I briefly review the theory of the compressed sensing and its major

processes and elements1. Consider an input vector d ∈ Rn that I want to represent it

by a vector x ∈ Rn using an orthonormal basis (a transformation matrix) Ψ ∈ Rn×n

where d = Ψx ∈ Rn and x is a s-sparse vector (s < n) which means x has at most

s nonzero entries (see Figure 1.2).

Note that if x is not a sparse vector, by zeroing the very small coefficients of x, I

can make it sparse and this new vector still keeps the most amount of information of

original vector [4, 20, 22]. Furthermore, the orthonormal basis Ψ can be a standard

transformation basis like wavelet basis or discrete cosine transform basis. The vector

d is the input of the compressed sensing method.

The compressed sensing is divide into two processes: a “sampling process” and

1for more information, please read [20,21]
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Figure 1.3: The sampling process of the compressed sensing method; d is an input
signal and a random matrix Φ ∈ Rk×n maps d to a measurement vector y ∈ Rk

which reduces the size of the input signal from n to k = O
(
s log(n/s)

)
.

a “reconstruction process”. The sampling process of the compressed sensing is a

probabilistic compassion process using a random matrix Φ ∈ Rk×n that reduces the

size of input from n to k = O
(
s log(n/s)

)
. This step is modeled as a linear mapping

of the input vector d into its random projection y (y = Φd ∈ Rk). The random

matrix Φ is formed by independent and identically distributed (i.i.d.) entries from

a symmetric Bernoulli distribution (see Figure 1.3).

The reconstruction process of the compressed sensing exactly or approximately

reconstructs the original data from the compressed samples. In this step, the vector

d is recovered from its random projection y using the sparse representation x̂. I

consider a matrix A = ΦΨ which both Φ (random matrix) and Ψ (Orthogonal

transformation matrix) are known from the sampling process. Using a l1-Norm

minimization method like Orthogonal Matching Pursuit (OMP) [23] or SubSpace

Pursuit (SSP) [19], the recovered answer x̂ is close enough to the original x even in

the presence of noise (see Figure 1.4).

Mathematically, the l1-Norm minimizer selects the smallest set of columns from

6



Figure 1.4: The reconstruction process of the compressed sensing method; y is a
measurement vector and A = ΦΨ ∈ Rk×n. The l1-minimizer select the smallest set
of A’s columns as the solution which is sparse and its error is less than the threshold
ε. Note that the columns marked by black are the selected ones.

A such that

x̂ = arg min ‖x′‖0, subject to ‖y − Ax′‖2 < ε (1.7)

where ‖x‖0 := |{i : xi 6= 0}|2 and ε is a error threshold that determines how close

is the x̂ to the original vector x; The smaller ε forces the x̂ to be closer to the x.

If I want to have a s-sparse x̂, then the l1-Norm minimization method solves the

following problem:

x̂ = arg min
‖x′‖0≤s

‖y − Ax′‖2. (1.8)

1.4 SubSpace Pursuit

Subspace pursuit (SSP) is a l1-Norm minimization method which has a reconstruc-

tion capability compared to the Linear Programming (LP) methods, and has very

low reconstruction complexity of matching pursuit techniques for very sparse signals.

2‖x‖1 :=
∑n

i=1 |xi| and ‖x‖p :=
(∑n

i=1 x
p
i

)1/p
where p > 1

7



For any sampling matrix A satisfying the restricted isometry property (RIP) [24]

with a constant parameter independent of K, the Subspace pursuit algorithm can

recover arbitrary K-sparse signals exactly from its noiseless measurements.

When the measurements are inaccurate and/or the signal is not exactly sparse,

the reconstruction distortion is of order a constant multiple of the measurement

and/or signal perturbation energy. More precisely, for very sparse signals with K =

O(
√
N) where N the number of columns of A, which, for instance, the computational

complexity of the Subspace pursuit algorithm is upper bounded by O(mNK), but

can be further reduced to O(mNlogK) when the nonzero entries of the sparse signal

decay slowly 3.

1.5 Differential Privacy

The current privacy protection techniques attempt to add noise to the allele fre-

quencies of the case group in a way that the absent or present of any individual in

the output result data be impossible.

A randomized algorithm f , called ε–Differential Private, if for all adjacent datasets

D and D′, and any possible output D in the output space of f :

Pr[f(D) = D̂]

Pr[f(D′) = D̂]
≤ eε. (1.9)

Note that D̂ is any dataset or a numerical value depends. The Laplacian mech-

anism [25] is commonly used in data disturbing methods to achieve differential pri-

vacy, which adds noises generated from a Laplacian distribution, Laplace(0, ∆f/ε),

to the output of a computation on the dataset. The amount of noises will be calcu-

lated based on the sensitivity of the computed data. The sensitivity represents the

maximum change of the output when a single modification happens to a dataset.

3For more information about the details of the Subspace pursuit, please read [19]
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Note that for any f : D → Rd, and all adjacent datasets D and D′, the sensitivity

of f can be calculated as follows:

∆f = max
D,D′
‖f(D)− f(D)‖1 (1.10)

Another popular differential privacy mechanism is called Exponential mechanism

[26]. This mechanism will one output t ∈ T that has optimum utility function and

preserving the differential privacy. The inputs of the exponential mechanism are a

data set D, a range T , a privacy parameter ε , and a utility function u(·) where

u : (D × T ) → R. Then it that assigns a real value number to the output t ∈ T ,

where the higher value number shows the better utility. The mechanism induces a

probability distribution over the range of T and

t ∝ exp

(
εu(D, t)
2∆(u)

)
, (1.11)

where ∆u = maxD,D′ ‖u(D)− u(D)‖1 is the sensitivity of the utility function u(·).

9



CHAPTER 2

3D MEDICAL IMAGE REGISTRATION USING SPARSE

CODING AND BELIEF PROPAGATION

There are various medical imaging methods which have been used broadly in clin-

ical and medical research. Consequently, the interests in registering and finding

similarities of different images for diagnosis, treatment, and the sake of basic sci-

ence are increasing. As images are typically captured at different times, angles,

and often by different modalities, registering (or aligning) one image with another

is challenging. In general, The accuracy of registration techniques will affect the

performance and robustness of all subsequent analysis. I propose an efficient 3D

medical image registration method based on sparse coding and belief propagation

for Computed Tomography (CT) and Magnetic Resonance (MR) imaging. I used

3D image blocks as the input features and then I employed sparse coding with a

dictionary of the features to find a set of the candidate voxels. To select optimum

matches, belief propagation was subsequently applied on a factor graph of voxels

generated by these candidate voxels. The outcome of belief propagation was inter-

preted as a probabilistic map of aligning the candidate voxels to the source voxels. I

compared my proposed method (3D-SCoBeP) with the state-of-the-art medical im-

age registration, MIRT [2] and GP-Registration algorithm [3]. My objective results

based on Root Mean Square Error (RMSE) are smaller than those from MIRT and

GP-Registration. My results prove the effectiveness of my algorithm in registering
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the reference image to the source image.

2.1 Introduction

Image registration refers to the process of aligning two or more images obtained

from different capturing modules and/or angles, and/or at different times into the

same coordination system [27]. Registration is essential in many clinical applica-

tions including diagnosis [28], simulating and surgical planning [29]. For example,

registration techniques have been used to align a Magnetic Resonance (MR) image

to a Computer Tomography (CT) image [30,31]. In surgery, radiotherapy, or radio-

logical intervention, preoperative medical data are used to diagnose, plan, simulate,

guide, or otherwise assist a surgeon, or possibly a robot [32]. While the surgical

procedure is performed in the coordinate system relative to the patient, the surgical

plan is constructed in the coordinate system relative to the preoperative data. The

spatial transformation between the plan and the preoperative data is formed by

registration. Registration as a central step of processing images in the treatments,

allows any voxel defined in the preoperative image to be precisely located in the

patient coordinate system. This can aid the surgeon by delineating the position of

the surgical instruments relative to the ultimate target.

Images of similar or different modalities need to be aligned for navigation, de-

tection, data-fusion and visualization in medical applications [33]. Medical image

registration still presents many challenges. For example, finding a one-to-one cor-

respondence between several scans of the patient is difficult, because the body of

the patient can be subject to sudden changes or the modality of the scans can be

different. The first one makes the transformations between scans highly non-rigid

and the last one creates significantly different images in overall appearance and

resolution [34].

Many medical image registration methods have been developed in the last two
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decades [2,3,27–40]. These can be divided into two major categories, namely, direct

and feature-based matching. Direct methods use all available image data, and they

result in very accurate registration if initialization points are close to target points

at the beginning of the registration procedure [35]. For instance, in [3], a general-

purpose registration algorithm for the medical images has been developed which

incorporates both geometric and intensity transformation. The authors modeled

the transformation with a local affine model and a global smoothness constraint.

Intensity variations are also modeled with local changes in brightness, contrast and

a global smoothness constraint. Moreover, Myronenko and Song used the definition

of the similarity measure to propose a registration method [2]. They derived the

similarity measure by analytically solving for the intensity correction field and its

adaptive regularization. The final measure was interpreted as one that favors a

registration with minimum compression complexity of the residual image between

the two registered images.

Feature-based registration methods, utilize invariant features (specially around

Harris corners) to ensure reliable matching. As a result, feature-based methods

are independent from an initialization point [37]. Also, feature-based registration

methods obtain the transformation parameters from the set of extracted features.

For example, Glocker et al. [36] used different levels of smoothness in modeling

medical images and then used Markov Random Fields (MRFs) to formulate image

deformations. Liu et al. [41, 42] and Elbakary et al. [43] registered multi-modal

medical images using banks of local Gabor and Gaussian filters to evaluate the

frequencies. The number and characteristics of filters in those works were selected

empirically. Staring et al. [44] incorporated multiple image features including the

intensity gradients and Hessians. They combined parametric cubic B-splines, and

an iterative stochastic gradient ascent optimization [45,46] to solve the registration

problem.
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Image-registration techniques based on type of deformation have been divided

into two categories: “rigid” and “non-rigid”. In the rigid techniques, like [38], images

are assumed to have rotation and translation only but in the non-rigid techniques,

like [47], images can have restricted localized stretching. For example, in brain image

registration with different modalities, a rigid body approximation is sufficient due

to relatively little changes in brain shape over a short period between scans. In [38],

authors formulated the rigid registration problem based on general image acquisi-

tion model and cast the problem of finding a similarity measure into their maximum

likelihood problem. Then, they derived similarity measures for different modeling

assumptions. Their experimental results concentrated on the multi-modal images of

the brain. Sabuncu et al., in [48] introduced an entropy-based algorithm for register-

ing rigid multi-modal images that incorporates spatial information. Spatial feature

vectors obtained from the images and a minimum spanning-tree approach were used

to estimate the conditional higher-dimensional entropy. They minimized the Jensen-

Renyi divergence between the learned and new joint intensity distributions with a

gradient descent method.

As an example for non-rigid registration techniques, Likar et al. [47] proposed a

hierarchical image subdivision strategy to perform a non-rigid registration method

based on mutual information. The non-rigid matching problem was decomposed

into a Thin-Plate-Spline-based (TPS) elastic interpolation of multiple local rigid

registrations of sub-images. One of the sub-categories of the non-rigid image regis-

tration is topology-preserving registration. In these kind of methods, the existing

structures are kept, no new structures are allowed to be added, and neighborhood

relationships between the structures are preserved. For example, Musse et al. [39]

proposed a parametric topology-preserving deformable image registration using the

Gauss–Seidel optimization method. The Jacobian of the mapping was controlled

over the domain of the transformation to ensure topology preservation. The authors
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derived the necessary and sufficient conditions for the determinant of the Jacobian

of such transformations to be continuously positive everywhere and applied their

method to the 2D images.

Based on the dimensions of input data, the registration method can be catego-

rized as 3D or 2D registration techniques. The 3D registration method normally

applies to the registration of two tomographic datasets but the 2D registration may

apply to the separate slices from tomographic data. Also, a 3D to 2D registration

may help to transfer the acquired 3D data to the 2D data, to facilitate treatment

planning. In [49–51], the authors developed automated intensity-based algorithms

for updating a 3D position of an interventional instrument using a single-plane an-

giogram registered to a 3D volume. In [49], Penney et al. aligned preoperative CT

and intraoperative fluoroscopy images where the surface-target registration errors

were of the order of 12 mm. In [50], Hipwell et al. expanded the former method to

registering 3D cerebral Magnetic Resonance Angiography (MRA) with 2D X-Ray

angiograms [50] where their RMSE were 1.5±0.9 mm for 85% of the clinical images.

Byrne et al., in [51], extended Penney et al. work and registered 3D X-ray Digital

Subtraction Angiography (3D-DSA) images. Their registration method accuracy

was 1.3± 0.6 mm in the clinical study of the two images with the same modality.

Many researchers incorporate smoothness (or spatial coherence) conditions by

reformulating matching into an optimization problem [52, 53]. For example, Tang

and Chung [53] assigned a vector displacement label indicating the position in the

test image to each pixel in the reference image. They used a smoothness constraint

based on the first derivative to penalize sharp changes in displacement labels across

pixels. Then they employed a graph-cuts method to solve that labeling problem.

Moreover, Liu et al. [52] used belief propagation to optimize cost function incorpo-

rated with smoothness constraints which encourage similar displacements of near-by

pixels.
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In this chapter, I propose a dense registration technique by aligning two CT or

MR images using sparse coding and belief propagation. First, I build an overcom-

plete dictionary out of all 3D features of a reference image [54]. Note that since the

dictionary is constructed by padding the features directly, I only need to normalize

each columns. I then find a set of the candidate voxels for each voxel of the source

image using sparse coding out of the constructed dictionary. The match score of

each candidate voxel will be evaluated taking both local and neighboring information

into account using belief propagation [12]. The best match will be selected as the

candidate with the highest score. For those voxels with belief less than the threshold

θ, I use graph-cuts algorithm [55] to find the proper matches. In comparing to the

state-of-the-art belief propagation based registration methods, the key innovation

of the proposed approach (3D-SCoBeP) is the inclusion of a preprocessing step to

preselect good candidate registration points for each voxel. Belief propagation is

very powerful optimization technique, but if the size of the problem increases, it is

more difficult to obtain a good local optimum. This restricts the size of the search

range for each voxel. In prior approaches such as SIFT-flow [52], the search range

is simply chosen as a patch containing neighboring voxels around each target voxel.

In contrast, a preprocessing step is used to carefully preselect candidate registration

points for each voxel in the 3D-SCoBeP. Since these candidate points are selected

from any voxel in the image, the search range of the 3D-SCoBeP is much larger than

prior approaches and essentially covers the entire image. This is a main reason for

the improvement of the 3D-SCoBeP over the prior works.

A näıve approach computes the Mean Square Error (MSE) of the input patch

with each possible patch of the reference image and selects patches that have the

smallest MSEs. These kind of approaches have poor diversity which means the

candidate patches are concentrated in a small region. In this case, a small shift from

the most similar patch generally does not decrease similarities sharply except for very
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high frequency patches. Consequently, this approach results in patches with very low

diversity. Furthermore, the näıve approach may fail to find the true corresponding

match points. It is possible that the näıve approach returns a set of candidates where

all of them concentrate around a wrong point. Instead, I propose to find candidate

match points using sparse coding. The intuition is that if these candidate patches

are similar enough to the source patch, I should be able to construct a source patch

out of good candidate patches (so they correspond to a sparse coding solution).

With my technique, the sparse coding outputs the patches that can reconstruct the

original patch through a linear combination. The resulting patches of sparse coding

are likely to be complementary to each other and so provide a better diversity than

the näıve solution.

The proposed method described here is inspired by my recent works, SCoBeP [56]

to answer the the current challenges in the medical data alignment which are:

1) the patient body movements while capturing the data,

2) the patient body tissue changes due to progress of disease or treatment and

3) different sampling rates of the data because of different sampling rates along

the directions.

A preliminary version of this work has been reported in [57]. Since then, much

research has been done and the novel components in addition to the aforementioned

works are summarized as follows:

• Using 3D feature of input data which makes the proposed method more accu-

rate than the other state-of-the-art methods;

• Using 3D feature of input data which makes the proposed method more accu-

rate than the other state-of-the-art methods;

• Using a template and interpolating the voxels of input data to map onto the

template where the captured voxel coordination systems are different which
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increases the robustness of registration method;

• Employing a graph-cuts method as a post-processing method which further

refines the matches obtained from the belief propagation step.

The rest of the chapter is organized as follows. In the next section, I will intro-

duce the concept of my 3D-SCoBeP and the inference algorithm and then, in Section

2.3, I will show my simulation results, followed by a brief conclusion in Section 2.4.

2.2 3D–SCoBeP

As mentioned in Section 2.1, in the medical image applications I need dense regis-

tration so that for each point of the source data a corresponding match point will be

found in the reference data. This section describes the implementation details of

my proposed registration method for the 3D medical data which is based on sparse

coding and belief propagation.

The proposed method described here is inspired by my recent works, SCoBeP

[56]. First, I extract the features from the 3D reference data {Xs}kxs=1 ∈ RM×N×K

and the 3D source data {Ys}kys=1 ∈ RM×N×K where kx and ky are the numbers of

the reference and the source image slices, respectively. I focus on only using 3D

block features even though the proposed approach can generally be applied to other

features (such as SIFT-features [58] or Gabor-features [59]). The 3D feature block

is a rectangular cube neighbor around each voxel of the 3D data which I reorder as

a 1D vector. Thus, each feature considered here is essentially a vectorized 3D block

centered around a voxel in a 3D data.

Second, I create a dictionary D which contains all extracted feature vectors of

the reference data to match to the corresponding extracted features of the source

data. The dictionary includes all vectorized 1D features as its columns where all of

them have been normalized. I then apply sparse coding to each extracted feature of
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the source data. Sparse coding will reconstruct a 3D source patch at voxel [i, j, k]

as a linear combination of the reference 3D patches. Denote αqlv as the weight

vector where each element corresponds to a coefficient in this combination. Note

that the representation coefficients αijk should be sparse, i.e., it should be 0 for most

coefficients. To select the n candidate voxels, I simply pick those corresponding to

n largest coefficients in the sparse coefficient vector. I denote a set as an n × 3

matrix storing the locations of these candidate voxels and a probability vector ρ

as a length-n vector storing the corresponding probabilities of the sparse coefficient

vector. Each coefficient in the probability vector ρijk serves as a prior probability

of matching the 3D source patch centered around voxel [i, j, k] to a 3D patch of

the reference data. This probability vector is taking only local characteristics into

account but ignoring geometric characteristics of the matches.

Finally, to incorporate these geometric characteristics, I model the problem by

a factor graph and apply BP to identify the best matches similar to [60]. I consider

a 3D lattice factor graph as follows: For each voxel in the source 3D data, one

variable node was assigned and then I connect each variable node to its six neighbors

by a factor node (see Fig. 2.1). Also, I consider one extra factor node for each

variable node to take care of prior probabilities of the candidate points. In my

model, the factor function f(xi, xj) which can be interpreted as the local belief

mapping nodes i and j to xi and xj can be used to impose the geometric constraint

described earlier. Intuitively, since xi and xj are the corresponding mapped match

points in the reference image of two neighboring voxels in the source image, I expect

the probability of getting xi and xj to decrease as their distance apart increases.

Therefore, I model the function of the factor node between two particular variable

nodes xi and xj with a Gaussian kernal as [12]

f(xi, xj) = e−
||xi−xj ||2

σ2 (2.1)
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where σ2 is a parameter to control the relative strength of the geometric constraint

imposed by a neighboring node. If I increase the value of σ2, the belief of each

variable node will have less effect on its neighbors.

To synthesize the source image, I replaced each voxel of the source image with

the selected candidate voxel from the reference image where its probability is more

than the threshold θ. If the final maximum belief of the selected point was less

than the threshold θ, I employ graph-cuts algorithm [55, 61] to find the correspond

voxel. First, for voxels with maximum belief more than θ, I calculate the move-

ment of each voxel of reference data in comparison to the source data and create

the displacement matrix β. Then, I feed the displacement matrix β to graph-cuts

algorithm to estimate the disparity of voxels with unsatisfactory beliefs. In the

graph-cuts algorithm, I initialize the label of each voxel by its displacement value

if its input belief is small then threshold θ and by average displacement value of all

voxels otherwise. The data term is defined by a quadratic function of the distance

between the current label and the desired label, and the smoothness term is defined

by a linear function of the distance between the current label and its neighborhood

label. The neighborhoods are the same as which I used in the BP step and the swap

algorithm of graph-cuts is applied to label voxel with beliefs less than the threshold

θ.

2.2.1 Implementation

This section describes the implementation’s details of my proposed registration

method. The main procedure for my proposed registration method is summarized

in Algorithm 1.
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Variable Node 

Factor Node 

Factor Node (Prior)  

Figure 2.1: Three dimensional factor graph of medical data used in Belief Prop-
agation: for each voxel in the source 3D data, one variable node was assigned to
incorporate these geometric characteristics. I connect each variable node to its six
neighbors by a factor node and incorporate one extra factor node to store initial
probabilities. A part of two slices of medical data corresponding factor graph is
shown. This factor graph can be extended on X-axis, Y-axis and Z-axis.
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Algorithm 1 3D-SCoBeP for the medical image registration- estimate version of
the registered image Z
Inputs: a reference data {Xs}kxs=1 ∈ RM×N×K , a source data {Ys}kys=1 ∈ RM×N×K , a

threshold θ , the number of the candidate points n
Extract 3D dense feature and construct dictionary:

• Y = ExtractDenseFeature
(
{Ys}kys=1

)

• X = ExtractDenseFeature
(
{Xs}kxs=1

)

• D = MakeDic
(
X
)

Find the initial estimate of the candidate voxels: For each vector yi,j,k ∈ Y
perform:

• α̂i,j,k = FindSCV
(
D, yi,j,k

)

• [Li,j,k, ρi,j,k] = FindTopSCV
(
n, α̂i,j,k

)

Refine the candidate voxels:

• ρ̂ = BP
(
L, ρ

)

Find the correspond voxels:

• [Z, β] = Warp
(
X, ρ̂,L, θ

)

• if there is a voxel with probability less than θ then Z = Graphcuts
(
X, β, θ

)

Output: the estimated version of the registered image Z
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Implementation Details:

• Y = ExtractDenseFeature
(
{Ys}kys=1

)
presents a 3D block extractor algo-

rithm using {Ys}kys=1 as a source data. More precisely, I consider a 3D block of

size S = (2a + 1) × (2b + 1) × (2c + 1) containing neighboring voxels around

each voxel on a 3D data, where a, b and c are positive integers. For each voxel

pi,j,k in the source data {Ys}kys=1, I vectorized the 3D block centered around the

voxel pi,j,k to a feature vector yi,j,k ∈ RS×1. A source feature Y ∈ RM×N×K×S

is then constructed from yi,j,k,t as follows:

Y = {yi,j,k,t | 1 ≤ i ≤M, 1 ≤ j ≤ N,

1 ≤ k ≤ K, t ∈ S}. (2.2)

Note that X is created in the same manner as Y but instead from the reference

data {Xs}kys=1.

• D = MakeDic
(
X
)

creates a dictionary D using the vectors of X. Later, the

dictionary D is used to match the extracted features of the source data to the

corresponding extracted features of the reference data. I can write D as

D = [x1,1,1 ... x1,1,K x1,2,K ... x1,N,K ... xM,N,K ] , (2.3)

where xi,j,k is a feature vector of X. Note that I normalize dictionary D to

guarantee the norm of each feature vector to be 1.

• α̂i,j,k = FindSCV
(
D, yi,j,k

)
finds the candidate match voxels using the sparse

coding algorithm, where α̂i,j,k is a sparse vector. Mathematically, I try to solve

the following sparse coding problem to find the most sparse coefficient vector
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Figure 2.2: Sparse representation of a feature vector yi,j,k with a dictionary D : α̂i,j,k
as a sparse vector constructs the feature vector yi,j,k using a few columns (highlighted
in gray) of dictionary D.

α̂i,j,k (see Fig. 2.2) such that

yi,j,k = Dα̂i,j,k. (2.4)

Although there are several methods to solve (2.4) [17–19], in my work, I employ

Subspace Pursuit (SP) [19] because of its computational efficiency.

• [Li,j,k, ρi,j,k] = FindTopSCV
(
n, α̂i,j,k

)
picks up the n largest coefficients of

α̂i,j,k as n candidates. Li,j,k as an n × 3 matrix stores the locations of these

candidate voxels and ρi,j,k as a length-n vector stores the corresponding values

of Li,j,k. Each coefficient in ρi,j,k serves as a prior probability of matching the

source patch at [i, j, k] to a patch centered around the voxel xi,j,k. After finding

the candidate locations Li,j,k and their initial probabilities ρi,j,k for each voxel,
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I concatenate the results and construct following matrices:

L = [L1,1,1 ... L1,1,K L1,2,K ... L1,N,K ... LM,N,K ], (2.5)

ρ = [ρ1,1,1 ... ρ1,1,K ρ1,2,K ... ρ1,N,K ... ρM,N,K ] (2.6)

which I will use to apply belief propagation at the next step.

• ρ̂ = BP
(
L, ρ

)
models the problem by a factor graph and applies belief propa-

gation [12] to update probability ρ. The updated probability ρ̂ can be used to

register the reference data onto the source data. In my case, I assign a variable

node for each voxel in the source data and connect each pair of neighboring

voxels with a factor node. Also, I introduce one extra factor node to take care

of the prior knowledge obtained in the sparse coding step for each voxel of the

source data (for more details, see [56]).

• [Z, β] = Warp
(
X, ρ̂,L, θ

)
returns the registered image Z and a displacement

matrix β which contains the movement of each voxel of reference data. This

matrix can be used to refine the result of the voxels with a probability less

than θ.

• Z = Graphcuts
(
X, β, θ

)
applies the graph-cuts method to find the displace-

ment of the voxels with a probability less than θ and returns the registered

image Z. The displacement matrix β keeps the movement of the voxels and

marks the area with a probability less than θ. I feed the matrix β to graph-cuts

algorithm and initialize the label of each voxel by the average displacement

value of all voxels if it is marked in the matrix β and by its displacement value

otherwise. I use a quadratic function of the distance between the current label

and the desired label as the data term and a linear function of the distance be-

tween the current label and the neighboring label as the smoothness term. The
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graph-cuts algorithm updates the matrix β and I use the new displacement

matrix to find the corresponding voxels.

• Ẑ = Warp
(
{Xs}kys=1 , ρ̂ , L

)
displays the registered CT image Ẑ using the

updated probabilities ρ̂, the candidate voxels location L, and the reference CT

image {Xs}kxs=1. In my work, I select the most probable point after the BP step

as the best match point. I assume that my registration method successfully

finds a match for an input point if the most probable candidate has belief

larger than a threshold θ. Otherwise, I assume no best match is found.

2.3 Experimental Results

The utility and novelty of my medical image registration algorithm lies in the fact

that it can handle images captured not just from a single plane but also from different

planes. Hence, in this section, I will study the performance of my method for both

cases and compare it with the different registration methods.

In a brief statement, I will present two experiments in this section: the 3D CT

image registration taken along a same direction in Section 2.3.1 where I consider

the problem of registering two lung CT images of one person from two different

times, and 3D MR image registration taken along different directions in Section

2.3.2 where two brain MR images were captured along the X–Z (sagittal) and the

X–Y (transverse) planes. I implemented the 3D-SCoBeP algorithm in Matlab and

tested it on a Pentium 3 GHz (11-GB RAM) machine.

2.3.1 3D CT Image Registration Taken In Same Directions
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(a) (b) (c)

(d) (e) (f)

Figure 2.3: Result of 3D-SCoBeP on Lung CT images. (a) The reference CT image; (b) The source CT image; (c) The 3D-
SCoBeP result; (d) The comparison between corespondent voxel between the source and the reference; (e) The comparison
between corespondent voxel between the source and the MIRT result; (f) The comparison between corespondent voxel between
the source and the 3D-SCoBeP result; In (d)-(e) I used a RGB image where the first channel of the image was assigned to the
source image intensity and the second channel to the reference, MIRT, 3D-SCoBep results, respectively.
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To evaluate the performance of my approach, I conducted tests on the data sets

LIDC-IDRI [62] where the size of each slice of the CT images is 512 × 512 voxels.

Throughout the experiments, the following parameters were used: the number of

the candidate voxels n is set to be 4, a = b = 3 and c = 2. To synthesize the source

image, I replaced each voxel of the source CT image with the selected candidate

voxel from the reference CT image. In other words, I map the reference CT image

onto the source image using the updated probabilities and the candidate voxels

location. In my work, I select the most probable voxel after the BP step as the

best match voxel. I assume that my registration method successfully finds a match

for an input voxel if the most probable candidate has belief larger than a threshold

θ = 0.3. Otherwise, I assume no “best match” is found. The threshold θ can be

chosen empirically which was the way that I chose in Fig. 2.4 and 2.5 to express

the results.

Fig. 2.3 shows the result of the 3D-SCoBeP and MIRT [2] with a 3D perspective.

In this figure, I decided to show only a part of the CT images because the inside

details of the lung are more important than the tissue around it. Figs. 2.3(a) and

2.3(b) are the reference and the source CT image, respectively. Fig. 2.3(c) shows

the result of 3D-SCoBeP where I used the voxel of the reference data to synthesize

the source data. I created one RGB image where its first channel was assigned to

the intensity of source CT image and its third channel was equal to 255. I assigned

the reference CT image intensity, the MIRT result and the 3D-SCoBeP result to the

second channel, respectively. Therefore, Fig. 2.3(d) corresponds to the initial state

and Fig. 2.3(e) and 2.3(f) are final state of the MIRT and the 3D-SCoBeP. Note that

in Fig. 2.3(c), I display a pure result of the proposed method which only the voxels

with a probability more than the threshold θ was shown, therefore there are some

dark voxels in this figure. For those voxels with probability less than θ, the analysis

of motion fields of neighborhood voxels could be used to estimate their motions. It
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means, one can extract the motions of voxels which have probability more than θ

in each direction and apply the graph-cuts method [55], median filter, or moving

average to estimate the motion of voxels with probability less than threshold θ.

I now proceed to compare the 3D-SCoBeP with other approaches; Figs. 2.4

and 2.5 show the output of my proposed method compared to two of the state-of-

the-art methods: the MIRT [2] and GP-Registration [3]. In these figures, I select

only one slice of CT image to show the weaknesses and strengths of each technique.

Figs. 2.4(a) and 2.5(a) correspond to the reference CT image and Figs. 2.4(b) and

2.5(b) correspond to the source CT image. Figs. 2.4(c)-(e) and 2.5(c)-(e) show

results using MIRT [2], GP-Registration [3] and 3D-SCoBeP. The warped images

using MIRT with highlighted artifacts are shown in Figs. 2.4(h) and 2.5(h) and

the warped images using GP-Registration with highlighted artifacts are shown in

Figs. 2.4(i) and 2.5(i). The estimated images generated from the 3D-SCoBeP with

highlighted areas are shown in 2.4(j) and 2.5(j).

To quantify my registration performance, I used the root mean square error

(RMSE) measure between the true and estimated transformations:

εRMSE =
√

(1/N)
∑
‖τ − τ̂‖2, (2.7)

where N is the number of voxels in the reference and τ and τ̂ are the source image

and the estimated transformation respectively.However, the RMSE is insufficient to

qualify the accuracy of the registration methods. It can only give a rough estimation

of similarity between the estimated image and the source image [63,64]. In the term

of the RMSE, I compare the source image with the output of the 3D-SCoBeP, MIRT

and GP-Registration and the results are shown under (c), (d) and (e) of Figs. 2.4

and 2.5. However, in Fig. 2.4, the RMSE values for the MIRT and GP-Registration

are 24.31 and 28.78, respectively. Although, The MIRT generates the result with

the lower RMSE value, the GP-Registration preserves the structures better. My
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proposed technique shows an improved qualitative and quantitative result. The

3D-SCoBeP preserves the structure as precise as GP-Registration and also has the

less RMSE value, 21.73, in comparison to two other methods. In Fig. 2.5, all

three methods show the same structure preservation but the RMSE value of the

3D-SCoBeP is much less than the RMSE value of MIRT and GP-Registration.

2.3.2 3D MR Image Registration Taken In Different Direc-

tions

In this section, I am trying to align the medical data shown in Figs. 2.6 and 2.7

where the brain MR images captured in parallel to the X–Z (sagittal) and the X–Y

(transverse) planes, respectively. The X-axis is from left to right along the column

direction in Fig. 2.6 and is from anterior to posterior along each slice in Fig. 2.7. The

Z-axis and Y-axis are from the first slice to the last slice along the plane direction

in Figs. 2.6 and 2.7, respectively.
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 2.4: Registration result of the lung CT images that were captured with six
months gap. (a) Source image; (b) Reference image; (c) MIRT [2] [RMSE: 24.31];
(d) GP-Registration [3] [RMSE: 28.78]; (e) 3D-SCoBeP [RMSE: 21.73]; (f) Source
image (zoom in); (g) Reference image (zoom in); (h) MIRT [2] (zoom in); (i) GP-
Registration [3] (zoom in); (j) 3D-SCoBeP (zoom in).
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i) (j)

Figure 2.5: Registration result of the lung CT images that were captured with three
months gap. (a) Source image; (b) Reference image; (c) MIRT [2] [RMSE: 7.71];
(d) GP-Registration [3] [RMSE: 7.38]; (e) 3D-SCoBeP [RMSE: 4.18]; (f) Source
image (zoom in); (g) Reference image (zoom in); (h) MIRT [2] (zoom in); (i) GP-
Registration [3] (zoom in); (j) 3D-SCoBeP (zoom in).
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Figure 2.6: Brain MR images captured in parallel to X–Y (transverse) plane.
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Figure 2.7: Brain MR images captured in parallel to X–Z (sagittal) plane.
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Here, the captured data are slices of brain image, where each one has 320× 320

voxels. In this case, I use 200 slices which were captured in parallel to the X–Y

(sagittal) plane as the reference data and 180 slices in parallel to the X–Z (trans-

verse) plane as the source data. For registering this kind of 3D data, I first map each

reference and source to a template data in size of 320× 320× 320 using B-Spline in-

terpolation [65]. Since resampling could lead to an image to a new set of coordinates

often provides a loss in image quality, the interpolating should be implemented with

great care. Although there will be some expenses in computing time, the image

quality can be improved by resampling using the B-Spline interpolation function.

Note that I set a = b = c = 7 and keep all the parameters as the same as

previous section. Then, I apply the 3D-SCoBeP on the interpolated data. Fig.

2.8(a) and 2.8(b) show the reference and the source data, respectively. Fig. 2.8(c)

shows the output of 3D-SCoBeP. In Fig. 2.8(d), I present the motion field in one of

the slices in parallel to the X–Y (sagittal) plane which the darker points have less

movement (minimum three pixels movement) and the lighter points are the area

with more displacement (maximum sixteen pixels movement). In the other words,

the selected area has three pixels translation in compared to the reference data.

Also, the distance between the slices in Y direction is not uniform. These slices are

closer to each other in the area that is darker in Fig. 2.8(d). Note that all selected

voxels’ probabilities are bigger than the threshold θ.

Fig. 2.9 shows the output of 3D-SCoBeP on brain data. While in Fig. 2.9(a),

I applied 3D-SCoBeP directly on the original reference and source data with no

interpolation approach, Fig. 2.9(b) shows the result of 3D-SCoBeP when I map each

reference and source data to a template data using B-Spline interpolation. As seen

in this figure, the registration with no interpolation performs poorly with significant

misalignment where the interpolation approach brings the accurate performance in

registration images.
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(a) (b)

(c) (d)

Figure 2.8: Result of 3D-SCoBeP on Brain CT images. (a) The reference CT image
where the CT slices were taken in parallel to X–Z (sagittal) plane; (b) The source
CT image where the CT slices were taken in parallel to X–Y (transverse) plane;
(c) The 3D-SCoBeP result; (d) motion field in the X–Y (transverse) plane for one
selected slice.

2.4 Discussion and Conclusion

In conclusion, I have proposed an effective registration method based on a sparse

coding and belief propagation. The proposed method can be used for both rigid and

non-rigid registration. My technique executes registration by first running sparse

coding over an overcomplete dictionary out of 3D features of the reference image to

gather possible match candidates. Belief propagation is then applied to eliminate

bad candidates and to select optimum matches. The experimental result illustrates
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(a) (b)

Figure 2.9: Result of 3D-SCoBeP on Brain CT images. (a) The 3D-SCoBeP result
with B-Spline interpolation; (b) The 3D-SCoBeP result without B-Spline interpola-
tion;

that my proposed algorithm compares with the high accuracy MIRT method by

Myronenko and Song [2] and the state-of-the-art GP-Registration by Periaswamy

and Farid [3] over the CT and MR images. The key advantage of my proposed

method lies in the fact that it is applicable to both global and local registration [35].

Since the voxels act independently in my proposed method, by changing the size of

the dictionary and using a part of data to make it, one can employ 3D-SCoBeP for

medical image registration with higher speed locally. In addition, I used a 3D factor

graph for the entire 3D data instead of using a 2D factor graph per slice. This new

strategy along with using graph-cut method that refines the disparity of each voxel

enable us to register 3D data captured parallel to the sagittal plane into 3D data

captured parallel to the transverse plane.
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CHAPTER 3

GENOME SEQUENCE ALIGNMENT USING

EMPIRICAL TRANSITION PROBABILITY, SPARSE

CODING AND BELIEF PROPAGATION

The latest sequencing technologies have generated numerous sequenced genomes for

various species. This increasing volume of data requires tools that can accurately

compare multiple genome sequences to aid in the study of populations, pan-genomes,

and genome evolution [5, 6]. For a particular study, many individual genomes may

be sequenced to investigate genetic diversity. For example, the Cancer Genome

Atlas [10] and 1000 Genomes Project [11] will generate genome sequences from

several thousand people. The complete bacterial genomes in public databases are

already over one thousand. To better utilize this huge amount of sequenced genome

information, many tools have been developed that are capable of efficiently finding

similar sequences from whole genomes.

3.1 Introduction

In bioinformatics, sequence alignment is an important way to identify similar regions

that might be associated with similar functional and structural relationship between

sequences. With the quick growth of genomic data, it is important to develop

effective sequence alignment techniques that are scalable. The past decade has

witnessed the development of many sequence alignment technologies. Cancers are
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caused by the collection of genomic sequence changes [66]. Therefore, alignment and

analyses of cancer genome sequences provide basics to understand cancer biology,

diagnosis and therapy.

In general, pairwise sequence alignment methods can be classified into local and

global approaches. The global alignment attempts to find the best match between

two strings with similar lengths through global optimization. In contrast, the local

alignment is usually used to identify regions of similarity between a short query and

a longer sequence. Global alignments [67–70] are less prone to demonstrating false

homology as each letter of one sequence is constrained to being aligned to only one

letter of the other. Local alignments [71–74], on the other hand, can cope with

rearrangements between non-syntenic, orthologous sequences by identifying similar

regions in sequences; this, however, comes at the expense of a higher false positive

rate due to the inability of local aligners to take into account overall conservation

maps [75].

A lot of efforts have been made to improve the efficiency and efficacy of sequence

alignments. The ClustalW program proposed by Thompson and Larkin [76,77] uses

a multi-stage mechanism to weight and to align sub-sequences based on sequence di-

vergences. In addition, sequence annealing technique incrementally builds sequence

alignment one at a time by checking whether a single match is consistent with a

partial multiple alignments [78]. Darling et al. proposed a hidden Markov model

that uses a sum-of-pairs breakpoint score to facilitate the detection of rearrange-

ment breakpoints, when genomes have unequal gene content [79]. Mummer is a

highly efficient suffix tree based matching tool for whole genome alignment, as well

as incomplete genomes [80].

Researchers also proposed heuristics to accelerate sequence alignment. For ex-

ample, the bounded sparse dynamic programming (BSDP) is used to support rapid

approximation of exhaustive alignment in [81]. Another heuristic-driven approach,
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namely FastTree, is a tree-based method that stores profiles of internal nodes in a

tree, such that candidate joins can be quickly identified. FastTree is also scalable

for handling alignments over 10,000 sequences [82,83].

Maximum-likelihood based approaches like PhyML and RAxML-VI-HPC have

been developed as well. PhyML [84] used a hill-climbing algorithm that adjusts

tree topology and branch length at each tree modification iteration. RAxML-VI-

HPC [85], which stands for randomized accelerated maximum likelihood for high

performance computing, takes advantages of a parallel program to support large-

scale genome alignment.

Whole genome sequence alignment are used for studying genome evolution and

genetic diversity [86,87]. For example, Blanchette et al., defined a Threaded Blockset

Aligner (TBA) and built a threaded blockset under the assumption that all match-

ing segments occur in the same order and orientation in a given sequence [88]. TBA

was designed for aligning megabase-sized regions of multiple mammalian genomes.

Darling et al. [89] implemented a method for identification and alignment of con-

served genomic DNA in the presence of rearrangements and horizontal transfer called

Mauve. Mauve has been applied to align nine enterobacterial genomes and to de-

termine global rearrangement structure in three mammalian genomes. There are

other whole-genome alignment tools that can align multiple whole genomes such

as [90–92].

Whole-genome alignment tools are classified from collinear multiple sequence

alignment tools, such as tools in [76,93,94] where they can align very long sequences

and detect the presence of rearrangements, duplications, and large-scale sequence

gains and losses. For example, Bradley et al., in [93] proposed a program for the

alignment of multiple biological sequences that is statistically motivated and fast for

practical size problems. It was based on pair hidden Markov models which approxi-

mate an insertion/deletion process on a tree and used a sequence annealing algorithm
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to combine the posterior probabilities estimated from these models into a multiple

alignment. Edgar et al. proposed another alignment tool named MUSCLE which is

a program for creating multiple alignments of protein sequences [94]. Elements of the

algorithm include fast distance estimation using k-mer counting, progressive align-

ment using a log-expectation score, and refinement using tree-dependent restricted

partitioning. In spite of collinear alignment technologies, non-collinear alignment

such as [95, 96] contains the elements that are arranged in some non-linear order

(see Fig. 3.1).

(a) Collinear

(b) Non-collinear

Figure 3.1: Collinear vs. Non–collinear nucleotide sequence alignment.

In this chapter, I propose a novel alignment method that uses sparse coding [97]

and empirical transition probability to tackle the scalability challenge. Thanks to

the sparse representation, my mechanism can handle long sequences with reduced

memory footprint. I also leverage belief propagation to combine local and neighbor-

ing information of candidate nucleotides into consideration and generate matching

scores to determine the best match. First, I index the reference and the read genome

sequence using empirical transional probability and pick the top score indexes from

the reference genome sequence to build an over-complete dictionary. I then find a

set of candidate nucleotide for each nucleotide of the test sequence using sparse cod-

ing from the constructed dictionary. The match score of each candidate nucleotide

will be evaluated taking both local and neighboring information into account us-
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ing belief propagation. The rest of this chapter is structured as follows. Section

3.2 introduces my proposed method. Section 3.3 presents my results, including the

comparison against SOAP aligner [6] and BWA [5]. Finally, I draw my conclusions

in Section 3.4.

3.2 Proposed Method

In this section, I present my genome indexing and alignment framework in detail,

where the proposed method includes three steps: indexing, index matching, and

sequence matching. In this work, I refer to “reference sequence” as the base-line

sequence and try to align a “read sequence” against the base-line sequence.

3.2.1 Indexing

The current genome indexing methods generate huge indices before performing the

actual alignment to decrease the alignment time [98, 99]. The indexing process can

be very time-consuming. In contrast, my proposed indexing technique provides

a faster and light-weight alternative for index generation, which is similar to the

big data retrieval systems that were proposed [100–102]. These indices can reduce

the search space and provide an estimation of the read sequence locations in the

reference sequence. The proposed genome indexing technique models a nucleotide

sequence as a graph by counting the transitions between each pair of nucleotides. To

be more specific, as shown in Fig. 3.2, I consider a graph with four states according

to the different types of nucleotides and sixteen vertices according to all possible

transitions between nucleotides. I read the first nucleotide of the sequence and treat

it as the initial state. Then, I move from one state to the other state by scanning the

next nucleotide repeatedly till the end of the sequence. Afterwards, I calculate the

number of nucleotide transitions where I count how many times I pass one vertex
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in the graph and store them in a 4 × 4 matrix. Finally, I normalize the resulting

matrix as follows:

I =




A C G T

A kaa kac kag kat

C kca kcc kcg kct

G kga kgc kgg kgt

T kta ktc ktg ktt



× 1∑

s,w∈{a,c,g,t} ksw
(3.1)

where ksw is the number that has the S-type nucleotide immediately before the

W -type nucleotide.

If the length of a sequence is larger than a given threshold i.e., h, I divide it

into subsequences with maximum length of h, where each subsequence will have o

nucleotides overlap with their neighbors. I set o ≥ h
2

so that each pair of nucleotides

can be counted at least twice. For each subsequence i, I count the transition of the

nucleotides from the start of the subsequence till its end to reveal the number of

different nucleotides that reside beside each other. In Fig. 3.3, an input sequence

with h = 250 is used to demonstrate the proposed indexing process, where Ii is the

calculated index for the input sequence based on the transition graph shown on the

left hand side. Finally, I normalize the transition matrix, which will be used to find

the approximate location of each subsequence in the next step.
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A

C

G

T

kat

kac

kaa

kag

kca

kct

kcc

kcg

kgc
kgt

kga

kgg

ktg

ktt

ktc

kta

Figure 3.2: The transition diagram between nucleotides. ksw is the number of
appearance of the W -type nucleotide immediately after the S-type nucleotide where
s, w ∈ {a, c, g, t}.
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A

C

G

T

14
20

45

18

26

16

8

0
12

8

13

3

15

28

11

12

Input sequnce={aaaccaagaggcagaggttgcagtgagccaagatcatgccattgcactccagcc
ttagcaacagagtgagactccatctcagaacaacaacaacaacaaaaaaaaaaa
acacaaaaaaacaaaaaattctgcaactaattaatttgttgtaactcttaaagcag
gaaccttatatagaaaatgttgtgatcctattaatttttttttctttctatgtaagca

acttcacttttgactttgcagcactgac}

Ii =




45 20 18 14
26 8 0 16
13 12 3 8
12 11 15 28


× 1

249

=




0.1807 0.0803 0.0723 0.0562
0.1044 0.0321 0.0 0.0643
0.0522 0.0482 0.0120 0.0321
0.0482 0.0442 0.0602 0.1124




Figure 3.3: An example of the indexing procedure for a small sample subsequence.
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3.2.2 Index Matching

The index matching step is designed to find similar indices based on global infor-

mation of the sequence. I define a symmetric distance function between two index

matrices I and J as follows: DMSE(I, J) = ‖I − J‖f , where ‖·‖f is the Frobenius

norm of the matrix.

After generating the indices of the reference sequence and the read sequence,

the DMSE distances to all reference sequence indices are calculated, where the top t

most similar indices in terms of DMSE are chosen as candidate indices. To find the

best matched index, I resort to belief propagation (BP) on a factor graph. In this

dissemination, I provided a concise review about the BP algorithm on factor graph

on Section 1.1. Interested readers can check my earlier publications in [4,22,57] for

more details about the factor graph design and the BP algorithm.

For each index in the read sequence, I consider a variable node and a factor node

which connects each two neighbor variable nodes. An extra factor node of each

variable node stores the prior probabilities which are calculated based on DMSE

distance (see Fig. 3.4).

I apply BP to the factor graph of the test sequence with n candidate nucleotides

as the prior knowledge. BP updates the probability of candidate nucleotides based

on the probabilities of their neighbors.

Then, the candidate index numbers are fed to a factor graph and the corre-

sponding DMSE of each of candidates is employed to calculate the initial probability

(prior probability) of each candidate. Then, message passing (i.e., forward and

backward) algorithm is applied to calculate the best match indices. The correspond

subsequences of these indices is used in the next step.
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Variable Node    

Factor Node     

Factor node (Prior)    

Figure 3.4: Nucleotides model: One dimensional factor graph used in Belief Propa-
gation.

3.2.3 Sequence Matching

The sequence matching step is based on sparse coding and BP algorithm. In this

step, I use the subsequences that were selected in the previous step to generate an

over-complete dictionary. Then, for each nucleotide in the read sequence, I pick n

candidate nucleotides using sparse coding. To choose the best candidate, a factor

graph is employed where for each nucleotide in the read sequence, a variable node

was assigned. The relation between neighborhood variable nodes is taking care

of by a factor node. Also one extra factor node for each variable node keeps the

prior probability of candidates. By applying belief propagation to a factor graph,

I can obtain the best match for each nucleotide in the read sequence. A detailed

description about the sequence matching can be found in my recent publications

[4, 56]. A summary of the main procedure for my proposed indexing method is

shown in Algorithm 2.
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Algorithm 2 Proposed nucleotide sequence alignment algorithm for estimating the
location of the input sequence

Inputs: a reference sequence X ∈ RM , a test sequence Y ∈ RN , number of the
candidate state matrix k, number of the candidate points n

Initialize: a 4 × 4 state matrix I storing the numbers of nucleotide states (3.1),
nucleotide overlap v

Iterate: while the length of the sequence X is not reached
Fill the reference state matrix I: For each subsequence xi ∈ X with v nu-

cleotide overlap in each direction perform:

• Ii = MakeIndex(xi)

Fill the test state matrix J: For each subsequence yj ∈ Y with v nucleotide
overlap in each direction perform:

• Jj = MakeIndex(yj)

• [cj, ρj] = FindCandidates(Jj, I, k)

Refine the candidate state matrix:

• ρ̂ = BP (c, ρ)

Find the correspond nucleotide in the reference sequence X : For each
subsequence yj ∈ Y with v nucleotide overlap in each direction perform:

• zj = FindBestSubsequence(X , yj, θ, n) (see Algorithm 3 )

Output: the estimated version of aligned sequence Z
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Figure 3.5: Sparse representation of a feature vector yi with a dictionary D : α̂i as
a sparse vector constructs the feature vector yi using a few columns (highlighted in
gray) of dictionary D.

This step is inspired by my recent work, SCoBeP [56]. First, I map the reference

nucleotide sequence X of size N and the test nucleotide sequence Y of size M into

the two integer sequences, X and Y, respectively. I then extract the features from

the reference sequence X ∈ ZN×2 and the test sequence Y ∈ ZM×2.

Second, I create a dictionary D containing all the extracted feature vectors of the

reference sequence X which match the corresponding extracted features of the test

sequence Y. The dictionary includes all vectorized one dimensional features as its

columns where all of them have been normalized. I then apply sparse coding to each

extracted feature of the test sequence. Sparse coding will reconstruct a nucleotide

vector at each nucleotide gi as a linear combination of the reference sequences. Note

that the obtained representation coefficients αi should be sparse, i.e., it should be

0 for most coefficients. The non-zero coefficients of αi indicate the corresponding

nucleotides on the reference sequence (see Fig. 3.5).

To select n candidate nucleotides, I simply pick those corresponding to n which
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have the largest coefficients in the sparse coefficient vector. I store the locations

of these candidate nucleotides in a length-n vector Li and a probability vector ρi

as a length-n vector which stores the corresponding probabilities for the sparse

coefficient vector. Each coefficient in the probability vector ρi serves as a prior

probability of matching the nucleotide at i to a nucleotide of a reference sequence.

This probability vector takes only local characteristics into account but ignores

neighborhood characteristics of the matches.

Finally, I expect that nearby nucleotides in the test sequence should also match

the nucleotides that are close to each other in the reference sequence. To incorporate

these neighborhood characteristics, I model the problem by a factor graph and apply

the Belief Propagation (BP) algorithm to identify the best matches. I consider a

one dimensional factor graph as follows: for each nucleotide in the test sequence,

one variable node was assigned and each variable node was connected to its two

neighbors by a factor node. Also, I consider one extra factor node for each variable

node to impose the restriction of prior probabilities for the candidate nucleotides

(see Fig. 3.4).

To align the test nucleotide sequence, I select the nucleotide candidate with

highest probability and then calculate the displacement β between the current nu-

cleotide and the selected candidate nucleotide. Therefore, for each nucleotide in

the test sequence, I have Zi, βi and ρi for each nucleotide gi which are the most

probable match nucleotide, the most probable displacement and the probability of

the current match, respectively. A summary of the alignment method is shown in

Algorithm 3.
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Algorithm 3 FindBestSubsequence(X , y, θ, n)

Inputs: a reference sequence X ∈ RM , a test sequence Y ∈ RN , a threshold θ,
number of the candidate points n

Convert a string sequence to numeric sequence:

• X = ConvertData(X )

• Y = ConvertData(Y)

Extract feature and construct dictionary:

• Ŷ = ExtractFeature(Y)

• X̂ = ExtractFeature(X)

• D = MakeDic(X̂)

Find the initial estimate of the match location: For each vector yi ∈ Ŷ per-
form:

• αi = FindSparseV ector(D, yi)

• [Li, ρ̂i] = FindTopScoreMatch(n, αi)

Refine the candidate match location:

• ρ = BP (L, ρ̂)

Find the correspond nucleotides:

• [Z, β] = Warp(X̂, ρ,L)

Output: the estimated version of aligned sequence Z
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3.2.4 Implementation Details

• Ii = MakeIndex(xi) fills the state matrix Ii using the relationship of nu-

cleotides in the subsequence xi. The subsequence xi is scanned through all its

nucleotides and the corresponding counts will be stored into the state matrix

Ii. For example, kcg in Ii in (3.2) shows how many times the nucleotide C

will be identified, which is next to the nucleotide G in the subsequence xi.

Note that each subsequence xi has a separate state matrix Ii, where i is the

subsequence index.

Ii =




A C G T

A kaa kac kag kat

C kca kcc kcg kct

G kga kgc kgg kgt

T kta ktc ktg ktt



× 1∑

s,w∈{a,c,g,t} ksw
(3.2)

• [cj, ρj] = FindCandidates(Jj, I, k) identifies k candidate state matrices that

are highly similar to the test state matrix Jj in I and stores their indices in

vector cj and their probabilities in vector ρj. Note that the approach will

compute the Mean Square Error (MSE) of the test state matrix Jj with each

possible Ii of the reference state matrices and select Ii that has the smallest

MSEs.

• ρ̂ = BP (c, ρ) models the problem by a factor graph and applies belief propa-

gation [12] to update probability ρ. The updated probability ρ̂ can be used to

align the reference state matrix index onto the test state matrix index. In my

case, I assign a variable node for each test state matrix index and connect each

pair of neighboring state matrix indices with a factor node. Also, I introduce

one extra factor node to take care of the prior knowledge obtained in the MSE
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step for each test state matrix index (for more details, see [56]).

• X = ConvertData(X ) maps the input string of the nucleotide sequence to

a sequence of integer values for the further processing. The mapping func-

tion of four nucleotides {A,C,G, T} can be defined in a two-dimension space

where A = (1, 1), C = (1,−1), G = (−1, 1), and T = (−1,−1), respectively.

Therefore, {A,C,G, T} 7→ {(1, 1), (1,−1), (−1, 1), (−1,−1)}.

• Ŷ = ExtractFeature(Y) presents a vector extractor algorithm using Y as

a source sequence, where the result is a two dimensional matrix containing

the vectorized one dimensional sequences. To this end, I consider a vector

of size S = 2 × (2a + 1) containing neighboring nucleotides on two sides of

a nucleotide, where a is a positive integer and the first “2” is corresponding

to the dimension of the mapping space). For each nucleotide gi in the test

sequence Y, I vectorized a sequence centered around the nucleotide gi to a

feature vector yi ∈ ZS×1. A two dimensional test feature data Ŷ ∈ ZN×S is

then constructed from yi as follows:

Ŷ = {yi | 1 ≤ i ≤M}. (3.3)

Note that X̂ is created in the same manner as Ŷ but from the reference

sequence X instead.

• D = MakeDic(X̂) creates a dictionary D using the vectors of X̂. Later, the

dictionary D is used to match the extracted features of the source sequence to

corresponding the extracted features of the reference sequence. , a dictionary

which contains feature vectors of X is constructed. Thus, I can write D =

[x1 x2... xN ] where xi is a feature vector of X̂. Note that I normalize dictionary

D to guarantee the norm of each feature vector to be 1.
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• αi = FindSparseV ector(D, yi) finds the candidate match nucleotide using the

sparse coding algorithm, where αi is a sparse vector. Mathematically, I try to

solve the following sparse coding problem to find the most sparse coefficient

vector αi (see Fig. 3.5) such that

yi = Dα̂i. (3.4)

Although there are several methods to solve (3.4) [17–19], in my work, I employ

Subspace Pursuit (SP) [19] because of its computational efficiency.

• [Li, ρ̂i] = FindTopScoreMatch(n, αi) picks up the n largest coefficients of αi

as n candidates. Li is a n×1 vector that stores the locations of these candidate

nucleotide and ρ̂i is the length-n vector that stores the corresponding proba-

bilities of Li. Each coefficient in ρ̂i serves as a prior probability of matching

the source sequence at i to a sub-sequence centered around the nucleotide gi.

After finding the candidates and their initial probabilities, I concatenate the

result of each nucleotide and construct following matrices:

L = [L1 L2... LN ] , ρ̂ = [ρ̂1 ρ̂2... ρ̂N ] , (3.5)

which I will use to apply belief propagation at the next step.

• ρ = BP (L, ρ̂) models the problem by a factor graph (see Fig. 3.6) and applies

belief propagation [12] to update probability ρ. The updated probability ρ can

be used to align the reference sequence onto the test sequence. In my case, I

assign a variable node for each nucleotide on the source sequence and connect

each pair of neighboring nucleotide with a factor node. Also, I introduce

one extra factor node to take care of the prior knowledge obtained in the

sparse coding step for each nucleotide of the source sequence (for more details,
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see [56]).

• [Z, β] = Warp(X, ρ,L, θ) returns the aligned sequence Z and a displacement

vector β which contains the movement of each nucleotide in the reference

sequence. Note that in step BP (·), I calculated the refined probability of each

candidate nucleotide match.

• zj = FindBestSubsequence(X , yj, θ, n) finds the corresponding location for a

nucleotide yj ∈ Y . In this step, the reference nucleotide sequence X and the

test nucleotide sequence Y are converted into two integer sequences. Then,

an over-complete dictionary is built with all subsequences in the X . I then

apply sparse coding followed by using Belief Propagation (BP) to identify the

best matches. (see [4, 56] for more details) Note that I used non-overlapped

subsequences to build the dictionary. This change decreases the memory usage

and the accuracy of the proposed algorithm in compare to 1D-SCoBeP [4], but

it increases the speed of my alignment algorithm.

3.3 Experimental Results
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Figure 3.6: The results of proposed method for non-collinear nucleotide sequence alignment. a) comparison among alignment
results of the ground truth, 1D-SCoBeP [4] and the proposed method. b) zoomed of the black square in figure 3.6–a to show
the gap between the proposed method, ground truth and 1D-SCoBeP [4] on the jump point. The x–axis and y–axis are the
index numbers of the original genome sequences and the shuffled genome sequences, respectively.

55



I designed my experiments based on work in [79] to evaluate the proposed method

for aligning the nucleotide sequences and to compare it with SOAP aligner [6], BWA

[5] and 1D-SCoBeP [4]. I considered the problem of aligning a sequence of human

nucleotides from the National Center for Biotechnology Information (NCBI) [7] and

Cancer Genomics Hub (CGHub) [8].

To evaluate the performance of my approach, I conducted two sets of tests on the

nucleotide sequences. In the first set, I selected fifty short sub-sequences of human

genomes and then used SOAP aligner, BWA, 1D-SCoBeP and the proposed method

to find the location of selected sub-sequence nucleotide in the human chromosome.

All of four algorithms successfully passed this test. I created twenty shuffled sub-

sequences of the reference sequence as follows: for each read sequence R, I cut it into

five pieces p1, p2, p3, p4 and p5. Then I switched p2 with p4. Therefore, I converted a

read sequence R = [p1, p2, p3, p4, p5] into a new read sequence R̂ = [p1, p4, p3, p2, p5].

Fig. 3.6 shows the result of the 1D-SCoBeP and the proposed method show

a better performance with a gap of 100 to 120 nucleotides away from the ground

truth. Since I was using non-overlapped subsequences for the dictionary generation,

the gap between the proposed method and the ground truth was larger than these

reported in 1D-SCoBeP [4]. In my experiments, the following parameters were used:

the number of candidate points n is set to be 3, the sparsity factor k = 3 and the

dictionary column size a = 200.

To evaluate the robustness of the proposed method, I generate indices for long

human genome sequences (i.e. 5 × 108 nucleotides) where h = 10000 and o =

5000. Moreover, I synthesized insertion, deletion and mutation (i.e., indel) in these

sequences. For indel rate, I picked 105 number of subsequences with size of 104

nucleotides. Then, I randomly modified a certain number of nucleotides (based on

the indel rate) and aligned them with the references. I counted how many times the

alignment location and real subsequence location (i.e., ground truth) are matched,
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Figure 3.7: Accuracy of BWA [5], SOAP aligner [6] and the proposed method in
present of different Indel rate, where the testing genome sequences were obtained
from [7].

where the accuracy is defined as the count of the successfully aligned sequences over

total number of the subsequences. Fig. 3.7 shows the accuracy of alignment of the

proposed method, BWA and SOAP aligner in the presence of the different indel

rates. The proposed method showed similar accuracies even when I increased the

indel rate to 3%. Moreover, the proposed algorithm still showed more than 75%

accuracy even after I modified 5% of the nucleotides in my selected subsequences.

In contrast, the accuracy of the BWA and SOAP aligner decreased sharply as the

indel rates increase.

I investigate the impact of small indel rate in the range from 0.5% to 1.5% in Fig.

3.8. In this figure, I showed accuracy of 1% indels in red for the data set used in 3.7
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Figure 3.8: The percentage of successful alignments in present of 0.5% to 1.5%
indels. The green line is the percentage successful alignments where the rate of
the indels are changing with step equal 0.05% between 0.7% and 1.3%. The blue
line is the percentage successful alignments where the rate of the indels are changing
with step equal 0.1% between 0.5% and 1.5% and the red line is the same as the
Fig. 3.7. Each point represents 105 random site selection with same indels rate.
Note that the genome sequences used in this studies were obtained from [8] and [7].

as reference. To verify my result, I repeat the experiments with different indel steps

and different read locations and present the results in green and blue, respectively.

Note that each point in this figure was obtained from the evaluation over 105 read

sequences. There are slight variation among the curves due to statistical deviation.

The summary of the indel rate accuracy was shown in Table 3.1.

The computational complexity of proposed is mainly determined by the following

three steps: 1) indexing 2) index matching 3) extracting sub-sequence nucleotides as

features and constructing the dictionary, 4) finding candidate nucleotides via sparse

coding, and 5) applying BP. Assume the size of the read and reference sequences

are N and M nucleotides, respectively. The required time for create indexes is

O
(
M+N

)
, because I have to scan whole read and reference sequences. The number

of reference sequence indexes is IM = M
h

+ 2oM
h2

= O
(
M
h

)
and similarly, IN = O

(
N
h

)
.
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Therefore, the time for the index match matching is O
(
M
h

)
× O

(
N
h

)
= O

(
MN
h2

)
.

After index matching step, the size of search space reduces from M to M̄ = Is × h

where Is is the number selected indexes Is and h is the size of each index. The

required time of feature extraction will be O
(
a(M̄ +N)

)
, where a is the size of the

vector of extracted features for each nucleotide. The dictionary construction step

involves the normalization of each column, which requires O(aM̄) amount of time.

Thus the total time complexity of the first step is O
(
a(M̄ +N)

)
. In the next step,

the time complexity of Subspace Pursuit (SP) is O
(

log(f)aM̄
)

[103], where f is

the number of iterations for searching the sparse vector. Since I have to repeat the

process to find candidate points for all N feature vectors, the time complexity of

finding candidate points by SP is O
(

log(f)aM̄N
)
. Then, the time complexity of

Belief Propagation in my factor graph is O(vn2M̄), where v is the number iterations

before converging and n is the number of candidates in each variable node. Finally,

the time complexity of proposed method will be O
(
MN + log(f)aM̄N + vn2M̄

)
.

3.4 Conclusion

In this chapter, I proposed a sparse coding and BP based method for indexing

and alignment genome sequences. The proposed method builds a transition matrix

based on the neighboring nucleotides of an input sequence and then reduces the

search space by selecting the top K most similar subsequences based on their dis-

tances. The proposed algorithm selects candidate nucleotides by using sparse coding

with an over-completed dictionary, which was constructed from the nucleotides of

reference sequence in the indexing step. BP algorithm is then applied to select the

best matches. Through experimental results, I showed that the proposed algorithm

are comparable to SOAP aligner [6], BWA [5] and 1D-SCoBeP [4] in terms of the

alignment accuracy. In addition, the proposed method is robust to insertions, dele-

tions, and mutations in the genome sequences when comparing with SOAP aligner
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and BWA. Finally, the proposed method is able to process much longer sequences

then our previous 1D-SCoBeP approach.
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Table 3.1: Percentage of successfull alignments

% of the
Indels

Accuracy
of red
line

Accuracy
of blue
line

Accuracy
of
green
line

0.00 80.33 – –
0.50 – 81.19 –
0.60 – 79.38 –
0.70 – 80.90 80.64
0.75 – – 80.63
0.80 – 79.82 80.29
0.85 – – 78.90
0.90 – 78.09 80.63
0.95 – – 78.74
1.00 79.85 79.71 78.04
1.05 – – 80.43
1.10 – 80.49 79.70
1.15 – – 78.22
1.20 – 79.81 79.78
1.25 – – 79.16
1.30 – 80.54 78.94
1.40 – 80.70 –
1.50 – 79.52 –
2.00 79.09 – –
3.00 78.90 – –
4.00 76.33 – –
5.00 75.90 – –
6.00 72.09 – –
7.00 72.86 – –
8.00 69.79 – –
9.00 67.87 – –
10.00 66.42 – –
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CHAPTER 4

GENOME SEQUENCE PRIVACY PROTECTION USING

COMPRESSED SENSING

In this chapter, I present a privacy preserving genomic data dissemination algorithm

based on the compressed sensing. I participated in the challenge at the iDASH on

March 24, 2014 in La Jolla, California which the result of the challage are available

on http : //www.humangenomeprivacy.org. In my proposed method, I am adding

the noise into the sparse representation of the input vector to make it differentially

private. It means I find the sparse representation using using the SubSpace Pursuit

and then disturb it with sufficient Laplasian noise. I compare my method with

state-of-the-art compressed sensing privacy protection method [1].

4.1 Introduction

Most genomic datasets are not publicly accessible, due to privacy concerns. Pa-

tients’ genomic data contains identifiable markers and can be used to determine the

presence of an individual in a dataset. Prior research shows that the re-identification

can be possible when: There is a very small set of SNPs, Or The genomic data is

aggregated; like releasing the frequencies of different SNPs across a population. To

protect patients, the data owners impose an application and evaluation procedure.

Then an agreement (like IRB approval) needs to be signed before the use of data is

permitted. This process often takes months to complete and limits the researchers.
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One solution to the problem can be to let each data owner publish a set of pilot

data to help data users choose the right datasets based on their needs. Such pilot

data comes from adding noise to the original genomic data to ensure that individuals

information is protected. The data owners release these pilot data with the noise

parameters and the mechanism that they used. A data user can download, run any

kind of association tests and compare the outcomes with the other datasets outputs

to get an idea which datasets can be useful. With such information, the researchers

can approach the owners of the most relevant datasets for further research with

proper agreements.

I reviewed the basics of compressed sensing in section 1.3 that is the inspiration of

current research. Now, I explain my proposed genome privacy protection mechanism

and conclude by demonstrating the results of proposed method on human genome

sequences.

4.2 Privacy Protection Based On Compressed Sensing

The proposed privacy protection method is based on the compressed sensing mech-

anism. The input sequences to the proposed method are the genomic nucleotide

(A, C, G, T ). First, I process the input genomic sequences to find the location

of the Single Nucleotide Polymorphisms (SNPs). I check the same location of the

all genome sequences and look for the locations that their nucleotides are different

which I mark them as SNPs. Then I keep only the SNPs location as representatives

of the original genome sequences and calculate the frequency of changes in the same

SNP. The nucleotide which appears less in the SNP location called “minor” and the

nucleotide with most appearance in the SNP location called “major”. These majors

and minors with their frequencies will be used in the proposed privacy protection

method.

To have a differentially private data, I am using the compressed sensing technique
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and adding the noise to the genomic data representation in the transformation

domain. As it was explained in the section 1.3, I need to specify an input vector y,

a random matrix Φ and a transformation matrix Ψ to be used in the compressed

sensing process. The input vector y is the frequency of the minors SNPs which I

calculate it from pre-processing step. The random matrix φ is a binary independent

and identically distributed (i.i.d.) of the Bernoulli distribution matrix which in

average, half of the coefficient in each row and each column are “1”s and the rest

are equal to “0”s. The transformation that I choose is the Haar wavelet transform

(HWT) [104, 105] Because I know from [1, 106, 107] that if I have an ε budget how

to use it on the wavelet domain that keeps the differential privacy.

In my proposed method, I am adding the noise into the sparse representation of

the input vector to make it differentially private. It means I calculate the matrix A =

ΦΨ and then using the SubSpace Pursuit [19], I reach to the sparse representation

of the y which I will call it x̂. To making sure that the amount of the noise that I

am adding to sparse representation is enough to protect the differential privacy, I

add Laplasian noise λ to all element of the sparse representation according to [107].

Note that the element in the sparse representation are correspond to HWT tree (see

Figure 4.1), therefore based on [106], I double the amount of noise when I move

up one step in the wavelet tree from the leaves to the root. The result of this

result of the adding Laplasian noise to x̂ generates x∗ which I use it to generate the

differential private data to publish. To get the punishable data y∗, I need to apply

inverse transformation on x∗ as follows:

y∗ = Ψx∗ (4.1)

where the Ψ is the Haar wavelet transformation matrix. Algorithm 4. shows the

summary of the proposed method.

64



Algorithm 4 : Proposed differentially private Protection using Compressed Sensing
algorithm for Genomic Data

Inputs: a set genome sequences X
Pre-processing: Converting the genome sequence to SNP sequences
Initialization: Set the initial parameters:

• Find the frequencies of major and minor for each SNP location

• Generate sampling matrix Φ from a Bernoulli i.i.d. distribution

• Generate Haar wavelet transformation matrix Ψ

• Calculate matrix A = ΦΨ

• Consider an array contains the frequencies of minors as input vector
y[cj, ρj] = FindCandidates(Jj, I, k)

Adding Noise: Add Laplasian noise:

• Finding x̂, a sparse representation of the input vector y using SSP [19] where
y = Ax̂

• Add sufficient Laplasian noise according to [1, 106,107]

Post-processing:

• y∗ = Ψx∗

Output: the noise-added differentially private version of SNP frequencies y∗
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Figure 4.1: The Haar wavelet tree structure of [ (0, 0), (1, 0), (1, 1), (2, 0), (2, 1),
(2, 2), (2, 3), (3, 0), (3, 1), (3, 2), (3, 3), (3, 4), (3, 5), (3, 6), (3, 7) ]. Note that each
(x, y) shows one entry in the array. The node (0, 0) is the root of the wavelet
transformation tree and the nodes (3, t), where t is a number between 0 and 7, are
the leaves of the wavelet transformation tree.

4.3 Experimental Results

To evaluate the proposed method, I participated in the challenge at the iDASH

(UCSD–based National Center for Biomedical Computing: NIH U54HL108460)

workshop 1 on March 24, 2014 in La Jolla, California and the results are available

online at [9]. The challenge was about sharing aggregate human genomic data (i.e.,

allele frequencies) to preserve the privacy of the data and to maximize the utility

of the data for Genome–Wide Association Studies (GWAS). I applied the proposed

method on the two datasets from the case and control groups of individuals: the case

group includes 411 individuals from the Personal Genome Project [108] 2, and the

control data includes 174 participants from the CEU population in HapMap [109]

3. There are two test sets: the first one consists of 311 SNP sites of the human

1http://www.humangenomeprivacy.org
2http://www.personalgenomes.org/
3http://hapmap.ncbi.nlm.nih.gov/index.html.en
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chromosome 2 and The second one consists of 600 SNP sites of human chromosome

10. Table 4.1 shows the result of proposed method on these two test sets in compare

to the SNP–Based baseline of the challenge organizers.
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Data Set SNP–Based baseline Proposed Method Number of the significant SNPs

Dataset 1

Power 0.05 0.61
Cutoffs TPR FPR TPR FPR

5× 10−2 0.864 0.844 1.0 0.941 22
10−3 0.632 0.774 1.0 0.884 19
10−5 0.642 0.700 1.0 0.879 14

Dataset 2

Power 0.4 0.005
Cutoffs TPR FPR TPR FPR

5× 10−2 0.933 0.924 1.0 0.958 45
10−3 0.800 0.862 1.0 0.909 15
10−5 0.625 0.788 1.0 0.876 8

Table 4.1: Results of the proposed method on the challenge datasets. The Dataset 1 refers to 200 participants with 311 SNPs
on chromosome 2 and Dataset 2 refers to 200 participants with 610 SNPs on chromosome 10. The ”Power“ row is the ratio of
identifiable individuals using the likelihood ratio test in the case group. The false positive rate (FPR) and true positive rate
based on χ2 test are listed per different cutoff threshold. In addition, the last column corresponds to the number of significant
SNPs.
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Figures 4.2 and 4.3 are the result of the proposed method disturbed data for

identification of an individual in the data base. Figures 4.4 and 4.5 show the utility

evaluation of the proposed method results on the online evaluation tool WIDGET

[9].
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Figure 4.2: The online privacy evaluation [9] of the proposed method on chromosome 2 with p-value 0.01
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Figure 4.3: The online privacy evaluation [9] of the proposed method on chromosome 10 with p-value 0.01
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Figure 4.4: The online utility evaluation [9] of the proposed method on chromosome
2 with p-value 0.01

The power of the likelihood ratio test is a privacy risk measure which the num-

ber of case individuals who can be recognized with confidence level more than a

threshold. The lower likelihood ratio power level shows that the perturbed data has

less risk of reidentification. In addition the utility of the privacy protection method
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Figure 4.5: The online utility evaluation [9] of the proposed method on chromosome
10 with p-value 0.01

can be measured based on the χ2 test to detect the significants SNPs with different

cutoff p–value. As Table 4.1 shows the proposed method has the higher true positive

significant detected on the perturbed data.

In addition to the challenge, I select 180 SNPs of the Personal Genome Project
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[108] and partition it into two subsets. The first subset used as control group. I

modified the frequencies of randomly selected SNPs on second subset and generated

3 new datasets with different levels of utility called A,B,C with 27,9 and 4 significant.

After adding noise, the p-value of a SNP reported by a association test, χ2, of these

three datasets can be compared with each other to select the best dataset as “Best

Pick” which is A. Also, I check the results to find the “Correct Order” of datasets A

better than B better than C. The results are shown in Table 4.2. The numbers in the

table are the percentage of successful detection of best dataset and the correct order

of them. As this results shows the proposed method dominates the other methods.

Correct Order % Best Pick %

SNP–Based baseline 19.34 34.54
Reference [1] 24.85 47.52

Proposed Method 25.02 75.12

Table 4.2: Results of the SNP–Based baseline, Reference [1] and the proposed
method for best pick and correct order.

4.4 Conclusion

In this chapter, I present a privacy preserving genomic data dissemination algorithm

based on the compressed sensing. The input sequences to the proposed method

are the genomic nucleotide and I process the input genomic sequences to find the

location of the SNPs. Then I specify an input vector of the SNPs frequencies,

a random matrix and the wavelet transformation matrix. To making sure that

the amount of the noise that I am adding to sparse representation is enough to

protect the differential privacy, I add Laplasian noise λ to all element of the sparse

representation according to [107]. My experimental results shows that the proposed

method outperform the other methods.

74



CHAPTER 5

CONCLUSION

In this dissemination, I propose a novel nucleotide sequence Indexing and align-

ment method based on empirical transitional probability, sparse coding and belief

propagation to compare the similarity of the nucleotide sequences inspired by my

recent works, 3D-SCoBeP described in chapter 2. The proposed method builds a

transition matrix based on the neighboring nucleotides of an input sequence and

then reduces the search space by selecting the top K most similar subsequences

based on their distances. The proposed algorithm selects candidate nucleotides by

using sparse coding with an over-completed dictionary, which was constructed from

the nucleotides of reference sequence in the indexing step. BP algorithm is then

applied to select the best matches. The proposed method is robust to insertions,

deletions, and mutations in the genome sequences when comparing with SOAP

aligner and BWA. Finally, the proposed method is able to process much longer se-

quences then our previous 1D-SCoBeP approach. Through experimental results, I

showed that the proposed algorithm are comparable to SOAP aligner [6], BWA [5]

and 1D-SCoBeP [4] in terms of the alignment accuracy. In addition, I present a

privacy preserving genomic data dissemination algorithm based on the compressed

sensing. The input sequences to the proposed method are the genomic nucleotide

and I process the input genomic sequences to find the location of the SNPs. Then I

specify an input vector of the SNPs frequencies, a random matrix and the wavelet

transformation matrix. Then I add Laplasian noise λ to all element of the sparse rep-
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resentation. My experimental results shows that the proposed method outperform

the other methods.
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[47] B. Likar and F. Pernuš, “A hierarchical approach to elastic registration based
on mutual information,” Image and Vision Computing, vol. 19, no. 1, pp.
33–44, 2001.

[48] M. Sabuncu and P. Ramadge, “Using spanning graphs for efficient image regis-
tration,” Image Processing, IEEE Transactions on, vol. 17, no. 5, pp. 788–797,
2008.

80



[49] G. Penney, P. Batchelor, D. Hill, D. Hawkes, and J. Weese, “Validation of
a two-to three-dimensional registration algorithm for aligning preoperative ct
images and intraoperative fluoroscopy images,” Medical physics, vol. 28, p.
1024, 2001.

[50] J. Hipwell, G. Penney, R. McLaughlin, K. Rhode, P. Summers, T. Cox,
J. Byrne, J. Noble, and D. Hawkes, “Intensity-based 2-d-3-d registration of
cerebral angiograms,” Medical Imaging, IEEE Transactions on, vol. 22, no. 11,
pp. 1417–1426, 2003.

[51] J. Byrne, C. Colominas, J. Hipwell, T. Cox, J. Noble, G. Penney, and
D. Hawkes, “Assessment of a technique for 2d–3d registration of cerebral
intra-arterial angiography,” British journal of radiology, vol. 77, no. 914, pp.
123–128, 2004.

[52] C. Liu, J. Yuen, and A. Torralba, “Sift flow: Dense correspondence across
scenes and its applications,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 33, no. 5, pp. 978–994, 2011.

[53] T. Tang and A. Chung, “Non-rigid image registration using graph-cuts,” in
Proceedings of the 10th international conference on Medical image computing
and computer-assisted intervention-Volume Part I. Springer-Verlag, 2007,
pp. 916–924.

[54] J. Mairal, F. Bach, J. Ponce, and G. Sapiro, “Online learning for matrix
factorization and sparse coding,” The Journal of Machine Learning Research,
vol. 11, pp. 19–60, 2010.

[55] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy minimization
via graph cuts,” Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, vol. 23, no. 11, pp. 1222–1239, 2001.

[56] N. Barzigar, A. Roozgard, S. Cheng, and P. Verma, “Scobep: Dense image
registration using sparse coding and belief propagation,” Journal of Visual
Communication and Image Representation, 2012.

[57] A. Roozgard, N. Barzigar, S. Cheng, and P. Verma, “Medical image registra-
tion using sparse coding and belief propagation,” in Engineering in Medicine
and Biology Society (EMBC), 2012 Annual International Conference of the
IEEE, Aug 2012, pp. 1141–1144.

[58] D. Lowe, “Object recognition from local scale-invariant features,” in Interna-
tional Conference on Computer Vision, vol. 2, 1999, pp. 1150–1157.

[59] H. G. Feichtinger, Gabor analysis and algorithms: Theory and applications.
Birkhauser, 1998.

81



[60] S. Cheng, V. Stankovic, and L. Stankovic, “Improved sift-based image registra-
tion using belief propagation,” in Proceedings of the 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing-Volume 00. IEEE
Computer Society, 2009, pp. 2909–2912.

[61] B. Fulkerson, A. Vedaldi, and S. Soatto, “Class segmentation and object lo-
calization with superpixel neighborhoods,” in Computer Vision, 2009 IEEE
12th International Conference on. IEEE, 2009, pp. 670–677.

[62] N. C. Institute, “The cancer imaging archive,”
https://wiki.cancerimagingarchive.net/display/Public/LIDC-
IDRI, September 2011. [Online]. Available:
https://wiki.cancerimagingarchive.net/display/Public/LIDC-IDRI

[63] H. Li, B. Manjunath, and S. Mitra, “A contour-based approach to multisensor
image registration,” Image Processing, IEEE Transactions on, vol. 4, no. 3,
pp. 320–334, 1995.

[64] M. Haque, M. Biswas, M. Pickering, and M. Frater, “A low-complexity image
registration algorithm for global motion estimation,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 22, no. 3, pp. 426–433, 2012.

[65] T. M. Lehmann, C. Gonner, and K. Spitzer, “Addendum: B-spline interpola-
tion in medical image processing,” Medical Imaging, IEEE Transactions on,
vol. 20, no. 7, pp. 660–665, 2001.

[66] M. Meyerson, S. Gabriel, and G. Getz, “Advances in understanding cancer
genomes through second-generation sequencing,” Nature Reviews Genetics,
vol. 11, no. 10, pp. 685–696, 2010.

[67] S. B. Needleman and C. D. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal of
molecular biology, vol. 48, no. 3, pp. 443–453, 1970.

[68] B. Morgenstern, “Dialign 2: improvement of the segment-to-segment approach
to multiple sequence alignment.” Bioinformatics, vol. 15, no. 3, pp. 211–218,
1999.

[69] N. Bray, I. Dubchak, and L. Pachter, “Avid: A global alignment program,”
Genome research, vol. 13, no. 1, pp. 97–102, 2003.

[70] M. Brudno, C. B. Do, G. M. Cooper, M. F. Kim, E. Davydov, E. D. Green,
A. Sidow, S. Batzoglou, et al., “Lagan and multi-lagan: efficient tools for large-
scale multiple alignment of genomic dna,” Genome research, vol. 13, no. 4, pp.
721–731, 2003.

[71] T. F. Smith and M. S. Waterman, “Comparison of biosequences,” Advances
in Applied Mathematics, vol. 2, no. 4, pp. 482–489, 1981.

82



[72] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic
local alignment search tool,” Journal of molecular biology, vol. 215, no. 3, pp.
403–410, 1990.

[73] M. Brudno and B. Morgenstern, “Fast and sensitive alignment of large genomic
sequences,” in Bioinformatics Conference, 2002. Proceedings. IEEE Computer
Society. IEEE, 2002, pp. 138–147.

[74] S. Schwartz, W. J. Kent, A. Smit, Z. Zhang, R. Baertsch, R. C. Hardison,
D. Haussler, and W. Miller, “Human–mouse alignments with blastz,” Genome
research, vol. 13, no. 1, pp. 103–107, 2003.

[75] M. Brudno, S. Malde, A. Poliakov, C. B. Do, O. Couronne, I. Dubchak, and
S. Batzoglou, “Glocal alignment: finding rearrangements during alignment,”
Bioinformatics, vol. 19, no. suppl 1, pp. i54–i62, 2003.

[76] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “Clustal w: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice,” Nucleic
acids research, vol. 22, no. 22, pp. 4673–4680, 1994.

[77] M. Larkin, G. Blackshields, N. Brown, R. Chenna, P. McGettigan,
H. McWilliam, F. Valentin, I. Wallace, A. Wilm, R. Lopez, et al., “Clustal
w and clustal x version 2.0,” Bioinformatics, vol. 23, no. 21, pp. 2947–2948,
2007.

[78] A. S. Schwartz and L. Pachter, “Multiple alignment by sequence annealing,”
Bioinformatics, vol. 23, no. 2, pp. e24–e29, 2007.

[79] A. E. Darling, B. Mau, and N. T. Perna, “progressivemauve: multiple genome
alignment with gene gain, loss and rearrangement,” PloS one, vol. 5, no. 6, p.
e11147, 2010.

[80] S. Kurtz, A. Phillippy, A. L. Delcher, M. Smoot, M. Shumway, C. An-
tonescu, S. L. Salzberg, et al., “Versatile and open software for comparing
large genomes,” Genome Biol, vol. 5, no. 2, p. R12, 2004.

[81] G. S. Slater and E. Birney, “Automated generation of heuristics for biological
sequence comparison,” BMC bioinformatics, vol. 6, no. 1, p. 31, 2005.

[82] M. N. Price, P. S. Dehal, and A. P. Arkin, “Fasttree: computing large min-
imum evolution trees with profiles instead of a distance matrix,” Molecular
biology and evolution, vol. 26, no. 7, pp. 1641–1650, 2009.

[83] ——, “Fasttree 2–approximately maximum-likelihood trees for large align-
ments,” Plos one, vol. 5, no. 3, p. e9490, 2010.

83



[84] S. Guindon and O. Gascuel, “A simple, fast, and accurate algorithm to esti-
mate large phylogenies by maximum likelihood,” Systematic biology, vol. 52,
no. 5, pp. 696–704, 2003.

[85] A. Stamatakis, “Raxml-vi-hpc: maximum likelihood-based phylogenetic anal-
yses with thousands of taxa and mixed models,” Bioinformatics, vol. 22,
no. 21, pp. 2688–2690, 2006.

[86] S. Batzoglou, “The many faces of sequence alignment,” Briefings in bioinfor-
matics, vol. 6, no. 1, pp. 6–22, 2005.

[87] C. Dewey and L. Pachter, “Evolution at the nucleotide level: the problem of
multiple whole-genome alignment,” Human Molecular Genetics, vol. 15, no.
suppl 1, pp. R51–R56, 2006.

[88] M. Blanchette, W. J. Kent, C. Riemer, L. Elnitski, A. F. Smit, K. M. Roskin,
R. Baertsch, K. Rosenbloom, H. Clawson, E. D. Green, et al., “Aligning multi-
ple genomic sequences with the threaded blockset aligner,” Genome research,
vol. 14, no. 4, pp. 708–715, 2004.

[89] A. Darling, B. Mau, F. Blattner, and N. Perna, “Mauve: multiple alignment of
conserved genomic sequence with rearrangements,” Genome research, vol. 14,
no. 7, pp. 1394–1403, 2004.

[90] I. Dubchak, A. Poliakov, A. Kislyuk, and M. Brudno, “Multiple whole-genome
alignments without a reference organism,” Genome research, vol. 19, no. 4, pp.
682–689, 2009.
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