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We study the dynamics of the quantum optical spring, i.e., a spring whose spring constant undergoes discrete
jumps depending on the quantum state of another system. We show the existence of revivals and fractional
revivals in the quantum dynamics reminiscent of similar dynamical features in cavity QED. We recover in the
semiclassical limit the results for an oscillator whose frequency undergoes a sudden change. The quantum
optical spring is conceivable, for example, by a micromirror under the influence of radiation pressure by a field
which is strictly quantum mechanical. Our work suggests that driven systems would in general exhibit a very
different dynamics if the drive is replaced by a quantum source.
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I. INTRODUCTION

The quantum dynamics of an oscillator with time-
dependent modulation of its frequency has been investigated
very extensively �1–4�. This is because of its many applica-
tions in different contexts. One very interesting application
was in the context of center-of-mass motion of an ion in the
Paul trap. More recently, the study of modulated oscillator
acquired new importance in connection with BEC’s where
trap potential can easily be manipulated �5,6�. Further nano-
mechanical oscillators provided new impetus for the study of
quantum dynamics of a frequency modulated system �7�.
One of the important outcomes of such studies was that me-
chanical and vibrational degrees of freedom can be prepared
in nonclassical states �2,8�. In particular, one finds that sud-
den changes in the frequency of the oscillator yield a signifi-
cant amount of squeezing.

In all of the above studies the oscillator was treated as a
quantum system whereas the source of modulation was con-
sidered as something prescribed. Clearly a complete quan-
tum dynamical theory should consider the source also to be a
quantized system. This is important as the mechanical oscil-
lator can have significant back action on the source of modu-
lation. The system is then a quantum optical spring, i.e., a
spring whose spring constant depends on the quantum state
of another system. The modulation by a quantized source
produces new features in the quantum dynamics as the oscil-
lator samples the discrete structure of the quantized source of
modulation. In particular we show the appearance of charac-
teristic quantum revivals and fractional revivals �9–11�. The
dynamics we present should be realized by the effects of
radiation pressure on a micromirror �12,13�.

The organization of the paper is as follows: In Sec. II, we
describe the model and derive analytical result for the re-
duced density matrix of the oscillator and the source of
modulation. The quantum dynamics of the oscillator is dis-
cussed in Sec. III. In Sec. IV, we analyze the squeezing prop-
erties. The back-action effect is described in Sec. V.

II. MODEL FOR THE QUANTUM OPTICAL SPRING

Consider a harmonic oscillator with mass m and fre-
quency �. Its Hamiltonian is given by

H0 =
p2

2m
+

m�2x2

2
, �1�

where x and p are the position and momentum coordinates
obeying the canonical commutation relation �x , p�= i�. Let
us assume that the frequency of the oscillator is modulated
by a quantized source such that the Hamiltonian in Eq. �1�
goes to

H =
p2

2m
+

m�2�1 + �a†a�x2

2
. �2�

Since the interaction part commutes with the unperturbed
Hamiltonian of the quantized source we do not write this part
of the energy. Further for brevity we would denote by QSM
as the quantized source of modulation. The operators a and
a† for the QSM obey the Boson commutation relations
�a ,a†�=1. The Hamiltonian �2� describes the quantum opti-
cal spring. Let the eigenstates and eigenvalues En

�0� of H0 be
denoted by

�n�x� = NnHn��x�exp�−
1

2
�2x2� ,

En
�0� = ���n +

1

2
� ,

Nn = � �

��2nn!
�1/2

,

� � �m�

�
�1/2

, �3�

where Hn is the nth Hermite polynomial.
The eigenstates of H are given by

a†a	p
 = p	p
 ,

H�n
p	p
 = En

�p��n
p	p
 ,

En
�p� = ��p�n +

1

2
� ,
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�p � ���1 + �p� . �4�

and where the wave function �n
p is given by

�n
p = NnHn��px����p

�
�exp�−

1

2
�p

2x2� ,

�p � �m�p

�
�1/2

. �5�

Note that �n
p is the eigenstate of harmonic oscillator with

frequency � replaced by �p. For a fix p, these form a com-
plete set.

The time evolution of the initial state can be obtained
from the knowledge of the states given by Eq. �4�. Let us
consider the initial state of the coupled system given by

��t = 0� = �
p,n

Cpn�n�x�	p
 , �6�

where Cpn are the expansion coefficients. The state at time t
would then be

	��t�
 = exp�− iHt

�
���t = 0�

= � Cpn	p
exp�− it

�
� p2

2m
+

m�p
2x2

2
��n�x�

= � Cpn	p
exp�− it

�
� p2

2m
+

m�p
2x2

2
��

l

	�l
p
��l

p	�n


= �
p,n,l

Cpn exp�− itEl
p

�
���l

p	�n
	p
	�l
p
 . �7�

This is the state of the combined system of oscillator and the
QSM. It is a nonfactorized state and thus the spring gets
entangled to the quantum system controlling the spring con-
stant. The reduced state of the oscillator and the QSM can be
obtained by projecting out the degrees of freedom of the
other system. It is seen that the density matrix for the oscil-
lator is

�o = �
n,l,m,j,p

	�l
p
�� j

p	CpnCpm
� exp�− it�El

p − Ej
p�

�
���l

p	�n


	��m	� j
p
 , �8�

and that for the QSM is

�QSM = �
p1,p2

dp1p2
	p1
�p2	 , �9�

dp1p2
= �

n,l,m,j
Cp1nCp2m

� �� j
p2	�l

p1
��l
p1	�n


	��m	� j
p2
exp�− it�El

p1 − Ej
p2�

�
� . �10�

Note especially the rather involved form of the reduced den-
sity matrix for the QSM. This is because the scalar product
of the wave functions �l

p for different p is nonzero,

�� j
p2	�l

p1
 � 0 for p1 � p2

=
lj if p1 = p2. �11�

Using Eq. �8� we can study the details of the quantum dy-
namics of the oscillator coupled to the QSM. We would like
to mention that the quantum characteristics of a nanome-
chanical oscillator coupled to a quantized photon source has
been studied by several authors �14–18� who have shown
how nonclassical states like Schrödinger cat state of such a
system can be generated. �Note that the Schrödinger cat state
is the state formed from the quantum superposition of two
coherent states differing in phase.� The Hamiltonian used by
previous authors is given by a†ax which is linear in the os-
cillator variable and is different from a†ax2 which is pro-
duced by modulation. It may be noted that Arcizet et al. �12�
have used precisely this Hamiltonian as they argue that the
radiation pressure leads to a force which is proportional to
the displacement of the oscillator. This clearly would imply
an effective Hamiltonian that is quadratic in oscillator’s dis-
placement.

There are other possibilities for producing Hamiltonian
�2�. One would be a particle confined to a harmonic trapping

potential. Its interaction with a detuned field E� would pro-
duce, on account of ac Stark effect, the interaction Hamil-

tonian 	E� 	2 sin2�kx� which for a deep trap and in the limit of
quantized field would yield the a†ax2 term. Another possibil-
ity is in connection with second-order Raman scattering in-
volving two phonons which is well known �8� to yield a
Hamiltonian of the form 	E	2x2 where x is the displacement
associated with phonons.

III. QUANTUM DYNAMICS OF THE QUANTUM
OPTICAL SPRING: REVIVALS
AND FRACTIONAL REVIVALS

Let us consider first a simple case when the QSM is pre-
pared in a coherent state with mean amplitude � and the
oscillator is prepared in its ground state. Thus the coefficients
Cpn are given by

Cpn = 
n0

�p exp�− 	�	2

2
�

��p�!
. �12�

Using Eq. �12� in Eq. �8� and on simplification we obtain

�o = � 	�	2pexp�− 	�	2�
�p�!

exp�− it�p�l − j��	�l
p
�� j

p	��l
p	�0


	��0	� j
p
 . �13�

In particular the probability of finding the oscillator in the
initial state is given by
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P0�t� = ��0	�o	�0


= �
p
���

l

exp�− it�pl�	��l
p	�0
	2��2

	� 	�	2p exp�− 	�	2�
�p�!

� = �
p

	Ap	2
	�	2p exp�− 	�	2�

�p�!
,

�14�

where

Ap = �
l

exp�− it�pl�	��l
p	�0
	2. �15�

This is one of our key results. The quantum state of the
source appears through the weight factor in Eq. �14� and
through the discrete sum in Eq. �14�. Such sums have been
encountered before in connection with the cavity QED prob-
lems �9,10� and have been experimentally studied �19,20�.
The sum in Eq. �15� can be evaluated in closed form since

��l
p	�0
 =� �l

p�x��0�x�dx

= NlN0���p

�
�� Hl��px�

	exp��−
1

2
��p

2 + �2�x2�dx

= NlN0� �p

��p�
�� Hl��py�exp�− y2�dy

= N2mN0� �p

��p�
�����2m� ! ��p

2 − 1�m

�m�!
�

=
�p

��p�1/8���2m�!��p
2 − 1�m

2m�m�!
� , �16�

where l has been set equal to 2m, m=0,1 ,2 , . . ., as the scalar
product is zero for odd l. Further, in Eq. �16� we have de-
fined

�p = �1 + �p� ,

�p
2 =

2��p�1/2

1 + ��p�1/2 . �17�

On using Eq. �16� in Eq. �15� we find the closed form ex-
pression for Ap,

Ap =
	�p	2

�p
1/4�1 − ��p

2 − 1�2 exp�− 2i�pt��1/2 , �18�

and P0�t� can be written as

P0�t� = �	Ap	2
 , �19�

and where �¯
 is the average over the distribution of p.
For the classical source of modulation the corresponding

result would be 	Ap	2 with p replaced by the strength of
modulation 	�	2,

Pcl�t� =
	��	4

����1 − 2���
2 − 1�2cos�2��t� + ���

2 − 1�4�
,

�� = �1 + �	�	2� ,

��
2 =

2����1/2

1 + ����1/2 ,

�� = ���1 + �	�	2� . �20�

Thus Pcl oscillates at the frequency 2��. However, the prob-
ability P0�t� for the QSM behaves quite differently as shown
in the Fig. 1 and exhibits collapse and revival of the classical
periodic motion. In a different parameter regime the frac-
tional revivals in P0�t� are seen in Fig. 2. Clearly the dynam-
ics of the quantum optical spring is very sensitive to the
quantized source of modulation. Finally as is known the dy-
namical behavior is sensitive to the quantum statistics of the
QSM. We show in Fig. 3 the behavior of the oscillator for
thermal excitation of the QSM which would, for example, be
relevant in microwave cavities at low temperatures. The col-
lapses and revivals, unlike the case of the Jaynes-Cummings
model �21�, are more pronounced for the present model.
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FIG. 1. The variation of P0 as a function of ��t=2�� with
parameter �=0.1 is shown. The average number 	�	2 of excitation
in the QSM is 4.
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FIG. 2. The variation of P0 as a function of ��t=2�� with
parameter �=0.3 is shown. The average number 	�	2 of excitation
in the QSM is 25.
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FIG. 3. The variation of P0 as a function of ��t=2�� with
parameter �=0.1 is shown. The average number of thermal excita-
tion in the QSM is 4.
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IV. SQUEEZING PROPERTIES OF QUANTUM
OPTICAL SPRING

We next investigate if the oscillator system acquires im-
portant nonclassical character as a result of the QSM. As
mentioned earlier even a classical change in the frequency
can lead to squeezing in oscillator and therefore an interest-
ing question would be how this squeezing character is modi-
fied by the QSM. In order to calculate squeezing it is more
convenient to work with Heisenberg equations of motion.
For the Hamiltonian in Eq. �2� we can prove that

d�a†a�
dt

= 0, �21�

dx

dt
=

p

m
, �22�

dp

dt
= − m���2�1 + �a†a�x . �23�

Thus a†a is a constant of motion and we can write the solu-
tion as

x�t� = x�0�cos��̂t� +
p�0�

m�̂
sin��̂t� , �24�

p�t� = p�0�cos��̂t� − m�̂x�0�sin��̂t� , �25�

where �̂ is given by

�̂ = ��1 + �a†a

and where a†a is the operator at time t=0.
We define the squeezing variables

Vx�t� =
�x2�t�
 − �x�t�
2

�x2�0�

,

Vp�t� =
�p2�t�
 − �p�t�
2

�p2�0�

. �26�

For the ground state of the oscillator

�x�0�
 = �p�0�
 = 0, �xp + px
 = 0,

�x2�0�
 =
�

2m�
, �p2�0�
 =

m��

2
. �27�

Using Eqs. �24� and �27� we obtain

Vx�t� = 1 − �
n

	�	2n exp�− 	�	2�sin2��t�1 + �n�
n!

� �n

1 + �n
� ,

�28�

Vp�t� = 1 + �
n

	�	2n exp�− 	�	2�sin2��t�1 + �n���n�
n!

.

�29�

Clearly Vx�t� is always less than 1 and hence the x quadrature
is squeezed. The corresponding result with a classical source
of modulation would be

Vx�t� = 1 − sin2��t�1 + �	�	2�� �	�	2

1 + �	�	2� . �30�

The minimum value of Vx in the classical case is when
sin2��t�1+�	�	2�=1 and hence

Vx, min = 1 − � �	�	2

1 + �	�	2� . �31�

For the QSM the squeezing parameter �28� exhibits typical
collapse and revival of the classical periodical oscillation
�Figs. 4 and 5�. This is again due to the discrete nature of the
quantum state of the source of modulation, i.e., control of the
spring constant by a quantum source. We also note that under
the approximation �n / �1+�n��1, the sum in �28� is iden-
tical to that appearing in the Jaynes-Cummings model �10�
and can be simplified by using approximate methods devel-
oped there.

V. BACK REACTION OF THE OSCILLATOR
ON THE QSM

In this section we evaluate the back action of the oscilla-
tor on the QSM. The Hamiltonian in Eq. �2� depends only on
a†a and therefore only the off-diagonal elements of the den-
sity matrix �QSM are affected by the coupling of the oscillator
to the QSM. The reduced state of the QSM is rather in-
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Τ �
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�

FIG. 4. The variation of Vx�t� as a function of ��t=2�� with
parameter �=0.1 is shown. The average number 	�	2 of excitation
in the QSM is 4.
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FIG. 5. The variation of Vx�t� as a function of ��t=2�� with
parameter �=0.3 is shown. The average number 	�	2 of excitation
in the QSM is 25.
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volved. In order to appreciate the back action we examine
the mean displacement �â
 of the QSM which is conditional
on the measurement of oscillator in the ground state 	�0
.
The mean value is given by

d�t� � �â
 = �
n,l

�l	a	n
�n	�	l
 = �
n

�n�n,n−1. �32�

We assume that the oscillator was initially in the state 	�0

and the QSM is in the state 	�
. Then, the QSM’s conditional
density matrix is found to be

�n,l = cn
�clXn,l, �33�

where cn’s are given by

cn =

�n exp�− 	�	2

2
�

��n�!
, �34�

and Xn,l is given by

Xn,l = ��0	exp�ih�n��exp�− ih�l��	�0
 . �35�

The coefficient Xn,l is the modification of the off-diagonal
element of the density matrix of the QSM as a result of back
action of the oscillator.

In the above equation we have introduced the Hamil-
tonian h�n� defined by

h�n� �
t

�
� p2

2m
+

m�2�1 + �n�x2

2
� . �36�

The Xn,l’s can be calculated by using operator disentangling
theorems for the SU�1,1� group. We give details in the Ap-
pendix. We find the following result �Eq. �A13��:

Xn,l =
���3n���3l�1/4

�1 − ��+n���+l

. �37�

The displacement of the QSM with �’s defined by Eqs. �A9�
and �A10� can be obtained from Eqs. �32� and �33�. The
coefficient Xn,l turns out to be related to the scalar product of
two squeezed vacuum states defined by

	z
 �
1

�cosh	z	
�
m=0

� ���2m�!
2mm!

�� z

	z	
�m

�tanh�	z	��m	2m


�
1

�cosh	z	
exp�� z

	z	
�tanh�	z	�

�b̂†�2

2
	�0
 , �38�

Thus on comparison with �A12� we find

� zn

	zn	� �
�+n

	�+n	
,

tanh�	zn	� = 	�+n	 . �39�

Thus Xn,l can be written as

Xn,l � �zn	zl
 . �40�

In Fig. 6 we display the time evolution of the imaginary part
of �â
. Note that the imaginary part of �â
 builds up starting

from zero and exhibits aperiodic behavior. The quantized
nature of the optical spring is well reflected in the back re-
action. Evidently the back reaction occurs over a much larger
time scale.

In conclusion we introduced the idea of a quantum optical
spring, i.e., a spring whose spring constant is controlled by
another quantum system. The dynamics of the oscillator sys-
tem exhibits the phenomena of collapse and revivals includ-
ing fractional revivals. Further the spring gets entangled to
the quantum system which controls the spring constant.

APPENDIX: CALCULATION OF THE MATRIX
ELEMENT Eq. (35)

In the appendix we give the details of our calculation for
Xnl. It is convenient to use x and p in terms of annihilation

and creation operators b̂ and b̂†,

x =� �

2m�
�b̂† + b̂� ,

p = i��m�

2
�b̂† − b̂� , �A1�

exp�− ih�n��	�0
 = exp�−
it

�
� p2

2m
+

m�2�1 + �n�x2

2
�	�0
 ,

�A2�

Substituting the values for x and p from Eq. �A1� in Eq. �A2�
and on simplification we obtain

exp�− ih�n��	�0
 = exp��+nK̂+ + �−nK̂− + �3nK̂3�	�0
 ,

�A3�

where

��n �
− i��nt

2
, �A4�

�3n � − i�t��n + 2� . �A5�

In �A3� K̂�, K̂3 are the generators of the SU�1,1� algebra
given by

K̂3 �
1

4
�b̂†b̂ + b̂b̂†� , �A6�

0 20 40 60 80 100
Τ �

�4

�2

0

2

4

Im
��

a� �
�
�

FIG. 6. The variation of the imaginary part of �â
 as a function
of ��t=16�� with parameter �=0.3 is shown. The average num-
ber 	�	2 of excitation in the QSM is 25.
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K̂+ = �K̂−�† =
1

2
�b̂†�2. �A7�

Equation �A3� can be simplified by using the disentangling
theorem �22� for the SU�1,1� group,

exp��+nK̂+ + �−nK̂− + �3nK̂3�

= exp��+nK̂+�exp��ln �3n�K̂3�exp��−nK̂−� , �A8�

where

�3n �
1

�cosh �n −
�3n

2�n
sinh �n�2 , �A9�

��n �
2��n sinh �n

�2�n cosh �n − �3n sinh �n�
, �A10�

�n
2 �

1

4
�3n

2 − �+n�−n. �A11�

We use the disentangling theorem in the form �A8� as then

K̂− acting on 	�0
 yields zero and K̂3 terms can be simplified

as 	�0
 is an eigenstate of K̂3. Thus we reduce Eq. �A3� to

exp��+nK̂+ + �−nK̂− + �3nK̂3�	�0


� exp��+nK̂+�exp��ln �3n�K̂3�exp��−nK̂−�	�0


= exp� �ln �3n�
4

�exp��+nK̂+�	�0


= ��3n�1/4 exp��+nK̂+�	�0
 . �A12�

Hence Xn,l as defined by �35� can be calculated as follows:

Xn,l = ��0	exp�ih�n��exp�− ih�l��	�0


= ���3n���3l�1/4��0	exp���+n��K̂−�exp��+lK̂+�	�0


= ���3n���3l�1/4�
p

���+n���+l�p�2p�!
�p!�222p =

���3n���3l�1/4

�1 − ��+n���+l

.

�A13�

This is the result we use in Sec. V to calculate the back
action.
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